Sample records for znii coii niii

  1. Structural, spectroscopic and thermal characterization of 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester and its Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2005-04-01

    Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.

  2. Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-02-01

    Novel Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions with 1,3-diphenyl-4-phenylazo-5-pyrazolone (L) have been prepared and characterized using different analytical and spectroscopic techniques. 1:1 Complexes of Mn(II), Co(II) and Zn(II) are distorted octahedral whereas Ni(II) complex is square planar and Cu(II) is distorted trigonal bipyramid. 1:2 Complexes of Mn(II), Co(II), Cu(II) and Zn(II) are distorted trigonal bipyramid whereas Ni(II) complex is distorted tetrahedral. All complexes behave as non-ionic in dimethyl formamide (DMF). The electronic structure and nonlinear optical parameters (NLO) of the complexes were investigated theoretically at the B3LYP/GEN level of theory. Molecular stability and bond strengths have been investigated by applying natural bond orbital (NBO) analysis. The geometries of the studied complexes are non-planner. DFT calculations have been also carried out to calculate the global properties; hardness (η), global softness (S) and electronegativity (χ). The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within the complexes. The total static dipole moment (μtot), the mean polarizability (<α>), the anisotropy of the polarizability (Δα) and the mean first-order hyperpolarizability (<β>) were calculated and compared with urea as a reference material. The complexes show implying optical properties.

  3. Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate ONO donor Schiff base ligand: Synthesis, characterization, thermal, non-isothermal kinetics and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Mishra, A. P.

    2017-02-01

    We report here four mononuclear Co(II), Ni(II), Cu(II) and Zn(II) coordination compounds of general formula [M(L)2] {L = dcp; M = CoII, CuII & ZnII} and [M(L)(H2O)]·H2O {L = dcp; M = NiII} derived from tridentate 2,4-dichloro-6-{[(3-chloro-2-hydroxy-5-nitrophenyl)imino]methyl}phenol (dcp) ligand. These compounds were synthesized and characterized by elemental analysis, FT-IR, uv-vis, 1H NMR, molar conductance, magnetic moment, thermal, PXRD and SEM-EDX. The Powder X-ray Diffraction patterns and SEM analyses showed the crystalline nature of synthesized compounds. The peak broadening was explained in terms of crystallite size and the lattice strain using Scherrer and Williamson-Hall method. Thermogravimetric analysis was performed to determine the thermal stability of synthesized compounds under nitrogen atmosphere up to 820 K at 10 Kmin-1 heating rate. The kinetic and thermodynamic parameters of thermal decomposition were calculated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods assuming first order degradation. The calculated optical band gap values of complexes were found to be in semiconducting range. To support the experimental findings, and derive some fruitful information viz. frequency calculations, HOMO-LUMO, energy gap (ΔE), molecular electrostatic potential (MEP), spin density, absorption spectra etc.; theoretical calculations by means of DFT and TD-DFT at B3LYP level were incorporated.

  4. Synthesis, characterization and anti-microbial activity of a novel macrocyclic ligand derived from the reaction of 2,6-pyridinedicarboxylic acid with homopiperazine and its Co(II), Ni(II), Cu(II), and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Soleimani, Esmaiel

    2011-05-01

    The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).

  5. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  6. Free metal ion depletion by "Good's" buffers. III. N-(2-acetamido)iminodiacetic acid, 2:1 complexes with zinc(II), cobalt(II), nickel(II), and copper(II); amide deprotonation by Zn(II), Co(II), and Cu(II).

    PubMed

    Lance, E A; Rhodes, C W; Nakon, R

    1983-09-01

    Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.

  7. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  8. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan

    2013-01-01

    A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.

  9. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine.

    PubMed

    Mohamed, Gehad G; El-Gamel, Nadia E A

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  10. Synthesis, investigation and spectroscopic characterization of piroxicam ternary complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with glycine and DL-phenylalanine

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2004-11-01

    The ternary piroxicam (Pir; 4-hydroxy-2-methyl- N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA cheletes were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.

  11. Glutamate Ligation in the Ni(II)- and Co(II)-Responsive Escherichia coli Transcriptional Regulator, RcnR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, Carolyn E.; Musiani, Francesco; Huang, Hsin-Ting

    Escherichia coli RcnR (resistance to cobalt and nickel regulator, EcRcnR) is a metal-responsive repressor of the genes encoding the Ni(II) and Co(II) exporter proteins RcnAB by binding to PRcnAB. The DNA binding affinity is weakened when the cognate ions Ni(II) and Co(II) bind to EcRcnR in a six-coordinate site that features a (N/O)5S ligand donor-atom set in distinct sites: while both metal ions are bound by the N terminus, Cys35, and His64, Co(II) is additionally bound by His3. On the other hand, the noncognate Zn(II) and Cu(I) ions feature a lower coordination number, have a solvent-accessible binding site, and coordinatemore » protein ligands that do not include the N-terminal amine. A molecular model of apo-EcRcnR suggested potential roles for Glu34 and Glu63 in binding Ni(II) and Co(II) to EcRcnR. The roles of Glu34 and Glu63 in metal binding, metal selectivity, and function were therefore investigated using a structure/function approach. X-ray absorption spectroscopy was used to assess the structural changes in the Ni(II), Co(II), and Zn(II) binding sites of Glu → Ala and Glu → Cys variants at both positions. The effect of these structural alterations on the regulation of PrcnA by EcRcnR in response to metal binding was explored using LacZ reporter assays. These combined studies indicate that while Glu63 is a ligand for both metal ions, Glu34 is a ligand for Co(II) but possibly not for Ni(II). The Glu34 variants affect the structure of the cognate metal sites, but they have no effect on the transcriptional response. In contrast, the Glu63 variants affect both the structure and transcriptional response, although they do not completely abolish the function of EcRcnR. The structure of the Zn(II) site is not significantly perturbed by any of the glutamic acid variations. The spectroscopic and functional data obtained on the mutants were used to calculate models of the metal-site structures of EcRcnR bound to Ni(II), Co(II), and Zn(II). The results are

  12. Synthesis, characterization, antimicrobial activity and DFT studies of 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione and its Mn(II), Co(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.

    2018-07-01

    A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.

  13. Oxoaporphine Metal Complexes (CoII, NiII, ZnII) with High Antitumor Activity by Inducing Mitochondria-Mediated Apoptosis and S-phase Arrest in HepG2

    PubMed Central

    Qin, Jiao-Lan; Shen, Wen-Ying; Chen, Zhen-Feng; Zhao, Li-Fang; Qin, Qi-Pin; Yu, Yan-Cheng; Liang, Hong

    2017-01-01

    Three new oxoaporphine Co(II), Ni(II) and Zn(II) complexes 1–3 have been synthesized and fully characterized. 1–3 have similar mononuclear structures with the metal and ligand ratio of 1:2. 1–3 exhibited higher cytotoxicity than the OD ligand and cisplatin against HepG2, T-24, BEL-7404, MGC80–3 and SK-OV-3/DDP cells, with IC50 value of 0.23−4.31 μM. Interestingly, 0.5 μM 1–3 significantly caused HepG2 arrest at S-phase, which was associated with the up-regulation of p53, p21, p27, Chk1 and Chk2 proteins, and decrease in cyclin A, CDK2, Cdc25A, PCNA proteins. In addition, 1–3 induced HepG2 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by p53 activation, ROS production, Bax up-regulation and Bcl-2 down-regulation, mitochondrial dysfunction, cytochrome c release, caspase activation and PARP cleavage. Furthermore, 3 inhibited tumor growth in HepG2 xenograft model, and displayed more safety profile in vivo than cisplatin. PMID:28436418

  14. Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates.

    PubMed

    Ivanets, A I; Srivastava, V; Kitikova, N V; Shashkova, I L; Sillanpää, M

    2017-03-01

    The aim of this work was to study the sorption kinetics and thermodynamics of Co(II) and Ni(II) from aqueous solutions by sorbents on the basis of hydrogen (PD-1) and tertiary (PD-2) Ca-Mg phosphates depending on the solution temperature and sorbents chemical composition. Kinetic studies of adsorption of Co(II) and Ni(II) ions onto samples of phosphate sorbents were performed in batch experiment at the temperatures 288, 303, 318 and 333 K. The sorbent dose was fixed at 10 g L -1 , initial pH value 2.6, and contact time varied from 5 to 600 min. The kinetics of Co(II) and Ni(II) adsorption were analyzed by using pseudo-first order, pseudo-second order and intraparticle diffusion models. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) for the sorption of Co(II) and Ni(II) were determined using the Gibbs-Helmholtz equation. The calculated kinetic parameters and corresponding correlation coefficients revealed that Co(II) and Ni(II) uptake process followed the pseudo-second order rate expression. Thermodynamic studies confirmed the spontaneous and endothermic nature of removal process which indicate that sorption of Co(II) and Ni(II) ions onto both phosphate sorbents is favoured at higher temperatures and has the chemisorptive mechanism. The data thus obtained would be useful for practical application of the low cost and highly effective Ca-Mg phosphate sorbents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336.

    PubMed

    Nayl, A A

    2010-01-15

    Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions by solvent extraction technique were studied using different forms of Aliquat 336 diluted with kerosene. The extraction percent of each metal ion was found to increase with increasing pH and extractant concentration. Co(II) was preferentially extracted by different forms of Aliquat 336 over Ni(II) under the same extraction conditions. From analysis of the experimental results, the extraction mechanism of R(4)N-forms was proposed with Co(II). It was found that the highest separation factor (S(Co/Ni)) value of 606.7 was obtained with 0.36 M R(4)N-SCN in kerosene from 2.0M H(2)SO(4) solution at pH 4.8 and shaking time of 20 min. Stripping of the two metal ions from the organic phase was also investigated. Based on the experimental results, a separation method was developed and tested to separate high purity Co(II), Ni(II) and Ln(III) from Ni-MH batteries leached by 2.0M H(2)SO(4). Based on the experimental results, a flow sheet was developed and tested and 0.34 g Co, 1.39 g Ln and 5.2g Ni were obtained from the leaching process.

  16. Dinuclear complexes containing linear M-F-M [M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)] bridges: trends in structures, antiferromagnetic superexchange interactions, and spectroscopic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2012-11-05

    The reaction of M(BF(4))(2)·xH(2)O, where M is Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), with the new ditopic ligand m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (L(m)*) leads to the formation of monofluoride-bridged dinuclear metallacycles of the formula [M(2)(μ-F)(μ-L(m)*)(2)](BF(4))(3). The analogous manganese(II) species, [Mn(2)(μ-F)(μ-L(m)*)(2)](ClO(4))(3), was isolated starting with Mn(ClO(4))(2)·6H(2)O using NaBF(4) as the source of the bridging fluoride. In all of these complexes, the geometry around the metal centers is trigonal bipyramidal, and the fluoride bridges are linear. The (1)H, (13)C, and (19)F NMR spectra of the zinc(II) and cadmium(II) compounds and the (113)Cd NMR of the cadmium(II) compound indicate that the metallacycles retain their structure in acetonitrile and acetone solution. The compounds with M = Mn(II), Fe(II), Co(II), Ni(II), and Cu(II) are antiferromagnetically coupled, although the magnitude of the coupling increases dramatically with the metal as one moves to the right across the periodic table: Mn(II) (-6.7 cm(-1)) < Fe(II) (-16.3 cm(-1)) < Co(II) (-24.1 cm(-1)) < Ni(II) (-39.0 cm(-1)) ≪ Cu(II) (-322 cm(-1)). High-field EPR spectra of the copper(II) complexes were interpreted using the coupled-spin Hamiltonian with g(x) = 2.150, g(y) = 2.329, g(z) = 2.010, D = 0.173 cm(-1), and E = 0.089 cm(-1). Interpretation of the EPR spectra of the iron(II) and manganese(II) complexes required the spin Hamiltonian using the noncoupled spin operators of two metal ions. The values g(x) = 2.26, g(y) = 2.29, g(z) = 1.99, J = -16.0 cm(-1), D(1) = -9.89 cm(-1), and D(12) = -0.065 cm(-1) were obtained for the iron(II) complex and g(x) = g(y) = g(z) = 2.00, D(1) = -0.3254 cm(-1), E(1) = -0.0153, J = -6.7 cm(-1), and D(12) = 0.0302 cm(-1) were found for the manganese(II) complex. Density functional theory (DFT) calculations of the exchange integrals and the zero-field splitting on manganese(II) and iron(II) ions were performed

  17. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O2N type tridentate chromone-2-carboxaldehyde Schiff's base ligand

    NASA Astrophysics Data System (ADS)

    Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.

    2017-08-01

    Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.

  19. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  20. Synthesis, characterization, nucleic acid interactions and photoluminescent properties of methaniminium hydrazone Schiff base and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.

    2018-07-01

    An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.

  1. Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring.

    PubMed

    Abu El-Reash, G M; El-Gammal, O A; Ghazy, S E; Radwan, A H

    2013-03-01

    The chelating behavior of ligands based on carbohydrazone core modified with pyridine end towards Co(II), Ni(II) and Cu(II) ions have been examined. The ligands derived from the condensation of carbohydrazide with 2-acetylpyridine (H(2)APC) and 4-acetylpyridine (H(2)APEC). The (1)H NMR, IR data and the binding energy calculations of H(2)APC revealed the presence of two stereoisomers syn and anti in the solid state and in the solution. The (1)H NMR, IR data and the binding energy calculations confirmed the presence of H(2)APEC in one keto form only in the solid state and in the solution. The spectroscopic data confirmed that H(2)APC behaves as a monobasic pentadentate in Co(II) and Cu(II) complexes and as mononegative tetradentate in Ni(II) complex. On the other hand, H(2)APEC acts as a mononegative tridentate in Co(II) complex, neutral tridentate in Ni(II) complex and neutral bidentate in Cu(II) complex. The electronic spectra and the magnetic measurements of complexes as well as the ESR of the copper complexes suggested the octahedral geometry. The bond length and bond angles were evaluated by DFT method using material studio program. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and in vitro Ehrlich ascites of the compounds have been screened. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex.

    PubMed

    Yarkandi, Naeema H; El-Ghamry, Hoda A; Gaber, Mohamed

    2017-06-01

    A novel Schiff base ligand, (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol (HL), has been designed and synthesized in addition to its metal chelates [Co(L) 2 ]·l2H 2 O, [Ni(L)Cl·(H 2 O) 2 ].5H 2 O, [Cu(L)Cl] and [Zn(L)(CH 3 COO)]. The structures of the isolated compounds have been confirmed and identified by means of different spectral and physicochemical techniques including CHN analysis, 1 H & 13 C NMR, mass spectral analysis, molar conductivity measurement, UV-Vis, infrared, magnetic moment in addition to TGA technique. The infrared spectral results ascertained that the ligand acts as monobasic tridentate binding to the metal centers via deprotonated hydroxyl oxygen, azomethine and imidazole nitrogen atoms. The UV-Vis, magnetic susceptibility and molar conductivity data implied octahedral geometry for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) complex and square planar for Cu(II) complex. X-ray structural analysis of Co(II) complex 1 has been reported and discussed. Moreover, the type of interaction between the ligand & its complexes towards salmon sperm DNA (SS-DNA) has been examined by the measurement of absorption spectra and viscosity which confirmed that the ligand and its complexes interact with DNA via intercalation interaction as concluded from the values of binding constants (K b ). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other

  4. Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.

    2013-04-01

    Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.

  5. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  6. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  7. The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid - Synthesis and structural studies

    NASA Astrophysics Data System (ADS)

    Drzewiecka-Antonik, Aleksandra; Ferenc, Wiesława; Wolska, Anna; Klepka, Marcin T.; Cristóvão, Beata; Sarzyński, Jan; Rejmak, Paweł; Osypiuk, Dariusz

    2017-01-01

    The Co(II), Ni(II) and Cu(II) complexes with herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were synthesized and structurally characterized. The geometry of metal-ligand interaction was refined using XAFS and DFT studies. The Co(2,4-D)2·6H2O and Ni(2,4-D)2·4H2O complexes have octahedral geometry with two carboxylate groups of 2,4-D anions and four water molecules in the coordination sphere. The square planar geometry around metal cations formed by the carboxylate groups from two monodentate ligands and two water molecules, is observed for Cu(2,4-D)2·4H2O complex. In the recrystallized Ni(II) complex dinuclear 'Chinese lantern' structures with bridging carboxylate groups of 2,4-D were observed.

  8. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.

    2015-02-01

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  9. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  10. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthesis, characterization and physicochemical studies of new chelating resin 1, 8-(3, 6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes

    NASA Astrophysics Data System (ADS)

    Khalil, Tarek E.; Elbadawy, Hemmat A.; El-Dissouky, Ali

    2018-02-01

    A new chelating resin, 1,8-(3,6-dithiaoctyl)-4-polyvinylbenzenesulphonate (dpvbs) has been synthesized by coupling Amberlite XAD-16 with (2,2‧-ethylenedithio) diethanol using pyridine/CH2Cl2 mixture as a solvent. The chelating resin and its metallopolymer Cu(II), Ni(II), Co(II) and Fe(III) complexes have been synthesized and characterized by EDS, SEM, XPS, elemental analysis, spectral (IR, UV/Vis, EPR). The thermal analysis of the resin and its metallopolymer complexes indicated an endothermic spontaneous sorption mechanism with the liberation of water of hydration of the metal ions and that adsorbed by the free resin. At the solid liquid interface, the degrees of freedom increased during the sorption of the metal ions onto the resin. The surface area of polymer support and its metallopolymer complexes are estimated by (BJH) method. The batch equilibrium method was used for studying the metal sorption and selectivity at different pH values and different contact times at room temperature. ICP-AES was used to estimate the metal capacity of the resin for sorption of Cu(II), Ni(II), Co(II) and Fe(III) from aqueous solutions utilizing the batch equilibrium method. The sorption tendency of the metal ions by the resin was found to be: Cu(II) > Fe(III) > Co(II) > Ni(II). Adsorption kinetics was found to be fit the pseudo-second order model.

  12. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  13. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.

    2015-07-01

    A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.

  14. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    PubMed

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  15. Synthesis, structural studies and antimicrobial activity of N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide and its Co(II), Ni(II) complexes

    NASA Astrophysics Data System (ADS)

    Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra

    2018-06-01

    A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.

  16. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol.

    PubMed

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-05

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  18. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol

    NASA Astrophysics Data System (ADS)

    Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin

    2015-04-01

    A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.

  19. Whole-Genome Sequence of Cupriavidus sp. Strain BIS7, a Heavy-Metal-Resistant Bacterium

    PubMed Central

    Hong, Kar Wai; Thinagaran, Dinaiz a/l; Gan, Han Ming; Yin, Wai-Fong

    2012-01-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome. PMID:23115161

  20. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium.

    PubMed

    Hong, Kar Wai; Thinagaran, Dinaiz al; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2012-11-01

    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.

  1. Structural and Biological Behaviour of Co(II), Cu(II) and Ni(II) Metal Complexes of Some Amino Acid Derived Schiff-Bases

    PubMed Central

    Chohan, Zahid H.; Praveen, M.; Ghaffar, A.

    1997-01-01

    Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and 13C-NMR, 1H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species. PMID:18475798

  2. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.

    PubMed

    Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M

    2010-01-04

    A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo

  3. Coordination Polymer: Synthesis, Spectral Characterization and Thermal Behaviour of Starch-Urea Based Biodegradable Polymer and Its Polymer Metal Complexes

    PubMed Central

    Malik, Ashraf; Parveen, Shadma; Ahamad, Tansir; Alshehri, Saad M.; Singh, Prabal Kumar; Nishat, Nahid

    2010-01-01

    A starch-urea-based biodegradable coordination polymer modified by transition metal Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) was prepared by polycondensation of starch and urea. All the synthesized polymeric compounds were characterized by Fourier transform-infrared spectroscopy (FT-IR), 1H-NMR spectroscopy, 13C-NMR spectroscopy, UV-visible spectra, magnetic moment measurements, differential scanning calorimeter (DSC), and thermogravimetric analysis (TGA). The results of electronic spectra and magnetic moment measurements indicate that Mn(II), Co(II), and Ni(II) complexes show octahedral geometry, while Cu(II) and Zn(II) complexes show square planar and tetrahedral geometry, respectively. The thermogravimetric analysis revealed that all the polymeric metal complexes are more thermally stable than the parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM standards of biodegradable polymers by CO2 evolution method. PMID:20414461

  4. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  5. Electrochemical studies of DNA interaction and antimicrobial activities of MnII, FeIII, CoII and NiII Schiff base tetraazamacrocyclic complexes

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Vashistha, Vinod Kumar; Tevatia, Prashant; Singh, Randhir

    2017-04-01

    Tetraazamacrocyclic complexes of MnII, FeIII, CoII and NiII have been synthesized by template method. These tetraazamacrocycles have been analyzed with various techniques like molar conductance, IR, UV-vis, mass spectral and cyclic voltammetric studies. On the basis of all these studies, octahedral geometry has been assigned to these tetraazamacrocyclic complexes. The DNA binding properties of these macrocyclic complexes have been investigated by electronic absorption spectra, fluorescence spectra, cyclic voltammetric and differential pulse voltammetric studies. The cyclic voltammetric data showed that ipc and ipa were effectively decreased in the presence of calf thymus DNA, which is a strong evidence for the interaction of these macrocyclic complexes with the calf thymus DNA (ct-DNA). The heterogeneous electron transfer rate constant found in the order: KCoII > KNiII > KMnII which indicates that CoII macrocyclic complex has formed a strong intercalated intermediate. The Stern-Volmer quenching constant (KSV) and voltammetric binding constant were found in the order KSV(CoII) > KSV(NiII) > KSV(MnII) and K+(CoII) > K+(NiII) > K+(MnII) which shows that CoII macrocyclic complex exhibits the high interaction affinity towards ct-DNA by the intercalation binding. Biological studies of the macrocyclic complexes compared with the standard drug like Gentamycin, have shown antibacterial activities against E. coli, P. aeruginosa, B. cereus, S. aureus and antifungal activity against C. albicans.

  6. Genetic and physiological responses of Bacillus subtilis to metal ion stress.

    PubMed

    Moore, Charles M; Gaballa, Ahmed; Hui, Monica; Ye, Rick W; Helmann, John D

    2005-07-01

    Metal ion homeostasis is regulated principally by metalloregulatory proteins that control metal ion uptake, storage and efflux genes. We have used transcriptional profiling to survey Bacillus subtilis for genes that are rapidly induced by exposure to high levels of metal ions including Ag(I), Cd(II), Cu(II), Ni(II) and Zn(II) and the metalloid As(V). Many of the genes affected by metal stress were controlled by known metalloregulatory proteins (Fur, MntR, PerR, ArsR and CueR). Additional metal-induced genes are regulated by two newly defined metal-sensing ArsR/SmtB family repressors: CzrA and AseR. CzrA represses the CadA efflux ATPase and the cation diffusion facilitator CzcD and this repression is alleviated by Zn(II), Cd(II), Co(II), Ni(II) and Cu. CadA is the major determinant for Cd(II) resistance, while CzcD protects the cell against elevated levels of Zn(II), Cu, Co(II) and Ni(II). AseR negatively regulates itself and AseA, an As(III) efflux pump which contributes to arsenite resistance in cells lacking a functional ars operon. Our results extend the range of identified effectors for the As(III)-sensor ArsR to include Cd(II) and Ag(I) and for the Cu-sensor CueR to include Ag(I) and, weakly, Cd(II) and Zn(II). In addition to systems dedicated to metal homeostasis, specific metal stresses also strongly induced pathways related to cysteine, histidine and arginine metabolism.

  7. Spectroscopic characteristic (FT-IR, 1H, 13C NMR and UV-Vis) and theoretical calculations (MEP, DOS, HOMO-LUMO, PES, NBO analysis and keto-enol tautomerism) of new tetradentate N,N‧-bis(4-hydroxysalicylidene)-1,4-phenylenediamine ligand as chelating agent for the synthesis of dinuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajaei, Iman; Mirsattari, Seyed Nezamoddin

    2018-07-01

    The synthesis and characterization of a novel symmetrical Schiff base ligand N,Nʹ-bis(4-hydroxysalicylidene)-1,4-phenylenediamine (BHSP) was presented in this study and characterized by FT-IR, NMR (1H and 13C) and UV-Vis spectroscopy experimentally and theoretically. Also a series of binuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of BHSP ligand have been synthesized by conventional sequential route in 1:1 equivalent of L:M ratio and characterized by routine physicochemical characterizations. The molecular geometry and vibrational frequencies of the BHSP in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-31G(d,p) and 6-31++G(d,p) basis sets. To study different conformations of the molecule, potential energy surface (PES) scan investigations were performed. The energetic behavior of the ligand compound (BHSP) in solvent media has been examined using B3LYP method with the 6-31G(d,p) and 6-31++G(d,p) basis sets by applying the polarized continuum model (PCM). In addition, DFT calculations of the BHSP ligand, molecular electrostatic potential (MEP), contour map, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMO) analysis, NMR analysis and TD-DFT calculations were conducted. The calculated properties are in agreement with the available experimental data and closely related molecule BSP. The calculated results show that the optimized geometry can well reproduce the crystal structural parameters.

  8. Characterization of a novel chelating resin of enhanced hydrophilicity and its analytical utility for preconcentration of trace metal ions.

    PubMed

    Islam, Aminul; Laskar, Mohammad Asaduddin; Ahmad, Akil

    2010-06-15

    A stable extractor of metal ions was synthesized through azo linking of p-hydroxybenzoic acid with Amberlite XAD-4 and was characterized by elemental analyses, infrared spectral and thermal studies. Its water regain value and hydrogen ion capacity were found to be 15.80 and 7.52mmolg(-1), respectively. Both batch and column methods were employed to study the sorption behavior for the metal ions which were subsequently determined by flame atomic absorption spectrophotometry. The optimum pH range for Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) ions were 10.0, 8.0-9.0, 7.0, 7.0-8.0 and 7.0-8.0, respectively. The half-loading time, t(1/2), are 6.0, 8.0, 8.0, 8.0 and 4.0min, respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>75%). The breakthrough capacities for Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) ions were found to be 0.46, 0.43, 0.42, 0.09 and 0.06mmolg(-1) with the corresponding preconcentration factor of 460, 460, 460, 360 and 260, respectively. The limit of preconcentration was in the range of 4.3-7.6microgL(-1). The detection limit for Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) were found to be 0.47, 0.45, 0.50, 0.80, and 1.37microgL(-1), respectively. The Student's t (t-test) values for the analysis of standard reference materials were found to be less than the critical Student's t values at 95% confidence level. The AXAD-4-HBA has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil and fish.

  9. Synthesis, characterization, antibacterial activities and carbonic anhydrase enzyme inhibitor effects of new arylsulfonylhydrazone and their Ni(II), Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma

    2010-01-01

    Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.

  10. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.

    PubMed

    Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    NASA Astrophysics Data System (ADS)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  12. Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Nassar, Mostafa Y.; Aly, Hisham M.; Abdelrahman, Ehab A.; Moustafa, Moustafa E.

    2017-09-01

    Six novel Co(II) and Ni(II)-triazole Schiff base complexes have been successfully synthesized by refluxing the prepared triazole Schiff bases with CoCl2·6H2O or NiCl2·6H2O. The Schiff base ligands were prepared through condensation of 3-R-4-amino-5-hydrazino-1,2,4-triazole with dibenzoylmethane [Rdbnd H, CH3, and CH2CH3; namely, L1, L2, and L3, respectively]. The prepared Co(II) and Ni(II) complexes have been identified using elemental analysis, FT-IR, UV-Vis, magnetic moment, conductivity, and thermal analysis. On the basis of the conductance results, it was concluded that all the prepared complexes are nonelectrolytes. Interestingly, the prepared Co(II) and Ni(II) complexes were employed as precursors for producing of Co3O4 and NiO nanoparticles, respectively. The produced nanostructures have been identified by XRD, HR-TEM, FT-IR and UV-Vis spectra. The produced nanoparticles revealed good photocatalytic activity for the degradation of methylene blue dye under UV illumination in presence of hydrogen peroxide. The percent of degradation was estimated to be 55.71% in 420.0 min and 90.43% in 360.0 min for Co3O4 and NiO, respectively. Moreover, the synthesized complexes, nano-sized Co3O4, and NiO products have been examined, employing modified Bauer- Kirby method, for antifungal (Candida albicans and Aspergillus flavus) and antibacterial (Staphylococcus aureus and Escherichia coli) activities.

  13. Synthesis, Characterization and Antibacterial Activity of 1,4-di[ aminomethylene carboxyl] phenylene (H2L) and its Complexes Co(II), Cu (II), Zn(II) and Cd (II)

    NASA Astrophysics Data System (ADS)

    Sultan, J. S.; Fezea, S. M.; Mousa, F. H.

    2018-05-01

    A binucleating tetradentate Schiff base ligand, 1,4- di[amino methylene carboxylic] phenylene (H2L) and its forth new binuclear complexes [Co(II), Cu(II), Zn(II) and Cd(II)] were prepared via reaction metal (II) chloride with ligand (H2L) using 2:1 (M:L) in ethanol solvent. The new ligand (H2L) and its complexes were characterized by elemental microanalysis (C.H.N), atomic absorption, chloride content, molar conductance’s magnetic susceptibility, FTIR UV- Vis spectral and, 1H, 13 C- NMR (for H2L). The antibacterial activity with bacteria activity with bacteria, Staphylococcus aureus, Bacillus and Esccherichia Coli were studied.

  14. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  15. Design, synthesis and characterization of macrocyclic ligand based transition metal complexes of Ni(II), Cu(II) and Co(II) with their antimicrobial and antioxidant evaluation

    NASA Astrophysics Data System (ADS)

    Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil

    2017-04-01

    Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.

  16. Chelation, spectroscopic characterization, biological activity and crystal structure of 2,3-butanedione isonicotinylhydrazone: Determination of Zr4+ after flotation separation

    NASA Astrophysics Data System (ADS)

    Al-Fulaij, O. A.; Jeragh, B.; El-Sayed, A. E. M.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-02-01

    New metal complexes of Co(II), Ni(II) Cu(II), Zn(II), Cd(II), Pd(II) and Hg(II) with 2,3-butanedione isonicotinylhydrazone [BINH] have been prepared and investigated. Single crystal for BINH is grown and solved as orthorhombic with P 21 21 2 space group. The formula of the ligand was assigned based on the elemental analysis, mass spectra and conductivity measurements. The complexes assigned the formulae [M(BINH-H)Cl]ṡnH2O (Mdbnd Co(II), Ni(II), Cu(II), Zn(II); n = 0 or 1); [Hg(BINH-H)(H2O)2Cl]; [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O. All complexes are nonelectrolytes. BINH acts as a tridentate ligand in [M(BINH-H)Cl]ṡnH2O and [Hg(BINH-H)(H2O)2Cl] coordinating through Cdbnd Oketonic, Csbnd Oamedic and Cdbnd Nhy and as a neutral bidentate through Cdbnd Oketonic and Cdbnd Nhy in [Cd(BINH)Cl2]ṡ2H2O and [Pd(BINH)Cl2]ṡH2O; the pyridine nitrogen has no rule in coordination. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra provide a tetrahedral structure for the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes; square-planar for the Pd(II) complex and octahedral for the Hg(II) complex. The TGA of the complexes depicted the outer and inner water molecules as well as the final residue. The cobalt and cadmium complexes ended with the metal while the Cu(II), Zn(II) and Pd(II) complexes ended with complex species. [Hg(BINH-H)(H2O)2Cl] has no residue. The ligand is inactive against all tested organisms except for Bacillus thuringiensis. The Hg(II) complex is found more active than the other complexes. The flotation technique is found applicable for the separation of micro amount (10 ppm) of Zr4+ using 10 ppm of BINH and 1 × 10-5 mol L-1 of oleic acid at pH 6 with efficiency of 98% with no interferences.

  17. Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan.

    PubMed

    de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes

    2017-02-01

    Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by 1 H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm -1 and νMetal-N and νMetal-O at <600cm -1 . Electronic spectra revealed that both Cu(II) and Ni(II) complexes present a square plane geometry. The crystallinity values were investigated by X-ray powder diffraction. Thermal behavior of all compounds was evaluated by TGA/DTG and DTA curves with mass losses related to dehydration and decomposition, with characteristic events for ligand and complexes. Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  19. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB.

    PubMed

    Sydor, Andrew M; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B

    2014-02-14

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination.

  20. Structural, theoretical and corrosion inhibition studies on some transition metal complexes derived from heterocyclic system

    NASA Astrophysics Data System (ADS)

    Gupta, Shraddha Rani; Mourya, Punita; Singh, M. M.; Singh, Vinod P.

    2017-06-01

    A Schiff base, (E)-N‧-((1H-indol-3-yl)methylene)-2-aminobenzohydrazide (Iabh) and its Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. These compounds have been characterized by different physico-chemical and spectroscopic tools (UV-Vis, IR, NMR and ESI-Mass). The molecular structure of Iabh is determined by single crystal X-ray diffraction technique. The ligand Iabh displays E-configuration about the >Cdbnd N- bond. The structure of ligand is stabilized by intra-molecular H-bonding. In all the metal complexes the ligand coordinates through azomethine-N and carbonyl-O resulting a distorted octahedral geometry for Mn(II), Co(II) and Cu(II) complexes in which chloride ions occupy axial positions. Ni(II) and Zn(II) complexes, however, form 4-coordinate distorted square planer and tetrahedral geometry around metal ion, respectively. The structures of the complexes have been satisfactorily modeled by calculations based on density functional theory (DFT) and time dependent-DFT (TD-DFT). The corrosion inhibition study of the compounds have been performed against mild steel in 0.5 M H2SO4 solution at 298 K by using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). They show appreciable corrosion inhibition property.

  1. Synthesis, spectroscopic, thermal and DFT calculations of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid binuclear metal complexes

    NASA Astrophysics Data System (ADS)

    Hassan, Walid M. I.; Badawy, M. A.; Mohamed, Gehad G.; Moustafa, H.; Elramly, Salwa

    2013-07-01

    The binuclear complexes of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid ligand (HL) with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions were prepared and their stoichiometry was determined by elemental analysis. The stereochemistry of the studied series of metal complexes was established by analyzing their infrared, 1H NMR spectra and the magnetic moment measurements. According to the elemental analysis data, the complexes were found to have the formulae [Fe2L(H2O)8]Cl5 and [M2L(H2O)8]Cl3 (M = Co(II), Ni(II), Cu(II) and Zn(II)). The present analyses demonstrate that all metal ions coordinated to the ligand via O(9), O(11), N(16) and N(18) atoms. Thermal decomposition studies of the ligand-metal complexes have been performed to verify the status of water molecules present in these metal complexes and their general decomposition pattern. Density Functional Theory (DFT) calculations at the B3LYP/6-31G* level of theory have been carried out to investigate the equilibrium geometry of the ligand and complexes. Moreover, charge density distribution, extent of distortion from regular geometry, dipole moment and orientation have been performed and discussed.

  2. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Yadav, Deepak

    2015-06-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  4. Spectral Characterization and 3D Molecular Modeling Studies of Metal Complexes Involving the O, N-Donor Environment of Quinazoline-4(3H)-one Schiff Base and Their Biological Studies

    PubMed Central

    Siddappa, Kuruba; Mane, Sunilkumar B.

    2014-01-01

    A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10 μg/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278

  5. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases.

    PubMed

    Vamsikrishna, Narendrula; Kumar, Marri Pradeep; Tejaswi, Somapangu; Rambabu, Aveli; Shivaraj

    2016-07-01

    A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, (1)H NMR, (13)C NMR, UV-Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands.

  6. The Effects of Select Histidine to Cysteine Mutations on Transcriptional Regulation by E. coli RcnR‡

    PubMed Central

    Higgins, Khadine A.; Hu, Heidi Q.; Chivers, Peter T.; Maroney, Michael J.

    2013-01-01

    The RcnR metalloregulator represses the transcription of the Co(II) and Ni(II) exporter, RcnAB. Previous studies have shown that Co(II) and Ni(II) bind to RcnR in six-coordinate sites, resulting in de-repression. Here, the roles of His60, His64, and His67 in specific metal recognition are examined. His60 and His64 correspond to ligands that are important for Cu(I) binding in the homologous Cu(I)-responsive metalloregulator, CsoR. These residues are known to be functionally important in RcnR transcriptional regulation. XAS was used to examine the structure of bound cognate and non-cognate metal ions, and lacZ reporter assays were used to assess the transcription of rcnA in response to metal binding in the three His → Cys mutations, H60C, H64C and H67C. These studies confirm that both Ni(II) and Co(II) use His64 as a ligand. H64C-RcnR is also the only known mutation that retains a Co(II) response while eliminating the response to Ni(II) binding. XAS data indicate that His60 and His67 are potential Co(II) ligands. The effects of the mutations of His60, His64, and His67 residues on the structures of the non-cognate metal ions (Zn(II) and Cu(I)) reveals that these residues have distinctive roles in binding non-cognate metals. None of the His → Cys mutants in RcnR confer any response to Cu(I) binding, including H64C-RcnR, where the ligands involved in Cu(I) binding in CsoR are present. These data indicate that while the secondary, tertiary and quaternary structures of CsoR and RcnR are quite similar, small changes in primary sequence reveal that the specific mechanisms involved in metal recognition are quite different. PMID:23215580

  7. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. Copyright 2003 Elsevier Science Inc.

  8. Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

    NASA Astrophysics Data System (ADS)

    Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd

    2018-05-01

    New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

  9. Structure and spectroscopic investigations of a bi-dentate N‧-[(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide and its Co(II), Ni(II), Cu(II) and Cd(II) complexes: Insights relevant to biological properties

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Krishna, P. Murali; Shantha Kumar, S. S.; Patil, Yogesh P.; Nethaji, Munirathinam

    2017-06-01

    The present paper describes the synthesis of novel ligand, N‧-[(4-ethylphenyl)methylidene]-4-hydroxy benzohydrazide (HL) and its Co(II), Ni(II), Cu(II) and Cd(II) complexes. The ligand (HL) crystallizes in orthorhombic lattice in P212121 space group with a = 7.9941 (7) Å, b = 11.6154 (10) Å, c = 15.2278 (13) Å, α = β = γ = 90°. Spectroscopic data gives the strong evidence that ligand is coordinated through azomethine nitrogen and enolic oxygen with metal ion. The DNA binding studies revealed that the complexes bind to CT-DNA via intercalation/electrostatic interaction. All the targeted compounds showed more pronounced DNA cleavage activity in the presence of H2O2 and also inhibit the growth of in vitro antibacterial activity against Gram-positive and Gram-negative bacteria.

  10. Antimicrobial, spectral, magnetic and thermal studies of Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes of the Schiff base derived from oxalylhydrazide.

    PubMed

    Melha, Khlood Abou

    2008-04-01

    The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.

  11. Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine

    NASA Astrophysics Data System (ADS)

    Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.

    2018-01-01

    Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).

  12. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  13. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  14. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: Antimicrobial evaluation and anticancer studies

    NASA Astrophysics Data System (ADS)

    Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.

    2014-01-01

    Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.

  15. Spectral, optical and cytotoxicity studies on 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide(H3L) and some of its metal complexes

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.

    2018-03-01

    The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.

  16. DNA incision evaluation, binding investigation and biocidal screening of Cu(II), Ni(II) and Co(II) complexes with isoxazole Schiff bases.

    PubMed

    Ganji, Nirmala; Chityala, Vijay Kumar; Marri, Pradeep Kumar; Aveli, Rambabu; Narendrula, Vamsikrishna; Daravath, Sreenu; Shivaraj

    2017-10-01

    Two new series of binary metal complexes [M(L 1 ) 2 ] and [M(L 2 ) 2 ] where, M=Cu(II), Ni(II) & Co(II) and L 1 =4-((3,4-dimethylisoxazol-5-ylimino)methyl)benzene-1,3-diol; L 2 =2-((3,4-dimethylisoxazol-5-ylimino)methyl)-5-methoxyphenol were synthesized and characterized by elemental analysis, 1 H NMR, 13 C NMR, FT-IR, ESI mass, UV-Visible, magnetic moment, ESR, SEM and powder XRD studies. Based on these results, a square planar geometry is assigned for all the metal complexes where the Schiff base acts as uninegatively charged bidentate chelating agent via the hydroxyl oxygen and azomethine nitrogen atoms. DNA binding studies of all the complexes with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, fluorescence quenching and viscosity studies. The oxidative and photo cleavage affinity of metal complexes towards supercoiled pBR322 DNA has been ascertained by agarose gel electrophoresis assay. From the results, it is observed that all the metal complexes bind effectively to CT-DNA via an intercalative mode of binding and also cleave pBR322 DNA in a promising manner. Further the Cu(II) complexes have shown better binding and cleavage properties towards DNA. The antimicrobial activities of the Schiff bases and their metal complexes were studied on bacterial and fungal strains and the results denoted that the complexes are more potent than their Schiff base ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  18. Studies on Some Biologically Cobalt(II), Copper(II) and Zinc(II) Complexes With ONO, NNO and SNO Donor Pyrazinoylhydrazine-Derived Ligands

    PubMed Central

    Praveen, Marapaka; Sherazi, Syed K. A.

    1998-01-01

    Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857

  19. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    NASA Astrophysics Data System (ADS)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  20. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  1. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

  2. N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide and its Co(II), Ni(II) and Cu(II) complexes: Synthesis, characterization, DFT computations, thermal decomposition, antioxidant and antitumor activity

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Özpınar, Celal; Emen, Fatih Mehmet; Ateş, Burhan; Kaya, Kerem

    2017-02-01

    N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide (HL: C11H8ClN3O2S) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The HL was characterized by single crystal X-ray diffraction technique. It crystallizes in the monoclinic system. The HL has the space group P 1 21/c 1, Z = 4, and its unit cell parameters are a = 4.5437(5) Å, b = 22.4550(3) Å, c = 11.8947(14) Å. The ligand coordinates the metal ions as bidentate and thus essentially yields neutral complexes of the [ML2] type. ML2 complex structures were optimized using B97D/TZVP level. Molecular orbitals of both HL ligand were calculated at the same level. Thermal decomposition of the complexes has been investigated by thermogravimetry. The complexes were screened for their anticancer and antioxidant activities. Antioxidant activity of the complexes was determined by using the DPPH and ABTS assays. The anticancer activity of the complexes was studied by using MTT assay in MCF-7 breast cancer cells.

  3. Synthesis, spectroscopic characterization, in-vitro antibacterial and antiproliferative activities of some metal(II) complexes of 3,4-dihydronaphthalen-1(2H)-one Schiff base

    PubMed Central

    Osowole, Aderoju Amoke

    2012-01-01

    The Schiff base, 3-hydroxy-4-{[4-(methylsulfanyl)phenyl]imino}-3,4-dihydronaphthalen-1(2H)-one, and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) complexes have been synthesized and characterized by microanalysis, conductance, 1H NMR, infrared and electronic spectral measurements. The ligand exists in the ketoimine form in chloroform, and in the enolimine form in the solid state, as shown by 1H NMR and IR spectroscopies. The ligand coordinates to the metal ions in the ratio 1:1, using NO chromophores forming complexes of the type [MLNO3]H2O, with the exception of the Zn(II) and Pd(II) complexes. Electronic measurements are indicative of a four coordinate square-planar geometry for all the complexes, except for the Cu(II) and Zn(II) complexes which assume a tetrahedral geometry. None is an electrolyte in nitromethane. The ligand and the metal complexes are air-stable, but decomposed on heating at 120 °C and in the range 150-156 °C respectively. The antibacterial studies reveal that the Co(II) and the Cu(II) complexes exhibit broad-spectrum activity against Proteus mirabilis, Escherichia coli and Staphylococcus aureus with inhibitory zones range of 14.0-22.0 and 13.0-25.0 mm respectively. The antiproliferative studies show that the Zn(II) complex has the best in-vitro anticancer activity against both HT-29 (colon) carcinoma and MCF-7 (human breast) adenocarcinoma with IC50 values of 6.46 µm and 3.19 µm, which exceeds the activity of Cis-platin by 8 % and 63 % respectively. PMID:27350773

  4. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment

    NASA Astrophysics Data System (ADS)

    El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.

    2014-03-01

    The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.

  5. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues.

    PubMed

    Güzel, Fuat; Yakut, Hakan; Topal, Giray

    2008-05-30

    In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.

  6. Interaction with biomacromolecules and antiproliferative activities of Mn(II), Ni(II), Zn(II) complexes of demethylcantharate and 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan

    2013-06-01

    Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.

  7. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  8. Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif

    2007-07-01

    In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.

  9. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  10. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.

    Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less

  11. Fine-Tuning the Activity of Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

    DOE PAGES

    Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.; ...

    2017-10-04

    Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less

  12. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  13. Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo-azomethine metal chelates

    NASA Astrophysics Data System (ADS)

    Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem

    2014-11-01

    A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.

  14. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  15. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis, spectroscopic, biological activity and thermal characterization of ceftazidime with transition metals

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.

    2018-03-01

    Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.

  17. Dinuclear metallacycles with single M-O(H)-M bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: effects of large bridging angles on structure and antiferromagnetic superexchange interactions.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-02-17

    The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.

  18. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  19. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon

    2009-11-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30Å, and contained as much as 8.2 weight percent N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl4-2 and H2VO4-1. 1,10-phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to amore » pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion exchange resin or activated carbon.« less

  20. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid.

    PubMed

    Mohamed, Gehad G; Omar, M M; Hindy, Ahmed M M

    2005-12-01

    Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  1. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2-thiophene carboxaldehyde and aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Omar, M. M.; Hindy, Ahmed M. M.

    2005-12-01

    Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 °C and ionic strength μ = 0.1 (1 M NaCl). The complexes are found to have the formulae [M(HL) 2](X) n· yH 2O (where M = Fe(III) (X = Cl, n = 3, y = 3), Co(II) (X = Cl, n = 2, y = 1.5), Ni(II) (X = Cl, n = 2, y = 1) and UO 2(II) (X = NO 3, n = 2, y = 0)) and [M(L) 2] (where M = Cu(II) (X = Cl) and Zn(II) (X = AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO 2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  2. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  3. Functionalisation of mesoporous silica gel with 2-[(phosphonomethyl)-amino]acetic acid functional groups. Characterisation and application

    NASA Astrophysics Data System (ADS)

    Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.

    2014-01-01

    A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.

  4. Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-03-01

    Complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with curcumin ligand as antitumor activity were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-Vis, IR, Raman, ESR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a monobasic bidentate ligand towards the central metal ion with an oxygen's donor atoms sequence of both sbnd OH and Cdbnd O groups under keto-enol structure. From the microanalytical data, the stoichiometry of the complexes 1:2 (metal:ligand) was found. The ligand and their metal complexes were screened for antibacterial activity against Escherichia Coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa and fungicidal activity against Aspergillus flavus and Candida albicans.

  5. Synthesis, spectroscopic characterization, DNA interaction and antibacterial study of metal complexes of tetraazamacrocyclic Schiff base

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Khanam, Sadiqa; Firdaus, Farha; Latif, Abdul; Aatif, Mohammad; Al-Resayes, Saud I.

    The template condensation reaction between benzil and 3,4-diaminotoulene resulted mononuclear 12-membered tetraimine macrocyclic complexes of the type, [MLCl2] [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The synthesized complexes have been characterized on the basis of the results of elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz. FT-IR, 1H and 13C NMR, FAB mass, UV-vis and EPR. An octahedral geometry has been envisaged for all these complexes, while a distorted octahedral geometry has been noticed for Cu(II) complex. Low conductivity data of all these complexes suggest their non-ionic nature. The interactive studies of these complexes with calf thymus DNA showed that the complexes are avid binders of calf thymus DNA. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents.

  6. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  7. The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc.

    PubMed

    Zhang, Lujia L; Cattrall, Robert W; Kolev, Spas D

    2011-06-15

    This paper reports the first use of a polymer inclusion membrane (PIM) for on-line separation in flow injection analysis (FIA) involving simultaneous extraction and back-extraction. The FIA system containing the PIM separation module was used for the determination of Zn(II) in aqueous samples in the presence of Mg(II), Ca(II), Cd(II), Co(II), Ni(II), Cu(II), and Fe(III). The Fe(III) and Cu(II) interferences were eliminated by off-line precipitation with phosphate and on-line complexation with chloride, respectively. The concentration of Zn(II) was determined spectrophotometrically using 4-(2-pyridylazo) resorcinol (PAR). The optimal composition of the PIM consisted of 40% (m/m) di(2-ethlyhexyl) phosphoric acid (D2EHPA) as carrier, 10% (m/m) dioctyl phthalate (DOP) as plasticizer and 50% (m/m) poly(vinyl chloride) (PVC) as the base polymer. The optimized FIA system was characterized by a linear calibration curve in the range from 1.0 to 30.0 mg L(-1) Zn(II), a detection limit of 0.05 mg L(-1) and a relative standard deviation of 3.4% with a sampling rate of 4h(-1). Reproducible results were obtained for 20 replicate injections over a 5h period which demonstrated a good membrane stability. The FIA system was applied to the determination of Zn(II) in pharmaceuticals and samples from the galvanizing industry and very good agreement with atomic absorption spectrometry was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  9. Sorption kinetics of zinc and nickel on modified chitosan.

    PubMed

    Tripathi, Nimisha; Choppala, Girish; Singh, Raj S; Srivastava, Prashant; Seshadri, Balaji

    2016-09-01

    This study was conducted to evaluate the effect of equilibration time on adsorption of zinc [Zn(II)] and nickel [Ni(II)] on pure and modified chitosan beads. The initial adsorption of Zn(II) was high on molybdenum (Mo)-impregnated chitosan beads (MoCB) during the initial 60 min. However, after 240 min, Zn(II) adsorption occurred more on single super phosphate chitosan beads (SSPCB), followed by monocalcium phosphate chitosan beads (MCPCB), untreated pure chitosan beads (UCB), and MoCB. Similarly, Ni(II) adsorption was greatest on MoCB during the initial 60 min. At the conclusion of the experiment (at 240 min), the greatest adsorption was occurred on MCPCB, followed by MoCB, UCB, and SSPCB. Chemical sorption and intra-particle diffusion were probably the dominant processes responsible for Zn(II) and Ni(II) sorption onto chitosan beads. The results demonstrated that modified chitosan beads were effective in adsorbing Zn and Ni and hence, could be used for the removal of these toxic metals from soil.

  10. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation

    PubMed Central

    Sumathi, R. B.; Halli, M. B.

    2014-01-01

    A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203

  11. Mycobacterium tuberculosis NmtR harbors a nickel sensing site with parallels to Escherichia coli RcnR†

    PubMed Central

    Reyes-Caballero, Hermes; Lee, Chul Won; Giedroc, David P.

    2011-01-01

    Mycobacterium tuberculosis NmtR is a Ni(II)/Co(II)-sensing metalloregulatory protein from the extensively studied ArsR/SmtB family. Two Ni(II) ions bind to the NmtR dimer to form octahedral coordination complexes with stepwise binding affinities of KNi1=1.2 (±0.1) × 1010 and KNi2=0.7 (±0.4) × 1010 M-1 (pH 7.0). A glutamine scanning mutagenesis approach reveals that Asp91, His93, His104 and His107, all contained within the C-terminal α5 helix, and His3 as part of the conserved α-NH2-Gly2-His3-Gly4 motif at the N-terminus make significant contributions to the magnitude of KNi. In contrast, substitution of residues from the C-terminal region, His109, Asp114 and His116, previously implicated in Ni(II) binding and metalloregulation in cells, gives rise to wild-type KNi and Ni(II)-dependent allosteric coupling free energies. Interestingly, deletion of residues 112-120 in the C-terminal region (Δ111 NmtR) reduces the Ni(II) binding stoichiometry to one per dimer and greatly reduces Ni(II) responsiveness. H3Q and Δ111 NmtRs also show clear perturbations in the rank order of metal responsiveness to Ni(II), Co(II) and Zn(II) that is distinct from wild-type NmtR. 15N relaxation experiments with apo-NmtR reveal that both N-terminal (residues 2-14) and C-terminal (residues 110-120) regions are unstructured in solution, and this property likely dictates the metal specificity profile characteristic of the Ni(II)-sensor NmtR relative to other ArsR family regulators. PMID:21819125

  12. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    PubMed

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Khan, Sadaf; Nami, Shahab A. A.; Siddiqi, K. S.

    2007-10-01

    A macrocyclic ligand, bdta (where bdta = 3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl 2 type complexes [where M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  14. Synthesis, spectroscopic and thermal studies of transition metal complexes derived from benzil and diethylenetriamine.

    PubMed

    Khan, Sadaf; Nami, Shahab A A; Siddiqi, K S

    2007-10-01

    A macrocyclic ligand, bdta (where bdta=3,6,9,12,15,18-hexaaza-1,2,10,11-tetraphenyl-2,9,11,18-tetraenecyclododecane) has been prepared by cyclocondensation of benzil with diethylenetriamine which efficiently encapsulates transition as well as pseudo-transition metal ions leading to the formation of M(bdta)Cl2 type complexes [where M=Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)]. The analytical, spectroscopic and magnetic moment data suggests an octahedral geometry for all the complexes. EPR spectra of Mn(II) and Cu(II) show considerable exchange interaction in the complex. They are non-conducting in DMSO. The TGA profile of the ligand and its complexes are identical and consists of two discreet stages. The voltammogram of Cu-complex exhibits a quasi-reversible one-electron transfer wave for Cu(II)/Cu(I) couple.

  15. Synthesis, spectroscopic characterization, electrochemical behaviour, reactivity and antibacterial activity of some transition metal complexes with 2-(N-salicylideneamino)-3-carboxyethyl-4,5-dimethylthiophene.

    PubMed

    Daniel, Varughese P; Murukan, B; Kumari, B Sindhu; Mohanan, K

    2008-07-01

    Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion.

  16. Synthesis, spectroscopic characterization, antimicrobial and antitumor studies of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand derived from o-acetoacetylphenol

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Shebl, Magdy; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.

    2017-12-01

    New mono-, bi- and trinuclear metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(VI) with a new Schiff base ligand H3L; ((E)-2-hydroxy-N‧-(4-(2-hydroxyphenyl)-4-oxobutan-2-ylidene)) benzohydrazide (H3L) have been synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The metal complexes exhibited octahedral and tetrahedral geometrical arrangements. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. Structural parameters of the synthesized compounds were calculated on the basis of DFT level implemented in the Gaussian 09 program and Hyperchem 7.52 and correlated with the experimental data. The antimicrobial activity of the present compounds was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.

  17. A Method for Selective Depletion of Zn(II) Ions from Complex Biological Media and Evaluation of Cellular Consequences of Zn(II) Deficiency

    PubMed Central

    Richardson, Christopher E. R.; Cunden, Lisa S.; Butty, Vincent L.; Nolan, Elizabeth M.; Lippard, Stephen J.; Shoulders, Matthew D.

    2018-01-01

    We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the “A12-resin,” that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology. PMID:29334734

  18. Rapid detection of protein phosphatase activity using Zn(II)-coordinated gold nanosensors based on His-tagged phosphopeptides.

    PubMed

    Lee, Jin Oh; Kim, Eun-Ji; Lim, Butaek; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-20

    We report a rapid colorimetric assay to detect protein phosphatase (PP) activity based on the controlled assembly and disassembly of gold nanoparticles (AuNPs) via Zn(II)-specific coordination in the presence of His6-tagged phosphopeptides. Among divalent metal ions including Ni(II), Cu(II), Co(II), Mg(II), Mn(II), and Zn(II), only Zn(II) triggered a strong association between phosphopeptides with hexahistidine at a single end and nitrilotriacetic acid (NTA)-modified AuNPs (21.3 nm in core diameter), leading to the self-assembly of AuNPs and consequently changes in color of the AuNP solution. In contrast, unphosphorylated peptides and His6-deficient phosphopeptides did not change the color of the AuNP solution. As a result, protein phosphatase 1 (PP1) activity and its inhibition were easily quantified with high sensitivity by determining the extinction ratio (E520/E700) of colloidal AuNPs. Most importantly, this method was capable of detecting protein phosphatase 2A (PP2A) activity in immunoprecipitated plant extracts. Because PPs play pivotal roles in mediating diverse signal transduction pathways as primary effectors of protein dephosphorylation, we anticipate that our method will be applied as a rapid format method to analyze the activities of various PPs and their inhibition.

  19. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    NASA Astrophysics Data System (ADS)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  20. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Bhatti, Haq Nawaz; Ahmad, Najum Rashid; Ansari, Tariq Mehmood

    2007-01-10

    Cassia fistula is a fast-growing, medium-sized, deciduous tree which is now widely cultivated worldwide as an ornamental tree for its beautiful showy yellow flowers. Methods are required to reuse fallen leaves, branches, stem bark and pods when they start getting all over lawn. This investigation studies the use of these non-useful parts of C. fistula as naturally occurring biosorbent for the batch removal of Ni(II) in a well stirred system under different experimental conditions. The data showed that the maximum pH (pHmax) for efficient sorption of Ni(II) was 6 at which evaluated biosorbent dosage, biosorbent particle size, initial concentrations of Ni(II) and sorption time were 0.1 g/100 mL, <0.255 mm, up to 200 mg/L and 720 min, respectively. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fitted well to data of Ni(II) biosorption by C. fistula biomass as compared to the model of Freundlich. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation. The magnitude of the Gibbs free energy values indicates spontaneous nature of the sorption process. The sorption ability of C. fistula biomass for Ni(II) removal tends to be in the order: leavesNi(II) removal was achieved when the initial Ni(II) concentration was 25 mg/L. Due to its outstanding Ni(II) uptake capacity, C. fistula biomass proved to be an excellent biomaterial for accumulating Ni(II) from aqueous solutions.

  1. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  2. Synthesis, spectral, thermal and optical properties of Schiff-base complexes derived from 2(E)-2-((z)-4-hydroxypent-3-en-2-ylideneamino)-5-guanidinopentanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2017-09-01

    New metal complexes derived from the in situ reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H2L) resulted from the condensation of 2-amino-5-guanidinopentanoic acid (arginine) and acetylacetone have been synthesized. The resulting complexes have been characterized by, elemental analyses, ES-MS, IR, Raman spectra, UV-Vis., 1HNMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that, The Schiff-base ligand acts as bi-negative tridentate coordinating via azomethine nitrogen, enolic carbonyl oxygen and carboxylate oxygen after displacement of hydrogen. The thermodynamic parameters E∗, ΔH, ΔG and ΔS of the isolated complexes have been calculated. The optical band gap (Eg) values of Cu, Co, Ni and Zn were found to be 3.3, 3.4, 3.7 and 4.3 eV, respectively, arising from direct transitions. Optical band gap measurements indicate the semi-conductivity nature of these complexes.

  3. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Thermodynamic Analysis of Nickel(II) and Zinc(II) Adsorption to Biochar.

    PubMed

    Alam, Md Samrat; Gorman-Lewis, Drew; Chen, Ning; Flynn, Shannon L; Ok, Yong Sik; Konhauser, Kurt O; Alessi, Daniel S

    2018-05-21

    While numerous studies have investigated metal uptake from solution by biochar, few of these have developed a mechanistic understanding of the adsorption reactions that occur at the biochar surface. In this study, we explore a combined modeling and spectroscopic approach for the first time to describe the molecular level adsorption of Ni(II) and Zn(II) to five types of biochar. Following thorough characterization, potentiometric titrations were carried out to measure the proton (H + ) reactivity of each biochar, and the data was used to develop protonation models. Surface complexation modeling (SCM) supported by synchrotron-based extended X-ray absorption fine structure (EXAFS) was then used to gain insights into the molecular scale metal-biochar surface reactions. The SCM approach was combined with isothermal titration calorimetry (ITC) data to determine the thermodynamic driving forces of metal adsorption. Our results show that the reactivity of biochar toward Ni(II) and Zn(II) directly relates to the site densities of biochar. EXAFS along with FT-IR analyses, suggest that Ni(II) and Zn(II) adsorption occurred primarily through proton-active carboxyl (-COOH) and hydroxyl (-OH) functional groups on the biochar surface. SCM-ITC analyses revealed that the enthalpies of protonation are exothermic and Ni(II) and Zn(II) complexes with biochar surface are slightly exothermic to slightly endothermic. The results obtained from these combined approaches contribute to the better understanding of molecular scale metal adsorption onto the biochar surface, and will facilitate the further development of thermodynamics-based, predictive approaches to biochar removal of metals from contaminated water.

  5. Paramagnetic resonance studies of bistrispyrazolylborate cobalt(II) and related derivatives

    NASA Astrophysics Data System (ADS)

    Myers, William K.

    Herein, a systematic frozen solution electron-nuclear double resonance (ENDOR) study of high-spin Co(II) complexes is reported to demonstrate the efficacy of methyl substitutions as a means of separating dipolar and contact coupling, and further, to increase the utility of high-spin Co(II) as a spectroscopic probe for the ubiquitous, but spectroscopically-silent Zn(II) metalloenzymes. High-spin (hs) Co(II) has been subject of paramagnetic resonance studies for over 50 years and has been used as a spectroscopic probe for Zn metalloenzymes for over 35 years. However, as will be seen, the inherent complexity of the electronic properties of the cobaltous ion remains to be exploited to offer a wealth of information on Zn(II) enzymatic environments. Specifically, ENDOR measurements on bistrispyrazolylborate cobalt(II) confirm the utility of the novel method of methyl substitution to differentiate dipolar and Fermi contact couplings. An extensive set of electron paramagnetic resonance (EPR) simulations were performed. Software was developed to implement an ENDOR control interface. Finally, proton relaxation measurements were made in the range of 12-42 MHz, which were accounted for with the large g-value anisotropy of the Co(II) compounds. Taken as a whole, these studies point to the rich complexity of the electronic structure of high-spin cobalt(II) and, when sufficiently well-characterized, the great utility it has as a surrogate of biological Zn(II).

  6. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    PubMed Central

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  7. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage

  8. Two novel macroacyclic schiff bases containing bis-N 2O 2 donor set and their binuclear complexes: synthesis, spectroscopic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Karaoglu, Kaan; Baran, Talat; Serbest, Kerim; Er, Mustafa; Degirmencioglu, Ismail

    2009-03-01

    Herein, we report two novel macroacyclic Schiff bases derived from tetranaphthaldehyde derivative compound and their binuclear Mn(II), Ni(II), Cu(II) and Zn(II) complexes. The structures of the compounds have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-Vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The stoichiometries of the complexes derived from mass and elemental analysis correspond to the general formula [M 2L(ClO 4) n](ClO 4) 4-n, (where M is Mn(II), Ni(II), Cu(II), Zn(II) and L represents the Schiff base ligands).

  9. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation

    NASA Astrophysics Data System (ADS)

    Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.

    2017-01-01

    Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.

  10. Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefkowitz, Joshua P.; Elzinga, Evert J.

    We studied the impacts of aqueous Mn(II) (1 mM) on the sorption of Ni(II) (200 μM) by hexagonal birnessite (0.1 g L- 1) at pH 6.5 and 7.5 with batch experiments and XRD, ATR-FTIR and Ni K-edge EXAFS analyses. In the absence of Mn(II)aq, sorbed Ni(II) was coordinated predominantly as triple corner-sharing complexes at layer vacancies at both pH values. Introduction of Mn(II)aq into Ni(II)-birnessite suspensions at pH 6.5 caused Ni(II) desorption and led to the formation of edge-sharing Ni(II) complexes. This was attributed to competitive displacement of Ni(II) from layer vacancies by either Mn(II) or by Mn(III) formed throughmore » interfacial Mn(II)-Mn(IV) comproportionation, and/or incorporation of Ni(II) into the birnessite lattice promoted by Mn(II)-catalyzed recrystallization of the sorbent. Similar to Mn(II)aq, the presence of HEPES or MES caused the formation of edge-sharing Ni(II) sorption complexes in Ni(II)-birnessite suspensions, which was attributed to partial reduction of the sorbent by the buffers. At pH 7.5, interaction with aqueous Mn(II) caused reductive transformation of birnessite into secondary feitknechtite that incorporated Ni(II), enhancing removal of Ni(II) from solution. These results demonstrate that reductive alteration of phyllomanganates may significantly affect the speciation and solubility of Ni(II) in anoxic and suboxic environments.« less

  11. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  12. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior.

    PubMed

    Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J

    2017-11-10

    The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.

  13. Spectroscopic studies and antibacterial activities of some new 16-membered octaazamacrocyclic complexes derived from thiocarbohydrazide and pentane-2,4-dione

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Kumar, Krishan; Chopra, Rimpi Mehani ne'e.

    2011-02-01

    A series of macrocyclic complexes of the type [M(C 12H 20N 8S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by template condensation of thiocarbohydrazide and pentane-2,4-dione in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR, IR, EPR and MS spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antibacterial activities against some Gram-positive bacterial strains, i.e., Bacillus subtilis, Bacillus stearothermophilus and two Gram-negative bacterial strains, i.e., Escherichia coli, Pseudomonas putida. The results obtained were compared with standard antibiotics, Chloramphenicol and Streptomycin and found that some of the synthesized complexes show good antibacterial activities as compared to the standard antibiotics.

  14. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  15. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser Mohammed; Hussien, Mostafa A.; Radwan, Fatima M.; Nawar, Nagwa

    2014-11-01

    Four new metal complexes derived from the reaction of Cu(II), Co(II), Ni(II) and Zn(II) acetates with the Schiff-base ligand (H3L) resulted from the condensation of the amino acid 2-amino-3-hydroxyprobanoic acid (serine) and acetylacetone have been synthesized and characterized by, elemental analyses, ES-MS, IR, UV-Vis., 1H NMR, 13C NMR, ESR, thermal analyses (TGA and DTG) and magnetic measurements. The results showed that the Schiff-base ligand acts as bi-negative tridentate through the azomethine nitrogen, the deprotonated carboxylate oxygen and the enolic carbonyl oxygen. The optical band gaps measurements indicated the semi-conducting nature of these complexes. Molecular docking was used to predict the binding between the Schiff base ligand with the receptor of prostate cancer mutant H874Y. The interactions between the Cu(II) complex and calf thymus DNA (CT-DNA) have been studied by UV spectra. The results confirm that the Cu(II) complex binds to CT-DNA in an intercalative mode.

  16. Simulation of the influence of EDTA on the sorption of heavy metals by humic acids

    NASA Astrophysics Data System (ADS)

    Kropacheva, T. N.; Didik, M. V.; Kornev, V. I.

    2015-04-01

    The results of mathematical simulation of sorption equilibria with the participation of divalent cations of heavy metals (HMs), chelant (EDTA), and insoluble forms of humic acids (HAs) are discussed. It is shown that the formation of chelates of metals with EDTA in solutions results in the decreasing sorption of the metals by humic acids. We also analyzed the effect of the acidity of the medium and the HM: EDTA: HA ratio (in a wide range) on the desorption of metals. The desorbing effect of EDTA on the metals is the highest at pH 3-5 and increases with an increase in the concentration of EDTA and a decrease in the concentration of HAs. With respect to the remobilization of metals under the impact of EDTA, the metal cations can be arranged into the following sequence: Cu(II) > Ni(II) > Pb(II) ≫ Cd(II) > Co(II) > Zn(II). The obtained data have been used to analyze the remobilization / extraction of HMs from soils with a high content of humic substances.

  17. Biologically active and thermally stable polymeric Schiff base and its metal polychelates: Their synthesis and spectral aspects

    NASA Astrophysics Data System (ADS)

    Rasool, Raza; Hasnain, Sumaiya

    2015-09-01

    New metal polychelates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) obtained by the interaction of metal acetates with polymeric Schiff base containing formaldehyde and piperazine, have been investigated. Structural and spectroscopic properties have been evaluated by elemental analysis, FT-IR and 1H-NMR. Geometry of the chelated polymers was confirmed by magnetic susceptibility measurements, UV-Visible spectroscopy and Electron Spin Resonance. The molecular weight of the polymer was determined by gel permeation chromatography (GPC). Thermogravimetric analysis indicated that metal polychelates were more thermally stable than their corresponding ligand. All compounds were screened for their antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, (bacteria) and Candida albicans, Microsporum canis, Cryptococcus neoformans (fungi) by agar well diffusion method. Interestingly, the polymeric Schiff base was found to be antimicrobial in nature but less effective as compared to the metal polychelates. On the basis of thermal and antimicrobial behavior, these polymers hold potential applications as thermally resistant antimicrobial and antifouling coating materials as well as antimicrobial packaging materials.

  18. Synthesis and Spectral Characterization of Antifungal Sensitive Schiff Base Transition Metal Complexes

    PubMed Central

    Sakthivel, A.; Rajasekaran, K.

    2007-01-01

    New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086

  19. Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease.

    PubMed

    Sydor, Andrew M; Liu, Jenny; Zamble, Deborah B

    2011-03-01

    The biosyntheses of the [NiFe]-hydrogenase and urease enzymes in Helicobacter pylori require several accessory proteins for proper construction of the nickel-containing metallocenters. The hydrogenase accessory proteins HypA and HypB, a GTPase, have been implicated in the nickel delivery steps of both enzymes. In this study, the metal-binding properties of H. pylori HypB were characterized, and the effects of metal binding on the biochemical behavior of the protein were examined. The protein can bind stoichiometric amounts of Zn(II) or Ni(II), each with nanomolar affinity. Mutation of Cys106 and His107, which are located between two major GTPase motifs, results in undetectable Ni(II) binding, and the Zn(II) affinity is weakened by 2 orders of magnitude. These two residues are also required for the metal-dependent dimerization observed in the presence of Ni(II) but not Zn(II). The addition of metals to the protein has distinct impacts on GTPase activity, with zinc significantly reducing GTP hydrolysis to below detectable levels and nickel only slightly altering the k(cat) and K(m) of the reaction. The regulation of HypB activities by metal binding may contribute to the maturation of the nickel-containing enzymes.

  20. The influence of Ni(II) on brushite structure stabilization

    NASA Astrophysics Data System (ADS)

    Guerra-López, J. R.; Güida, J. A.; Ramos, M. A.; Punte, G.

    2017-06-01

    Brushite samples doped with Ni(II) in different concentrations, from 5% to 20%, were prepared in aqueous solution at pH = 7 and at two temperatures: 25 and 37 °C. The solid samples were characterized by chemical analysis, infrared spectroscopy (FTIR) and x-ray powder diffraction (XRPD). Chemical analysis has shown Ni(II) almost complete incorporation to the solid phase up to 15%. X-ray diffraction patterns have allowed to identify brushite phase with almost no modification of the line breadth and only small shifts of lines positions with increasing Ni(II) incorporation up to 15%. For larger Ni(II) concentration, in solution, a mixture of phases has been detected. Infrared spectra have supported diffraction results. For Ni(II) 20% and over the characteristic bands of HPO42- anions tend to vanish, and the typical shaped PO43- bands are observed. These results have allowed to establish that the presence of low levels of Ni in the synthetic process not only helps brushite formation; but, also prevents brushite from apatite conversion and, in addition, preserves brushite crystallinity. According to these findings, it is possible to propose that nickel traces present in the urinary system might be a trigger to brushite stone formation and/or growth, rather than the expected brushite conversion to hydroxyapatite. This outcome would explain the recurrent detection of difficult to treat brushite stones, observed in the last three decades.

  1. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    PubMed

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  2. Novelmetal-organic photocatalysts: Synthesis, characterization and decomposition of organic dyes

    NASA Astrophysics Data System (ADS)

    Gopal Reddy, N. B.; Murali Krishna, P.; Kottam, Nagaraju

    2015-02-01

    An efficient method for the photocatalytic degradation of methylene blue in an aqueous medium was developed using metal-organic complexes. Two novel complexes were synthesized using, Schiff base ligand, N‧-[(E)-(4-ethylphenyl)methylidene]-4-hydroxybenzohydrazide (HL) and Ni(II) (Complex 1)/Co(II) (Complex 2) chloride respectively. These complexes were characterized using microanalysis, various spectral techniques. Spectral studies reveal that the complexes exhibit square planar geometry with ligand coordination through azomethine nitrogen and enolic oxygen. The effects of catalyst dosage, irradiation time and aqueous pH on the photocatalytic activity were studied systematically. The photocatalytic activity was found to be more efficient in the presence of Ni(II) complexes than the Co(II) complex. Possible mechanistic aspects were discussed.

  3. Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.

    2017-10-01

    A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania

  4. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II).

    PubMed

    McCabe, Jacob W; Vangala, Rajpal; Angel, Laurence A

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. Graphical abstract ᅟ.

  5. Magnetic and low temperature phonon studies of CoCr2O4 powders doped with Fe(III) and Ni(II) ions

    NASA Astrophysics Data System (ADS)

    Ptak, M.; Mączka, M.; Pikul, A.; Tomaszewski, P. E.; Hanuza, J.

    2014-04-01

    Extensive temperature-dependent phonon studies and low-temperature magnetic measurements of CoCr2-xFexO4 (for x=0.5, 1 and 2) and Co0.9Ni0.1Cr2O4 polycrystalline powders are presented. The main aim of these studies was to obtain information on phonon and structural properties of these compounds as well as strength of spin-phonon coupling in the magnetically ordered phases. IR and Raman spectra show that doping of CoCr2O4 with Fe(III) ions leads to broadening of bands and appearance of new bands due to the formation of inverted spinel structure. In contrast to this behavior, doping with 10 mol% of Ni(II) ions leads to weak increase of band width only. Magnetization measured as a function of temperature and external magnetic field showed that magnetic properties of Co0.9Ni0.1Cr2O4 sample are similar to those reported for pure CoCr2O4, i.e., partial substitution of Ni(II) for Co(II) leads to slight shift of the ferrimagnetic phase transition at TC and spiral spin order transition at TS towards lower values. The change of crystallization preference induced by incorporation of increasing concentration of Fe(III) ions in the spinel lattice causes significant increase of TC and decrease of TS. The latter transition disappears completely for higher concentrations of Fe(III). The performed temperature-dependent IR studies revealed interesting anomalous behavior of phonons below TC for CoCr1.5Fe0.5O4 and Co0.9Ni0.1Cr2O4, which was attributed to spin-phonon coupling.

  6. Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2 Conversion.

    PubMed

    Zou, Ruyi; Li, Pei-Zhou; Zeng, Yong-Fei; Liu, Jia; Zhao, Ruo; Duan, Hui; Luo, Zhong; Wang, Jin-Gui; Zou, Ruqiang; Zhao, Yanli

    2016-05-01

    A highly porous metal-organic framework (MOF) incorporating two kinds of second building units (SBUs), i.e., dimeric paddlewheel (Zn2 (COO)4 ) and tetrameric (Zn4 (O)(CO2 )6 ), is successfully assembled by the reaction of a tricarboxylate ligand with Zn(II) ion. Subsequently, single-crystal-to-single-crystal metal cation exchange using the constructed MOF is investigated, and the results show that Cu(II) and Co(II) ions can selectively be introduced into the MOF without compromising the crystallinity of the pristine framework. This metal cation-exchangeable MOF provides a useful platform for studying the metal effect on both gas adsorption and catalytic activity of the resulted MOFs. While the gas adsorption experiments reveal that Cu(II) and Co(II) exchanged samples exhibit comparable CO2 adsorption capability to the pristine Zn(II) -based MOF under the same conditions, catalytic investigations for the cycloaddition reaction of CO2 with epoxides into related carbonates demonstrate that Zn(II) -based MOF affords the highest catalytic activity as compared with Cu(II) and Co(II) exchanged ones. Molecular dynamic simulations are carried out to further confirm the catalytic performance of these constructed MOFs on chemical fixation of CO2 to carbonates. This research sheds light on how metal exchange can influence intrinsic properties of MOFs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel crown-ether-methylenediphosphonotetrathioate hybrids as Zn(II) chelators.

    PubMed

    Meltzer, Diana; Gottlieb, Hugo E; Amir, Aviran; Shimon, Linda J W; Fischer, Bilha

    2015-12-28

    Hybrids of methylenediphosphonotetrathioate and crown-ether (MDPT-CE) were synthesized forming 7-,8-,9-,10- and 13-membered rings. Both 7- and 13-membered ring-containing compounds were found to be highly stable to air-oxidation for at least four weeks. These hybrids bind Zn(II) by both MDPT and CE moieties, forming a 2 : 1 L : Zn(II) complex. Interestingly, the 13-membered ring MDPT-CE showing a high affinity to Zn(II) (Ka 3 ± 0.5 × 10(6) mol(-2) L(2)) does not bind Li(I) or Na(I). The 13-Membered MDPT-CE hybrid is a promising water-soluble, air-stable, high-affinity Zn(II)-chelator, exhibiting selectivity to Zn(II) vs. Mg(II), Na(I), and Li(I).

  8. Recognition of thymine in DNA bulges by a Zn(II) macrocyclic complex.

    PubMed

    del Mundo, Imee Marie A; Fountain, Matthew A; Morrow, Janet R

    2011-08-14

    A Zn(II) macrocyclic complex with appended quinoline is a bifunctional recognition agent that uses both the Zn(II) center and the pendent aromatic group to bind to thymine in bulges with good selectivity over DNA containing G, C or A bulges. Spectroscopic studies show that the stem containing the bulge stays largely intact in a DNA hairpin with the Zn(II) complex bound to the thymine bulge. This journal is © The Royal Society of Chemistry 2011

  9. Adsorption of Ni(II) onto Chemically Modified Spent Grated Coconut (Cocos Nucifera)

    NASA Astrophysics Data System (ADS)

    Hamzah, F. I.; Khalid, K.; Hanafiah, M. A. K. M.

    2017-06-01

    A new adsorbent of plant waste origin from coconut processing food factory was explored for removing Ni(II) from aqueous solutions. Several parameters such as pH, dosage, concentration and contact time were studied to obtain optimum conditions for treatment of Ni(II) contaminated wastewater. Spent grated coconut (Cocos nucifera) treated with sulfuric acid (SSGC) showed good adsorption capacity for Ni(II) ion. The amount adsorbed was affected by solution pH with the highest value achieved at pH 5. Other optimum conditions found were; dosage of 0.02 g, and 60 min of equilibrium time. Ni(II) adsorption obeyed the pseudo-second order kinetic model which suggested that chemisorption mechanism occurred in the adsorption process. The equilibrium data presented a better fitting to the Langmuir isotherm model, an indication that monolayer adsorption occurred onto a homogeneous surface. The maximum adsorption capacity, qmax was 97.09 mg g-1, thus SSGC can be classified as good and comparable with other plant waste adsorbents.

  10. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  11. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    PubMed

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish.

  12. Spectral, biological screening of metal chelates of chalcone based Schiff bases of N-(3-aminopropyl) imidazole.

    PubMed

    Kalanithi, M; Rajarajan, M; Tharmaraj, P; Sheela, C D

    2012-02-15

    Tridentate chelate complexes of Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the chalcone based ligands 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-(phenylallyl)]phenol(HL(1)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-p-tolylallyl]phenol(HL(2)), 2-[1-(3-(1H-imidazol-1-yl)propylimino)-3-4-nitrophenylallyl]phenol(HL(3)). Microanalytical data, UV-vis spectrophotometric method, magnetic susceptibility measurements, IR, 1H NMR, Mass, and EPR techniques were used to characterize the structure of chelates. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted square planar geometry for the copper(II) ion. The other metal complexes show distorted tetrahedral geometry. The coordination of the ligands with metal(II) ions was further confirmed by solution fluorescence spectrum. The antimicrobial activity of the ligands and metal(II) complexes against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger has been carried out and compared. The electrochemical behavior of copper(II) complex is studied by cyclic voltammetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  14. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  15. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  16. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II)

    NASA Astrophysics Data System (ADS)

    Ahamad, Tansir; Alshehri, Saad M.

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.

  17. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  18. Polarized Neutron Diffraction as a Tool for Mapping Molecular Magnetic Anisotropy: Local Susceptibility Tensors in Co(II) Complexes.

    PubMed

    Ridier, Karl; Gillon, Béatrice; Gukasov, Arsen; Chaboussant, Grégory; Cousson, Alain; Luneau, Dominique; Borta, Ana; Jacquot, Jean-François; Checa, Ruben; Chiba, Yukako; Sakiyama, Hiroshi; Mikuriya, Masahiro

    2016-01-11

    Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  20. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal

    NASA Astrophysics Data System (ADS)

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-01

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.

  1. Synthesis, structural and fungicidal studies of hydrazone based coordination compounds

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2013-02-01

    The coordination compounds of the Co(II), Ni(II) and Cu(II) metal ions derived from imine based ligand, benzil bis(carbohydarzone) were structurally and pharmaceutically studied. The compounds have the general stoichiometry [M(L)]X2 and [Co(L)X2], where M = Ni(II) and Cu(II), and X=NO3- and Cl- ions. The analytical techniques like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV/Visible, NMR, ESI mass and EPR were used to study the compounds. The key IR bands, i.e., amide I, amide II and amide III stretching vibrations accounts for the tetradentate metal binding nature of the ligand. The electronic and EPR spectral results suggest the square planar Ni(II) and Cu(II) complexes (giso = 2.11-2.22) and tetragonal geometry Co(II) complexes (giso = 2.10-2.17). To explore the compounds in the biological field, they were examined against the opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The partial covalent character of metal-ligand bond is supported by the orbital reduction factor k (0.62-0.92) and nephalauxetic parameter β (0.55-0.57).

  2. Intracellular Zn(II) Intoxication Leads to Dysregulation of the PerR Regulon Resulting in Heme Toxicity in Bacillus subtilis

    PubMed Central

    2016-01-01

    Transition metal ions (Zn(II), Cu(II)/(I), Fe(III)/(II), Mn(II)) are essential for life and participate in a wide range of biological functions. Cellular Zn(II) levels must be high enough to ensure that it can perform its essential roles. Yet, since Zn(II) binds to ligands with high avidity, excess Zn(II) can lead to protein mismetallation. The major targets of mismetallation, and the underlying causes of Zn(II) intoxication, are not well understood. Here, we use a forward genetic selection to identify targets of Zn(II) toxicity. In wild-type cells, in which Zn(II) efflux prevents intoxication of the cytoplasm, extracellular Zn(II) inhibits the electron transport chain due to the inactivation of the major aerobic cytochrome oxidase. This toxicity can be ameliorated by depression of an alternate oxidase or by mutations that restrict access of Zn(II) to the cell surface. Conversely, efflux deficient cells are sensitive to low levels of Zn(II) that do not inhibit the respiratory chain. Under these conditions, intracellular Zn(II) accumulates and leads to heme toxicity. Heme accumulation results from dysregulation of the regulon controlled by PerR, a metal-dependent repressor of peroxide stress genes. When metallated with Fe(II) or Mn(II), PerR represses both heme biosynthesis (hemAXCDBL operon) and the abundant heme protein catalase (katA). Metallation of PerR with Zn(II) disrupts this coordination, resulting in depression of heme biosynthesis but continued repression of catalase. Our results support a model in which excess heme partitions to the membrane and undergoes redox cycling catalyzed by reduced menaquinone thereby resulting in oxidative stress. PMID:27935957

  3. Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Zafar, Muhammad Nadeem; Akhtar, Kalsoom; Bhatti, Haq Nawaz

    2007-07-16

    The present study explores the ability of Cassia fistula waste biomass to remove Ni(II) from industrial effluents. C. fistula biomass was found very effective for Ni(II) removal from wastewater of Ghee Industry (GI), Nickel Chrome Plating Industry (Ni-Cr PI), Battery Manufacturing Industry (BMI), Tanner Industry: Lower Heat Unit (TILHU), Tannery Industry: Higher Heat Unit (TIHHU), Textile Industry: Dying Unit (TIDU) and Textile Industry: Finishing Unit (TIFU). The initial Ni(II) concentration in industrial effluents was found to be 34.89+/-0.01, 183.56+/-0.08, 21.19+/-0.01, 43.29+/-0.03, 47.26+/-0.02, 31.38+/-0.01 and 31.09+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. After biosorption the final Ni(II) concentration in industrial effluents was found to be 0.05+/-0.01, 17.26+/-0.08, 0.03+/-0.01, 0.05+/-0.01, 0.1+/-0.01, 0.07+/-0.01 and 0.06+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. The % sorption Ni(II) ability of C. fistula from seven industries included in present study tend to be in following order: TILHU (99.88)>GI (99.85) approximately BMI (99.85)>TIFU (99.80)>TIHHU (99.78)>TIDU (99.77)>Ni-Cr PI (90.59). Sorption kinetic experiments were performed in order to investigate proper sorption time for Ni(II) removal from wastewater. Batch metal ion uptake capacity experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater samples (480min) in comparison to synthetic wastewater (1440min) using same biosorbent. The kinetic data were analyzed in term of pseudo-first-order and pseudo-second-order expressions. Pseudo-second-order model described well the sorption kinetics of Ni(II) onto C. fistula biomass from industrial effluents in comparison to pseudo-first-order kinetic model. Due to unique high Ni(II) sorption capacity of C. fistula waste biomass it can be concluded that it is an excellent biosorbent for Ni(II) uptake from industrial effluents.

  4. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal.

    PubMed

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-05

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10 -8  mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis.

    PubMed

    Malkoc, Emine

    2006-09-21

    The biomass of terrestrial-plant materials has high removal capacities for a number of heavy metal ions. The Ni(II) biosorption capacity of the cone biomass of Thuja orientalis was studied in the batch mode. The biosorption equilibrium level was determined as a function of contact time, pH, temperature, agitation speed at several initial metal ion and adsorbent concentrations. The removal of Ni(II) from aqueous solutions increased with adsorbent concentration, temperature and agitation speed of the solution were increased. The biosorption process was very fast; 90% of biosorption occurred within 3 min and equilibrium was reached at around 7 min. It is found that the biosorption of Ni(II) on the cone biomass was correlated well (R2 > 0.99) with the Langmuir equation as compared to Freundlich, BET Temkin and D-R isotherm equation under the concentration range studied. According to Langmuir isotherm, the monolayer saturation capacity (Q(o)) is 12.42 mg g(-1). The pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models were applied to test the experimental data for initial Ni(II) and cone biomass concentrations. The pseudo-second-order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first-order and intraparticle diffusion kinetic models. The activation energy of biosorption (E(a)) was determined as 36.85 kJ mol(-1) using the Arrhenius equation. This study indicated that the cone biomass of T. orientalis can be used as an effective and environmentally friendly adsorbent for the treatment of Ni(II) containing aqueous solutions.

  6. Crystal structure, complexation, spectroscopic characterization and antimicrobial evaluation of 3,4-dihydroxybenzylidene isonicotinyl-hydrazone

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; Ali, Mayada S.; El-Asmy, Ahmed A.

    2015-06-01

    A single crystal of 3,4-dihydroxybenzylidene isonicotinylhydrazone, HBINH, has been grown and solved by X-ray crystallography. The VO2+, Zr4+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pd2+ complexes of HBINH have been prepared and spectroscopically characterized. The data confirmed the formulae [Co(HBINH)(H2O)Cl]Cl·H2O, [Pd(HBINH)Cl2], [Zn(HBINH)2Cl2], [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)], [Ni2(HBINH)(H2O)6Cl2]Cl2, [Cu2(HBINH-3H)(H2O)2(OAc)]·3H2O, [Zr2(HBINH-3H)Cl4]Cl, [Hg2(HBINH)Cl4] and the dimer {[Cu(HBINH)Cl]Cl}2. Most of the complexes have intense colors and high melting points and some are electrolytes in DMSO solution. The ligand behaves as a neutral bidentate in the Co(II), Cu(II), Pd(II), Zn(II) and Cd(II) complexes; dibasic tetradentate in [Ni2(HBINH)(H2O)6Cl2]Cl2 and tribasic tetradentate in [Cu2(HBINH-3H)(OAc)]·5H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Zr2(HBINH-3H)Cl4]Cl by the loss of 3H+ due to the deprotonation of the two hydroxyl groups and the enolization of the amide (Odbnd CNH) group. A tetrahedral geometry was proposed for the Co(II), Cu(II), Zn(II) and Hg(II) complexes; square-planar for the Pd(II) complex; square-pyramid for the VO2+ complex and octahedral for the Ni(II) and Cd(II) complexes. The complexes [Cd(HBINH)(H2O)2Cl2]·1½H2O, [(VO)2(HBINH-3H)(OH)(H2O)] and [Cu2(HBINH-3H)-(H2O)2(OAc)]·3H2O have activities against Bacillus sp. M3010, Candida albicans, Escherichia coli, Staphylococcus aureus and Slamonella sp. PA393.

  7. EPR, UV-vis, magnetic, spectral studies and electrochemical behaviour of mononuclear transition metal complexes derived from novel hexa-aza-macrotricyclic ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Nidhi; Gupta, Rachna; Bawa, Sukhwant Singh

    2005-11-01

    Aza-macrocyclic complexes have gained importance because of their pharmacological properties [N.K. Singh, Srivastava, Trans. Met. Chem. 25 (2000) 133]. Hexa-aza-macrocyles containing glutarimide efficiently coordinate as hexa-dentate ligand, to give complexes of Cu(II) possessing tetragonal structure and Mn(II), Co(II) and Ni(II) metal ions that are essentially octahedral. Spectroscopic, and chemical characterizations of these systems are presented in this article. For Ni(II) complexes results on electron transfer processes measured by cyclic voltammetry and colourimetry have been studied.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun

    A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere ofmore » metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.« less

  9. Binding Selectivity of Methanobactin from Methylosinus trichosporium OB3b for Copper(I), Silver(I), Zinc(II), Nickel(II), Cobalt(II), Manganese(II), Lead(II), and Iron(II)

    NASA Astrophysics Data System (ADS)

    McCabe, Jacob W.; Vangala, Rajpal; Angel, Laurence A.

    2017-12-01

    Methanobactin (Mb) from Methylosinus trichosporium OB3b is a member of a class of metal binding peptides identified in methanotrophic bacteria. Mb will selectively bind and reduce Cu(II) to Cu(I), and is thought to mediate the acquisition of the copper cofactor for the enzyme methane monooxygenase. These copper chelating properties of Mb make it potentially useful as a chelating agent for treatment of diseases where copper plays a role including Wilson's disease, cancers, and neurodegenerative diseases. Utilizing traveling wave ion mobility-mass spectrometry (TWIMS), the competition for the Mb copper binding site from Ag(I), Pb(II), Co(II), Fe(II), Mn(II), Ni(II), and Zn(II) has been determined by a series of metal ion titrations, pH titrations, and metal ion displacement titrations. The TWIMS analyses allowed for the explicit identification and quantification of all the individual Mb species present during the titrations and measured their collision cross-sections and collision-induced dissociation patterns. The results showed Ag(I) and Ni(II) could irreversibly bind to Mb and not be effectively displaced by Cu(I), whereas Ag(I) could also partially displace Cu(I) from the Mb complex. At pH ≈ 6.5, the Mb binding selectivity follows the order Ag(I)≈Cu(I)>Ni(II)≈Zn(II)>Co(II)>>Mn(II)≈Pb(II)>Fe(II), and at pH 7.5 to 10.4 the order is Ag(I)>Cu(I)>Ni(II)>Co(II)>Zn(II)>Mn(II)≈Pb(II)>Fe(II). Breakdown curves of the disulfide reduced Cu(I) and Ag(I) complexes showed a correlation existed between their relative stability and their compact folded structure indicated by their CCS. Fluorescence spectroscopy, which allowed the determination of the binding constant, compared well with the TWIMS analyses, with the exception of the Ni(II) complex. [Figure not available: see fulltext.

  10. Metal complexes of a new potentially heptadentate(N 7) tripodal Schiff base ligand. Synthesis, NMR studies and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Sadegh; Javarsineh, Seyed Amrollah; Keypour, Hassan

    2006-03-01

    Tris(3-aminopropyl)amine, 2-pyridinecarboxaldehyde and a number of metal ions were used to prepare metal complexes of a new fully condensed potentially heptadentate(N 7) tripodal Schiff base ligand (L 333). The resulting complexes, [M(L 333)](ClO 4) 2 {M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); L 333=[N(CH 2CH 2CH 2N dbnd6 CH(C 5H 4N)) 3]}, were characterized by microanalysis, IR and electronic spectra in all cases and by NMR spectra in the case of Zn(II) and Cd(II) complexes: these two are both seven-co-ordinate. The 1H NMR, COSY and HMQC spectra of these complexes show two kinds of protons for each methylene group. The COSY spectrum confirms the geminal coupling of the two protons of each methylene group, indicating that the protons are diastereotopic in rigid six-membered rings. In the 1H NMR spectrum of the cadmium complex the signal of the imine proton has two clear satellites peaks ( 3J=41.9 Hz) with intensities in the ratio 1:6:1 due to coupling with neighbouring 111/113Cd. This coupling constant was confirmed by 113Cd NMR spectroscopy. Ab initio studies on [Fe(L 333)] 2+, [Zn(L 333)] 2+ and [Cd(L 333)] 2+ and also on the previously known complex, [Cd(L Me333)] 2+ are also reported. The results show that the shortest bonding interaction between the metal ion and the bridging tertiary nitrogen atom of the ligand is occurs in the Cd(II) complexes.

  11. Postsynthetic Improvement of the Physical Properties in a Metal-Organic Framework through a Single Crystal to Single Crystal Transmetallation.

    PubMed

    Grancha, Thais; Ferrando-Soria, Jesús; Zhou, Hong-Cai; Gascon, Jorge; Seoane, Beatriz; Pasán, Jorge; Fabelo, Oscar; Julve, Miguel; Pardo, Emilio

    2015-05-26

    A single crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal-organic framework (MOF) of formula Mg(II) 2 {Mg(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅45 H2 O (1; Me3 mpba(4-) =N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)). After complete replacement of the Mg(II) ions within the coordination network and those hosted in the channels by either Co(II) or Ni(II) ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 (II) {Co(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅56 H2 O (2) and Ni2 (II) {Ni(II) 4 [Cu(II) 2 (Me3 mpba)2 ]3 }⋅ 54 H2 O (3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and magnetic properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mono- and polynuclear Co(II) silanethiolates with aliphatic diamines

    NASA Astrophysics Data System (ADS)

    Pladzyk, Agnieszka; Baranowska, Katarzyna

    2014-01-01

    Four Co(II) complexes, [Co{SSi(OtBu)3}2(dmpda)] 1, [Co{SSi(OtBu)3}2(bda)2]n2 [Co{SSi(OtBu)3}2(pda)2]n3 and [Co{SSi(OtBu)3}2(hda)2]n4 [dmpda = 3-(dimethylamino)-1-propylamine; bda = 1.4-butanediamine; pda = 1.5-pentanediamine; had = 1.6-hexanediamine] have been synthesized and characterized using X-ray diffraction. Complex 1 is mononuclear and contains Co(II) coordinated by dmpda molecule in chelating mode, whereas compounds 3 and 4 are one-dimensional polymers with pda and hda diamines as bridges between the metallic centers respectively. In all complexes tri-tert-butoxysilanethiolate residue acts as terminal S-donor ligand. Full characterization of obtained compounds 1-4 was additionally carried out with the use of IR and UV-vis spectroscopy, elemental and thermal analysis.

  13. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  14. Synthesis, characterization and anti-microbial activity of phenylurea-formaldehyde resin (PUF) and its polymer metal complexes (PUF-Mn(II).

    PubMed

    Ahamad, Tansir; Alshehri, Saad M

    2012-10-01

    Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A facile strategy for achieving high selective Zn(II) fluorescence probe by regulating the solvent polarity.

    PubMed

    Wang, Haoping; Kang, Tiantian; Wang, Xiaoju; Feng, Liheng

    2018-07-01

    A simple Schiff base comprised of tris(2-aminoethyl)amine and salicylaldehyde was designed and synthesized by one-step reaction. Although this compound has poor selectivity for metal ions in acetonitrile, it shows high selectivity and sensitivity detection for Zn(II) ions through adjusting the solvent polarity (the volume ratio of CH 3 CN/H 2 O). In other words, this work provides a facile way to realize a transformation from poor to excellent feature for fluorescent probes. The bonding mode of this probe with Zn(II) ions was verified by 1 H NMR and MS assays. The stoichiometric ratio of the probe with Zn(II) is 1:1 (mole), which matches with the Job-plot assay. The detection limitation of the probe for Zn(II) is up to 1 × 10 -8 mol/L. The electrochemical property of the probe combined with Zn(II) was investigated by cyclic voltammetry method, and the result agreed with the theoretical calculation by the Gaussian 09 software. The probe for Zn(II) could be applied in practical samples and biological systems. The main contribution of this work lies in providing a very simple method to realize the selectivity transformation for poor selective probes. The providing way is a simple, easy and low-cost method for obtaining high selectively fluorescence probes. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ap4A is not an efficient Zn(II) binding agent. A concerted potentiometric, calorimetric and NMR study.

    PubMed

    Wszelaka-Rylik, Małgorzata; Witkiewicz-Kucharczyk, Aleksandra; Wójcik, Jacek; Bal, Wojciech

    2007-05-01

    Diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) has been considered as an intracellular partner for Zn(II). We applied potentiometry, ITC and NMR to study protonation equilibria of Ap(4)A and Zn(II) complexation by this dinucleotide. The values of binding constants obtained by these three techniques under various experimental conditions coherently demonstrated that Ap(4)A binds Zn(II) weakly, with an apparent binding constant of ca. 10(4) at neutral pH. Such a low stability of Zn(II) complexes with Ap(4)A excludes a possibility for interactions between these two agents in vivo.

  17. Zn(II)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(II) ions

    PubMed Central

    Yuan, Zhao; Simmons, J. Tyler; Sreenath, Kesavapillai

    2014-01-01

    Molecular photophysics and metal coordination chemistry are the two fundamental pillars that support the development of fluorescent cation indicators. In this article, we describe how Zn(II)-coordination alters various ligand-centered photophysical processes that are pertinent to developing Zn(II) indicators. The main aim is to show how small organic Zn(II) indicators work under the constraints of specific requirements, including Zn(II) detection range, photophysical requirements such as excitation energy and emission color, temporal and spatial resolutions in a heterogeneous intracellular environment, and fluorescence response selectivity between similar cations such as Zn(II) and Cd(II). In the last section, the biological questions that fluorescent Zn(II) indicators help to answer are described, which have been motivating and challenging this field of research. PMID:25071933

  18. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  19. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate.

    PubMed

    Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei; Preihs, Christian; Chirayil, Sara; Zhang, Shanrong; Kapur, Payal; Li, Wen-Hong; De Leon-Rodriguez, Luis M; Lubag, Angelo J M; Rofsky, Neil M; Sherry, A Dean

    2016-09-13

    Many secretory tissues release Zn(II) ions along with other molecules in response to external stimuli. Here we demonstrate that secretion of Zn(II) ions from normal, healthy prostate tissue is stimulated by glucose in fasted mice and that release of Zn(II) can be monitored by MRI. An ∼50% increase in water proton signal enhancement is observed in T1-weighted images of the healthy mouse prostate after infusion of a Gd-based Zn(II) sensor and an i.p. bolus of glucose. Release of Zn(II) from intracellular stores was validated in human epithelial prostate cells in vitro and in surgically exposed prostate tissue in vivo using a Zn(II)-sensitive fluorescent probe known to bind to the extracellular surface of cells. Given the known differences in intracellular Zn(II) stores in healthy versus malignant prostate tissues, the Zn(II) sensor was then evaluated in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model in vivo. The agent proved successful in detecting small malignant lesions as early as 11 wk of age, making this noninvasive MR imaging method potentially useful for identifying prostate cancer in situations where it may be difficult to detect using current multiparametric MRI protocols.

  20. A Trinuclear Ni(II) Enediolate Complex: Synthesis, Characterization, and O2 Reactivity

    PubMed Central

    Arif, Atta M.; Berreau, Lisa M.

    2009-01-01

    Using a new N4-donor chelate ligand having a mixture of hydrophobic phenyl and hydrogen bond donor appendages, a trinuclear Ni(II) complex of the doubly deprotonated form of 2-hydroxy-1,3-diphenylpropane-1,3-dione was isolated, characterized (X-ray crystallography, elemental analysis, UV-vis, 1H NMR, FTIR, magnetic moment measurement), and evaluated for O2 reactivity. This complex, [(6-NA-6-Ph2TPANi)2(μ-PhC(O)C(O)C(O)Ph)2Ni](ClO4)2 (4), has two terminal pseudo octahedral Ni(II) centers supported by the tetradentate chelate ligand, and a central square planar Ni(II) ion ligated by oxygen atoms of two bridging enediolate ligands. In CH3CN, 4 exhibits a deep orange/brown color and λmax = 463 nm (ε = 16,000 M-1cm-1). The room temperature magnetic moment of 4, determined by Evans method, is μeff = 5.3(2) μB. This is consistent with the presence of two non-interacting high-spin Ni(II) centers, a diamagnetic central Ni(II) ion, and an overall quintet ground state. Exposure of a CH3CN solution of 4 to O2 results in the rapid loss of the orange/brown color to give a green solution. The products identified from this reaction are [(κ3-6-NA-6-Ph2TPA)Ni(O2Ph)(H2O)]ClO4 (5), benzil (PhC(O)C(O)Ph), and CO. Identification of 5 was achieved via its independent synthesis and comparison of its 1H NMR and mass spectral features with those of the 6-NA-6-Ph2TPA-containing product generated upon reaction of 4 with O2. The independently prepared sample of 5 was characterized by X-ray crystallography, elemental analysis, UV-vis, mass spectrometry, and FTIR. The O2 reactivity of 4 has relevance to the active site chemistry of Ni(II)-containing acireductone dioxygenase (Ni(II)-ARD). PMID:18959363

  1. β-Octakis(methylthio)porphycenes: synthesis, characterisation and third order nonlinear optical studies.

    PubMed

    Rana, Anup; Lee, Sangsu; Kim, Dongho; Panda, Pradeepta K

    2015-05-04

    A novel electron deficient β-octakis(methylthio)porphycene, along with its Zn(ii) and Ni(ii) derivatives, was synthesized for the first time. The macrocyclic structure exhibits core ruffling with a largely red shifted absorption band (∼750 nm) and also a large enhancement in the third order nonlinear optical response.

  2. Synthetic hydroxyapatites doped with Zn(II) studied by X-ray diffraction, infrared, Raman and thermal analysis

    NASA Astrophysics Data System (ADS)

    Guerra-López, José R.; Echeverría, Gustavo A.; Güida, Jorge A.; Viña, Raúl; Punte, Graciela

    2015-06-01

    Calcium hydroxyapatite (CaHap) formation when different amounts of Zn(II) are present in the mother solution has been investigated by atomic absorption, infrared and Raman spectroscopies, X-ray diffraction and thermal analysis (DTA and TG). The studied samples have been synthesized at T=95 °C and pH 9 in air. The analysis of the results have shown that the pure CaHap sample crystallizes in the monoclinic form P21/b. Concentrations up to 20% of Zn(II) in the mother solution, equivalent to smaller concentrations in solid (up to 9.1% in wt), favor the formation of the hexagonal apatite, P63/m, while Zn(II) concentrations higher than 20% in solution help an amorphous phase development where vibrational spectra indicated coexistence of two phases: an apatite and ZnNH4PO4·H2O. Infrared data of thermal treated samples endorse that HPO42- ion had not been incorporated in Zn(II) doped samples during the synthesis process. Present results also allow to conclude that Zn(II) cation exhibits a preference to occupy the Ca2 site of the apatite structure and induces water adsorption and a small quantity of CO32- cation incorporation, leading to formation of a less crystalline Ca deficient apatite.

  3. Structural characterization and antioxidant properties of Cu(II) and Ni(II) complexes derived from dicyandiamide

    NASA Astrophysics Data System (ADS)

    Kertmen, Seda Nur; Gonul, Ilyas; Kose, Muhammet

    2018-01-01

    New Cu(II) and Ni(II) complexes derived from dicyandiamide were synthesized and characterised by spectroscopic and analytical methods. Molecular structures of the complexes were determined by single crystal X-ray diffraction studies. In the complexes, the Cu(II) or Ni(II) ions are four-coordinate with a slight distorted square planar geometry. The ligands (L-nPen and L-iPen) derived from dicyandiamide formed via nucleophilic addition of alcohol solvent molecule in the presence Cu(II) or Ni(II) ions. Complexes were stabilised by intricate array of hydrogen bonding interactions. Antioxidant activity of the complexes was evaluated by DPPH radical scavenging and CUPRAC methods. The complexes exhibit antioxidant activity, however, their activities were much lower than standard antioxidants (Vitamin C and trolox).

  4. Synthesis, characterization, DFT calculations and molecular docking studies of metal (II) complexes

    NASA Astrophysics Data System (ADS)

    Ekennia, Anthony C.; Osowole, Aderoju A.; Olasunkanmi, Lukman O.; Onwudiwe, Damian C.; Olubiyi, Olujide O.; Ebenso, Eno E.

    2017-12-01

    Two novel ligands, 2-methyl-6-[(5-methyl benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL1) and 2-methyl-6-[(5-floro-benzothiazol-2-ylimino)-methyl]-2-methoxycyclohexa-1,5-dienol (HL2) were synthesized from the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde with 2-amino-6-methylbenzothiazole and 2-amino-6-florobenzothiazole respectively. Mononuclear Cu(II), Ni(II) and Co(II) complexes of the ligands were synthesized and characterized using elemental analysis, magnetic susceptibility, thermogravimetric, conductance, infrared and UV-visible spectroscopic measurements. The 1H NMR, 13C NMR, Dept-90 NMR spectroscopy of the ligands was also recorded to establish the formation of the Schiff bases. The analytical data of the complexes showed that the metal to ligand ratio was 1:1 for Cu(II), Ni(II) and Co(II) complexes of HL1 and Cu(II) complexes of HL2, while Ni(II) and Co(II) complexes of HL2 was 1:2. The infrared spectral data showed that the chelation behaviour of the ligands towards transition metal ions was through phenolic oxygen and azomethine nitrogen atoms. Molar conductivity revealed the non-electrolytic nature of all chelates in DMSO solution. The geometry of the complexes was deduced from thermal, magnetic susceptibility and UV-visible spectroscopic results and was further confirmed with DFT calculations. The compounds were subjected to in-vitro antibacterial screening using agar well diffusion method on some clinically isolated Gram positive and Gram negative bacteria strains. The compounds showed varied antibacterial activities. Molecular docking studies were carried out to study the molecular interaction between the compounds and different enzymes of the bacterial strains. The antioxidant potentials of the compounds were studied using ferrous ion chelating assay and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. However, the complexes had better antioxidant potentials compared to the ligands.

  5. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides.

    PubMed

    Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek

    2015-02-17

    The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.

  6. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  7. Synthesis of first row transition metal selenomaltol complexes.

    PubMed

    Spiegel, Michael T; Hoogerbrugge, Amanda; Truksa, Shamus; Smith, Andrew G; Shuford, Kevin L; Klausmeyer, Kevin K; Farmer, Patrick J

    2018-06-21

    We report an efficient, one-step synthesis of the chelator 3-hydroxy-2-methyl-4-selenopyrone (selenomaltol). Complexes of selenomaltol with Fe(iii), Ni(ii), Cu(ii) and Zn(ii) have been prepared and studied by NMR, X-ray crystallography, cyclic voltammetry, EPR and electronic absorption. The Ni(ii) and Cu(ii) complexes show chemically reversible oxidations which are suggested to be ligand-based. Nuclear independent chemical shifts (NICS) analysis is used to compare aromaticity of the heterocyclic rings of selenomaltol and its chelates. The compounds described here should significantly expand the scope and utility of unusual O,Se-donor chelates.

  8. Interaction between transition metals and phenylalanine: a combined experimental and computational study.

    PubMed

    Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A

    2015-03-05

    Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S.; Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHNmore » elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.« less

  10. An unexpected Schiff base-type Ni(II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-01

    An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]ṡCH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.

  11. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.

    PubMed

    Nolan, Elizabeth M; Jaworski, Jacek; Racine, Maryann E; Sheng, Morgan; Lippard, Stephen J

    2006-11-27

    The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.

  12. Midrange Affinity Fluorescent Zn(II) Sensors of the Zinpyr Family: Syntheses, Characterization, and Biological Imaging Applications

    PubMed Central

    Nolan, Elizabeth M.; Jaworski, Jacek; Racine, Maryann E.; Sheng, Morgan; Lippard, Stephen J.

    2006-01-01

    The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as “midrange”. They give ~12- (ZP9) and ~7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo. PMID:17112271

  13. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  14. Time-dependent Translational Response of E. coli to Excess Zn(II)

    PubMed Central

    Easton, J. Allen; Thompson, Peter; Crowder, Michael W.

    2006-01-01

    Zinc homeostasis is not well understood beyond methods of import and export. In order to better understand zinc homeostasis in Escherichia coli by identifying Zn(ii)-responsive proteins, a proteomic approach was taken. Through the use of two-dimensional gel electrophoresis, we were able to show that the levels of OmpF, AspC, YcdO, Eno, and CysE increased after 30 min of Zn(ii) stress, while the levels of Tig, TufA, SelA, and LeuC decreased relative to non-stressed controls. After 4 h of Zn(ii) stress, the levels of three proteins (DnaK, YeaU, and Mdh) were found to be up-regulated, while the levels of seven amino acid importers (HisJ, ArgT, LivJ, DppA, OppA, RbsB, and GinH) were found to be decreased. None of these proteins had been reported to be up- or down-regulated in any previously published cDNA microarray experiments. This result raises questions about the validity of cDNA arrays when they are used to make assumptions concerning protein levels within bacterial cells. These data also suggest that time is a factor when characterizing how the E. coli proteome responds to Zn(ii) stress. PMID:17122063

  15. Characterization of sophorolipid biosurfactant produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater.

    PubMed

    Basak, Geetanjali; Das, Nilanjana

    2014-11-01

    The present study aimed at elucidating the role of biosurfactant produced by yeast for the removal of Zn(II) ions from electroplating wastewater. The yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp.VITGBN2, based on molecular techniques, and was found to be potent producer of biosurfactant in mineral salt media containing vegetable oil as additional carbon source. Chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. Interaction of Zn(II) ions with biosurfactant was monitored using FT-IR, SEM and EDS analysis. Zn (II) removal at 100 mg l(-1) concentration was 84.8% compared were other synthetic surfactants (Tween 80 and sodium dodecyl sulphate), yeast mediated biosurfactant showed enhanced Zn (II) removal in batch mode. The role of biosurfactant on Zn(II) removal was evaluated in column mode packed with biosurfactant entrapped in sodium alginate beads. At a flow rate of 1 ml min(-1) and bed height of 12 cm, immobilized biosurfactant showed 94.34% Zn(II) removal from electroplating wastewater. The present study confirmed that Zn(II) removal was biosurfactant mediated. This is the first report establishing the involvement of yeast mediated biosurfactant in Zn(II) removal from wastewater.

  16. Adsorption of enrofloxacin in presence of Zn(II) on a calcareous soil.

    PubMed

    Graouer-Bacart, Mareen; Sayen, Stéphanie; Guillon, Emmanuel

    2015-12-01

    As a result of their consumption, excretion, disposal and persistence, antibiotics enter the soil environment and may be transported to surface and ground waters. During their transfer through soils, retention processes play a key role in their mobility. Antibiotics often coexist with heavy metals in soils due to agricultural practices and other sources of inputs. In this context, this study deals with the co-adsorption of Zn(II) and enrofloxacin (ENR), a widely-used veterinary antibiotic, on a calcareous soil using batch retention experiments and X-ray Absorption Near Edge Structure (XANES) spectroscopy. To improve our understanding of the interaction of this emerging organic contaminant with metal cations at the water-soil interface, the ternary system containing ENR, Zn(II) and a selected calcareous soil was investigated over a pH range between 7 and 10, at different solid-solution contact times and ENR concentrations. The presence of Zn(II) slightly influenced the retention of the antibiotic, leading to an increase of the adsorbed ENR amounts. The distribution coefficient Kd value increased from 0.66 Lg(-1) for single ENR adsorption to 1.04 Lg(-1) in presence of Zn(II) at a 1/2 ENR/Zn(II) ratio. The combination of adsorption isotherm data, solution speciation diagrams and XANES spectra evidenced a small proportion of Zn(II)-ENR complexes at soil pH leading to the slight increase of ENR adsorption in presence of zinc. These results suggest that it is necessary to consider the interaction between ENR and metal cations when assessing the mobility of ENR in soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Batch and fixed-bed column studies for biosorption of Zn(II) ions onto pongamia oil cake (Pongamia pinnata) from biodiesel oil extraction.

    PubMed

    Shanmugaprakash, M; Sivakumar, V

    2015-12-01

    The present work, analyzes the potential of defatted pongamia oil cake (DPOC) for the biosorption of Zn(II) ions from aqueous solutions in the both batch and column mode. Batch experiments were conducted to evaluate the optimal pH, effect of adsorbent dosage, initial Zn(II) ions concentration and contact time. The biosorption equilibrium and kinetics data for Zn(II) ions onto the DPOC were studied in detail, using several models, among all it was found to be that, Freundlich and the second-order model explained the equilibrium data well. The calculated thermodynamic parameters had shown that the biosorption of Zn(II) ions was exothermic and spontaneous in nature. Batch desorption studies showed that the maximum Zn(II) recovery occurred, using 0.1 M EDTA. The Bed Depth Service Time (BDST) and the Thomas model was successfully employed to evaluate the model parameters in the column mode. The results indicated that the DPOC can be applied as an effective and eco-friendly biosorbent for the removal of Zn(II) ions in polluted wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    NASA Astrophysics Data System (ADS)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  19. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthesis, characterization and biocidal activities of heterobimetallic complexes having tin(IV) as a padlock

    NASA Astrophysics Data System (ADS)

    Husain, Ahmad; Nami, Shahab A. A.; Siddiqi, K. S.

    2010-04-01

    A mononuclear precursor complex, [(CH 3) 2Sn(tpdtc)] and several of its heterobimetallic derivatives of the type, [(CH 3) 2Sn(tpdtc)]MCl 2 have been synthesized by the simple addition reaction of transition metal chlorides, MCl 2· nH 2O where tpdtc = tetraethylenepentamine bis(dithiocarbamate) anion, M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II). The synthesized complexes have been systematically characterized by the physicochemical and spectroscopic techniques. A square-pyramidal geometry has been proposed for all the transition metal atoms with chloride ions occupying the axial while the three nitrogen atoms occupying the equatorial positions. A symmetrical bidentate coordination has been observed for the dithiocarbamato moiety leading to the formation of 18 member cavity. The thermal studies reveal that the mononuclear complex decomposes in three stages while its heterobimetallic analog exhibits a simple two-stage profile. The conductivity measurement data (1 mmol solution) implies a non-electrolytic behavior for all the complexes as evident by their low conductivity values obtained at room temperature. The heterobimetallic complexes have also been tested against the bacterial ( Escherichia coli and Pseudomonas aeruginosa) and antifungal strains ( Aspergillus niger and Fusarium oxysporum). All the complexes were found to be active against the test organisms and maximum activity was found for [(CH 3) 2Sn(tpdtc)]CuCl 2 complex.

  1. Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple.

    PubMed

    Davis, James; Vaughan, D Huw; Stirling, David; Nei, Lembit; Compton, Richard G

    2002-07-19

    The exploitation of the Ni(III)/Ni(II) transition as a means of quantifying the concentration of nickel within industrial samples was assessed. The methodology relies upon the reagentless electrodeposition of Ni onto a glassy carbon electrode and the subsequent oxidative conversion of the metallic layer to Ni(III). The analytical signal is derived from a cathodic stripping protocol in which the reduction of the Ni(III) layer to Ni(II) is monitored through the use of square wave voltammetry. The procedure was refined through the introduction of an ultrasonic source which served to both enhance the deposition of nickel and to remove the nickel hydroxide layer that results from the measurement process. A well-defined stripping peak was observed at +0.7 V (vs. Agmid R:AgCl) with the response found to be linear over the range 50 nM to 1 muM (based on a 30 s deposition time). Other metal ions such as Cu(II), Mn(II), Cr(III), Pb(II), Cd(II), Zn(II), Fe(III) and Co(II) did not interfere with the response when present in hundred fold excess. The viability of the technique was evaluated through the determination of nickel within a commercial copper nickel alloy and validated through an independent comparison with a standard ICP-AES protocol.

  2. 3d-4f {Co(II)3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts.

    PubMed

    Evangelisti, Fabio; Moré, René; Hodel, Florian; Luber, Sandra; Patzke, Greta Ricarda

    2015-09-02

    Although the {CaMn4O5} oxygen evolving complex (OEC) of photosystem II is a major paradigm for water oxidation catalyst (WOC) development, the comprehensive translation of its key features into active molecular WOCs remains challenging. The [Co(II)3Ln(hmp)4(OAc)5H2O] ({Co(II)3Ln(OR)4}; Ln = Ho-Yb, hmp = 2-(hydroxymethyl)pyridine) cubane WOC series is introduced as a new springboard to address crucial design parameters, ranging from nuclearity and redox-inactive promoters to operational stability and ligand exchange properties. The {Co(II)3Ln(OR)4} cubanes promote bioinspired WOC design by newly combining Ln(3+) centers as redox-inactive Ca(2+) analogues with flexible aqua-/acetate ligands into active and stable WOCs (max. TON/TOF values of 211/9 s(-1)). Furthermore, they open up the important family of 3d-4f complexes for photocatalytic applications. The stability of the {Co(II)3Ln(OR)4} WOCs under photocatalytic conditions is demonstrated with a comprehensive analytical strategy including trace metal analyses and solution-based X-ray absorption spectroscopy (XAS) investigations. The productive influence of the Ln(3+) centers is linked to favorable ligand mobility, and the experimental trends are substantiated with Born-Oppenheimer molecular dynamics studies.

  3. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies

    PubMed Central

    2014-01-01

    Background Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. Methods The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). Results Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. Conclusion The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm. PMID:24397917

  4. Involvement of organic acids and amino acids in ameliorating Ni(II) toxicity induced cell cycle dysregulation in Caulobacter crescentus: a metabolomics analysis.

    PubMed

    Jain, Abhishek; Chen, Wei Ning

    2018-05-01

    Nickel (Ni(II)) toxicity is addressed by many different bacteria, but bacterial responses to nickel stress are still unclear. Therefore, we studied the effect of Ni(II) toxicity on cell proliferation of α-proteobacterium Caulobacter crescentus. Next, we showed the mechanism that allows C. crescentus to survive in Ni(II) stress condition. Our results revealed that the growth of C. crescentus is severely affected when the bacterium was exposed to different Ni(II) concentrations, 0.003 mM slightly affected the growth, 0.008 mM reduced the growth by 50%, and growth was completely inhibited at 0.015 mM. It was further shown that Ni(II) toxicity induced mislocalization of major regulatory proteins such as MipZ, FtsZ, ParB, and MreB, resulting in dysregulation of the cell cycle. GC-MS metabolomics analysis of Ni(II) stressed C. crescentus showed an increased level of nine important metabolites including TCA cycle intermediates and amino acids. This indicates that changes in central carbon metabolism and nitrogen metabolism are linked with the disruption of cell division process. Addition of malic acid, citric acid, alanine, proline, and glutamine to 0.015 mM Ni(II)-treated C. crescentus restored its growth. Thus, the present work shows a protective effect of these organic acids and amino acids on Ni(II) toxicity. Metabolic stimulation through the PutA/GlnA pathway, accelerated degradation of CtrA, and Ni-chelation by organic acids or amino acids are some of the possible mechanisms suggested to be involved in enhancing C. crescentus's tolerance. Our results shed light on the mechanism of increased Ni(II) tolerance in C. crescentus which may be useful in bioremediation strategies and synthetic biology applications such as the development of whole cell biosensor.

  5. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly, E-mail: anatoly_zhitkovich@brown.edu

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21more » expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are

  6. A Novel Nanocomposite as an Efficient Adsorbent for the Rapid Adsorption of Ni(II) from Aqueous Solution

    PubMed Central

    Wang, Ximing; Chen, Zhangjing

    2017-01-01

    A sulfhydryl-lignocellulose/montmorillonite (SLT) nanocomposite was prepared using a chemical intercalation reaction. The SLT nanocomposite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscopy (TEM), the results demonstrated that an intercalated-exfoliated nanostructure was formed in the SLT nanocomposite. Batch experiments were conducted to optimize parameters such as SLT nanocomposite dosage, the initial concentration of Ni(II), solution pH, temperature, and time. The results indicated that the attractive adsorption capacity reached 1134.08 mg/g with 0.05 g of SLT at an initial concentration of Ni(II) of 700 mg/L, solution pH of 5.5, adsorption temperature of 50 °C, and adsorption time of 40 min, meanwhile, the Ni(II) adsorption capacity significantly decreased with the increase in ionic strength. The pseudo-second order kinetic model could describe the whole adsorption process well, and the isotherm adsorption equilibrium conformed to the Freundlich model. The adsorption mechanism of SLT was also discussed by means of FTIR and Energy-Dispersive X-Ray (EDX). Dramatically, the introduction of sulfhydryl achieves the increased activated functional groups content of SLT nanocomposite, leading to remarkably higher adsorption amount on Ni(II). The desorption capacity of SLT was dependent on parameters such as HNO3 concentration, desorption temperature, and ultrasonic desorption time. The satisfactory desorption capacity and desorption efficiency of 458.21 mg/g and 40.40% were obtained at an HNO3 concentration, desorption temperature, and ultrasonic desorption time of 0.4 mol/L, 40 °C, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of SLT was consistent for four cycles without any appreciable loss and confirmed that the SLT was reusable. Owing to such outstanding features, the novel SLT nanocomposite proved the

  7. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II)

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  8. Spectroscopic studies on 2-[2-(4-methylquinolin-2-yl)hydrazono]-1,2-diphenylethanone molecule and its metal complexes

    NASA Astrophysics Data System (ADS)

    Seleem, H. S.; El-Inany, G. A.; Mousa, M.; Hanafy, F. I.

    2009-11-01

    The electronic absorption spectra of a hydrazone: 2-[2-(4-methylquinolin-2-yl)hydrazono]-1,2-diphenylethanone (BHQ) derived from 2-hydrazino-4-methylquinoline and 1,2-diphenylethan-1,2-dione (benzil) have been studied in various solvents of different polarities. The dependence of the band shift Δ ύ on the solvent parameters viz.D, Z, ET, DN, AN, α, β and π* was discussed. Also, the effect of pH on the free hydrazone and its Co(II), Ni(II) and Cu(II) complexes was studied spectrophotometrically in 75% (v/v) dioxane-water in order to determine the dissociation and stability constants. The stoichiometry of the formed complexes was determined by three different methods: Job's, mole ratio and slope ratio which indicate the formation of 1:2, M:L complexes for Co(II) and Cu(II) and 1:1, Ni(II):L. Beer's law is valid in the range 0.32-7.04 μg/mL depending on the type of the metal ion. The use of BHQ as an indicator via a spectrophotometric titration of Cu(II) and Ni(II) with EDTA was efficient.

  9. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II).

    PubMed

    Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  10. Synthesis of some metallophthalocyanines with dimethyl 5-(phenoxy)-isophthalate substituents and evaluation of their antioxidant-antibacterial activities

    NASA Astrophysics Data System (ADS)

    Salih Ağırtaş, M.; Karataş, Ceyhun; Özdemir, Sadin

    2015-01-01

    The synthesis, characterization, spectral, antioxidant and antibacterial properties of dimethyl 5-(phenoxy)-isophthalate substituted Zinc, Cobalt, Copper, and Nickel phthalocyanines are reported. The novel compounds have been characterized by using electronic absorption, nuclear magnetic resonance spectroscopy, infrared, elemental analysis and mass spectrometry. The antioxidant and antibacterial activities of newly synthesized phthalocyanines and its starting material are tested. The DPPH free radical scavenging ability of phthalocyanine Co(II) and Zn(II) complexes on DPPH are 44.8% and 40.1% at 100 mg/L concentration, respectively. The phthalocyanine Co(II) and Cu(II) complexes show very strong ferrous ion chelating activity of 91.2% and 89.3% at concentration of 100 mg/L, respectively. Compound 3 displays strong reducing power like α-tocopherol. Antibacterial activities of phthalocyanine Co(II) and Amikacin (30 μg/disk) against Micrococcus luteus (ATCC 9341) are 16 mm in diameter.

  11. Further insights into the metal ion binding abilities and the metalation pathway of a plant metallothionein from Musa acuminata

    PubMed Central

    Cabral, Augusto C. S.; Jakovleska, Jovana; Deb, Aniruddha; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2017-01-01

    The superfamily of metallothioneins (MTs) combines a diverse group of metalloproteins, sharing the characteristics of rather low molecular weight and high cysteine content. The latter provides MTs with the capability to coordinate thiophilic metal ions, in particular those with a d10 electron configuration. The sub-family of plant MT3 proteins is only poorly characterized and there is a complete lack of three-dimensional structure information. Building upon our previous results on the Musa acuminata MT3 (musMT3) protein, the focus of the present work is to understand the metal cluster formation process, the role of the single histidine residue present in musMT3, and the metal ion binding affinity. We concentrate our efforts on the coordination of ZnII and CdII ions, using CoII as a spectroscopic probe for ZnII binding. The overall protein-fold is analysed with a combination of limited proteolytic digestion, mass spectrometry, and dynamic light scattering. Histidine coordination of metal ions is probed with extended X-ray absorption fine structure spectroscopy and CoII titration experiments. Initial experiments with isothermal titration calorimetry provide insights into the thermodynamics of metal ion binding. PMID:29218632

  12. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  13. Highly anisotropic exchange interactions in a trigonal bipyramidal cyanide-bridged Ni(II)3Os(III)2 cluster.

    PubMed

    Palii, Andrei V; Reu, Oleg S; Ostrovsky, Sergei M; Klokishner, Sophia I; Tsukerblat, Boris S; Hilfiger, Matthew; Shatruk, Michael; Prosvirin, Andrey; Dunbar, Kim R

    2009-06-25

    This article is a part of our efforts to control the magnetic anisotropy in cyanide-based exchange-coupled systems with the eventual goal to obtain single-molecule magnets with higher blocking temperatures. We give the theoretical interpretation of the magnetic properties of the new pentanuclear complex {[Ni(II)(tmphen)(2)](3)[Os(III)(CN)(6)](2)} x 6 CH(3)CN (Ni(II)(3)Os(III)(2) cluster). Because the system contains the heavy Os(III) ions, spin-orbit coupling considerably exceeds the contributions from the low-symmetry crystal field and exchange coupling. The magnetic properties of the Ni(II)(3)Os(III)(2) cluster are described in the framework of a highly anisotropic pseudo-spin Hamiltonian that corresponds to the limit of strong spin-orbital coupling and takes into account the complex molecular structure. The model provides a good fit to the experimental data and allows the conclusion that the trigonal axis of the bipyramidal Ni(II)(3)Os(III)(2) cluster is a hard axis of magnetization. This explains the fact that in contrast with the isostructural trigonal bipyramidal Mn(III)(2)Mn(II)(3) cluster, the Ni(II)(3)Os(III)(2) system does not exhibit the single-molecule magnetic behavior.

  14. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Michael Edward

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C 5-symmetrical cyclopentadienyl rings.

  15. Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides

    EPA Science Inventory

    The removal efficiency of heavy metal ions (cadmium(II) – Cd(II), cobalt(II) – Co(II), nickel(II) – Ni(II), and copper(II) – Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)), was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective r...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shuang; Yi, Fei-Yan; Li, Guanghua

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing featuremore » is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.« less

  17. Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport

    PubMed Central

    Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax

    2014-01-01

    The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033

  18. Binaphthyl-containing Schiff base complexes with carboxyl groups for dye sensitized solar cell: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tsaturyan, Arshak; Machida, Yosuke; Akitsu, Takashiro; Gozhikova, Inna; Shcherbakov, Igor

    2018-06-01

    We report on synthesis and characterization of binaphthyl containing Schiff base Ni(II), Cu(II), and Zn(II) complexes as promising photosensitizers for dye-sensitized solar cells (DSSC). Based on theoretical and experimental data, the possibility of their application in DSSC was confirmed. To our knowledge, we find dye performance of complex is steric and rigid structure widely spread to efficiency. The spatial and electronic structures of the complexes were studied by means of the quantum chemical modeling using DFT and TD-DFT approaches. The adsorption energies of the complexes on TiO2 cluster were calculated and appeared to be very close in value. The Zn(II) complex has the biggest value of molar extinction.

  19. Chelation of Cu(II), Zn(II), and Fe(II) by tannin constituents of selected edible nuts.

    PubMed

    Karamać, Magdalena

    2009-12-22

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by approximately 90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested.

  20. Chelation of Cu(II), Zn(II), and Fe(II) by Tannin Constituents of Selected Edible Nuts

    PubMed Central

    Karamać, Magdalena

    2009-01-01

    The tannin fractions isolated from hazelnuts, walnuts and almonds were characterised by colorimetric assays and by an SE-HPLC technique. The complexation of Cu(II) and Zn(II) was determined by the reaction with tetramethylmurexide, whereas for Fe(II), ferrozine was employed. The walnut tannins exhibited a significantly weaker reaction with the vanillin/HCl reagent than hazelnut and almond tannins, but the protein precipitation capacity of the walnut fraction was high. The SE-HPLC chromatogram of the tannin fraction from hazelnuts revealed the presence of oligomers with higher molecular weights compared to that of almonds. Copper ions were most effectively chelated by the constituents of the tannin fractions of hazelnuts, walnuts and almonds. At a 0.2 mg/assay addition level, the walnut tannins complexed almost 100% Cu(II). The Fe(II) complexation capacities of the tannin fractions of walnuts and hazelnuts were weaker in comparison to that of the almond tannin fraction, which at a 2.5 mg/assay addition level, bound Fe(II) by ~90%. The capacity to chelate Zn(II) was quite varied for the different nut tannin fractions: almond tannins bound as much as 84% Zn(II), whereas the value for walnut tannins was only 8.7%; and for hazelnut tannins, no Zn(II) chelation took place at the levels tested. PMID:20054482

  1. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene.

    PubMed

    Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh

    2009-11-01

    The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.

  2. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni-Cd batteries

    NASA Astrophysics Data System (ADS)

    Fernandes, Aline; Afonso, Julio Carlos; Bourdot Dutra, Achilles Junqueira

    2012-12-01

    In this work a hydrometallurgical route to recover nickel, cobalt and cadmium after leaching spent Ni-Cd batteries with hydrochloric acid was investigated. Co(II) and Cd(II) were both recovered by solvent extraction. Cd(II) was first extracted (99.7 wt.%) with pure tri-n-butylphosphate (TBP), in the original leachate acidity (5.1 mol L-1), in two stages at 25 °C with an aqueous/organic (A/O) phase ratio = 1 v/v. The Co(II) present in the raffinate (free acidity 4.1 mol L-1) was extracted with Alamine 336 or Alamine 304 (10 vol.% in kerosene) at 25 °C with an A/O ratio = 1 in two stages. 97.5 wt.% of Co(II) was extracted using Alamine 336 while only 90.4 wt.% was extracted in the case of Alamine 304. Ni(II) was isolated from the raffinate as oxalate after addition of ammonium oxalate at pH 2.

  3. Hydrothermal-electrochemical growth of heterogeneous ZnO: Co films

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2017-10-01

    This study demonstrates the preparation of heterogeneous ZnO: Co nanostructures via hydrothermal-electrochemical deposition at 130 °C and -1.1 V (vs Ag/AgCl (satd)) in dimethyl sulfoxide (DMSO)-H2O mixture. Under the stated conditions, ZnO: Co nanostructures grow preferentially along (002) direction. Strength of directional growth progressively increases with the increasing concentration of Co(II) in the deposition bath. Films are composed of hexagonal Wurtzite ZnO, metallic cobalt, and mixed cobalt oxide on the surface and cobalt(II) oxide in deeper levels. Increasing the Co(II) concentration in the deposition bath results in different morphological features as well as phase separation. Platelets, sponge-like structures, cobalt-rich spheres, microislands of cobalt-rich spheres which are interconnected by ZnO network can be synthesized by adjusting [Co(II)]: [Zn(II)] ratio. Growth mechanisms giving rise to these particular structures, surface morphology, crystal structure, phase purity, chemical binding characteristics, and optical properties of the deposits are discussed in detail.

  4. Interplay of Coordination Environment and Magnetic Behavior of Layered Co(II) Hydroxichlorides: A DFT+U Study.

    PubMed

    Hunt, Diego; Jobbagy, Matías; Scherlis, Damián A

    2018-05-07

    In this work we present a systematic computational study of the structural and magnetic properties of a layered family of Co(II) hydroxichlorides, obeying to the general formula Co(OH) 2- x Cl x (H 2 O) y . This solid contains both octahedral and tetrahedral cobalt ions, displaying a complex magnetic order arising from the particular coupling between the two kinds of metallic centers. Here, supercells representing concentrations of 12, 20, and 40% of tetrahedral sites were modeled consistently with the compositions reported experimentally. Our simulations show that the two types of cobalt ions tend to couple antiferromagnetically, giving rise to a net magnetic moment slightly out of the plane of the layers. The band gap reaches its minimum value of 1.4 eV for the most diluted fraction of tetrahedral Co(II) sites, going up to 2.2 eV when the content is 40%. Moreover, our results suggest that the presence of interlayer water stabilizes the material and at the same time strongly modifies the electronic environment of tetrahedral Co(II), leading to a further drop of the band gap. To our knowledge, this is the first theoretical investigation of this material.

  5. Water Oxidation Catalysis by Co(II) Impurities in Co(III) 4O 4 Cubanes

    DOE PAGES

    Ullman, Andrew M.; Liu, Yi; Huynh, Michael; ...

    2014-11-18

    Here, the observed water oxidation activity of the compound class Co 4O 4(OAc) 4(Py–X) 4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co 4O 4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials andmore » demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.« less

  6. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions.

    PubMed

    Anoop Krishnan, K; Sreejalekshmi, K G; Vimexen, V; Dev, Vinu V

    2016-02-01

    The prospective application of sulphurised activated carbon (SAC) as an ecofriendly and cost-effective adsorbent for Zinc(II) removal from aqueous phase is evaluated, with an emphasis on kinetic and isotherm aspects. SAC was prepared from sugarcane bagasse pith obtained from local juice shops in Sree Bhadrakali Devi Temple located at Ooruttukala, Neyyattinkara, Trivandrum, India during annual festive seasons. Activated carbon modified with sulphur containing ligands was opted as the adsorbent to leverage on the affinity of Zn(II) for sulphur. We report batch-adsorption experiments for parameter optimisations aiming at maximum removal of Zn(II) from liquid-phase using SAC. Adsorption of Zn(II) onto SAC was maximum at pH 6.5. For initial concentrations of 25 and 100mgL(-1), maximum of 12.3mgg(-1) (98.2%) and 23.7mgg(-1) (94.8%) of Zn(II) was adsorbed onto SAC at pH 6.5. Kinetic and equilibrium data were best described by pseudo-second-order and Langmuir models, respectively. A maximum adsorption capacity of 147mgg(-1) was obtained for the adsorption of Zn(II) onto SAC from aqueous solutions. The reusability of the spent adsorbent was also determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  8. Synthesis, spectral characterization and computed optical analysis of potent triazole based compounds

    NASA Astrophysics Data System (ADS)

    Sumrra, Sajjad H.; Mushtaq, Fazila; Khalid, Muhammad; Raza, Muhammad Asam; Nazar, Muhammad Faizan; Ali, Bakhat; Braga, Ataualpa A. C.

    2018-02-01

    Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311 ++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311 ++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.

  9. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  10. Analysis of transition-metal acetylacetonate complexes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Wyatt, Mark F; Havard, Stephen; Stein, Bridget K; Brenton, A Gareth

    2008-01-01

    Transition-metal acetylacetonate complexes of the form Metal(acac)(2), where Metal = Fe(II), Co(II), Ni(II), Cu(II), and Zn(II), and Metal(acac)(3), where Metal = V(III), Cr(III), Mn(III), Fe(III), and Co(III), were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The data was acquired using the aprotic, electron transfer matrix, 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB), and the observation of positive radical ions is shown clearly to depend on the metal element and the oxidation state it occupies. The ionization energy of DCTB was calculated to be 8.08 eV by density functional theory methods, which is notably lower than the experimental value, but within the range of other computational values. This value is very close to those of the analytes, so the existing electron transfer mechanism which is based on the ionization energies of the matrix and analyte, cannot be used predictively. Similarly, the data neither proves nor disproves the validity of the existing electron transfer ionization mechanism, with respect to metal coordination complexes without strong chromophores. In this case, periodic trends may be more useful in explaining the observed species and the prediction of species from sets of similar complexes. The addition of a sodium salt benefits the MALDI-TOFMS characterization of certain compounds studied, but the benefit of the addition of ammonium or silver salts is negligible.

  11. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, andmore » the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.« less

  12. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, Ehab M.; Hindy, Ahmed M. M.

    2015-06-01

    Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, 1H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.

  13. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  14. ArsR arsenic-resistance regulatory protein from Cupriavidus metallidurans CH34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.; van der Lelie, D.; Monchy, S.

    The Cupriavidus metallidurans CH34 arsR gene, which is part of the arsRIC{sub 2}BC{sub 1}HP operon, and its putative arsenic-resistance regulatory protein were identified and characterized. The arsenic-induced transcriptome of C. metallidurans CH34 showed that the genes most upregulated in the presence of arsenate were all located within the ars operon, with none of the other numerous heavy metal resistance systems present in CH34 being induced. A transcriptional fusion between the luxCDABE operon and the arsR promoter/operator (P/O) region was used to confirm the in vivo induction of the ars operon by arsenite and arsenate. The arsR gene was cloned intomore » expression vectors allowing for the overexpression of the ArsR protein as either his-tagged or untagged protein. The ability of the purified ArsR proteins to bind to the ars P/O region was analyzed in vitro by gel mobility shift assays. ArsR showed an affinity almost exclusively to its own ars P/O region. Dissociation of ArsR and its P/O region was metal dependent, and based on decreasing degrees of dissociation three groups of heavy metals could be distinguished: As(III), Bi(III), Co(II), Cu(II), Ni(II); Cd(II); Pb(II) and Zn(II), while no dissociation was observed in the presence of As(V).« less

  15. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  16. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals.

    PubMed

    Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  17. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  18. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  19. Functional and Expression Analysis of the Metal-Inducible dmeRF System from Rhizobium leguminosarum bv. viciae

    PubMed Central

    Rubio-Sanz, L.; Prieto, R. I.; Imperial, J.; Brito, B.

    2013-01-01

    A gene encoding a homolog to the cation diffusion facilitator protein DmeF from Cupriavidus metallidurans has been identified in the genome of Rhizobium leguminosarum UPM791. The R. leguminosarum dmeF gene is located downstream of an open reading frame (designated dmeR) encoding a protein homologous to the nickel- and cobalt-responsive transcriptional regulator RcnR from Escherichia coli. Analysis of gene expression showed that the R. leguminosarum dmeRF genes are organized as a transcriptional unit whose expression is strongly induced by nickel and cobalt ions, likely by alleviating the repressor activity of DmeR on dmeRF transcription. An R. leguminosarum dmeRF mutant strain displayed increased sensitivity to Co(II) and Ni(II), whereas no alterations of its resistance to Cd(II), Cu(II), or Zn(II) were observed. A decrease of symbiotic performance was observed when pea plants inoculated with an R. leguminosarum dmeRF deletion mutant strain were grown in the presence of high concentrations of nickel and cobalt. The same mutant induced significantly lower activity levels of NiFe hydrogenase in microaerobic cultures. These results indicate that the R. leguminosarum DmeRF system is a metal-responsive efflux mechanism acting as a key element for metal homeostasis in R. leguminosarum under free-living and symbiotic conditions. The presence of similar dmeRF gene clusters in other Rhizobiaceae suggests that the dmeRF system is a conserved mechanism for metal tolerance in legume endosymbiotic bacteria. PMID:23934501

  20. Electrospray ionization mass spectrometric investigations of the complexation behavior of macrocyclic thiacrown ethers with bivalent transitional metals (Cu, Co, Ni and Zn).

    PubMed

    Tsybizova, Alexandra; Tarábek, Ján; Buchta, Michal; Holý, Petr; Schröder, Detlef

    2012-10-15

    Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Ligational behavior of Schiff bases towards transition metal ion and metalation effect on their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha; Malhotra, Rajesh

    2012-11-01

    New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.

  2. Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge

    NASA Astrophysics Data System (ADS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2013-03-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions by activated sludge and dried sludge was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto activated sludge and dried sludge was analyzed with Weber-Morris intra-particle diffusion model, Lagergren first-order model and pseudo second-order model. The rate constant of intra-particle diffusion on activated sludge and dried sludge increased in the sequence of Cu(II) > Ni(II) > Cd(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo second-order model compared to the first-order Lagergren model with R 2 > 0.997. The adsorption capacities of metal ions onto activated sludge and dried sludge followed the sequence Ni(II) ≈ Cu(II) > Cd(II) and Cu(II) > Ni(II) > Cd(II).

  3. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine.

    PubMed

    Afkhami, Abbas; Saber-Tehrani, Mohammad; Bagheri, Hasan

    2010-09-15

    2,4-Dinitrophenylhydrazine (DNPH) immobilized on sodium dodecyl sulfate coated nano-alumina was developed for the removal of metal cations Pb(II), Cd(II), Cr(III), Co(II), Ni(II) and Mn(II) from water samples. The research results displayed that adsorbent has the highest adsorption capacity for Pb(II), Cr(III) and Cd(II) in ions mixture system. Optimal experimental conditions including pH, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by the Freundlich adsorption isotherm equation for Mn(II), Pb(II), Cr(III) and Cd(II) ions and by Langmuir isotherm equation for Ni(II) and Co(II) ions. Desorption experiments by elution of the adsorbent with a mixture of nitric acid and methanol show that the modified alumina nanoparticles could be reused without significant losses of its initial properties even after three adsorption-desorption cycles. Thus, modified nano-alumina with DNPH is favorable and useful for the removal of these metal ions, and the high adsorption capacity makes it a good promising candidate material for Pb(II),Cr(III) and Cd(II) removal. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Tuning Magnetic Anisotropy Through Ligand Substitution in Five-Coordinate Co(II) Complexes.

    PubMed

    Schweinfurth, David; Krzystek, J; Atanasov, Mihail; Klein, Johannes; Hohloch, Stephan; Telser, Joshua; Demeshko, Serhiy; Meyer, Franc; Neese, Frank; Sarkar, Biprajit

    2017-05-01

    Understanding the origin of magnetic anisotropy and having the ability to tune it are essential needs of the rapidly developing field of molecular magnetism. Such attempts at determining the origin of magnetic anisotropy and its tuning are still relatively infrequent. One candidate for such attempts are mononuclear Co(II) complexes, some of which have recently been shown to possess slow relaxation of their magnetization. In this contribution we present four different five-coordinated Co(II) complexes, 1-4, that contain two different "click" derived tetradentate tripodal ligands and either Cl - or NCS - as an additional, axial ligand. The geometric structures of all four complexes are very similar. Despite this, major differences are observed in their electronic structures and hence in their magnetic properties as well. A combination of temperature dependent susceptibility measurements and high-frequency and -field EPR (HFEPR) spectroscopy was used to accurately determine the magnetic properties of these complexes, expressed through the spin Hamiltonian parameters: g-values and zero-field splitting (ZFS) parameters D and E. A combination of optical d-d absorption spectra together with ligand field theory was used to determine the B and Dq values of the complexes. Additionally, state of the art quantum chemical calculations were applied to obtain bonding parameters and to determine the origin of magnetic anisotropy in 1-4. This combined approach showed that the D values in these complexes are in the range from -9 to +9 cm -1 . Correlations have been drawn between the bonding nature of the ligands and the magnitude and sign of D. These results will thus have consequences for generating novel Co(II) complexes with tunable magnetic anisotropy and hence contribute to the field of molecular magnetism.

  5. In situ tetrazole templated chair-like decanuclear azido-cobalt(II) SMM containing both tetra- and octa-hedral Co(II) ions.

    PubMed

    Zhang, Yuan-Zhu; Gao, Song; Sato, Osamu

    2015-01-14

    An azido-bridged chair-like decanuclear cluster: [Co(II)10(bzp)8(Metz)2(N3)18]·4MeOH·3H2O (1, bzp = 2-benzoylpyridine and HMetz = 5-methyl-1H-tetrazole) was prepared with in situ tetrazolate anions as templates in a sealed system. 1 containing both octahedral and tetrahedral Co(II) ions exhibited slow relaxation of magnetization with an effective barrier of 26 K under an applied dc field of 1 kOe.

  6. Structural Investigation of Dinuclear Clusters Incorporated in Polyoxotungstates

    NASA Astrophysics Data System (ADS)

    Nagy, C.; Rusu, D.; Somesan, C.; Filip, S.; Rusu, M.; David, L.

    2011-10-01

    The new K10[M2Bi2W20O70]ṡH2O (M = Mn(II), Co(II), Ni(II), Cu(II)) sandwich-type complex have been investigated by spectroscopic (FT-IR, UV-VIS, ESR) methods. The main goal was to obtain information about the metal ions coordination to the trilacunary regions of Keggin polioxoanion ligands, the local symmetry around the metal ions and the presence of possible metal-metal couplings.

  7. Catalytic reduction of pralidoxime in pharmaceuticals by macrocyclic Ni(II) compounds derived from orthophthalaldehyde.

    PubMed

    Reddy, P Muralidhar; Prasad, Adapa V S S; Rohini, Rondla; Ravinder, Vadde

    2008-08-01

    Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, (1)H NMR, (13)C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.

  8. Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples.

    PubMed

    Gouda, Ayman A; Al Ghannam, Sheikha M

    2016-07-01

    A new, sensitive and simple solid phase extraction (SPE), separation and preconcentration method of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) at trace levels using multiwalled carbon nanotubes (MWCNTs) impregnated with 2-(2-benzothiazolylazo)orcinol (BTAO) from food and water samples were investigated. The effect of analytical parameters was examined. The metals retained on the nanotubes at pH 7.0 were eluted by 5.0mL HNO3 (2.0molL(-1)). The influence of matrix ions on the proposed method was evaluated. The preconcentration factor was calculated and found to be 100. The detection limits (LODs) for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) were found at 0.70, 1.2, 0.80, 2.6 and 2.2μgL(-1), respectively. The relative standard deviation (RSD) and the recoveries of the standard addition method were lower than 5.0% and 95-102%, respectively. The new procedure was successfully applied to the determination of trace amounts of the studied metal ions in various food and water samples and validated using certified reference materials SRM 1570A (spinach leaves) with satisfactory and compatible results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Molecular tectonics: hierarchical organization of heterobimetallic coordination networks into heterotrimetallic core-shell crystals.

    PubMed

    Zhang, Fan; Adolf, Cyril R R; Zigon, Nicolas; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2017-03-23

    Combinations of a neutral Pt(ii) organometallic tecton bearing two triphenylphosphine and two 3-ethynylpyridyl coordinating moieties in trans positions with MX 2 complexes (M = Co(ii) and X = Cl - or Br - and M = Zn(ii) and X = Cl - ) lead to the formation of isostructural 1D heterobimetallic coordination compounds. By 3D epitaxial growth processes, using coordination bonding, heterotrimetallic core-shell crystals are generated by the growth of crystalline layers on seed crystals.

  10. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa

    PubMed Central

    Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua

    2017-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1’ α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents. PMID:28732057

  11. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa.

    PubMed

    Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua; Chen, Hao

    2017-07-01

    Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1' α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents.

  12. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  13. Coordination-Directed Stacking and Aggregation-Induced Emission Enhancement of the Zn(II) Schiff Base Complex.

    PubMed

    Wang, Dan; Li, Shu-Mu; Zheng, Jian-Quan; Kong, Duan-Yang; Zheng, Xiang-Jun; Fang, De-Cai; Jin, Lin-Pei

    2017-01-17

    2-(Trityliminomethyl)-quinolin-8-ol (HL) and its Zn(II) complex were synthesized and characterized by single-crystal X-ray diffraction. HL is an unsymmetrical molecule and coordinated with Zn(II) ion to form ZnL 2 in the antiparallel-mode arrangement via Zn-O (hydroxyl group) and Zn-N (quinoline ring) of HL. A high degree of ZnL 2 molecules ordering stacking is formed by the coordination bonds and intermolecular π-π interactions, in which head-to-tail arrangement (J-mode stacking) for L - is found. HL is nonfluorescent and ZnL 2 is weakly fluorescent in THF. The fluorescence emission of ZnL 2 enhances in THF/H 2 O as H 2 O% (volume %) is above 60% and aggregates particles with several hundred nanometers are formed, which is confirmed by DLS data and TEM images. The J-aggregates stacking for L - in ZnL 2 results in aggregation-induced emission enhancement (AIEE) for ZnL 2 in THF/H 2 O. Theoretical computations based on B3LYP/6-31G(d, p) and TD-B3LYP/6-31G(d, p) methods were carried out. ESIPT is the supposed mechanism for fluorescent silence of HL, and fluorescence emission of ZnL 2 is attributed to the restriction of ESIPT process. The oscillator strength of ZnL 2 increases from 0.017 for monomer to 0.032 for trimer. It indicates that a high degree of ZnL 2 molecules ordering stacking in THF/H 2 O is of benefit to fluorescence enhancement. HL is an ESIPT-coupled AIEE chemosensor for Zn(II) with high selectivity and sensitivity in aqueous medium. HL can efficiently detect intracellular Zn(II) ions because of ESIPT-coupled AIEE property of ZnL 2 in mixed solvent.

  14. Synthesis, structure, and characterization of two Zn(II) complex containing two-dimensional bilayer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Meili; Ren, Yixia; Chen, Xiaoli

    2014-10-01

    Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.

  15. Selective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media

    NASA Astrophysics Data System (ADS)

    Ghaedi, Mehrorang

    2007-02-01

    Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.

  16. Modelling the magnetic behaviour of square-pyramidal Co(II)5 aggregates: tuning SMM behaviour through variations in the ligand shell.

    PubMed

    Klöwer, Frederik; Lan, Yanhua; Nehrkorn, Joscha; Waldmann, Oliver; Anson, Christopher E; Powell, Annie K

    2009-07-27

    Three new mu4-bridged Co(II)5 clusters with similar core motifs have been synthesised with the use of N-tert-butyldiethanolamine (tbdeaH2) and pivalic acid (piv): [Co(II)5(mu4-N3)(tbdea)2(mu-piv)4(piv)(CH3CN)2].CH3CN (1), [Co(II)5(mu4-Cl)(Cl)(tbdea)2(mu-piv)4(pivH)2] (2) and [Co(II)5(mu4-N3)(Cl)(tbdea)2(mu-piv)4(pivH)2] (3). Magnetic measurements were performed for all three compounds. It was found that while the chloride-bridged cluster 2 does not show an out-of-phase signal, which excludes single-molecule magnet (SMM) behaviour, the azide-bridged compounds 1 and 3 show out-of-phase signals as well as frequency dependence of the ac susceptibility, as expected for SMMs. We confirmed that 1 is a SMM with zero-field quantum tunnelling of the magnetisation at 1.8 K. Compound 3 is likely a SMM with a blocking temperature well below 1.8 K. We established a physical model to fit the chiT versus T and M versus B curves of the three compounds to reproduce the observed SMM trend. The analysis showed that small changes in the ligand shell modify not only the magnitude of exchange constants, but also affect the J and g matrices in a non-trivial way.

  17. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  18. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  19. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  20. Synthesis, characterization and anticancer activity of new Schiff bases bearing neocryptolepine

    NASA Astrophysics Data System (ADS)

    Emam, Sanaa M.; El Sayed, Ibrahim E. T.; Ayad, Mohamed I.; Hathout, Heba M. R.

    2017-10-01

    The synthesis of new Shiff base ligands denoted L1, HL2 and HL3 starting from the appropriate aminoneocryptolepine and salicaldehyde were described. The chelation abilities of L1, HL2 and HL3 ligands towards Co(II), Ni(II), Cu(II) and Pd(II) salts have been studied. A series of square planar complexes containing Cu(II) salts, PdCl2 and octahedral chelates containing NiCl2, CoCl2 salts (2 and 7) have been isolated. Also, the pentacoordinated Co(II) complex [Co(L1)2Cl]·Cl.0.5H2O·1.25EtOH (1) has been prepared. The mode of bonding and geometrical structure of complexes has been confirmed by elemental analyses and different spectroscopic methods together with thermal, magnetic moment studies, molecular modeling and X-ray diffraction. Furthermore, the synthesized ligands, in comparison to some of their metal complexes were screened for their anticancer activity against colorectal adenocarcinoma (HT-29) cells. The results showed that Co(II) complexes (1 and 7) exhibited higher anticancer activity when compared to the corresponding ligands.

  1. Amorphous silica as a versatile supermolecular ligand for Ni(II) amine complexes: toward interfacial molecular recognition.

    PubMed

    Boujday, Souhir; Lambert, Jean-François; Che, Michel

    2004-07-19

    Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.

  2. Effect of biofilm coatings at metal-oxide/water interfaces II: Competitive sorption between Pb(II) and Zn(II) at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-07

    Competitive sorption of Pb(II) and Zn(II) on Shewanella oneidensis MR-1 biofilm-coated single-crystal α-Al 2O 3 (1 –1 0 2) and α-Fe 2O 3 (0 0 0 1) surfaces was investigated using long-period X-ray standing wave-florescence yield (LP-XSW-FY) spectroscopy. In situ partitioning of aqueous Pb(II) and Zn(II) between the biofilms and underlying metal-oxide substrates was probed following exposure of these complex interfaces to equi-molar Pb and Zn solutions (0.01 M NaNO 3 as background electrolyte, pH = 6.0, and 3-h equilibration time). At higher Pb and Zn concentrations (≥10 –5 M), more than 99% of these ions partitioned into the biofilmsmore » at S. oneidensis/α-Al 2O 3 (1 –1 0 2)/water interfaces, which is consistent with the partitioning behavior of both Pb(II) or Zn(II) in single-metal-ion experiments. Furthermore, no apparent competitive effects were found in this system at these relatively high metal-ion concentrations. However, at lower equi-molar concentrations (≤10 –6 M), Pb(II) and Zn(II) partitioning in the same system changed significantly compared to the single-metal-ion systems. The presence of Zn(II) decreased Pb(II) partitioning onto α-Al 2O 3 (1 –1 0 2) substantially (~52% to ~13% at 10 –7 M, and ~23% to ~5% at 10–6 M), whereas the presence of Pb(II) caused more Zn(II) to partition onto α-Al 2O 3 (1 –1 0 2) surfaces (~15% to ~28% at 10 –7 M, and ~1% to ~7% at 10 –6 M) .The higher observed partitioning of Zn(II) (~28%) at the α-Al 2O 3 (1 –1 0 2) surfaces compared to Pb(II) (~13%) in the mixed-metal-ion systems at the lowest concentration (10 –7 M) suggests that Zn(II) is slightly favored over Pb(II) for sorption sites on α-Al 2O 3 (1 –1 0 2) surfaces under our experimental conditions.« less

  3. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    NASA Astrophysics Data System (ADS)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  4. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  5. Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples.

    PubMed

    Liu, Mingyang; Yang, Lijun; Zhang, Lei

    2016-12-01

    In this study, a functionalized magnetic hollow porous oval-shape NiFe 2 O 4 (MHPO-NiFe 2 O 4 ) was designed by a facile synthesis procedure, and employed as magnetic solid phase extraction (MSPE) material to extract several heavy metal ions. As-prepared MHPO-NiFe 2 O 4 exhibited superior adsorption capacities of 20.17, 16.64, 16.82, 9.69 and 16.58mgg -1 , for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), and was then used to detect these heavy metals elements in real samples by combining with inductively coupled plasma optical emission spectroscopy (ICP-OES). The possible mechanism of the enrichment of heavy metals ions on MHPO-NiFe 2 O 4 was proposed, which involved the dominant adsorption and desorption. The detection limits were as low as 0.015, 0.13, 0.062, 0.035 and 0.46μgL -1 for Cu(II), Cd(II), Cr(III), Co(II) and Zn(II), respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 3.87%. Moreover, the method was successfully utilized for the analysis of five heavy metals in real samples (cabbage, lettuce, apple, seawater), with satisfactory recoveries in the range of 92-108%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Simultaneous Stripping Detection of Pb(II), Cd(II) and Zn(II) Using a Bimetallic Hg-Bi/Single-Walled Carbon Nanotubes Composite Electrode

    PubMed Central

    Ouyang, Ruizhuo; Zhu, Zhenqian; Tatum, Clarissa E.; Chambers, James Q.; Xue, Zi-Ling

    2011-01-01

    A new, sensitive platform for the simultaneous electrochemical assay of Zn(II), Cd(II) and Pb(II) in aqueous solution has been developed. The platform is based on a new bimetallic Hg-Bi/single-walled carbon nanotubes (SWNTs) composite modified glassy carbon electrode (GCE), demonstrating remarkably improved performance for the anodic stripping assay of Zn(II), Cd(II) and Pb(II). The synergistic effect of Hg and Bi as well as the enlarged, activated surface and good electrical conductivity of SWNTs on GCE contribute to the enhanced activity of the proposed electrode. The analytical curves for Zn(II), Cd(II) an Pb(II) cover two linear ranges varying from 0.5 to 11 μg L-1 and 10 to 130 μg L-1 with correlation coefficients higher than 0.992. The limits of detection for Zn(II), Cd(II) are lower than 2 μg L-1 (S/N = 3). For Pb(II), moreover, there is another lower, linear range from 5 to 1100 ng L-1 with a coefficient of 0.987 and a detection limit of 0.12 ng L-1. By using the standard addition method, Zn(II), Cd(II) and Pb(II) ions in river samples were successfully determined. These results suggest that the proposed method can be applied as a simple, efficient alternative for the simultaneous monitoring of heavy metals in water samples. In addition, this method demonstrates the powerful application of carbon nanotubes in electrochemical analysis of heavy metals. PMID:21660117

  7. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases

    NASA Astrophysics Data System (ADS)

    Abdel Aziz, Ayman A.; Badr, Ibrahim H. A.; El-Sayed, Ibrahim S. A.

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)2·2H2O and anhydrous AlCl3 with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L1) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L2). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, 1H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi.

  8. Temperature-controlled two new Co(II) compounds with distinct topological networks: Syntheses, crystal structures and catalytic properties

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hua; Long, Xu; Liu, Jing-Li; Zhang, Shuan; Zhang, Guang-Hui

    2018-04-01

    Two new Co(II) coordination compounds, namely [Co2(bptc)(bpp)2]n (1) and [Co(bptc)0.5(bpp)]n (2) (H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, bpp = 1,3-di(4-pyridyl)propane), have been hydrothermally synthesized from the same reactants via tuning the reaction temperature. Single crystal X-ray diffraction analyses revealed that both 1 and 2 feature 2D sheet motifs. Topological analyses revealed that compounds 1 and 2 show distinct topological networks. Under the weak Van der Waals interactions, the 2D sheet motifs of compounds 1 and 2 are further packed into 2D→3D interdigitated supramolecular frameworks. Moreover, the two Co(II) compounds show high catalytic activities for degradation of methyl orange (MO) in a Fenten-like process.

  9. Scanning tunneling microscopy, orbital-mediated tunneling spectroscopy, and ultraviolet photoelectron spectroscopy of metal(II) tetraphenylporphyrins deposited from vapor.

    PubMed

    Scudiero, L; Barlow, D E; Mazur, U; Hipps, K W

    2001-05-02

    Thin films of vapor-deposited Ni(II) and Co(II) complexes of tetraphenylporphyrin (NiTPP and CoTPP) were studied supported on gold and embedded in Al-Al(2)O(3)-MTPP-Pb tunnel diodes, where M = Ni or Co. Thin films deposited onto polycrystalline gold were analyzed by ultraviolet photoelectron spectroscopy (UPS) using He I radiation. Scanning tunneling microscopy (STM) and orbital-mediated tunneling spectroscopy (STM-OMTS) were performed on submonolayer films of CoTPP and NiTPP supported on Au(111). Inelastic electron tunneling spectroscopy (IETS) and OMTS were measured in conventional tunnel diode structures. The highest occupied pi molecular orbital of the porphyrin ring was seen in both STM-OMTS and UPS at about 6.4 eV below the vacuum level. The lowest unoccupied pi molecular orbital of the porphyrin ring was observed by STM-OMTS and by IETS-OMTS to be located near 3.4 eV below the vacuum level. The OMTS spectra of CoTPP had a band near 5.2 eV (below the vacuum level) that was attributed to transient oxidation of the central Co(II) ion. That is, it is due to electron OMT via the half-filled d(z)(2) orbital present in Co(II) of CoTPP. The NiTPP OMTS spectra show no such band, consistent with the known difficulty of oxidation of the Ni(II) ion. The STM-based OMTS allowed these two porphyrin complexes to be easily distinguished. The present work is the first report of the observation of STM-OMTS, tunnel junction OMTS, and UPS of the same compounds. Scanning tunneling microscope-based orbital-mediated tunneling provides more information than UPS or tunnel junction-based OMTS and does so with molecular-scale resolution.

  10. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    PubMed

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  11. Chemical and biological evaluation of moxifloxacin-benzimidazole mixed ligands complexes: Anti-cancer and anti-oxidant activities

    NASA Astrophysics Data System (ADS)

    Refaat, Heba M.; Noor El-Din, Doaa A.

    2018-07-01

    Novel complexes of the formula [M(MOX)(Ben)Cl(H2O)m].nH2O and [Ag(MOX)(Ben)] 3.5H2O; M = Co, Ni, and Zn, n = 1.5, 2 and 1, m = 0 or 2, MOX; Moxifloxacin and Ben; benzimidazole, were synthesized. Their effect on different cancer cells together with bacterial and fungal activity was determined. Formulation of the complexes was based on elemental analyses, different spectrophotometric methods (FT-IR, UV/Vis, NMR), and magnetic studies. FT-IR data indicated that the bonding of the Co(II), Ni(II) and Zn(II) ions with MOX to be achieved through the quinolone and carboxylate oxygen atoms. On the other hand Ag(I) bonded to the MOX through hydro-pyrrolopyridine nitrogen atom. TGA and DTA studies for the metal complexes showed them to possess considerable stability. Thermodynamic parameters ΔE*, ΔS* and ΔH* were evaluated and the appearance of fractional orders suggested that the reactions proceed via complicated mechanisms. The novel mixed ligands complexes were evaluated for their biological activity against the bacterial species (S. aureus) and (E. coli) and the fungal species Aspergillus flavus and Candida albicans. The complexes were found to possess better antibacterial and antifungal activities compared to the Moxifloxacin ligand. The compounds' effects were also screened for their anti-oxidant activity by DPPH method and were tested for their cytotoxicity activity against Breast cancer cell lines (MCF-7), Colon carcinoma cells (HCT) and Hepatocellular carcinoma cells (HepG2) by viability assay method.

  12. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes.

    PubMed

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S; Abdulnabi, Zuhair A; Bolandnazar, Zeinab

    2014-01-03

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR, (13)C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical (13)C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Lingguang; Gu Lina; Hu Gang

    2009-03-15

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less

  14. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases.

    PubMed

    Hanif, Muhammad; Chohan, Zahid H

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-03

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis, interaction with DNA and bovine serum albumin of the transition metal complexes of demethylcantharate and 2-aminobenzothiazole

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Li, Shi-Kun; Zhao, Yu-Ling; Wang, Peng-Peng; Chen, Miao-Miao

    2012-12-01

    Four new transition metal complexes (Habtz)2[M(DCA)2]·6H2O (M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4); DCA = demethylcantharate, 7-oxabicyclo [2.2.1]heptane-2,3-dicarboxylate, C8H8O5; Habtz = 2-aminobenzothiazole acid, C7H7N2S) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and thermogravimetric analysis. The coordination number of complex was six. The X-ray diffraction analysis indicated that complex 3 crystallized in the triclinic crystal system with P1¯ space group. The DNA-binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra, viscosity measurements. Title complexes could bind to DNA via partial intercalative mode. The Kb of the complexes were 5.33 × 104 (1), 7.04 × 104 (2), 9.91 × 104 (3) and 5.03 × 104 L mol-1 (4). The results of agarose gel electrophoresis showed that Cu(II) complex could cleave pBR322 plasmid DNA via radical-based mechanism. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) through a static quenching with the binding constants Ka of 1.11 × 104 (1), 1.24 × 106 (2), 8.42 × 105 (3) and 1.75 × 104 L mol-1 (4). The complexes had intense antiproliferative activities against human hepatoma cell lines (SMMC7721) and human gastric cancer cells (MGC80-3) lines in vitro. Cu(II) complex had the strongest activity against human gastric cancer cells.

  17. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  18. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  19. Evaluation of the mtDNA-COII Region Based Species Specific Assay for Identifying Members of the Anopheles culicifacies Species Complex

    PubMed Central

    Manonmani, Arulsamy Mary; Mathivanan, Ashok Kumar; Sadanandane, Candassamy; Jambulingam, Purushothaman

    2013-01-01

    Background: Anopheles culicifacies, a major malarial vector has been recognized as a complex of five sibling species, A, B, C, D and E. These sibling species exhibit varied vectorial capacity, host specificity and susceptibility to malarial parasites/ insecticides. In this study, a PCR assay developed earlier for distinguishing the five individual species was validated on samples of An. culicifacies collected from various parts of India. Methods: The samples were initially screened using the rDNA-ITS2 region based primers which categorised the samples into either A/D group or B/C/E group. A proportion of samples belonging to each group were subjected to the mtDNA-COII PCR assay for identifying individual species. Results: Among the 615 samples analysed by rDNA-ITS2 PCR assay, 303 were found to belong to A/D group and 299 to B/C/E group while 13 turned negative. Among 163 samples belonging to A/D group, only one sample displayed the profile characteristic of species A and among the 176 samples falling in the B/C/E group, 51 were identified as species B, 14 as species C and 41 as species E respectively by the mtDNA-COII PCR assay. Samples exhibiting products diagnostic of B/C/E, when subjected to PCR-RFLP assay identified 15 samples as species E. Conclusion: Validation of the mtDNA-COII PCR assay on large number of samples showed that this technique cannot be used universally to distinguish the 5 members of this species complex, as it has been designed based on minor/single base differences observed in the COII region. PMID:24409441

  20. Neuroprotective Effects and Mechanisms of Curcumin-Cu(II) and -Zn(II) Complexes Systems and Their Pharmacological Implications.

    PubMed

    Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang

    2017-12-28

    Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.

  1. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells*

    PubMed Central

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W.; Lurie-Luke, Elena; Huggins, Thomas G.; Robinson, Nigel J.

    2015-01-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  2. A saponification-triggered gelation of ester-based Zn(II) complex through conformational transformations.

    PubMed

    Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar

    2014-09-11

    Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.

  3. Synthesis, spectroscopic, photoluminescence properties and biological evaluation of novel Zn(II) and Al(III) complexes of NOON tetradentate Schiff bases.

    PubMed

    Abdel Aziz, Ayman A; Badr, Ibrahim H A; El-Sayed, Ibrahim S A

    2012-11-01

    Novel mononuclear Zn(II) and Al(III) complexes were synthesized from the reactions of Zn(OAc)(2).2H(2)O and anhydrous AlCl(3) with neutral N2O2 donor tetradentate Schiff bases; N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H(2)L(1)) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H(2)L(2)). The new complexes were fully characterized by using micro analyses (CHN), FT-IR, (1)H NMR, UV-Vis spectra and thermal analysis. The analytical data have been showed that, the stoichiometry of the complexes is 1:1. Spectroscopic data suggested tetrahedral and square pyramidal geometries for Zn(II) and Al(III) complexes, respectively. The synthesized Zn(II), and Al(III) complexes exhibited intense fluorescence emission in the visible region upon UV-excitation in methylene chloride solution at ambient temperature. This high fluorescence emission was assigned to the strong coordination of the ligands to the small and the highly charged Zn(II) and Al(III) ions. Such strong coordination seems to extend the π-conjugation of the complexes. Thermal analysis measurements indicated that the complexes have good thermal stability. As a potential application the biological activity (e.g., antimicrobial action) of the prepared ligands and complexes was assessed by in-vitro testing of their effect on the growth of various strains of bacteria and fungi. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  5. High-sensitivity determination of Zn(II) and Cu(II) in vitro by fluorescence polarization

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Feliccia, Vincent; Fierke, Carol A.

    1998-04-01

    Recent work has suggested that free Cu(II) may play a role in syndromes such as Crohn's and Wilson's diseases, as well as being a pollutant toxic at low levels to shellfish and sheep. Similarly, Zn(II) has been implicated in some neural damage in the brain resulting from epilepsy and ischemia. Several high sensitivity methods exist for determining these ions in solution, including GFAAS, ICP-MS, ICP-ES, and electrochemical techniques. However, these techniques are generally slow and costly, require pretreatment of the sample, require complex instruments and skilled personnel, and are incapable of imaging at the cellular and subcellular level. To address these shortcomings we developed fluorescence polarization (anisotropy) biosensing methods for these ions which are very sensitivity, highly selective, require simple instrumentation and little pretreatment, and are inexpensive. Thus free Cu(II) or Zn(II) can be determined at picomolar levels by changes in fluorescence polarization, lifetime, or wavelength ratio using these methods; these techniques may be adapted to microscopy.

  6. Boletus edulis loaded with γ-Fe2O3 nanoparticles as a magnetic sorbent for preconcentration of Co(II) and Sn(II) prior to their determination by ICP-OES.

    PubMed

    Ozdemir, Sadin; Serkan Yalcin, M; Kilinc, Ersin; Soylak, Mustafa

    2017-12-20

    The authors show that the fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable sorbent for magnetic solid phase extraction of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized. Following elution with 1 M HCl, the ions were quantified by ICP-OES. The limits of detection are 21 pg·mL -1 for Co(II), and 19 pg·mL -1 for Sn(II). The preconcentration factors are 100 for both ions. The sorption capacities of the sorbent are 35.8 mg·g -1 for Co(II) and 29.6 mg·g -1 for Sn(II). The method was applied to the analysis of certificated reference materials and gave ≥95% recoveries with low RSDs. It was also successfully applied to the quantification of Co(II) and Sn(II) in spiked environmental and food samples. Graphical abstract The fungus Boletus edulis loaded with γ-Fe 2 O 3 nanoparticles is a viable biosorbent for magnetic solid phase extraction (MSPE) of trace levels of Co(II) and Sn(II). The surface structure of immobilized magnetized B. edulis was characterized by FT-IR, SEM and EDX. Experimental parameters were optimized.

  7. Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Reash, G. M. Abu; El-Tabai, M. N.

    2018-05-01

    Synthesis of complexes derived from hydrazones derived from both P-vanillin (H2L1) and its isomer O-vanillin (H2L2) of 2-hydrazinyl-2-oxo-N-phenylacetamide that coordinated with high magnetic metal ions of both Mn(II) and Co(II) were performed and characterized by different physicochemical methods, elemental analysis, (1H NMR, IR, and UV-visible spectra), also thermal analysis (TG and DTG) techniques and magnetic measurements. The molecular structures of the ligands and their Mn(II) and Co(II) complexes were optimized theoretically and the quantum chemical parameters were calculated. IR spectra suggest that the H2L1 behaved in a mononegative bidentate manner with both but H2L2 coordinated as mononegative tridentate with both Mn(II) and Co(II). The electronic spectra of the complexes as well as their magnetic moments suggested octahedral geometries for all the isolated complexes. The calculated values of binding energies indicated the stability of complexes is higher than that of ligand. The kinetic and thermodynamic parameters for the different decomposition steps in complexes were calculated using Coats-Redfern and Horowitz-Metzger equations. Moreover, the prepared ligands and their Mn(II) and Co(II) complexes were individually tested against a panel of gram positive Bacillus Subtilis and negative Escherichia coli microscopic organisms. Additionally cytotoxicity assay of two human tumor cell lines namely; hepatocellular carcinoma (liver) HePG-2, and mammary gland (breast) MCF-7 were tested.

  8. Magnetic Properties of Mononuclear Co(II) Complexes with Carborane Ligands.

    PubMed

    Alcoba, Diego R; Oña, Ofelia B; Massaccesi, Gustavo E; Torre, Alicia; Lain, Luis; Melo, Juan I; Peralta, Juan E; Oliva-Enrich, Josep M

    2018-06-12

    We analyze the magnetic properties of three mononuclear Co(II) coordination complexes using quantum chemical complete active space self-consistent field and N-electron valence perturbation theory approaches. The complexes are characterized by a distorted tetrahedral geometry in which the central ion is doubly chelated by the icosahedral ligands derived from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 (complex I), from 1,2-(HS) 2 -1,2-C 2 B 10 H 10 and 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex II), and from 9,12-(HS) 2 -1,2-C 2 B 10 H 10 (complex III), which are two positional isomers of dithiolated 1,2-dicarba- closo-dodecaborane (complex I). Complex I was realized experimentally recently (Tu, D.; Shao, D.; Yan, H.; Lu, C. Chem. Commun. 2016, 52, 14326) and served to validate the computational protocol employed in this work, while the remaining two proposed complexes can be considered positional isomers of I. Our calculations show that these complexes present different axial and rhombic zero-field splitting anisotropy parameters and different values of the most significant components of the g tensor. The predicted axial anisotropy D = -147.2 cm -1 for complex II is twice that observed experimentally for complex I, D = -72.8 cm -1 , suggesting that this complex may be of interest for practical applications. We also analyze the temperature dependence of the magnetic susceptibility and molar magnetization for these complexes when subject to an external magnetic field. Overall, our results suggest that o-carborane-incorporated Co(II) complexes are worthwhile candidates for experimental exploration as single-ion molecular magnets.

  9. Zn(II) stimulation of Fe(II)-activated repression in the iron-dependent repressor from Mycobacterium tuberculosis.

    PubMed

    Stapleton, Brian; Walker, Lawrence R; Logan, Timothy M

    2013-03-19

    Thermodynamic measurements of Fe(II) binding and activation of repressor function in the iron-dependent repressor from Mycobacterium tuberculosis (IdeR) are reported. IdeR, a member of the diphtheria toxin repressor family of proteins, regulates iron homeostasis and contributes to the virulence response in M. tuberculosis. Although iron is the physiological ligand, this is the first detailed analysis of iron binding and activation in this protein. The results showed that IdeR binds 2 equiv of Fe(II) with dissociation constants that differ by a factor of 25. The high- and low-affinity iron binding sites were assigned to physical binding sites I and II, respectively, using metal binding site mutants. IdeR was also found to contain a high-affinity Zn(II) binding site that was assigned to physical metal binding site II through the use of binding site mutants and metal competition assays. Fe(II) binding was modestly weaker in the presence of Zn(II), but the coupled metal binding-DNA binding affinity was significantly stronger, requiring 30-fold less Fe(II) to activate DNA binding compared to Fe(II) alone. Together, these results suggest that IdeR is a mixed-metal repressor, where Zn(II) acts as a structural metal and Fe(II) acts to trigger the physiologically relevant promoter binding. This new model for IdeR activation provides a better understanding of IdeR and the biology of iron homeostasis in M. tuberculosis.

  10. Multiple Metal Binding Domains Enhance the Zn(II) Selectivity of the Divalent Metal Ion Transporter AztA†

    PubMed Central

    Liu, Tong; Reyes-Caballero, Hermes; Li, Chenxi; Scott, Robert A.; Giedroc, David P.

    2013-01-01

    Transition metal-transporting P1B-type CPx ATPases play crucial roles in mediating metal homeostasis and resistance in all cells. The degree to which N-terminal metal binding domains (MBDs) confer metal specificity to the transporter is unclear. We show that the two MBDs of the Zn/Cd/Pb effluxing pump Anabaena AztA are functionally nonequivalent, but only with respect to zinc resistance. Inactivation of the a-MBD largely abrogates resistance to high intracellular Zn(II) levels, whereas inactivation of the b-MBD is not as deleterious. In contrast, inactivation of either the a- or b-MBD has little measurable impact on Cd(II) and Pb(II) resistance. The membrane proximal b-MBD binds Zn(II) with a higher affinity than the distal N-terminal a-MBD. Facile Zn(II)-specific intermolecular transfer from the a-MBD to the higher-affinity b-MBD is readily observed by 1H–15N HSQC spectroscopy. Unlike Zn(II), Cd(II) and Pb(II) form saturated 1:1 S4 or S3(O/N) complexes with AztAaHbH, where a single metal ion bridges the two MBDs. We propose that the tandem MBDs enhance Zn(II)-specific transport, while stabilizing a non-native inter-MBD Cd/Pb cross-linked structure that is a poor substrate and/or regulator for the transporter. PMID:17824670

  11. Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties

    NASA Astrophysics Data System (ADS)

    Yıldırım, Nurdan; Bilgiçli, Ahmet T.; Alici, Esma Hande; Arabacı, Gulnur; Yarasir, M. Nilüfer

    2017-09-01

    The synthesis and characterization of peripherally tetra 4-(methylthio)phenoxy substituted metal-free(2), Zn(II) (3) and Co(II) (4) phthalocyanine derivatives were reported. These newly synthesized phthalocyanine derivatives showed the enhanced solubility in organic solvents and they were characterized by a combination of elemental analysis, FTIR, 1H NMR, 13C NMR, UV-vis and MALDI-TOF/MS spectral data. Their aggregation properties were investigated in THF by UV-vis and fluorescence. These metal-free and metallophthalocyanine compounds were also evaluated for their total antioxidant abilities by using three different antioxidant methods such as 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ferrous ion chelating and reducing power activity. All tested compounds showed radical scavenging activity. The highest radical scavenging activity was found from cobalt phthalocyanine (4) compound respectively. IC50 values of the compounds and standards (BHT and Trolox) were also determined. The results showed that the compound 4 had the highest antioxidant activity among all tested compounds including standards. The tested phthalocyanine compounds had ferrous ion chelating activity. In addition, they showed very high reducing power. All tested compounds had higher reducing power than the standards such as ascorbic acid and BHT. The present study shows that the synthesized tetra phthalocyanine [M: 2H(2), Zn(II)(3), Co(II)(4)] with four peripheral 4-(methylthio) phenoxy compounds have the effective antioxidant properties that can be used as antioxidant agents.

  12. Role of the Zn1 and Zn2 sites in metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to probe the role of the Zn(II) sites in metallo-β-lactamase L1, mononuclear metal ion containing and heterobimetallic analogs of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogs (ZnCo and ZnFe) analogs of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogs were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is five-coordinate in the resting state, proceeds through a four-coordinate species during the reaction, and is five-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate. PMID:18831550

  13. Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.

    PubMed

    Hu, Zhenxin; Periyannan, Gopalraj; Bennett, Brian; Crowder, Michael W

    2008-10-29

    In an effort to probe the role of the Zn(II) sites in metallo-beta-lactamase L1, mononuclear metal ion containing and heterobimetallic analogues of the enzyme were generated and characterized using kinetic and spectroscopic studies. Mononuclear Zn(II)-containing L1, which binds Zn(II) in the consensus Zn1 site, was shown to be slightly active; however, this enzyme did not stabilize a nitrocefin-derived reaction intermediate that had been previously detected. Mononuclear Co(II)- and Fe(III)-containing L1 were essentially inactive, and NMR and EPR studies suggest that these metal ions bind to the consensus Zn2 site in L1. Heterobimetallic analogues (ZnCo and ZnFe) analogues of L1 were generated, and stopped-flow kinetic studies revealed that these enzymes rapidly hydrolyze nitrocefin and that there are large amounts of the reaction intermediate formed during the reaction. The heterobimetallic analogues were reacted with nitrocefin, and the reactions were rapidly freeze quenched. EPR studies on these samples demonstrate that Co(II) is 5-coordinate in the resting state, proceeds through a 4-coordinate species during the reaction, and is 5-coordinate in the enzyme-product complex. These studies demonstrate that the metal ion in the Zn1 site is essential for catalysis in L1 and that the metal ion in the Zn2 site is crucial for stabilization of the nitrocefin-derived reaction intermediate.

  14. Synthesis, characterization, crystal structure, DNA- and HSA-binding studies of a dinuclear Schiff base Zn(II) complex derived from 2-hydroxynaphtaldehyde and 2-picolylamine

    NASA Astrophysics Data System (ADS)

    Kazemi, Zahra; Rudbari, Hadi Amiri; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Sharam; Mohammadpoor-Baltork, Iraj

    2015-09-01

    A tridentate Schiff base ligand NNO donor (HL: 1-((E)-((pyridin-2-yl)methylimino)methyl)naphthalen-2-ol was synthesized from condensation of 2-hydroxynaphtaldehyde and 2-picolylamine. Zinc complex, Zn2L2(NO3)2, was prepared from reaction of Zn(NO3)2 and HL at ambient temperature. The ligand and complex were characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN). Furthermore, the structure of dinuclear Zn(II) complex was determined by single crystal X-ray analysis. The complex, Zn2L2(NO3)2, is centrosymmetric dimer in which deprotonated phenolates bridge the two Zn(II) atoms and link the two halves of the dimer. In the structure, Zinc(II) ions have a highly distorted six-coordinate structure bonded to two oxygen atoms from a bidentate nitrate group, the pyridine nitrogen, an amine nitrogen and phenolate oxygens. The interaction of dinuclear Zn(II) complex with fish sperm DNA (FS-DNA) and HSA was investigated under physiological conditions using fluorescence quenching, UV-Vis spectroscopy, molecular dynamics simulation and molecular docking methods. The estimated binding constants for the DNA-complex and HSA-complex were (3.60 ± 0.18) × 104 M-1 and (1.35 ± 0.24) × 104 M-1, respectively. The distance between dinuclear Zn(II) complex and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Molecular docking studies revealed the binding of dinuclear Zn(II) complex to the major groove of FS-DNA and IIA site of protein by formation of hydrogen bond, π-cation and hydrophobic interactions.

  15. Iron oxide impregnated Morus alba L. fruit peel for biosorption of Co(II): biosorption properties and mechanism.

    PubMed

    Koduru, Janardhan Reddy; Chang, Yoon-Young; Yang, Jae-Kyu; Kim, Im-Soon

    2013-01-01

    Biosorption is an ecofriendly wastewater treatment technique with high efficiency and low operating cost involving simple process for the removal of heavy metal ions from aqueous solution. In the present investigation, Morus alba L. fruit peel powder (MAFP) and iron oxide impregnated Morus alba L. fruit peel powder (IO-MAFP) were prepared and used for treating Co(II) contaminated aqueous solutions. Further the materials were characterized by using FTIR and SEM-EDX analysis. From FT-IR analysis it was found that hydroxyl, methoxy, and carbonyl groups are responsible for Co(II) biosorption. The kinetic data obtained for both biosorbents was well fitted with pseudo-second-order kinetic model. The equilibrium data was in tune with the Langmuir and Freundlich isotherm models. The thermodynamic studies were also carried and it was observed that sorption process was endothermic at 298-328 K. These studies demonstrated that both biosorbents were promising, efficient, economic, and biodegradable sorbents.

  16. Iron Oxide Impregnated Morus alba L. Fruit Peel for Biosorption of Co(II): Biosorption Properties and Mechanism

    PubMed Central

    Koduru, Janardhan Reddy; Chang, Yoon-Young; Yang, Jae-Kyu; Kim, Im-Soon

    2013-01-01

    Biosorption is an ecofriendly wastewater treatment technique with high efficiency and low operating cost involving simple process for the removal of heavy metal ions from aqueous solution. In the present investigation, Morus alba L. fruit peel powder (MAFP) and iron oxide impregnated Morus alba L. fruit peel powder (IO-MAFP) were prepared and used for treating Co(II) contaminated aqueous solutions. Further the materials were characterized by using FTIR and SEM-EDX analysis. From FT-IR analysis it was found that hydroxyl, methoxy, and carbonyl groups are responsible for Co(II) biosorption. The kinetic data obtained for both biosorbents was well fitted with pseudo-second-order kinetic model. The equilibrium data was in tune with the Langmuir and Freundlich isotherm models. The thermodynamic studies were also carried and it was observed that sorption process was endothermic at 298–328 K. These studies demonstrated that both biosorbents were promising, efficient, economic, and biodegradable sorbents. PMID:24324384

  17. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization.

    PubMed

    Rhinehart, Jennifer L; Brown, Lauren A; Long, Brian K

    2013-11-06

    Sterically demanding Ni(II) α-diimine precatalysts were synthesized utilizing 2,6-bis(diphenylmethyl)-4-methyl aniline. When activated with methylaluminoxane, the catalyst NiBr2(ArN═C(Me)-C(Me)═NAr) (Ar = 2,6 bis(diphenylmethyl)-4-methylbenzene) was highly active, produced well-defined polyethylene at temperatures up to 100 °C (Mw/Mn = 1.09-1.46), and demonstrated remarkable thermal stability at temperatures appropriate for industrially used gas-phase polymerizations (80-100 °C).

  18. Removal of Co(II) from waste water using dry cow dung powder : a green ambrosia to soil

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Khilnani, Roshan

    2015-04-01

    Co(II) is one of the hazardous products found in the waste streams. The anthropogenic activities are major sources of Co(II) in our environment. Some of the well-established processes such as chemical precipitation, membrane process, liquid extraction and ion exchange have been applied as a tool for the removal of this metal ion [1]. All the above methods are not considered to be greener due to some of their shortcomings such as incomplete metal ion removal, high requirement of energy and reagents, generation of toxic sludge or other waste materials which in turn require further treatments for their cautious disposal. The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Co(II) from aqueous medium. DCP, is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic-aromatic species such as 'Humic acid' (HA), Fulvic acid, Ulmic acid [2,3]. Batch biosorption experiments were conducted employing 60Co(II) as a tracer and effect of various process parameters such as pH (1-8), temperature (283-363K), amount of biosorbent (5-40 g/L), time of equilibration (0-30 min), agitation speed (0-4000 rpm), concentration of initial metal ions (0.5-20 mg/mL) and interfering effect of different organic as well as inorganic salts were studied. The Kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model [4] with high correlation coefficient R2 value of 0.999 and adsorption capacity of 2.31 mg/g. The thermodynamic parameters for biosorption were also evaluated which indicated spontaneous and exothermic process with high affinity of DCP for Co(II). Many naturally available materials are used for biosorption of hazardous metal pollutants, where most of them are physically or chemically modified. In this research

  19. Catalysts of Cu(II) and Co(II) ions adsorbed in chitosan used in transesterification of soy bean and babassu oils - a new route for biodiesel syntheses.

    PubMed

    da Silva, Rondinelly Brandão; Lima Neto, Alcides Fernandes; Soares Dos Santos, Lucas Samuel; de Oliveira Lima, José Renato; Chaves, Mariana Helena; Dos Santos, José Ribeiro; de Lima, Geraldo Magela; de Moura, Edmilson Miranda; de Moura, Carla Verônica Rodarte

    2008-10-01

    Catalysts of Cu(II) and Co(II) adsorbed in chitosan was used in transesterification of soy bean and babassu oils. The catalysts were characterized by infrared, atomic absorption and TG, and biodiesels was characterized by infrared, NMR, CG, TG, physic chemistry analysis. The maximum adsorption values found for copper and cobalt cations were 1.584 and 1.260mgg(-1), respectively, in 180min. However, conversion of oils in biodiesel was better when used Co(II) adsorbed in chitosan.

  20. The Synthesis and Characterization of a Group of Transition Metal Octabutoxynaphthalocyanines and the Absorption and Emission Properties of the Co, Rh, Ir, Ni, Pd and Pt Members of This Group

    PubMed Central

    Kim, Junhwan; Soldatova, Alexandra V.; Rodgers, Michael A. J.; Kenney, Malcolm E.

    2013-01-01

    The synthesis and photophysical properties of new metallo-octabutoxynaphthalocyanines with Rh(III), Ir(III), and Pt(II) are reported. Various metals were inserted into the metal-free octabutoxynaphthalocyanine and the resultant metal complexes were fully characterized by NMR, UV-vis spectroscopy, and mass spectrometry. The absorption and emission properties of these new complexes were also examined and compared to those of Co(II), Ni(II), and Pd(II) octabutoxynaphthalocyanines. The results provide useful information to understand the effect of these transition metals on the properties of this macrocyclic ring. PMID:23745014

  1. Physicochemical properties of sorbents based on silica gel modified by 1-phenylazo-2-naphtholic complexes of transition metals

    NASA Astrophysics Data System (ADS)

    Makarycheva, A. I.; Slizhov, Yu. G.

    2017-09-01

    Gas chromatography sorbents based on Silokhrom C80 and modified by 1-phenylazo-2-naphtholic complexes of 3 d metals (Co(II), Ni(II), Cu(II)) are obtained. Their structural, chromatographic, and sorption characteristics are investigated. It is found that modifying them with 1-phenylazo-2-naphthols of transition metals has a considerable effect on the chromatographic polarity and selectivity of sorption materials. The prospects for the practical application of the obtained sorbents are demonstrated by experiments on the gas chromatographic separation of mixtures of different classes of organic compounds.

  2. Fe (III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of schiff bases based-on glycine and phenylalanine: Synthesis, magnetic/thermal properties and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Sevgi, Fatih; Bagkesici, Ugur; Kursunlu, Ahmed Nuri; Guler, Ersin

    2018-02-01

    Zinc (II), copper (II), nickel (II), cobalt (II) and iron (III) complexes of Schiff bases (LG, LP) derived from 2-hydroxynaphthaldehyde with glycine and phenylalanine were reported and characterized by 1H NMR, 13C NMR, elemental analyses, melting point, FT-IR, magnetic susceptibility and thermal analyses (TGA). TGA data show that iron and cobalt include to the coordinated water and metal:ligand ratio is 1:2 while the complex stoichiometry for Ni (II), Cu (II) and Zn (II) complexes is 1:1. As expected, Ni (II) and Zn (II) complexes are diamagnetic; Cu (II), Co (II) and Fe (III) complexes are paramagnetic character due to a strong ligand of LG and LP. The LG, LP and their metal complexes were screened for their antimicrobial activities against five Gram-positive (Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Bacillus cereus, Streptococcus mutans and Enterococcus faecalis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa) and one fungi (Candida albicans) by using broth microdilution techniques. The activity data show that ligands and their metal complexes exhibited moderate to good activity against Gram-positive bacteria and fungi.

  3. Synthesis of Optode Thin Layer using Sol Gel Hybrid of Trietoxysiloxane monomer and 3-(Trimethoxysilyl) Propilamine with Ionophore 4-(2-Pyridilazo)-1,3-Benzenadiol (PAR)

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Rahmawati, F.; Kamal, S.; Slamet, S.; Yunianto, M.; Rahmawati, P.; Aini, F. N.

    2018-03-01

    Optode (Optical sensors) is one of the modern chemical sensors in the field of analytical chemistry that has utilized of inorganic polymers. The optode based on MLCT (Metal to Ligand Charge Transfer) (or MMLL’CT, Mixing Metal-Ligand to Ligand Charge Transfer) or LMCT (Ligand to Metal Charge Transfer) phenomenons have beed generated from oktyltrietxysilane, aminopropyltrimethoxysilane and 4-(2-pyrydilazo) resorcinol (abbreviated as OTES-APTS-PAR) for Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) ions target. The syntheses of thin layer optode were performed by sol gel method followed by evaporation in glass substrat. The formation of 4-(2-pyrydilazo) resorcinol complexes with ions target have gained strong absorption spectras in visible region because of charge transfer phenomenons. The optical sensor of OTES-APTS-PAR was analysed thermal properties using Differential Thermal Analysis (DTA). DTA thermogram showed a glass transition peaks at a temperature of 315.5 °C. Fourier transform Infrared (FTIR) spectras have showed that the optode materials consisted NH aryl groups indicated IR absorption at 1577.7 cm-1 and also –CH aromatic at 1469.0 cm-1. Synthesized optode materials have strong broad visible absorption with the maximum wavelengths (λmax) = 405 nm and 508.5 nm, respectively. This material have excellent optical responds to several metal ions such as Cu(II), Cr(III), Ni(II), Fe(III), Cd(II), and Zn(II) that was showed from huge Δλmax and the increase of Ktotal

  4. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less

  5. Two luminescent Zn(II) metal-organic frameworks for exceptionally selective detection of picric acid explosives.

    PubMed

    Shi, Zhi-Qiang; Guo, Zi-Jian; Zheng, He-Gen

    2015-05-14

    Two luminescent Zn(II) metal-organic frameworks were prepared from a π-conjugated thiophene-containing carboxylic acid ligand. These two MOFs show strong luminescene and their luminescence could be quenched by a series of nitroaromatic explosives. Importantly, they exhibit very highly sensitive and selective detection of picric acid compared to other nitroaromatic explosives.

  6. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    DOE PAGES

    Wang, Yingge; Gelabert, Alexandre; Michel, F. Marc; ...

    2016-05-30

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al 2O 3 and α-Fe 2O 3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-hmore » exposure time, Pb(II) binds preferentially to the alpha-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) surfaces at low Pb concentration ([Pb] = 10 –7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10 –6 to 10 –4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10 –7 to 10 –4 M). In comparison, the α-Al 2O 3 (0001) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al 2O 3 (0001) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al 2O 3 (1-102) and α-Fe 2O 3 (0001) at [Me(II)] of 10 –7 M; at 10 –5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10 –5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb L-III-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest

  7. Effect of biofilm coatings at metal-oxide/water interfaces I: Pb(II) and Zn(II) partitioning and speciation at Shewanella oneidensis/metal-oxide/water interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yingge; Gélabert, Alexandre; Michel, F. Marc; Choi, Yongseong; Gescher, Johannes; Ona-Nguema, Georges; Eng, Peter J.; Bargar, John R.; Farges, Francois; Spormann, Alfred M.; Brown, Gordon E.

    2016-09-01

    Microbial biofilms are often present as coatings on metal-oxide surfaces in natural and industrial environments and may induce significant changes in the partitioning behavior and speciation of aqueous metal ions, which in turn can impact their transport and fate. In this study, long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy was used to measure under in situ conditions the partitioning of aqueous Pb(II) and Zn(II) between multilayer Shewanella oneidensis MR-1 biofilms and highly polished, oriented single-crystal surfaces of α-Al2O3 and α-Fe2O3 as a function of metal-ion concentration and time at pH 6.0. We show that after 3-h exposure time, Pb(II) binds preferentially to the α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) surfaces at low Pb concentration ([Pb] = 10-7 M) and then increasingly partitions into the biofilm coatings at higher concentrations (10-6 to 10-4 M). In contrast, Zn(II) partitions preferentially into the biofilm coating for both surfaces at all Zn concentrations studied (10-7 to 10-4 M). In comparison, the α-Al2O3 (0 0 0 1) surface has a low affinity for both Pb(II) and Zn(II), and the biofilm coatings are the dominant sink for both ions. These findings suggest that in the presence of S. oneidensis biofilm coatings, α-Al2O3 (0 0 0 1) is the least reactive surface for Pb(II) and Zn(II) compared to α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1). They also show that Zn(II) has a lower affinity than Pb(II) for reactive sites on α-Al2O3 (1-102) and α-Fe2O3 (0 0 0 1) at [Me(II)] of 10-7 M; at 10-5 M, the bulk of the metal ions partition into the biofilm coatings. At longer exposure times (20-24 h), both Pb(II) and Zn(II) increasingly partition to the metal-oxide surfaces at [Me(II)] = 10-5 M and pH 6.0, indicating possible reaction/diffusion-controlled sorption processes. Pb LIII-edge and Zn K-edge grazing-incidence extended X-ray absorption fine structure (GI-EXAFS) measurements suggest that both Pb(II) and Zn(II) ions may be

  8. Adsorption of Zn(II) and Cd(II) ions in batch system by using the Eichhornia crassipes.

    PubMed

    Módenes, A N; Espinoza-Quiñones, F R; Borba, C E; Trigueros, D E G; Lavarda, F L; Abugderah, M M; Kroumov, A D

    2011-01-01

    In this work, the displacement effects on the sorption capacities of zinc and cadmium ions of the Eichornia crassipes-type biosorbent in batch binary system has been studied. Preliminary single metal sorption experiments were carried out. An improvement on the Zn(II) and Cd(II) ions removal was achieved by working at 30 °C temperature and with non-uniform biosorbent grain sizes. A 60 min equilibrium time was achieved for both Zn(II) and Cd(II) ions. Furthermore, it was found that the overall kinetic data were best described by the pseudo second-order kinetic model. Classical multi-component adsorption isotherms have been tested as well as a modified extended Langmuir isotherm model, showing good agreement with the equilibrium binary data. Around 0.65 mequiv./g maximum metal uptake associated with the E. crassipes biosorbent was attained and the E. crassipes biosorbent has shown higher adsorption affinity for the zinc ions than for the cadmium ones in the binary system.

  9. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury.

    PubMed

    Dakova, Ivanka; Karadjova, Irina; Georgieva, Ventsislava; Georgiev, George

    2009-04-30

    Metal ion-imprinted polymer particles have been prepared by copolymerization of methacrylic acid as monomer, trimethylolpropane trimethacrylate as cross-linking agent and 2,2'-azobisisobutyronitrile as initiator, in the presence of Hg(II)-1-(2-thiazolylazo)-2-naphthol complex. The separation and preconcentration characteristics of the Hg-ion-imprinted microbeads for inorganic mercury have been investigated by batch procedure. The optimal pH value for the quantitative sorption is 7. The adsorbed inorganic mercury is easily eluted by 2 mL 4M HNO(3). The adsorption capacity of the newly synthesized Hg ion-imprinted microbeads is 32.0 micromol g(-1) for dry copolymer. The selectivity of the copolymer toward inorganic mercury (Hg(II)) ion is confirmed through the comparison of the competitive adsorptions of Cd(II), Co(II), Cu(II), Ni(II), Pb(II), Zn(II)) and high values of the selectivity and distribution coefficients have been calculated. Experiments performed for selective determination of inorganic mercury in mineral and sea waters showed that the interfering matrix does not influence the extraction efficiency of Hg ion-imprinted microbeads. The detection limit for inorganic mercury is 0.006 microg L(-1) (3 sigma), determined by cold vapor atomic adsorption spectrometry. The relative standard deviation varied in the range 5-9 % at 0.02-1 microg L(-1) Hg levels. The new Hg-ion-imprinted microbeads have been tested and applied for the speciation of Hg in river and mineral waters: inorganic mercury has been determined selectively in nondigested sample, while total mercury e.g. sum of inorganic and methylmercury, has been determined in digested sample.

  10. A theoretical and experimental study on isonitrosoacetophenone nicotinoyl hydrazone: Crystal structure, spectroscopic properties, NBO, NPA and NLMO analyses and the investigation of interaction with some transition metals

    NASA Astrophysics Data System (ADS)

    Zülfikaroğlu, Ayşin; Batı, Hümeyra; Dege, Necmi

    2018-06-01

    A new hydrazone oxime compound, isonitrosoacetophenone nicotinoyl hydrazone (inapNH2), was synthesized and characterized by spectroscopic techniques (FT-IR, 1H-NMR and 13C-NMR) and single-crystal X-ray diffraction. The molecular geometry, NMR chemical shift values and vibrational frequencies of the inapNH2 in the ground state have been calculated by using the Density Functional Method (DFT/B3LYP) with 6-31G(d) and 6-311++G(d,p) basis sets. The computational results obtained were in agreement with the experimental results. The thermodynamic parameters of the inapNH2 were calculated at different temperatures, and the changes in thermodynamic properties were studied with increasing temperature. The molecular stability originating from charge transfer and hyperconjugative interactions in the title compound was analyzed using Natural Bond Orbital (NBO) and Natural Localized Molecular Orbital (NLMO) analyzes. The Natural Population Analysis (NPA) charges obtained from NBO analysis were used in order to find out the possible coordination modes of the inapNH2 compound with metal ions. To predict the chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map of inapNH2 was investigated and some of its global reactivity descriptors (chemical potential μ, electronegativity χ, hardness η and electrophilicity index ω) were calculated using DFT. Furthermore, the strength of metal-ligand interaction between chlorides of Co(II), Ni(II), Cu(II), Zn(II) and inapNH2, in both aqueous and ethanol phases, was elucidated by using the values of Charge Transfer (ΔN) and Energy Lowering (ΔE). The results indicated that the best interaction in both solvents is between CuCl2 and inapNH2.

  11. Complexes of ditopic carbo- and thio-carbohydrazone ligands--mononuclear, 1D chain, dinuclear and tetranuclear examples.

    PubMed

    Tandon, Santokh S; Dul, Marie-Claire; Lee, John L; Dawe, Louise N; Anwar, Muhammad U; Thompson, Laurence K

    2011-04-14

    Ligands based on carbo- and thio-carbohydrazone cores, modified with pyridine, carboxylate and oxime ends, have been examined. They display a tautomeric versatility based on the flexible nature of the hydrazone linkages, leading to varied coordination motifs. Examples of mononuclear (Co(II), Ni(II)), dinuclear (Co(III)), 1D chain (Cu(II)) and square [2 × 2] grid (Ni(II)) complexes are obtained. Ferromagnetic (Cu(II)) and antiferromagnetic (Ni(II)) exchange is observed, with spin coupling in the Ni(II)(4) square grids propagated through the μ-O and μ-S bridges. Weak antiferromagnetic exchange (J = -6.0 cm(-1)) is observed for the μ-O bridged grid, despite the large Ni-O-Ni angles (137-141°), while for the μ-S bridged grids much stronger exchange is observed (J = -148 cm(-1), -198 cm(-1)). This is much larger than expected based on the Ni-S-Ni bridge angles (151-169°), and is associated with the soft (less polarizing than oxygen) nature of the sulfur bridge, which would allow for much more efficient transmission of spin exchange than observed in the μ-O bridged case. Structures and variable temperature magnetic data are included, and spin exchange is analyzed using normal Heisenberg exchange models. No examples involving oxime (NO) bridging are reported, which reflects the positioning of the N,O and N,S donor combinations in each ligand, and the preferred coordination through these donor atoms. © The Royal Society of Chemistry 2011

  12. Incorporation of Pyrazine and Bipyridine Linkers with High-Spin Fe(II) and Co(II) in a Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Airi; Greenwood, Arin R.; Filatov, Alexander S.

    2017-02-27

    A series of isoreticular metal organic frameworks (MOFs) of the formula M(BDC)(L) (M = Fe(II) or Co(II), BDC = 1,4-benzenedicarboxylate, L = pyrazine (pyz) or 4,4'-bipyridine (bipy)) has been synthesized and characterized by N-2 gas uptake Measurements, single crystal and powder X-ray diffraction, magnetometry, X-ray absorption spectroscopy, and Mossbauer spectroscopy. These studies indicate the formation of a permanently porous solid with high-spin Fe(II) and Co(II) centers that are weakly coupled, consistent with first-principles density functional theory calculations. This family of materials represents unusual examples of paramagnetic metal centers coordinated by linkers capable of mediating magnetic or electronic coupling in amore » porous framework. While only weak interactions are observed, the rigid 3D framework of the MOF dramatically impacts the properties of these materials when compared with close structural analogues.« less

  13. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan

    2016-10-15

    Two new Co(II) coordination polymers(CPs), namely [Co{sub 2}(bpe){sub 2}(Hbppc)]{sub n} (1) and [Co{sub 3}(μ{sub 3}-OH)(bppc)(bpm)(H{sub 2}O)]·3H{sub 2}O (2) (H{sub 5}bppc=biphenyl-2,4,6,3′,5′-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co{sub 3}(μ{sub 3}-OH)]{sup 5+} units with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II)more » ions, whereas 2 is a antiferromagnetic system. - Graphical abstract: Two new Co(II) coordination polymers with bi- and trinuclear units have been obtained. 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology and antiferromagnetic interactions between the adjacent Co(II) ions, while 2 is a binodal (5,7)-connected 3D network with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology and a ferromagnetic system. - Highlights: • Two Co(II) coordination polymers with different multimetallic clusters as building units. • A (4,6)-connected fsc net and a (5,7)-connected 3D network. • A antiferromagnetic coupling for 1 and A ferromagnetic coupling for 2.« less

  14. Synthesis and characterization of homoleptic group 10 dithiocarbamate complexes and heteroleptic Ni(II) complexes, and the use of the homoleptic Ni(II) for the preparation of nickel sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bobinihi, Felicia F.; Onwudiwe, Damian C.; Hosten, Eric C.

    2018-07-01

    A series of new dithiocarbamate complexes of Ni(II), Pd(II) and Pt(II) of the form [NiL2], [PdL2] and [PtL2] (where L = N-ethyl-N-ethanoldithiocarbamate) have been synthesized and characterized by elemental analysis, FTIR, and 1H and 13C NMR spectroscopy. The nickel complex was utilized to prepare heteroleptic complexes bearing triphenylphosphino (PPh3) and isothiocyanate (sbnd NCS) or isocyanide (sbnd NC) molecules. Furthermore, the structures of the palladium complex and the heteroleptic nickel with PPh3 and NC molecules have been confirmed by X-ray diffraction. The Pd(II) complex indicated a trans arrangement with a distorted square planar geometry around the Pd atom, while the Ni(II) complex revealed a highly distorted geometry with another molecule of triphenylphosphine moiety, held by hydrogen bonding, within the crystal structure. The thermal stability studies of all the complexes conducted by using thermogravimetric analyser (TGA) showed they all have good stability above 200 °C. The nanoparticles synthesized using the homoleptic nickel complex yielded platelets of pure Heazlewoodite phase of Ni3S2 with average size of 7.60 nm. The optical properties of the nanoparticles studied by using UV-vis spectroscopy showed band gap energy of 4.0 eV (355 nm), which was a blue shift of 1.90 eV compared to the bulk and a consequence of quantum confinement effect.

  15. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    PubMed

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  16. Spectral, thermal, kinetic, molecular modeling and eukaryotic DNA degradation studies for a new series of albendazole (HABZ) complexes

    NASA Astrophysics Data System (ADS)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-01-01

    This work represents the elaborated investigation for the ligational behavior of the albendazole ligand through its coordination with, Cu(II), Mn(II), Ni(II), Co(II) and Cr(III) ions. Elemental analysis, molar conductance, magnetic moment, spectral studies (IR, UV-Vis and ESR) and thermogravimetric analysis (TG and DTG) have been used to characterize the isolated complexes. A deliberate comparison for the IR spectra reveals that the ligand coordinated with all mentioned metal ions by the same manner as a neutral bidentate through carbonyl of ester moiety and NH groups. The proposed chelation form for such complexes is expected through out the preparation conditions in a relatively acidic medium. The powder XRD study reflects the amorphous nature for the investigated complexes except Mn(II). The conductivity measurements reflect the non-electrolytic feature for all complexes. In comparing with the constants for the magnetic measurements as well as the electronic spectral data, the octahedral structure was proposed strongly for Cr(III) and Ni(II), the tetrahedral for Co(II) and Mn(II) complexes but the square-pyramidal for the Cu(II) one. The thermogravimetric analysis confirms the presence or absence of water molecules by any type of attachments. Also, the kinetic parameters are estimated from DTG and TG curves. ESR spectrum data for Cu(II) solid complex confirms the square-pyramidal state is the most fitted one for the coordinated structure. The albendazole ligand and its complexes are biologically investigated against two bacteria as well as their effective effect on degradation of calf thymus DNA.

  17. Quaternized Zn(II) phthalocyanines for photodynamic strategy against resistant periodontal bacteria.

    PubMed

    Kussovski, Vesselin; Mantareva, Vanya; Durmuş, Mahmut; Angelov, Ivan

    2018-04-25

    Photodynamic inactivation (PDI) has been featured as an effective strategy in the treatment of acute drug-resistant infections. The efficiency of PDI was evaluated against three periodontal pathogenic bacteria that were tested as drug-resistant strains. In vitro studies were performed with four water-soluble cationic Zn(II) phthalocyanines (ZnPc1-4) and irradiation of a specific light source (light-emitting diode, 665 nm) with three doses (15, 36 and 60 J/cm2). The well detectable fluorescence of ZnPcs allowed the cellular imaging, which suggested relatively high uptakes of ZnPcs into bacterial species. Complete photoinactivation was achieved with all studied ZnPc1-4 for Enterococcus faecalis (E. faecalis) at a light dose of 15 J/cm2. The photodynamic response was high for Prevotella intermedia (P. intermedia) after the application of 6 μM of ZnPc1 and a light dose of 36 J/cm2 and for 6 μM of ZnPc2 at 60 J/cm2. P. intermedia was inactivated with ZnPc3 (4 log) and ZnPc4 (2 log) with irradiation at an optimal dose of 60 J/cm2. Similar photoinactivation results (2 log) were achieved for Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) treated with 6 μM ZnPc1 and ZnPc2 at a light dose of 60 J/cm2. The study suggested that PDI with quaternized Zn(II) phthalocyanines and specific light irradiation appears to be a very useful antimicrobial strategy for effective inactivation of drug-resistant periodontal pathogens.

  18. Polyamidoamine dendrimers as sweeping agent and stationary phase for rapid and sensitive open-tubular capillary electrophoretic determination of heavy metal ions.

    PubMed

    Ge, Ying; Guo, Yujun; Qin, Weidong

    2014-04-01

    Polyamidoamine (PAMAM) dendrimer generation 2.5 was synthesized and evaluated as sweeping agent for in-column enrichment and as stationary phase for capillary electrochromatographic separation of heavy metal ions, viz., Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), in a running buffer containing 4-(2-pyridylazo)resorcinol (PAR) as a chromogenic reagent. During experiment, a plug of aqueous PAMAM generation 2.5 solution was first introduced to the capillary, followed by electrokinetic injection of the heavy metal ions under a positive voltage. In this step, PAMAM acted as a sweeping agent, stacking the metal ions on the analyte/PAMAM boundary by forming metal ion-PAMAM complexes. The second preconcentration process occurred when PAR, a stronger ligand, moving toward the injection end under the electric field, reached and re-swept the metal ion-PAMAM zone, forming metal ion-PAR complexes. During separation, the neutral PAMAM moved toward the detector with the electroosmotic flow, dynamically coating the capillary wall, forming stationary phases that affected the separation of the metal ions. Due to the function of PAMAM, the detection sensitivity and resolution of the heavy metal ions improved significantly. Under the optimum conditions, the detection limits were 0.299, 0.184, 0.774, 0.182 and 0.047 μg/L for Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), respectively. The method was successfully applied to the determination of heavy metals in snow, tap and rain water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Positional isomeric tunable two Co(II) 6-connected 3-D frameworks with pentanuclear to binuclear units: structures, ion-exchange and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu

    2014-11-07

    Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions.

  20. Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies.

    PubMed

    Ajibade, Peter A; Zulu, Nonkululeko H

    2011-01-01

    Co(II), Cu(II), Zn(II) and Fe(III) complexes of diisopropylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FTIR and electronic spectroscopy. The compounds are non-electrolytes in solution and spectroscopic data of the complexes are consistent with 4-coordinate geometry for the metal(II) complexes and six coordinate octahedral for Fe(III) complex. The complexes were screened for their antibacterial activities against six bacteria: Escherichia coli, Pseudomonas auriginosa, Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus and Bacillus pumilus. The complexes showed varied antibacterial activities and their minimum inhibitory concentrations (MICs) were determined.

  1. A Paper-Based Analytical Device Based on Combination of Thin Film Microextraction and Reflection Scanometry for Sensitive Colorimetric Determination of Ni(II) in Aqueous Matrix.

    PubMed

    Allafchian, Ali Reza; Farajmand, Bahman; Koupaei, Amin Javaheri

    2018-04-01

    In this research, the thin film microextraction method was applied for the extraction of Ni(II) ion from aqueous matrixes. Chemically modified cellulosic filter paper with phosphorus was used as a thin film extractor. After extraction, the thin film was treated with a solution of dimethylglyoxime. The colored film was captured by flatbed scanner and the absorbance of the images was extracted by some suitable software. Under the optimum conditions and at the pH 7.0, with the sample volume of 100 mL, the stirring rate of 800 rpm, and the extraction time of 50 min, the calibration curve was obtained in the range of 0.05-5 mg/L Ni(II) (R 2  = 0.989). Limit and relative standard deviation were achieved to be 18 µg/L and less than 6.7%, respectively. Relative recoveries were obtained in the range of 87%-105%. Finally, the proposed method was found to be simple and cost-effective, with adequate analytical performance for the rapid detection of Ni(II) in river and wastewater samples.

  2. Novel Zn(II) complexes of 1,3-diphenyl-4-(arylazo)pyrazol-5-one derivatives: Synthesis, spectroscopic properties, DFT calculations and first order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, Samir A.; Mohamed, Adel A.

    2018-03-01

    Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.

  3. Comparative absorption spectroscopy involving 4f-4f transitions to explore the kinetics of simultaneous coordination of uracil with Nd(III) and Zn(II) and its associated thermodynamics

    NASA Astrophysics Data System (ADS)

    Victory Devi, Ch.; Rajmuhon Singh, N.

    2011-10-01

    The interaction of uracil with Nd(III) has been explored in presence and absence of Zn(II) using the comparative absorption spectroscopy involving the 4f-4f transitions in different solvents. The complexation of uracil with Nd(III) is indicated by the change in intensity of 4f-4f bands expressing in terms of significant change in oscillator strength and Judd-Ofelt parameters. Intensification of this bands became more prominent in presence of Zn(II) suggesting the stimulative effect of Zn(II) towards the complexation of Nd(III) with uracil. Other spectral parameters namely Slator-Condon ( Fk's), nephelauxetic effect ( β), bonding ( b1/2) and percent covalency ( δ) parameters are computed to correlate their simultaneous binding of metal ions with uracil. The sensitivities of the observed 4f-4f transitions towards the minor coordination changes around Nd(III) has been used to monitor the simultaneous coordination of uracil with Nd(III) and Zn(II). The variation of intensities (oscillator strengths and Judd-Ofelt parameters) of 4f-4f bands during the complexation has helped in following the heterobimetallic complexation of uracil. Rate of complexation with respect to hypersensitive transition was evaluated. Energy of activation and thermodynamic parameters for the complexation reaction were also determined.

  4. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ying; Liu, Yu-Xue; Lu, Hao-Hao; Yang, Rui-Qin; Yang, Sheng-Mao

    2018-05-01

    A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

  5. Application of silica fume as a new SP-extractor for trace determination of Zn(II) and Cd(II) in pharmaceutical and environmental samples by square-wave anodic stripping voltammetry

    NASA Astrophysics Data System (ADS)

    Ahmed, Salwa A.; Gaber, Ahmed A. Abdel; Rahim, Asmaa M. Abdel

    2017-05-01

    In this work, silica fume (SF) is used as a solid-phase extractor for extraction of Zn(II) and Cd(II) from aqueous solutions. Characterization of SF is performed by Fourier transform infrared, X-ray diffraction, transmission and scanning electron microscopy. The optimum experimental conditions for the two metal ions are investigated using batch and column techniques. The maximum adsorption capacity values are found to be 54.13 and 121.28 mg g-1 at the optimum pH 6.0 and 8.0 for Zn(II) and Cd(II), respectively. The equilibrium data are analyzed using the Langmuir, Freundlich, and Temkin isotherms by nonlinear regression analysis. Also, the kinetics analysis revealed that the overall adsorption process is successfully fitted with the pseudo-second-order model. The method is applied for determination of the target metal ions in pharmaceutical and environmental samples using square-wave anodic stripping voltammetry. The limit of detection (LOD) values are 0.102 and 1.43 × 10-3 mg L-1 for Zn(II) and Cd(II), respectively. The percentage recovery values are 98.8-100.5 % which indicate the success of the proposed method for determination of Zn(II) and Cd(II) without interfering effects.

  6. Solution structure of Mycobacterium tuberculosis NmtR in the apo-state: Insights into Ni(II)-mediated allostery

    PubMed Central

    Lee, Chul Won; Chakravorty, Dhruva K.; Chang, Feng-Ming James; Reyes-Caballero, Hermes; Ye, Yuzhen; Merz, Kenneth M.; Giedroc, David P.

    2012-01-01

    Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately ten arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal αNH2-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) “open conformation” that is similar to the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Ni(II) binding to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the Gly2 α-amino group is strongly attenuated in the Ni(II) complex relative to the apo-state and non-cognate Zn(II) complex. Ni(II) binding also induces dynamic disorder in the μs-ms timescale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91′, His93′, His104 and His107, which collectively define a new metal sensing site configuration in ArsR family regulators. PMID:22394357

  7. Anion mediated polytype selectivity among the basic salts of Co(II)

    NASA Astrophysics Data System (ADS)

    Ramesh, T. N.; Rajamathi, Michael; Vishnu Kamath, P.

    2006-08-01

    Basic salts of Co(II) crystallize in the rhombohedral structure. Two different polytypes, 3R 1 and 3R 2, with distinct stacking sequences of the metal hydroxide slabs, are possible within the rhombohedral structure. These polytypes are generated by simple translation of successive layers by (2/3, 1/3, z) or (1/3, 2/3, z). The symmetry of the anion and the mode of coordination influences polytype selection. Cobalt hydroxynitrate crystallizes in the structure of the 3R 2 polytype while the hydroxytartarate, hydroxychloride and α-cobalt hydroxide crystallize in the structure of the 3R 1 polytype. Cobalt hydroxysulfate is turbostratically disordered. The turbostratic disorder is a direct consequence of the mismatch between the crystallographically defined interlayer sites generated within the crystal and the tetrahedral symmetry of the SO 42- ions.

  8. Synthesis, spectroscopic characterization, DFT calculations and biological evaluation of benzothiazole derivative bearing Mn(II) and Ni(II) metal ions

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Ali, Korany A.

    2017-11-01

    N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.

  9. Polymeric Cd(II), trinuclear and mononuclear Ni(II) complexes of 5-methyl-4-phenyl-1,2,4-triazole-3-thione: Synthesis, structural characterization, thermal behaviour, fluorescence properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.

    2017-02-01

    Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.

  10. Spectroscopic and biological activities studies of bivalent transition metal complexes of Schiff bases derived from condensation of 1,4-phenylenediamine and benzopyrone derivatives.

    PubMed

    Sherif, Omaima E; Abdel-Kader, Nora S

    2014-01-03

    Many tools of analysis such as elemental analyses, infrared, ultraviolet-visible, electron spin resonance (ESR) and thermal analysis, as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared Co(II), Ni(II) and Cu(II) complexes with Schiff bases derived from the condensation of 1,4-phenylenediamine with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzo-pyran-4-one (H2L) or 5,7-dihydroxy-6-formyl-2-methylbenzopyran-4-one (H4L). The data showed that all formed complexes are 1:1 or 2:2 (M:L) and non-electrolyte chelates. The Co(II) and Cu(II) complexes of the two Schiff bases were screened for antibacterial activities by the disk diffusion method. The antibacterial activity was screened using Escherichia coli and Staphylococcus capitis but the antifungal activity was examined by using Aspergillus flavus and Candida albicans. The Results showed that the tested complexes have antibacterial, except CuH4L, but not antifungal activities. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Cellulose-lanthanum hydroxide nanocomposite as a selective marker for detection of toxic copper

    PubMed Central

    2014-01-01

    In this current report, a simple, reliable, and rapid method based on modifying the cellulose surface by doping it with different percentages of lanthanum hydroxide (i.e., 1% La(OH)3-cellulose (LC), 5% La(OH)3-cellulose (LC2), and 10% La(OH)3-cellulose (LC3)) was proposed as a selective marker for detection of copper (Cu(II)) in aqueous medium. Surface properties of the newly modified cellulose phases were confirmed by Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopic analysis. The effect of pH on the adsorption of modified cellulose phases for Cu(II) was evaluated, and LC3 was found to be the most selective for Cu(II) at pH 6.0. Other parameters, influencing the maximum uptake of Cu(II) on LC3, were also investigated for a deeper mechanistic understanding of the adsorption phenomena. Results showed that the adsorption capacity for Cu(II) was improved by 211% on the LC3 phase as compared to diethylaminoethyl cellulose phase after only 2 h contact time. Adsorption isotherm data established that the adsorption process nature was monolayer with a homogeneous adsorbent surface. Results displayed that the adsorption of Cu(II) onto the LC3 phase obeyed a pseudo-second-order kinetic model. Selectivity studies toward eight metal ions, i.e., Cd(II), Co(II), Cr(III), Cr(VI), Cu(II), Fe(III), Ni(II), and Zn(II), were further performed at the optimized pH value. Based on the selectivity study, it was found that Cu(II) is highly selective toward the LC3 phase. Moreover, the efficiency of the proposed method was supported by implementing it to real environmental water samples with adequate results. PMID:25258599

  12. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-02-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  13. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    PubMed

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  15. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-05-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  16. Mechanisms for Reduction of Natural Waters Technogenic Pollution by Metals due to Complexions with Humus Substances (Zoning: Western Siberia and the European Territory of Russia)

    NASA Astrophysics Data System (ADS)

    Dinu, M. I.

    2017-11-01

    The article described the complexation of metal ions with humus substances in natural waters (small lakes). Humus substances as the major biochemical components of natural water have a significant impact on the forms and migration of metals and the toxicity of natural objects. This article presents the results of large-scale chemical experiments: the study of the structural features (zonal aspects) of humus substances extracted from soil and water natural climatic zones (more than 300 objects) in Russia (European Russia and West Siberia); the influence of structural features on the physic-chemical parameters of humus acids and, in particular, on their complexing ability. The functional specifics of humus matter extracted from soils is estimated using spectrometric techniques. The conditional stability constants for Fe(III), Cu(II), Pb(II), Cd(II), Zn(II), Ni(II), Co(II), Mn(II), Cr(III), Ca(II), Mg(II), Sr(II), and Al(III) are experimentally determined with the electrochemical, spectroscopic analysis methods. The activities of metals are classified according to their affinity to humus compounds in soils and water. The determined conditional stability constants of the complexes are tested by model experiments, and it is demonstrated that Fe and Al ions have higher conditional stability constants than the ions of alkali earth metals, Pb, Cu, and Zn. Furthermore, the influence of aluminium ions and iron on the complexation of copper and lead as well as the influence of lead and copper on complexation of cobalt and nickel have been identified. The metal forms in a large number of lakes are calculated basing on the experiments’ results. The main chemical mechanisms of the distribution of metals by forms in the water of the lakes in European Russia and West Siberia are described.

  17. Mononuclear late first row transition metal complexes of ONO donor hydrazone ligand: Synthesis, characterization, crystallographic insight, in vivo and in vitro anti-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Kendur, Umashri; Chimmalagi, Geeta H.; Patil, Sunil M.; Gudasi, Kalagouda B.; Frampton, Christopher S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.

    2018-02-01

    Air and moisture stable coordination compounds of late first row transition metal ions, viz., Co(II), Ni(II), Cu(II) and Zn(II) with a newly designed ligand, (E)-2-amino-N'-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)ethylidene)benzohydrazide (H2L) were prepared and extensively characterized using various spectro-analytical techniques. The ligand acts both in mono as well as doubly deprotonated manner. The ligand to metal stoichiometry was found to be 1:2 in case of complexes using chloride salts, whereas 1:1 in case of copper (II) complex using its acetate salt. The molecular structures of H2L, nickel and copper complexes were unambiguously determined by single-crystal X-ray diffraction studies reveal that H2L exists in a zwitterionic form while copper complex has copper centre in a distorted square planar environment. On the other hand, cobalt, nickel and zinc complexes display distorted octahedral coordination around the metal ion. In case of [Ni(HL)2].H2O, intramolecular Csbnd H⋯π stacking interaction were observed between the centroid of five membered chelate ring and phenyl proton C5sbnd H5 and intermolecular Csbnd H⋯π stacking interaction between the centroid of phenyl ring, dehydroacetic acid (DHA) ring and phenyl protons. The [Cu(L)DMF] complex is stabilized by intramolecular hydrogen bonding N1H⋯N2 and by intermolecular hydrogen bonding N1H⋯O4. Intermolecular interactions were investigated by Hirshfeld surfaces. Further, H2L and its metal complexes were screened for their in vivo and in vitro anti-inflammatory activities. The activity of the ligand has enhanced on coordination with transition metals. The tested compounds have shown excellent activity, which is almost equipotent to the standard used in the study.

  18. Novel Imprinted Polymer for the Preconcentration of Cadmium with Determination by Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Yilmaz, Vedat; Yilmaz, Hayriye; Arslan, Zikri; Leszczynski, Jerzy

    2016-01-01

    A novel Cd(II)-imprinted polymer was prepared with chemical immobilization approach by using N-methacryloyl-L-histidine as a vinylated chelating agent for on-line solid phase extraction of Cd(II) for determination by inductively coupled plasma mass spectrometry. Cd(II)-monomer complex was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was leached with 1.0 mol L−1 HNO3 to generate the cavities in the polymer for Cd(II) ions. The experimental conditions, including load pH, solution flow rate, and eluent concentration for effective sorption of Cd(II) were optimized using a minicolumn of the imprinted polymer. A volume of 5.0 mL sample 5 μg L−1 Cd(II) solution at pH 6.5 was loaded onto the column at 2.0 mL min−1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 0.75 mol L−1 HNO3. The relative selectivity coefficients of the imprinted polymer for Cd(II) were 38.5, 3.5, 3.0, 2.5 and 6.0 in the presence of Cu(II), Ni(II), Zn(II), Co(II) and Pb(II), respectively. Computational calculations revealed that the selectivity of the imprinted polymer was mediated by the stability of Cd(II)-N-methacryloyl-L-histidine complex which was far more stable than those of commonly used monomers, such as 4-vinyl pyridine, methacrylic acid and vinylimidazole. The detection limit (3s) and relative standard deviation (%) were found to be 0.004 μg L−1 and 3.2%, respectively. The method was validated by analysis of seawater certified reference material (CASS-4) and successfully applied to the determination of Cd(II) in coastal seawater and estuarine water samples. PMID:28239183

  19. Preparation, characterization and biological activity of novel metal-NNNN donor Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.

    2010-02-01

    Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.

  20. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.

    2016-10-01

    Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.

  1. Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase.

    PubMed

    Bohli, Thouraya; Ouederni, Abdelmottaleb

    2016-08-01

    Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O3) and in liquid phase using nitric acid (HNO3). The activated carbon samples were characterized using N2 adsorption-desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m(2)/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich-Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO3), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.

  2. Synthesis, characterization, crystal structure and DNA-binding studies of transition metal hydrazone complexes

    NASA Astrophysics Data System (ADS)

    Kanchanadevi, S.; Parveen, S.; Mahalingam, V.

    2018-04-01

    Three new complexes containing salicylaldazine (HL) ligand were synthesised by reacting suitable precursor complex [MCl2(PPh3)2] with the ligand (where M = Cu(II) or Ni(II) or Co(II)). The new complexes were characterised by various spectral studies such as IR, UV-Vis,1H NMR,EPR,fluorescence and elemental analyses. The binding modes of the complexes with HS-DNA have been studied by UV-Vis absorption titration. Binding of the complexes with bovine serum albumin (BSA) protein has been investigated using UV-visible, fluorescence and synchronous fluorescence spectroscopic methods. Redox behaviour of the complexes has been investigated by cyclic voltammetry.

  3. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  4. Synthesis, characterization, DFT calculations and biological studies of Mn(II), Fe(II), Co(II) and Cd(II) complexes based on a tetradentate ONNO donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed

    2017-04-01

    This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated

  5. Theoretical study of the magnetic behavior of hexanuclear Cu(II) and Ni(II) polysiloxanolato complexes.

    PubMed

    Ruiz, Eliseo; Cano, Joan; Alvarez, Santiago; Caneschi, Andrea; Gatteschi, Dante

    2003-06-04

    A theoretical density functional study of the exchange coupling in hexanuclear polysiloxanolato-bridged complexes of Cu(II) and Ni(II) is presented. By calculating the energies of three different spin configurations, we can obtain estimates of the first-, second-, and third-neighbor exchange coupling constants. The study has been carried out for the complete structures of the Cu pristine cluster and of the chloroenclathrated Ni complex as well as for the hypotethical pristine Ni compound and for magnetically dinuclear analogues M(2)Zn(4) (M = Cu, Ni).

  6. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent.

    PubMed

    Bao, Shuangyou; Tang, Lihong; Li, Kai; Ning, Ping; Peng, Jinhui; Guo, Huibin; Zhu, Tingting; Liu, Ye

    2016-01-15

    Amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent was used as a novel sorbent to highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste in the presence of Fe(II). These hot-dip galvanizing pickling waste mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The properties of this magnetic adsorbent were examined by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), infrared spectrometer (FT-IR) and BET surface area measurements. Various factors influencing the adsorption of Zn(II) ion such as initial concentration of metal ions, the amount of adsorbent, pH value of the solutions, the concentration of coexisting iron ion were investigated by batch experiments. The results indicated that the adsorption equilibrium data obeyed the Freundlich model with maximum adsorption capacities for Zn(II) to 169.5mg/g. The maximum adsorption occurred at pH 5±0.1 and Fe(II) interferences had no obvious influence. This work provides a potential and unique technique for zinc ion removal from hot-dip galvanizing pickling waste. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles.

    PubMed

    Heidari, Aghdas; Younesi, Habibollah; Mehraban, Zahra; Heikkinen, Harri

    2013-10-01

    Chitosan-MAA nanoparticles (CS-MAA) with an average size of 10-70 nm were prepared by polymerizing chitosan with methacrylic acid in aqueous solution. The physicochemical properties of nanoparticles were investigated using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS) and nuclear magnetic resonance (NMR). The adsorption of Pb(II), Cd(II) and Ni(II) from aqueous solution on CS-MAA was studied in a batch system. The effects of the solution pH, initial metal concentration, contact time, and dosage of the adsorbent on the adsorption process were examined. The experimental data were analyzed using the pseudo-second-order kinetic equations and the Langmuir, Freundlich and Redlish-Peterson isotherms. The maximum adsorption capacity was 11.30, 1.84, and 0.87 mg/g for Pb(II), Cd(II) and Ni(II) ions, respectively, obtained by the Langmuir isotherm. However, the adsorption isotherm was better explained by the Freundlich rather than by the Langmuir model, as the high correlation coefficients (R(2)>0.99) were obtained at a higher confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. On the biosorption, by brown seaweed, Lobophora variegata, of Ni(II) from aqueous solutions: equilibrium and thermodynamic studies.

    PubMed

    Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath

    2010-09-01

    The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.

  9. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions

    NASA Astrophysics Data System (ADS)

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-01

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24×10 -8 M for Fe(III) ion and 1.55×10 -8 M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant KS of the metal-dye complex was calculated to be 3.14×10 6 M -1 for the Fe-dye complex and 2.64×10 5 M -1 for the Co-dye complex.

  10. Investigation of the spectral properties of a squarylium near-infrared dye and its complexation with Fe(III) and Co(II) ions.

    PubMed

    Tarazi, Leila; Narayanan, Nara; Sowell, John; Patonay, Gabor; Strekowski, Lucjan

    2002-01-15

    The spectral features of the squarylium dye NN525 in different solutions and its complexation with several metal ions were investigated. The absorbance maximum of the dye is at 669 nm in tetrahydrofuran. This value matches the output of a commercially available laser diode (650 nm), thus making use of such a source practical for excitation. The emission maximum of the dye in tetrahydrofuran is at 676 nm. The addition of either Fe(III) ion or Co(II) ion resulted in fluorescence quenching of the dye. The detection limit is 6.24 x 10(-8) M for Fe(III) ion and 1.55 x 10(-8) M for Co(II) ion. The molar ratio of the metal to the dye was established to be 1:1 for both metal ions. The stability constant Ks of the metal-dye complex was calculated to be 3.14 x 10(6) M(-1) for the Fe-dye complex and 2.64 x 10(5) M(-1) for the Co-dye complex.

  11. Highly planar diarylamine-fused porphyrins and their remarkably stable radical cations† †Electronic supplementary information (ESI) available. CCDC 1469154–1469160. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc02721k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fukui, Norihito; Cha, Wonhee; Shimizu, Daiki; Oh, Juwon

    2017-01-01

    Oxidative fusion reactions of meso-phenoxazino Ni(ii) porphyrin were found to be temperature dependent, giving rise to either a doubly phenylene-fused product at room temperature or a singly phenoxazine-fused product at 70 °C. The latter was further oxidized to a doubly phenoxazine-fused Ni(ii) porphyrin, which was subsequently converted to the corresponding free base porphyrin and Zn(ii) porphyrin. Compared to previously reported diphenylamine-fused porphyrins that displayed a molecular twist, doubly phenoxazine-fused porphyrins exhibited distinctly different properties owing to their highly planar structures, such as larger fluorescence quantum yields, formation of an offset face-to-face dimer both in solution and the solid state, and the generation of a mixed-valence π-radical cation dimer upon electrochemical oxidation. One-electron oxidation of the phenoxazine-fused Ni(ii) porphyrin with Magic Blue gave the corresponding radical cation, which was certainly stable and could be isolated by separation over a silica gel column but slowly chlorinated at the reactive β-positions in the solid state. This finding led to us to examine β,β′-dichlorinated phenoxazine-fused and diphenylamine-fused Ni(ii) porphyrins, which, upon treatment with Magic Blue, provided remarkably stable radical cations to an unprecedented level. It is actually possible to purify these radical cations by silica gel chromatography, and they can be stored for over 6 months without any sign of deterioration. Moreover, they exhibited no degradation even after the CH2Cl2 solution was washed with water. However, subtle structural differences (planar versus partly twisted) led to different crystal packing structures and solid-state magnetic properties. PMID:28451165

  12. Genome-wide analysis of the Zn(II)2Cys6 zinc cluster-encoding gene family in Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Proteins with a Zn(II)2Cys6 domain, Cys-X2-Cys-X6-Cys-X5-12-Cys-X2-Cys-X6-9-Cys (hereafter, referred to as the C6 domain), form a subclass of zinc finger proteins found exclusively in fungi and yeast. Genome sequence databases of Saccharomyces cerevisiae and Candida albicans have provided an overvie...

  13. Rational synthesis of an exceptionally stable Zn(II) metal-organic framework for the highly selective and sensitive detection of picric acid.

    PubMed

    Hu, Yingli; Ding, Meili; Liu, Xiao-Qin; Sun, Lin-Bing; Jiang, Hai-Long

    2016-04-28

    Based on an organic ligand involving both carboxylate and tetrazole groups, a chemically stable Zn(II) metal-organic framework has been rationally synthesized and behaves as a fluorescence chemosensor for the highly selective and sensitive detection of picric acid, an extremely hazardous and strong explosive.

  14. A Zn(II)2Cys6 DNA binding protein regulates the sirodesmin PL biosynthetic gene cluster in Leptosphaeria maculans

    PubMed Central

    Fox, Ellen M.; Gardiner, Donald M.; Keller, Nancy P.; Howlett, Barbara J.

    2008-01-01

    A gene, sirZ, encoding a Zn(II)2Cys6 DNA binding protein is present in a cluster of genes responsible for the biosynthesis of the epipolythiodioxopiperazine (ETP) toxin, sirodesmin PL in the ascomycete plant pathogen, Leptosphaeria maculans. RNA-mediated silencing of sirZ gives rise to transformants that produce only residual amounts of sirodesmin PL and display a decrease in the transcription of several sirodesmin PL biosynthetic genes. This indicates that SirZ is a major regulator of this gene cluster. Proteins similar to SirZ are encoded in the gliotoxin biosynthetic gene cluster of Aspergillus fumigatus (gliZ) and in an ETP-like cluster in Penicillium lilacinoechinulatum (PlgliZ). Despite its high level of sequence similarity to gliZ, PlgliZ is unable to complement the gliotoxin-deficiency of a mutant of gliZ in A. fumigatus. Putative binding sites for these regulatory proteins in the promoters of genes in these clusters were predicted using bioinformatic analysis. These sites are similar to those commonly bound by other proteins with Zn(II)2Cys6 DNA binding domains. PMID:18023597

  15. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site.

    PubMed

    Desideri, A; Cocco, D; Calabrese, L; Rotilio, G

    1984-03-29

    Co(II) derivatives of Cu,Zn-superoxide dismutase having cobalt substituted for the copper (Co,Zn-superoxide dismutase and Co,Co-superoxide dismutase) were studied by optical and EPR spectroscopy. EPR and electronic absorption spectra of Co,Zn-superoxide dismutase are sensitive to solvent perturbation, and in particular to the presence of phosphate. This behaviour suggests that cobalt in Co,Zn-superoxide dismutase is open to solvent access, at variance with the Co(II) of the Cu,Co-superoxide dismutase, which is substituted for the Zn. Phosphate binding as monitored by optical titration is dependent on pH with an apparent pKa = 8.2. The absorption spectrum of Co,Zn-superoxide dismutase in water has three weak bands in the visible region (epsilon = 75 M-1 X cm-1 at 456 nm; epsilon = 90 M-1 X cm-1 at 520 nm; epsilon = 70 M-1 X cm-1 at 600 nm) and three bands in the near infrared region, at 790 nm (epsilon = 18 M-1 X cm-1), 916 nm (epsilon = 27 M-1 X cm-1) and 1045 nm (epsilon = 25 M-1 X cm-1). This spectrum is indicative of five-coordinate geometry. In the presence of phosphate, three bands are still present in the visible region but they have higher intensity (epsilon = 225 M-1 X cm-1 at 544 nm; epsilon = 315 M-1 X cm-1 at 575 nm; epsilon = 330 M-1 X cm-1 at 603 nm), whilst the lowest wavelength band in the near infrared region is at much lower energy, 1060 nm (epsilon = 44 M-1 X cm-1). The latter property suggests a tetrahedral coordination around the Co(II) centre. Addition of 1 equivalent of CN- gives rise to a stable Co(II) low-spin intermediate, which is characterized by an EPR spectrum with a highly rhombic line shape. Formation of this CN- complex was found to require more cyanide equivalents in the case of the phosphate adduct, suggesting that binding of phosphate may inhibit binding of other anions. Titration of the Co,Co-derivative with CN- provided evidence for magnetic interaction between the two metal centres. These results substantiate the contention

  16. Hypothesis testing for the validation of the kinetic spectrophotometric methods for the determination of lansoprazole in bulk and drug formulations via Fe(III) and Zn(II) chelates.

    PubMed

    Rahman, Nafisur; Kashif, Mohammad

    2010-03-01

    Point and interval hypothesis tests performed to validate two simple and economical, kinetic spectrophotometric methods for the assay of lansoprazole are described. The methods are based on the formation of chelate complex of the drug with Fe(III) and Zn(II). The reaction is followed spectrophotometrically by measuring the rate of change of absorbance of coloured chelates of the drug with Fe(III) and Zn(II) at 445 and 510 nm, respectively. The stoichiometric ratio of lansoprazole to Fe(III) and Zn(II) complexes were found to be 1:1 and 2:1, respectively. The initial-rate and fixed-time methods are adopted for determination of drug concentrations. The calibration graphs are linear in the range 50-200 µg ml⁻¹ (initial-rate method), 20-180 µg ml⁻¹ (fixed-time method) for lansoprazole-Fe(III) complex and 120-300 (initial-rate method), and 90-210 µg ml⁻¹ (fixed-time method) for lansoprazole-Zn(II) complex. The inter-day and intra-day precision data showed good accuracy and precision of the proposed procedure for analysis of lansoprazole. The point and interval hypothesis tests indicate that the proposed procedures are not biased. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-12-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  18. Design and synthesis of metal complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and their photocatalytic degradation of methylene blue.

    PubMed

    Krishna, P Murali; Reddy, N B Gopal; Kottam, Nagaraju; Yallur, B C; Katreddi, Hussain Reddy

    2013-01-01

    The photocatalytic degradation has been considered to be an efficient process for the degradation of organic pollutants, which are present in the effluents released by industries. The photocatalytic bleaching of cationic dye methylene blue was carried out spectrometrically on irradiation of UV light using Cu(II), Ni(II), and Co(II) complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide (HL). The effects of pH and metal ion were studied on the efficiency of the reaction. Cu(II) complex shows better catalytic activity and the highest percentage degradation (~88.8%) of methylene blue was observed at pH 12. A tentative mechanism has also been proposed for the photocatalytic degradation of methylene blue.

  19. Novel Cu(I)-selective chelators based on a bis(phosphorothioyl)amide scaffold.

    PubMed

    Amir, Aviran; Ezra, Alon; Shimon, Linda J W; Fischer, Bilha

    2014-08-04

    Bis(dialkyl/aryl-phosphorothioyl)amide (BPA) derivatives are versatile ligands known by their high metal-ion affinity and selectivity. Here, we synthesized related chelators based on bis(1,3,2-dithia/dioxaphospholane-2-sulfide)amide (BTPA/BOPA) scaffolds targeting the chelation of soft metal ions. Crystal structures of BTPA compounds 6 (N(-)R3NH(+)) and 8 (NEt) revealed a gauche geometry, while BOPA compound 7 (N(-)R3NH(+)) exhibited an anti-geometry. Solid-state (31)P magic-angle spinning NMR spectra of BTPA 6-Hg(II) and 6-Zn(II) complexes imply a square planar or tetrahedral geometry of the former and a distorted tetrahedral geometry of the latter, while both BTPA 6-Ni(II) and BOPA 7-Ni(II) complexes possibly form a polymeric structure. In Cu(I)-H2O2 system (Fenton reaction conditions) BTPA compounds 6, 8, and 10 (NCH2Ph) were identified as most potent antioxidants (IC50 32, 56, and 29 μM, respectively), whereas BOPA analogues 7, 9 (NEt), and 11 (NCH2Ph) were found to be poor antioxidants. In Fe(II)-H2O2 system, IC50 values for both BTPA and BOPA compounds exceeded 500 μM indicating high selectivity to Cu(I) versus the borderline Fe(II)-ion. Neither BTPA nor BOPA derivatives showed radical scavenging properties in H2O2 photolysis, implying that inhibition of the Cu(I)-induced Fenton reaction by both BTPA and BOPA analogues occurred predominantly through Cu(I)-chelation. In addition, NMR-monitored Cu(I)- and Zn(II)-titration of BTPA compounds 8 and 10 showed their high selectivity to a soft metal ion, Cu(I), as compared to a borderline metal ion, Zn(II). In summary, lipophilic BTPA analogues are promising highly selective Cu(I) ion chelators.

  20. Dye-doped nanostructure polypyrrole film for electrochemically switching solid-phase microextraction of Ni(II) and ICP-OES analysis of waste water.

    PubMed

    Shamaeli, Ehsan; Alizadeh, Naader

    2012-01-01

    A nanostructure fiber based on conducting polypyrrole synthesized by an electrochemical method has been developed, and used for electrochemically switching solid-phase microextraction (ES-SPME). The ES-SPME was prepared by the doping of eriochrome blue in polypyrrole (PPy-ECB) and used for selectively extracting the Ni(II) cation in the presence of some transition and heavy metal ions. The cation-exchange behavior of electrochemically prepared polypyrrole on stainless-steel with and without eriochrome blue (ECB) dye was characterized using ICP-OES analysis. The effects of the scan rate for electrochemical synthesis, uptake and the release potential on the extraction behavior of the PPy-ECB conductive fiber were studied. Uptake and release time profiles show that the process of electrically switched cation exchange could be completed within 250 s. The results of the present study point concerning the possibility of developing a selective extraction process for Ni(II) from waste water was explored using such a nanostructured PPy-ECB film through an electrically switched cation exchange. 2012 © The Japan Society for Analytical Chemistry

  1. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. 2009 Elsevier B.V. All rights reserved.

  2. Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidase-1 in Cells

    PubMed Central

    Zhang, Feiran; Bhat, Shridhar; Gabelli, Sandra B.; Chen, Xiaochun; Miller, Michelle S.; Nacev, Benjamin A.; Cheng, Yim Ling; Meyers, David J.; Tenney, Karen; Shim, Joong Sup; Crews, Phillip; Amzel, L. Mario; Ma, Dawei; Liu, Jun O.

    2013-01-01

    Methionine aminopeptidases (MetAPs) which remove the initiator methionine from nascent peptides are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1–4). But all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1–4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells. PMID:23634668

  3. Solid Phase Extraction of Trace Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) Ions in Beverages on Functionalized Polymer Microspheres Prior to Flame Atomic Absorption Spectrometric Determinations.

    PubMed

    Berber, Hale; Alpdogan, Güzin

    2017-01-01

    In this study, poly(glycidyl methacrylate-methyl methacrylate-divinylbenzene) was synthesized in the form of microspheres, and then functionalized by 2-aminobenzothiazole ligand. The sorption properties of these functionalized microspheres were investigated for separation, preconcentration and determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions using flame atomic absorption spectrometry. The optimum pH values for quantitative sorption were 2 - 4, 5 - 8, 6 - 8, 4 - 6, 2 - 6 and 2 - 3 for Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II), respectively, and also the highest sorption capacity of the functionalized microspheres was found to be for Cu(II) with the value of 1.87 mmol g -1 . The detection limits (3σ; N = 6) obtained for the studied metals in the optimal conditions were observed in the range of 0.26 - 2.20 μg L -1 . The proposed method was successfully applied to different beverage samples for the determination of Al(III), Fe(II), Co(II), Cu(II), Cd(II) and Pb(II) ions, with the relative standard deviation of <3.7%.

  4. Metal Ion Dependence of the Matrix Metalloproteinase-1 Mechanism.

    PubMed

    Yang, Hao; Makaroff, Katherine; Paz, Nicholas; Aitha, Mahesh; Crowder, Michael W; Tierney, David L

    2015-06-16

    Matrix metalloproteinase-1 (MMP-1) plays crucial roles in disease-related physiologies and pathological processes in the human body. We report here solution studies of MMP-1, including characterization of a series of mutants designed to bind metal in either the catalytic site or the structural site (but not both). Circular dichroism and fluorescence spectroscopy of the mutants demonstrate the importance of the structural Zn(II) in maintaining both secondary and tertiary structure, while UV-visible, nuclear magnetic resonance, electron paramagnetic resonance, and extended X-ray absorption fine structure show its presence influences the catalytic metal ion's coordination number. The mutants allow us to demonstrate convincingly the preparation of a mixed-metal analogue, Co(C)Zn(S)-MMP-1, with Zn(II) in the structural site and Co(II) in the catalytic site. Stopped-flow fluorescence of the native form, Zn(C)Zn(S)-MMP-1, and the mixed-metal Co(C)Zn(S)-MMP-1 analogue shows that the internal fluorescence of a nearby Trp residue is modulated with catalysis and can be used to monitor reactivity under a number of conditions, opening the door to substrate profiling.

  5. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: Synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua

    2017-11-01

    Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.

  6. Structural and magnetic characterization of mixed valence Co(II, III)xZn1-xO epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Negi, D. S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.

    2014-03-01

    In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III)xZn1-xO epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ~6-60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ~29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ~17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ~93 emu cm-3 and a coercive field of ~285 Oe observed for ~38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ~1019 cm-3. The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co2+ and Co3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system.

  7. Observations of localized NiII emission in M82: Evidence for supernovae activity in the molecular cloud east of the nucleus

    NASA Technical Reports Server (NTRS)

    Rank, David M.; Temi, Pasquale; Bregman, Jesse D.; Dunham, Edward W.; Harker, David

    1995-01-01

    Narrow band images of M82 at wavelengths of 6.63 microns (NiII) and 6.8 microns (continuum) are discussed in terms of new evidence for supernova activity in the nuclear region of the M82 starburst galaxy. Data were recorded using a 128x128 Si:Ga array in an infrared camera on the KAO Southern Expedition in April '94.

  8. A Series of Zn(II) Terpyridine-Based Nitrate Complexes as Two-Photon Fluorescent Probe for Identifying Apoptotic and Living Cells via Subcellular Immigration.

    PubMed

    Liu, Dandan; Zhang, Mingzhu; Du, Wei; Hu, Lei; Li, Fei; Tian, Xiaohe; Wang, Aidong; Zhang, Qiong; Zhang, Zhongping; Wu, Jieying; Tian, Yupeng

    2018-06-19

    Two-photon active probe to label apoptotic cells plays a significant role in biological systems. However, discrimination of live/apoptotic cells at subcellular level under microscopy remains unachieved. Here, three novel Zn(II) terpyridine-based nitrate complexes (C1-C3) containing different pull/push units were designed. The structures of the ligands and their corresponding Zn(II) complexes were confirmed by single-crystal X-ray diffraction analysis. On the basis of the comprehensive comparison, C3 had a suitable two-photon absorption cross section in the near-infrared wavelength and good biocompatibility. Under two-photon confocal microscopy and transmission electron microscopy, it is found that C3 could target mitochondria in living cells but immigrate into the nucleolus during the apoptotic process. This dual-functional probe (C3) not only offers a valuable image tool but also acts as an indicator for cell mortality at subcellular level in a real-time manner.

  9. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  10. Time-Resolved Transient Optical Absorption Study of Bis(terpyridyl)oligothiophenes and Their Metallo-Supramolecular Polymers with Zn(II) Ion Couplers.

    PubMed

    Rais, David; Menšík, Miroslav; Štenclová-Bláhová, Pavla; Svoboda, Jan; Vohlídal, Jiří; Pfleger, Jiří

    2015-06-18

    α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated.

  11. Tentacle-type immobilized metal affinity cryogel for invertase purification from Saccharomyces cerevisiae.

    PubMed

    Çetin, Kemal; Perçin, Işık; Denizli, Fatma; Denizli, Adil

    2017-11-01

    The aim of this study is to investigate the usability of cryogel columns for the purification of invertase from Saccharomyces cerevisiae. Poly(2-hydroxyethyl methacrylate) monolithic columns were produced via cryogelation. Ester groups of the poly(2-hydroxyethyl methacrylate) structure were then converted to imine groups by the reaction with poly(ethylene imine) in the presence of NaHCO 3 . Transition metal ions, Cu(II), Co(II), and Ni(II), were chelated on the PEI-modified cryogel columns. Purification of invertase from natural source namely S. cerevisiae was also studied, and the purification fold values were obtained as 41.350, 44.714, and 30.302 for Cu(II)-chelated, Co(II)-chelated, and Ni(II)-chelated PHEMA/PEI columns, respectively.

  12. FT-IR and FT-Raman spectra of cimetidine and its metallocomplexes

    NASA Astrophysics Data System (ADS)

    Barańska, M.; Proniewicz, L. M.

    1999-11-01

    We present vibrational spectra of three stable, well-reproducible, polymorphic forms of cimetidine ( cim), a drug which is a powerful histamine H 2-receptor antagonist used in the treatment of peptic ulcer and the Zollinger-Ellison syndrome. Assignments of Raman and IR bands are made using semiempirical methods: MNDO, AM1 and PM3. We also describe the synthesis of Me( cim) 2(ClO 4) 2, where Me=Cu(II), Cd(II), Co(II) and Ni(II), and present their vibrational data. We show that the obtained complexes are isostructural, however a metal ion that occupies a center of octahedral unit introduces some distortions that can be seen in the spectra. We also make tentative assignment of metal-ligand stretching modes observed in low frequency range.

  13. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  14. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  15. 2D-1D structural phase transformation of Co(II) 3,5-pyridinedicarboxylate frameworks with chromotropism.

    PubMed

    Cheansirisomboon, Achareeya; Pakawatchai, Chaveng; Youngme, Sujittra

    2012-09-21

    Two new metal-organic frameworks [Co(pydc)(H(2)O)(2)](n) (1) and [Co(pydc)(H(2)O)(4)](n)(H(2)O)(n) (2), (pydc = 3,5-pyridinedicarboxylate) have been synthesized by a diffusion method and characterized by single-crystal X-ray diffraction. The structure of 1 reveals an infinite 2D layer with honeycomb-like cavities in which each pydc ligand bridges three Co(II) ions. The adjacent 2D layers are orderly packed in an ABAB-type array via intermolecular interactions of the combined π-π stacking and hydrogen bonds to form a 3D supramolecular architecture. Interestingly, compound 1 exhibits a water induced crystal-to-amorphous transformation with chromotropism confirmed by spectroscopic techniques, elemental analysis, TGA and XRPD. When this amorphous phase (1A) was exposed to water vapor, it was readily converted into the second crystalline phase 1B with a color change. Moreover, a reversible process between 1A and 1B was performed. In the case of compound 2, pydc acts as didentate bridging ligand connecting two Co(II) ions, leading to a 1D zig-zag chain. Guest water molecules fill the gaps in between chains and form hydrogen bonds with the host chains stabilizing the 3D network of 2. Additionally, compound 2 also exhibits a water induced crystal-to-amorphous transformation with chromotropism and the reversible process was also performed between the dehydrated (2A) and rehydrated (2') forms. Surprisingly, the IR and UV-vis spectra, elemental analysis, TGA curve and XRPD pattern of the rehydrated second phase 1B are found to be identical to that of 2 and 2', these results confirm that 2, 2' and 1B are the same compound.

  16. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin.

    PubMed

    Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M

    2018-04-01

    Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Novel FeII and CoII Complexes of Natural Product Tryptanthrin: Synthesis and Binding with G-Quadruplex DNA

    PubMed Central

    Zhong, Yi-ning; Zhang, Yan; Gu, Yun-qiong; Wu, Shi-yun; Shen, Wen-ying

    2016-01-01

    Tryptanthrin is one of the most important members of indoloquinoline alkaloids. We obtained this alkaloid from Isatis. Two novel FeII and CoII complexes of tryptanthrin were first synthesized. Single-crystal X-ray diffraction analyses show that these complexes display distorted four-coordinated tetrahedron geometry via two heterocyclic nitrogen and oxygen atoms from tryptanthrin ligand. Binding with G-quadruplex DNA properties revealed that both complexes were found to exhibit significant interaction with G-quadruplex DNA. This study may potentially serve as the basis of future rational design of metal-based drugs from natural products that target the G-quadruplex DNA. PMID:27698647

  18. Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor.

    PubMed

    Nabarlatz, Debora; de Celis, Jorge; Bonelli, Pablo; Cukierman, Ana Lea

    2012-04-30

    Vinal-derived Activated Carbon (VAC) developed by phosphoric acid activation of sawdust from Prosopis ruscifolia native wood was tested for the adsorption of Ni(II) ions from dilute solutions in both batch and dynamic modes, comparing it with a Commercial Activated Carbon (CAC). Batch experiments were performed to determine adsorption kinetics and equilibrium isotherms for both carbons. It was possible to remove near 6.55 mg Ni g(-1) VAC and 7.65 mg Ni g(-1) CAC after 5 h and 10 h contact time, respectively. A pseudo second order equation fitted well with the kinetics of the process, and Langmuir adsorption model was used to adjust the experimental results concerning the adsorption isotherm. The parameters obtained indicate a stronger interaction between sorbent and sorbate for VAC (K = 26.56 L mmol(-1)) than for CAC (K = 19.54 L mmol(-1)). Continuous experiments were performed in a fixed-bed column packed with the investigated carbons, evaluating the influence of operational parameters such as flow rate, bed height and feed concentration on the breakthrough curves obtained. The breakthrough occurred more slowly for low concentrations of the metal ion in the feed, low flow rates and high bed height. The breakthrough curves were properly represented by Hall's model for both carbon types. Regeneration of the vinal activated carbon in column was tested, obtaining the same breakthrough curve in a new cycle of use. Finally, vinal-derived activated carbon can effectively be used to treat wastewater having until 30 ppm Ni(II). Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Spectral and in vitro antimicrobial properties of 2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid transition metal complexes

    NASA Astrophysics Data System (ADS)

    Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh

    2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.

  20. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tian; Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn; Zhao, Yi-xing

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework withmore » zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC

  1. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES).

    PubMed

    Yilmaz, Vedat; Arslan, Zikri; Hazer, Orhan; Yilmaz, Hayriye

    2014-05-01

    This work reports the preparation of a novel Cu(II)-ion imprinted polymer using 2-thiozylmethacrylamide (TMA) for on-line preconcentration of Cu(II) prior to its determination by inductively coupled optical emission spectroscopy (ICP-OES). Cu(II)-TMA monomer (complex) was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was washed with 5% (v/v) HNO 3 to remove Cu(II) ions and then with water until a neutral pH. The ion imprinted polymer was characterized by FT-IR and scanning electron microscopy. The experimental conditions were optimized for on-line preconcentration of Cu(II) using a minicolumn of ion imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 6.0, whereas the recoveries for the non-imprinted polymer (NIP) were about 61%. The IIP showed about 30 times higher selectivity to Cu(II) in comparison to NIP. The IIP also exhibited excellent selectivity for Cu(II) against the competing transition and heavy metal ions, including Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn. Computational calculations revealed that the selectivity of IIP was mediated by the stability of Cu(II)-TMA complex which was far more stable than those of Co(II), Ni(II) and Zn(II) that have similar charge and ionic radii to Cu(II). A volume of 10 mL sample solution was loaded onto the column at 4.0 mL min -1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 2% (v/v) HNO 3 . The relative standard deviation (RSD) and limit of detection (LOD, 3s) of the method were 3.2% and 0.4 μg L -1 , respectively. The method was successfully applied to determination of Cu(II) in fish otoliths (CRM 22), bone ash (SRM 1400) and coastal seawater and estuarine water samples.

  3. Selective solid phase extraction of copper using a new Cu(II)-imprinted polymer and determination by inductively coupled plasma optical emission spectroscopy (ICP-OES)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Hazer, Orhan; Yilmaz, Hayriye

    2014-01-01

    This work reports the preparation of a novel Cu(II)-ion imprinted polymer using 2-thiozylmethacrylamide (TMA) for on-line preconcentration of Cu(II) prior to its determination by inductively coupled optical emission spectroscopy (ICP-OES). Cu(II)-TMA monomer (complex) was synthesized and copolymerized via bulk polymerization method in the presence of ethyleneglycoldimethacrylate cross-linker. The resulting polymer was washed with 5% (v/v) HNO3 to remove Cu(II) ions and then with water until a neutral pH. The ion imprinted polymer was characterized by FT-IR and scanning electron microscopy. The experimental conditions were optimized for on-line preconcentration of Cu(II) using a minicolumn of ion imprinted polymer (IIP). Quantitative retention was achieved between pH 5.0 and 6.0, whereas the recoveries for the non-imprinted polymer (NIP) were about 61%. The IIP showed about 30 times higher selectivity to Cu(II) in comparison to NIP. The IIP also exhibited excellent selectivity for Cu(II) against the competing transition and heavy metal ions, including Cd, Co, Cr, Fe, Mn, Ni, Pb and Zn. Computational calculations revealed that the selectivity of IIP was mediated by the stability of Cu(II)-TMA complex which was far more stable than those of Co(II), Ni(II) and Zn(II) that have similar charge and ionic radii to Cu(II). A volume of 10 mL sample solution was loaded onto the column at 4.0 mL min−1 by using a sequential injection system (FIALab 3200) followed by elution with 1.0 mL of 2% (v/v) HNO3. The relative standard deviation (RSD) and limit of detection (LOD, 3s) of the method were 3.2% and 0.4 μg L−1, respectively. The method was successfully applied to determination of Cu(II) in fish otoliths (CRM 22), bone ash (SRM 1400) and coastal seawater and estuarine water samples. PMID:24511158

  4. Electrochemical, spectral, and computational studies of metalloporphyrin dimers formed by cation complexation of crown ether cavities.

    PubMed

    Chitta, Raghu; Rogers, Lisa M; Wanklyn, Amber; Karr, Paul A; Kahol, Pawan K; Zandler, Melvin E; D'Souza, Francis

    2004-11-01

    The effect on the electrochemical oxidation and reduction potentials of 5,10,15,20-tetrakis(benzo-15-crown-5)porphyrin (TCP) and its metal derivatives (MTCP; M = Mg(II), VO(IV), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II)) upon potassium ion induced dimerization of the porphyrins was systematically performed in benzonitrile containing 0.1 M (TBA)ClO(4) by differential pulse voltammetry technique. The HOMO--LUMO energy level diagram constructed from the electrochemical data revealed destabilization of the HOMO level and stabilization of the LUMO level upon dimer formation while such a perturbation was larger for the HOMO level than the LUMO level. The geometry and electronic structure of a representative ZnTCP and its dimer, K(4)(ZnTCP)(2), were evaluated by the ab initio B3LYP method utilizing a mixed basis set of 3-21G(*) for Zn, K, O, and N and STO-3G for C and H. The inter-porphyrin ring distance of the dimer calculated from the optimized geometry agreed with the spectroscopically determined one, and the calculated HOMO and LUMO frontier orbitals revealed delocalization on both of the porphyrins rings. The metal-metal distances calculated from the triplet ESR spectra of the K(+) induced porphyrin dimers bearing paramagnetic metal ions in the cavity followed the trend Cu--Cu < VO--VO < Ag--Ag. However, the spectral shifts resulting from the exciton coupling of the interacting porphyrin pi-systems revealed no specific trend with respect to the metal ion in the porphyrin cavity. Additionally, linear trends in the electrochemically measured HOMO--LUMO gap and the energy corresponding to the most intense visible band of both MTCP and K(4)(MTCP)(2) were observed. A reduced HOMO--LUMO gap predicted for the dimer by B3LYP/(3-21G(), STO-3G) calculations was confirmed by the results of optical absorption and electrochemical studies.

  5. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  6. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A. A.; Linert, Wolfgang

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H2L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H2L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO2(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H2L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N2S2 donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis 1H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit mild

  7. Synthesis, spectroscopic and biological activities studies of acyclic and macrocyclic mono and binuclear metal complexes containing a hard-soft Schiff base.

    PubMed

    Abou-Hussein, Azza A A; Linert, Wolfgang

    2012-09-01

    Mono- and bi-nuclear acyclic and macrocyclic complexes with hard-soft Schiff base, H(2)L, ligand derived from the reaction of 4,6-diacetylresorcinol and thiocabohydrazide, in the molar ratio 1:2 have been prepared. The H(2)L ligand reacts with Co(II), Ni(II), Cu(II), Zn(II), Mn(II) and UO(2)(VI) nitrates, VO(IV) sulfate and Ru(III) chloride to get acyclic binuclear complexes except for VO(IV) and Ru(III) which gave acyclic mono-nuclear complexes. Reaction of the acyclic mono-nuclear VO(IV) and Ru(III) complexes with 4,6-diacetylresorcinol afforded the corresponding macrocyclic mono-nuclear VO(IV) and Ru(IIII) complexes. Template reactions of the 4,6-diacetylresorcinol and thiocarbohydrazide with either VO(IV) or Ru(III) salts afforded the macrocyclic binuclear VO(IV) and Ru(III) complexes. The Schiff base, H(2)L, ligand acts as dibasic with two NSO-tridentate sites and can coordinate with two metal ions to form binuclear complexes after the deprotonation of the hydrogen atoms of the phenolic groups in all the complexes, except in the case of the acyclic mononuclear Ru(III) and VO(IV) complexes, where the Schiff base behaves as neutral tetradentate chelate with N(2)S(2) donor atoms. The ligands and the metal complexes were characterized by elemental analysis, IR, UV-vis (1)H-NMR, thermal gravimetric analysis (TGA) and ESR, as well as the measurements of conductivity and magnetic moments at room temperature. Electronic spectra and magnetic moments of the complexes indicate the geometries of the metal centers are either tetrahedral, square planar or octahedral. Kinetic and thermodynamic parameters were calculated using Coats-Redfern equation, for the different thermal decomposition steps of the complexes. The ligands and the metal complexes were screened for their antimicrobial activity against Staphylococcus aureus as Gram-positive bacteria, and Pseudomonas fluorescens as Gram-negative bacteria in addition to Fusarium oxysporum fungus. Most of the complexes exhibit

  8. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  9. Experimental and theoretical analysis of a rare nitrato bridged 3d-4f complex containing LaZn2 core synthesized from a Zn(II) metalloligand

    NASA Astrophysics Data System (ADS)

    Sreejith, S. S.; Mohan, Nithya; Kurup, M. R. Prathapachandra

    2018-02-01

    A trinulcear Zn2La Schiff base complex was synthesized using slow-solvent evaporation technique from a Zn(II) mononuclear metalloligand by 2:1 addition with La(NO3)3 salt. Single crystal XRD analysis revealed a rare nitrato bridged trinuclear entity which is seldom seen in these class of ligand systems. Qualitative and quantitative analysis of intermolecular interactions/short contacts were done using Hirshfeld surface and 2D finger print analysis. The thermally stable, blue luminescent compound exhibits internal heavy atom effect thereby quenching the emission intensity of the ligand. DFT calculations were performed on the compound to analyze frontier orbitals and also ESP plots were used to monitor nucleophilic/electrophilic regions on the compound and its implications on hydrogen bonding. A comparison of the bond orders and atomic charges on the trinuclear compound and the Zn(II) metalloligand precursor was performed to substantiate the formation of the trinuclear product through ligand exchange.

  10. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  11. Metal ion promoted hydrogels for bovine serum albumin adsorption: Cu(II) and Co(II) chelated poly[(N-vinylimidazole)-maleic acid].

    PubMed

    Pekel, Nursel; Salih, Bekir; Güven, Olgun

    2005-05-10

    Poly[(N-vinylimidazole)-maleic acid] (poly(VIm-MA)), copolymeric hydrogels were prepared by gamma-irradiating ternary mixtures of N-vinylimidazole-maleic acid-water in a (60)Co-gamma source. Cu(II) and Co(II) ions were chelated within the gels at pH=5.0. The maximum adsorption capacity of the gels were 3.71 mmol/g dry gel for Cu(II) and 1.25 mmol/g dry gel for Co(II) at pH=5.0. The swelling ratios of the gels were 1200% for poly(VIm-MA), 60 and 45% for Cu(II) and Co(II)-chelated poly(VIm-MA) gels at pH=5.0 in acetate buffer solution. These affinity gels with different swelling ratios for plain poly(VIm-MA), Cu(II)-, and Co(II)-chelated poly(VIm-MA), in acetate and phosphate buffers were used in the bovine serum albumin (BSA) adsorption/desorption studies in batch reactor. The maximum BSA adsorption capacities of the gels were 0.38 g/g dry gel for plain, 0.88 g/g dry gel for Cu(II)-chelated poly(VIm-MA) and 1.05 g/g dry gel for Co(II)-chelated poly(VIm-MA) gels. Adsorption capacity of BSA by the gels was reduced dramatically by increasing the ionic strength adjusted with NaCl. More than 95% of BSA were desorbed in 10 h in desorption medium containing 0.1M of EDTA for metal ion-chelated gels at pH=4.7.

  12. The metamorphosis of heterometallic trinuclear antiferromagnetic complexes into nano-sized superparamagnetic spinels.

    PubMed

    Vasylenko, Inna V; Gavrylenko, Konstiantyn S; Il'yin, Vladimir G; Golub, Vladimir; Goloverda, Galina; Kolesnichenko, Vladimir; Addison, Anthony W; Pavlishchuk, Vitaly V

    2010-05-15

    Thermal decomposition of the trinuclear heterometallic oxoacetates [Fe(2)M(μ(3)-O)(CH(3)COO)(6)(H(2)O)(3)] has been used as a single-precursor method for synthesis of the spinel-structured ternary oxides MFe(2)O(4) (M = Mn(II), Co(II), and Ni(II)). This facile process occurring at 320 °C results in the formation of nanocrystalline, (7-20 nm) highly pure stoichiometric ferrites in quantitative yield. The magnetic properties of these nanoparticulate ferrites were studied in the 10-300 K temperature range, revealing superparamagnetic behaviour for the Ni and Mn particles and ferromagnetic behavior for the Co ones at room temperature. Their blocking temperatures follow the order: CoFe(2)O(4) > MnFe(2)O(4) > NiFe(2)O(4).

  13. Structure and mechanism of Cu- and Ni-substituted analogs of metallo-β-lactamase L1

    PubMed Central

    Hu, Zhenxin; Spadafora, Lauren J.; Hajdin, Christine E.; Bennett, Brian; Crowder, Michael W.

    2009-01-01

    In an effort to further probe metal binding to metallo-β-lactamase L1 (mβl L1), Cu- (Cu-L1) and Ni-substituted (Ni-L1) L1 were prepared and characterized by kinetic and spectroscopic studies. Cu-L1 bound 1.7 equivalents of Cu and small amounts of Zn(II) and Fe. The EPR spectrum of Cu-L1 exhibited two overlapping, axial signals, indicative of type 2 sites with distinct affinities for Cu(II). Both signals indicated multiple nitrogen ligands. Despite the expected proximity of the Cu(II) ions, however, only indirect evidence was found for spin-spin coupling. Cu-L1 exhibited higher kcat (96 s−1) and Km (224 μM) values, as compared to the values of dinuclear Zn(II)-containing L1, when nitrocefin was used as substrate. The Ni-L1 bound 1 equivalent of Ni and 0.3 equivalents of Zn(II). Ni-L1 was EPR-silent, suggesting that the oxidation state of nickel was +2; this suggestion was confirmed by 1H NMR spectra, which showed relatively sharp proton resonances. Stopped-flow kinetic studies showed that ZnNi-L1 stabilized significant amounts of the nitrocefin-derived intermediate and that the decay of intermediate is rate-limiting. 1H NMR spectra demonstrate that Ni(II) binds in the Zn2 site and that the ring-opened product coordinates Ni(II). Both Cu-L1 and ZnNi-L1 hydrolyze cephalosporins and carbapenems, but not penicillins, suggesting that the Zn2 site modulates substrate preference in mβ1 L1. These studies demonstrate that the Zn2 site in L1 is very flexible and can accommodate a number of different transition metal ions; this flexibility could possibly offer an organism that produces L1 an evolutionary advantage when challenged with β-lactam containing antibiotics. PMID:19228020

  14. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  15. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  16. Reaction of Pb(II) and Zn(II) with Ethyl Linoleate To Form Structured Hybrid Inorganic–Organic Complexes: A Model for Degradation in Historic Paint Films

    DOE PAGES

    MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...

    2016-09-07

    To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less

  17. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants.

    PubMed

    Fayle, Tom M; Scholtz, Olivia; Dumbrell, Alex J; Russell, Stephen; Segar, Simon T; Eggleton, Paul

    2015-01-01

    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest. We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2 % of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1 % of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63 % (5/7; Camponotus sp. 1) to 0 % (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that ant-termite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs.

  18. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  19. Preparation, Characterization, and Antimicrobial Activities of Bimetallic Complexes of Sarcosine with Zn(II) and Sn(IV)

    PubMed Central

    Arafat, Yasir; Ali, Saqib; Shahzadi, Saira; Shahid, Muhammad

    2013-01-01

    Heterobimetallic complexes of Zn(II) and Sn(IV) with sarcosine have been synthesized at room temperature under stirring conditions by the reaction of sarcosine and zinc acetate in 2 : 1 molar ratio followed by the stepwise addition of CS2 and organotin(IV) halides, where R = Me, n-Bu, and Ph. The complexes were characterized by elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. IR data showed that the ligand acts in a bidentate manner. NMR data revealed the four coordinate geometry in solution state. In vitro antimicrobial activities data showed that complexes (3) and (4) were effective against bacterial and fungal strains with few exceptions. PMID:24235910

  20. Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences.

    PubMed

    Lo, N; Eldridge, R H; Lenz, M

    2006-08-01

    Six Australian species of Coptotermes are traditionally recognized, but recent cuticular hydrocarbon studies suggest that some of these may represent more than one species. An understanding of the phylogenetic diversity of Australian Coptotermes, particularly the pest species, is likely to be important for the improvement of termite management strategies. A study of phylogenetic relationships among species of this genus was performed, based on the mitochondrial cytochrome oxidase (COII) gene, comparing the data with recent data from Asian species. Representatives of the species C. lacteus (Froggatt), C. frenchi Hill and C. michaelseni Silvestri were each found to form closely related monophyletic groups, however representatives of C. acinaciformis (Froggatt) were not. For C. acinaciformis, representatives from northern mound-building populations were found to form a distinct group to southern, tree-nesting forms. Among southern C. acinaciformis, two Western Australian representatives were found to be divergent from other populations. The results suggest that C. acinaciformis probably represents a complex of species rather than one, as has been suggested previously. One unidentified Coptotermes sp. taxon from Melbourne was found to be divergent from other taxa. Notably, some Australian species were more closely related to Asian species than other Australian species.

  1. Synthesis Characterization and DNA Interaction Studies of a New Zn(II) Complex Containing Different Dinitrogen Aromatic Ligands

    PubMed Central

    Shahabadi, Nahid; Mohammadi, Somaye

    2012-01-01

    A mononuclear complex of Zn(II), [Zn(DIP)2 (DMP)] (NO3)2 ·2H2O in which DIP is 4,7-diphenyl-1,10-phenanthroline and DMP is 4,4′-dimethyl-2,2′-bipyridine has been prepared and characterized by 1HNMR spectroscopy, FT-IR, UV-Vis and elemental analysis techniques. DNA-binding properties of the complex were studied using UV-vis spectra, circular dichroism (CD) spectra, fluorescence, cyclic voltammetry (CV), and viscosity measurements. The results indicate that this zinc(II) complex can intercalate into the stacked base pairs of DNA and compete with the strong intercalator ethidium bromide for the intercalative binding sites. PMID:22956919

  2. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana; Kumar, Suresh

    2015-01-01

    Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.

  3. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations

    NASA Astrophysics Data System (ADS)

    Sezer, Güneş Günay; Yeşilel, Okan Zafer; Şahin, Onur; Arslanoğlu, Hasan; Erucar, İlknur

    2017-09-01

    A new coordination polymer {[Zn(μ3-ppda)(H2O)(μ-bpa)Zn(μ-ppda)(μ-bpa)]·4H2O}n (1) (ppda = 1,4-phenylenediacetate, bpa = 1,2-bis(4-pyridyl)ethane) has been synthesized by microwave-assisted reaction and characterized by elemental analysis, IR spectroscopy, single-crystal and powder X-ray diffractions. The asymmetric unit of 1 consists of two Zn(II) ions, two bpa ligands, two ppda ligands, one coordinated and four non-coordinated water molecules. In 1, ppda2- anions are linked the adjacent Zn(II) centers to generate 1D double-stranded chains. These chains are connected into 2D sheets by the bridging bpa ligands. Atomically detailed modeling was performed to compute single and binary component adsorption isotherms of H2, CO2, CH4 and N2 in complex 1. Results showed that 1 exhibits a high adsorption selectivity towards CO2 due to its high affinity for CO2. Results of this study will be helpful to guide the microwave-assisted reaction of coordination polymers to design promising adsorbents for gas storage and gas separation applications. The luminescent property of 1 and the selective removal of dyes in 1 have been also discussed. Results showed that 1 can be a potential candidate for luminescence applications and can selectively adsorb methylene blue (MB) dye molecules.

  4. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    PubMed

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

  5. SPE coupled to AAS trace determination of Cd(II) and Zn(II) in food samples using amine functionalized GMA-MMA-EGDMA terpolymer: Isotherm and kinetic studies.

    PubMed

    Islam, Aminul; Kumar, Suneel; Zaidi, Noushi; Ahmad, Hilal

    2016-12-15

    An ethylenediamine functionalized glycidyl methacrylate (GMA) based terpolymeric chelating resin was synthesized for the separation and preconcentration of Cd(II) and Zn(II) by SPE from bread, rice and fruit juice prior to FAAS determination. The resin was characterized by FT-IR, TGA/DTA, SEM, BET analysis and EDS. Synthesized resin shows a good capacity of 53.96mgg(-1) for Cd(II) and 24.19mgg(-1) for Zn(II) at pH 8.0. Five isotherm equilibrium models were studied to explain the sorption phenomenon out of which Langmuir, Dubinin-Radushkevich, Scatchard and Temkin models were found to be the best fitted. The limit of detection (LOD) and limit of quantification (LOQ) were observed to be 1.5 and 5.1μgL(-1) for Cd and 1.2 and 4.1μgL(-1) for Zn. The reliability of the method was investigated by the analysis of SRM and the recovery of analytes from various spiked food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study.

    PubMed

    Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D

    2009-02-16

    The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi

  7. A new photoactive Ru(II)tris(2,2'-bipyridine) templated Zn(II) benzene-1,4-dicarboxylate metal organic framework: structure and photophysical properties.

    PubMed

    Whittington, Christi L; Wojtas, Lukasz; Gao, Wen-Yang; Ma, Shengqian; Larsen, Randy W

    2015-03-28

    It has now been demonstrated that Ru(ii)tris(2,2'-bipyridine) (RuBpy) can be utilized to template the formation of new metal organic framework (MOF) materials containing crystallographically resolved RuBpy clusters with unique photophysical properties. Two such materials, RWLC-1 and RWLC-2, have now been reported from our laboratory and are composed of RuBpy encapsulated in MOFs composed of Zn(ii) ions and 1,3,5-tris(4-carboxyphenyl)benzene ligands (C. L. Whittington, L. Wojtas and R. W. Larsen, Inorg. Chem., 2014, 53, 160-166). Here, a third RuBpy templated photoactive MOF is described (RWLC-3) that is derived from the reaction between Zn(ii) ions and 1,4-dicarboxybenzene in the presence of RuBpy. Single Crystal X-ray diffraction studies determined the position of RuBpy cations within the crystal lattice. The RWLC-3 structure is described as a 2-fold interpenetrated pillared honeycomb network (bnb) containing crystallographically resolved RuBpy clusters. The two bnb networks are weakly interconnected. The encapsulated RuBpy exhibits two emission decay lifetimes (τ-fast = 120 ns, τ-slow = 453 ns) and a bathochromic shift in the steady state emission spectrum relative to RuBpy in ethanol.

  8. Synthesis, characterisation and catalytic activity of 4, 5-imidazoledicarboxylate ligated Co(II) and Cd(II) metal-organic coordination complexes

    NASA Astrophysics Data System (ADS)

    Gangu, Kranthi Kumar; Maddila, Suresh; Mukkamala, Saratchandra Babu; Jonnalagadda, Sreekantha B.

    2017-09-01

    Two mono nuclear coordination complexes, namely, [Co(4,5-Imdc)2 (H2O)2] (1) and [Cd(4,5-Imdc)2(H2O)3]·H2O (2) were constructed using Co(II) and Cd(II) metal salts with 4,5-Imidazoledicarboxylic acid (4,5-Imdc) as organic ligand. Both 1, 2 were structurally characterized by single crystal XRD and the results reveal that 1 belongs to P21/n space group with unit cell parameters [a = 5.0514(3) Å, b = 22.5786(9) Å, c = 6.5377(3) Å, β = 111.5°] whereas, 2 belongs to P21/c space group with unit cell parameters [a = 6.9116(1) Å, b = 17.4579(2) Å, c = 13.8941(2) Å, β = 97.7°]. While Co(II) in 1 exhibited a six coordination geometry with 4,5-Imdc and water molecules, Cd(II) ion in 2 showed a seven coordination with the same ligand and solvent. In both 1 and 2, the hydrogen bond interactions with mononuclear unit generated 3D-supramolecular structures. Both complexes exhibit solid state fluorescent emission at room temperature. The efficacy of both the complexes as heterogeneous catalysts was examined in the green synthesis of six pyrano[2,3,c]pyrazole derivatives with ethanol as solvent via one-pot reaction between four components, a mixture of aromatic aldehyde, malononitrile, hydrazine hydrate and dimethyl acetylenedicarboxylate. Both 1 and 2 have produced pyrano [2,3,c]pyrazoles in impressive yields (92-98%) at room temperature in short interval of times (<20 min), with no need for any chromatographic separations. With good stability, ease of preparation and recovery plus reusability up to six cycles, both 1 and 2 prove to be excellent environmental friendly catalysts for the value-added organic transformations using green principles.

  9. Anti-inflammatory drugs interacting with Zn(II), Cd(II) and Pt(II) metal ions.

    PubMed

    Dendrinou-Samara, C; Tsotsou, G; Ekateriniadou, L V; Kortsaris, A H; Raptopoulou, C P; Terzis, A; Kyriakidis, D A; Kessissoglou, D P

    1998-09-01

    Complexes of Zn(II), Cd(II) and Pt(II) metal ions with the anti-inflammatory drugs, 1-methyl-5-(p-toluoyl)-1H-pyrrole-2-acetic acid (Tolmetin), alpha-methyl-4-(2-methylpropyl)benzeneacetic acid (Ibuprofen), 6-methoxy-alpha-methylnaphthalene-2-acetic acid (Naproxen) and 1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid (indomethacin) have been synthesized and characterized. In the structurally characterized Cd(naproxen)2 complex the anti-inflammatory drugs acts as bidentate chelate ligand coordinatively bound to metal ions through the deprotonated carboxylate group. Crystal data for 1: [C32H26O8Cd], orthorhombic, space group P22(1)2(1), a = 5.693(2) (A), b = 8.760(3) (A), c = 30.74(1) (A), V = 1533(1) A3, Z = 2. Antibacterial and growth inhibitory activity is higher than that of the parent ligands or the platinum(II) diamine compounds.

  10. Decreased Sensitivity to Changes in the Concentration of Metal Ions as the Basis for the Hyperactivity of DtxR(E175K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Aquino, J. Alejandro; Denninger, Andrew R.; Moulin, Aaron G.

    2010-01-12

    )-toxPO complex is insensitive to changes in the environmental cation concentrations. In addition to Mn(II), Ni(II), Co(II), Cd(II), and Zn(II) are able to sustain the hyperactive phenotype. These results demonstrate a prominent role of binding site 1 in the activation of DtxR and support the hypothesis that DtxR(E175K) attenuates the expression of virulence due to the decreased ability of the Me(II)-DtxR(E175K)-toxPO complex to dissociate at low concentrations of metal ions.« less

  11. Nicotianamine forms complexes with Zn(II) in vivo.

    PubMed

    Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan

    2010-01-01

    The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.

  12. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    PubMed

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  13. Synthesis, characterization, and application of novel Zn(II)-ionic imprinted polymer for preconcentration of Zn(II) ions from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wirawan, T.; Supriyanto, G.; Soegianto, A.

    2018-04-01

    Preparation of a new Zn2+ ion-imprinted polymer (Zn-IIP) is presented in this report. The Zn-IIP are prepared by precipitation polymerization using 8-hydroxyquinoline (8HQ) as a ligand, methacrylic acid (MAA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as a cross-linker has been prepared. The benzoyl peroxide and ethanol/acetonitrile (2:1) mixture were used as initiator and porogen, respectively. Precipitation polymerization was carried out by heating in a water bath at 60°C for 8 hours. After polymerization, cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer with 2 mol L-1 HNO3. The polymer was washed with aquabidest and dried in an oven at the temperature of 60°C for 24 hours. The Zn-IIP was characterized by Fourier Transform Infrared Spectrophotometry (FT-IR) and Scanning Electron Microscopy (SEM). The synthesized Zn-IIP was used as a new adsorbent for solid phase extraction (SPE) of Zn(II) prior to Flame Atomic Absorption Spectrometry (FAAS) determination. The experimental parameters for SPE, such as pH of the sample, loading rate, and elution volume, have been optimized. The effect of pH of the sample on the extraction of analyte was studied in batch mode. The effects of loading rate and elution volume on the extraction of analyte were studied in dynamic mode by loading of the sample through IIP-SPE cartridge containing 100 mg of the synthesized Zn-IIP. The imprinted polymer (Zn-IIP) have bands at 3433.06 cm-1 (O-H), 1508.23 cm-1 (C=N aromatics), 1284.5 cm-1 (C-N aromatics), 1056.9 cm-1 (C-O phenol), 1724.24 cm-1 (C=O), and 1639.38 cm-1 (conjugated C=O with C=C). The Scanning Electron Microscopy (SEM) images of IIP and IIP show that the IIP is seen to have more cavities than NIP. The optimum pH for quantitative Zn(II) retention was 5.5, and the elution was completed with 2 mL of 1.0 mol L-1 nitric acid. The optimum loading rate was 0.5 mL min-1. The recovery of Zn(II) from solution

  14. Two new luminescent Zn(II) compounds constructed from guanazole and aromatic polycarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Zhao, Haixiang; Dong, Yanli; Liu, Haiping

    2016-02-01

    Two new Zn(II) compounds, namely [(CH3)2NH2]2n[Zn3(bpt)2(datrz)2]n (1) and [(CH3)2NH2)]n[Zn2(bptc)(datrz)]n·n(H2O) (2) (H3bpt = biphenyl-3,4‧,5-tricarboxylic acid, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, Hdatrz = 3,5-diamino-1,2,4-triazole), have been obtained by the self-assemble reactions of Zn(NO3)2, 3,5-diamino-1,2,4-triazole, aromatic polycarboxylate ligands under solvothermal conditions. Single crystal X-ray structural analyses reveal that both compounds display three-dimensional (3D) frameworks. Compound 1 features a trinodal (3, 4, 6)-connected topological network with the point symbol of {4.62}2{4.64.8}{46.64.85}. Compound 2 displays a binodal (4, 6)-connected topological network with the point symbol of {32.62.72}{34.42.64.75}. In addition, the thermal stabilities and luminescent properties of compounds 1 and 2 were also investigated in the solid state at room temperature.

  15. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lin; Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn; Yang, Gao-Shan

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, andmore » contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.« less

  16. Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites

    NASA Astrophysics Data System (ADS)

    Gautam, Ritika

    at 635 nm. This reaction also explains the antioxidant properties of the linear tripyrrin-1,14-dione ligand, which acts as a scavenger of O2•-. In Chapter 4, the zinc binding properties of the tripyrrin-1,14-dione ligand are described. The tripyrrolic ligand coordinates as a dianionic ligand with the divalent Zn(II) ion in both organic and aqueous buffered conditions. The complex formed is highly fluorescent with a long wavelength emission band at 648 nm. The X-Ray crystallography analysis indicates the existence of dinuclear complex [Zn(TD1•)(H2O)]2, featuring a distorted square planar geometry around the Zn(II) center. In Chapter 5, the coordination chemistry of the dipyrrin-1,9-dione fragment of propentdyopent ligand is shown with a series of transition metals like (e.g., Co(II), Ni(II), Cu(II) and Zn(II)), which form homoleptic tetrahedral complexes. The spectroscopic and electrochemical characterization confirms that the complexes shows ligand-based redox chemistry and acts as reservoirs for unpaired electrons. Chapter 6 describes the formation of the fluorescent BODIPY complex of propentdyopent ligand. The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent undergoes a one-pot reaction with borontrifluoride etherate in toluene to form a green fluorescent [(pdp)BF2] complex. Spectroscopic studies reveal that the meso-unsubstituted [(pdp)BF2] complex is stable in tetrahydrofuran and has a quantum yield of 0.13. Electrochemical studies confirm that the complex undergoes ligand-based reduction and acts as a host for an unpaired electron.

  17. Sensitive spectrophotometric determination of Co(II) using dispersive liquid-liquid micro-extraction method in soil samples.

    PubMed

    Hasanpour, Foroozan; Hadadzadeh, Hassan; Taei, Masoumeh; Nekouei, Mohsen; Mozafari, Elmira

    2016-05-01

    Analytical performance of conventional spectrophotometer was developed by coupling of effective dispersive liquid-liquid micro-extraction method with spectrophotometric determination for ultra-trace determination of cobalt. The method was based on the formation of Co(II)-alpha-benzoin oxime complex and its extraction using a dispersive liquid-liquid micro-extraction technique. During the present work, several important variables such as pH, ligand concentration, amount and type of dispersive, and extracting solvent were optimized. It was found that the crucial factor for the Co(II)-alpha benzoin oxime complex formation is the pH of the alkaline alcoholic medium. Under the optimized condition, the calibration graph was linear in the ranges of 1.0-110 μg L(-1) with the detection limit (S/N = 3) of 0.5 μg L(-1). The preconcentration operation of 25 mL of sample gave enhancement factor of 75. The proposed method was applied for determination of Co(II) in soil samples.

  18. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level.

    PubMed

    Marui, Junichiro; Yamane, Noriko; Ohashi-Kunihiro, Sumiko; Ando, Tomohiro; Terabayashi, Yasunobu; Sano, Motoaki; Ohashi, Shinichi; Ohshima, Eiji; Tachibana, Kuniharu; Higa, Yoshitaka; Nishimura, Marie; Koike, Hideaki; Machida, Masayuki

    2011-07-01

    A gene encoding the Zn(II)(2)Cys(6) transcriptional factor is clustered with two genes involved in biosynthesis of a secondary metabolite, kojic acid (KA), in Aspergillus oryzae. We determined that the gene was essential for KA production and the transcriptional activation of KA biosynthetic genes, which were triggered by the addition of KA. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Functionalized Derivatives of Benzo-Crown Ethers. Part 4. Antifungal Macrocyclic Supramolecular Complexes of Transition Metal Ions Acting as Lanosterol-14-α-Demethylase Ihibitors

    PubMed Central

    Barboiu, Mihai; Scozzafava, Andrea; Guran, Cornelia; Diaconescu, Paula; Bojin, Mihaela; Iluc, Vlad; Cot, Louis

    1999-01-01

    Poly- and mononuclear metal complexes of 2,3,11,12-bis[4-(10-aminodecylcarbonyl)]benzo-18- crown-6 (L) and Cu(II); Ni(II); Co(II) and Cr(III) have been synthesized and characterized by standard physico-chemical procedures. In the newly prepared complexes the crown moiety oxygen atoms of the macrocyclic host did not generally interact with metal ions, whereas the two amino groups of the ligand always did. Several of the newly synthesized compounds act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3−0.5 μg/mL. The mechanism of antifungal action of these coordination compounds is probably connected to an inhibition of lanosterol-14-α-demethylase, a metallo-enzyme playing a key role in sterol biosynthesis in fungi, bacteria and eukariotes. PMID:18475888

  20. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  1. Spectroscopic, and thermal studies of some new binuclear transition metal(II) complexes with hydrazone ligands containing acetoacetanilide and isoxazole.

    PubMed

    Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi

    2007-11-01

    A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M(2)(L)(2) (micro-OCH(3))(2) [M=Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, (1)H NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Different thermodynamic and kinetic parameters namely activation energy (E*), enthalpy of activation (DeltaH*), entropy of activation (DeltaS*) and free energy change of activation (DeltaG*) are calculated using Coats-Redfern (CR) equation.

  2. Purification and Characterization of the FeII- and α-Ketoglutarate-Dependent Xanthine Hydroxylase from Aspergillus nidulans†

    PubMed Central

    Montero-Morán, Gabriela M.; Li, Meng; Rendòn-Huerta, Erika; Jourdan, Fabrice; Lowe, David J.; Stumpff-Kane, Andrew W.; Feig, Michael; Scazzocchio, Claudio; Hausinger, Robert P.

    2008-01-01

    His6-tagged xanthine/α-ketoglutarate (αKG) dioxygenase (XanA) of Aspergillus nidulans was purified from both the fungal mycelium and recombinant Escherichia coli cells, and the properties of the two forms of the protein were compared. Evidence was obtained for both N- and O-linked glycosylation on the fungus-derived XanA, which aggregates into an apparent dodecamer, while bacteria-derived XanA is free of glycosylation and behaves as a monomer. Immunological methods identify phosphothreonine in both forms of XanA, with phosphoserine also detected in the bacteria-derived protein. Mass spectrometric analysis confirms glycosylation and phosphorylation of the fungus-derived sample, which also undergoes extensive truncation at its amino terminus. Despite the major differences in properties of these proteins, their kinetic parameters are similar (kcat 30-70 s-1, Km of αKG 31-50 μM, Km of xanthine ∼45 μM, and pH optima at 7.0 to 7.4). The enzyme exhibits no significant isotope effect when using 8-2H-xanthine; however, it demonstrates a two-fold solvent deuterium isotope effect. CuII and ZnII potently inhibit the FeII-specific enzyme, whereas CoII, MnII, and NiII are weaker inhibitors. NaCl decreases the kcat and increases the Km of both αKG and xanthine. The αKG cosubstrate can be substituted by α-ketoadipate (9-fold decrease in kcat and 5-fold increase in the Km compared to the normal α-keto acid), while the αKG analogue N-oxalylglycine is a competitive inhibitor (Ki 0.12 μM). No alternative purines effectively substitute for xanthine as a substrate, and only one purine analogue (6,8-dihydroxypurine) results in significant inhibition. Quenching of the endogenous fluorescence of the two enzyme forms by xanthine, αKG, and DHP was used to characterize their binding properties. A XanA homology model was generated on the basis of the structure of the related enzyme TauD (PDB code 1OS7) and provided insights into the sites of posttranslational modification and

  3. Efficient generation of volatile cadmium species using Ti(III) and Ti(IV) and application to determination of cadmium by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    PubMed Central

    Arslan, Zikri; Yilmaz, Vedat; Rose, LaKeysha

    2015-01-01

    In this study, a highly efficient chemical vapor generation (CVG) approach is reported for determination of cadmium (Cd). Titanium (III) and titanium (IV) were investigated for the first time as catalytic additives along with thiourea, L-cysteine and potassium cyanide (KCN) for generation of volatile Cd species. Both Ti(III) and Ti(IV) provided the highest enhancement with KCN. The improvement with thiourea was marginal (ca. 2-fold), while L-cysteine enhanced signal slightly only with Ti(III) in H2SO4. Optimum CVG conditions were 4% (v/v) HCl + 0.03 M Ti(III) + 0.16 M KCN and 2% (v/v) HNO3 + 0.03 M Ti(IV) + 0.16 M KCN with a 3% (m/v) NaBH4 solution. The sensitivity was improved about 40-fold with Ti(III) and 35-fold with Ti(IV). A limit of detection (LOD) of 3.2 ng L−1 was achieved with Ti(III) by CVG-ICP-MS. The LOD with Ti(IV) was 6.4 ng L−1 which was limited by the blank signals in Ti(IV) solution. Experimental evidence indicated that Ti(III) and Ti(IV) enhanced Cd vapor generation catalytically; for best efficiency mixing prior to reaction with NaBH4 was critical. The method was highly robust against the effects of transition metal ions. No significant suppression was observed in the presence of Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II) and Zn(II) up to 1.0 μg mL−1. Among the hydride forming elements, no interference was observed from As(III) and Se(IV) at 0.5 μg mL−1 level. The depressive effects from Pb(II) and Sb(III) were not significant at 0.1 μg mL−1 while those from Bi(III) and Sn(II) were marginal. The procedures were validated with determination of Cd by CVG-ICP-MS in a number certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), Dogfish liver (DOLT-4), Mussel tissue (SRM 2976) and Domestic Sludge (SRM 2781). PMID:26251554

  4. Reduction of aqueous transition metal species on the surfaces of Fe(II) -containing oxides

    NASA Astrophysics Data System (ADS)

    White, Art F.; Peterson, Maria L.

    1996-10-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25°C. For an aqueous transition metal m, such reactions are 3[FeFe23+]O+2/nm→4[Fe23+]O+Fe+2/nm and 3[FeTi]O+→Fe23+TiO+Fe+2/nm, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] → [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe 2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 × 10 -10 mol m -2 s -1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe 2+ is oxidized homogeneously in solution to Fe 3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental solution. In contrast, magnetite weathered under oxidizing vadose conditions show

  5. Synthesis, crystal structure, antibacterial activity and theoretical studies on a novel mononuclear cobalt(II) complex based on 2,4,6-tris(2-pyridyl)-1,3,5-triazine ligand

    NASA Astrophysics Data System (ADS)

    Maghami, Mahboobeh; Farzaneh, Faezeh; Simpson, Jim; Ghiasi, Mina; Azarkish, Mohammad

    2015-08-01

    A cobalt complex was prepared from CoCl2·6H2O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in methanol and designated as [Co(tptz)(CH3OH)Cl2]·CH3OH·0.5H2O (1). It was characterized by several techniques including TGA analysis and FT-IR, UV-Vis and 1H NMR spectral studies. The crystal structure of 1 was determined by single-crystal X-ray diffraction. The Co(II) metal center in 1 is six coordinated with a distorted octahedral geometry. The tptz ligand is tridentate and coordinates to the cobalt through coplanar nitrogen atoms from the triazine and two pyridyl rings. Two chloride anions and a methanol molecule complete the inner coordination sphere of the metal ion. The optimized geometrical parameters obtained by DFT calculation are in good agreement with single XRD data. The in vitro antibacterial activity of various tptz complexes of Co(II), Ni(II), Cu(II), Mn(II) and Rh(III) were evaluated against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. Whereas all complexes exhibited good activity in comparison to standard antibacterial drugs, the inhibitory effects of complexes were found to be more than that of the parent ligand. Overall, the obtained results strongly suggest that the cobalt(II) complex is a suitable candidate for counteracting antibiotic resistant microorganisms.

  6. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Surajit; Dolai, Malay; Dutta, Arpan; Ali, Mahammad

    2016-12-01

    Reaction of a symmetric compartmental Schiff-base ligand, (H2L) with nickel(II) perchlorate hexahydrate in 1:1 M ratio in methanol gives rise to a mononuclear nickel(II) compound, NiL (1). The compound has been characterized by C, H, N microanalyses and UV-Vis spectra. The single crystal X-ray diffraction studies reveal a square planar geometry around the Ni(II) center. The compound crystallizes in monoclinic system with space group C2/c with a = 21.6425(6), b = 9.9481(3), c = 13.1958(4) Å, β = 107.728(2)°, V = 2706.16(14) Å3 and Z = 4. Ground state DFT optimization and TDDFT calculations on the ligand and complex were performed to get their UV-Vis spectral pattern.

  7. Synthesis, characterization and biological approach of metal chelates of some first row transition metal ions with halogenated bidentate coumarin Schiff bases containing N and O donor atoms.

    PubMed

    Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S

    2016-04-01

    The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis and spectral characterization of Zn(II) microsphere series for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Singh, Ajay K.; Pandey, Sarvesh K.; Pandey, O. P.; Sengupta, S. K.

    2014-09-01

    Microsphere series have been synthesized by reacting zinc(II) acetate dihydrate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole/oxadiazole/triazole with salicylaldehyde. Elemental analysis suggests that the complexes have 1:2 and 1:1 stoichiometry of the type [Zn(L)2(H2O)2] and [Zn(L‧)(H2O)2]; LH = Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thia/oxadiazole with salicylaldehyde; L‧H2 = Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1,2,4-triazole and salicylaldehyde and were characterized by elemental analyses, IR, 1H NMR and 13C NMR spectral data. Scanning electron microscopy (SEM) showed that synthesized materials have microsphere like structure and there EDX analysis comparably matches with elemental analysis. For the antimicrobial application Schiff bases and their zinc(II) complexes were screened for four bacteria e.g. Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Streptococcus pyogenes and four fungi e.g. Cyrtomium falcatum, Aspergillus niger, Fusarium oxysporium and Curvularia pallescence by the reported method. Schiff base and Zn(II) compounds showed significant antimicrobial activities. However, activities increase upon chelation. Thermal analysis (TGA) data of compound (10) showed its stability up to 300 °C.

  9. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at R Ni-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  10. Dual shell-like magnetic clusters containing Ni(II) and Ln(III) (Ln = La, Pr, and Nd) ions.

    PubMed

    Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Zhiping; Nichol, Gary; Huang, Rong-Bin; Zheng, Lan-Sun

    2008-04-07

    Dual shell-like nanoscopic magnetic clusters featuring a polynuclear nickel(II) framework encapsulating that of lanthanide ions (Ln = La, Pr, and Nd) were synthesized using Ni(NO3)(2).6H2O, Ln(NO3)(3).6H2O, and iminodiacetic acid (IDA) under hydrothermal conditions. Structurally established by crystallographic studies, these clusters are [La20Ni30(IDA)30(CO3)6(NO3)6(OH)30(H2O)12](CO3)(6).72H2O (1), [Ln20Ni21(C4H5NO4)21(OH)24(C2H2O3)6(C2O4)3(NO3)9(H2O)12](NO3)9.nH2O [C2H2O3 is the alkoxide form of glycolate; Ln = Pr (2), n = 42; Nd (3), n = 50], and {[La4Ni5Na(IDA)5(CO3)(NO3)4(OH)5(H2O)5][CO3].10H2O} infinity (4). Carbonate, oxalate, and glycolate are products of hydrothermal decomposition of IDA. Compositions of these compounds were confirmed by satisfactory elemental analyses. It has been found that the cluster structure is dependent on the identity of the lanthanide ion as well as the starting Ln/Ni/IDA ratio. The cationic cluster of 1 features a core of the Keplerate type with an outer icosidodecahedron of Ni(II) ions encaging a dodecahedral kernel of La(III). Clusters 2 and 3, distinctly different from 1, are isostructural, possessing a core of an outer shell of 21 Ni(II) ions encapsulating an inner shell of 20 Ln(III) ions. Complex 4 is a three-dimensional assembly of cluster building blocks connected by units of Na(NO3)/La(NO3)3; the structure of the building block resembles closely that of 1, with a hydrated La(III) ion internalized in the decanuclear cage being an extra feature. Magnetic studies indicated ferromagnetic interactions in 1, while overall antiferromagnetic interactions were revealed for 2 and 3. The polymeric, three-dimensional cluster network 4 displayed interesting ferrimagnetic interactions.

  11. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  12. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Synthesis, spectral characterization and catalytic activity of Co(II) complexes of drugs: crystal structure of Co(II)-trimethoprim complex.

    PubMed

    Madhupriya, Selvaraj; Elango, Kuppanagounder P

    2014-01-24

    New Co(II) complexes with drugs such as trimethoprim (TMP), cimetidine (CTD), niacinamide (NAM) and ofloxacin (OFL) as ligands were synthesized. The complexes were characterized by analytical analysis, various spectral techniques such as FT-IR, UV-Vis, magnetic measurements and molar conductivity. The magnetic susceptibility results coupled with the electronic spectra suggested a tetrahedral geometry for the complexes. The coordination mode of trimethoprim ligand and geometry of the complex were confirmed by single crystal X-ray studies. In this complex the metal ion possesses a tetrahedral geometry with two nitrogen atom from two TMP ligands and two chloride ions coordinated to it. The catalytic activity of the complexes in aryl-aryl coupling reaction was screened and the results indicated that among the four complexes [Co(OFL)Cl(H2O)] exhibited excellent catalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    PubMed

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion.

    PubMed

    Shipley, Heather J; Engates, Karen E; Grover, Valerie A

    2013-03-01

    Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.

  16. Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeednia, S., E-mail: sami_saeednia@yahoo.com; Iranmanesh, P.; Ardakani, M. Hatefi

    Highlights: • A novel nano-scale Zn(II) complex was synthesized by solvothermal method. • Chemical structure of the nanostructures was characterized as well as bulk complex. • The photoluminescence property of the complex was investigated at room temperature. • The thermogravimetry and differential thermal analysis were carried out. • Thermal decomposition of the nanostructures was prepared zinc oxide nanoparticles. - Abstract: Nanoparticles of a novel Zn(II) Schiff base complex, [Zn(HL)NO{sub 3}]{sub 2} (1), (H{sub 2}L = 2-[(2-hydroxy-propylimino) methyl] phenol), was synthesized by using solvothermal method. Shape, morphology and chemical structure of the synthesized nanoparticles were characterized by scanning electron microscopy (SEM),more » X-ray powder diffraction (XRD), Fourier Transform Infrared Spectoscopy (FT-IR) and UV–vis spectroscopy. Structural determination of compound 1 was determined by single-crystal X-ray diffraction. The results were revealed that the zinc complex is a centrosymmetric dimer in which deprotonated phenolates bridge the two five-coordinate metal atoms and link the two halves of the dimer. The thermal stability of compound 1 was analyzed by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The effect of the initial substrates concentration and reaction time on size and morphology of compound 1 nanostructure was investigated as well. Furthermore, the luminescent properties of the complex 1 were examined. ZnO nanoparticles with diameter between 15 and 20 nm were simply synthesized by solid-state transformation of compound 1 at 700 °C.« less

  17. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.

    2015-06-01

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  18. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  19. Synthesis, structure, luminescent, and magnetic properties of carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2] (Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato).

    PubMed

    Ehama, Kiyomi; Ohmichi, Yusuke; Sakamoto, Soichiro; Fujinami, Takeshi; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Tsuchimoto, Masanobu; Re, Nazzareno

    2013-11-04

    Carbonato-bridged Zn(II)2Ln(III)2 complexes [(μ4-CO3)2{Zn(II)L(n)Ln(III)(NO3)}2]·solvent were synthesized through atmospheric CO2 fixation reaction of [Zn(II)L(n)(H2O)2]·xH2O, Ln(III)(NO3)3·6H2O, and triethylamine, where Ln(III) = Gd(III), Tb(III), Dy(III); L(1) = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, L(2) = N,N'-bis(3-ethoxy-2-oxybenzylidene)-1,3-propanediaminato. Each Zn(II)2Ln(III)2 structure possessing an inversion center can be described as two di-μ-phenoxo-bridged {Zn(II)L(n)Ln(III)(NO3)} binuclear units bridged by two carbonato CO3(2-) ions. The Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of L(n) and one oxygen atom of a bridging carbonato ion at the axial site. Ln(III) ion is coordinated by nine oxygen atoms consisting of four from the deprotonated Schiff-base L(n), two from a chelating nitrate, and three from two carbonate groups. The temperature-dependent magnetic susceptibilities in the range 1.9-300 K, field-dependent magnetization from 0 to 5 T at 1.9 K, and alternating current magnetic susceptibilities under the direct current bias fields of 0 and 1000 Oe were measured. The magnetic properties of the Zn(II)2Ln(III)2 complexes are analyzed on the basis of the dicarbonato-bridged binuclear Ln(III)-Ln(III) structure, as the Zn(II) ion with d(10) electronic configuration is diamagnetic. ZnGd1 (L(1)) and ZnGd2 (L(2)) show a ferromagnetic Gd(III)-Gd(III) interaction with J(Gd-Gd) = +0.042 and +0.028 cm(-1), respectively, on the basis of the Hamiltonian H = -2J(Gd-Gd)ŜGd1·ŜGd2. The magnetic data of the Zn(II)2Ln(III)2 complexes (Ln(III) = Tb(III), Dy(III)) were analyzed by a spin Hamiltonian including the crystal field effect on the Ln(III) ions and the Ln(III)-Ln(III) magnetic interaction. The Stark splitting of the ground state was so evaluated, and the energy pattern indicates a strong easy axis (Ising type) anisotropy. Luminescence spectra of Zn(II)2Tb(III)2 complexes were observed, while those

  20. Optical studies on phthalocyanines substituted with phenylazonaphthoxy groups

    NASA Astrophysics Data System (ADS)

    Özçeşmeci, İbrahim; Sorar, Idris; Gül, Ahmet

    2016-10-01

    The synthesis and characterization of peripherally ({1-[(Z or E)-phenylazo]-2-naphthyl} oxy) tetra-substituted metal-free and metallo (Zn(II), Co(II) and Cu(II)) phthalocyanines are described in this study. Aggregation properties of these compounds were investigated in the concentration range of 20-1 μM in tetrahydrofuran. Spectroscopic and photophysical properties of these phthalocyanines have been investigated in tetrahydrofuran. Thin films of metallophthalocyanines were prepared by spin coating technique. Results show that transmittance values of the films change with respect to the metal ions in the visible and Q absorptions regions. Films were also annealed at 100, 200 and 300 °C and their optical properties were investigated as a function of annealing temperature. The spectrophotometric measurements of transmittance spectra were carried out in the wavelength range 200-1000 nm. Results showed that transmittance values of ZnPc thin films were increased as a result of heat treatment.

  1. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    PubMed

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis, crystal structures, spectral, thermal and antimicrobial properties of new Zn(II) 5-iodo- and 5-bromosalicylates

    NASA Astrophysics Data System (ADS)

    Košická, Petra; Győryová, Katarína; Smolko, Lukáš; Gyepes, Róbert; Hudecová, Daniela

    2018-03-01

    Two new analogous zinc(II) complexes containing 5-iodo- and 5-bromosalicylate ligands, respectively, were prepared in single-crystal form and characterized by IR spectroscopy, thermal analysis and elemental analysis. The solid-state structures of prepared complexes were determined by single crystal X-ray crystallography. Both complexes are isostructural and their crystal structures composed of neutral molecules [Zn(5-Xsal)2(H2O)2] (where X = Br, I, sal = salicylato). Central Zn(II) atom is in both complexes coordinated by six oxygen atoms, four of which are from two chelate bonded 5-halosalicylates and remaining two from coordinated water molecules. The found chelate binding mode is in line with the Δ values calculated from IR spectral data. Antimicrobial activity of prepared complexes was studied against selected bacteria, yeast and filamentous fungi. Obtained results indicate that 5-iodosalicylate complex is more antimicrobially active than its 5-bromo substituted analogue.

  3. Combined EXAFS and DFT Structure Calculations Provide Structural Insights into the 1:1 Multi-Histidine Complexes of CuII, CuI and ZnII with the Tandem Octarepeats of the Mammalian Prion Protein

    PubMed Central

    Pushie, M. Jake; Nienaber, Kurt H.; McDonald, Alex; Millhauser, Glenn L.; George, Graham N.

    2014-01-01

    The metal coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of copper interaction with PrP just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, and yet the structural details of the various metal coordination modes have not been fully elucidated in some cases. Herein we employ X-ray absorption near edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI and ZnII with an N-terminal fragment of PrP. The PrP fragment constitutes four tandem repeats representative of the mammalian octarepeat domain, designated OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations provide additional structural and thermodynamic data, and candidate structures are used to inform EXAFS data analysis. The optimized geometries from DFT calculations are used to identify potential coordination complexes for multi-histidine coordination of CuII, CuI and ZnII in an aqueous medium, modeled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve fitting, using full multiple scattering on candidate structures from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as a square planar [CuII(His)4]2+, digonal [CuI(His)2]+ and tetrahedral [ZnII(His)3(OH2)]2+, respectively. PMID:25042361

  4. O2-dependent Aliphatic Carbon-carbon Bond Cleavage Reactivity in a Ni(II) Enolate Complex Having a Hydrogen Bond Donor Microenvironment; Comparison with a Hydrophobic Analog

    PubMed Central

    Grubel, Katarzyna; Fuller, Amy L.; Chambers, Bonnie M.; Arif, Atta M.; Berreau, Lisa M.

    2010-01-01

    A mononuclear Ni(II) complex having an acireductone type ligand, and supported by the bnpapa (N,N-bis((6-neopentylamino-2-pyridyl)methyl-N-((2-pyridyl)methyl)amine ligand, [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), has been prepared and characterized by elemental analysis, 1H NMR, FTIR, and UV-vis. To gain insight into the 1H NMR features of 14, the air stable analog complexes [(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16) and [(bnpapa)Ni(ONHC(O)CH3)]ClO4 (17) were prepared and characterized by X-ray crystallography, 1H NMR, FTIR, UV-vis, mass spectrometry, and solution conductivity measurements. Compounds 16 and 17 are 1:1 electrolyte species in CH3CN. 1H and 2H NMR studies of 14, 16, and 17 and deuterated analogs revealed that the complexes having six-membered chelate rings for the exogenous ligand (14 and 16) do not have a plane of symmetry within the solvated cation and thus exhibit more complicated 1H NMR spectra. Compound 17, as well as other simple Ni(II) complexes of the bnpapa ligand (e.g. [(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) and [(bnpapaNi)2(μ-Cl)2](ClO4)2 (19)), exhibit 1H NMR spectra consistent with the presence of a plane of symmetry within the cation. Treatment of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) with O2 results in aliphatic carbon-carbon bond cleavage within the acireductone-type ligand and the formation of [(bnpapa)Ni(O2CPh)]ClO4 (9), benzoic acid, benzil, and CO. Use of 18O2 in the reaction gives high levels of incorporation (>80%) of one labeled oxygen atom into 9 and benzoic acid. The product mixture and level of 18O incorporation in this reaction is different than that exhibited by the analog supported the hydrophobic 6-Ph2TPA ligand, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). We propose that this difference is due to variations in the reactivity of bnpapa- and 6-Ph2TPA-ligated Ni(II) complexes with triketone and/or peroxide species produced in the reaction pathway. PMID:20039645

  5. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  6. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    PubMed

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  8. Efficient flow injection and sequential injection methods for spectrophotometric determination of oxybenzone in sunscreens based on reaction with Ni(II).

    PubMed

    Chisvert, A; Salvador, A; Pascual-Martí, M C; March, J G

    2001-04-01

    Spectrophotometric determination of a widely used UV-filter, such as oxybenzone, is proposed. The method is based on the complexation reaction between oxybenzone and Ni(II) in ammoniacal medium. The stoichiometry of the reaction, established by the Job method, was 1:1. Reaction conditions were studied and the experimental parameters were optimized, for both flow injection (FI) and sequential injection (SI) determinations, with comparative purposes. Sunscreen formulations containing oxybenzone were analyzed by the proposed methods and results compared with those obtained by HPLC. Data show that both FI and SI procedures provide accurate and precise results. The ruggedness, sensitivity and LOD are adequate to the analysis requirements. The sample frequency obtained by FI is three-fold higher than that of SI analysis. SI is less reagent-consuming than FI.

  9. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  10. Syntheses and structural characterization of Co(II) and Cd(II) coordination polymers with 1,4-bis(imidazolyl)butane ligand

    NASA Astrophysics Data System (ADS)

    Lalegani, Arash; Khalaj, Mehdi; Sedaghat, Sajjad; Łyczko, Krzysztof; Lipkowski, Janusz

    2017-11-01

    Two new coordination polymers, {[Co(bib)3](PF6)2}n (1) and [Cd (bib) Cl2]n (2), were prepared at room temperature by the reaction of appropriate salts of cobalt (II) and cadmium (II) with the flexible linker ligands 1,4-bis(imidazolyl) butane (bib). The compounds were characterized by elemental analyses, IR spectroscopy and single crystal X-ray diffraction. In the polymeric structure of 1, the Co(II) ion lies on an inversion centre and adopts the CoN6 octahedral geometry, while in the structure of 2, the Cd(II) ions adopt the CdN2Cl4 pseudo-octahedral geometry. In compound 1, six bib ligands are coordinated to one central cobalt (II) to form an open 3D 2-fold interpenetrating framework of the α-polonium (pcu) type topology, while in compound 2 two bib ligands are coordinated to one central cadmium (II) to form 2D network structure.

  11. Synthesis, structure and magnetic study of a novel mixed-valent Co(II)10Co(III)4 shield constructed by mixed pyridine-alcoholate ligands.

    PubMed

    Peng, Yan; Tian, Chong-Bin; Zhang, Hua-Bin; Li, Zhi-Hua; Lin, Ping; Du, Shao-Wu

    2012-04-28

    A novel tetradecanuclear mixed-valent cobalt cluster, formulated as [Co(II)(10)Co(III)(4)(OH)(2)O(6)(hmp)(10)(pdm)(4)(CH(3)OH)(2)]·5H(2)O (1), was obtained using mixed ligands of 2-(hydroxymethyl)pyridine (hmpH) and 2,6-pyridinedimethanol (pdmH(2)). The cobalt ions in 1 are connected by ten chelating hmp(-) ligands, four tris-chelating pdm(2-) ligands and six μ(3)-oxide/hydroxide anions, forming a unique shield-like planar structure that is rarely observed for Co-based clusters. Compound 1 displays slight frequency dependence at static zero field below 4.5 K, suggesting that it might be a single molecule magnet (SMM). This journal is © The Royal Society of Chemistry 2012

  12. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape.

    PubMed

    Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik

    2015-02-16

    Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Fei; Chen, Jing; Liang, Yongfeng

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1)more » and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.« less

  14. Synthesis, characterization, photoluminescence, and electrochemical studies of novel mononuclear Cu(II) and Zn(II) complexes with the 1-benzylimidazolium ligand

    NASA Astrophysics Data System (ADS)

    Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah

    2017-08-01

    Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.

  15. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  16. Syntheses, structures, and properties of trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)], constructed with the complexed bridging ligand [M(bpca)(2)] [M, M' = Ni(II), Mn(II); Cu(II), Mn(II); Fe(II), Mn(II); Ni(II), Fe(II); and Fe(II), Fe(II); Hbpca = Bis(2-pyridylcarbonyl)amine, Hhfac = Hexafluoroacetylacetone].

    PubMed

    Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku

    2002-02-11

    Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.

  17. Cytogenetic toxicity effects of inorganic nickel and organic Ni(II) complexes on Brassica oleracea L. root meristem.

    PubMed

    Molas, J

    2001-01-01

    Experiments were carried out on the effect of nickel as an inorganic compound (NiSO4.7H2O) and organic Ni(II) complexes (i.e. Ni(II)-Glu and Ni(II)-EDTA) in concentrations of 20, 40 and 85 ?M dm-3 on meristematic cells of root tips of Brassica oleracea L. cv. Sława from Enkhouizen. All three tested chemical forms of nickel had a mitodepressive effect and inhibited root elongation. With respect to the degree of root elongation inhibition and mitodepressive effect, the tested forms of nickel can be put in the following order: Ni(II)-Glu NiSO4.7H2O Ni(II)-EDTA. In all three tested forms, nickel caused disturbances in mitotic divisions, resulting in anaphase bridges and binuclear cells, whose nuclei were joined by a bridge of condensed chromatin or separated. Inorganic nickel and Ni(II)-Glu in higher concentrations damaged nuclei (the amount of condensed chromatin increased), nucleoli (their structure became more condensed and vacuolisation was observed), endoplasmic reticulum (fragmentation, swelling of cisternae) and mitochondria (structure condensation).

  18. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  19. Comparison of energy interaction parameters for the complexation of Pr(III) with glutathione reduced (GSH) in absence and presence of Zn(II) in aqueous and aquated organic solvents using 4f?4f transition spectra as PROBE

    NASA Astrophysics Data System (ADS)

    Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon

    2005-04-01

    The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.

  20. Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.

  1. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: synthesis, spectroscopic and antipathogenic studies.

    PubMed

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X2 and [Ni(L)X]X compositions (where L=ligand and X=NO3-, Cl- and CH3COO-) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans. Copyright © 2010. Published by Elsevier B.V.

  2. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  3. Syntheses, structures and photoluminescence properties of three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) based on a pyridine N-oxide bridging ligand

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin

    2018-06-01

    Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.

  4. Reduction of aqueous transition metal species on the surfaces of Fe(II)-containing oxides

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1996-01-01

    Experimental studies demonstrate that structural Fe(II) in magnetite and ilmenite heterogeneously reduce aqueous ferric, cupric, vanadate, and chromate ions at the oxide surfaces over a pH range of 1-7 at 25??C. For an aqueous transition metal m, such reactions are 3[Fe2+Fe3+2]O4(magnetite) + 2/nmz ??? 4[Fe3+2]O3(maghemite) + Fe2+ + 2/nmz-n and 3[Fe2+Ti]O3(ilmenite) + 2/nmz ??? Fe3+2Ti3O9(pseudorutile) + Fe2+ + 2/nmz-n, where z is the valance state and n is the charge transfer number. The half cell potential range for solid state oxidation [Fe(II)] ??? [Fe(III)] is -0.34 to -0.65 V, making structural Fe(II) a stronger reducing agent than aqueous Fe2+ (-0.77 V). Reduction rates for aqueous metal species are linear with time (up to 36 h), decrease with pH, and have rate constants between 0.1 and 3.3 ?? 10-10 mol m-2 s-1. Iron is released to solution both from the above reactions and from dissolution of the oxide surface. In the presence of chromate, Fe2+ is oxidized homogeneously in solution to Fe3+. X-ray photoelectron spectroscopy (XPS) denotes a Fe(III) oxide surface containing reduced Cr(III) and V(IV) species. Magnetite and ilmenite electrode potentials are insensitive to increases in divalent transition metals including Zn(II), Co(II), Mn(II), and Ni(II) and reduced V(IV) and Cr(III) but exhibit a log-linear concentration-potential response to Fe(III) and Cu(II). Complex positive electrode responses occur with increasing Cr(VI) and V(V) concentrations. Potential dynamic scans indicate that the high oxidation potential of dichromate is capable of suppressing the cathodic reductive dissolution of magnetite. Oxide electrode potentials are determined by the Fe(II)/Fe(III) composition of the oxide surface and respond to aqueous ion potentials which accelerate this oxidation process. Natural magnetite sands weathered under anoxic conditions are electrochemically reactive as demonstrated by rapid chromate reduction and the release of aqueous Fe(III) to experimental

  5. Reactivity of Hydride Bridges in High-Spin [3M-3(μ-H)] Clusters (M = FeII, CoII).

    PubMed

    Lee, Yousoon; Anderton, Kevin J; Sloane, Forrest T; Ermert, David M; Abboud, Khalil A; García-Serres, Ricardo; Murray, Leslie J

    2015-08-26

    The designed [3M-3(μ-H)] clusters (M = Fe(II), Co(II)) Fe3H3L (1-H) and Co3H3L (2-H) [where L(3-) is a tris(β-diketiminate) cyclophane] were synthesized by treating the corresponding M3Br3L complexes with KBEt3H. From single-crystal X-ray analysis, the hydride ligands are sterically protected by the cyclophane ligand, and these complexes selectively react with CO2 over other unsaturated substrates (e.g., CS2, Me3SiCCH, C2H2, and CH3CN). The reaction of 1-H or 2-H with CO2 at room temperature yielded Fe3(OCHO)(H)2L (1-CO2) or Co3(OCHO)(H)2L (2-CO2), respectively, which evidence the differential reactivity of the hydride ligands within these complexes. The analogous reactions at elevated temperatures revealed a distinct difference in the reactivity pattern for 2-H as compared to 1-H; Fe3(OCHO)3L (1-3CO2) was generated from 1-H, while 2-H afforded only 2-CO2.

  6. SP70-alpha-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(II), Co(II) and Cr(III) in environmental samples.

    PubMed

    Narin, Ibrahim; Surme, Yavuz; Bercin, Erdogan; Soylak, Mustafa

    2007-06-25

    In the presented work, alpha-benzoin oxime immobilized SP70 chelating resin was synthesized for separation and preconcentration of Pb(II), Cd(II), Co(II) and Cr(III). The optimization procedure for analytical parameters including pH, eluent type, flow rate, etc. was examined in order to gain quantitative recoveries of analyte ions. The effects of foreign ions on the recoveries of studied metal ions were also investigated. The detection limits (3sigma) were found to be 16.0, 4.2, 1.3, 2.4microgL(-1) for Pb, Cd, Co and Cr, respectively. The preconcentration factor was 75 for Pb, 100 for Cd, Co and Cr. The optimized method was validated with certified reference materials and successfully applied to the waters, crops and pharmaceutical samples with good results (recoveries greater than 95%, R.S.D. lower than 10%).

  7. Synthesis, spectroscopic, thermal, voltammetric studies and biological activity of crystalline complexes of pyridine-2,6-dicarboxylic acid and 8-hydroxyquinoline

    NASA Astrophysics Data System (ADS)

    Çolak, Alper Tolga; Çolak, Ferdağ; Yeşilel, Okan Zafer; Büyükgüngör, Orhan

    2009-11-01

    Two new compounds (8-H 2Q) 2[M(dipic) 2]·6H 2O (M = Co ( 1) and Ni ( 2), 8-HQ = 8-hydroxyquinoline, dipic = dipicolinate) have been prepared and characterized by elemental analysis, spectral (IR and UV-vis), thermal analyses, magnetic measurements and single-crystal X-ray diffraction techniques. Both 1 and 2 consist two 8-hydroxyquinolinium cations, one bis(dipicolinate)M(II) anion [M = Co(II), Ni(II)] and six uncoordinated water molecules. Both 1 and 2 crystallize in the monoclinic space group C2/c. In the compounds anion, each dipic ligand simultaneously exhibits tridentate coordination modes through N atom of pyridine ring and oxygen atoms of the carboxylate groups. The crystal packing of 1 and 2 is a composite of intermolecular hydrogen bonding and C-O⋯π interactions. The in vitro antibacterial and antifungal activities of 1 and 2 were evaluated by the agar well diffusion method by MIC tests. Both new compounds showed the same antimicrobial activity against Gram-positive bacteria and yeast and fungi expect Gram-negative bacteria.

  8. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  9. Design, characterization and evaluation of hydroxyethylcellulose based novel regenerable supersorbent for heavy metal ions uptake and competitive adsorption.

    PubMed

    Abbas, Azhar; Hussain, Muhammad Ajaz; Sher, Muhammad; Irfan, Muhammad Imran; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Hussain, Syed Zajif; Hussain, Irshad

    2017-09-01

    Hydroxyethylcellulose succinate-Na (HEC-Suc-Na) was designed and evaluated for removal of some heavy metal ions from aqueous solution. Pristine sorbent HEC-Suc-Na was thoroughly characterized by FTIR and solid-state CP/MAS 13 C NMR spectroscopy, SEM-EDS and zero point charge analyses. Langmuir isotherm, pseudo second order kinetic and ion exchange models provided best fit to the experimental data of sorption of metal ions. Maximum sorption capacities of supersorbent HEC-Suc-Na for sorption of heavy metal ions from aqueous solution as calculated by Langmuir isotherm model were found to be 1000, 909.09, 666.6, 588 and 500mgg -1 for Pb(II), Cr(VI), Co(II), Cu(II) and Ni(II), respectively. Competitive sorption of these heavy metal ions was carried out from galvanic and nuclear waste water simulated environment. The negative values of ΔG° and ΔH° indicated spontaneity and exothermic nature of sorption. The sorbent was efficiently regenerated with no significant decrease in sorption capacity after five cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    PubMed

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  12. Extraction of Ni (II) from Spent Hydrodesulfurization HDS Catalyst Through Leaching and Electroless Precipitation of Ni(OH)2

    NASA Astrophysics Data System (ADS)

    Pradhan, Sangita R.; Dash, Barsha; Sanjay, Kali; Subbaiah, T.

    2013-04-01

    The extraction of nickel (II) from a spent hydro-desulfurization catalyst containing 11.6 pct Ni was carried out through sulfuric acid leaching. Variations of parameters such as the concentration of acid, temperature, and time, were studied and optimized. Nickel hydroxide was precipitated from the leach liquor via neutralization with 1 M sodium hydroxide up to pH 12 in three different methods: normal neutralization precipitation, and then neutralization precipitation followed by aging at 353 K (80 °C) for 4 hours and neutralization of the leach liquor with 10 pct (v/v) of 0.1 N sodium lauryl sulfate. X-ray diffraction (XRD) and transmission electron microscopy (TEM) microanalysis shows a difference in crystallinity with the method of precipitation. The nickel hydroxide contains Cu(II), Co(II), Zn(II), and Mn(II) as trace impurities. The discharge capacities of the precipitated nickel hydroxides were 120 mAhg-1, 140.72 mAhg-1, and 145.2 mAhg-1 for aged sample, sample without surfactant, and with surfactant respectively.

  13. Synthesis, characterization and application of a new chelating resin for solid phase extraction, preconcentration and determination of trace metals in some dairy samples by flame atomic absorption spectrometry.

    PubMed

    Daşbaşı, Teslima; Saçmacı, Şerife; Çankaya, Nevin; Soykan, Cengiz

    2016-11-15

    In this study, a simple and rapid solid phase extraction/preconcentration procedure was developed for determination of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Pb(II), and Zn(II) trace metals by flame atomic absorption spectrometry (FAAS). A new chelating resin, poly(N-cyclohexylacrylamide-co-divinylbenzene-co-2-acrylamido-2-methyl-1-propanesulfonic acid) (NCA-co-DVB-co-AMPS) (hereafter CDAP) was synthesized and characterized. The influences of the analytical parameters such as pH of the sample solution, type and concentration of eluent, flow rates of the sample and eluent, volume of the sample and eluent, amount of chelating resin, and interference of ions were examined. The limit of detection (LOD) of analytes were found (3s) to be in the range of 0.65-1.90μgL(-1). Preconcentration factor (PF) of 200 and the relative standard deviation (RSD) of ⩽2% were achieved (n=11). The developed method was applied for determination of analytes in some dairy samples and certified reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Gas-phase noncovalent functionalization of carbon nanotubes with a Ni(II) tetraaza[14]annulene complex

    NASA Astrophysics Data System (ADS)

    Basiuk, Vladimir A.; Henao-Holguín, Laura Verónica; Álvarez-Zauco, Edgar; Bassiouk, María; Basiuk, Elena V.

    2013-04-01

    The noncovalent functionalization of carbon nanotubes (CNTs) with aromatic polyazamacrocyclic compounds, based on π-π-interactions, keeps the intrinsic electronic structure of CNTs totally intact and allows for combining unique properties of the two interacting components. In addition to porphyrins and phthalocyanines, there are other, simpler compounds exhibiting similar properties, potentially useful for photovoltaic, catalytic and electrochemical applications: for example, tetraaza[14]annulenes. Many of them are highly thermally stable, which makes it possible to employ physical vapor deposition for the preparation of macrocycle-nanotube hybrids. One of such compounds is Ni(II) complex of 5,7,12,14-tetramethyldibenzo-1,4,8,11-tetraazacyclotetradeca-3,5,7,10,12,14-hexaene (also called Ni(II)-tetramethyldibenzotetraaza[14]annulene, or NiTMTAA for simplicity). In the present work, we attempted the noncovalent functionalization of both single-walled and multi-walled CNTs with NiTMTAA in the gas phase at two selected temperatures of 220 and 270 °C, which does not require the use of organic solvents and therefore can be considered as ecologically friendly. The nanohybrids obtained were characterized by means of scanning and transmission electron microscopy, energy dispersive X-ray, Fourier-transform infrared and Raman spectroscopy, as well as thermogravimetric analysis. An additional insight into the structure of adsorption complexes of NiTMTAA on CNTs was provided from density functional theory and molecular mechanics calculations.

  15. Syntheses, structures, photoluminescence of four dicarboxylate-controlled Zn(II) coordination complexes incorporating flexible 1-(4-pyridylmethyl)-benzimidazole ligand

    NASA Astrophysics Data System (ADS)

    Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun

    2013-09-01

    Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.

  16. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification

    PubMed Central

    Jaimes, Ruth F. V. V.; Borysow, Walter; Gomes, Osmar F.; Salcedo, Walter J.

    2017-01-01

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView®). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution. PMID:28788082

  17. A dip-and-read test strip for the determination of mercury(II) ion in aqueous samples based on urease activity inhibition.

    PubMed

    Shi, Guo-Qing; Jiang, Guibin

    2002-11-01

    A sensitive dip-and-read test strip for the determination of mercury in aqueous samples based on the inhibition of urease reaction by the ion has been developed. The strip has a circular sensing zone that containing two layers: the top layer is a cellulose acetate membrane where urease is immobilized on it; the bottom layer is a pH indicator wafer that is impregnated with urea. The principle of the measurement is based on the disappearance of a yellow spot on the pH indicator wafer. The elapsing time until the disappearance of the spot which depends on the concentration of mercury(II) ion is measured with a stopwatch. Under the experimental conditions, as low as 0.2 ng/ml mercury can be observed with the detection range from 0.2 to 200 ng/ml in water. Organomercury compounds give essentially the same response as inorganic mercury. Heavy-metal ions such as Ag(I), Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) as well as other sample matrixes basically do not interfere with the mercury measurement.

  18. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support.

    PubMed

    Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A

    2010-04-01

    Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.

  19. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    PubMed

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Contribution of tertiary amino groups to Re(VII) biosorption on modified corn stalk: competitiveness and regularity.

    PubMed

    Lou, Zhenning; Zhao, Ziyi; Li, Yexia; Shan, Weijun; Xiong, Ying; Fang, Dawei; Yue, Shuang; Zang, Shuliang

    2013-04-01

    The effects of basic strength and steric hindrance of gels modified by dimethylamine, diethylamine, di-n-octylamine and di-2-ethylhexylamine, respectively, on rhenium (Re(VII)) adsorption capacity and selectivity were discussed. By comparing with the adsorption of other coexisting metals, such as Mo(VI), Cu(II), Pb(II), Fe(III), Zn(II), Mn(VII) and Ni(II), the gel modified by di-n-octylamine (DNOA-OCS) showed a high affinity for Re(VII) at higher hydrochloric acid concentration (C(H)(+)≥1.0 mol L(-1)), and the maximum adsorption capacity was 98.69 mg g(-1). This article not only described the adsorption behavior but also suggested isotherms, kinetics and thermodynamics of Re(VII) onto the DNOA-OCS gel in an aqueous medium using several models. Further study on adsorption of rhenium in a fixed-bed column packed with the DNOA-OCS gel under continuous and recirculating modes could confirm that the corn stalk gel modified by di-n-octylamine could be used as the adsorbent of Re(VII) from Mo-containing wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Portable Multispectral Colorimeter for Metallic Ion Detection and Classification.

    PubMed

    Braga, Mauro S; Jaimes, Ruth F V V; Borysow, Walter; Gomes, Osmar F; Salcedo, Walter J

    2017-07-28

    This work deals with a portable device system applied to detect and classify different metallic ions as proposed and developed, aiming its application for hydrological monitoring systems such as rivers, lakes and groundwater. Considering the system features, a portable colorimetric system was developed by using a multispectral optoelectronic sensor. All the technology of quantification and classification of metallic ions using optoelectronic multispectral sensors was fully integrated in the embedded hardware FPGA ( Field Programmable Gate Array) technology and software based on virtual instrumentation (NI LabView ® ). The system draws on an indicative colorimeter by using the chromogen reagent of 1-(2-pyridylazo)-2-naphthol (PAN). The results obtained with the signal processing and pattern analysis using the method of the linear discriminant analysis, allows excellent results during detection and classification of Pb(II), Cd(II), Zn(II), Cu(II), Fe(III) and Ni(II) ions, with almost the same level of performance as for those obtained from the Ultravioled and visible (UV-VIS) spectrophotometers of high spectral resolution.

  2. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  3. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  4. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: Synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation

    NASA Astrophysics Data System (ADS)

    Fahem, Abeer A.

    2012-03-01

    Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl2]·2.5H2O, [UO2(L1)(NO3)2]·2H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.

  5. Mononuclear Ni(II) complexes of Schiff base ligands formed from unsymmetrical tripodal amines of differing arm lengths: Spectral, X-ray crystal structural, antimicrobial and DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Dhers, Sébastien; Küp, Fatma Öztürk; Güllü, Mithat; Ng, Seikweng

    2017-11-01

    The synthesis of two unsymmetrical N-capped tripodal amines, 2-((4-aminobutyl)(pyridin-2-ylmethyl)amino)ethanol (3) and 3-((2-aminoethyl)(pyridin-2-ylmethyl)amino)propan-1-ol (4) is reported. They feature a longer, 3-hydroxypropyl or butylamino arm than that in the analogues previously employed. All four tripodal amines, 1-4, are equipped with a 2-methylpyridyl-arm, and either an ethylamino-arm (1 and 4), propylamino-arm (2) or butylamino-arm (3). The amines, 3 and 4, have been employed in one pot condensation reactions with salicylaldehyde and its derivatives in the presence of Ni(II) metal ion. A series of new mononuclear complexes, [NiIILaldi](ClO4) or [NiIILaldi(solvent)](ClO4) with different geometry, of Schiff base ligands were generated. X-ray crystal structure determinations of [NiIILOMe3(H2O)](ClO4)·2H2O and [NiIILOMe4](ClO4) revealed them to be mononuclear. The Ni(II) ion in [NiIILOMe4](ClO4) complex is in a distorted square-planar environment whilst this ion is in distorted octahedral environment in [NiIILOMe3(H2O)](ClO4)·2H2O complex despite the longer arm length of L3. While, in related systems in our previous work, they had led to dimeric complexes. These results clearly showed that the variation of the arm lengths of the ligands and metal ions has a remarkable impact on the formation and structure of the complexes. The cleavage of DNA by all synthesised complexes was examined using gel electrophoresis experiments. Also, the antibacterial effects of components were determined against the three Gram-positive bacteria, and against the three Gram-negative bacteria and against the three yeast Candida albicans ATCC 10231, Candida krusei ATCC 1424 and Candida tropicalis ATCC 13803.

  6. Synthesis, characterization and biological investigations of novel Schiff base ligands containing imidazoline moiety and their Co(II) and Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Radha, V. P.; Jone Kirubavathy, S.; Chitra, S.

    2018-08-01

    Novel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.

  7. Structural characterization of 1,8-naphthalimides and in vitro microbiological activity of their Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Grabchev, Ivo; Yordanova, Stanislava; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanov, Stanimir; Stoyanova, Radostina

    2017-02-01

    Two new 1,8-naphthalimide derivatives (NI1 and NI2) have been synthesized and characterized. The photophysical properties of the new compounds have been investigated in organic solvents of different polarity. It has been shown that both compounds are solvent depended. Cu(II) and Zn(II) complexes of NI2 were obtained and characterized by IR-NMR, fluorescence and EPR spectroscopy. The influence of different metal cations on the fluorescence intensity has been investigated in acetonitrile solution. Antimicrobial composite PLA-metal complexes materials have been obtained for the first time. Microbiological activity of both metal complexes has been investigated in vitro against different Gram-positive and Gram-negative bacteria and two yeasts. The various antimicrobial activities and the minimum inhibitory concentrations (MICs) of both complexes have been determined. The microbiological activity of composite materials PLA-metal complexes in thin polymeric film has also been investigated. The results suggest that the new metal complexes could find application in designing new antimicrobial preparations to control the spread of infections.

  8. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples.

    PubMed

    Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh

    2017-10-01

    The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2  M -1  s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.

  9. Citrate, in collaboration with a guanidinium ion, as a generator of cubane-like complexes with a range of metal cations: synthesis, structures, and magnetic properties of [C(NH2)3]8[(M(II))4(cit)4].8H2O (M = Mg, Mn, Fe, Co, Ni, and Zn; cit = Citrate).

    PubMed

    Hudson, Timothy A; Berry, Kevin J; Moubaraki, Boujemaa; Murray, Keith S; Robson, Richard

    2006-05-01

    Aqueous reaction mixtures containing citric acid, guanidinium carbonate, and a range of metal cations (Mg2+, Mn2+, Fe2+, Co2+, Ni2+, and Zn2+) at room temperature give crystalline products of composition [C(NH2)3]8[(M(II))4(cit)4].8H2O (cit = citrate). In all cases, the crystals are suitable for single-crystal X-ray diffraction studies, which reveal that the compounds are isostructural (space group P4(2)/n; a approximately 16.2 A, and c approximately 11.5 A). As was intended, cubane-like [M4(cit)4]8- complex anions are present. The individual citrate units are chiral, but each cubane unit contains two of one hand and two of the other, related around an S4 axis. The cubane units are involved in no less than 40 H-bonding interactions with guanidinium cations and lattice water molecules. Detailed susceptibility and magnetization studies show that the intracluster magnetic coupling within the Mn(II), Fe(II), Co(II), and Ni(II) cubanes is very weak in all cases with J values of -0.82, -0.43, and -0.09 cm(-1) for the Mn, Fe, and Co species, respectively. A two-J model gave the best agreement with the susceptibility and high-field magnetization data for the Ni(II) case, over the whole temperature range studied, and the sign of the parameters, J12 = -0.3 cm(-1) and J13 = +2.97 cm(-1), correlated with the two Ni-(mu3-O)-Ni angles observed in the cluster structure. All members of the 3d-block [M4(cit)4]8- family have spin ground states, ST, of zero, with the higher ST levels just a few reciprocal centimeters away in energy.

  10. Diverse Zn(II) MOFs assembled from V-shaped asymmetric multicarboxylate and N-donor ligands

    NASA Astrophysics Data System (ADS)

    Ye, Run-Ping; Yang, Jin-Xia; Zhang, Xin; Zhang, Lei; Yao, Yuan-Gen

    2016-02-01

    By reacting an asymmetry semi-rigid V-shaped linker H3L (H3L = 3-(3-carboxyphenoxy) phthalic acid) and Zn(NO3)2·6H2O under different N-donor ligands in different solvents, four new Zn-based coordination polymers, [Zn(HL)(2,2‧-bpy)(H2O)]n(1), [Zn(HL)(4,4‧-bpy)]n·n(DMA) (2), [Zn3(L)2(phen)3(H2O)]n·n(H2O) (3) and [Zn(HL)(phen)(H2O)]2(4) (2,2‧-bpy = 2,2‧-bipyridine; 4,4‧-bpy = 4,4‧-bipyridine; phen = 1,10-phenanthroline; DMA = N,N-dimethylacetamide) have been obtained. All of these compounds have been clearly identified by single crystal X-ray diffraction analysis. Compound 1 exhibits one-dimensional (1D) chain structure constructed from uninuclear Zn(II) motif, which further extends into 2D supramolecular architecture via intermolecular π-π interactions and hydrogen bonds. Structural analysis reveals that the structure of 2 and 3 can be described as a 2D hcb topology network with the point symbol of {63}. Compound 4 shows a 0D binuclear motif while its 3D packing network has a large potential solvent voids. The results of this research demonstrate that the solvent and the secondary ligands could co-regulate different structural coordination polymers with interesting properties. In addition, the thermal stabilities and solid-state luminescence properties of compounds 1-4 have also been investigated.

  11. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties.

    PubMed

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  12. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  13. A flexible 1,8-naphthyridyl derivative and its Zn(II) complexes: synthesis, structures, spectroscopic properties and recognition of Cd(II).

    PubMed

    Zhang, Hui-Miao; Fu, Wen-Fu; Gan, Xin; Xu, Yan-Qing; Wang, Jun; Xu, Quan-Qing; Chi, Shao-Ming

    2008-12-21

    A flexible ligand bis(7-methyl-1,8-naphthyridine-2-ylamino)methane (), having kappa(4)-chelating and kappa(2)-bridging modes, and its intriguing structural complexes of Zn(II) with mu-OH, kappa(1)-OAc, mu-kappa(1)-OAc and mu-kappa(2)-OAc ligands, [Zn(2)()(2)(OH)](ClO(4))(3) (), [Zn(4)()(2)(OAc)(6)(OH)(2)].CH(2)Cl(2) (.CH(2)Cl(2)) and [Zn(5)()(2)(OAc)(10)](n).4nH(2)O (.4H(2)O) were synthesized and their structures were determined by X-ray crystallography. These compounds exhibited intense blue fluorescent emissions with a lambda(max) in the range of 380-410 nm in CH(2)Cl(2), CH(3)CN and CH(3)OH solutions, and solid-state emissions centered at 416, 463, 490 and 451 nm were observed for the compounds , , and at room temperature, respectively. The investigated fluorescence properties of associated with various metal ions showed that the fluorescence enhancement of with Cd(II) was more sensitive than with other interfering cations.

  14. Synthesis, spectral and thermal studies of some transition metal mixed ligand complexes: Modeling of equilibrium composition and biological activity

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran

    2011-09-01

    Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.

  15. Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red.

    PubMed

    Abdollahi, Nasrin; Masoomi, Mohammad Yaser; Morsali, Ali; Junk, Peter C; Wang, Jun

    2018-07-01

    A 3-D Zn(II) based metal-organic framework (MOF) of [Zn 4 (oba) 3 (DMF) 2 ] was synthesized using the nonlinear dicarboxylate ligand, 4,4'-oxybis(benzoic acid) (H 2 oba) via sonochemical and solvothermal routes. IR spectroscopy, single-crystal X-ray crystallography, scanning electron microscopy, and X-ray powder diffraction were used to characterize these MOF samples. The effect of different times of irradiation and various concentrations of primary reagents were experimented for obtaining monotonous morphology. The results show that uniform nanoplates can be achieved by increasing the time of irradiation and decreasing the concentration. N 2 adsorption was applied to examine the effect of synthesis method on porosity of the framework. Also Congo red and Sudan red dyes were employed to explore the efficiency of this MOF in removal of the dye pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    PubMed

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  17. Synthesis, crystal structures and luminescence properties of new multi-component co-crystals of isostructural Co(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Tella, Adedibu C.; Owalude, Samson O.; Omotoso, Mary F.; Olatunji, Sunday J.; Ogunlaja, Adeniyi S.; Alimi, Lukman O.; Popoola, Olugbenga K.; Bourne, Susan A.

    2018-04-01

    Two novel isostructural compounds containing multi-component co-crystals [M(C6H4NO2)2(H2O)2](C9H6O6)2 (M = Co (1), Zn (2), C6H4NO2 = Picolinic acid, C9H6O6 = Trimesic acid) have been synthesized. The compounds were characterized by elemental analysis, FT-IR, UV-Visible and 1H NMR spectroscopies as well as thermal and single crystal X-ray diffraction analyses. Single crystal X-ray diffraction analysis reveals that 1 and 2 are isostructural. Compound 1 crystallizes in triclinic space group (P-1, with a = 5.154 (10) Å, b = 11.125 (2) Å, c = 14.113 (3) Å, α = 91.01 (3)°, β = 100.54 (3)°, and γ = 102.71 (3)°). In a similar fashion, compound 2 crystallizes in triclinic space group (P-1, with a = 5.1735 (3) Å, b = 11.0930 (10) Å, c = 14.1554 (8) Å, α = 91.70 (3)°, β = 100.26 (3)°, γ = 102.90 (3)°). The metal (II) cation presents distorted MN2O4 octahedral geometry with H2O molecules coordinated to the metal in equatorial position while the picolinic acid molecules are axially coordinated through the pyridine N atom. The two trimesic acid molecules are not part of the first coordination sphere. Compounds 1 and 2 constitute an example of a class of coordination compound of multicomponent crystals having trimesic acid outside the coordination sphere where it is neither protonated or deprotonated. The two compounds were investigated for luminiscence properties.

  18. Benzyl and Methyl Fatty Hydroxamic Acids Based on Palm Kernel Oil as Chelating Agent for Liquid-Liquid Iron(III) Extraction

    PubMed Central

    Haron, Md Jelas; Jahangirian, Hossein; Silong, Sidik; Yusof, Nor Azah; Kassim, Anuar; Rafiee-Moghaddam, Roshanak; Mahdavi, Behnam; Peyda, Mazyar; Abdollahi, Yadollah; Amin, Jamileh

    2012-01-01

    Liquid-liquid iron(III) extraction was investigated using benzyl fatty hydroxamic acids (BFHAs) and methyl fatty hydroxamic acids (MFHAs) as chelating agents through the formation of iron(III) methyl fatty hydroxamate (Fe-MFHs) or iron(III) benzyl fatty hydroxamate (Fe-BFHs) in the organic phase. The results obtained under optimized conditions, showed that the chelating agents in hexane extract iron(III) at pH 1.9 were realized effectively with a high percentage of extraction (97.2% and 98.1% for MFHAs and BFHAs, respectively). The presence of a large amount of Mg(II), Ni(II), Al(III), Mn(II) and Co(II) ions did affect the iron(III) extraction. Finally stripping studies for recovering iron(III) from organic phase (Fe-MFHs or Fe-BFHs dissolved in hexane) were carried out at various concentrations of HCl, HNO3 and H2SO4. The results showed that the desired acid for recovery of iron(III) was 5 M HCl and quantitative recovery of iron(III) was achieved from Fe(III)-MFHs and Fe(III)-BFHs solutions in hexane containing 5 mg/L of Fe(III). PMID:22408444

  19. Novel thiourea derivative and its complexes: Synthesis, characterization, DFT computations, thermal and electrochemical behavior, antioxidant and antitumor activities

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Muslu, Harun; Özpınar, Celal; Emen, Fatih Mehmet; Demirdöğen, Ruken Esra; Külcü, Nevzat

    2017-08-01

    A novel thiourea derivative, N-((2-chloropyridin-3-yl)carbamothioyl) thiophene-2-carboxamide,C11H8ClN3OS2 (HL) and its Co(II), Ni(II) and Cu(II) complexes (ML2 type) were prepared and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The crystal structure of HL was also investigated by single crystal X-ray diffraction study. The HL crystallizes in the orthorhombic crystal system with P 21 21 21 space group, Z = 4, a = 3.8875(3) Å, b = 14.6442(13) Å, c = 21.8950(19) Å. The [ML2] complex structures were optimized by using B97D/TZVP level. Molecular orbitals of HL ligand were calculated at the same level. Thermal and electrochemical behaviors of the complexes were investigated. Anticancer and antioxidant activities of the complexes were also investigated. Antioxidant activities were determined by using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2‧-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) assays. Anticancer activities were studied via MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in MCF-7 (Michigan Cancer Foundation-7) breast cancer cells.

  20. [15]aneN4S: synthesis, thermodynamic studies and potential applications in chelation therapy.

    PubMed

    Torres, Nuno; Gonçalves, Sandrina; Fernandes, Ana S; Machado, J Franco; de Brito, Maria J Villa; Oliveira, Nuno G; Castro, Matilde; Costa, Judite; Cabral, Maria F

    2014-01-03

    The purpose of this work was to synthesize and characterize the thiatetraaza macrocycle 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S). Its acid-base behaviour was studied by potentiometry at 25 °C and ionic strength 0.10 M in KNO3. The protonation sequence of this ligand was investigated by 1H-NMR titration that also allowed the determination of protonation constants in D2O. Binding studies of [15]aneN4S with Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+ and Pb2+ metal ions were further performed under the same experimental conditions. The results demonstrated that this compound has a higher selectivity and thermodynamic stability for Hg2+ and Cu2+, followed by Ni2+. The UV-visible-near IR spectroscopies and magnetic moment data for the Co(II) and Ni(II) complexes indicated a tetragonal distorted coordination geometry for both metal centres. The value of magnetic moment and the X-band EPR spectra of the Cu(II) complex are consistent with a distorted square pyramidal geometry.