Sample records for zno epitaxial thin

  1. Franz-Keldysh effect in epitaxial ZnO thin films

    NASA Astrophysics Data System (ADS)

    Bridoux, G.; Villafuerte, M.; Ferreyra, J. M.; Guimpel, J.; Nieva, G.; Figueroa, C. A.; Straube, B.; Heluani, S. P.

    2018-02-01

    Photoconductance spectroscopy has been studied in epitaxial ZnO thin films with different thicknesses that range between 136 and 21 nm. We report a systematic decrease in photoconductivity and a red shift in band edge photoconductance spectra when the thickness is reduced. For thinner films, it is found that the effective energy gap value diminishes. By time dependent photoconductivity measurements, we found an enhanced contribution of the slow relaxation times for thicker films. These effects are interpreted in terms of a band-bending contribution where the Franz-Keldysh effect and the polarization of ZnO play a major role in thinner films.

  2. Domain matched epitaxial growth of (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on (0001) Al{sub 2}O{sub 3} with ZnO buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin

    2015-03-28

    Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less

  3. Nanosecond laser switching of surface wettability and epitaxial integration of c-axis ZnO thin films with Si(111) substrates.

    PubMed

    Molaei, R; Bayati, M R; Alipour, H M; Estrich, N A; Narayan, J

    2014-01-08

    We have achieved integration of polar ZnO[0001] epitaxial thin films with Si(111) substrates where cubic yttria-stabilized zirconia (c-YSZ) was used as a template on a Si(111) substrate. Using XRD (θ-2θ and φ scans) and HRTEM techniques, the epitaxial relationship between the ZnO and the c-YSZ layers was shown to be [0001]ZnO || [111]YSZ and [21¯1¯0]ZnO || [1¯01](c-YSZ), where the [21¯1¯0] direction lies in the (0001) plane, and the [1¯01] direction lies in the (111) plane. Similar studies on the c-YSZ/Si interface revealed epitaxy as (111)YSZ || (111)Si and in-plane (110)YSZ || (110)Si. HRTEM micrographs revealed atomically sharp and crystallographically continuous interfaces. The ZnO epilayers were subsequently laser annealed by a single pulse of a nanosecond excimer KrF laser. It was shown that the hydrophobic behavior of the pristine sample became hydrophilic after laser treatment. XPS was employed to study the effect of laser treatment on surface stoichiometry of the ZnO epilayers. The results revealed the formation of oxygen vacancies, which are envisaged to control the observed hydrophilic behavior. Our AFM studies showed surface smoothing due to the coupling of the high energy laser beam with the surface. The importance of integration of c-axis ZnO with Si(111) substrates is emphasized using the paradigm of domain matching epitaxy on the c-YSZ[111] buffer platform along with their out-of-plane orientation, which leads to improvement of the performance of the solid-state devices. The observed ultrafast response and switching in photochemical characteristics provide new opportunities for application of ZnO in smart catalysts, sensors, membranes, DNA self-assembly and multifunctional devices.

  4. Effect of growth temperature on the epitaxial growth of ZnO on GaN by ALD

    NASA Astrophysics Data System (ADS)

    Särkijärvi, Suvi; Sintonen, Sakari; Tuomisto, Filip; Bosund, Markus; Suihkonen, Sami; Lipsanen, Harri

    2014-07-01

    We report on the epitaxial growth of ZnO on GaN template by atomic layer deposition (ALD). Diethylzinc (DEZn) and water vapour (H2O) were used as precursors. The structure and the quality of the grown ZnO layers were studied with scanning electron microscope (SEM), X-ray diffraction (XRD), photoluminescence (PL) measurements and positron annihilation spectroscopy. The ZnO films were confirmed epitaxial, and the film quality was found to improve with increasing deposition temperature in the vicinity of the threshold temperature of two dimensional growth. We conclude that high quality ZnO thin films can be grown by ALD. Interestingly only separate Zn-vacancies were observed in the films, although ZnO thin films typically contain fairly high density of surface pits and vacancy clusters.

  5. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  6. Surface-emitting stimulated emission in high-quality ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Suemune, Ikuo; Kumano, H.; Wang, J.; Huang, S. H.

    2004-10-01

    High-quality ZnO thin films were grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Three excitonic transitions associated with the valence bands A, B, and C were clearly revealed in the reflectance spectrum measured at 33K. This result indicates that the ZnO thin films have the wurtzite crystalline structure. The emission spectra were measured with backscattering geometry at room temperature. When the excitation exceeded a certain value, linewidth narrowing, nonlinear rise of emission intensity, and the shortening of the carrier lifetime were clearly observed and these demonstrate the onset of stimulated emission. Together with the ZnO thickness dependence, we conclude that the observation of a stimulated emission in a direction perpendicular to the film surface is predominantly due to scattering of the in-plane stimulated emission by slightly remaining surface undulations in the ZnO films.

  7. Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system

    NASA Astrophysics Data System (ADS)

    Ataev, B. M.; Bagamadova, A. M.; Mamedov, V. V.; Omaev, A. K.; Rabadanov, M. R.

    1999-03-01

    Sucessful preparation of ZnO : M epitaxial thin films (ETF) in situ doped with donor impurity M=Ga, Sn by chemical vapor despsition in a low-pressure system is reported. Highly conductive (up to 10 -4 Ω cm) and transparent ( T>85%) ZnO : M ETF have been successfully produced on single crystal (1012) sapphire substrates. Electrical properties of the films as well as their excition luminescence were studied.

  8. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  9. Epitaxial thinning process

    NASA Technical Reports Server (NTRS)

    Siegel, C. M. (Inventor)

    1984-01-01

    A method is described for thinning an epitaxial layer of a wafer that is to be used in producing diodes having a specified breakdown voltage and which also facilitates the thinning process. Current is passed through the epitaxial layer, by connecting a current source between the substrate of the wafer and an electrolyte in which the wafer is immersed. When the wafer is initially immersed, the voltage across the wafer initially drops and then rises at a steep rate. When light is applied to the wafer the voltage drops, and when the light is interrupted the voltage rises again. These changes in voltage, each indicate the breakdown voltage of a Schottky diode that could be prepared from the wafer at that time. The epitaxial layer is thinned by continuing to apply current through the wafer while it is immersed and light is applied, to form an oxide film and when the oxide film is thick the wafer can then be cleaned of oxide and the testing and thinning continued. Uninterrupted thinning can be achieved by first forming an oxide film, and then using an electrolyte that dissolves the oxide about as fast as it is being formed, to limit the thickness of the oxide layer.

  10. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  11. The epitaxial growth of wurtzite ZnO films on LiNbO 3 (0 0 0 1) substrates

    NASA Astrophysics Data System (ADS)

    Yin, J.; Liu, Z. G.; Liu, H.; Wang, X. S.; Zhu, T.; Liu, J. M.

    2000-12-01

    ZnO epitaxial films were deposited on LiNbO 3 (0 0 0 1) substrates by pulsed laser deposition. The smaller lattice misfit (-8.5%) between ZnO along <1 0 1¯ 0>- direction and LiNbO 3 (0 0 0 1) along <1 1 2¯ 0>- direction, as compared with that in the case of normally used sapphire (0 0 0 1) substrates, favored the epitaxial growth of ZnO films. The transmittance spectra of ZnO films deposited in vacuum after annealed in pure oxygen show a sharp absorption edge at 375.6 nm (E g=3.31 eV) .

  12. Low resistivity and low compensation ratio Ga-doped ZnO films grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hsiao, Li-Han; Chyi, Jen-Inn

    2015-09-01

    In this study, Ga-doped ZnO (GZO) thin films were deposited on GaN templates by using plasma-assisted molecular beam epitaxy. To obtain low resistivity GZO films, in-situ post-annealing under Zn overpressure was carried out to avoid the generation of acceptor-liked Zn vacancies. The resultant films showed optical transparency over 95% in the visible spectral range. By reducing the acceptor-like defects, GZO films with compensation ratio near 0.4 and resistivity simultaneously lower than 1×10-4 Ω cm have been successfully demonstrated.

  13. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  14. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  15. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  16. Synthesis and characterization of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  17. Epitaxial growth of (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on a-plane sapphire with an MgO/ZnO bridge layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Bo; Liu Hongrui; Avrutin, Vitaliy

    2009-11-23

    High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less

  18. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  19. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less

  20. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  1. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  2. Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.

    2004-06-01

    Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.

  3. Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene.

    PubMed

    Hong, Hyo-Ki; Jo, Junhyeon; Hwang, Daeyeon; Lee, Jongyeong; Kim, Na Yeon; Son, Seungwoo; Kim, Jung Hwa; Jin, Mi-Jin; Jun, Young Chul; Erni, Rolf; Kwak, Sang Kyu; Yoo, Jung-Woo; Lee, Zonghoon

    2017-01-11

    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.

  4. Synthesis and annealing study of RF sputtered ZnO thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.

    2016-05-23

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less

  5. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  6. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  7. Effect of precursor on epitaxially grown of ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate by hydrothermal technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Trilochan; Ju, Jin-Woo; Kannan, V.

    2008-03-04

    Single crystalline ZnO thin film on p-GaN/sapphire (0 0 0 1) substrate, using two different precursors by hydrothermal route at a temperature of 90 deg. C were successfully grown. The effect of starting precursor on crystalline nature, surface morphology and optical emission of the films were studied. ZnO thin films were grown in aqueous solution of zinc acetate and zinc nitrate. X-ray diffraction analysis revealed that all the thin films were single crystalline in nature and exhibited wurtzite symmetry and c-axis orientation. The thin films obtained with zinc nitrate had a more pitted rough surface morphology compared to the filmmore » grown in zinc acetate. However the thickness of the films remained unaffected by the nature of the starting precursor. Sharp luminescence peaks were observed from the thin films almost at identical energies but deep level emission was slightly prominent for the thin film grown in zinc nitrate.« less

  8. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  9. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  10. Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.

    PubMed

    Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok

    2018-03-01

    Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.

  11. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  12. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  13. Microstructure of ZnO Thin Films Deposited by High Power Impulse Magnetron Sputtering (Postprint)

    DTIC Science & Technology

    2015-03-01

    AFRL-RX-WP-JA-2015-0185 MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON SPUTTERING (POSTPRINT) A. N. Reed...COVERED (From – To) 29 January 2013 – 16 February 2015 4. TITLE AND SUBTITLE MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON...ABSTRACT High power impulse magnetron sputtering was used to deposit thin (~100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates

  14. Effect of K-doping on structural and optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Li, Xiangyin; Yuan, Jun

    2008-09-01

    In this work, K-doped ZnO thin films were prepared by a sol-gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.

  15. Seedless-grown of ZnO thin films for photoelectrochemical water splitting application

    NASA Astrophysics Data System (ADS)

    Abdullah, Aidahani; Hamid, Muhammad Azmi Abdul; Chiu, W. S.

    2018-04-01

    We developed a seedless hydrothermal method to grow a flower like ZnO nanorods. Prior to the growth, a layer of Au thin film is sputtered onto the surface of indium tin oxide (ITO) coated glass substrate. The morphological, structural and optical properties of the ZnO nanostructures were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflection measurement to understand the growth process of the working thin film. The photoelectrochemical (PEC) results suggest that the deposition of ZnO nanorods on Au nanoparticles plays an important role in enhancing the photoelectrode activity. H2 evolution from photo-splitting of water over Au-incorporated ZnO in the 0.1M NaOH liquid system was enhanced, compared to that over bare ZnO; particularly, the production of 15.5 µL of H2 gas after twenty five minutes exposure of ZnO grown on Au-coated thin film.

  16. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  17. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-06-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.

  18. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  19. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  20. ZnO and related materials: Plasma-Assisted molecular beam epitaxial growth, characterization and application

    NASA Astrophysics Data System (ADS)

    Hong, S. K.; Chen, Y.; Ko, H. J.; Wenisch, H.; Hanada, T.; Yao, T.

    2001-06-01

    This paper will address features of plasma-assisted molecular beam epitaxial growth of ZnO and related materials and their characteristics. Two-dimensional, layer-by-layer growth is achieved both on c-plane sampphire by employing MgO buffer layer growth and on (0001) GaN/Al2O3 template by predepositing a low-temperature buffer layer followed by high-temperature annealing. Such two-dimensional growth results in the growth of high-quality heteroepitaxial ZnO epilayers. Biexciton emission is obtained from such high quality epilayers The polarity of heteroepitaxial ZnO epilayers is controlled by engineering the heterointerfaces. We achieved selective growth of Zn-polar and O-polar ZnO heteroepitaxial layers. The origin of different polarities can be successfully explained by an interface bonding sequence model. N-type conductivity in Gadoped ZnO epilayers is successfully controlled. High conductivity, enough to be applicable to devices, is achieved. MgxZn1-xO/ZnO heterostructures are grown and emission from a ZnO quantum well is observed. Mg incorporation in a MgZnO alloy is determined by in-situ reflection high-energy electron diffraction intensity oscillations, which enables precise control of the composition. Homoepitaxy on commericial ZnO substrates has been examined. Reflection high-energy electron diffraction intensity oscillations during homoepitaxy growth are observed.

  1. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  2. Effect of substrate on thermoelectric properties of Al-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Mele, P.; Saini, S.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Hagino, H.; Ichinose, A.

    2013-06-01

    We have prepared 2% Al doped ZnO (AZO) thin films on SrTiO3 (STO) and Al2O3 substrates by Pulsed Laser Deposition technique at various deposition temperatures (Tdep = 300 °C-600 °C). Transport and thermoelectric properties of AZO thin films were studied in low temperature range (300 K-600 K). AZO/STO films present superior performance respect to AZO/Al2O3 films deposited at the same temperature, except for films deposited at 400 °C. Best film is the fully c-axis oriented AZO/STO deposited at 300 °C, which epitaxial strain and dislocation density are the lowest: electrical conductivity 310 S/cm, Seebeck coefficient -65 μV/K, and power factor 0.13 × 10-3 W m-1 K-2 at 300 K. Its performance increases with temperature. For instance, power factor is enhanced up to 0.55 × 10-3 W m-1 K-2 at 600 K, surpassing the best AZO film previously reported in literature.

  3. Evidence of cation vacancy induced room temperature ferromagnetism in Li-N codoped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, B. Y.; Yao, B.; Li, Y. F.; Liu, A. M.; Zhang, Z. Z.; Li, B. H.; Xing, G. Z.; Wu, T.; Qin, X. B.; Zhao, D. X.; Shan, C. X.; Shen, D. Z.

    2011-10-01

    Room temperature ferromagnetism (RTFM) was observed in Li-N codoped ZnO thin films [ZnO:(Li, N)] fabricated by plasma-assisted molecular beam epitaxy, and p-type ZnO:(Li, N) shows the strongest RTFM. Positron annihilation spectroscopy and low temperature photoluminescence measurements indicate that the RTFM in ZnO:(Li, N) is attributed to the defect complex related to VZn, such as VZn and Lii-NO-VZn complex, well supported by first-principles calculations. The incorporation of NO can stabilize and enhance the RTFM of ZnO:(Li, N) by combining with Lii to form Lii-NO complex, which restrains the compensation of Lii for VZn and makes the ZnO:(Li, N) conduct in p-type.

  4. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  5. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  6. Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki

    2017-05-01

    We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.

  7. Development of Room Temperature Excitonic Lasing From ZnO and MgZnO Thin Film Based Metal-Semiconductor-Metal Devices

    NASA Astrophysics Data System (ADS)

    Suja, Mohammad Zahir Uddin

    Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum

  8. Significant mobility enhancement in extremely thin highly doped ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, David C., E-mail: david.look@wright.edu; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431; Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H}more » vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.« less

  9. Manipulation of ZnO composition affecting electrical properties of MEH-PPV: ZnO nanocomposite thin film via spin coating for OLEDs application

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. Morphology, optical and electrical of nanocomposites thin films based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanotetrapods with various ZnO composition (0 wt% to 0.4 wt%) have been investigated. The MEH-PPV: ZnO nanocomposite thin film was deposited using spin-coating method. Surface morphology was characterized using field emission scanning electron microscopy and shows the uniform dispersion of MEH-PPV and ZnO phases for sample deposited at 0.2 wt%. The photoluminescence (PL) spectra shows the visible emission intensities increased when the ZnO composition increased. The current-voltage (I-V) measurement shows the highest conductivity of nanocomposite thin film deposited at 0.2 wt% of ZnO is 7.40 × 10-1 S. cm-1. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  10. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  11. van der Waals epitaxial ZnTe thin film on single-crystalline graphene

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Chen, Zhizhong; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Washington, Morris; Lu, Toh-Ming

    2018-01-01

    Graphene template has long been promoted as a promising host to support van der Waals flexible electronics. However, van der Waals epitaxial growth of conventional semiconductors in planar thin film form on transferred graphene sheets is challenging because the nucleation rate of film species on graphene is significantly low due to the passive surface of graphene. In this work, we demonstrate the epitaxy of zinc-blende ZnTe thin film on single-crystalline graphene supported by an amorphous glass substrate. Given the amorphous nature and no obvious remote epitaxy effect of the glass substrate, this study clearly proves the van der Waals epitaxy of a 3D semiconductor thin film on graphene. X-ray pole figure analysis reveals the existence of two ZnTe epitaxial orientational domains on graphene, a strong X-ray intensity observed from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [10] orientation domain, and a weaker intensity from the ZnTe [ 1 ¯ 1 ¯ 2] ǁ graphene [11] orientation domain. Furthermore, this study systematically investigates the optoelectronic properties of this epitaxial ZnTe film on graphene using temperature-dependent Raman spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and fabrication and characterization of a ZnTe-graphene photodetector. The research suggests an effective approach towards graphene-templated flexible electronics.

  12. SHI irradiation effect on pure and Mn doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Khawal, H. A.; Raskar, N. D.; Dole, B. N.

    2017-05-01

    Investigated the structural, surface, electrical and modifications induced by Swift Heavy Ions (SHI) irradiation on pure and Mn substituted ZnO thin films were observed. Thin films of Zn1-xMnxO (x = 0.00, 0.04) were synthesized using the dip coating technique. All thin films irradiated by Li3+ swift heavy ions with fluence 5 × 1013 ions/cm2. The XRD peak reveals that all the samples exhibit wurtzite structures. Surface morphology of samples was investigated by SEM, it was observed that pristine samples of ZnO thin film shows spherical shape but for 4 % Mn substituted ZnO thin film with 5 × 1013 ions/cm2 fluence, it reveals that big grain spherical morphology like structure respectively. I-V characteristics were recorded in the voltage range -5 to 5 V. All curves were passed through origin and nearly linear exhibit ohmic in nature for the films.

  13. Effect of Al doping on performance of ZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi

    2018-03-01

    In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.

  14. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  15. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.

    2006-04-01

    Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.

  16. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  17. High performance thin film transistor with ZnO channel layer deposited by DC magnetron sputtering.

    PubMed

    Moon, Yeon-Keon; Moon, Dae-Yong; Lee, Sang-Ho; Jeong, Chang-Oh; Park, Jong-Wan

    2008-09-01

    Research in large area electronics, especially for low-temperature plastic substrates, focuses commonly on limitations of the semiconductor in thin film transistors (TFTs), in particular its low mobility. ZnO is an emerging example of a semiconductor material for TFTs that can have high mobility, while a-Si and organic semiconductors have low mobility (<1 cm2/Vs). ZnO-based TFTs have achieved high mobility, along with low-voltage operation low off-state current, and low gate leakage current. In general, ZnO thin films for the channel layer of TFTs are deposited with RF magnetron sputtering methods. On the other hand, we studied ZnO thin films deposited with DC magnetron sputtering for the channel layer of TFTs. After analyzing the basic physical and chemical properties of ZnO thin films, we fabricated a TFT-unit cell using ZnO thin films for the channel layer. The field effect mobility (micro(sat)) of 1.8 cm2/Vs and threshold voltage (Vth) of -0.7 V were obtained.

  18. Energy dissipation channels affecting photoluminescence from resonantly excited Er{sup 3+} ions doped in epitaxial ZnO host films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Shinojima, Hiroyuki

    2015-04-21

    We identified prerequisite conditions to obtain intense photoluminescence at 1.54 μm from Er{sup 3+} ions doped in ZnO host crystals. The epitaxial ZnO:Er films were grown on sapphire C-plane substrates by sputtering, and Er{sup 3+} ions were resonantly excited at a wavelength of 532 nm between energy levels of {sup 4}I{sub 15/2} and {sup 2}H{sub 11/2}. There is a threshold deposition temperature between 500 and 550 °C, above which epitaxial ZnO films become free of miss-oriented domains. In this case, Er{sup 3+} ions are outside ZnO crystallites, having the same c-axis lattice parameters as those of undoped ZnO crystals. The improved crystallinity wasmore » correlated with enhanced emissions peaking at 1538 nm. Further elevating the deposition temperature up to 650 °C generated cracks in ZnO crystals to relax the lattice mismatch strains, and the emission intensities from cracked regions were three times as large as those from smooth regions. These results can be consistently explained if we assume that emission-active Er{sup 3+} ions are those existing at grain boundaries and bonded to single-crystalline ZnO crystallites. In contrast, ZnO:Er films deposited on a ZnO buffer layer exhibited very weak emissions because of their degraded crystallinity when most Er{sup 3+} ions were accommodated into ZnO crystals. Optimizing the degree of oxidization of ZnO crystals is another important factor because reduced films suffer from non-radiative decay of excited states. The optimum Er content to obtain intense emissions was between 2 and 4 at. %. When 4 at. % was exceeded, the emission intensity was severely attenuated because of concentration quenching as well as the degradation in crystallinity. Precipitation of Er{sub 2}O{sub 3} crystals was clearly observed at 22 at. % for films deposited above 650 °C. Minimizing the number of defects and impurities in ZnO crystals prevents energy dissipation, thus exclusively utilizing the excitation energy to

  19. A study of H and D doped ZnO epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Kaspar, T. C.; Droubay, T. C.; Joly, A. G.; Nachimuthu, P.; Zhu, Z.; Shutthanandan, V.; Chambers, S. A.

    2008-09-01

    We examine the crystal structure and electrical and optical properties of ZnO epitaxial films grown by pulsed laser deposition in a H2 or D2 ambient. n-type electrical conductivity is enhanced by three orders of magnitude as a result of growing in H2 (D2) compared to ZnO films grown in O2. Hall effect measurements reveal very small carrier activation energies and carrier concentrations in the mid-1018 cm-3 range. Optical absorption measurements show that the enhanced conductivity is not a result of ZnO reduction and interstitial Zn formation. Photoluminescence spectra suggest excitonic emission associated with exciton-hydrogen donor complex formation and show no evidence for midgap emission resulting from defects. We have modeled the transport properties of H (D) doped ZnO films using variable range hopping and surface layer conductivity models, but our data do not fit well with these models. Rather, it appears that growth in H2 (D2) promotes the formation of an exceedingly shallow donor state not seen in ZnO crystals annealed in H2 after growth. This new state may be associated with H (D) substitution at O sites in the lattice.

  20. Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.

  1. Optical and electro-optic anisotropy of epitaxial PZT thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  2. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  3. Growth and characterization of highly conducting Al-doped ZnO (AZO) thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sardana, Sanjay K.; Singh, Anil; Srivastava, Sanjay K.; Pandya, Dinesh K.

    2018-05-01

    A comparative study of undoped ZnO and Al-doped ZnO (AZO) thin films deposited on glass substrate by spray pyrolysis has been carried out at various aqueous molar concentration of zinc acetate. The thin films deposited on glass shows the wurtzite phase of ZnO, confirmed by X-ray diffraction. The optical study shows the high transmittance over 80% in the visible regime. The band gap of AZO thin films shows a blue shift as compared to undoped ZnO, which has been attributed to Burstein-Moss shift. Heat treatment of these samples in vacuum showed the improved conductivity in compared to as-deposited thin films. The electric study shows the minimum resistivity of 8 x 10-3 Ω-cm and carrier concentration of 6.5 × 1019 /cm3 correspond to AZO thin films.

  4. Process for forming epitaxial perovskite thin film layers using halide precursors

    DOEpatents

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  5. Epitaxial ternary nitride thin films prepared by a chemical solution method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Hongmei; Feldmann, David M; Wang, Haiyan

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  6. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  7. Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com

    2015-06-24

    We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less

  8. Fabrication and characterization of thin-film phosphor combinatorial libraries

    NASA Astrophysics Data System (ADS)

    Mordkovich, V. Z.; Jin, Zhengwu; Yamada, Y.; Fukumura, T.; Kawasaki, M.; Koinuma, H.

    2002-05-01

    The laser molecular beam epitaxy method was employed to fabricate thin-film combinatorial libraries of ZnO-based phosphors on different substrates. Fabrication of both pixel libraries, on the example of Fe-doped ZnO, and spread libraries, on the example of Eu-doped ZnO, has been demonstrated. Screening of the Fe-doped ZnO libraries led to the discovery of weak green cathodoluminescence with the maximum efficiency at the Fe content of 0.58 mol %. Screening of the Eu-doped ZnO libraries led to the discovery of unusual reddish-violet cathodoluminescence which is observed in a broad range of Eu concentration. No photoluminescence was registered in either system.

  9. Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong

    2017-10-01

    Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.

  10. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  11. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  12. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  13. Photo-Patternable ZnO Thin Films Based on Cross-Linked Zinc Acrylate for Organic/Inorganic Hybrid Complementary Inverters.

    PubMed

    Jeong, Yong Jin; An, Tae Kyu; Yun, Dong-Jin; Kim, Lae Ho; Park, Seonuk; Kim, Yebyeol; Nam, Sooji; Lee, Keun Hyung; Kim, Se Hyun; Jang, Jaeyoung; Park, Chan Eon

    2016-03-02

    Complementary inverters consisting of p-type organic and n-type metal oxide semiconductors have received considerable attention as key elements for realizing low-cost and large-area future electronics. Solution-processed ZnO thin-film transistors (TFTs) have great potential for use in hybrid complementary inverters as n-type load transistors because of the low cost of their fabrication process and natural abundance of active materials. The integration of a single ZnO TFT into an inverter requires the development of a simple patterning method as an alternative to conventional time-consuming and complicated photolithography techniques. In this study, we used a photocurable polymer precursor, zinc acrylate (or zinc diacrylate, ZDA), to conveniently fabricate photopatternable ZnO thin films for use as the active layers of n-type ZnO TFTs. UV-irradiated ZDA thin films became insoluble in developing solvent as the acrylate moiety photo-cross-linked; therefore, we were able to successfully photopattern solution-processed ZDA thin films using UV light. We studied the effects of addition of a tiny amount of indium dopant on the transistor characteristics of the photopatterned ZnO thin films and demonstrated low-voltage operation of the ZnO TFTs within ±3 V by utilizing Al2O3/TiO2 laminate thin films or ion-gels as gate dielectrics. By combining the ZnO TFTs with p-type pentacene TFTs, we successfully fabricated organic/inorganic hybrid complementary inverters using solution-processed and photopatterned ZnO TFTs.

  14. Anisotropic magnetism and spin-dependent transport in Co nanoparticle embedded ZnO thin films

    NASA Astrophysics Data System (ADS)

    Li, D. Y.; Zeng, Y. J.; Pereira, L. M. C.; Batuk, D.; Hadermann, J.; Zhang, Y. Z.; Ye, Z. Z.; Temst, K.; Vantomme, A.; Van Bael, M. J.; Van Haesendonck, C.

    2013-07-01

    Oriented Co nanoparticles were obtained by Co ion implantation in crystalline ZnO thin films grown by pulsed laser deposition. Transmission electron microscopy revealed the presence of elliptically shaped Co precipitates with nanometer size, which are embedded in the ZnO thin films, resulting in anisotropic magnetic behavior. The low-temperature resistance of the Co-implanted ZnO thin films follows the Efros-Shklovskii type variable-range-hopping. Large negative magnetoresistance (MR) exceeding 10% is observed in a magnetic field of 1 T at 2.5 K and the negative MR survives up to 250 K (0.3%). The negative MR reveals hysteresis as well as anisotropy that correlate well with the magnetic properties, clearly demonstrating the presence of spin-dependent transport.

  15. Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, T. Y.; Yang, S. M.; Lee, D. H.; Park, J.; Chae, S. C.

    2018-05-01

    We report on the ferroelectricity of a Y-doped HfO2 thin film epitaxially grown on Si substrate, with an yttria-stabilized zirconia buffer layer pre-deposited on the substrate. Piezoresponse force microscopy results show the ferroelectric domain pattern, implying the existence of ferroelectricity in the epitaxial HfO2 film. The epitaxially stabilized HfO2 film in the form of a metal-ferroelectric-insulator-semiconductor structure exhibits ferroelectric hysteresis with a clear ferroelectric switching current in polarization-voltage measurements. The HfO2 thin film also demonstrates ferroelectric retention comparable to that of current perovskite-based metal-ferroelectric-insulator-semiconductor structures.

  16. Electrical and optical properties of p-type codoped ZnO thin films prepared by spin coating technique

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok Kumar; Kumar, Vinod; Swart, H. C.; Purohit, L. P.

    2016-03-01

    Undoped, doped and codoped ZnO thin films were synthesized on glass substrates using a spin coating technique. Zinc acetate dihydrate, ammonium acetate and aluminum nitrate were used as precursor for zinc, nitrogen and aluminum, respectively. X-ray diffraction shows that the thin films have a hexagonal wurtzite structure for the undoped, doped and co-doped ZnO. The transmittance of the films was above 80% and the band gap of the film varied from 3.20 eV to 3.24 eV for undoped and doped ZnO. An energy band diagram to describe the photoluminescence from the thin films was also constructed. This diagram includes the various defect levels and possible quasi-Fermi levels. A minimum resistivity of 0.0834 Ω-cm was obtained for the N and Al codoped ZnO thin films with p-type carrier conductivity. These ZnO films can be used as a window layer in solar cells and in UV lasers.

  17. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.

    PubMed

    Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu

    2018-04-25

    In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.

  18. Optimization of pulsed laser deposited ZnO thin-film growth parameters for thin-film transistors (TFT) application

    NASA Astrophysics Data System (ADS)

    Gupta, Manisha; Chowdhury, Fatema Rezwana; Barlage, Douglas; Tsui, Ying Yin

    2013-03-01

    In this work we present the optimization of zinc oxide (ZnO) film properties for a thin-film transistor (TFT) application. Thin films, 50±10 nm, of ZnO were deposited by Pulsed Laser Deposition (PLD) under a variety of growth conditions. The oxygen pressure, laser fluence, substrate temperature and annealing conditions were varied as a part of this study. Mobility and carrier concentration were the focus of the optimization. While room-temperature ZnO growths followed by air and oxygen annealing showed improvement in the (002) phase formation with a carrier concentration in the order of 1017-1018/cm3 with low mobility in the range of 0.01-0.1 cm2/V s, a Hall mobility of 8 cm2/V s and a carrier concentration of 5×1014/cm3 have been achieved on a relatively low temperature growth (250 °C) of ZnO. The low carrier concentration indicates that the number of defects have been reduced by a magnitude of nearly a 1000 as compared to the room-temperature annealed growths. Also, it was very clearly seen that for the (002) oriented films of ZnO a high mobility film is achieved.

  19. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    NASA Astrophysics Data System (ADS)

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W.; Lippert, Thomas; Traversa, Enrico; Kilner, John A.

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  20. Physical Property Evaluation of ZnO Thin Film Fabricated by Low-Temperature Process for Flexible Transparent TFT.

    PubMed

    Khafe, Adie Bin Mohd; Watanabe, Hiraku; Yamauchi, Hiroshi; Kuniyoshi, Shigekazu; Iizuka, Masaaki; Sakai, Masatoshi; Kudo, Kazuhiro

    2016-04-01

    The usual silicon-based display back planes require fairly high process temperature and thus the development of a low temperature process is needed on flexible plastic substrates. A new type of flexible organic light emitting transistor (OLET) had been proposed and investigated in the previous work. By using ultraviolet/ozone (UV/O3) assisted thermal treatments on wet processed zinc oxide field effect transistor (ZnO-FET), through low-process temperature, ZnO-FETs were fabricated which succeeded to achieve target drain current value and mobility. In this study, physical property evaluation of ZnO was conducted in term of their crystallinity, the increase composition of ZnO formed inside the thin film and the decrease of the carbon impurities originated from aqueous solution of the ZnO itself. The X-ray diffraction (XRD) evaluation showed UV/03 assisted thermal treatment has no obvious effect towards crystallinity of ZnO in the range of low process temperature. Moreover, through X-ray photoelectron spectroscopy (XPS) evaluation and Fourier transform infrared (FT-IR) spectroscopy evaluation, more carbon impurities disappeared from the ZnO thin film and the increase of composition amount of ZnO, when the thin film was subjected to UV/O3 assisted thermal treatment. Therefore, UV/O3 assisted thermal treatment contributed in carbon impurities elimination and accelerate ZnO formation in ZnO thin film, which led to the improvement in the electrical property of ZnO-FET in the low-process temperature.

  1. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  2. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    PubMed

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  3. The properties of plasma-enhanced atomic layer deposition (ALD) ZnO thin films and comparison with thermal ALD

    NASA Astrophysics Data System (ADS)

    Kim, Doyoung; Kang, Hyemin; Kim, Jae-Min; Kim, Hyungjun

    2011-02-01

    Zinc oxide (ZnO) thin films were prepared by plasma-enhanced atomic layer deposition (PE-ALD) using oxygen plasma as a reactant and the properties were compared with those of thermal atomic layer deposition (TH-ALD) ZnO thin films. While hexagonal wurzite phase with preferential (0 0 2) orientation was obtained for both cases, significant differences were observed in various aspects of film properties including resistivity values between these two techniques. Photoluminescence (PL) measurements have shown that high resistivity of PE-ALD ZnO thin films is due to the oxygen interstitials at low growth temperature of 200 °C, whose amount decreases with increasing growth temperature. Thin film transistors (TFT) using TH- and PE-ALD ZnO as an active layer were also fabricated and the device properties were evaluated comparatively.

  4. Thermal-induced structural and optical investigations of Agsbnd ZnO nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.

    2018-07-01

    In the present paper, we have successfully synthesized Agsbnd ZnO nanocomposite thin films by RF-magnetron sputtering technique at room temperature. Systematic investigations of thermal-induced structural and optical modifications in Agsbnd ZnO thin films have been observed and described. The Agsbnd ZnO thin films were annealed at three different temperatures of 300 °C, 400 °C and 500 °C in vacuum to prevent the oxidation of Ag. The presence and formation of Ag nanoparticles were estimated by transmission electron microscopy. X-ray diffraction analysis revealed the structural information about the crystalline quality of ZnO. The crystallinity as well as the crystallite size of the films have been found to be improved with annealing temperatures. The estimated crystallite size was ∼15.8 nm for as-deposited film and 19.0 nm for the film at a higher temperature. The chemical composition and structural analysis of as-deposited film were carried out by X-ray photoelectron spectroscopy. A very sharp absorption band appeared at ∼540 nm for Ag NPs that is associated with the surface plasmon resonance band of Ag. A noticeable red shift of about ∼12 nm has been recorded for films annealed at 500 °C. Atomic force microscopy has been utilized to examine the surface morphology of the as-deposited and annealed films. The grain size was found to be increase with increasing annealing temperature, while no significant changes were observed in the roughness of Agsbnd ZnO thin films. Raman spectroscopy revealed lattice defects and disordering in the films after the thermal annealing.

  5. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  6. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  7. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp; Micro System Integration Center; Isobe, Shigehito

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  8. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  9. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  10. Photoelectrochemical properties of highly mobilized Li-doped ZnO thin films.

    PubMed

    Shinde, S S; Bhosale, C H; Rajpure, K Y

    2013-03-05

    Li-doped ZnO thin films with preferred (002) orientation have been prepared by spray pyrolysis technique in aqueous medium on to the corning glass substrates. The effect of Li-doping on to the photoelectrochemical, structural, morphological, optical, luminescence, electrical and thermal properties has been investigated. XRD and Raman study indicates that the films have hexagonal crystal structure. The transmittance, reflectance, refractive index, extinction coefficient and bandgap have been analyzed by optical study. PL spectra consist of a near band edge and visible emission due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial zinc (Zni), interstitial oxygen (Oi) and zinc vacancy (VZn). The Li-doped ZnO films prepared for 1at% doping possesses the highest electron mobility of 102cm(2)/Vs and carrier concentration of 3.62×10(19)cm(-3). Finally, degradation of 2,4,6-Trinitrotoluene using Li-doped ZnO thin films has been reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  12. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  13. Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.

  14. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  15. Sol-gel derived Al-Ga co-doped transparent conducting oxide ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Department of Physics, Karnataka Government Research centre SCEM, Mangalore, 575007; Sandeep, K. M.

    2016-05-23

    Transparent conducting ZnO doped with Al, Ga and co-doped Al and Ga (1:1) (AGZO) thin films were grown on glass substrates by cost effective sol-gel spin coating method. The XRD results showed that all the films are polycrystalline in nature and highly textured along the (002) plane. Enhanced grain size was observed in the case of AGZO thin films. The transmittance of all the films was more than 83% in the visible region of light. The electrical properties such as carrier concentration and mobility values are increased in case of AGZO compared to that of Al and Ga doped ZnOmore » thin films. The minimum resistivity of 2.54 × 10{sup −3} Ω cm was observed in AGZO thin film. The co-doped AGZO thin films exhibited minimum resistivity and high optical transmittance, indicate that co-doped ZnO thin films could be used in transparent electronics mainly in display applications.« less

  16. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  17. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    PubMed

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  18. Radical Beam Gettering Epitaxy of Zno and Gan

    NASA Astrophysics Data System (ADS)

    Georgobiani, A. N.; Demin, V. I.; Vorobiev, M. O.; Gruzintsev, A. N.; Hodos, I. I.; Kotljarevsky, M. B.; Kidalov, V. V.; Rogozin, I. V.

    2002-11-01

    P-type ZnO layers with a hole mobility about 23 cm2/(V s), and a hole concentration about 1015 cm-3 were grown by means of radical-beam gettering epitaxy (the annealing of n-ZnO single crystals in atomic oxygen flux). The effect of native defects on the photoluminescence spectra of the layers was studied. The dominant bands in the spectra peaked at 370.2 and 400 nm. These bands were attributed to the annihilation of exciton localised on neutral Vzn and to electron transitions from the conduction band to singly positively charged Vzn correspondingly. The effect of annealing in atomic nitrogen flux of p-CaN:Mg films on their photoluminescence spectra and on the value of their conductivity were studied. Such annealing leads to appearance of a number of emission bands that peaked at 404.9, 390.8 and 378.9 nm and increases hole concentration from 5 × 1015 to 5 × 1016 cm-3, and the hole mobility from 120 to 150 cm2/(V s). The n-ZnO - p-GaN:Mg electroluminescence heterostructures were obtained. Their spectrum contains bands in the excitonic region of GaN at the wavelength 360.2 nm and in the edge region at wavelengths 378.9 and 390.8 nm.

  19. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  20. Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz

    2015-03-30

    We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less

  1. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  2. Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method

    NASA Astrophysics Data System (ADS)

    Radha, R.; Sakthivelu, A.; Pradhabhan, D.

    2016-08-01

    Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.

  3. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin

    2018-06-01

    Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

  4. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  5. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition.

    PubMed

    Mino, Lorenzo; Gianolio, Diego; Bardelli, Fabrizio; Prestipino, Carmelo; Senthil Kumar, E; Bellarmine, F; Ramanjaneyulu, M; Lamberti, Carlo; Ramachandra Rao, M S

    2013-09-25

    Ni doped, Li doped and (Li, Ni) codoped ZnO thin films were successfully grown using a pulsed laser deposition technique. Undoped and doped ZnO thin films were investigated using extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge spectroscopy (XANES). Preliminary investigations on the Zn K-edge of the undoped and doped ZnO thin films revealed that doping has not influenced the average Zn-Zn bond length and Debye-Waller factor. This shows that both Ni and Li doping do not appreciably affect the average local environment of Zn. All the doped ZnO thin films exhibited more than 50% of substitutional Ni, with a maximum of 77% for 2% Ni and 2% Li doped ZnO thin film. The contribution of Ni metal to the EXAFS signal clearly reveals the presence of Ni clusters. The Ni-Ni distance in the Ni(0) nanoclusters, which are formed in the film, is shorter with respect to the reference Ni metal foil and the Debye-Waller factor is higher. Both facts perfectly reflect what is expected for metal nanoparticles. At the highest doping concentration (5%), the presence of Li favors the growth of a secondary NiO phase. Indeed, 2% Ni and 5% Li doped ZnO thin film shows %Nisub = 75 ± 11, %Nimet = 10 ± 8, %NiO = 15 ± 8. XANES studies further confirm that the substitutional Ni is more than 50% in all the samples. These results explain the observed magnetic properties.

  6. Plasma-assisted molecular beam epitaxy of ZnO on in-situ grown GaN/4H-SiC buffer layers

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Andersson, Thorvald; Ive, Tommy

    2015-04-01

    Plasma-assisted molecular beam epitaxy (MBE) was used to grow ZnO (0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 440°C-445°C and an O2 flow rate of 2.0-2.5 sccm, we obtained ZnO layers with smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm shown by AFM. The FWHM for X-ray rocking curves recorded across the ZnO(0002) and ZnO(10bar 15) reflections were 200 and 950 arcsec, respectively. These values showed that the mosaicity (tilt and twist) of the ZnO film was comparable to corresponding values of the underlying GaN buffer. It was found that a substrate temperature > 450°C and a high Zn-flux always resulted in a rough ZnO surface morphology. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82.3% and 73.0%, respectively and the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements showed that the layers were intrinsically n-type with an electron concentration of 1019 cm-3 and a Hall mobility of 50 cm2·V-1·s-1.

  7. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    PubMed

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  8. Thermoelectric Properties of Al-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saini, S.; Mele, P.; Honda, H.; Matsumoto, K.; Miyazaki, K.; Ichinose, A.

    2014-06-01

    We have prepared 2 % Al-doped ZnO (AZO) thin films on SrTiO3 substrates by a pulsed laser deposition technique at various deposition temperatures ( T dep = 300-600 °C). The thermoelectric properties of AZO thin films were studied in a low temperature range (300-600 K). Thin film deposited at 300 °C is fully c-axis-oriented and presents electrical conductivity 310 S/cm with Seebeck coefficient -65 μV/K and power factor 0.13 × 10-3 Wm-1 K-2 at 300 K. The performance of thin films increases with temperature. For instance, the power factor is enhanced up to 0.55 × 10-3 Wm-1 K-2 at 600 K, surpassing the best AZO film previously reported in the literature.

  9. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S. I.; Georgieva, V.; Yordanov, R.; Raicheva, Z.; Szilágyi, I. M.

    2016-11-01

    Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO2 was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO2 already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO2.

  10. Ultraviolet electroluminescence from hetero p-n junction between a single ZnO microsphere and p-GaN thin film.

    PubMed

    Tetsuyama, Norihiro; Fusazaki, Koshi; Mizokami, Yasuaki; Shimogaki, Tetsuya; Higashihata, Mitsuhiro; Nakamura, Daisuke; Okada, Tatsuo

    2014-04-21

    We report ultraviolet electroluminescence from a hetero p-n junction between a single ZnO microsphere and p-GaN thin film. ZnO microspheres, which have high crystalline quality, have been synthesized by ablating a ZnO sintered target. It was found that synthesized ZnO microspheres had a high-optical property and exhibit the laser action in the whispering gallery mode under pulsed optical pumping. A hetero p-n junction was formed between the single ZnO microsphere/ p-GaN thin film, and a good rectifying property with a turn-on voltage of approximately 6 V was observed in I-V characteristic across the junction. Ultraviolet and visible electroluminescence were observed under forward bias.

  11. Electrochemical Atomic Layer Epitaxy of Thin Film CdSe

    NASA Astrophysics Data System (ADS)

    Pham, L.; Kaleida, K.; Happek, U.; Mathe, M. K.; Vaidyanathan, R.; Stickney, J. L.; Radevic, M.

    2002-10-01

    Electrochemical atomic layer epitaxy (EC-ALE) is a current developmental technique for the fabrication of compound semiconductor thin films. The deposition of elements making up the compound utilizes surface limited reactions where the potential is less than that required for bulk growth. This growth method offers mono-atomic layer control, allowing the deposition of superlattices with sharp interfaces. Here we report on the EC-ALE formation of CdSe thin films on Au and Cu substrates using an automated flow cell system. The band gap was measured using IR absorption and photoconductivity and found to be consistent with the literature value of 1.74 eV at 300K and 1.85 eV at 20K. The stoichiometry of the thin film was confirmed with electron microprobe analysis and x-ray diffraction.

  12. Role of vacancy defects in Al doped ZnO thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Mazel, Y.; Brochen, S.; Valla, A.; Pautrat, A.; Licitra, C.; Rochat, N.; Sabbione, C.; Rodriguez, G.; Nolot, E.

    2017-12-01

    We report on the electrical, optical and photoluminescence properties of industry-ready Al doped ZnO thin films grown by physical vapor deposition, and their evolution after annealing under vacuum. Doping ZnO with Al atoms increases the carrier density but also favors the formation of Zn vacancies, thereby inducing a saturation of the conductivity mechanism at high aluminum content. The electrical and optical properties of these thin layered materials are both improved by annealing process which creates oxygen vacancies that releases charge carriers thus improving the conductivity. This study underlines the effect of the formation of extrinsic and intrinsic defects in Al doped ZnO compound during the fabrication process. The quality and the optoelectronic response of the produced films are increased (up to 1.52 mΩ \\cdotcm and 3.73 eV) and consistent with the industrial device requirements.

  13. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The resultsmore » of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.« less

  14. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.

    2015-12-01

    In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.

  15. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  16. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2

    DOE PAGES

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...

    2017-02-17

    We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less

  17. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  18. Effect of Ag doping on the properties of ZnO thin films for UV stimulated emission

    NASA Astrophysics Data System (ADS)

    Razeen, Ahmed S.; Gadallah, A.-S.; El-Nahass, M. M.

    2018-06-01

    Ag doped ZnO thin films have been prepared using sol-gel spin coating method, with different doping concentrations. Structural and morphological properties of the films have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Thin films have been optically pumped and stimulated emission has been observed with strong peaks in the UV region. The UV stimulated emission is found to be due to exciton-exciton scattering, and Ag doping promoted this process by increasing the excitons concentrations in the ZnO lattice. Output-input intensity relation and peak emission, FWHM, and quantum efficiency relations with pump intensity have been reported. The threshold for which stimulated emission started has been evaluated to be about 18 MW/cm2 with quantum efficiency of about 58.7%. Mechanisms explaining the role of Ag in enhancement of stimulated emission from ZnO thin films have been proposed.

  19. High Performance and Highly Reliable ZnO Thin Film Transistor Fabricated by Atomic Layer Deposition for Next Generation Displays

    DTIC Science & Technology

    2011-08-19

    zinc oxide ( ZnO ) thin film as an active channel layer in TFT has become of great interest owing to their specific...630-0192 Japan Phone: +81-743-72-6060 Fax: +81-743-72-6069 E-mail: uraoka@ms.naist.jp Keywords: zinc oxide , thin film transistors , atomic layer...deposition Symposium topic: Transparent Semiconductors Oxides [Abstract] In this study, we fabricated TFTs using ZnO thin film as the

  20. Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Adolph, David; Tingberg, Tobias; Ive, Tommy

    2015-09-01

    Plasma-assisted molecular beam epitaxy was used to grow ZnO(0001) layers on GaN(0001)/4H-SiC buffer layers deposited in the same growth chamber equipped with both N- and O-plasma sources. The GaN buffer layers were grown immediately before initiating the growth of ZnO. Using a substrate temperature of 445 °C and an O2 flow rate of 2.5 standard cubic centimeters per minute, we obtained ZnO layers with statistically smooth surfaces having a root-mean-square roughness of 0.3 nm and a peak-to-valley distance of 3 nm as revealed by atomic force microscopy. The full-width-at-half-maximum for x-ray rocking curves obtained across the ZnO(0002) and ZnO(10 1 bar 5) reflections was 198 and 948 arcsec, respectively. These values indicated that the mosaicity of the ZnO layer was comparable to the corresponding values of the underlying GaN buffer layer. Reciprocal space maps showed that the in-plane relaxation of the GaN and ZnO layers was 82% and 73%, respectively, and that the relaxation occurred abruptly during the growth. Room-temperature Hall-effect measurements revealed that the layers were inherently n-type and had an electron concentration of 1×1019 cm-3 and a Hall mobility of 51 cm2/V s.

  1. Positron lifetime beam for defect studies in thin epitaxial semiconductor structures

    NASA Astrophysics Data System (ADS)

    Laakso, A.; Saarinen, K.; Hautojärvi, P.

    2001-12-01

    Positron annihilation spectroscopies are methods for direct identification of vacancy-type defects by measuring positron lifetime and Doppler broadening of annihilation radiation and providing information about open volume, concentration and atoms surrounding the defect. Both these techniques are easily applied to bulk samples. Only the Doppler broadening spectroscopy can be employed in thin epitaxial samples by utilizing low-energy positron beams. Here we describe the positron lifetime beam which will provide us with a method to measure lifetime in thin semiconductor layers.

  2. Modification of opto-electronic properties of ZnO by incorporating metallic tin for buffer layer in thin film solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deepu, D. R.; Jubimol, J.; Kartha, C. Sudha

    2015-06-24

    In this report, the effect of incorporation of metallic tin (Sn) on opto-electronic properties of ZnO thin films is presented. ZnO thin films were deposited through ‘automated chemical spray pyrolysis’ (CSP) technique; later different quantities of ‘Sn’ were evaporated on it and subsequently annealed. Vacuum annealing showed a positive effect on crystallinity of films. Creation of sub band gap levels due to ‘Sn’ diffusion was evident from the absorption and PL spectra. The tin incorporated films showed good photo response in visible region. Tin incorporated ZnO thin films seem to satisfy the desirable criteria for buffer layer in thin filmmore » solar cells.« less

  3. Deposition of undoped and Al doped ZnO thin films using RF magnetron sputtering and study of their structural, optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna

    2017-05-01

    Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.

  4. Fabrication of nanostructured Al-doped ZnO thin film for methane sensing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafura, A. K., E-mail: shafura@ymail.com; Azhar, N. E. I.; Uzer, M.

    2016-07-06

    CH{sub 4} gas sensor was fabricated using spin-coating method of the nanostructured ZnO thin film. Effect of annealing temperature on the electrical and structural properties of the film was investigated. Dense nanostructured ZnO film are obtained at higher annealing temperature. The optimal condition of annealing temperature is 500°C which has conductivity and sensitivity value of 3.3 × 10{sup −3} S/cm and 11.5%, respectively.

  5. ZnO thin films and nanostructures for emerging optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Rogers, D. J.; Teherani, F. H.; Sandana, V. E.; Razeghi, M.

    2010-02-01

    ZnO-based thin films and nanostructures grown by PLD for various emerging optoelectronic applications. AZO thin films are currently displacing ITO for many TCO applications due to recent improvements in attainable AZO conductivity combined with processing, cost and toxicity advantages. Advances in the channel mobilities and Id on/off ratios in ZnO-based TTFTs have opened up the potential for use as a replacement for a-Si in AM-OLED and AM-LCD screens. Angular-dependent specular reflection measurements of self-forming, moth-eye-like, nanostructure arrays grown by PLD were seen to have <0.5% reflectivity over the whole visible spectrum for angles of incidence between 10 and 60 degrees. Such nanostructures may be useful for applications such as AR coatings on solar cells. Compliant ZnO layers on mismatched/amorphous substrates were shown to have potential for MOVPE regrowth of GaN. This approach could be used as a means to facilitate lift-off of GaN-based LEDs from insulating sapphire substrates and could allow the growth of InGaN-based solar cells on cheap substrates. The green gap in InGaN-based LEDs was combated by substituting low Ts PLD n-ZnO for MOCVD n-GaN in inverted hybrid heterojunctions. This approach maintained the integrity of the InGaN MQWs and gave LEDs with green emission at just over 510 nm. Hybrid n-ZnO/p-GaN heterojunctions were also seen to have the potential for UV (375 nm) EL, characteristic of ZnO NBE emission. This suggests that there was significant hole injection into the ZnO and that such LEDs could profit from the relatively high exciton binding energy of ZnO.

  6. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  7. Magnetic properties of epitaxial hexagonal HoFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Xiao, Zhuyun; Xu, Xiaoshan; Wang, Wenbin; Keavney, David; Liu, Yaohua; Cheng, X. M.

    2014-03-01

    Multiferroic materials exhibit multiple ferroic orders simultaneously and thus have great potential applications in information technology, sensing and actuation. Epitaxial hexagonal HoFeO3 (h-HFO) films are very promising candidates as multiferroic materials with room temperature ferromagnetism, because magnetic Ho3+ ions are expected to have stronger exchange interactions with Fe3+ ions than the well-studied h-LuFeO3 films. We report study of magnetic properties of epitaxial h-HFO thin films deposited using laser molecular beam epitaxy on Yttria-stabilized zirconia (YSZ) substrates. X-ray diffraction measurements confirmed the epitaxial registry and six-fold symmetry of the film. Temperature dependence of magnetization of the film measured by a Quantum Design SQUID magnetometer shows dominating paramagnetic characteristic. Element specific x-ray magnetic circular dichroism measurements performed at beamline 4-ID-C of the Advanced Photon Source show a ferromagnetic ordering of Fe and an exchange coupling between Ho3+ and Fe3+ ions. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).

  8. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun ZnO Nanostructured Thin Film

    PubMed Central

    Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya

    2012-01-01

    In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.

  9. Role of Ni doping on transport properties of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dar, Tanveer Ahmad, E-mail: tanveerphysics@gmail.com; Agrawal, Arpana; Sen, Pratima

    2015-06-24

    Nickel doped (Ni=0.05) and undoped Zinc Oxide (ZnO) thin films have been prepared by Pulsed laser deposition (PLD) technique. The structural analysis of the films was done by X-ray diffraction (XRD) studies which reveal absence of any secondary phase in the prepared samples. UV transmission spectra show that Ni doping reduces the transparency of the films. X-ray Photoelectron spectroscopy (XPS) also shows the presence of metallic Ni along with +2 oxidation state in the sample. Low temperature magneto transport properties of the ZnO and NiZnO films are also discussed in view of Khosla fisher model. Ni doping in ZnO resultsmore » in decrease in magnitude of negative MR.« less

  10. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  11. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  12. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  13. Chemically stabilized epitaxial wurtzite-BN thin film

    NASA Astrophysics Data System (ADS)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along <0001> direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  14. Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films

    PubMed Central

    Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan

    2014-01-01

    Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000

  15. The stability of the epitaxially introduced metastable metallic structures of thin layers and multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeville, M.C.

    Among the very large number of metallic thin films, sandwiches and multilayers which have been elaborated by epitaxy on various single crystalline substrates during the last decade, few new structures are reported. Limiting to the case of 3d metals, one finds with a great confidence bcc Cobalt, possibly bee Nickel and a non-compact hexagonal (hp) iron. Moreover structures existing at high temperature under ambient pressure are epitaxially stabilized at room temperature (RT) like fcc Cobalt, fcc Iron, fcc and bcc Manganese. The hcp iron which is stable under high pressure at RT would not be epitaxially stabilized at ambient pressuremore » conversely to first findings. The critical thickness of the metastable phase is generally limited to some monolayers in thin films, being slightly increased in sandwiches or multilayers, even if the phenomenological wetting criterion to build superlattices is not satisfied. No increased magnetic moment has been found up to now in the expanded lattices, contrary to band structure calculation predictions. 56 refs.« less

  16. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    NASA Astrophysics Data System (ADS)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  17. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  18. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis.

    PubMed

    Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian

    2017-06-14

    A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.

  19. Molecular beam epitaxy growth of SmB6+/-δ thin films

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason; Saleem, Muhammad; Day, James; Bonn, Doug; Hoffman, Jennifer

    SmB6 has emerged as a leading candidate in the search for exotic topological states generated by strong interactions. The synthesis of epitaxial SmB6 thin films presents new avenues to control surface termination, thickness, and strain in this system. In this work, we use molecular beam epitaxy (MBE) to deposit SmB6+/-δ films on insulating (001)-oriented MgO substrates. We use ex-situ x-ray diffraction and magnetotransport measurements to assess the properties of the samples and compare them to previously reported values for single crystals. We also discuss the prospects of using rare-earth substitution to control the correlation strength and alter the topology of the bulk and surface electronic states.

  20. Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation

    NASA Astrophysics Data System (ADS)

    Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang

    2017-09-01

    Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.

  1. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less

  2. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    PubMed

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  3. Kinematical calculations of RHEED intensity oscillations during the growth of thin epitaxial films

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2005-08-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction (RHEED) from the molecular beam epitaxy (MBE) growing surface. The calculations are based on the use of kinematical diffraction theory. Simple mathematical models are used for the growth simulation in order to investigate the fundamental behaviors of reflectivity change during the growth of thin epitaxial films prepared using MBE. Program summaryTitle of program:GROWTH Catalogue identifier:ADVL Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which is has been tested:Pentium-based PC Operating systems or monitors under which the program has been tested:Windows 9x, XP, NT Programming language used:Object Pascal Memory required to execute with typical data:more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Number of lines in distributed program, including test data, etc.: 10 989 Number of bytes in distributed program, including test data, etc.:103 048 Nature of the physical problem:Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared using the molecular beam epitaxy (MBE). The simplest approach to calculating the RHEED intensity during the growth of thin epitaxial films is the kinematical diffraction theory (often called kinematical approximation), in which only a single scattering event is taken into account. The biggest advantage of this approach is that we can calculate RHEED intensity in real time. Also, the approach facilitates intuitive understanding of the growth mechanism and surface morphology [P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, A.S. Arrott, Surf. Sci. 216 (1989) 222]. Method of solution:Epitaxial

  4. Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.

    PubMed

    Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana

    2013-01-01

    ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Synchrotron X-ray studies of epitaxial ferroelectric thin films and nanostructures

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey A.

    The study of ferroelectric thin films is a field of considerable scientific and technological interest. In this dissertation synchrotron x-ray techniques were applied to examine the effects of lateral confinement and epitaxial strain in ferroelectric thin films and nanostructures. Three materials systems were investigated: laterally confined epitaxial BiFeO3 nanostructures on SrTiO3 (001), ultra-thin commensurate SrTiO 3 films on Si (001), and coherently strained films of BaTiO3 on DyScO3 (110). Epitaxial films of BiFeO3 were deposited by radio frequency magnetron sputtering on SrRuO3 coated SrTiO 3 (001) substrates. Laterally confined nanostructures were fabricated using focused ion-beam processing and subsequently characterized with focused beam x-ray nanodiffraction measurements with unprecedented spatial resolution. Results from a series of rectangular nanostructures with lateral dimensions between 500 nm and 1 mum and a comparably-sized region of the unpatterned BiFeO3 film revealed qualitatively similar distributions of local strain and lattice rotation with a 2-3 times larger magnitude of variation observed in those of the nanostructures compared to the unpatterned film. This indicates that lateral confinement leads to enhanced variation in the local strain and lattice rotation fields in epitaxial BiFeO3 nanostructures. A commensurate 2 nm thick film of SrTiO3 on Si was characterized by the x-ray standing wave (XSW) technique to determine the Sr and Ti cation positions in the strained unit cell in order to verify strain-induced ferroelectricity in SrTiO3/Si. A Si (004) XSW measurement at 10°C indicated that the average Ti displacement from the midpoint between Sr planes was consistent in magnitude to that predicted by a density functional theory (DFT) calculated ferroelectric structure. The Ti displacement determined from a 35°C measurement better matched a DFT-predicted nonpolar structure. The thin film extension of the XSW technique was employed to

  6. Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettumperumal, R.; Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in; Santoshkumar, B.

    Highlights: • Comparison of group-I elements doped ZnO nanoparticles and thin films. • Calculation of electron–phonon coupling and phonon lifetime from Raman spectroscopy. • Estimation of interband states from Urbach energy. - Abstract: Group-I (Li, Na, K & Cs) elements doped ZnO nanoparticles (NPs) and thin films were prepared using sol–gel method. XRD data and TEM images confirm the absence of any other secondary phase different from wurtzite type ZnO. Spherical shapes of grains are observed from the surfaces of doped ZnO films by atomic force microscope images (AFM) and presences of dopants are confirmed from energy dispersive X-ray spectra.more » The Raman active E{sub 2} (high), E{sub 2} (low), E{sub 1} and A{sub 1} (LO) modes are observed from both ZnO NPs and thin films. First-order longitudinal optical (LO) phonon is found to have contributions from direct band transition and localized excitons. Electron–phonon coupling, phonon lifetime and deformation energy of ZnO are calculated based on the effect of dopants with respect to the multiple Raman LO phonon scattering. Presence of localized interbands states in doped ZnO NPs and thin films are found from the Urbach energy calculations.« less

  7. Microstructure study of ZnO thin films on Si substrate grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang

    2007-08-01

    The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.

  8. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki

    2016-09-01

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  9. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  10. Mosaic structure in epitaxial thin films having large lattice mismatch

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Speck, J. S.; Clarke, D. R.

    1997-11-01

    Epitaxial films having a large lattice mismatch with their substrate invariably form a mosaic structure of slightly misoriented sub-grains. The mosaic structure is usually characterized by its x-ray rocking curve on a surface normal reflection but this is limited to the out-of-plane component unless off-axis or transmission experiments are performed. A method is presented by which the in-plane component of the mosaic misorientation can be determined from the rocking curves of substrate normal and off-axis reflections. Results are presented for two crystallographically distinct heteroepitaxial systems, ZnO, AlN, and GaN (wurtzite crystal structure) on c-plane sapphire and MgO (rock salt crystal structure) on (001) GaAs. The differences in the mosaic structure of these films are attributed to the crystallographic nature of their lattice dislocations.

  11. Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-06-01

    Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.

  12. Ultraviolet Electrically Injected Light Sources With Epitaxial ZnO-Based Heterojunctions

    DTIC Science & Technology

    2007-08-01

    ohmic contacts to ZnO , UV photoconductors, and thin film transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated... transistors . The integration of ferroelectric oxide thin films with ZnO was also investigated, as a potential means of locally inverting ZnO to p-type, and to...low contact resistivity ......................... 8 ZnO Thin Film Transistors

  13. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  14. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    NASA Astrophysics Data System (ADS)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  15. Sharp chemical interface in epitaxial Fe{sub 3}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gálvez, S.; Rubio-Zuazo, J., E-mail: rubio@esrf.fr; Salas-Colera, E.

    Chemically sharp interface was obtained on single phase single oriented Fe{sub 3}O{sub 4} (001) thin film (7 nm) grown on NiO (001) substrate using oxygen assisted molecular beam epitaxy. Refinement of the atomic structure, stoichiometry, and oxygen vacancies were determined by soft and hard x-ray photoelectron spectroscopy, low energy electron diffraction and synchrotron based X-ray reflectivity, and X-ray diffraction. Our results demonstrate an epitaxial growth of the magnetite layer, perfect iron stoichiometry, absence of oxygen vacancies, and the existence of an intermixing free interface. Consistent magnetic and electrical characterizations are also shown.

  16. Effect of Fe incorporation on the optical behavior of ZnO thin films prepared by sol-gel derived spin coating techniques

    NASA Astrophysics Data System (ADS)

    Rakkesh, R. Ajay; Malathi, R.; Balakumar, S.

    2013-02-01

    In this work, Fe doped Zinc Oxide (ZnO) thin films were fabricated on the glass substrate by sol-gel derived spin coating technique. X-ray Diffraction studies revealed that the obtained pure and Fe doped ZnO thin films were in the wurtzite and spinel phase respectively. The three well defined Raman lines at 432, 543 and 1091 cm-1 also confirmed the lattice structure of the ZnO thin film has wurtzite symmetry. While doping Fe atoms in the ZnO, there was a significant change in the phase from wurtzite to spinel structure; owing to Fe (III) ions being incorporated into the lattice through substitution of Zn (II) ions. Room temperature PL spectra showed that the role of defect mediated red emissions at 612 nm was due to radial recombination of a photogenerated hole with an electron that belongs to the Fe atoms, which were discussed in detail.

  17. ZnO thin-film transistors with a polymeric gate insulator built on a polyethersulfone substrate

    NASA Astrophysics Data System (ADS)

    Hyung, Gun Woo; Park, Jaehoon; Koo, Ja Ryong; Choi, Kyung Min; Kwon, Sang Jik; Cho, Eou Sik; Kim, Yong Seog; Kim, Young Kwan

    2012-03-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) with a cross-linked poly(vinyl alcohol) (c-PVA) insulator are fabricated on a polyethersulfone substrate. The ZnO film, formed by atomic layer deposition, shows a polycrystalline hexagonal structure with a band gap energy of about 3.37 eV. The fabricated ZnO TFT exhibits a field-effect mobility of 0.38 cm2/Vs and a threshold voltage of 0.2 V. The hysteresis of the device is mainly caused by trapped electrons at the c-PVA/ZnO interface, whereas the positive threshold voltage shift occurs as a consequence of constant positive gate bias stress after 5000 s due to an electron injection from the ZnO film into the c-PVA insulator.

  18. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    NASA Astrophysics Data System (ADS)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  19. Water-Soluble Epitaxial NaCl Thin Film for Fabrication of Flexible Devices.

    PubMed

    Lee, Dong Kyu; Kim, Sungjoo; Oh, Sein; Choi, Jae-Young; Lee, Jong-Lam; Yu, Hak Ki

    2017-08-18

    We studied growth mechanisms of water-soluble NaCl thin films on single crystal substrates. Epitaxial growth of NaCl(100) on Si(100) and domain-matched growth of NaCl(111) on c-sapphire were obtained at thicknesses below 100 nm even at room temperature from low lattice mismatches in both cases. NaCl thin film, which demonstrates high solubility selectivity for water, was successfully applied as a water-soluble sacrificial layer for fabrication of several functional materials, such as WO 3 nano-helix and Sn doped In 2 O 3 nano-branches.

  20. Controllable dimension of ZnO nanowalls on GaN/c-Al2O3 substrate by vapor phase epitaxy method.

    PubMed

    Song, W Y; Shin, T I; Kang, S M; Kim, S W; Yang, J H; Park, M H; Yang, C W; Yoon, D H

    2008-09-01

    Vertically well-aligned ZnO nanowalls were successfully synthesized at 950-1050 degrees C. Ar gas was introduced into the furnace at a flow rate of 2000-2500 sccm. An Au thin film with a thickness of 3 nm was used as a catalyst. The ZnO nanowalls were successfully grown on the substrate and most of them had nearly the same thickness and were oriented perpendicular to the substrate. The morphology and chemical composition of the ZnO nanowalls were examined as a function of the growth conditions examined. It was found that the grown ZnO nanowalls have a single-crystalline hexagonal structure and preferred c-axis growth orientation based on the X-ray diffraction and high-resolution transmission electron microscope measurements. The room temperature photoluminescence showed a strong free-exciton emission band with negligible deep level emission, indicating the high optical property of our ZnO nanowall samples.

  1. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  2. The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner

    2018-02-01

    Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.

  3. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  4. Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Kosarev, A. N.; Akimov, I. A.; Yakovlev, D. R.; Sadofev, S.; Puls, J.; Hoffmann, S. P.; Albert, M.; Meier, C.; Meier, T.; Bayer, M.

    2017-07-01

    The coherent optical response from 140 nm and 65 nm thick ZnO epitaxial layers is studied using four-wave-mixing spectroscopy with picosecond temporal resolution. Resonant excitation of neutral donor-bound excitons results in two-pulse and three-pulse photon echoes. For the donor-bound A exciton (D0XA ) at temperature of 1.8 K we evaluate optical coherence times T2=33 -50 ps corresponding to homogeneous line widths of 13 -19 μ eV , about two orders of magnitude smaller as compared with the inhomogeneous broadening of the optical transitions. The coherent dynamics is determined mainly by the population decay with time T1=30 -40 ps, while pure dephasing is negligible. Temperature increase leads to a significant shortening of T2 due to interaction with acoustic phonons. In contrast, the loss of coherence of the donor-bound B exciton (D0XB ) is significantly faster (T2=3.6 ps ) and governed by pure dephasing processes.

  5. Single-domain epitaxial silicene on diboride thin films

    DOE PAGES

    Fleurence, A.; Gill, T. G.; Friedlein, R.; ...

    2016-04-12

    Epitaxial silicene, which forms spontaneously on ZrB 2(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. LastlThe realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less

  6. Single-domain epitaxial silicene on diboride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility ofmore » silicene.« less

  7. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  8. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    PubMed

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  9. Fabrication of ZnO Thin Films by Sol-Gel Spin Coating and Their UV and White-Light Emission Properties

    NASA Astrophysics Data System (ADS)

    Kumar, Mirgender; Dubey, Sarvesh; Rajendar, Vanga; Park, Si-Hyun

    2017-10-01

    ZnO thin films have been fabricated by the sol-gel spin-coating technique and annealed under different conditions, and their ultraviolet (UV) and white-light emission properties investigated. Different ambient conditions including oxygen, nitrogen, zinc-rich nitrogen, and vacuum were used to tune the main properties of the ZnO thin films. The resistivity varied from the conductive to semi-insulating regime, and the luminescence emission from fairly intense UV to polychromatic. The emission intensity was also found to be a function of the annealing conditions. Possible routes to compensate the loss of emission characteristics are discussed. X-ray photoelectron spectroscopy (XPS) analysis was carried out to detect the chemical states of the zinc/oxygen species. The changes in the electrical and emission properties are explained based on annihilation/formation of inherent donor/acceptor-type defects. Such ZnO thin films could have potential applications in solid-state lighting.

  10. Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films.

    PubMed

    Emori, Satoru; Yi, Di; Crossley, Sam; Wisser, Jacob J; Balakrishnan, Purnima P; Khodadadi, Behrouz; Shafer, Padraic; Klewe, Christoph; N'Diaye, Alpha T; Urwin, Brittany T; Mahalingam, Krishnamurthy; Howe, Brandon M; Hwang, Harold Y; Arenholz, Elke; Suzuki, Yuri

    2018-06-08

    Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe 3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.

  11. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  12. Possible ferroelectricity in perovskite oxynitride SrTaO2N epitaxial thin films

    PubMed Central

    Oka, Daichi; Hirose, Yasushi; Kamisaka, Hideyuki; Fukumura, Tomoteru; Sasa, Kimikazu; Ishii, Satoshi; Matsuzaki, Hiroyuki; Sato, Yukio; Ikuhara, Yuichi; Hasegawa, Tetsuya

    2014-01-01

    Compressively strained SrTaO2N thin films were epitaxially grown on SrTiO3 substrates using nitrogen plasma-assisted pulsed laser deposition. Piezoresponse force microscopy measurements revealed small domains (101–102 nm) that exhibited classical ferroelectricity, a behaviour not previously observed in perovskite oxynitrides. The surrounding matrix region exhibited relaxor ferroelectric-like behaviour, with remanent polarisation invoked by domain poling. First-principles calculations suggested that the small domains and the surrounding matrix had trans-type and a cis-type anion arrangements, respectively. These experiments demonstrate the promise of tailoring the functionality of perovskite oxynitrides by modifying the anion arrangements by using epitaxial strain.

  13. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.

    2016-09-05

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis latticemore » parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.« less

  14. Structural and magnetic characterization of mixed valence Co(II, III)xZn1-xO epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Negi, D. S.; Loukya, B.; Dileep, K.; Sahu, R.; Shetty, S.; Kumar, N.; Ghatak, J.; Pachauri, N.; Gupta, A.; Datta, R.

    2014-03-01

    In this article, we report on the Co atom incorporation, secondary phase formation and composition-dependent magnetic and optical properties of mixed valence Co(II, III)xZn1-xO epitaxial thin films grown by pulsed laser deposition. The intended total Co concentration is varied between ~6-60 at.% with relatively higher concentration of +3 over +2 charge state. Mixed valence Co(II, III) shows high solubility in ZnO (up to 38 at.%) and ferromagnetism is observed in samples with total Co incorporation of ~29 and 38 at.%. Electron diffraction pattern and high resolution transmission electron microscopy images reveal single crystalline nature of the thin films with wurtzite structure. Co oxide interlayer, with both rock salt and spinel structure, are observed to be formed between the substrate and wurtzite film for total Co concentration at ~17 at.% and above. Magnetization shows composition dependence with a saturation moment value of ~93 emu cm-3 and a coercive field of ~285 Oe observed for ~38 at.% Co:ZnO films. Ferromagnetism was not observed for films with Co concentration 17 and 9 at.%. The Co oxide interlayer does not show any ferromagnetism. All the films are n-type with carrier concentration ~1019 cm-3. The observed magnetism is probably resulting from direct antiferromagntic exchange interaction between Co2+ and Co3+ ions favored by heavy Co alloying giving rise to ferrimagnetism in the system.

  15. Friction and wear behavior of nitrogen-doped ZnO thin films deposited via MOCVD under dry contact

    DOE PAGES

    Mbamara, U. S.; Olofinjana, B.; Ajayi, O. O.; ...

    2016-02-01

    Most researches on doped ZnO thin films are tilted toward their applications in optoelectronics and semiconductor devices. Research on their tribological properties is still unfolding. In this work, nitrogen-doped ZnO thin films were deposited on 304 L stainless steel substrate from a combination of zinc acetate and ammonium acetate precursor by MOCVD technique. Compositional and structural studies of the films were done using Rutherford Backscattering Spectroscopy (RBS) and X-ray Diffraction (XRD). The frictional behavior of the thin film coatings was evaluated using a ball-on-flat configuration in reciprocating sliding under dry contact condition. After friction test, the flat and ball counter-facemore » surfaces were examined to assess the wear dimension and failure mechanism. In conclusion, both friction behavior and wear (in the ball counter-face) were observed to be dependent on the crystallinity and thickness of the thin film coatings.« less

  16. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behler, Anna; Department of Physics, Institute for Solid State Physics, Dresden University of Technology, 01062 Dresden; Teichert, Niclas

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  17. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  18. Epitaxially influenced boundary layer model for size effect in thin metallic films

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  19. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  20. Electronic and optical properties of La-doped S r3I r2O7 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Souri, M.; Terzic, J.; Johnson, J. M.; Connell, J. G.; Gruenewald, J. H.; Thompson, J.; Brill, J. W.; Hwang, J.; Cao, G.; Seo, A.

    2018-02-01

    We have investigated structural, transport, and optical properties of tensile strained (Sr1-xL ax ) 3I r2O7 (x =0 , 0.025, 0.05) epitaxial thin films. While high-Tc superconductivity is predicted theoretically in the system, we have observed that all of the samples remain insulating with finite optical gap energies and Mott variable-range hopping characteristics in transport. Cross-sectional scanning transmission electron microscopy indicates that structural defects such as stacking faults appear in this system. The insulating behavior of the La-doped S r3I r2O7 thin films is presumably due to disorder-induced localization and ineffective electron doping of La, which brings to light the intriguing difference between epitaxial thin films and bulk single crystals of the iridates.

  1. Bipolar charge storage characteristics in copper and cobalt co-doped zinc oxide (ZnO) thin film.

    PubMed

    Kumar, Amit; Herng, Tun Seng; Zeng, Kaiyang; Ding, Jun

    2012-10-24

    The bipolar charge phenomenon in Cu and Co co-doped zinc oxide (ZnO) film samples has been studied using scanning probe microscopy (SPM) techniques. Those ZnO samples are made using a pulsed laser deposition (PLD) technique. It is found that the addition of Cu and Co dopants suppresses the electron density in ZnO and causes a significant change in the work function (Fermi level) value of the ZnO film; this results in the ohmic nature of the contact between the electrode (probe tip) and codoped sample, whereas this contact exhibits a Schottky nature in the undoped and single-element-doped samples. These results are verified by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS) measurements. It is also found that the co-doping (Cu and Co) can stabilize the bipolar charge, whereas Cu doping only stabilizes the positive charge in ZnO thin films.

  2. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi

    2016-08-01

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.

  3. Domain structure of epitaxial SrRu O3 thin films

    NASA Astrophysics Data System (ADS)

    Herranz, G.; Sánchez, F.; Fontcuberta, J.; García-Cuenca, M. V.; Ferrater, C.; Varela, M.; Angelova, T.; Cros, A.; Cantarero, A.

    2005-05-01

    Growth of multidomains in epitaxial thin-film oxides is known to have a detrimental effect on some functional properties, and, thus, efforts are done to suppress them. It is commonly accepted that optimal properties of the metallic and ferromagnetic SrRuO3 (SRO) epitaxies can only be obtained if vicinal SrTiO3 (001) (STO) substrates are used. It is believed that this results from the suppression of multidomain structure in the SRO film. Here we revise this important issue. Nanometric films of SRO have been grown on STO(001) vicinal substrates with miscut (θV) angles in the ˜0.04°-4° range. Extensive structural analysis by x-ray-reciprocal space maps and μ -Raman spectroscopy indicates that single-domain, orthorhombic, SRO films are already obtained on the almost singular (θV≈0.1°) substrate, and, thus, substrates with large miscut angles are not required to grow twin-free films. In spite of this, transport properties are found to be optimized for films grown on vicinal substrates (θV⩾2°) . We claim that this is the result of the change of the growth mode and the resulting film morphology rather than the change of the domain structure. These findings drive the attention to the relevance of the growth mechanism at the initial stages of film growth, and we discuss its implications in other areas of oxide epitaxies. Moreover, we show that in clamped epitaxies on cubic substrates, in spite of isotropic biaxial substrate-induced strains, films may have an in-plane orthorhombic symmetry which results from the internal degree of freedom defined by rotations of the oxygen octahedrons.

  4. Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method.

    PubMed

    Khokhra, Richa; Bharti, Bandna; Lee, Heung-No; Kumar, Rajesh

    2017-11-08

    This study demonstrates significant visible light photo-detection capability of pristine ZnO nanostructure thin films possessing substantially high percentage of oxygen vacancies [Formula: see text] and zinc interstitials [Formula: see text], introduced by simple tuning of economical solution method. The demonstrated visible light photo-detection capability, in addition to the inherent UV light detection ability of ZnO, shows great dependency of [Formula: see text] and [Formula: see text] with the nanostructure morphology. The dependency was evaluated by analyzing the presence/percentage of [Formula: see text] and [Formula: see text] using photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) measurements. Morphologies of ZnO viz. nanoparticles (NPs), nanosheets (NSs) and nanoflowers (NFs), as a result of tuning of synthesis method contended different concentrations of defects, demonstrated different photo-detection capabilities in the form of a thin film photodetector. The photo-detection capability was investigated under different light excitations (UV; 380~420 nm, white ; λ > 420 nm and green; 490~570 nm). The as fabricated NSs photodetector possessing comparatively intermediate percentage of [Formula: see text] ~ 47.7% and [Formula: see text] ~ 13.8% exhibited superior performance than that of NPs and NFs photodetectors, and ever reported photodetectors fabricated by using pristine ZnO nanostructures in thin film architecture. The adopted low cost and simplest approach makes the pristine ZnO-NSs applicable for wide-wavelength applications in optoelectronic devices.

  5. Structural, Electrical and Optical Properties of Cd Doped ZnO Thin Films by Reactive dc Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, A. Guru Sampath; Obulapathi, L.; Sarmash, T. Sofi; Rani, D. Jhansi; Maddaiah, M.; Rao, T. Subba; Asokan, K.

    2015-04-01

    Thin films of cadmium (Cd) (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%) doped zinc oxide (ZnO) have been deposited on a glass substrate by reactive DC magnetron sputtering. The synthesized films are characterized by glancing angle x-ray diffraction (GAXRD), UV-Vis-NIR spectroscopy, four probe resistivity measurement, Hall measurement system, field emission-scanning electron microscopy and energy dispersive analysis by x-rays. A systematic study has been made on the structure, electrical and optical properties of Cd doped ZnO thin films as a function of Cd concentration (0 wt.%, 2 wt.%, 4 wt.% and 10 wt.%). All these films have a hexagonal wurtzite ZnO structure with (0 0 2) orientation without any Cd related phase from the GAXRD patterns. The grain size was increased and maximum appears at 4 wt.% Cd concentration. The electrical resistivity of the films decreased with the Cd doping and minimum resistivity was observed at 4 wt.% Cd concentration. UV-Vis-NIR studies showed that the optical band gap of ZnO (3.37 eV) was reduced to 3.10 eV which is at 4 wt.% Cd concentration.

  6. Room-temperature Domain-epitaxy of Copper Iodide Thin Films for Transparent CuI/ZnO Heterojunctions with High Rectification Ratios Larger than 109

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Kneiß, Max; Schein, Friedrich-Leonhard; Lorenz, Michael; Grundmann, Marius

    2016-02-01

    CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm2 V-1 s-1 in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices. Herein, room-temperature heteroepitaxial growth of CuI on various substrates with well-defined in-plane epitaxial relations is realized by reactive sputtering technique. In such heteroepitaxial growth the formation of rotation domains is observed and hereby systematically investigated in accordance with existing theoretical study of domain-epitaxy. The controllable epitaxy of CuI thin films allows for the combination of p-type CuI with suitable n-type semiconductors with the purpose to fabricate epitaxial thin film heterojunctions. Such heterostructures have superior properties to structures without or with weakly ordered in-plane orientation. The obtained epitaxial thin film heterojunction of p-CuI(111)/n-ZnO(00.1) exhibits a high rectification up to 2 × 109 (±2 V), a 100-fold improvement compared to diodes with disordered interfaces. Also a low saturation current density down to 5 × 10-9 Acm-2 is formed. These results prove the great potential of epitaxial CuI as a promising p-type optoelectronic material.

  7. Tuning the Curie temperature of epitaxial Nd0.6Sr0.4MnO3 thin films

    NASA Astrophysics Data System (ADS)

    Bhat, Shwetha G.; Kumar, P. S. Anil

    2018-02-01

    NdxSr1-xMnO3 (0.2 ≤ x ≤ 0.5) systems are widely studied in magnetism, popular for high colossal magnetoresistance and are ferromagnetic oxides with TC ranging from 200 K to 300 K. Recently, many of such compounds are re-visited for exploring the correlation of spin, charge and lattice degrees of freedom. Although, manganite thin films are the ideal candidates for studying the electron-correlation effects, the puzzle of obtaining a high quality epitaxial thin films of NdxSr1-xMnO3 are still unsolved contrary to its sister compound LaxSr1-xMnO3. Hence, in this study, we demonstrate the growth of best quality of Nd0.6Sr0.4MnO3 (NSMO) epitaxial thin films. This is evident from the TC and a sharp insulator-to-metal transition (IMT) coinciding at as high as ∼255 K against the bulk TC (∼270 K). It is the highest reported TC in Nd0.6Sr0.4MnO3 thin films to date. Moreover, as-deposited films with in situ oxygen annealing are not enough to relax the lattice of NSMO films due to the significant Jahn-Teller distortion in the film. With ex situ annealing processes alongside the various deposition and in situ annealing conditions, we have extensively studied the growth of epitaxial NSMO thin films on LaAlO3 (0 0 1) and SrTiO3 (0 0 1) to investigate the evolution of lattice and its one-to-one correspondence with the magnetism and the electrical properties of thin films. Accordingly, the enhanced magnetization, reduced resistivity and the higher TC and IMT of the NSMO films obtained from our extensive growth analysis looks promising for the future applications across the TC and IMT.

  8. Exciton and core-level electron confinement effects in transparent ZnO thin films

    PubMed Central

    Mosquera, Adolfo A.; Horwat, David; Rashkovskiy, Alexandr; Kovalev, Anatoly; Miska, Patrice; Wainstein, Dmitry; Albella, Jose M.; Endrino, Jose L.

    2013-01-01

    The excitonic light emission of ZnO films have been investigated by means of photoluminescence measurements in ultraviolet-visible region. Exciton confinement effects have been observed in thin ZnO coatings with thickness below 20 nm. This is enhanced by a rise of the intensity and a blue shift of the photoluminescence peak after extraction of the adsorbed species upon annealing in air. It is found experimentally that the free exciton energy (determined by the photoluminescence peak) is inversely proportional to the square of the thickness while core-level binding energy is inversely proportional to the thickness. These findings correlate very well with the theory of kinetic and potential confinements.

  9. Influence of annealing to the defect of inkjet-printed ZnO thin film

    NASA Astrophysics Data System (ADS)

    Tran, Van-Thai; Wei, Yuefan; Zhan, Zhaoyao; Du, Hejun

    2018-03-01

    The advantages of additive manufacturing for electronic devices have led to the demand of printing functional material in search of a replacement for the conventional subtractive fabrication process. Zinc oxide (ZnO), thanks to its interesting properties for the electronic and photonic applications, has gathered many attentions in the effort to fabricate functional devices additively. Although many potential methods have been proposed, most of them focus on the lowtemperature processing of the printed material to be compatible with the polymer substrate. These low-temperature fabrication processes could establish a high concentration of defects in printed ZnO which significantly affect the performance of the device. In this study, ZnO thin film for UV photodetector application was prepared by inkjet printing of zinc acetate dihydrate solution following by different heat treatment schemes. The effects of annealing to the intrinsic defect of printed ZnO and photoresponse characteristics under UV illumination were investigated. A longer response/decay time and higher photocurrent were observed after the annealing at 350°C for 30 minutes. X-ray photoelectron spectroscopy (XPS) analysis suggests that the reducing of defect concentration, such as oxygen vacancy, and excess oxygen species in printed ZnO is the main mechanism for the variation in photoresponse. The result provides a better understanding on the defect of inkjet-printed ZnO and could be applied in engineering the properties of the printed oxide-based semiconductor.

  10. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  11. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing.

    PubMed

    Lim, Chul; Oh, Ji Young; Koo, Jae Bon; Park, Chan Woo; Jung, Soon-Won; Na, Bock Soon; Chu, Hye Yong

    2014-11-01

    Flexible oxide thin-film transistors (Oxide-TFTs) have emerged as next generation transistors because of their applicability in electronic device. In particular, the major driving force behind solution-processed zinc oxide film research is its prospective use in printing for electronics. A low-temperature process to improve the performance of solution-processed n-channel ZnO thin-film transistors (TFTs) fabricated via spin-coating and inkjet-printing is introduced here. ZnO nanoparticles were synthesized using a facile sonochemical method that was slightly modified based on a previously reported method. The influence of the annealing atmosphere on both nanoparticle-based TFT devices fabricated via spin-coating and those created via inkjet printing was investigated. For the inkjet-printed TFTs, the characteristics were improved significantly at an annealing temperature of 150 degrees C. The field effect mobility, V(th), and the on/off current ratios were 3.03 cm2/Vs, -3.3 V, and 10(4), respectively. These results indicate that annealing at 150 degrees C 1 h is sufficient to obtain a mobility (μ(sat)) as high as 3.03 cm2/Vs. Also, the active layer of the solution-based ZnO nanoparticles allowed the production of high-performance TFTs for low-cost, large-area electronics and flexible devices.

  12. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Narayanan, Nripasree; Deepak, N. K.

    2018-04-01

    ZnO thin films doped with Ce at different concentration were deposited on glass substrates by spray pyrolysis technique. XRD analysis revealed the phase purity and polycrystalline nature of the films with hexagonal wurtzite geometry and the composition analysis confirmed the incorporation of Ce in the ZnO lattice in the case of doped films. Crystalline quality and optical transmittance diminished while electrical conductivity enhanced with Ce doping. Ce doping resulted in a red-shift of optical energy gap due to the downshift of the conduction band minimum after merging with Ce related impurity bands formed below the conduction band in the forbidden gap. In the room temperature photoluminescence spectra, UV emission intensity of the doped films decreased while the intensity of the visible emission band increased drastically implying the degradation in crystallinity as well as the incorporation of defect levels capable of luminescence downshifting. Ce doping showed improvement in photocatalytic efficiency by effectively trapping the free carriers and then transferring for dye degradation. Thus Ce doped ZnO thin films are capable of acting as luminescent downshifters as well as efficient photocatalysts.

  13. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    NASA Astrophysics Data System (ADS)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  14. Linear facing target sputtering of the epitaxial Ga-doped ZnO transparent contact layer on GaN-based light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Su; Lee, Ju-Hyun; Kwak, Joon-Seop; Lee, Hyun Hwi; Kim, Han-Ki

    2013-10-01

    In this study, we reported on the plasma damage-free sputtering of epitaxial Ga-doped ZnO (GZO) films on the p-GaN layer for use as a transparent contact layer (TCL) for GaN-based light-emitting diodes (LEDs) using linear facing target sputtering (LFTS). Effective confinement of high-density plasma between faced GZO targets and the substrate position located outside of the plasma region led to the deposition of the epitaxial GZO TCL with a low sheet resistance of 25.7 Ω/s and a high transmittance of 84.6% on a p-GaN layer without severe plasma damage, which was found using the conventional dc sputtering process. The low turn-on voltage of the GaN-based LEDs with an LFTS-grown GZO TCL layer that was grown at a longer target-to-substrate distance (TSD) indicates that the plasma damage of the GaN-LED could be effectively reduced by adjusting the TSD during the LFTS process.

  15. Effect of stress, strain and optical properties in vacuum and normal annealed ZnO thin films using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Purvaja, K.; Harinee, N.; Venkateswaran, C.

    2018-05-01

    Zinc oxide thin films have been deposited on quartz substrate using RF magnetron sputtering. The deposited films were subjected to different annealing atmosphere at a fixed temperature of 500 °C for 5h. The X-ray diffraction (XRD) patterns reveals the shift in the peak of both normal annealed and vacuum annealed thin films when compared to as-deposited ZnO film. The crystallite size, intrinsic stress and other parameters were calculated from XRD data. The surface morphology of the obtained films were studied using Atomic force microscopy (AFM). From Uv-Visible spectroscopy, the peak at 374 nm of all the films is characteristics of ZnO. The structural, thermal stability and optical properties of the annealed ZnO films are discussed in detail.

  16. Contrastive Study on the Structure and the Ultraviolet Absorption Property of Multiple-Doped and Element-Doped ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Xu, Yunyun; Zhang, Tao; Lin, Zhenrong; Tian, Yanfeng; Zhou, Shandan

    Sb2O3- and CeO2-doped ZnO thin films were prepared by RF magnetron sputtering technique. The influence of Sb2O3 and CeO2 on the structure and ultraviolet (UV) absorption properties was studied by X-ray diffraction and UV-Vis spectrophotometry. Results show that multiple doping of films had a prominent effect on the development of crystal grains and the UV absorption property. Ce and Sb exist in many forms in the ZnO film. The multiple-doped films also show enhanced UVA absorption, and the UV absorption peak widens and the absorption intensity increases. Sb plays a dominant role on the structure and UV absorption of ZnO thin films, which are enhanced by Ce.

  17. Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    NASA Astrophysics Data System (ADS)

    Zúñiga-Pérez, Jesús; Consonni, Vincent; Lymperakis, Liverios; Kong, Xiang; Trampert, Achim; Fernández-Garrido, Sergio; Brandt, Oliver; Renevier, Hubert; Keller, Stacia; Hestroffer, Karine; Wagner, Markus R.; Reparaz, Juan Sebastián; Akyol, Fatih; Rajan, Siddharth; Rennesson, Stéphanie; Palacios, Tomás; Feuillet, Guy

    2016-12-01

    The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade.

  18. Bulk photovoltaic effect in epitaxial (K, Nb) substituted BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Agarwal, Radhe; Zheng, Fan; Sharma, Yogesh; Hong, Seungbum; Rappe, Andrew; Katiyar, Ram

    We studied the bulk photovoltaic effect in epitaxial (K, Nb) modified BiFeO3 (BKFNO) thin films using theoretical and experimental methods. Epitaxial BKFNO thin films were grown by pulsed laser deposition (PLD). First, we have performed first principles density function theory (DFT) using DFT +U method to calculate electronic band structure, including Hubbard-Ueff (Ueff =U-J) correction into Hamiltonian. The electronic band structure calculations showed a direct band gap at 1.9 eV and a defect level at 1.7 eV (in a 40 atom BKFNO supercell), sufficiently lower in comparison to the experimentally observed values. Furthermore, the piezoforce microscopy (PFM) measurements indicated the presence of striped polydomains in BKFNO thin films. Angle-resolved PFM measurements were also performed to find domain orientation and net polarization directions in these films. The experimental studies of photovoltaic effect in BKNFO films showed a short circuit current of 59 micro amp/cm2 and open circuit voltage of 0.78 V. We compared our experimental results with first principles shift current theory calculations of bulk photovoltaic effect (BPVE).The synergy between theory and experimental results provided a realization of significant role of BPVE in order to understand the photovoltaic mechanism in ferroelectrics.

  19. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan

    2018-01-01

    Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

  20. Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gowrishankar, S.; Gopalakrishnan, N.

    2018-06-01

    Thin films of Mg-free and Mg-doped (3, 10 and 20 mol%) ZnO thin films have been deposited on Si (100) substrates by RF magnetron sputtering for gas-sensing application. Preferential orientation along (002) plane with hexagonal wurtzite structure has been observed in X-ray diffraction analysis. The conductivity, resistivity, and mobility of the deposited films have been measured by Hall effect measurement. The bandgap of the films has been calculated from the UV-Vis-NIR spectroscopy. It has been found that the bandgap was increased from 3.35 to 3.91 eV with Mg content in ZnO due to the radiative recombination of excitons. The change in morphology of the grown films has been investigated by scanning electron microscope. Gas-sensing measurements have been conducted for fabricated films. The sensor response, selectivity, and stability measurement were done for the fabricated films. Though better response was found towards ethanol, methanol, and ammonia for MZ2 (Mg at 10 mol%) film and maximum gas response was observed towards ammonia. The selectivity measurement reveals maximum sensitivity about 42% for ammonia. The low response time of 123 s and recovery time of 152 s towards ammonia were observed for MZ2 (Mg at 10 mol%). Stability of the Mg-doped ZnO thin film confirmed by the continuous sensing measurements for 4 months.

  1. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    PubMed

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  2. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain

    NASA Astrophysics Data System (ADS)

    Fuchs, D.; Arac, E.; Pinta, C.; Schuppler, S.; Schneider, R.; v. Löhneysen, H.

    2008-01-01

    Ferromagnetic order can be induced in LaCoO3 (LCO) thin films by epitaxial strain. Here, we show that the magnetic properties can be “tuned” by epitaxial strain imposed on LCO thin films by the epitaxial growth on various substrate materials, i.e., (001) oriented SrLaAlO4 , LaAlO3 , SrLaGaO4 , (LaAlO3)0.3(Sr2AlTaO6)0.7 , and SrTiO3 . The lattice mismatch at room temperature of the in-plane lattice parameters between the substrate, as , and bulk LCO, ab , ranges from -1.31% to +2.63% . Single-phase, ⟨001⟩ oriented LCO thin films were grown by pulsed laser deposition on all these substrates. Due to the difference of the thermal-expansion coefficients between LCO and the substrates, the films experience an additional tensile strain of about +0.3% during the cooling process after the deposition at Ts=650°C . The film lattice parameters display an elastic behavior, i.e., an increase of the in-plane film lattice parameter with increasing as . From the ratio between the out-of-plane and in-plane strain, we obtain a Poisson ratio of ν≈1/3 . All films show a ferromagnetic transition as determined from magnetization measurements. The magnetization increases strongly with increasing tensile strain, whereas the transition temperature TC after a rapid initial rise appears to saturate at TC≈85K above a=3.86Å . The effective magnetic moment μeff in the paramagnetic state increases almost linearly as a function of the mean lattice parameter ⟨a⟩ , indicating an enhanced population of higher spin states, i.e., intermediate- or high-spin states. The experimental results are discussed in terms of a decrease of the octahedral-site rotation with increasing tensile strain.

  3. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    NASA Astrophysics Data System (ADS)

    Schleicher, B.; Niemann, R.; Diestel, A.; Hühne, R.; Schultz, L.; Fähler, S.

    2015-08-01

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth and martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.

  4. Synthesis of highly conductive thin-walled Al-doped ZnO single-crystal microtubes by a solid state method

    NASA Astrophysics Data System (ADS)

    Hu, Shuopeng; Wang, Yue; Wang, Qiang; Xing, Cheng; Yan, Yinzhou; Jiang, Yijian

    2018-06-01

    ZnO has attracted considerable attention in fundamental studies and practical applications for the past decade due to its outstanding performance in gas sensing, photocatalytic degradation, light harvesting, UV-light emitting/lasing, etc. The large-sized thin-walled ZnO (TW-ZnO) microtube with stable and rich VZn-related acceptors grown by optical vapor supersaturated precipitation (OVSP) is a novel multifunctional optoelectronic material. Unfortunately, the OVSP cannot achieve doping due to the vapor growth process. To obtain doped TW-ZnO microtubes, a solid state method is introduced in this work to achieve thin-walled Al-doping ZnO (TW-ZnO:Al) microtubes with high electrical conductivity. The morphology and microstructures of ZnO:Al microtubes are similar to undoped ones. The Al3+ ions are confirmed to substitute Zn2+ sites and Zn(0/-1) vacancies in the lattice of ZnO by EDS, XRD, Raman and temperature-dependent photoluminescence analyses. The Al dopant acting as a donor level offers massive free electrons to increase the carrier concentrations. The resistivity of the ZnO:Al microtube is reduced down to ∼10-3 Ω·cm, which is one order of magnitude lower than that of the undoped microtube. The present work provides a simple way to achieve doped ZnO tubular components for potential device applications in optoelectronics.

  5. Ti-doped ZnO Thin Films Prepared at Different Ambient Conditions: Electronic Structures and Magnetic Properties

    PubMed Central

    Yong, Zhihua; Liu, Tao; Uruga, Tomoya; Tanida, Hajime; Qi, Dongchen; Rusydi, Andrivo; Wee, Andrew T. S.

    2010-01-01

    We present a comprehensive study on Ti-doped ZnO thin films using X-ray Absorption Fine Structure (XAFS) spectroscopy. Ti K edge XAFS spectra were measured to study the electronic and chemical properties of Ti ions in the thin films grown under different ambient atmospheres. A strong dependence of Ti speciation, composition, and local structures upon the ambient conditions was observed. The XAFS results suggest a major tetrahedral coordination and a 4+ valence state. The sample grown in a mixture of 80% Ar and 20% O2 shows a portion of precipitates with higher coordination. A large distortion was observed by the Ti substitution in the ZnO lattice. Interestingly, the film prepared in 80% Ar, 20% O2 shows the largest saturation magnetic moment of 0.827 ± 0.013 µB/Ti.

  6. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping

    2016-08-26

    Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less

  7. Role of microstructures on the M1-M2 phase transition in epitaxial VO2 thin films

    PubMed Central

    Ji, Yanda; Zhang, Yin; Gao, Min; Yuan, Zhen; Xia, Yudong; Jin, Changqing; Tao, Bowan; Chen, Chonglin; Jia, Quanxi; Lin, Yuan

    2014-01-01

    Vanadium dioxide (VO2) with its unique sharp resistivity change at the metal-insulator transition (MIT) has been extensively considered for the near-future terahertz/infrared devices and energy harvesting systems. Controlling the epitaxial quality and microstructures of vanadium dioxide thin films and understanding the metal-insulator transition behaviors are therefore critical to novel device development. The metal-insulator transition behaviors of the epitaxial vanadium dioxide thin films deposited on Al2O3 (0001) substrates were systematically studied by characterizing the temperature dependency of both Raman spectrum and Fourier transform infrared spectroscopy. Our findings on the correlation between the nucleation dynamics of intermediate monoclinic (M2) phase with microstructures will open a new avenue for the design and integration of advanced heterostructures with controllable multifunctionalities for sensing and imaging system applications. PMID:24798056

  8. Influence of oxygen partial pressure on the microstructural and magnetic properties of Er-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Bin; Li, Fei; Chen, Hong-Ming

    2015-06-15

    Er-doped ZnO thin films have been prepared by using inductively coupled plasma enhanced physical vapor deposition at different O{sub 2}:Ar gas flow ratio (R = 0:30, 1:30, 1:15, 1:10 and 1:6). The influence of oxygen partial pressure on the structural, optical and magnetic properties was studied. It is found that an appropriate oxygen partial pressure (R=1:10) can produce the best crystalline quality with a maximum grain size. The internal strain, estimated by fitting the X-ray diffraction peaks, varied with oxygen partial pressure during growth. PL measurements show that plenty of defects, especially zinc vacancy, exist in Er-doped ZnO films. Allmore » the samples show room-temperature ferromagnetism. Importantly, the saturation magnetization exhibits similar dependency on oxygen partial pressure with the internal strain, which indicates that internal strain has an important effect on the magnetic properties of Er-doped ZnO thin films.« less

  9. Fabrication and electrical properties of low temperature-processed thin-film-transistors with chemical-bath deposited ZnO layer.

    PubMed

    Ahn, Joo-Seob; Kwon, Ji-Hye; Yang, Heesun

    2013-06-01

    ZnO film was grown on ZnO quantum dot seed layer-coated substrate by a low-temperature chemical bath deposition, where sodium citrate serves as a complexing agent for Zn2+ ion. The ZnO film deposited under the optimal condition exhibited a highly uniform surface morphology with a thickness of approimately 30 nm. For the fabrication of thin-film-transistor with a bottom-gate structure, ZnO film was chemically deposited on the transparent substrate of a seed layer-coated SiN(x)/ITO (indium tin oxide)/glass. As-deposited ZnO channel was baked at low temperatures of 60-200 degrees C to investigate the effect of baking temperature on electrical performances. Compared to the device with 60 degrees C-baked ZnO channel, the TFT performances of one with 200 degrees C-baked channel were substantially improved, exhibiting an on-off current ratio of 3.6 x 10(6) and a saturated field-effect mobility of 0.27 cm2/V x s.

  10. Cd-doped ZnO nano crystalline thin films prepared at 723K by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Joishy, Sumanth; Rajendra B., V.

    2018-04-01

    Ternary Zn1-xCdxO(x=0.10, 0.40, 0.70 at.%) thin films of 0.025M precursor concentration have been successfully deposited on preheated (723K) glass substrates using spray pyrolysis route. The structure, morphology and optical properties of deposited films have been characterized by X-ray diffraction, Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry. X-ray diffraction study shows that the prepared films are polycrystalline in nature. 10% Cd doped ZnO film belongs to the hexagonal wurtzite system and 70% Cd doped ZnO film belongs to the cubic system, although mixed phases were formed for 40% Cd doped ZnO film. The optical transmittance spectra has shown red shift with increasing cadmium content. Optical energy band gap has been reduced with cadmium dopant.

  11. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695

    2016-04-04

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{submore » 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.« less

  12. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  13. Anomalous Hall effect in epitaxial permalloy thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y. Q.; Sun, N. Y.; Shan, R.

    2013-10-28

    Anomalous Hall effect (AHE) of epitaxial permalloy thin films grown on MgO (001) substrates is investigated. The longitudinal conductivity independent term (i.e., the sum of intrinsic and side-jump contributions) of the anomalous Hall conductivity (AHC) is found to be much smaller than those of Fe and Ni films. Band theoretical calculations of the intrinsic AHC as a function of the number of valence electrons (band filling) indicate that the AHC of the permalloy is in the vicinity of sign change, thus resulting in the smallness of the intrinsic AHC. The contribution of the phonon scattering is found to be comparablemore » to that of the impurity scattering. This work suggests that the permalloy films are ideal systems to understand the AHE mechanisms induced by impurity scattering.« less

  14. Contact resistance reduction of ZnO thin film transistors (TFTs) with saw-shaped electrode.

    PubMed

    Park, Woojin; Shaikh, Sohail F; Min, Jung-Wook; Lee, Sang Kyung; Lee, Byoung Hun; Hussain, Muhammad M

    2018-08-10

    We report on a saw-shaped electrode architecture ZnO thin film transistor (TFT), which effectively increases the channel width. The contact line of the saw-shaped electrode is almost twice as long at the contact metal/ZnO channel junction. We experimentally observed an enhancement in the output drive current by 50% and a reduction in the contact resistance by over 50%, when compared to a typically shaped electrode ZnO TFT consuming the same chip area. This performance enhancement is attributed to the extension of the channel width. This technique can contribute to device performance enhancement, and in particular reduce the contact resistance, which is a serious challenge.

  15. Epitaxial growth of lead zirconium titanate thin films on Ag buffered Si substrates using rf sputtering

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Laughlin, David E.; Kryder, Mark H.

    2007-04-01

    Epitaxial lead zirconium titanate (PZT) (001) thin films with a Pt bottom electrode were deposited by rf sputtering onto Si(001) single crystal substrates with a Ag buffer layer. Both PZT(20/80) and PZT(53/47) samples were shown to consist of a single perovskite phase and to have the (001) orientation. The orientation relationship was determined to be PZT(001)[110]‖Pt(001)[110]‖Ag(001)[110]‖Si(001)[110]. The microstructure of the multilayer was studied using transmission electron microscopy (TEM). The electron diffraction pattern confirmed the epitaxial relationship between each layer. The measured remanent polarization Pr and coercive field Ec of the PZT(20/80) thin film were 26μC /cm2 and 110kV/cm, respectively. For PZT(53/47), Pr was 10μC /cm2 and Ec was 80kV/cm.

  16. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    NASA Astrophysics Data System (ADS)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  17. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  18. Photoluminescence and photoconductivity studies on amorphous and crystalline ZnO thin films obtained by sol-gel method

    NASA Astrophysics Data System (ADS)

    Valverde-Aguilar, G.; Manríquez Zepeda, J. L.

    2015-03-01

    Amorphous and crystalline ZnO thin films were obtained by the sol-gel process. A precursor solution of ZnO was synthesized by using zinc acetate dehydrate as inorganic precursor at room temperature. The films were spin-coated on silicon and glass wafers and gelled in humid air. The films were calcined at 450 °C for 15 min to produce ZnO nanocrystals with a wurtzite structure. Crystalline ZnO film exhibits an absorption band located at 359 nm (3.4 eV). Photoconductivity technique was used to determine the charge transport mechanism on both kinds of films. Experimental data were fitted with straight lines at darkness and under illumination at 355 and 633 nm wavelengths. This indicates an ohmic behavior. The photovoltaic and photoconductivity parameters were determined from the current density versus the applied electrical field results.

  19. Deposition of hydrogenated silicon clusters for efficient epitaxial growth.

    PubMed

    Le, Ha-Linh Thi; Jardali, Fatme; Vach, Holger

    2018-06-13

    Epitaxial silicon thin films grown from the deposition of plasma-born hydrogenated silicon nanoparticles using plasma-enhanced chemical vapor deposition have widely been investigated due to their potential applications in photovoltaic and nanoelectronic device technologies. However, the optimal experimental conditions and the underlying growth mechanisms leading to the high-speed epitaxial growth of thin silicon films from hydrogenated silicon nanoparticles remain far from being understood. In the present work, extensive molecular dynamics simulations were performed to study the epitaxial growth of silicon thin films resulting from the deposition of plasma-born hydrogenated silicon clusters at low substrate temperatures under realistic reactor conditions. There is strong evidence that a temporary phase transition of the substrate area around the cluster impact site to the liquid state is necessary for the epitaxial growth to take place. We predict further that a non-normal incidence angle for the cluster impact significantly facilitates the epitaxial growth of thin crystalline silicon films.

  20. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  1. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  2. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Morrow, Darien J.; Fu, Yongping

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  3. Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO 3)

    DOE PAGES

    Chen, Jie; Morrow, Darien J.; Fu, Yongping; ...

    2017-09-05

    High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr 3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO 3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcomingmore » the limitation of island-forming Volmer–Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr 3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10 4 cm s –1), and low defect density of 10 12 cm –3, which are comparable to those of CsPbBr 3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. Furthermore, the high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.« less

  4. Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices

    NASA Astrophysics Data System (ADS)

    Peranio, N.; Eibl, O.; Nurnus, J.

    2006-12-01

    Multi-quantum-well structures of Bi2Te3 are predicted to have a high thermoelectric figure of merit ZT. Bi2Te3 thin films and Bi2Te3/Bi2(Te0.88Se0.12)3 superlattices (SLs) were grown epitaxially by molecular beam epitaxy on BaF2 substrates with periods of 12 and 6nm, respectively. Reflection high-energy electron diffraction confirmed a layer-by-layer growth, x-ray diffraction yielded the lattice parameters and SL periods and proved epitaxial growth. The in-plane transport coefficients were measured and the thin films and SL had power factors between 28 and 35μW /cmK2. The lattice thermal conductivity varied between 1.60W/mK for Bi2Te3 thin films and 1.01W/mK for a 10nm SL. The best figures of merit ZT were achieved for the SL; however, the values are slightly smaller than those in bulk materials. Thin films and superlattices were investigated in plan view and cross section by transmission electron microscopy. In the Bi2Te3 thin film and SL the dislocation density was found to be 2×1010cm-2. Bending of the SL with amplitudes of 30nm (12nm SL) and 15nm (6nm SL) and a wavelength of 400nm was determined. Threading dislocations were found with a density greater than 2×109cm-2. The superlattice interfaces are strongly bent in the region of the threading dislocations, undisturbed regions have a maximum lateral sie of 500nm. Thin films and SL showed a structural modulation [natural nanostructure (nns)] with a wavelength of 10nm and a wave vector parallel to (1,0,10). This nns was also observed in Bi2Te3 bulk materials and turned out to be of general character for Bi2Te3. The effect of the microstructure on the thermoelectric properties is discussed. The microstructure is governed by the superlattice, the nns, and the dislocations that are present in the films. Our results indicate that the microstructure directly affects the lattice thermal conductivity. Thermopower and electrical conductivity were found to be negatively correlated and no clear dependence of the two

  5. Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films.

    PubMed

    Ramos, F Javier; López-Santos, Maria C; Guillén, Elena; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Gonzalez-Elipe, Agustin R; Ahmad, Shahzada

    2014-04-14

    ZnO thin films having a nanocolumnar microstructure are grown by plasma-enhanced chemical vapor deposition at 423 K on pre-treated fluorine-doped tin oxide (FTO) substrates. The films consist of c-axis-oriented wurtzite ZnO nanocolumns with well-defined microstructure and crystallinity. By sensitizing CH3NH3PbI3 on these photoanodes a power conversion of 4.8% is obtained for solid-state solar cells. Poly(triarylamine) is found to be less effective when used as the hole-transport material, compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), while the higher annealing temperature of the perovskite leads to a better infiltration in the nanocolumnar structure and an enhancement of the cell efficiency. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Effect of Thickness of ZnO Thin Films on Hydrophobic Self-Cleaning Properties

    NASA Astrophysics Data System (ADS)

    Mufti, N.; Arista, D.; Diantoro, M.; Fuad, A.; Taufiq, A.; Sunaryono

    2017-05-01

    Glass coating can be conducted by using ZnO-photocatalyst based semiconductor material since it is preeminent in decomposing organics compound and dangerous bacteria which often contaminates the environment. If there are dirt containing organics compound on the glass, the ZnO photocatalyst coat can be applied as self-cleaning, usually called self-cleaning glass. It depends on the coating thickness which can be controlled by setting the speed of spin coating. In this research, the various rotating speeds of spin coating were conducted at 2000 rpm, 3000 rpm, and 4000 rpm to control the thickness. The raw materials used in this research were Zn(CH3COOH)2.2H2O (PA 99,5%), Ethylene glycol, Diethanolamine (PA 99%), Isopropanol Alkohol, Glycerol, and Ashton. Synthesis methods used were sol-gel prior to spin coating technic were applied. The results of the film were characterized by using SEM, XRD, and UV-Spectrophotometer. The crystal structure was analyzed by using Highscore plus and GSAS software, the size crystal was calculated by using Scherrer equation, a contact angle with ImageJ software. It was shown that ZnO thin film had been successfully synthesized with the crystal size around 21 nm up to 26 nm. The absorption value is higher due to the increasing of coat thickness with bandgap ± 3.2 eV. The test result of hydrophobic and hydrophilic characteristics show that all samples of ZnO thin film with the thickness ± 1.050 μm, ± 0.450 μm, ± 0.250 μm can be applied as self-cleaning glass. The best result was gained with the thickness of thin film ± 1.050 μm.

  7. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of Annealing Temperature on Structural and Optical Properties of Sol-Gel-Derived ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun

    2018-04-01

    Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

  9. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima

    2016-05-06

    This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less

  10. Surface modification of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors.

    PubMed

    Jang, Kwang-Suk; Wee, Duyoung; Kim, Yun Ho; Kim, Jinsoo; Ahn, Taek; Ka, Jae-Won; Yi, Mi Hye

    2013-06-11

    We report a simple approach to modify the surface of a polyimide gate insulator with an yttrium oxide interlayer for aqueous-solution-processed ZnO thin-film transistors. It is expected that the yttrium oxide interlayer will provide a surface that is more chemically compatible with the ZnO semiconductor than is bare polyimde. The field-effect mobility and the on/off current ratio of the ZnO TFT with the YOx/polyimide gate insulator were 0.456 cm(2)/V·s and 2.12 × 10(6), respectively, whereas the ZnO TFT with the polyimide gate insulator was inactive.

  11. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  12. Epitaxial Ni-Mn-Ga-Co thin films on PMN-PT substrates for multicaloric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schleicher, B., E-mail: b.schleicher@ifw-dresden.de; Niemann, R.; Schultz, L.

    2015-08-07

    Multicaloric stacks consisting of a magnetocaloric film on a piezoelectric substrate promise improved caloric properties as the transition temperature can be controlled by both magnetic and electric fields. We present epitaxially grown magnetocaloric Ni-Mn-Ga-Co thin films on ferroelectric Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.72}Ti{sub 0.28}O{sub 3} substrates. Structure and microstructure of two samples, being in the austenitic and martensitic state at room temperature, are investigated by X-ray diffraction in two- and four-circle geometry and by atomic force microscopy. In addition, high temperature magnetometry was performed on the latter sample. The combination of these methods allows separating the influence of epitaxial growth andmore » martensitic transformation. A preferential alignment of twin boundaries is observed already in the as-deposited state, which indicates the presence of prestress, without applying an electric field to the substrate. A temperature-magnetic field phase diagram is presented, which demonstrates the inverse magnetocaloric effect of the epitaxial Ni-Mn-Ga-Co film.« less

  13. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    PubMed

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  14. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  15. Enhanced Performance in Al-Doped ZnO Based Transparent Flexible Transparent Thin-Film Transistors Due to Oxygen Vacancy in ZnO Film with Zn-Al-O Interfaces Fabricated by Atomic Layer Deposition.

    PubMed

    Li, Yang; Yao, Rui; Wang, Huanhuan; Wu, Xiaoming; Wu, Jinzhu; Wu, Xiaohong; Qin, Wei

    2017-04-05

    Highly conductive and optical transparent Al-doped ZnO (AZO) thin film composed of ZnO with a Zn-Al-O interface was fabricated by thermal atomic layer deposition (ALD) method. The as-prepared AZO thin film exhibits excellent electrical and optical properties with high stability and compatibility with temperature-sensitive flexible photoelectronic devices; film resistivity is as low as 5.7 × 10 -4 Ω·cm, the carrier concentration is high up to 2.2 × 10 21 cm -3 . optical transparency is greater than 80% in a visible range, and the growth temperature is below 150 °C on the PEN substrate. Compared with the conventional AZO film containing by a ZnO-Al 2 O 3 interface, we propose that the underlying mechanism of the enhanced electrical conductivity for the current AZO thin film is attributed to the oxygen vacancies deficiency derived from the free competitive growth mode of Zn-O and Al-O bonds in the Zn-Al-O interface. The flexible transparent transistor based on this AZO electrode exhibits a favorable threshold voltage and I on /I off ratio, showing promising for use in high-resolution, fully transparent, and flexible display applications.

  16. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    NASA Astrophysics Data System (ADS)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  17. Effect of concentration and irradiation on the optical and structural properties of ZnO thin films deposited by spray pyrolysis techniques

    NASA Astrophysics Data System (ADS)

    Adeoye Victor, Babalola

    2017-12-01

    This study involves the preparation of ZnO thin films by spray pyrolysis and to investigate the effect of concentration of the film and irradiation on ZnO thin film deposited by spray pyrolysis method deposited at 350 ± 5 °C. The precursor for zinc oxide was produced from zinc acetate (Zn(CH3COO))2. The samples were annealed at 500 °C for 6 h and irradiated using 137Cs 90.998 mCi radiation. They were then characterised using ultra violet-visible spectrophotometry, X-ray Diffractometry (XRD) with Cu-Kα radiation to determine the structure of the film, Four-point probe for electrical properties and Rutherford Backscattering Spectrometry (RBS) were used for the composition of the film. XRD diffraction peaks observed for 0.05 M ZnO were (1 0 0), (0 0 2), (1 0 1) and (1 1 0) planes for the annealed and irradiated annealed ZnO films with no preferential orientation. The as-deposited films have low peaks belonging to (1 0 0), (0 0 2), (1 0 1), (1 1 0) plane and other peaks such as (1 1 2), (2 0 0) and (2 0 1). The results are explained with regard to the irradiation damage introduced to the samples. The as-deposited, annealed and irradiated-annealed films are highly transparent in the visible range of the electromagnetic spectrum with an average percent transmittance values of 85% and present a sharp ultraviolet cut-off at approximately 380 nm for the ZnO thin film.

  18. A Low Temperature, Solution-Processed Poly(4-vinylphenol), YO(x) Nanoparticle Composite/Polysilazane Bi-Layer Gate Insulator for ZnO Thin Film Transistor.

    PubMed

    Shin, Hyeonwoo; Kang, Chan-Mo; Chae, Hyunsik; Kim, Hyun-Gwan; Baek, Kyu-Ha; Choi, Hyoung Jin; Park, Man-Young; Do, Lee-Mi; Lee, Changhee

    2016-03-01

    Low temperature, solution-processed metal oxide thin film transistors (MEOTFTs) have been widely investigated for application in low-cost, transparent, and flexible electronics. To enlarge the application area, solution-processed gate insulators (GI) have been investigated in recent years. We investigated the effects of the organic/inorganic bi-layer GI to ZnO thin film transistors (TFTs). PVP, YO(x) nanoparticle composite, and polysilazane bi-layer showed low leakage current (-10(-8) A/cm2 in 2 MV), which are applicable in low temperature processed MEOTFTs. Polysilazane was used as an interlayer between ZnO and PVP, YO(x) nanoparticle composite as a good charge transport interface with ZnO. By applying the PVP, YO(x), nanoparticle composite/polysilazane bi-layer structure to ZnO TFTs, we successfully suppressed the off current (I(off)) to -10(-11) and fabricated good MEOTFTs in 180 degrees C.

  19. REVIEW ARTICLE: Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano

    NASA Astrophysics Data System (ADS)

    Singh, Shubra; Thiyagarajan, P.; Mohan Kant, K.; Anita, D.; Thirupathiah, S.; Rama, N.; Tiwari, Brajesh; Kottaisamy, M.; Ramachandra Rao, M. S.

    2007-10-01

    ZnO is a unique material that offers about a dozen different application possibilities. In spite of the fact that the ZnO lattice is amenable to metal ion doping (3d and 4f), the physics of doping in ZnO is not completely understood. This paper presents a review of previous research works on ZnO and also highlights results of our research activities on ZnO. The review pertains to the work on Al and Mg doping for conductivity and band gap tuning in ZnO followed by a report on transition metal (TM) ion doped ZnO. This review also highlights the work on the transport and optical studies of TM ion doped ZnO, nanostructured growth (ZnO polycrystalline and thin films) by different methods and the formation of unique nano- and microstructures obtained by pulsed laser deposition and chemical methods. This is followed by results on ZnO encapsulated Fe3O4 nanoparticles that show promising trends suitable for various applications. We have also reviewed the non-linear characteristic studies of ZnO based heterostructures followed by an analysis on the work carried out on ZnO based phosphors, which include mainly the nanocrystalline ZnO encapsulated SiO2, a new class of phosphor that is suitable for white light emission.

  20. Epitaxial growth of silicon for layer transfer

    DOEpatents

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  1. ZnO transparent conductive oxide for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Söderström, T.; Dominé, D.; Feltrin, A.; Despeisse, M.; Meillaud, F.; Bugnon, G.; Boccard, M.; Cuony, P.; Haug, F.-J.; Faÿ, S.; Nicolay, S.; Ballif, C.

    2010-03-01

    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in Neuchâtel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively.

  2. Epitaxial strain effect on the physical properties of layered ruthenate and iridate thin films

    NASA Astrophysics Data System (ADS)

    Miao, Ludi

    Transition metal oxides have attracted widespread attention due to their broad range of fascinating exotic phenomena such as multiferroicity, superconductivity, colossal magnetoresistance and metal-to-insulator transition. Due to the interplay between spin, charge, lattice and orbital degrees of freedom of strongly correlated d electrons, these physical properties are extremely sensitive to the external perturbations such as magnetic field, charge carrier doping and pressure, which provide a unique chance in search for novel exotic quantum states. Ruthenate systems are a typical strongly correlated system, with rich ordered states and their properties are extremely sensitive to external stimuli. Recently, the experimental observation of spin-orbit coupling induced Mott insulator in Sr2IrO4 as well as the theoretical prediction of topological insulating state in other iridates, have attracted tremendous interest in the physics of strong correlation and spin-orbit coupling in 4d/5d compounds. We observe an itinerant ferromagnetic ground state of Ca2 RuO4 film in stark contrast to the Mott-insulating state in bulk Ca2RuO4. We have also established the epitaxial strain effect on the transport and magnetic properties for the (Ca,Sr) 2RuO4 thin films. For Sr2IrO4 thin films, we will show that the Jeff = 1/2 moment orientation can be modulated by epitaxial strain. In addition, we discovered novel Ba 7Ir3O13+x thin films which exhibit colossal permittivity.

  3. Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Ning, Shuai; Zhan, Peng; Wang, Wei-Peng; Li, Zheng-Cao; Zhang, Zheng-Jun

    2014-12-01

    Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 °C, followed by annealing at 650 °C in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.

  4. Effect of copper doping sol-gel ZnO thin films: physical properties and sensitivity to ethanol vapor

    NASA Astrophysics Data System (ADS)

    Boukaous, Chahra; Benhaoua, Boubaker; Telia, Azzedine; Ghanem, Salah

    2017-10-01

    In the present paper, the effect of copper doping ZnO thin films, deposited using a sol-gel dip-coating technique, on the structural, optical and ethanol vapor-sensing properties, was investigated. The range of the doping content is 0 wt. %-5 wt. % Cu/Zn and the films’ properties were studied using x-ray diffraction, scanning electron microscopy and a UV-vis spectrophotometer. The obtained results indicated that undoped and copper-doped zinc oxide thin films have polycrystalline wurtzite structure with (1 0 1) preferred orientation. All samples have a smooth and dense structure free of pinholes. A decrease in the band gap with Cu concentration in the ZnO network was observed. The influence of the dopant on ethanol vapor-sensing properties shows an increase in the film sensitivity to the ethanol vapor within the Cu concentration.

  5. Effect of temperature on NH3 sensing by ZnO: Mg thin film grown by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Vinoth, E.; Gopalakrishnan, N.

    2018-04-01

    Undoped and Mg doped (at l0 mol %) ZnO thin films have been grown on glass substrates by using the RF magnetron sputtering. The structural properties of the fabricated thin films were studied by X-ray diffraction analysis and it was found hexagonal wurtzite phase and preferential orientation along (002) of both films. Green Band Emission peaks in the Photoluminescence spectra confirm the structural defects such as oxygen vacancies (Vo) in the films. Uniform distribution of spherical shape morphology of grains observed in the both films by FESEM. However, the growth of grains was found in the Mg doped thin film. The temperature dependent ammonia sensing is done by the indigenously made gas sensing setup. The gas response of the both films was increased as the temperature increases, attains maximum at 75° C and then decreases. Response and recovery time measurementswere donefor boththe films and it shows the fast response time and quick recovery for doped thin film compared to the pure ZnO thin film.

  6. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  7. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    PubMed

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  8. Integrating Epitaxial-Like Pb(Zr,Ti)O3 Thin-Film into Silicon for Next-Generation Ferroelectric Field-Effect Transistor

    PubMed Central

    Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki

    2016-01-01

    The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886

  9. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    PubMed Central

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  10. Synthesis, structure, vapour pressure and deposition of ZnO thin film by plasma assisted MOCVD technique using a novel precursor bis[(pentylnitrilomethylidine) (pentylnitrilomethylidine-μ-phenalato)]dizinc(II)

    NASA Astrophysics Data System (ADS)

    Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.

    2017-02-01

    A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.

  11. BiFeO3 epitaxial thin films and devices: past, present and future

    NASA Astrophysics Data System (ADS)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  12. Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film.

    PubMed

    Park, Jeongmin; Kang, Haeyong; Kang, Kyeong Tae; Yun, Yoojoo; Lee, Young Hee; Choi, Woo Seok; Suh, Dongseok

    2016-03-09

    Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance.

  13. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  14. New PLAD apparatus and fabrication of epitaxial films and junctions of functional materials: SiC, GaN, ZnO, diamond and GMR layers

    NASA Astrophysics Data System (ADS)

    Muto, Hachizo; Kusumori, Takeshi; Nakamura, Toshiyuki; Asano, Takashi; Hori, Takahiro

    2006-04-01

    We have developed a new pulsed laser ablation-deposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials, including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light; also involved are (c) a high-temperature heater with a maximum temperature of 1350 °C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pico-second YAG laser combined with (c) and/or (d). Using the high-T heater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and Mg targets by (d) during film growth. Junctions such as pGaN (Mg-doped)-film/n-SiC(0 0 0 1) substrate and pGaN/n-Si(1 1 1) show good diode characteristics. Epitaxial films with a diamond lattice can be grown on the sapphire-c plane by hybrid PLAD (e) with a high-T heater using a 6H-SiC target. High quality epitaxial films of ZnO are grown by PLAD by introducing a low-temperature self-buffer layer; magnetization of ferromagnetic materials is enforced by overlaying on a ferromagnetic lattice plane of an anti-ferromagnetic material, showing the value of the layer-overlaying method in improving quality. The short-wavelength lasers are useful in reducing surface particles on functional films, including superconductors.

  15. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    PubMed

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ZnO nanowires for tunable near-UV/blue LED

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno

    2012-02-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. Markedly improved performances are expected from nanostructured active layers for light emission. Nanowires can act as direct waveguides and favor light extraction without the use of lenses and reflectors. Moreover, the use of wires avoids the presence of grain boundaries and then the emission efficiency should be boosted by the absence of non-radiative recombinations at the joint defects. Electrochemical deposition technique was used for the preparation of ZnO-NWs based light emitters. Nanowires of high structural and optical quality have been epitaxially grown on p-GaN single crystalline films substrates. We have shown that the emission is directional with a wavelength that was tuned and red-shifted toward the visible region by doping with Cu in ZnO NWs.

  17. Growth process optimization of ZnO thin film using atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  18. Relationship between dislocation and the visible luminescence band observed in ZnO epitaxial layers grown on c-plane p-GaN templates by chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saroj, Rajendra K.; Dhar, S.

    2016-08-01

    ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.

  19. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  20. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  1. Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN

    NASA Astrophysics Data System (ADS)

    Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    2017-09-01

    The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.

  2. Surface nanostructuring of thin film composite membranes via grafting polymerization and incorporation of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isawi, Heba; El-Sayed, Magdi H.; Feng, Xianshe; Shawky, Hosam; Abdel Mottaleb, Mohamed S.

    2016-11-01

    A new approach for modification of polyamid thin film composite membrane PA(TFC) using synthesized ZnO nanoparticles (ZnO NPs) was shown to enhance the membrane performances for reverse osmosis water desalination. First, active layer of synthesis PA(TFC) membrane was activated with an aqueous solution of free radical graft polymerization of hydrophilic methacrylic acid (MAA) monomer onto the surface of the PA(TFC) membrane resulting PMAA-g-PA(TFC). Second, the PA(TFC) membrane has been developed by incorporation of ZnO NPs into the MAA grafting solution resulting the ZnO NPs modified PMAA-g-PA(TFC) membrane. The surface properties of the synthesized nanoparticles and prepared membranes were investigated using the FTIR, XRD and SEM. Morphology studies demonstrated that ZnO NPs have been successfully incorporated into the active grafting layer over PA(TFC) composite membranes. The zinc leaching from the ZnO NPs modified PMAA-g-PA(TFC) was minimal, as shown by batch tests that indicated stabilization of the ZnO NPs on the membrane surfaces. Compared with the a pure PA(TFC) and PMAA-g-PA(TFC) membranes, the ZnO NPs modified PMAA-g-PA(TFC) was more hydrophilic, with an improved water contact angle (∼50 ± 3°) over the PMAA-g-PA(TFC) (63 ± 2.5°). The ZnO NPs modified PMAA-g-PA(TFC) membrane showed salt rejection of 97% (of the total groundwater salinity), 99% of dissolved bivalent ions (Ca2+, SO42-and Mg2+), and 98% of mono valent ions constituents (Cl- and Na+). In addition, antifouling performance of the membranes was determined using E. coli as a potential foulant. This demonstrates that the ZnO NPs modified PMAA-g-PA(TFC) membrane can significantly improve the membrane performances and was favorable to enhance the selectivity, permeability, water flux, mechanical properties and the bio-antifouling properties of the membranes for water desalination.

  3. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-01

    We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.

  4. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, M. N.; Alshareef, H. N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258-133 S cm-1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8-3.2 me), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  5. Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.

    2014-03-01

    We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

  6. Different magnetic origins of (Mn, Fe)-codoped ZnO powders and thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Jiuping; Jiang, Fengxian; Quan, Zhiyong

    2012-11-15

    Graphical abstract: The effects of the sample forms, fabricated methods, and process conditions on the structural and magnetic properties of (Mn, Fe)-codoped ZnO powders and films were systematically studied. The origins of ferromagnetism in the vacuum-annealed powder and PLD-deposited film are different. The former originates from the impurities of magnetic clusters, whereas the latter comes from the almost homogenous phase. Highlights: ► The magnetic natures of Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powders and thin films come from different origins. ► The ferromagnetism of the powder is mainly from the contribution of magnetic clusters. ► Whereas the ferromagnetic behavior of the filmmore » comes from the almost homogenous phase. -- Abstract: The structural and magnetic properties of (Mn, Fe)-codoped ZnO powders as well as thin films were investigated. The X-ray diffraction and magnetic measurements indicated that the higher sintering temperature facilitates more Mn and Fe incorporation into ZnO. Magnetic measurements indicated that the powder sintered in air at 800 °C showed paramagnetic, but it exhibited obvious room temperature ferromagnetism after vacuum annealing at 600 °C. The results revealed that magnetic clusters were the major contributors to the observed ferromagnetism in vacuum-annealed Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O powder. Interestingly, the room temperature ferromagnetism was also observed in the Zn{sub 0.98}Mn{sub 0.01}Fe{sub 0.01}O film deposited via pulsed laser deposition from the air-sintered paramagnetic target, but the secondary phases in the film were not detected from X-ray diffraction, transmission electron microscopy, and zero-field cooling and field cooling. Apparently, the magnetic natures of powders and films come from different origins.« less

  7. Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon

    NASA Astrophysics Data System (ADS)

    Ayouchi, R.; Martin, F.; Leinen, D.; Ramos-Barrado, J. R.

    2003-01-01

    Structural, morphological, optical and electrical properties of ZnO thin films prepared by chemical spray pyrolysis from zinc acetate (Zn(CH 3COO) 2 2H 2O) aqueous solutions, on polished Si(1 0 0), and fused silica substrates for optical characterization, have been studied in terms of deposition time and substrate temperature. The growth of the films present three regimes depending on the substrate temperature, with increasing, constant and decreasing growth rates at lower, middle, and higher-temperature ranges, respectively. Growth rate higher than 15 nm min -1 can be achieved at Ts=543 K. ZnO film morphological and electrical properties have been related to these growth regimes. The films have been characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy.

  8. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    NASA Astrophysics Data System (ADS)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  9. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    PubMed

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)<10(-6) g m(-2) day(-1)) as well as the defect-free nature of the ALD dielectric and ZnO channel layers, the TFTs exhibit excellent device performance with high stability and flexibility: field-effect mobility>20 cm2 V(-1) s(-1), subthreshold swing<0.4 V decade(-1) after extended bias-stressing (>10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  10. Analysis of stability improvement in ZnO thin film transistor with dual-gate structure under negative bias stress

    NASA Astrophysics Data System (ADS)

    Yun, Ho-Jin; Kim, Young-Su; Jeong, Kwang-Seok; Kim, Yu-Mi; Yang, Seung-dong; Lee, Hi-Deok; Lee, Ga-Won

    2014-01-01

    In this study, we fabricated dual-gate zinc oxide thin film transistors (ZnO TFTs) without additional processes and analyzed their stability characteristics under a negative gate bias stress (NBS) by comparison with conventional bottom-gate structures. The dual-gate device shows superior electrical parameters, such as subthreshold swing (SS) and on/off current ratio. NBS of VGS = -20 V with VDS = 0 was applied, resulting in a negative threshold voltage (Vth) shift. After applying stress for 1000 s, the Vth shift is 0.60 V in a dual-gate ZnO TFT, while the Vth shift is 2.52 V in a bottom-gate ZnO TFT. The stress immunity of the dual-gate device is caused by the change in field distribution in the ZnO channel by adding another gate as the technology computer aided design (TCAD) simulation shows. Additionally, in flicker noise analysis, a lower noise level with a different mechanism is observed in the dual-gate structure. This can be explained by the top side of the ZnO film having a larger crystal and fewer grain boundaries than the bottom side, which is revealed by the enhanced SS and XRD results. Therefore, the improved stability of the dual-gate ZnO TFT is greatly related to the E-field cancellation effect and crystal quality of the ZnO film.

  11. Alternate deposition and hydrogen doping technique for ZnO thin films

    NASA Astrophysics Data System (ADS)

    Myong, Seung Yeop; Lim, Koeng Su

    2006-08-01

    We propose an alternate deposition and hydrogen doping (ADHD) technique for polycrystalline hydrogen-doped ZnO thin films, which is a sublayer-by-sublayer deposition based on metalorganic chemical vapor deposition and mercury-sensitized photodecomposition of hydrogen doping gas. Compared to conventional post-deposition hydrogen doping, the ADHD process provides superior electrical conductivity, stability, and surface roughness. Photoluminescence spectra measured at 10 K reveal that the ADHD technique improves ultraviolet and violet emissions by suppressing the green and yellow emissions. Therefore, the ADHD technique is shown to be very promising aid to the manufacture of improved transparent conducting electrodes and light emitting materials.

  12. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  13. Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Dhiman, Pooja; Singh, M.

    2017-05-01

    Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.

  14. Structural phase diagram for ultra-thin epitaxial Fe 3O 4 / MgO(0 01) films: thickness and oxygen pressure dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alraddadi, S.; Hines, W.; Yilmaz, T.

    2016-02-19

    A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less

  15. Gate insulator effects on the electrical performance of ZnO thin film transistor on a polyethersulphone substrate.

    PubMed

    Lee, Jae-Kyu; Choi, Duck-Kyun

    2012-07-01

    Low temperature processing for fabrication of transistor backplane is a cost effective solution while fabrication on a flexible substrate offers a new opportunity in display business. Combination of both merits is evaluated in this investigation. In this study, the ZnO thin film transistor on a flexible Polyethersulphone (PES) substrate is fabricated using RF magnetron sputtering. Since the selection and design of compatible gate insulator is another important issue to improve the electrical properties of ZnO TFT, we have evaluated three gate insulator candidates; SiO2, SiNx and SiO2/SiNx. The SiO2 passivation on both sides of PES substrate prior to the deposition of ZnO layer was effective to enhance the mechanical and thermal stability. Among the fabricated devices, ZnO TFT employing SiNx/SiO2 stacked gate exhibited the best performance. The device parameters of interest are extracted and the on/off current ratio, field effect mobility, threshold voltage and subthreshold swing are 10(7), 22 cm2/Vs, 1.7 V and 0.4 V/decade, respectively.

  16. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  17. Domain epitaxy for thin film growth

    DOEpatents

    Narayan, Jagdish

    2005-10-18

    A method of forming an epitaxial film on a substrate includes growing an initial layer of a film on a substrate at a temperature T.sub.growth, said initial layer having a thickness h and annealing the initial layer of the film at a temperature T.sub.anneal, thereby relaxing the initial layer, wherein said thickness h of the initial layer of the film is greater than a critical thickness h.sub.c. The method further includes growing additional layers of the epitaxial film on the initial layer subsequent to annealing. In some embodiments, the method further includes growing a layer of the film that includes at least one amorphous island.

  18. Effect of angle of deposition on the Fractal properties of ZnO thin film surface

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.

    2017-09-01

    Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.

  19. Structural, optical, morphological and electrical properties of undoped and Al-doped ZnO thin films prepared using sol—gel dip coating process

    NASA Astrophysics Data System (ADS)

    Boukhenoufa, N.; Mahamdi, R.; Rechem, D.

    2016-11-01

    In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.

  20. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application

    PubMed Central

    Chao, Chung-Hua; Wei, Da-Hua

    2015-01-01

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561

  1. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  2. Pulsed laser deposited hexagonal wurzite ZnO thin-film nanostructures/nanotextures for nanophotonics applications

    NASA Astrophysics Data System (ADS)

    John Chelliah, Cyril Robinson Azariah; Swaminathan, Rajesh

    2018-01-01

    The high-quality and transparent thin-film zinc oxide (ZnO) nanostructures/nanotextures deposited on glass and silicon substrates using pulsed laser deposition (PLD) technique are reported. A solid-state, Nd-YAG laser was used for the PLD process. The films were deposited (i) at room temperature of 25°C (as deposited), (ii) at 150°C, (iii) at 300°C, (iv) at 450°C, and (v) at 600°C and annealed in the vacuum chamber. The depositions were also carried out at different laser repetition rates such as 10 and 5 Hz. UV spectroscopy and photoluminescence (PL) spectroscopy were carried out for optical studies. X-ray diffraction studies were carried out for all samples and analyzed the effects of the laser repetition rate, deposition, and annealing temperatures on the structural properties. Field-emission scanning electron microscope images are recorded for the best-structured samples. The electrical parameters were calibrated using the Hall effect measurement system and the IV characterization was performed using a CHI Electrochemical workstation. The deposition temperature has a significant effect on the microstrain and dislocation density of the ZnO thin film and optical phenomena with various electrical parameters, including the electron mobility, conductivity, and magnetoresistance. These promising results are suitable conditions for nanophotonics applications.

  3. Epitaxial Growth of Oriented Metalloporphyrin Network Thin Film for Improved Selectivity of Volatile Organic Compounds.

    PubMed

    Li, De-Jing; Gu, Zhi-Gang; Vohra, Ismail; Kang, Yao; Zhu, Yong-Sheng; Zhang, Jian

    2017-05-01

    This study reports an oriented and homogenous cobalt-metalloporphyrin network (PIZA-1) thin film prepared by liquid phase epitaxial (LPE) method. The thickness of the obtained thin films can be well controlled, and their photocurrent properties can also be tuned by LPE cycles or the introduction of conductive guest molecules (tetracyanoquinodimethane and C 60 ) into the PIZA-1 pores. The study of quartz crystal microbalance adsorption confirms that the PIZA-1 thin film with [110]-orientation presents much higher selectivity of benzene over toluene and p-xylene than that of the PIZA-1 powder with mixed orientations. These results reveal that the selective adsorption of volatile organic compounds highly depends on the growth orientations of porphyrin-based metal-organic framework thin films. Furthermore, the work will provide a new perspective for developing important semiconductive sensing materials with improved selectivity of guest compounds. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Band-Gap Engineering in ZnO Thin Films: A Combined Experimental and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Panda, S. K.; Jha, Priyanka A.; Singh, Prabhakar

    2018-05-01

    Zinc oxide thin films are synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and optical spectroscopy. Our results reveal that the structural, morphological, and optical properties are closely related to the stress of the sample provided that the texture of the film remains the same. The anomalous results are obtained once the texture is altered to a different orientation. We support this experimental observation by carrying out first-principles hybrid functional calculations for two different orientations of the sample and show that the effect of quantum confinement is much stronger for the (100) surface than the (001) surface of ZnO. Furthermore, our calculations provide a route to enhance the band gap of ZnO by more than 50% compared to the bulk band gap, opening up possibilities for wide-range industrial applications.

  5. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  6. Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB₂ thin films

    DOE PAGES

    Tan, Teng; Wolak, M. A.; Acharya, Narendra; ...

    2015-04-01

    For potential applications in superconducting RF cavities, we have investigated the properties of polycrystalline MgB₂ films, including the thickness dependence of the lower critical field Hc₁. MgB₂ thin films were fabricated by hybrid physical-chemical vapor deposition on (0001) SiC substrate either directly (for epitaxial films) or with a MgO buffer layer (for polycrystalline films). When the film thickness decreased from 300 nm to 100 nm, Hc₁ at 5 K increased from around 600 Oe to 1880 Oe in epitaxial films and to 1520 Oe in polycrystalline films. The result is promising for using MgB₂/MgO multilayers to enhance the vortex penetrationmore » field.« less

  7. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal

    2017-06-01

    Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).

  8. Diamagnetic to ferromagnetic switching in VO2 epitaxial thin films by nanosecond excimer laser treatment

    NASA Astrophysics Data System (ADS)

    Molaei, R.; Bayati, R.; Nori, S.; Kumar, D.; Prater, J. T.; Narayan, J.

    2013-12-01

    VO2(010)/NiO(111) epitaxial heterostructures were integrated with Si(100) substrates using a cubic yttria-stabilized zirconia (c-YSZ) buffer. The epitaxial alignment across the interfaces was determined to be VO2(010)‖NiO(111)‖c-YSZ(001)‖Si(001) and VO2[100]‖NiO⟨110⟩‖c-YSZ⟨100⟩‖Si⟨100⟩. The samples were subsequently treated by a single shot of a nanosecond KrF excimer laser. Pristine as-deposited film showed diamagnetic behavior, while laser annealed sample exhibited ferromagnetic behavior. The population of majority charge carriers (e-) and electrical conductivity increased by about two orders of magnitude following laser annealing. These observations are attributed to the introduction of oxygen vacancies into the VO2 thin films and the formation of V3+ defects.

  9. Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Saj Mohan M., M.; Ramadurai, Ranjith

    2018-04-01

    Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.

  10. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    DOE PAGES

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; ...

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less

  11. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui

    2015-12-08

    The bronze polymorph of titanium dioxide, known as TiO 2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO 2(B) films epitaxially grown on Si substrates with a thin SrTiO 3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimentalmore » spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO 2(B) materials with Raman spectroscopy.« less

  12. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. F.; Chua, S. J.; Hu, G. X.

    2007-10-15

    X-ray diffractions, Nomarski microscopy, scanning electron microscopy, and photoluminescence have been used to study the effects of substrate on the structure and orientation of ZnO thin films grown by rf-magnetron sputtering. GaAs(001), GaAs(111), Al{sub 2}O{sub 3}(0002) (c-plane), and Al{sub 2}O{sub 3}(1102) (r-plane) wafers have been selected as substrates in this study. X-ray diffractions reveal that the ZnO film grown on GaAs(001) substrate is purely textured with a high c-axis orientation while that grown on GaAs(111) substrate is a single ZnO(0002) crystal; a polycrystalline structure with a large-single-crystal area of ZnO(0002) is obtained on a c-plane Al{sub 2}O{sub 3} substrate whilemore » a ZnO(1120) single crystal is formed on an r-plane Al{sub 2}O{sub 3} substrate. There is absence of significant difference between the photoluminescence spectra collected from ZnO/GaAs(001), ZnO/GaAs(111), and ZnO/Al{sub 2}O{sub 3}(0002), while the photoluminescence from ZnO/Al{sub 2}O{sub 3}(1102) shows a reduced intensity together with an increased linewidth, which is, likely, due to the increased incorporation of native defects during the growth of ZnO(1120)« less

  13. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  14. Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Remashan, Kariyadan; Hwang, Dae-Kue; Park, Seong-Ju; Jang, Jae-Hyung

    2008-04-01

    Thin-film transistors (TFTs) with a bottom-gate configuration were fabricated with an RF magnetron sputtered undoped zinc oxide (ZnO) channel layer and plasma-enhanced chemical vapor deposition (PECVD) grown silicon nitride as a gate dielectric. Postfabrication rapid thermal annealing (RTA) and subsequent nitrous oxide (N2O) plasma treatment were employed to improve the performance of ZnO TFTs in terms of on-current and on/off current ratio. The RTA treatment increases the on-current of the TFT significantly, but it also increases its off-current. The off-current of 2×10-8 A and on/off current ratio of 3×103 obtained after the RTA treatment were improved to 10-10 A and 105, respectively, by the subsequent N2O plasma treatment. The better device performance can be attributed to the reduction of oxygen vacancies at the top region of the channel due to oxygen incorporation from the N2O plasma. X-ray photoelectron spectroscopy (XPS) analysis of the TFT samples showed that the RTA-treated ZnO surface has more oxygen vacancies than as-deposited samples, which results in the increased drain current. The XPS study also showed that the subsequent N2O plasma treatment reduces oxygen vacancies only at the surface of ZnO so that the better off-current and on/off current ratio can be obtained.

  15. Effect of Li doping on the electric and pyroelectric properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Trinca, L. M.; Galca, A. C.; Boni, A. G.; Botea, M.; Pintilie, L.

    2018-01-01

    Un-doped ZnO (UDZO) and Li-doped ZnO (LZO) polycrystalline thin films were grown on platinized silicon by pulsed laser deposition (PLD). The electrical properties were investigated on as-grown and annealed UDZO and LZO films with capacitor configuration, using top and bottom platinum electrodes. In the case of the as-grown films it was found that the introduction of Li increases the resistivity of ZnO and induces butterfly shape in the C-V characteristic, suggesting ferroelectric-like behavior in LZO films. The properties of LZO samples does not significantly changes after thermal annealing while the properties of UDZO samples show significant changes upon annealing, manifested in a butterfly shape of the C-V characteristic and resistive-like switching. However, the butterfly shape disappears if long delay time is used in the C-V measurement, the characteristic remaining non-linear. Pyroelectric signal could be measured only on annealed films. Comparing the UDZO results with those obtained in the case of Li:ZnO, it was found that the pyroelectric properties are considerably enhanced by Li doping, leading to pyroelectric signal with about one order of magnitude larger at low modulation frequencies than for un-doped samples. Although the results of this study hint towards a ferroelectric-like behavior of Li doped ZnO, the presence of real ferroelectricity in this material remains controversial.

  16. Microstructure of epitaxial ferroelectric/metal oxide electrode thin film heterostructures on LaAlO{sub 3} and silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghonge, S.G.; Goo, E.; Ramesh, R.

    1994-12-31

    TEM and X-ray diffraction studies of PZT, PLZT, lead titanate and bismuth titanate ferroelectric thin films and YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}(YBCO), Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}(BSCCO) and La{sub 0.5}Sr{sub 0.5}CoO{sub 3}(LSCO) electrically conductive oxide thin films, that are sequentially deposited by pulsed laser ablation, show that these films may be deposited epitaxially onto LaAlO{sub 3}(LAO) or Si substrates. The conductive oxides are promising candidates for use is electrodes in place of metal electrodes in integrated ferroelectric device applications. The oxide electrodes are more chemically compatible with the ferroelectric films. High resolution electron microscopy his been used to investigate the interfacemore » between the ferroelectric and metal oxide thin films and no reaction was detected. Epitaxial growth is possible due to the similar crystal structures and the small lattice mismatch. The lattice mismatch that is present causes the domains in the ferroelectric films to be preferentially oriented and in the case of lead titanate, the film is single domain. These films may also have potential applications in integrated optical devices.« less

  17. Unsaturated magnetoconductance of epitaxial La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60 T

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Wang, Xuefeng; Gao, Ming; Xia, Zhengcai; Du, Jun; Nie, Yuefeng; Song, Fengqi; Xu, Yongbing; Zhang, Rong

    2017-05-01

    We report on the temperature and field dependence of resistance of La0.7Sr0.3MnO3 thin films over a wide temperature range and in pulsed magnetic fields up to 60 T. The epitaxial La0.7Sr0.3MnO3 thin films were deposited by laser molecular beam epitaxy. High magnetic field magnetoresistance curves were fitted by the Brillouin function, which indicated the existence of magnetically polarized regions and the underlying hopping mechanism. The unsaturated magnetoconductance was the most striking finding observed in pulsed magnetic fields up to 60 T. These observations can deepen the fundamental understanding of the colossal magnetoresistance in manganites with strong correlation of transport properties and magnetic ordering.

  18. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  19. Internal stress-assisted epitaxial lift-off process for flexible thin film (In)GaAs solar cells on metal foil

    NASA Astrophysics Data System (ADS)

    Kim, Youngjo; Kim, Kangho; Jung, Sang Hyun; Kim, Chang Zoo; Shin, Hyun-Beom; Choi, JeHyuk; Kang, Ho Kwan

    2017-12-01

    Flexible thin film (In)GaAs solar cells are grown by metalorganic chemical vapor deposition on GaAs substrates and transferred to 30 μm thick Au foil by internal stress-assisted epitaxial lift-off processes. The internal stress is induced by replacing the solar cell epi-layers from GaAs to In0.015Ga0.985As, which has a slightly larger lattice constant. The compressive strained layer thickness was varied from 0 to 4.5 μm to investigate the influence of the internal stress on the epitaxial lift-off time. The etching time in the epitaxial lift-off process was reduced from 36 to 4 h by employing a GaAs/In0.015Ga0.985As heterojunction structure that has a compressive film stress of -59.0 MPa. We found that the partially strained epi-structure contributed to the much faster lateral etching rate with spontaneous bending. Although an efficiency degradation problem occurred in the strained solar cell, it was solved by optimizing the epitaxial growth conditions.

  20. Effect of polyvinyl alcohol on electrochemically deposited ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2017-05-01

    Nanostructures of zinc oxide (ZnO) thin film are electrochemically deposited in the absence and presence of polyvinyl alcohol (PVA) on fluorine doped tin oxide (FTO) substrate. X-ray diffraction (XRD) patterns and Raman spectroscopy confirmed the formation of hexagonal structure of ZnO. The film prepared in the presence of PVA showed a better crystallinity and its crystalline growth along the (002) plane orientation. Field emission scanning electron microscope (FE-SEM) images display nanowire arrays (NWAs) and sponge like morphology for films prepared in the absence and presence of PVA, respectively. Photoluminescence (PL) spectra depict the film prepared in the presence PVA having less atomic defects with good crystal quality compared with other film. Dye sensitized solar cell (DSSC) is constructed using low cost eosin yellow dye and current-voltage (J-V) curve is recorded for optimized sponge like morphology based solar cell.

  1. Growth of thin film containing high density ZnO nanorods with low temperature calcinated seed layer

    NASA Astrophysics Data System (ADS)

    Panda, Rudrashish; Samal, Rudranarayan; Khatua, Lizina; Das, Susanta Kumar

    2018-05-01

    In this work we demonstrate the growth of thin film containing high density ZnO nanorods by using drop casting of the seed layer calcinated at a low temperature of 132 °C. Chemical bath deposition (CBD) method is used to grow the nanorods. X-ray diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) are performed for the structural and morphological characterizations of the nanorods. The average diameter and length of nanorods are found to be 33 nm and 270 nm respectively. The bandgap of the material is estimated to be 3.2 eV from the UV-Visible absorption spectroscopy. The reported method is much more cost-effective and can be used for growth of ZnO nanorods for various applications.

  2. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    NASA Astrophysics Data System (ADS)

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  3. TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Matsui, Hiroaki; Tabata, Hitoshi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

  4. Internal stress and opto-electronic properties of ZnO thin films deposited by reactive sputtering in various oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Tuyaerts, Romain; Poncelet, Olivier; Raskin, Jean-Pierre; Proost, Joris

    2017-10-01

    In this article, we propose ZnO thin films as a suitable material for piezoresistors in transparent and flexible electronics. ZnO thin films have been deposited by DC reactive magnetron sputtering at room temperature at various oxygen partial pressures. All the films have a wurtzite structure with a strong (0002) texture measured by XRD and are almost stoichiometric as measured by inductively coupled plasma optical emission spectroscopy. The effect of oxygen concentration on grain growth has been studied by in-situ multi-beam optical stress sensor, showing internal stress going from 350 MPa to -1.1 GPa. The transition between tensile and compressive stress corresponds to the transition between metallic and oxidized mode of reactive sputtering. This transition also induces a large variation in optical properties—from absorbent to transparent, and in the resistivity—from 4 × 10 - 2 Ω .cm to insulating. Finally, the piezoresistance of the thin film has been studied and showed a gauge factor (ΔR/R)/ɛ comprised between -5.8 and -8.5.

  5. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    NASA Astrophysics Data System (ADS)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  6. High-mobility low-temperature ZnO transistors with low-voltage operation

    NASA Astrophysics Data System (ADS)

    Bong, Hyojin; Lee, Wi Hyoung; Lee, Dong Yun; Kim, Beom Joon; Cho, Jeong Ho; Cho, Kilwon

    2010-05-01

    Low voltage high mobility n-type thin film transistors (TFTs) based on sol-gel processed zinc oxide (ZnO) were fabricated using a high capacitance ion gel gate dielectric. The ion gel gated solution-processed ZnO TFTs were found to exhibit excellent electrical properties. TFT carrier mobilities were 13 cm2/V s, ON/OFF current ratios were 105, regardless of the sintering temperature used for the preparation of the ZnO thin films. Ion gel gated ZnO TFTs are successfully demonstrated on plastic substrates for the large area flexible electronics.

  7. Enhancement of the Ultraviolet Photoresponsivity of Al-doped ZnO Thin Films Prepared by using the Sol-gel Spin-coating Method

    NASA Astrophysics Data System (ADS)

    Lee, Wookbin; Leem, Jae-Young

    2018-03-01

    We report the structural, morphological, optical, and ultraviolet (UV) photoresponse properties of Al-doped ZnO (AZO) thin films prepared on silicon substrates with different Al doping concentrations by using the sol-gel spin-coating method. An analysis of the X-ray diffraction patterns of the AZO thin films revealed that the average grain size decreased and the c-axis lattice constant increased with Al content. The field-emission scanning electron microscopy images showed that with Al doping, the grain size decreased, but the film density increased with increasing Al doping concentration from 0% to 3%. These results indicate that the surface area of the film increased with increasing Al doping. The absorbance spectra revealed that the UV absorbance of the AZO thin films increased with increasing Al doping concentration and that the absorption onset shifted towards lower energies. The photoluminescence spectra revealed that with increasing Al doping, the intensity of the visible emission greatly decreased and the visible emission peak shifted forward lower energy (a red shift). The UV sensor based on the AZO thin films exhibited a higher responsivity than that based on the undoped ZnO thin film. Therefore, this study provides a facile method for improving the photoresponsivity of UV sensors.

  8. ZnO thin film transistor immunosensor with high sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum

    2011-04-01

    A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.

  9. Effects of Na Doping on Structural, Optical, and Electronic Properties of ZnO Thin Films Fabricated by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Fan, Heliang; Yao, Zhen; Xu, Cheng; Wang, Xinqiang; Yu, Zhichao

    2018-04-01

    Undoped and Na-doped ZnO thin films were fabricated by sol-gel technique on quartz glass substrates and annealed at 500°C for 1 h. The structural properties of the films were characterized using x-ray diffraction analysis, which revealed hexagonal wurtzite structure with no peaks corresponding to Na2O or other Na phases being found. Surface morphology observations by scanning electron microscopy revealed that the crystallite size and topographical properties of the ZnO films were influenced by the Na doping concentration. X-ray photoelectron spectra revealed presence of Na+ in ZnO regime. The transmittance spectra indicated that the average transmittance of Na-doped ZnO film was above 80% in the visible range, superior to that of the undoped film. There was a blue-shift in the ultraviolet absorption edge with increase of the Na content. Photoluminescence spectra illustrated two peaks, corresponding to ultraviolet near-band-edge and visible emission.

  10. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    NASA Astrophysics Data System (ADS)

    Abutaha, A. I.; Sarath Kumar, S. R.; Alshareef, H. N.

    2012-04-01

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 <100> substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies that influence the effective mass of carriers in SLTO films can be tuned by varying the laser energy. The highest power factor of 0.433 W K-1 m-1 has been achieved at 636 K for a film deposited using the highest laser fluence of 7 J cm-2 pulse-1.

  11. ZnO/Sn:In2O3 and ZnO/CdTe band offsets for extremely thin absorber photovoltaics

    NASA Astrophysics Data System (ADS)

    Kaspar, T. C.; Droubay, T.; Jaffe, J. E.

    2011-12-01

    Band alignments were measured by x-ray photoelectron spectroscopy for thin films of ZnO on polycrystalline Sn:In2O3 (ITO) and single crystal CdTe. Hybrid density functional theory calculations of epitaxial zinc blende ZnO(001) on CdTe(001) were performed to compare with experiment. A conduction band (CB) offset of -0.6 eV was measured for ZnO/ITO, which is larger than desired for efficient electron injection. For ZnO/CdTe, the experimental conduction band offset of 0.25 eV is smaller than the calculated value of 0.67 eV, possibly due to the TeOx layer at the ZnO/CdTe interface. The measured conduction band offset for ZnO/CdTe is favorable for photovoltaic devices.

  12. Effect of in situ electric-field-assisted growth on antiphase boundaries in epitaxial Fe3O4 thin films on MgO

    NASA Astrophysics Data System (ADS)

    Kumar, Ankit; Wetterskog, Erik; Lewin, Erik; Tai, Cheuk-Wai; Akansel, Serkan; Husain, Sajid; Edvinsson, Tomas; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter

    2018-05-01

    Antiphase boundaries (APBs) normally form as a consequence of the initial growth conditions in all spinel ferrite thin films. These boundaries result from the intrinsic nucleation and growth mechanism, and are observed as regions where the periodicity of the crystalline lattice is disrupted. The presence of APBs in epitaxial films of the inverse spinel Fe3O4 alters their electronic and magnetic properties due to strong antiferromagnetic (AF) interactions across these boundaries. We explore the effect of using in-plane in situ electric-field-assisted growth on the formation of APBs in heteroepitaxial Fe3O4 (100)/MgO(100) thin films. The electric-field-assisted growth is found to reduce the AF interactions across APBs and, as a consequence, APB-free thin-film-like properties are obtained, which have been probed by electronic, magnetic, and structural characterization. The electric field plays a critical role in controlling the density of APBs during the nucleation process by providing an electrostatic force acting on adatoms and therefore changing their kinetics. This innovative technique can be employed to grow epitaxial spinel thin films with controlled AF interactions across APBs.

  13. Thermal generation of spin current in epitaxial CoFe{sub 2}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Er-Jia, E-mail: ejguophysics@gmail.com, E-mail: klaeui@uni-mainz.de; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Herklotz, Andreas

    2016-01-11

    The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe{sub 2}O{sub 4} (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect. The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of ∼100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Furthermore, we demonstrate that the spin Seebeck effectmore » is an effective tool to study the magnetic anisotropy induced by epitaxial strain, especially in ultrathin films with low magnetic moments.« less

  14. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  15. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G.

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguidingmore » is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.« less

  16. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  17. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K. V.; Kabashin, A. V.; Belova, L.

    2018-02-01

    We report the manufacturing of thin zinc oxide films by reactive magnetron sputtering at room temperature, and examine their structural and optical properties. We show that the partial oxygen pressure in DC mode can have dramatic effect on absorption and refractive index (RI) of the films in a broad spectral range. In particular, the change of the oxygen pressure from 7% to 5% can lead to either conventional crystalline ZnO films having low absorption and characteristic descending dependence of RI from 2.4-2.7 RIU in the visible to 1.8-2 RIU in the near-infrared (1600 nm) range, or to untypical films, composed of ZnO nano-crystals embedded into amorphous matrix, exhibiting unexpectedly high absorption in the visible-infrared region and ascending dependence of RI with values varying from 1.5 RIU in the visible to 4 RIU in the IR (1600 nm), respectively. Untypical optical characteristics in the second case are explained by defects in ZnO structure arising due to under-oxidation of ZnO crystals. We also show that the observed defect-related film structure remains stable even after annealing of films under relatively high temperatures (30 min under 450 °C). We assume that both types of films can be of importance for photovoltaic (as contact or active layers, respectively), as well as for chemical or biological sensing, optoelectronics etc.

  18. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    NASA Astrophysics Data System (ADS)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  19. Structural control of In2Se3 polycrystalline thin films by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Nakada, Y.; Aoki, T.; Takaba, Y.; Yamada, A.; Konagai, M.

    2006-09-01

    Structural control of In2Se3 polycrystalline thin films was attempted by molecular beam epitaxy (MBE) technique. In2Se3 polycrystalline films were obtained on glass substrates at substrate temperatures above 400 °C. VI/III ratio greatly affected crystal structure of In2Se3 polycrystalline films. Mixtures of -In2Se3 and γ-In2Se3 were obtained at VI/III ratios greater than 20, and layered InSe polycrystalline films were formed at VI/III ratios below 1. γ-In2Se3 polycrystalline thin films without α-phase were successfully deposited with VI/III ratios in a range of 2 to 4. Photocurrent spectra of the γ-In2Se3 polycrystalline films showed an abrupt increase at approximately 1.9 eV, which almost corresponds with the reported bandgap of γ-In2Se3. Dark conductivity and photoconductivity measured under solar simulator light (AM 1.5, 100 mW/cm2) were approximately 10-9 and 10-5 S/cm in the γ-In2Se3 polycrystalline thin films, respectively.

  20. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  1. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-01

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C3H8, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 104, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C3H8 gas. PMID:28787885

  2. Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere.

    PubMed

    Gómez-Pozos, Heberto; Arredondo, Emma Julia Luna; Maldonado Álvarez, Arturo; Biswal, Rajesh; Kudriavtsev, Yuriy; Pérez, Jaime Vega; Casallas-Moreno, Yenny Lucero; Olvera Amador, María de la Luz

    2016-01-29

    A study on the propane gas-sensing properties of Cu-doped ZnO thin films is presented in this work. The films were deposited on glass substrates by sol-gel and dip coating methods, using zinc acetate as a zinc precursor, copper acetate and copper chloride as precursors for doping. For higher sensitivity values, two film thickness values are controlled by the six and eight dippings, whereas for doping, three dippings were used, irrespective of the Cu precursor. The film structure was analyzed by X-ray diffractometry, and the analysis of the surface morphology and film composition was made through scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS), respectively. The sensing properties of Cu-doped ZnO thin films were then characterized in a propane atmosphere, C₃H₈, at different concentration levels and different operation temperatures of 100, 200 and 300 °C. Cu-doped ZnO films doped with copper chloride presented the highest sensitivity of approximately 6 × 10⁴, confirming a strong dependence on the dopant precursor type. The results obtained in this work show that the use of Cu as a dopant in ZnO films processed by sol-gel produces excellent catalysts for sensing C₃H₈ gas.

  3. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  4. Laboratory and testbeam results for thin and epitaxial planar sensors for HL-LHC

    DOE PAGES

    Bubna, M.; Bolla, G.; Bortoletto, D.; ...

    2015-08-03

    The High-Luminosity LHC (HL-LHC) upgrade of the CMS pixel detector will require the development of novel pixel sensors which can withstand the increase in instantaneous luminosity to L = 5 × 10 34 cm –2s –1 and collect ~ 3000fb –1 of data. The innermost layer of the pixel detector will be exposed to doses of about 10 16 n eq/ cm 2. Hence, new pixel sensors with improved radiation hardness need to be investigated. A variety of silicon materials (Float-zone, Magnetic Czochralski and Epitaxially grown silicon), with thicknesses from 50 μm to 320 μm in p-type and n-type substrates have beenmore » fabricated using single-sided processing. The effect of reducing the sensor active thickness to improve radiation hardness by using various techniques (deep diffusion, wafer thinning, or growing epitaxial silicon on a handle wafer) has been studied. Furthermore, the results for electrical characterization, charge collection efficiency, and position resolution of various n-on-p pixel sensors with different substrates and different pixel geometries (different bias dot gaps and pixel implant sizes) will be presented.« less

  5. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    PubMed

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  6. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  7. Spin Seebeck effect in insulating epitaxial γ-Fe2O3 thin films

    NASA Astrophysics Data System (ADS)

    Jiménez-Cavero, P.; Lucas, I.; Anadón, A.; Ramos, R.; Niizeki, T.; Aguirre, M. H.; Algarabel, P. A.; Uchida, K.; Ibarra, M. R.; Saitoh, E.; Morellón, L.

    2017-02-01

    We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ-Fe2O3), a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE) measurements in γ-Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1) μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4), establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.

  8. Epitaxial growth and electrical transport properties of Cr{sub 2}GeC thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eklund, Per; Thin Film Physics Division, Linkoeping University, IFM, 581 83 Linkoeping; Bugnet, Matthieu

    2011-08-15

    Cr{sub 2}GeC thin films were grown by magnetron sputtering from elemental targets. Phase-pure Cr{sub 2}GeC was grown directly onto Al{sub 2}O{sub 3}(0001) at temperatures of 700-800 deg. C. These films have an epitaxial component with the well-known epitaxial relationship Cr{sub 2}GeC(0001)//Al{sub 2}O{sub 3}(0001) and Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1100) or Cr{sub 2}GeC(1120)//Al{sub 2}O{sub 3}(1210). There is also a large secondary grain population with (1013) orientation. Deposition onto Al{sub 2}O{sub 3}(0001) with a TiN(111) seed layer and onto MgO(111) yielded growth of globally epitaxial Cr{sub 2}GeC(0001) with a virtually negligible (1013) contribution. In contrast to the films deposited at 700-800 deg. C,more » the ones grown at 500-600 deg. C are polycrystalline Cr{sub 2}GeC with (1010)-dominated orientation; they also exhibit surface segregations of Ge as a consequence of fast Ge diffusion rates along the basal planes. The room-temperature resistivity of our samples is 53-66 {mu}{Omega}cm. Temperature-dependent resistivity measurements from 15-295 K show that electron-phonon coupling is important and likely anisotropic, which emphasizes that the electrical transport properties cannot be understood in terms of ground state electronic structure calculations only.« less

  9. Epitaxy: Programmable Atom Equivalents Versus Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mary X.; Seo, Soyoung E.; Gabrys, Paul A.

    The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of nanoparticle thin films. Under optimized equilibrium conditions, single crystal, multilayer thin filmsmore » can be synthesized over 500 × 500 μm2 areas on lithographically patterned templates. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in thin film atomic deposition, allowing for these processes to be understood in the context of well-studied atomic epitaxy, and potentially enabling a nanoscale model to study fundamental crystallization processes.« less

  10. Simulation, fabrication and characterization of ZnO based thin film transistors grown by radio frequency magnetron sputtering.

    PubMed

    Singh, Shaivalini; Chakrabarti, P

    2012-03-01

    We report the performance of the thin film transistors (TFTs) using ZnO as an active channel layer grown by radio frequency (RF) magnetron sputtering technique. The bottom gate type TFT, consists of a conventional thermally grown SiO2 as gate insulator onto p-type Si substrates. The X-ray diffraction patterns reveal that the ZnO films are preferentially orientated in the (002) plane, with the c-axis perpendicular to the substrate. A typical ZnO TFT fabricated by this method exhibits saturation field effect mobility of about 0.6134 cm2/V s, an on to off ratio of 102, an off current of 2.0 x 10(-7) A, and a threshold voltage of 3.1 V at room temperature. Simulation of this TFT is also carried out by using the commercial software modeling tool ATLAS from Silvaco-International. The simulated global characteristics of the device were compared and contrasted with those measured experimentally. The experimental results are in fairly good agreement with those obtained from simulation.

  11. Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6

    NASA Astrophysics Data System (ADS)

    Nechache, Riad; Harnagea, Catalin; Pignolet, Alain; Normandin, François; Veres, Teodor; Carignan, Louis-Philippe; Ménard, David

    2006-09-01

    The authors report the structural and physical properties of epitaxial Bi2FeCrO6 thin films on epitaxial SrRuO3 grown on (100)-oriented SrTiO3 substrates by pulsed laser ablation. The 300nm thick films exhibit both ferroelectricity and magnetism at room temperature with a maximum dielectric polarization of 2.8μC /cm2 at Emax=82kV/cm and a saturated magnetization of 20emu/cm3 (corresponding to ˜0.26μB per rhombohedral unit cell), with coercive fields below 100Oe. The results confirm the predictions made using ab initio calculations about the existence of multiferroic properties in Bi2FeCrO6.

  12. Improved Epitaxy and Surface Morphology in YBa2Cu3Oy Thin Films Grown on Double Buffered Si Wafers

    NASA Astrophysics Data System (ADS)

    Gao, J.; Kang, L.; Wong, H. Y.; Cheung, Y. L.; Yang, J.

    Highly epitaxial thin films of YBCO have been obtained on silicon wafers using a Eu2CuO4/YSZ (yttrium-stabilized ZrO2) double buffer. Our results showed that application of such a double buffer can significantly enhance the epitaxy of grown YBCO. It also leads to an excellent surface morphology. The average surface roughness was found less than 5 nm in a large range. The results of X-ray small angle reflection and positron spectroscpy demonstrate a very clear and flat interface between YBCO and buffer layers. The Eu2CuO4/YSZ double buffer could be promising for coating high-TC superconducting films on various reactive substrates.

  13. Tuning of thermally induced first-order semiconductor-to-metal transition in pulsed laser deposited VO2 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Behera, Makhes K.; Pradhan, Dhiren K.; Pradhan, Sangram K.; Pradhan, Aswini K.

    2017-12-01

    Vanadium oxide (VO2) thin films have drawn significant research and development interest in recent years because of their intriguing physical origin and wide range of functionalities useful for many potential applications, including infrared imaging, smart windows, and energy and information technologies. However, the growth of highly epitaxial films of VO2, with a sharp and distinct controllable transition, has remained a challenge. Here, we report the structural and electronic properties of high quality and reproducible epitaxial thin films of VO2, grown on c-axis oriented sapphire substrates using pulsed laser deposition at different deposition pressures and temperatures, followed by various annealing schedules. Our results demonstrate that the annealing of epitaxial VO2 films significantly enhances the Semiconductor to Metal Transition (SMT) to that of bulk VO2 transition. The effect of oxygen partial pressure during the growth of VO2 films creates a significant modulation of the SMT from around room temperature to as high as the theoretical value of 68 °C. We obtained a bulk order transition ≥104 while reducing the transition temperature close to 60 °C, which is comparatively less than the theoretical value of 68 °C, demonstrating a clear and drastic improvement in the SMT switching characteristics. The results reported here will open the door to fundamental studies of VO2, along with tuning of the transition temperatures for potential applications for multifunctional devices.

  14. Smart chemical sensors using ZnO semiconducting thin films for freshness detection of foods and beverages

    NASA Astrophysics Data System (ADS)

    Nanto, Hidehito; Kobayashi, Toshiki; Dougami, Naganori; Habara, Masaaki; Yamamoto, Hajime; Kusano, Eiji; Kinbara, Akira; Douguchi, Yoshiteru

    1998-07-01

    The sensitivity of the chemical sensor, based on the resistance change of Al2O3-doped and SnO2-doped ZnO (ZnO:Al and ZnO:SnO2) thin film, is studied for exposure to various gases. It is found that the ZnO:Al and ZnO:Sn thin film chemical sensor has a high sensitivity and excellent selectivity for amine (TMA and DMA) gas and ethanol gas, respectively. The ZnO:Al (5.0 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to odors from rotten sea foods, such as salmon, sea bream, oyster, squid and sardine, responds to the freshness change of these sea foods. The ZnO:SnO2 (78 wt%) thin film chemical sensor which exhibit a high sensitivity for exposure to aroma from alcohols, such as wine, Japanese sake, and whisky, responds to the freshness change of these alcohols.

  15. An investigation on the In doping of ZnO thin films by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Mahesh, Devika; Kumar, M. C. Santhosh

    2018-04-01

    Indium doped zinc oxide (IGZO)thin films are gaining much interest owing to its commercial application as transparent conductive oxide thin films. In the current study thin films indium doped ZnO thin films have been deposited on glass substrates by chemical spray pyrolysis technique with an indium concentration of 1, 2.5 and 4% in Zinc source. The films show a peak shift in the X-Ray Diffraction patterns with varying indium doping concentration. The (101) peak was enhanced for the 2.5 % indium doped films and variation in grain size with the different doping levels was studied. The as-deposited films are uniform and shown high transparency (>90%) in the visible region. Average thicknesses of films are found to be 800nm, calculated using the envelope method. The film with 2.5 % of indium content was found to be highly conducting than the rest, since for the lower and higher concentrations the conductivity was possibly halted by the limit in carrier concentration and indium segregation in the grain boundaries respectively. The enhancement of mobility and carrier concentration was clearly seen in the optimum films.

  16. Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.

    2016-02-01

    p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.

  17. Resistive switching: An investigation of the bipolar–unipolar transition in Co-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Daniel A.A., E-mail: danielandrade.ufs@gmail.com; Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260; Zeng, Hao

    2015-06-15

    Highlights: • A purely bipolar behavior on a Co-doped ZnO thin film has been demonstrated. • We have shown what can happen if a unipolar test is performed in a purely bipolar device. • An explanation for how a sample can show a purely bipolar switching behavior was suggested. • An important open issue about resistive switching effect was put in debate. - Abstract: In order to investigate the resistive switching effect we built devices in a planar structure in which two Al contacts were deposited on the top of the film and separated by a small gap using amore » shadow mask. Therefore, two samples of 10% Co-doped ZnO thin films were sputtered on glass substrate. High resolution X-ray diffraction (HRXRD) revealed a highly c-axis oriented crystalline structure, without secondary phase. The high resolution scanning electron microscopy (HRSEM) showed a flat surface with good coverage and thickness about 300 nm. A Keithley 2425 semiconductor characterization system was used to perform the resistive switching tests in the bipolar and unipolar modes. Considering only the effect of compliance current (CC), the devices showed a purely bipolar behavior since an increase in CC did not induce a transition to unipolar behavior.« less

  18. Effect of annealing on the structural and optical properties of heavily carbon-doped ZnO

    NASA Astrophysics Data System (ADS)

    Huang, He; Deng, Z. W.; Li, D. C.; Barbir, E.; Y Jiang, W.; Chen, M. X.; Kavanagh, K. L.; Mooney, P. M.; Watkins, S. P.

    2010-04-01

    ZnO films grown by metalorganic vapor phase epitaxy (MOVPE) at low temperatures (~500 °C) exhibit very high levels of carbon incorporation in the range of up to several percent. Such large levels of carbon incorporation significantly affect the structural properties of the thin films resulting in broadening of symmetric (0 0 2) rocking curves as well as broadened (1 0 1) pole figures compared with films grown at high temperature. Annealing of the films under air ambient at temperatures between 800 and 1100 °C results in dramatic sharpening of symmetric (0 0 2) rocking curves, indicating improved crystal alignment along the c-axes. (1 0 1) pole figure scans also show significant sharpening in the azimuthal axis, indicating similar improvements in the in-plane crystal alignment perpendicular to the c-axis. Raman spectra for as-grown ZnO at 500 °C show strong D and G peaks at 1381 and 1578 cm-1 due to sp2 carbon clusters. Annealing at 1000 °C results in the elimination of these bands, indicating that post-growth annealing treatment is a useful method to reduce the concentration of sp2 carbon clusters.

  19. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    NASA Astrophysics Data System (ADS)

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  20. Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2.

    PubMed

    Yang, Tao; Chen, Meijing; Kong, Qianqian; Luo, Xiliang; Jiao, Kui

    2017-03-15

    Very recently, the 2-dimensional MoS 2 layer as base substrate integrated with other materials has caused people's emerging attention. In this paper, a thin-layered MoS 2 was prepared through an ultrasonic exfoliation method from bulk MoS 2 and then the free-standing ZnO nanosheet was electrodeposited on the MoS 2 scaffold for DNA sensing. The ZnO/MoS 2 nanocomposite revealed smooth and vertical nanosheets morphology by scanning electron microscopy, compared with the sole MoS 2 and sole ZnO. Importantly, the partially negative charged MoS 2 layer is beneficial to the nucleation and growth of ZnO nanosheets under the effect of electrostatic interactions. Classic methylene blue, which possesses different affinities to dsDNA and ssDNA, was adopted as the measure signal to confirm the immobilization and hybridization of DNA on ZnO nanosheets and pursue the optimal synthetic conditions. And the results demonstrated that the free-standing ZnO/MoS 2 nanosheets had low detection limit (6.6×10 -16 M) and has a positive influence on DNA immobilization and hybridization. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less

  2. Structural analysis of LaVO3 thin films under epitaxial strain

    NASA Astrophysics Data System (ADS)

    Meley, H.; Karandeep, Oberson, L.; de Bruijckere, J.; Alexander, D. T. L.; Triscone, J.-M.; Ghosez, Ph.; Gariglio, S.

    2018-04-01

    Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3) and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.

  3. Correlation between nano-scale microstructural behavior and the performance of ZnO thin-film transistors.

    PubMed

    Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.

  4. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE PAGES

    Venkatesh, S.; Baras, A.; Lee, J. -S.; ...

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  5. Mechanics of graded glass composites and zinc oxide thin films grown at 90 degrees Celsius in water

    NASA Astrophysics Data System (ADS)

    Fillery, Scott Pierson

    2007-06-01

    The purpose of this research was to study the mechanical stability of two different material systems. The glass laminate system, exhibiting a threshold strength when placed under an applied load and ZnO thin films grown on GaN buffered Al2O3 substrates, exhibiting variations in film stability with changes to the Lateral Epitaxial Overgrowth architecture. The glass laminates were fabricated to contain periodic thin layers containing biaxial compressive stresses using ion exchange treatments to create residual compressive stresses at the surface of soda lime silicate glass sheets. Wafer direct bonding of the ion exchanged glass sheets resulted in the fabrication of glass laminates with thin layers of compressive stress adjacent to the glass interfaces. The threshold flexural strength of the ion exchanged glass laminates was determined to be 112 MPa after the introduction of indentation cracks with indent loads ranging from 1kg to 5kg and the laminates were found to exhibit a threshold strength, i.e., a stress below which failure will not occur. Contrary to similar ceramic laminates where cracks either propagate across the compressive layer or bifurcate within the compressive layer, the cracks in the glass laminates were deflected along the interface between the bonded sheets. ZnO films were grown on (0001) GaN buffered Al2O3 substrates by aqueous solution routes at 90°C. The films were found to buckle under compressive residual stresses at film thicknesses greater than 4mum. Lateral epitaxial overgrowth techniques using hexagonal hole arrays showed an increasing film stability with larger array spacing, resulting in film thicknesses up to 92mum. Stress determinations using Raman spectroscopy indicated that stress relaxation at the free surface during film growth played a major role in film stability. Investigations using Finite Element Analysis and Raman spectroscopy demonstrated that the strain energy within the film/substrate system decreased with increasing array

  6. Interface and Electronic Characterization of Thin Epitaxial Co3O4 Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz, C.A.; Zhu, Y.; Wang, H.-Q.

    2009-01-15

    The interface and electronic structure of thin ({approx} 20-74 nm) Co{sub 3}O{sub 4}(1 1 0) epitaxial films grown by oxygen-assisted molecular beam epitaxy on MgAl{sub 2}O{sub 4}(1 1 0) single crystal substrates have been investigated by means of real and reciprocal space techniques. As-grown film surfaces are found to be relatively disordered and exhibit an oblique low energy electron diffraction (LEED) pattern associated with the O-rich CoO{sub 2} bulk termination of the (1 1 0) surface. Interface and bulk film structure are found to improve significantly with post-growth annealing at 820 K in air and display sharp rectangular LEED patterns,more » suggesting a surface stoichiometry of the alternative Co{sub 2}O{sub 2} bulk termination of the (1 1 0) surface. Non-contact atomic force microscopy demonstrates the presence of wide terraces separated by atomic steps in the annealed films that are not present in the as-grown structures; the step height of {approx}2.7 {angstrom} corresponds to two atomic layers and confirms a single termination for the annealed films, consistent with the LEED results. A model of the (1 x 1) surfaces that allows for compensation of the polar surfaces is presented.« less

  7. Characterization of a new transparent-conducting material of ZnO doped ITO thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. M.

    2005-11-01

    Thin films of indium tin oxide (ITO) doped with zinc oxide have the remarkable properties of being conductive yet still highly transparent in the visible and near-IR spectral ranges. The Electron beam deposi- tion technique is one of the simplest and least expensive ways of preparing. High-quality ITO thin films have been deposited on glass substrates by Electron beam evaporation technique. The effect of doping and substrate deposition temperature was found to have a significant effect on the structure, electrical and optical properties of ZnO doped ITO films. The average optical transmittance has been increased with in- creasing the substrate temperature. The maximum value of transmittance is greater than 84% in the visible region and 85% in the NIR region obtained for film with Zn/ITO = 0.13 at substrate temperature 200 °C. The dielectric constant, average excitation energy for electronic transitions (E o), the dispersion energy (E d), the long wavelength refractive index (n ), average oscillator wave length ( o) and oscillator strength S o for the thin films were determined and presented in this work.

  8. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates

    PubMed Central

    Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan

    2016-01-01

    Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications. PMID:27703253

  9. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates

    NASA Astrophysics Data System (ADS)

    Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y. B.; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan

    2016-10-01

    Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu3Ti4O12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.

  10. Surface step terrace tuned microstructures and dielectric properties of highly epitaxial CaCu3Ti4O12 thin films on vicinal LaAlO3 substrates.

    PubMed

    Yao, Guang; Gao, Min; Ji, Yanda; Liang, Weizheng; Gao, Lei; Zheng, Shengliang; Wang, You; Pang, Bin; Chen, Y B; Zeng, Huizhong; Li, Handong; Wang, Zhiming; Liu, Jingsong; Chen, Chonglin; Lin, Yuan

    2016-10-05

    Controllable interfacial strain can manipulate the physical properties of epitaxial films and help understand the physical nature of the correlation between the properties and the atomic microstructures. By using a proper design of vicinal single-crystal substrate, the interface strain in epitaxial thin films can be well controlled by adjusting the miscut angle via a surface-step-terrace matching growth mode. Here, we demonstrate that LaAlO 3 (LAO) substrates with various miscut angles of 1.0°, 2.75°, and 5.0° were used to tune the dielectric properties of epitaxial CaCu 3 Ti 4 O 12 (CCTO) thin films. A model of coexistent compressive and tensile strained domains is proposed to understand the epitaxial nature. Our findings on the self-tuning of the compressive and tensile strained domain ratio along the interface depending on the miscut angle and the stress relaxation mechanism under this growth mode will open a new avenue to achieve CCTO films with high dielectric constant and low dielectric loss, which is critical for the design and integration of advanced heterostructures for high performance capacitance device applications.

  11. Preparation of epitaxial TlBa2Ca2Cu3O9 high Tc thin films on LaAlO3 (100) substrates

    NASA Astrophysics Data System (ADS)

    Piehler, A.; Reschauer, N.; Spreitzer, U.; Ströbel, J. P.; Schönberger, R.; Renk, K. F.; Saemann-Ischenko, G.

    1994-09-01

    Epitaxial TlBa2Ca2Cu3O9 high Tc thin films were prepared on LaAlO3 (100) substrates by a combination of laser ablation and thermal evaporation of thallium oxide. X-ray diffraction patterns of θ-2θ scans showed that the films consisted of highly c axis oriented TlBa2Ca2Cu3O9. φ scan measurements revealed an epitaxial growth of the TlBa2Ca2Cu3O9 thin films on the LaAlO3 (100) substrates. Ac inductive measurements indicated the onset of superconductivity at 110 K. At 6 K, the critical current density was 4×106 A/cm2 in zero magnetic field and 6×105 A/cm2 at a magnetic field of 3 T parallel to the c axis.

  12. Correlated effects of preparation parameters and thickness on morphology and optical properties of ZnO very thin films

    NASA Astrophysics Data System (ADS)

    Gilliot, Mickaël; Hadjadj, Aomar

    2015-08-01

    Nano-granular ZnO layers have been grown using a sol-gel synthesis and spin-coating deposition process. Thin films with thicknesses ranging from 15 to 150 nm have been obtained by varying the number of deposition cycles and prepared with different synthesis conditions. Morphologies and optical properties have been carefully investigated by joint spectroscopic ellipsometry and atomic force microscopy. A correlation between the evolution of optical properties and grains morphology has been observed. It is shown that both synthesis temperature and concentration similarly allow us to change the correlated growth and properties evolution rate. Thickness variation associated to choice of synthesis parameters could be a useful way to tune morphology and optical properties of the nanostructured ZnO layers.

  13. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  14. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  15. Changing vacancy balance in ZnO by tuning synthesis between zinc/oxygen lean conditions

    NASA Astrophysics Data System (ADS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Zubiaga, Asier; Tuomisto, Filip; Kuznetsov, Andrej Yu.

    2010-08-01

    The nature of intrinsic defects in ZnO films grown by metal organic vapor phase epitaxy was studied by positron annihilation and photoluminescence spectroscopy techniques. The supply of Zn and O during the film synthesis was varied by applying different growth temperatures (325-485 °C), affecting decomposition of the metal organic precursors. The microscopic identification of vacancy complexes was derived from a systematic variation in the defect balance in accordance with Zn/O supply trends.

  16. Low symmetry phase in Pb(Zr0.52Ti0.48)O3 epitaxial thin films with enhanced ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Li, Jiefang; Cao, Hu; Viehland, D.

    2006-12-01

    The authors report the structural and ferroelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT) epitaxial thin films grown on (001), (110), and (111) SrRuO3/SrTiO3 substrates by pulsed laser deposition. A monoclinic C (Mc) phase has been found for (101) films, whereas (001) and (111) ones were tetragonal (T ) and rhombohedral (R), respectively. The authors find that the ferroelectric polarization of the Mc phase is higher than that in either the T or R ones. These results are consistent with predictions (i) of epitaxial phase diagrams and (ii) that the enhanced ferroelectric properties of morphotropic phase boundary PZT are related to a low symmetry monoclinic phase.

  17. Finite-size versus interface-proximity effects in thin-film epitaxial SrTiO3

    NASA Astrophysics Data System (ADS)

    De Souza, R. A.; Gunkel, F.; Hoffmann-Eifert, S.; Dittmann, R.

    2014-06-01

    The equilibrium electrical conductivity of epitaxial SrTiO3 (STO) thin films was investigated as a function of temperature, 950≤ T/K ≤1100, and oxygen partial pressure, 10-23≤ pO2/bar ≤1. Compared with single-crystal STO, nanoscale thin-film STO exhibited with decreasing film thickness an increasingly enhanced electronic conductivity under highly reducing conditions, with a corresponding decrease in the activation enthalpy of conduction. This implies substantial modification of STO's point-defect thermodynamics for nanoscale film thicknesses. We argue, however, against such a finite-size effect and for an interface-proximity effect. Indeed, assuming trapping of oxygen vacancies at the STO surface and concomitant depletion of oxygen vacancies—and accumulation of electrons—in an equilibrium surface space-charge layer, we are able to predict quantitatively the conductivity as a function of temperature, oxygen partial pressure, and film thickness. Particularly complex behavior is predicted for ultrathin films that are consumed entirely by space charge.

  18. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  19. Thin film growth of CaFe2As2 by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  20. Highly Oriented Atomically Thin Ambipolar MoSe2 Grown by Molecular Beam Epitaxy

    PubMed Central

    2017-01-01

    Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film. PMID:28530829

  1. Strain tuning of electronic structure in Bi 4Ti 3O 12-LaCoO 3 epitaxial thin films

    DOE PAGES

    Choi, Woo Seok; Lee, Ho Nyung

    2015-05-08

    In this study, we investigated the crystal and electronic structures of ferroelectric Bi 4Ti 3O 12 single-crystalline thin films site-specifically substituted with LaCoO 3 (LCO). The epitaxial films were grown by pulsed laser epitaxy on NdGaO 3 and SrTiO 3 substrates to vary the degree of strain. With increasing the LCO substitution, we observed a systematic increase in the c-axis lattice constant of the Aurivillius phase related with the modification of pseudo-orthorhombic unit cells. These compositional and structural changes resulted in a systematic decrease in the band gap, i.e., the optical transition energy between the oxygen 2p and transition-metal 3dmore » states, based on a spectroscopic ellipsometry study. In particular, the Co 3d state seems to largely overlap with the Ti t 2g state, decreasing the band gap. Interestingly, the applied tensile strain facilitates the band-gap narrowing, demonstrating that epitaxial strain is a useful tool to tune the electronic structure of ferroelectric transition-metal oxides.« less

  2. Electrical and structural properties of epitaxially deposited chromium thin films

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Sawabu, M.; Nakanishi, H.; Ohashi, K.; Maeta, K.

    2018-05-01

    We studied the electrical resistance and crystal structure of epitaxial chromium (Cr) films. The lattice constant of the Cr films was larger than that of the bulk Cr because of MgO substrate on which Cr was epitaxially deposited. A chromium oxide layer having a thickness of 1 nm was found on all films from the result of X-ray reflectivity measurements. The electrical resistivity ρ(T) shows metallic behavior for all epitaxial Cr films in contrast with polycrystalline one. However, the magnitude of ρ tends to increase and the antiferromagnetic interaction is suppressed as decreasing thickness of film.

  3. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  4. Detection of current induced spin polarization in epitaxial Bi2Te3 thin film

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Roy, Anupam; Pramanik, Tanmoy; Rai, Amritesh; Heon Shin, Seung; Majumder, Sarmita; Register, Leonard F.; Banerjee, Sanjay K.

    2017-03-01

    We electrically detect charge current induced spin polarization on the surface of a molecular beam epitaxy grown Bi2Te3 thin film in a two-terminal device with a ferromagnetic MgO/Fe contact and a nonmagnetic Ti/Au contact. The two-point resistance, measured in an applied magnetic field, shows a hysteresis tracking the magnetization of Fe. A theoretical estimate is obtained for the change in resistance on reversing the magnetization direction of Fe from coupled spin-charge transport equations based on the quantum kinetic theory. The order of magnitude and the sign of the hysteresis are consistent with the spin-polarized surface state of Bi2Te3.

  5. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    NASA Astrophysics Data System (ADS)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  6. Influence Al doped ZnO nanostructure on structural and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramelan, Ari Handono, E-mail: aramelan@mipa.uns.ac.id; Wahyuningsih, Sayekti; Chasanah, Uswatul

    2016-04-19

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO causemore » of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.« less

  7. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  8. Optical properties of epitaxial BiFeO3 thin film grown on SrRuO3-buffered SrTiO3 substrate.

    PubMed

    Xu, Ji-Ping; Zhang, Rong-Jun; Chen, Zhi-Hui; Wang, Zi-Yi; Zhang, Fan; Yu, Xiang; Jiang, An-Quan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2014-01-01

    The BiFeO3 (BFO) thin film was deposited by pulsed-laser deposition on SrRuO3 (SRO)-buffered (111) SrTiO3 (STO) substrate. X-ray diffraction pattern reveals a well-grown epitaxial BFO thin film. Atomic force microscopy study indicates that the BFO film is rather dense with a smooth surface. The ellipsometric spectra of the STO substrate, the SRO buffer layer, and the BFO thin film were measured, respectively, in the photon energy range 1.55 to 5.40 eV. Following the dielectric functions of STO and SRO, the ones of BFO described by the Lorentz model are received by fitting the spectra data to a five-medium optical model consisting of a semi-infinite STO substrate/SRO layer/BFO film/surface roughness/air ambient structure. The thickness and the optical constants of the BFO film are obtained. Then a direct bandgap is calculated at 2.68 eV, which is believed to be influenced by near-bandgap transitions. Compared to BFO films on other substrates, the dependence of the bandgap for the BFO thin film on in-plane compressive strain from epitaxial structure is received. Moreover, the bandgap and the transition revealed by the Lorentz model also provide a ground for the assessment of the bandgap for BFO single crystals.

  9. Temperature-dependent phosphorous dopant activation in ZnO thin film deposited using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    High band gap (3.34 eV) and large exciton binding energy (60 meV) at room temperature facilitates ZnO as a useful candidate for optoelectronics devices. Presence of zinc interstitial and oxygen vacancies results in n-type ZnO film. Phosphorus implantation was carried out using plasma immersion ion implantation technique (2kV, 900W) for constant duration (50 s) on RF sputtered ZnO thin films (Sample A). For dopant activation, sample A was subjected to Rapid Thermal Annealing (RTA) at 700, 800, 900 and 1000°C for 10 s in Oxygen ambient (Sample B, C, D, E). Low temperature (18 K) photoluminescence measurement demonstrated strong donor bound exciton peak for sample A. Dominant donor to acceptor pair peak (DAP) was observed for sample D at around 3.22 eV with linewidth of 131.3 meV. High resolution x-ray diffraction measurement demonstrated (001) and (002) peaks for sample A. (002) peak with high intensity was observed from all annealed samples. Incorporation of phosphorus in ZnO films leads to peak shift towards higher 2θ angle indicate tensile strain in implanted samples. Scanning electron microscopy images reveals improvement in grain size distribution along with reduction of implantation related defects. Raman spectra measured A1(LO) peak at around 576 cm-1 for sample A. Low intensity E2 (high) peak was observed for sample D indicating formation of (PZn+2VZn) complexes. From room temperature Hall measurement, sample D measured 1.17 x 1018 cm -3 carrier concentration with low resistivity of 0.464 Ω.

  10. Molecular beam epitaxy and characterization of stannic oxide

    NASA Astrophysics Data System (ADS)

    White, Mark Earl

    Wide bandgap oxides such as tin-doped indium oxide (ITO), zinc oxide (ZnO), and tin oxide (SnO2) are currently used in a variety of technologically important applications, including gas sensors and transparent conducting films for devices such as flat panel displays and photovoltaics. Due to the focus on industrial applications, prior research did not investigate the basic material properties of SnO2 films due to unoptimized growth methods such as RF sputtering and pulsed laser deposition which produced low resistance, polycrystalline films. Beyond these applications, few attempts to enhance and control the fundamental SnO2 properties for semiconducting applications have been reported. This work develops the heteroepitaxy of SnO2 thin films on r-plane Al2O3 by plasma-assisted molecular beam epitaxy (PA-MBE) and demonstrates control of the electrical transport of those films. Phase-pure, epitaxial single crystalline films were controllably and reproducibly grown. X-ray diffraction measurements indicated that these films exhibited the highest structural quality reported. Depending on the epitaxial conditions, tin- and oxygen-rich growth regimes were observed. An unexpected growth rate decrease in the tin-rich regime was determined to be caused by volatile suboxide formation. Excellent transport properties for naturally n-type SnO2 were achieved: the electron mobility, mu, was 103 cm2/V s at a concentration, n, of 2.7 x 1017 cm-3. To control the bulk electron density, antimony was used as an intentional n-type dopant. Antimony-doped film properties showed the highest reported mobilities for doped films (mu = 36 cm2/V s for n = 2.8 x 10 20 cm-3). Films doped with indium had resistivities over five orders-of-magnitude greater than undoped films. These highly resistive films provided a method to control the electrical transport properties. Further research will facilitate detailed studies of the fundamental properties of SnO2 and its development as an oxide with full

  11. Growth of strontium ruthenate films by hybrid molecular beam epitaxy

    DOE PAGES

    Marshall, Patrick B.; Kim, Honggyu; Ahadi, Kaveh; ...

    2017-09-01

    We report on the growth of epitaxial Sr 2RuO 4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO 4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional molecular beam epitaxy that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr 2RuO 4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electronmore » microscopy. In conclusion, the method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.« less

  12. Epitaxial Growth of MOF Thin Film for Modifying the Dielectric Layer in Organic Field-Effect Transistors.

    PubMed

    Gu, Zhi-Gang; Chen, Shan-Ci; Fu, Wen-Qiang; Zheng, Qingdong; Zhang, Jian

    2017-03-01

    Metal-organic framework (MOF) thin films are important in the application of sensors and devices. However, the application of MOF thin films in organic field effect transistors (OFETs) is still a challenge to date. Here, we first use the MOF thin film prepared by a liquid-phase epitaxial (LPE) approach (also called SURMOFs) to modify the SiO 2 dielectric layer in the OFETs. After the semiconductive polymer of PTB7-Th (poly[4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b:4,5-b']dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]) was coated on MOF/SiO 2 and two electrodes on the semiconducting film were deposited sequentially, MOF-based OFETs were fabricated successfully. By controlling the LPE cycles of SURMOF HKUST-1 (also named Cu 3 (BTC) 2 , BTC = 1,3,5-benzenetricarboxylate), the performance of the HKUST-1/SiO 2 -based OFETs showed high charge mobility and low threshold voltage. This first report on the application of MOF thin film in OFETs will offer an effective approach for designing a new kind of materials for the OFET application.

  13. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  14. Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.

    PubMed

    Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young

    2018-09-01

    The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.

  15. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb : SrTiO3 Thin Films Controlled by Defects

    NASA Astrophysics Data System (ADS)

    Sarantopoulos, A.; Ferreiro-Vila, E.; Pardo, V.; Magén, C.; Aguirre, M. H.; Rivadulla, F.

    2015-10-01

    We report thermoelectric power experiments in e -doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e -doped STO thin films, is similar to that observed in LaAlO3 /STO interfaces and magnetic STO quantum wells.

  16. Mobility of indium on the ZnO(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentionalmore » In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.« less

  17. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag-ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag-ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol-gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag-ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag-ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag-ZnO M-S-M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  18. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  19. Synthesis and electronic properties of Fe 2TiO 5 epitaxial thin films

    DOE PAGES

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; ...

    2018-05-02

    Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less

  20. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    NASA Astrophysics Data System (ADS)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  1. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    NASA Astrophysics Data System (ADS)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  2. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    DTIC Science & Technology

    2014-03-27

    scale, high-frequency ZnO thin - film transistors (TFTs) could be fabricated. Molybdenum, tantalum, titanium tungsten 10-90, and tungsten metallic contact... thin - film transistor layout utilized in the thesis research . . . . . 42 3.4 Process Flow Diagram for Optical and e-Beam Devices...TFT thin - film transistor TLM transmission line model UV ultra-violet xvii SELECTIVE DRY ETCH FOR DEFINING OHMIC CONTACTS FOR HIGH PERFORMANCE ZnO TFTs

  3. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects,more » like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.« less

  4. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  5. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  6. Study of phonons in irradiated epitaxial thin films of UO2

    NASA Astrophysics Data System (ADS)

    Rennie, S.; Lawrence Bright, E.; Darnbrough, J. E.; Paolasini, L.; Bosak, A.; Smith, A. D.; Mason, N.; Lander, G. H.; Springell, R.

    2018-06-01

    We report experiments to determine the effect of radiation damage on the phonon spectra of the most common nuclear fuel, UO2. We irradiated thin (˜300 nm) epitaxial films of UO2 with 2.1 MeV He2 + ions to 0.15 displacements per atom and a lattice swelling of Δ a /a ˜0.6 % and then used grazing-incidence inelastic x-ray scattering to measure the phonon spectrum. We succeeded in observing the acoustic modes, both transverse and longitudinal, across the Brillouin zone. The phonon energies, in both the pristine and irradiated samples, are unchanged from those observed in bulk material. On the other hand, the phonon linewidths (inversely proportional to the phonon lifetimes) show a significant broadening when comparing the pristine and irradiated samples. This effect is shown to increase with phonon energy across the Brillouin zone. The decreases in the phonon lifetimes of the acoustic modes are roughly consistent with a 50% reduction in the thermal conductivity.

  7. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  8. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  9. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE PAGES

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...

    2016-09-02

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  10. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  11. Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

    NASA Astrophysics Data System (ADS)

    Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm

    2017-04-01

    The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is  <10% from 30 to 75° at 514.5 nm, and  <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.

  12. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  13. Temperature stabilized effusion cell evaporation source for thin film deposition and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tiedje, H. F.; Brodie, D. E.

    2000-05-01

    A simple effusion cell evaporation source for thin film deposition and molecular-beam epitaxy is described. The source consists of a crucible with a thermocouple temperature sensor heated by a resistive crucible heater. Radiation heat transfer from the crucible to the thermocouple produces a consistent and reproducible thermocouple temperature for a given crucible temperature, without direct contact between the thermocouple and the crucible. The thermocouple temperature is somewhat less than the actual crucible temperature because of heat flow from the thermocouple junction along the thermocouple lead wires. In a typical case, the thermocouple temperature is 1007 °C while the crucible is at 1083 °C. The crucible temperature stability is estimated from the measured sensitivity of the evaporation rate of indium to temperature, and the observed variations in the evaporation rate for a fixed thermocouple temperature. The crucible temperature peak-to-peak variation over a one hour period is 1.2 °C. Machined molybdenum crucibles were used in the indium and copper sources for depositing CuInSe2 thin films for solar cells.

  14. Magnetic properties of low-moment ferrimagnetic Heusler Cr2CoGa thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; DeCapua, Matthew C.; Player, Gabriel; Heiman, Don

    2016-10-01

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87 meV. These results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.

  15. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  16. Luminescence studies of laser MBE grown GaN on ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Kapoor, Ashok K.; Tandon, R. P.; Gupta, Vinay

    2017-08-01

    GaN films have been successfully fabricated using Laser Molecular Beam Epitaxy (LMBE) technique on bare c-plane sapphire substrate and ZnO nanostructures (NS) decorated Si (100) substrates. The ZnO nanostructures were grown on Si (100) substrate using high pressure assisted Pulsed laser deposition technique in inert gas ambience. Discrete nanostructured morphology of ZnO was obtained using the PLD growth on Si substrates. Photoluminescence studies performed on the prepared GaN/Sapphire and GaN/ZnO-NS/Si systems, revealed a significant PL enhancement in case of GaN/ZnO-NS/Si system compared to the former. The hexagonal nucleation sites provided by the ZnO nanostructures strategically enhanced the emission of GaN film grown by Laser MBE Technique at relatively lower temperature of 700°C. The obtained results are attractive for the realization of highly luminescent GaN films on Si substrate for photonic devices.

  17. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    NASA Astrophysics Data System (ADS)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  18. Optimisation of growth of epitaxial Tl 2Ba 2Ca 1Cu 2O 8 superconducting thin films for electronic device applications

    NASA Astrophysics Data System (ADS)

    Michael, Peter C.; Johansson, L.-G.; Bengtsson, L.; Claeson, T.; Ivanov, Z. G.; Olsson, E.; Berastegui, P.; Stepantsov, E.

    1994-12-01

    Epitaxial thin films of Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconductor have been grown on single crystal (100) lanthanum aluminate (LaAlO 3) substrates by a two stage process: laser ablation of a BaCaCuO (0212) sintered target and post-deposition anneal ex-situ in a thallium environment. The films are c-axis oriented with in-plane epitaxy as determined by x-ray diffraction (XRD θ-2θ and φ-scans). Superconducting transition temperatures as high as 105.5K have been obtained both from four-probe resistance and a.c. magnetic susceptibility measurements. Film morphology and chemical composition have been assessed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). Sensitivity of the precursor film to environmental exposure has proven to be a determining factor in the reproducibility of film growth characteristics. The effect of oxygen partial pressure and substrate temperature used in the precursor film synthesis, as well as the thallium annealing temperature and duration, on the growth of Tl-2212 thin films is reported.

  19. Electronic Degeneracy and Intrinsic Magnetic Properties of EpitaxialNb: SrTiO3 Thin Films Controlled by Defects.

    PubMed

    Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F

    2015-10-16

    We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells.

  20. Spectroscopic and microscopic investigation of MBE-grown CdTe (211)B epitaxial thin films on GaAs (211)B substrates

    NASA Astrophysics Data System (ADS)

    Özden, Selin; Koc, Mumin Mehmet

    2018-03-01

    CdTe epitaxial thin films, for use as a buffer layer for HgCdTe defectors, were grown on GaAs (211)B using the molecular beam epitaxy method. Wet chemical etching (Everson method) was applied to the epitaxial films using various concentrations and application times to quantify the crystal quality and dislocation density. Surface characterization of the epitaxial films was achieved using Atomic force microscopy and Scanning electron microscopy (SEM) before and after each treatment. The Energy Dispersive X-Ray apparatus of SEM was used to characterize the chemical composition. Untreated CdTe films show smooth surface characteristics with root mean square (RMS) roughnesses of 1.18-3.89 nm. The thicknesses of the CdTe layers formed were calculated via FTIR spectrometry and obtained by ex situ spectroscopic ellipsometry. Raman spectra were obtained for various temperatures. Etch pit densities (EPD) were measured, from which it could be seen that EPD changes between 1.7 × 108 and 9.2 × 108 cm-2 depending on the concentration of the Everson etch solution and treatment time. Structure, shape and depth of pits resulting from each etch pit implementation were also evaluated. Pit widths varying between 0.15 and 0.71 µm with heights varying between 2 and 80 nm were observed. RMS roughness was found to vary by anything from 1.56 to 26 nm.

  1. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  2. Reversible pyroelectric and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films

    NASA Astrophysics Data System (ADS)

    Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.

    1994-01-01

    The pyroelectric and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.

  3. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less

  4. Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ozutok, Fatma; Karaduman, Irmak; Demiri, Sani; Acar, Selim

    2018-02-01

    Herein we report Al-doped ZnO films (AZO) deposited on the ZnO seed layer by chemical bath deposition method. Al powder, Al oxide and Al chloride were used as sources for the deposition process and investigated for their different effects on the NH3 gas-sensing performance. The morphological and microstructural properties were investigated by employing x-ray powder diffraction, scanning electron microscopy analysis and energy-dispersive x-ray spectroscopy. The characterization studies showed that the AZO thin films are crystalline and exhibit a hexagonal wurtzite structure. Ammonia (NH3) gas-sensing measurements of AZO films were performed at different concentration levels and different operation temperatures from 50°C to 210°C. The sample based on powder-Al source showed a higher response, selectivity and short response/recovery time than the remaining samples. The powder Al sample exhibited 33% response to 10-ppm ammonia gas at 190°C, confirming a strong dependence on the dopant source type.

  5. Epitaxially grown strained pentacene thin film on graphene membrane.

    PubMed

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg formore » higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient

  7. Strained-layer epitaxy of germanium-silicon alloys

    NASA Astrophysics Data System (ADS)

    Bean, J. C.

    1985-10-01

    Strained-layer epitaxy is presented as a developing technique for combining Si with other materials in order to obtain semiconductors with enhanced electronic properties. The method involves applying layers sufficiently thin so that the atoms deposited match the bonding configurations of the substrate crystal. When deposited on Si, a four-fold bonding pattern is retained, with a lowered interfacial energy and augmented stored strain energy in the epitaxial layer. The main problem which remains is building an epitaxial layer thick enough to yield desired epitaxial properties while avoiding a reversion to an unstrained structure. The application of a Ge layer to Si using MBE is described, along with the formation of heterojunction multi-layer superlattices, which can reduce the dislocation effects in some homojunctions. The technique shows promise for developing materials of use as bipolar transistors, optical detectors and fiber optic transmission devices.

  8. Influence of Fe doping on the structural, optical and acetone sensing properties of sprayed ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prajapati, C.S.; Kushwaha, Ajay; Sahay, P.P., E-mail: dr_ppsahay@rediffmail.com

    2013-07-15

    Graphical abstract: All the films are found to be polycrystalline ZnO possessing hexagonal wurtzite structure. The intensities of all the peaks are diminished strongly in the Fe-doped films, indicating their lower crystallinity as compared to the undoped ZnO film. The average crystallite size decreases from 35.21 nm (undoped sample) to 15.43 nm (1 at% Fe-doped sample). - Highlights: • Fe-doped ZnO films show smaller crystallinity with crystallite size: 15–26 nm. • Optical band gap in ZnO films decreases on Fe doping. • Fe-doped films exhibit the normal dispersion for the wavelength range 450–600 nm. • PL spectra of the Fe-dopedmore » films show quenching of the broad green-orange emission. • Acetone response of the Fe-doped films increases considerably at 300 °C. - Abstract: The ZnO thin films (undoped and Fe-doped) deposited by chemical spray pyrolysis technique have been analyzed by X-ray powder diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results show that all the films possess hexagonal wurtzite structure of zinc oxide having crystallite sizes in the range 15–36 nm. On 1 at% Fe doping, the surface roughness of the film increases which favors the adsorption of atmospheric oxygen on the film surface and thereby increase in the gas response. Optical studies reveal that the band gap decreases due to creation of some defect energy states below the conduction band edge, arising out of the lattice disorder in the doped films. The refractive index of the films decreases on Fe doping and follows the Cauchy relation of normal dispersion. Among all the films examined, the 1 at% Fe-doped film exhibits the maximum response (∼72%) at 300 °C for 100 ppm concentration of acetone in air.« less

  9. Intrinsic high electrical conductivity of stoichiometric SrNb O3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Oka, Daichi; Hirose, Yasushi; Nakao, Shoichiro; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-11-01

    SrV O3 and SrNb O3 are perovskite-type transition-metal oxides with the same d1 electronic configuration. Although SrNb O3 (4 d1 ) has a larger d orbital than SrV O3 (3 d1 ), the reported electrical resistivity of SrNb O3 is much higher than that of SrV O3 , probably owing to nonstoichiometry. In this paper, we grew epitaxial, high-conductivity stoichiometric SrNb O3 using pulsed laser deposition. The growth temperature strongly affected the Sr/Nb ratio and the oxygen content of the films, and we obtained stoichiometric SrNb O3 at a very narrow temperature window around 630 °C. The stoichiometric SrNb O3 epitaxial thin films grew coherently on KTa O3 (001) substrates with high crystallinity. The room-temperature resistivity of the stoichiometric film was 2.82 ×10-5Ω cm , one order of magnitude lower than the lowest reported value of SrNb O3 and comparable with that of SrV O3 . We observed a T -square dependence of resistivity below T*=180 K and non-Drude behavior in near-infrared absorption spectroscopy, attributable to the Fermi-liquid nature caused by electron correlation. Analysis of the T -square coefficient A of resistivity experimentally revealed that the 4 d orbital of Nb that is larger than the 3 d ones certainly contributes to the high electrical conduction of SrNb O3 .

  10. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hassan, Ali; Jin, Yuhua; Irfan, Muhammad; Jiang, Yijian

    2018-03-01

    Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (˜ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ˜315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.

  11. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  12. IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.

    PubMed

    Shen, Yi-Chun; Yang, Chun-Hsu; Chen, Shu-Wen; Wu, Shou-Hao; Yang, Tsung-Lin; Huang, Jian-Jang

    2014-04-15

    We demonstrate a biosensor structure consisting of an IGZO (Indium-Gallium-Zinc-Oxide) TFT (thin film transistor) and an extended sensing pad. The TFT acts as the sensing and readout device, while the sensing pad ensures the isolation of biological solution from the transistor channel layer, and meanwhile increases the sensing area. The biosensor is functionalized by first applying ZnO nanorods to increase the surface area for attracting electrical charges of EGFR (epidermal growth factor receptor) antibodies. The device is able to selectively detect 36.2 fM of EGFR in the total protein solution of 0.1 ng/ml extracted from squamous cell carcinoma (SCC). Furthermore, the conjugation duration of the functionalized device with EGFR can be limited to 3 min, implying that the biosensor has the advantage for real-time detection. © 2013 Elsevier B.V. All rights reserved.

  13. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englhard, M.; Klemp, C.; Behringer, M.

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-raymore » diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.« less

  14. Crystallization engineering as a route to epitaxial strain control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbashev, Andrew R.; Plokhikh, Aleksandr V.; Barbash, Dmitri

    2015-10-01

    The controlled synthesis of epitaxial thin films offers opportunities for tuning their functional properties via enabling or suppressing strain relaxation. Examining differences in the epitaxial crystallization of amorphous oxide films, we report on an alternate, low-temperature route for strain engineering. Thin films of amorphous Bi–Fe–O were grown on (001)SrTiO{sub 3} and (001)LaAlO{sub 3} substrates via atomic layer deposition. In situ X-ray diffraction and X-ray photoelectron spectroscopy studies of the crystallization of the amorphous films into the epitaxial (001)BiFeO{sub 3} phase reveal distinct evolution profiles of crystallinity with temperature. While growth on (001)SrTiO{sub 3} results in a coherently strained film, themore » same films obtained on (001)LaAlO{sub 3} showed an unstrained, dislocation-rich interface, with an even lower temperature onset of the perovskite phase crystallization than in the case of (001)SrTiO{sub 3}. Our results demonstrate how the strain control in an epitaxial film can be accomplished via its crystallization from the amorphous state.« less

  15. Magnetic properties of low-moment ferrimagnetic Heusler Cr 2CoGa thin films grown by molecular beam epitaxy

    DOE PAGES

    Jamer, Michelle E.; Sterbinsky, George E.; Stephen, Gregory M.; ...

    2016-10-31

    Recently, theorists have predicted many materials with a low magnetic moment and large spin-polarization for spintronic applications. These compounds are predicted to form in the inverse Heusler structure; however, many of these compounds have been found to phase segregate. In this study, ordered Cr 2CoGa thin films were synthesized without phase segregation using molecular beam epitaxy. The present as-grown films exhibit a low magnetic moment from antiferromagnetically coupled Cr and Co atoms as measured with superconducting quantum interface device magnetometry and soft X-ray magnetic circular dichroism. Electrical measurements demonstrated a thermally-activated semiconductor-like resistivity component with an activation energy of 87more » meV. Finally, these results confirm spin gapless semiconducting behavior, which makes these thin films well positioned for future devices.« less

  16. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  17. Influence of Sn doping on structural, optical and electrical properties of ZnO thin films prepared by cost effective sol-gel process.

    PubMed

    Vishwas, M; Narasimha Rao, K; Arjuna Gowda, K V; Chakradhar, R P S

    2012-09-01

    Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Graphene as a thin-film catalyst booster: graphene-catalyst interface plays a critical role.

    PubMed

    Chae, Sieun; Jin Choi, Won; Sang Chae, Soo; Jang, Seunghun; Chang, Hyunju; Lee, Tae Il; Kim, Youn Sang; Lee, Jeong-O

    2017-12-08

    Due to its extreme thinness, graphene can transmit some surface properties of its underlying substrate, a phenomenon referred to as graphene transparency. Here we demonstrate the application of the transparency of graphene as a protector of thin-film catalysts and a booster of their catalytic efficiency. The photocatalytic degradation of dye molecules by ZnO thin films was chosen as a model system. A ZnO thin film coated with monolayer graphene showed greater catalytic efficiency and long-term stability than did bare ZnO. Interestingly, we found the catalytic efficiency of the graphene-coated ZnO thin film to depend critically on the nature of the bottom ZnO layer; graphene transferred to a relatively rough, sputter-coated ZnO thin film showed rather poor catalytic degradation of the dye molecules while a smooth sol-gel-synthesized ZnO covered with monolayer graphene showed enhanced catalytic degradation. Based on a systematic investigation of the interface between graphene and ZnO thin films, we concluded the transparency of graphene to be critically dependent on its interface with a supporting substrate. Graphene supported on an atomically flat substrate was found to efficiently transmit the properties of the substrate, but graphene suspended on a substrate with a rough nanoscale topography was completely opaque to the substrate properties. Our experimental observations revealed the morphology of the substrate to be a key factor affecting the transparency of graphene, and should be taken into account in order to optimally apply graphene as a protector of catalytic thin films and a booster of their catalysis.

  19. Inverter Circuits using Pentacene and ZnO Transistors

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2007-04-01

    We report two types of integrated circuits based on a pentacene static-induction transistor (SIT), a pentacene thin-film transistor (TFT) and a zinc oxide (ZnO) TFT. The operating characteristics of a p-p inverter using pentacene SITs and a complementary inverter using a p-channel pentacene TFT and an n-channel ZnO TFT are described. The basic operation of logic circuits at a low voltage was achieved for the first time using the pentacene SIT inverter and complementary circuits with hybrid inorganic and organic materials. Furthermore, we describe the electrical properties of the ZnO films depending on sputtering conditions, and the complementary circuits using ZnO and pentacene TFTs.

  20. Strain stabilization and thickness dependence of magnetism in epitaxial transition metal monosilicide thin films on Si(111)

    NASA Astrophysics Data System (ADS)

    Geisler, Benjamin; Kratzer, Peter

    2013-09-01

    We present a comprehensive study of different 3d transition metal monosilicides in their ground state crystal structure (B20), ranging from equilibrium bulk over biaxially strained bulk to epitaxial thin films on Si(111), by means of density functional theory. The magnetic properties of MnSi and FeSi films are found to be considerably modified due to the epitaxial strain induced by the substrate. In MnSi bulk material, which can be seen as a limit of thick films, we find a strain-induced volume expansion, an increase of the magnetic moments, and a significant rise of the energy difference between different spin configurations. The latter can be associated with an increase of the Curie temperature, which is in accordance with recent experimental results. While a ferromagnetic spin alignment is found to be the ground state also for ultrathin films, we show that for films of intermediate thickness a partially compensating magnetic ordering is more favorable; however, the films retain a net magnetic moment. Furthermore, we analyze the orbital structure in FeSi around the band gap, which can be located somewhere in the density of states for all studied B20 transition metal monosilicides, and find that FeSi becomes metallic and ferromagnetic under epitaxial strain. Finally, the influence of on-site electronic correlation and the reliability of ab initio calculations for 3d transition metal monosilicides are discussed.

  1. Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures.

    PubMed

    Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S

    2016-04-13

    We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

  2. Metal-insulator transition in CaVO3 thin films: Interplay between epitaxial strain, dimensional confinement, and surface effects

    NASA Astrophysics Data System (ADS)

    Beck, Sophie; Sclauzero, Gabriele; Chopra, Uday; Ederer, Claude

    2018-02-01

    We use density functional theory plus dynamical mean-field theory (DFT+DMFT) to study multiple control parameters for tuning the metal-insulator transition (MIT) in CaVO3 thin films. We focus on separating the effects resulting from substrate-induced epitaxial strain from those related to the reduced thickness of the film. We show that tensile epitaxial strain of around 3%-4% is sufficient to induce a transition to a paramagnetic Mott-insulating phase. This corresponds to the level of strain that could be achieved on a SrTiO3 substrate. Using free-standing slab models, we then demonstrate that reduced film thickness can also cause a MIT in CaVO3, however, only for thicknesses of less than 4 perovskite units. Our calculations indicate that the MIT in such ultrathin films results mainly from a surface-induced crystal-field splitting between the t2 g orbitals, favoring the formation of an orbitally polarized Mott insulator. This surface-induced crystal-field splitting is of the same type as the one resulting from tensile epitaxial strain, and thus the two effects can also cooperate. Furthermore, our calculations confirm an enhancement of correlation effects at the film surface, resulting in a reduced quasiparticle spectral weight in the outermost layer, whereas bulklike properties are recovered within only a few layers away from the surface.

  3. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates

    NASA Astrophysics Data System (ADS)

    Brammertz, Guy; Mols, Yves; Degroote, Stefan; Motsnyi, Vasyl; Leys, Maarten; Borghs, Gustaaf; Caymax, Matty

    2006-05-01

    Thin epitaxial GaAs films, with thickness varying from 140 to 1000 nm and different Si doping levels, were grown at 650 °C by organometallic vapor phase epitaxy on Ge substrates and analyzed by low-temperature photoluminescence (PL) spectroscopy. All spectra of thin GaAs on Ge show two different structures, one narrow band-to-band (B2B) structure at an energy of ~1.5 eV and a broad inner-band-gap (IB) structure at an energy of ~1.1 eV. Small strain in the thin GaAs films causes the B2B structure to be separated into a light-hole and a heavy-hole peak. At 2.5 K the good structural quality of the thin GaAs films on Ge can be observed from the narrow excitonic peaks. Peak widths of less than 1 meV are measured. GaAs films with thickness smaller than 200 nm show B2B PL spectra with characteristics of an n-type doping level of approximately 1018 at./cm3. This is caused by heavy Ge diffusion from the substrate into the GaAs at the heterointerface between the two materials. The IB structure observed in all films consists of two Gaussian peaks with energies of 1.04 and 1.17 eV. These deep trapping states arise from Ge-based complexes formed within the GaAs at the Ge-GaAs heterointerface, due to strong diffusion of Ge atoms into the GaAs. Because of similarities with Si-based complexes, the peak at 1.04 eV was identified to be due to a GeGa-GeAs complex, whereas the peak at 1.17 eV was attributed to the GeGa-VGa complex. The intensity of the IB structure decreases strongly as the GaAs film thickness is increased. PL intensity of undoped GaAs films containing antiphase domains (APDs) is four orders of magnitude lower than for similar films without APDs. This reduction in intensity is due to the electrically active Ga-Ga and As-As bonds at the boundaries between the different APDs. When the Si doping level is increased, the PL intensity of the APD-containing films is increased again as well. A film containing APDs with a Si doping level of ~1018 at./cm3 has only a factor 10

  4. Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.

    PubMed

    Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji

    2016-10-01

    Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.

  5. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  6. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  7. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  8. Method of transferring a thin crystalline semiconductor layer

    DOEpatents

    Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  9. Exciton polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Tsukazaki, A.; Onuma, T.; Zamfirescu, M.; Ohtomo, A.; Kavokin, A.; Cantwell, G.; Litton, C. W.; Sota, T.; Kawasaki, M.

    2005-04-01

    Static and dynamic responses of excitons in state-of-the-art bulk and epitaxial ZnO are reviewed to support the possible realization of polariton lasers, which are coherent and monochromatic light sources due to Bose condensation of exciton-polaritons in semiconductor microcavities (MCs). To grasp the current problems and to pave the way for obtaining ZnO epilayers of improved quality, the following four principal subjects are treated: (i) polarized optical reflectance (OR), photoreflectance (PR) and photoluminescence (PL) spectra of the bulk and epitaxial ZnO were recorded at 8 K. Energies of PR resonances corresponded to those of upper and lower exciton-polariton branches, where A-, B- and C-excitons couple simultaneously to an electromagnetic wave. PL peaks due to the corresponding polariton branches were observed. Longitudinal-transverse splittings (ωLT) of the corresponding excitons were 1.5, 11.1 and 13.1 meV, respectively. The latter two values are more than two orders of magnitude greater than that of GaAs being 0.08 meV. (ii) Using these values and material parameters, corresponding vacuum-field Rabi splitting of exciton-polaritons coupled to a model MC mode was calculated to be 191 meV, which is the highest value ever reported for semiconductor MCs and satisfies the requirements to observe the strong exciton-light coupling regime necessary for polariton lasing above room temperature. (iii) Polarized OR and PR spectra of an out-plane nonpolar (1\\,1\\,\\bar{2}\\,0) ZnO epilayer grown by laser-assisted molecular beam epitaxy (L-MBE) were measured, since ZnO quantum wells (QWs) grown in nonpolar orientations are expected to show higher emission efficiencies due to the elimination of spontaneous and piezoelectric polarization fields normal to the QW plane. They exhibited in-plane anisotropic exciton resonances according to the polarization selection rules for anisotropically-strained wurzite material. (iv) Impacts of point defects on the nonradiative

  10. Epitaxial growth and dielectric properties of Pb0.4Sr0.6TiO3 thin films on (00l)-oriented metallic Li0.3Ni0.7O2 coated MgO substrates

    NASA Astrophysics Data System (ADS)

    Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.

    2007-06-01

    Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.

  11. Microstructural, Magnetic Anisotropy, and Magnetic Domain Structure Correlations in Epitaxial FePd Thin Films with Perpendicular Magnetic Anisotropy

    NASA Technical Reports Server (NTRS)

    Skuza, J. R.; Clavero, C.; Yang, K.; Wincheski, B.; Lukaszew, R. A.

    2009-01-01

    L1(sub 0)-ordered FePd epitaxial thin films were prepared using dc magnetron sputter deposition on MgO (001) substrates. The films were grown with varying thickness and degree of chemical order to investigate the interplay between the microstructure, magnetic anisotropy, and magnetic domain structure. The experimentally measured domain size/period and magnetic anisotropy in this high perpendicular anisotropy system were found to be correlated following the analytical energy model proposed by Kooy and Enz that considers a delicate balance between the domain wall energy and the demagnetizing stray field energy.

  12. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  13. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  14. Methods for fabricating thin film III-V compound solar cell

    DOEpatents

    Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

    2011-08-09

    The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

  15. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability

    NASA Astrophysics Data System (ADS)

    Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.

    2013-05-01

    It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.

  16. ZnO nanowire-based light-emitting diodes with tunable emission from near-UV to blue

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno; le Bahers, T.

    2013-03-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. We have successfully prepared epitaxial n-ZnO(NW)/p-GaN heterojunctions using low temperature soft electrochemical techniques. The structures have been used in LED devices and exhibited highly interesting performances. Moreover, the bandgap of ZnO has been tuned by Cu or Cd doping at controlled atomic concentration. A result was the controlled shift of the LED emission in the visible spectral wavelength region. Using DFT computing calculations, we have also shown that the bandgap narrowing has two different origins for Zn1-xCdxO (ZnO:Cd) and ZnO:Cu. In the first case, it is due to the crystal lattice expansion, whereas in the second case Cu-3d donor and Cu-3d combined to O-2p acceptor bands appear in the bandgap which broadnesses increase with the dopant concentration. This leads to the bandgap reduction.

  17. Electrical characteristics and density of states of thin-film transistors based on sol-gel derived ZnO channel layers with different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Wang, S.; Mirkhani, V.; Yapabandara, K.; Cheng, R.; Hernandez, G.; Khanal, M. P.; Sultan, M. S.; Uprety, S.; Shen, L.; Zou, S.; Xu, P.; Ellis, C. D.; Sellers, J. A.; Hamilton, M. C.; Niu, G.; Sk, M. H.; Park, M.

    2018-04-01

    We report on the fabrication and electrical characterization of bottom gate thin-film transistors (TFTs) based on a sol-gel derived ZnO channel layer. The effect of annealing of ZnO active channel layers on the electrical characteristics of the ZnO TFTs was systematically investigated. Photoluminescence (PL) spectra indicate that the crystal quality of the ZnO improves with increasing annealing temperature. Both the device turn-on voltage (Von) and threshold voltage (VT) shift to a positive voltage with increasing annealing temperature. As the annealing temperature is increased, both the subthreshold slope and the interfacial defect density (Dit) decrease. The field effect mobility (μFET) increases with annealing temperature, peaking at 800 °C and decreases upon further temperature increase. An improvement in transfer and output characteristics was observed with increasing annealing temperature. However, when the annealing temperature reaches 900 °C, the TFTs demonstrate a large degradation in both transfer and output characteristics, which is possibly produced by non-continuous coverage of the film. By using the temperature-dependent field effect measurements, the localized sub-gap density of states (DOSs) for ZnO TFTs with different annealing temperatures were determined. The DOSs for the subthreshold regime decrease with increasing annealing temperature from 600 °C to 800 °C and no substantial change was observed with further temperature increase to 900 °C.

  18. CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.

    2018-04-01

    Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.

  19. Ferromagnetic order in epitaxially strained LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Fuchs, D.; Pinta, C.; Schwarz, T.; Schweiss, P.; Nagel, P.; Schuppler, S.; Schneider, R.; Merz, M.; Roth, G.; v. Löhneysen, H.

    2007-04-01

    LaCoO3 films grown epitaxially on ⟨001⟩ oriented (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates by pulsed laser deposition exhibit ferromagnetic ordering below a critical temperature, Tc , of 85K . Polycrystalline films of LaCoO3 prepared in the same way did not show ferromagnetic order down to T≈5K , and their temperature dependent susceptibility was identical to that of bulk LaCoO3 . The ferromagnetism in epitaxial films is not simply a property of the surface region, rather it extends over the complete film thickness, as shown by the linear increase of the saturated magnetic moment with increasing film thickness. We discuss this surprising result in terms of epitaxial tensile strain via the properly chosen substrate inducing ferromagnetic order.

  20. Epitaxy, strain, and composition effects on metal-insulator transition characteristics of SmNiO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogdu, Gulgun H.; Ha, Sieu D.; Viswanath, B.

    SmNiO{sub 3} (SNO) thin films were deposited on LaAlO{sub 3} (LAO), SrTiO{sub 3}, SrLaAlO{sub 4}, Si, and Al{sub 2}O{sub 3} (sapphire) substrates by RF magnetron sputtering and studies were conducted to understand how film structure and composition influence the insulator-metal transition properties. It is observed that the compressive strain induces the insulator to metal transition (MIT), while tensile strain suppresses it. In the case of non-epitaxial films, semiconducting behavior is obtained on sapphire over a broad temperature range, while on heavily-doped Si substrate; an MIT is seen in out-of-plane resistance measurement. In addition, thickness dependence on the resistance behavior andmore » nickel oxidation state has been examined for epitaxial SNO films on LAO substrates. Fine control of the MIT by modifications to the mismatch strain and thickness provides insights to enhance the performance and the functionality of these films for emerging electron devices.« less

  1. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  2. Effect of time varying phosphorus implantation on optoelectronics properties of RF sputtered ZnO thin-films

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.

  3. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  4. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm

    NASA Astrophysics Data System (ADS)

    Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun

    2017-05-01

    Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.

  5. Ab initio calculations on the initial stages of GaN and ZnO growth on lattice-matched ScAlMgO4 (0001) substrates

    NASA Astrophysics Data System (ADS)

    Guo, Yao; Wang, Yanfei; Li, Chengbo; Li, Xianchang; Niu, Yongsheng; Hou, Shaogang

    2016-12-01

    The initial stages of GaN and ZnO epitaxial growth on lattice-matched ScAlMgO4 substrates have been investigated by ab initio calculation. The geometrical parameters and electronic structure of ScAlMgO4 bulk and (0001) surface have been investigated by density-functional first-principles study. The effects of different surface terminations have been examined through surface energy and relaxation calculations. The O-Mg-O termination is more favorable than other terminations by comparing the calculated surface energies. It should be accepted as the appropriate surface structure in subsequent calculation. The initial stages of GaN and ZnO epitaxial growths are discussed based on the adsorption and diffusion of the adatoms on reconstructed ScAlMgO4 (0001) surface. According to theoretical characterizations, N adatom on the surface is more stable than Ga. O adatom is more favorable than Zn. These observations lead to the formation of GaN and ZnO epilayer and explain experimentally-confirmed in-plane alignment mechanisms of GaN and ZnO on ScAlMgO4 substrates. Furthermore, the polarity of GaN and ZnO surfaces on ScAlMgO4 (0001) at the initial growth stage have been explored by ab initio calculation. Theoretical studies indicate that the predominant growths of Ga-polar GaN and Zn-polar ZnO are determined by the initial growth stage.

  6. Epitaxial thin films of pyrochlore iridate Bi 2+xIr 2-yO 7-δ: structure, defects and transport properties

    DOE PAGES

    Yang, W. C.; Xie, Y. T.; Zhu, W. K.; ...

    2017-08-10

    While pyrochlore iridate thin films are theoretically predicted to possess a variety of emergent topological properties, experimental verification of these predictions can be obstructed by the challenge in thin film growth. We report on the pulsed laser deposition and characterization of thin films of a representative pyrochlore compound Bi 2Ir 2O 7. Moreover, the films were epitaxially grown on yttria-stabilized zirconia substrates and have lattice constants that are a few percent larger than that of the bulk single crystals. The film composition shows a strong dependence on the oxygen partial pressure. Density-functional-theory calculations indicate the existence of BiIr antisite defects,more » qualitatively consistent with the high Bi: Ir ratio found in the films. Both Ir and Bi have oxidation states that are lower than their nominal values, suggesting the existence of oxygen deficiency. The iridate thin films show a variety of intriguing transport characteristics, including multiple charge carriers, logarithmic dependence of resistance on temperature, antilocalization corrections to conductance due to spin-orbit interactions, and linear positive magnetoresistance.« less

  7. Epitaxial thin films of pyrochlore iridate Bi 2+xIr 2-yO 7-δ: structure, defects and transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. C.; Xie, Y. T.; Zhu, W. K.

    While pyrochlore iridate thin films are theoretically predicted to possess a variety of emergent topological properties, experimental verification of these predictions can be obstructed by the challenge in thin film growth. We report on the pulsed laser deposition and characterization of thin films of a representative pyrochlore compound Bi 2Ir 2O 7. Moreover, the films were epitaxially grown on yttria-stabilized zirconia substrates and have lattice constants that are a few percent larger than that of the bulk single crystals. The film composition shows a strong dependence on the oxygen partial pressure. Density-functional-theory calculations indicate the existence of BiIr antisite defects,more » qualitatively consistent with the high Bi: Ir ratio found in the films. Both Ir and Bi have oxidation states that are lower than their nominal values, suggesting the existence of oxygen deficiency. The iridate thin films show a variety of intriguing transport characteristics, including multiple charge carriers, logarithmic dependence of resistance on temperature, antilocalization corrections to conductance due to spin-orbit interactions, and linear positive magnetoresistance.« less

  8. Intrinsic hydrophilic nature of epitaxial thin-film of rare-earth oxide grown by pulsed laser deposition.

    PubMed

    Prakash, Saurav; Ghosh, Siddhartha; Patra, Abhijeet; Annamalai, Meenakshi; Motapothula, Mallikarjuna Rao; Sarkar, Soumya; Tan, Sherman J R; Zhunan, Jia; Loh, Kian Ping; Venkatesan, T

    2018-02-15

    Herein, we report a systematic study of water contact angle (WCA) of rare-earth oxide thin-films. These ultra-smooth and epitaxial thin-films were grown using pulsed laser deposition and then characterized using X-Ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), and atomic force microscopy (AFM). Through both the traditional sessile drop and the novel f-d method, we found that the films were intrinsically hydrophilic (WCA < 10°) just after being removed from the growth chamber, but their WCAs evolved with an exposure to the atmosphere with time to reach their eventual saturation values near 90° (but always stay 'technically' hydrophilic). X-Ray photoelectron spectroscopy analysis was used to further investigate qualitatively the nature of hydrocarbon contamination on the freshly prepared as well as the environmentally exposed REO thin-film samples as a function of the exposure time after they were removed from the deposition chamber. A clear correlation between the carbon coverage of the surface and the increase in WCA was observed for all of the rare-earth films, indicating the extrinsic nature of the surface wetting properties of these films and having no relation to the electronic configuration of the rare-earth atoms as proposed by Azimi et al.

  9. Role of low O 2 pressure and growth temperature on electrical transport of PLD grown ZnO thin films on Si substrates

    NASA Astrophysics Data System (ADS)

    Pandis, Ch.; Brilis, N.; Tsamakis, D.; Ali, H. A.; Krishnamoorthy, S.; Iliadis, A. A.

    2006-06-01

    Undoped ZnO thin films have been grown on (100) Si substrates by pulsed laser deposition. The effect of growth parameters such as temperature, O 2 partial pressure and laser fluence on the structural and electrical properties of the films has been investigated. It is shown that the well-known native n-type conductivity, attributed to the activation of hydrogenic donor states, exhibits a conversion from n-type to p-type when the O 2 partial pressure is reduced from 10 -4 to 10 -7 Torr at growth temperatures lower than 400 °C. The p-type conductivity could be attributed to the dominant role of the acceptor Zn vacancies for ZnO films grown at very low O 2 pressures.

  10. Engineering future light emitting diodes and photovoltaics with inexpensive materials: Integrating ZnO and Si into GaN-based devices

    NASA Astrophysics Data System (ADS)

    Bayram, C.; Shiu, K. T.; Zhu, Y.; Cheng, C. W.; Sadana, D. K.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Zhang, Y.; Gautier, S.; Cho, C.-Y.; Cicek, E.; Vashaei, Z.; McClintock, R.; Razeghi, M.

    2013-03-01

    Indium Gallium Nitride (InGaN) based PV have the best fit to the solar spectrum of any alloy system and emerging LED lighting based on InGaN technology and has the potential to reduce energy consumption by nearly one half while enabling significant carbon emission reduction. However, getting the maximum benefit from GaN diode -based PV and LEDs will require wide-scale adoption. A key bottleneck for this is the device cost, which is currently dominated by the substrate (i.e. sapphire) and the epitaxy (i.e. GaN). This work investigates two schemes for reducing such costs. First, we investigated the integration of Zinc Oxide (ZnO) in InGaN-based diodes. (Successful growth of GaN on ZnO template layers (on sapphire) was illustrated. These templates can then be used as sacrificial release layers for chemical lift-off. Such an approach provides an alternative to laser lift-off for the transfer of GaN to substrates with a superior cost-performance profile, plus an added advantage of reclaiming the expensive single-crystal sapphire. It was also illustrated that substitution of low temperature n-type ZnO for n-GaN layers can combat indium leakage from InGaN quantum well active layers in inverted p-n junction structures. The ZnO overlayers can also double as transparent contacts with a nanostructured surface which enhances light in/out coupling. Thus ZnO was confirmed to be an effective GaN substitute which offers added flexibility in device design and can be used in order to simultaneously reduce the epitaxial cost and boost the device performance. Second, we investigated the use of GaN templates on patterned Silicon (100) substrates for reduced substrate cost LED applications. Controlled local metal organic chemical vapor deposition epitaxy of cubic phase GaN with on-axis Si(100) substrates was illustrated. Scanning electron microscopy and transmission electron microscopy techniques were used to investigate uniformity and examine the defect structure in the GaN. Our

  11. Methods for making thin layers of crystalline materials

    DOEpatents

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  12. Performance study of thin epitaxial silicon PIN detectors for thermal neutron measurements with reduced γ sensitivity

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Desai, Shraddha; Kumar, Arvind; Topkar, Anita

    2018-05-01

    A novel approach of using thin epitaxial silicon PIN detectors for thermal neutron measurements with reduced γ sensitivity has been presented. Monte Carlo simulations showed that there is a significant reduction in the gamma sensitivity for thin detectors with the thickness of 10- 25 μm compared to a detector of thickness of 300 μm. Epitaxial PIN silicon detectors with the thickness of 10 μm, 15 μm and 25 μm were fabricated using a custom process. The detectors exhibited low leakage currents of a few nano-amperes. The gamma sensitivity of the detectors was experimentally studied using a 33 μCi, 662 keV, 137Cs source. Considering the count rates, compared to a 300 μm thick detector, the gamma sensitivity of the 10 μm, 15 μm and 25 μm thick detectors was reduced by factors of 1874, 187 and 18 respectively. The detector performance for thermal neutrons was subsequently investigated with a thermal neutron beam using an enriched 10B film as a neutron converter layer. The thermal neutron spectra for all three detectors exhibited three distinct regions corresponding to the 4He and 7Li charge products released in the 10B-n reaction. With a 10B converter, the count rates were 1466 cps, 3170 cps and 2980 cps for the detectors of thicknesses of 10 μm, 25 μm and 300 μm respectively. The thermal neutron response of thin detectors with 10 μm and 25 μm thickness showed significant reduction in the gamma sensitivity compared to that observed for the 300 μm thick detector. Considering the total count rate obtained for thermal neutrons with a 10B converter film, the count rate without the converter layer were about 4%, 7% and 36% for detectors with thicknesses of 10 μm, 25 μm and 300 μm respectively. The detector with 10 μm thickness showed negligible gamma sensitivity of 4 cps, but higher electronic noise and reduced pulse heights. The detector with 25 μm thickness demonstrated the best performance with respect to electronic noise, thermal neutron response and

  13. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  14. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    PubMed

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photo-induced self-cleaning and sterilizing activity of Sm3+ doped ZnO nanomaterials.

    PubMed

    Saif, M; Hafez, H; Nabeel, A I

    2013-01-01

    Highly active samarium doped zinc oxide self-cleaning and biocidal surfaces (x mol% Sm(3+)/ZnO where x=0, 1, 2 and 4 mol%) with crystalline porous structures were synthesized by hydrothermal method. Sm(3+)/ZnO thin films were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopic (EDS), UV-visible diffuse reflectance and fluorescence (FL) spectroscopy. The combination between doping and hydrothermal treatments significantly altered the morphology of ZnO into rod and plate-like nanoshapes structure and enhanced its absorption and emission of ultraviolet radiation. The photo-activity in term of quantitative determination of the active oxidative species (()OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results showed that, the hydrothermally treated 2.0 mol% Sm(3+)/ZnO film (S2) is the highly active one. The optical, structural, morphology and photo-activity properties of the highly active thin film (S2) make it promising surface for self-cleaning and sterilizing applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  17. Structural, morphological and optical studies of ripple-structured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Navin, Kumar; Kurchania, Rajnish

    2015-11-01

    Ripple-structured ZnO thin films were prepared on Si (100) substrate by sol-gel spin-coating method with different heating rates during preheating process and finally sintered at 500 °C for 2 h in ambient condition. The structural, morphological and photoluminescence (PL) properties of the nanostructured films were analyzed by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and PL spectroscopy. XRD analysis revealed that films have hexagonal wurtzite structure and texture coefficient increases along (002) plane with preheating rate. The faster heating rate produced higher crystallization and larger average crystallite size. The AFM and SEM images indicate that all the films have uniformly distributed ripple structure with skeletal branches. The number of ripples increases, while the rms roughness, amplitude and correlation length of the ripple structure decrease with preheating rates. The PL spectra show the presence of different defects in the structure. The ultraviolet emission improved with the heating rate which indicates its better crystallinity.

  18. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  19. Effect of sintering on optical, structural and photoluminescence properties of ZnO thin films prepared by sol-gel process.

    PubMed

    Vishwas, M; Narasimha Rao, K; Arjuna Gowda, K V; Chakradhar, R P S

    2010-09-15

    Zinc oxide (ZnO) thin films have been deposited on glass substrates via sol-gel technique using zinc acetate dihydrate as precursor by spin coating of the sol at 2000 rpm. Effects of annealing temperature on optical, structural and photo luminescence properties of the deposited ZnO films have been investigated. The phase transition from amorphous to polycrystalline hexagonal wurtzite structure was observed at an annealing temperature of 400 degrees C. An average transmittance of 87% in the visible region has been obtained at room temperature. The optical transmittance has slightly increased with increase of annealing temperature. The band gap energy was estimated by Tauc's method and found to be 3.22 eV at room temperature. The optical band gap energy has decreased with increasing annealing temperature. The photoluminescence (PL) intensity increased with annealing temperature up to 200 degrees C and decreased at 300 degrees C. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Growth and interface properties of Au Schottky contact on ZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Asghar, M.; Mahmood, K.; Malik, Faisal; Hasan, M. A.

    2013-06-01

    In this paper, we have discussed the growth of ZnO by molecular beam epitaxy (MBE) and interface properties of Au Schottky contacts on grown sample. After the verification of structure and surface properties by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM), respectively, Au metal contact was fabricated by e-beam evaporation to study contact properties. The high value of ideality factor (2.15) and barrier height (0.61 eV) at room temperature obtained by current-voltage (I-V) characteristics suggested the presence of interface states between metal and semiconductor. To confirm this observation we carried out frequency dependent capacitance-voltage (C-V) and conductance-voltage (G-V) demonstrated that the capacitance of diode decreased with increasing frequency. The reason of this behavior is related with density of interface states, series resistance and image force lowering. The C-2-V plot drawn to calculate the carrier concentration and barrier height with values 1.4×1016 cm-3 and 0.92 eV respectively. Again, high value of barrier height obtained from C-V as compared to the value obtained from I-V measurements revealed the presence of interface states. The density of these interface states (Dit) was calculated by well known Hill-Coleman method. The calculated value of Dit at 1 MHz frequency was 2×1012 eV-1 cm-2. The plot between interface states and frequency was also drawn which demonstrated that density of interface states had inverse proportion with measuring frequency.

  1. Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy

    DOE PAGES

    A. T. Bollinger; Wu, J.; Bozovic, I.

    2016-03-15

    In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.

  2. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  3. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate

    PubMed Central

    2013-01-01

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090

  4. Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.

    PubMed

    Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao

    2013-02-28

    Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.

  5. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  6. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  7. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  8. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun

    2016-12-01

    For epitaxial films, a critical thickness (t c) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO 3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO 3/SrRuO 3/SrTiO 3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO 3 film was resolved into a strained layer with an extremely low piezoelectric coefficientmore » of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.« less

  9. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    PubMed Central

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-01-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103

  10. Effect of growth parameters on crystallinity and properties of ZnO films grown by plasma assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Losurdo, M.; Giangregorio, M. M.; Sacchetti, A.; Capezzuto, P.; Bruno, G.; Malandrino, G.; Fragalà, I. L.

    2007-07-01

    Thin films of ZnO have been grown by plasma assisted metal-organic chemical vapour deposition (PA-MOCVD) using a 13.56 MHz O 2 plasma and the Zn(TTA)•tmed (HTTA=2-thenoyltrifluoroacetone, TMED=N,N,N',N'-tetramethylethylendiamine) precursor. The effects of growth parameters such as the plasma activation, the substrate, the surface temperature, and the ratio of fluxes of precursors on the structure, morphology, and optical and electrical properties of ZnO thin films have been studied. Under a very low plasma power of 20 W, c-axis oriented hexagonal ZnO thin films are grown on hexagonal sapphire (0001), cubic Si(001) and amorphous quartz substrates. The substrate temperature mainly controls grain size.

  11. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    NASA Astrophysics Data System (ADS)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  12. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  13. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  14. Mediator-free interaction of glucose oxidase, as model enzyme for immobilization, with Al-doped and undoped ZnO thin films laser-deposited on polycarbonate supports.

    PubMed

    V T K P, Fidal; Inguva, Saikumar; Krishnamurthy, Satheesh; Marsili, Enrico; Mosnier, Jean-Paul; T S, Chandra

    2017-01-01

    Al doped and undoped ZnO thin films were deposited by pulsed-laser deposition on polycarbonate sheets. The films were characterized by optical transmission, Hall effect measurement, XRD and SEM. Optical transmission and surface reflectometry studies showed good transparency with thicknesses ∼100nm and surface roughness of 10nm. Hall effect measurements showed that the sheet carrier concentration was -1.44×10 15 cm -2 for AZO and -6×10 14 cm -2 for ZnO. The films were then modified by drop-casting glucose oxidase (GOx) without the use of any mediators. Higher protein concentration was observed on ZnO as compared to AZO with higher specific activity for ZnO (0.042Umg -1 ) compared to AZO (0.032Umg -1 ), and was in agreement with cyclic voltemmetry (CV). X-ray photoelectron spectroscopy (XPS) suggested that the protein was bound by dipole interactions between AZO lattice oxygen and the amino group of the enzyme. Chronoamperometry showed sensitivity of 5.5μAmM -1 cm -2 towards glucose for GOx/AZO and 2.2μAmM -1 cm -2 for GOx/ZnO. The limit of detection (LoD) was 167μM of glucose for GOx/AZO, as compared to 360μM for GOx/ZnO. The linearity was 0.28-28mM for GOx/AZO whereas it was 0.6-28mM for GOx/ZnO with a response time of 10s. Possibly due to higher enzyme loading, the decrease of impedance in presence of glucose was larger for GOx/ZnO as compared to GOx/AZO in electrochemical impedance spectroscopy (EIS). Analyses with clinical blood serum samples showed that the systems had good reproducibility and accuracy. The characteristics of novel ZnO and AZO thin films with GOx as a model enzyme, should prove useful for the future fabrication of inexpensive, highly sensitive, disposable electrochemical biosensors for high throughput diagnostics. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films

    DOE PAGES

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...

    2016-09-12

    Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less

  16. Nanostructured hybrid ZnO thin films for energy conversion

    PubMed Central

    2011-01-01

    We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Despite a higher absorption coefficient of TS-CuPc than EoY, in ZnO/EoY hybrid films, the excited photoelectrons between the EoY levels can be extracted through ZnO, and the porosity of ZnO/EoY can also be controlled. PMID:21711909

  17. Epitaxial effects in thin films of high-Tc cuprates with the K2NiF4 structure

    NASA Astrophysics Data System (ADS)

    Naito, Michio; Sato, Hisashi; Tsukada, Akio; Yamamoto, Hideki

    2018-03-01

    La2-xSrxCuO4 (LSCO) and La2-xBaxCuO4 (LBCO) have been recognized as the archetype materials of "hole-doped" high-Tc superconductors. Their crystal structures are relatively simple with a small number of constituent cation elements. In addition, the doping level can be varied by the chemical substitution over a wide range enough to obtain the full spectrum of doping-dependent electronic and magnetic properties. These attractive features have dedicated many researchers to thin-film growth of LSCO and LBCO. The critical temperature (Tc) of LSCO and LBCO is sensitive to strain as manifested by a positive pressure coefficient of Tc in bulk samples. In general, films are strained if they are grown on lattice-mismatched substrates (epitaxial strain). Early attempts (before 1997) at the growth of LSCO and LBCO films resulted in depressed Tc below 30 K as they were grown on a commonly used SrTiO3 substrate (in-plane lattice parameter asub = 3.905 Å): the in-plane lattice parameters of LSCO and LBCO are ≤3.80 Å, and hence tensile epitaxial strain is introduced. The situation was changed by the use of LaSrAlO4 substrates with a slightly shorter in-plane lattice constant (asub = 3.756 Å). On LaSrAlO4 substrates, the Tc reaches 45 K in La1.85Sr0.15CuO4, 47 K in La1.85Ba0.15CuO4, and 56 K in ozone-oxidized La2CuO4+δ films, substantially higher than the Tc's of the bulk compounds. The Tc increase in La1.85Sr0.15CuO4 films on LaSrAlO4 and decrease on SrTiO3 are semi-quantitatively in accord with the phenomenological estimations based on the anisotropic strain coefficients of Tc (dTc/dεi). In this review article, we describe the growth and properties of films of cuprates having the K2NiF4 structure, mainly focusing on the increase/decrease of Tc by epitaxial strain and quasi-stable phase formation by epitaxial stabilization. We further extract the structural and/or physical parameters controlling Tc toward microscopic understanding of the variation of Tc by epitaxial strain.

  18. Influence of the growth parameters on the electronic and magnetic properties of La0.67Sr0.33MnO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Annese, E.; Mori, T. J. A.; Schio, P.; Rache Salles, B.; Cezar, J. C.

    2018-04-01

    The implementation of La0.67Sr0.33MnO3 thin films in multilayered structures in organic and inorganic spintronics devices requires the optimization of their electronic and magnetic properties. In this work we report the structural, morphological, electronic and magnetic characterizations of La0.67Sr0.33MnO3 epitaxial thin films on SrTiO3 substrates, grown by pulsed laser deposition under different growing conditions. We show that the fluence of laser shots and in situ post-annealing conditions are important parameters to control the tetragonality (c/a) of the thin films. The distortion of the structure has a remarkable impact on both surface and bulk magnetism, allowing the tunability of the materials properties for use in different applications.

  19. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  20. Defect-induced magnetic order in pure ZnO films

    NASA Astrophysics Data System (ADS)

    Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.

    2009-07-01

    We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.

  1. Enhanced ZnO Thin-Film Transistor Performance Using Bilayer Gate Dielectrics.

    PubMed

    Alshammari, Fwzah H; Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-07

    We report ZnO TFTs using Al2O3/Ta2O5 bilayer gate dielectrics grown by atomic layer deposition. The saturation mobility of single layer Ta2O5 dielectric TFT was 0.1 cm(2) V(-1) s(-1), but increased to 13.3 cm(2) V(-1) s(-1) using Al2O3/Ta2O5 bilayer dielectric with significantly lower leakage current and hysteresis. We show that point defects present in ZnO film, particularly VZn, are the main reason for the poor TFT performance with single layer dielectric, although interfacial roughness scattering effects cannot be ruled out. Our approach combines the high dielectric constant of Ta2O5 and the excellent Al2O3/ZnO interface quality, resulting in improved device performance.

  2. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical

  3. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  4. GaN/NbN epitaxial semiconductor/superconductor heterostructures.

    PubMed

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D Scott; Nepal, Neeraj; Downey, Brian P; Muller, David A; Xing, Huili G; Meyer, David J; Jena, Debdeep

    2018-03-07

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors-silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor-an electronic gain element-to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance-a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  5. Adhesion Measurements of Epitaxially Lifted MBE-Grown ZnSe

    NASA Astrophysics Data System (ADS)

    Mavridi, N.; Zhu, J.; Eldose, N. M.; Prior, K. A.; Moug, R. T.

    2018-05-01

    ZnSe layers grown by molecular beam epitaxy (MBE), after processing by epitaxial lift-off, have been analyzed using fracture mechanics and thin-film interference to determine their adhesion properties on two different substrates, viz. ZnSe and glass, yielding adhesion energy of 270 ± 60 mJ m-2 and 34 ± 4 mJ m-2, respectively. These values are considerably larger than if only van der Waals forces were present and imply that adhesion arises from chemical bonding.

  6. Ferroelectric switching in epitaxial PbZr0.2Ti0.8O3/ZnO/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Salev, Pavel; Grigoriev, Alexei

    As a wide-bandgap semiconductor, ZnO has gained substantial interest due to its favorable properties including high electron mobility, strong room-temperature luminescence, etc. The main obstacle of its application is the lack of reproducible and low-resistivity p-type ZnO. P-type doping of ZnO through the interface charge injection, which can be achieved by the polarization switching of ferroelectric films, is a tempting solution. We explored ferroelectric switching behavior of PbZr0.2Ti0.8O3/ZnO/GaN heterostructures epitaxially grown on Sapphire substrates by RF sputtering. The electrical measurements of Pt/PbZr0.2Ti0.8O3/ZnO/GaN ferroelectric-semiconductor capacitors revealed unusual behavior that is a combination of polarization switching and a diode I-V characteristics.

  7. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  8. Influence of baking method and baking temperature on the optical properties of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Zi-Neng; Chan, Kah-Yoong

    In this work, sol-gel spin coating technique was utilised to coat ZnO thin films on glass substrates. During the intermediate 3 minutes baking process, either hotplate or convection oven was employed to bake the samples. The temperature for the baking process was varied from 150°C to 300°C for both instruments. Avantes Optical Spectrophotometer was used to characterise the optical property. The optical transmittances of hotplate-baked and oven-baked samples showed different trends with increasing baking temperatures, ranging from below 50% transmittance to over 90% transmittance in the visible range of wavelength. The difference in baking mechanisms using hotplate and convection ovenmore » will be discussed in this paper.« less

  9. Influence of baking method and baking temperature on the optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Ng, Zi-Neng; Chan, Kah-Yoong

    2015-04-01

    In this work, sol-gel spin coating technique was utilised to coat ZnO thin films on glass substrates. During the intermediate 3 minutes baking process, either hotplate or convection oven was employed to bake the samples. The temperature for the baking process was varied from 150°C to 300°C for both instruments. Avantes Optical Spectrophotometer was used to characterise the optical property. The optical transmittances of hotplate-baked and oven-baked samples showed different trends with increasing baking temperatures, ranging from below 50% transmittance to over 90% transmittance in the visible range of wavelength. The difference in baking mechanisms using hotplate and convection oven will be discussed in this paper.

  10. Suppression of spin-state transition in epitaxially strained LaCoO3

    NASA Astrophysics Data System (ADS)

    Pinta, C.; Fuchs, D.; Merz, M.; Wissinger, M.; Arac, E.; v. Löhneysen, H.; Samartsev, A.; Nagel, P.; Schuppler, S.

    2008-11-01

    Epitaxial thin films of LaCoO3 (e-LCO) exhibit ferromagnetic order with a transition temperature TC=85K while polycrystalline thin LaCoO3 films (p-LCO) remain paramagnetic. The temperature-dependent spin-state structure for both e-LCO and p-LCO was studied by x-ray absorption spectroscopy at the CoL2,3 and OK edges. Considerable spectral redistributions over temperature are observed for p-LCO . The spectra for e-LCO , on the other hand, do not show any significant changes for temperatures between 30 and 450 K at both edges, indicating that the spin state remains constant and that the epitaxial strain inhibits any population of the low-spin (S=0) state with decreasing temperature. This observation identifies an important prerequisite for ferromagnetism in e-LCO thin films.

  11. Identification of acoustic waves in ZnO materials by Brillouin light scattering for SAW device applications

    NASA Astrophysics Data System (ADS)

    Zerdali, M.; Bechiri, F.; Hamzaoui, S.; Teherani, F. H.; Rogers, D. J.; Sandana, V. E.; Bove, P.; Djemia, P.; Roussigné, Y.

    2017-03-01

    Brillouin light scattering (BLS) was conducted on melt-grown ZnO bulk crystals and ZnO thin films grown by pulsed laser deposition. The bulk ZnO crystals presented both longitudinal and transverse bulk acoustic waves. Theoretical calculations agreed well with there being one piezoelectric longitudinal branch and two transverse branches. BLS measurements conducted on ZnO thin films also revealed Rayleigh surface acoustic waves (R-SAW) guided by only the surface of the layer and Sezawa modes, guided by the film thickness. Measurements were conducted for three incidence angles in order to investigate different SAW wave numbers. Higher frequency features were identified as being related to a new class of guided longitudinal (LG) SAW modes which are not usually detected for ZnO thin films. The LG-SAW modes were observed for two incidence angles (θ=45° and 55°) corresponding to frequencies of 17.88 and 20.75 GHz, respectively. BLS measurements enable us to estimate the LG-SAW velocity as 6500 m/s. This value is three times higher than that of the currently used R-SAW. Theoretical simulations were coherent with the presence of LG modes in the ZnO layers. Such LG-SAW modes are promising for the development of novel, higher-speed SAW devices operating in the GHz-band and which could be readily incorporated in Si-based integrated circuitry.

  12. Growth of epitaxial orthorhombic YO{sub 1.5}-substituted HfO{sub 2} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori

    YO{sub 1.5}-substituted HfO{sub 2} thin films with various substitution amounts were grown on (100) YSZ substrates by the pulsed laser deposition method directly from the vapor phase. The epitaxial growth of film with different YO{sub 1.5} amounts was confirmed by the X-ray diffraction method. Wide-area reciprocal lattice mapping measurements were performed to clarify the crystal symmetry of films. The formed phases changed from low-symmetry monoclinic baddeleyite to high-symmetry tetragonal/cubic fluorite phases through an orthorhombic phase as the YO{sub 1.5} amount increased from 0 to 0.15. The additional annular bright-field scanning transmission electron microscopy indicates that the orthorhombic phase has polarmore » structure. This means that the direct growth by vapor is of polar orthorhombic HfO{sub 2}-based film. Moreover, high-temperature X-ray diffraction measurements showed that the film with a YO{sub 1.5} amount of 0.07 with orthorhombic structure at room temperature only exhibited a structural phase transition to tetragonal phase above 450 °C. This temperature is much higher than the reported maximum temperature of 200 °C to obtain ferroelectricity as well as the expected temperature for real device application. The growth of epitaxial orthorhombic HfO{sub 2}-based film helps clarify the nature of ferroelectricity in HfO{sub 2}-based films (186 words/200 words)« less

  13. Pulsed—Laser Deposition Of Oxide Thin Films And Laser—Induced Breakdown Spectroscopy Of Multi—Element Materials

    NASA Astrophysics Data System (ADS)

    Pedarnig, Johannes D.

    2010-10-01

    New results of the Linz group on pulsed—laser deposition (PLD) of oxide thin films and on laser—induced breakdown spectroscopy (LIBS) of multi-element materials are reported. High-Tc superconducting (HTS) films with enhanced critical current density Jc are produced by laser ablation of novel nano-composite ceramic targets. The targets contain insulating nano-particles that are embedded into the YBa2Cu3O7 matrix. Epitaxial double-layers of lithium-doped and aluminum-doped ZnO are deposited on r-cut sapphire substrates. Acoustic over-modes in the GHz range are excited by piezoelectric actuation of layers. Smooth films of rare-earth doped glass are produced by F2—laser ablation. The transport properties of HTS thin films are modified by light—ion irradiation. Thin film nano—patterning is achieved by masked ion beam irradiation. LIBS is employed to analyze trace elements in industrial iron oxide powder and reference polymer materials. Various trace elements of ppm concentration are measured in the UV/VIS and vacuum-UV spectral range. Quantitative LIBS analysis of major components in oxide materials is performed by calibration-free methods.

  14. Selective epitaxy using the gild process

    DOEpatents

    Weiner, Kurt H.

    1992-01-01

    The present invention comprises a method of selective epitaxy on a semiconductor substrate. The present invention provides a method of selectively forming high quality, thin GeSi layers in a silicon circuit, and a method for fabricating smaller semiconductor chips with a greater yield (more error free chips) at a lower cost. The method comprises forming an upper layer over a substrate, and depositing a reflectivity mask which is then removed over selected sections. Using a laser to melt the unmasked sections of the upper layer, the semiconductor material in the upper layer is heated and diffused into the substrate semiconductor material. By varying the amount of laser radiation, the epitaxial layer is formed to a controlled depth which may be very thin. When cooled, a single crystal epitaxial layer is formed over the patterned substrate. The present invention provides the ability to selectively grow layers of mixed semiconductors over patterned substrates such as a layer of Ge.sub.x Si.sub.1-x grown over silicon. Such a process may be used to manufacture small transistors that have a narrow base, heavy doping, and high gain. The narrowness allows a faster transistor, and the heavy doping reduces the resistance of the narrow layer. The process does not require high temperature annealing; therefore materials such as aluminum can be used. Furthermore, the process may be used to fabricate diodes that have a high reverse breakdown voltage and a low reverse leakage current.

  15. Epitaxial nickel disilicide with low resistivity and excellent reliability.

    PubMed

    Hsin, Cheng-Lun; Deng, Shiu-Sheng

    2016-02-12

    Ultra-thin epitaxial NiSi2 was formed, and its structure was examined by electron microscopy and x-ray diffraction. Compared with previous reports, the measured resistivity of the epitaxial NiSi2 was unprecedentedly low, reaching 7 μΩ cm in the experimental results and up to 14.93 μΩ cm after modification. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, was 1.5 times better than that of the conventional polycrystalline counterpart. Black's equation and the measured mean-time-to-failure (MTTF) were used to obtain the reliability characteristics of epitaxial and poly-NiSi2. Confidence intervals at 95% for each MTTF confirmed the single failure mode. The electromigration phenomenon was observed to be the failure mechanism. Our results provide evidence that epitaxial NiSi2 is a promising contact material for future electronics.

  16. Epitaxial nickel disilicide with low resistivity and excellent reliability

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Lun; Deng, Shiu-Sheng

    2016-02-01

    Ultra-thin epitaxial NiSi2 was formed, and its structure was examined by electron microscopy and x-ray diffraction. Compared with previous reports, the measured resistivity of the epitaxial NiSi2 was unprecedentedly low, reaching 7 μΩ cm in the experimental results and up to 14.93 μΩ cm after modification. The reliability, which was investigated under different temperatures and current densities to understand its electronic characteristics, was 1.5 times better than that of the conventional polycrystalline counterpart. Black’s equation and the measured mean-time-to-failure (MTTF) were used to obtain the reliability characteristics of epitaxial and poly-NiSi2. Confidence intervals at 95% for each MTTF confirmed the single failure mode. The electromigration phenomenon was observed to be the failure mechanism. Our results provide evidence that epitaxial NiSi2 is a promising contact material for future electronics.

  17. Nanoscale calibration of n-type ZnO staircase structures by scanning capacitance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L., E-mail: lin.wang@insa-lyon.fr; Laurent, J.; Brémond, G.

    2015-11-09

    Cross-sectional scanning capacitance microscopy (SCM) was performed on n-type ZnO multi-layer structures homoepitaxially grown by molecular beam epitaxy method. Highly contrasted SCM signals were obtained between the ZnO layers with different Ga densities. Through comparison with dopant depth profiles from secondary ion mass spectroscopy measurement, it is demonstrated that SCM is able to distinguish carrier concentrations at all levels of the samples (from 2 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3}). The good agreement of the results from the two techniques indicates that SCM can be a useful tool for two dimensional carrier profiling at nanoscale for ZnO nanostructure development. Asmore » an example, residual carrier concentration inside the non-intentionally doped buffer layer was estimated to be around 2 × 10{sup 16 }cm{sup −3} through calibration analysis.« less

  18. Investigation of photocalalytic activity of ZnO prepared by spray pyrolis with various precursors

    NASA Astrophysics Data System (ADS)

    Bourfaa, F.; Lamri Zeggar, M.; A, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X- ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV-visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

  19. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  20. Ultraviolet photodetectors based on ZnO sheets: The effect of sheet size on photoresponse properties

    NASA Astrophysics Data System (ADS)

    Ghasempour Ardakani, Abbas; Pazoki, Meysam; Mahdavi, Seyed Mohammad; Bahrampour, Ali Reza; Taghavinia, Nima

    2012-05-01

    In this work, ultraviolet photodetectors based on electrodeposited ZnO sheet thin films were fabricated on a glass substrate. Before electrodeposition, a thin buffer layer of ZnO was deposited on the glass by pulsed laser deposition method. This layer not only acted as a nucleation site for ZnO sheet growth, but also made it possible to use cheap glass substrate instead of conventional fluorine-doped tin oxide (FTO) substrate. Our results showed that photoresponse properties of the photodetectors strongly depend on the sheet sizes. The smaller sheets exhibited enhanced photosensitivity, shortened fall times and decreased gain compared to larger ones. We showed that photodetectors based on ZnO sheets have a faster response than ones based on polycrystalline films. It was also shown that even less response time could be obtained by using comb-like electrodes instead of two-electrode.