Science.gov

Sample records for zno hollow spheres

  1. Catalytic, hollow, refractory spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1987-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  2. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  3. Catalytic hollow spheres

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1986-01-01

    The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  4. Process for making hollow carbon spheres

    DOEpatents

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  5. Method for producing small hollow spheres

    DOEpatents

    Hendricks, C.D.

    1979-01-09

    Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.

  6. Method for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D. [Livermore, CA

    1979-01-09

    Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  7. 3-Dimensional Colloidal Crystals From Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.

    2000-03-01

    We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.

  8. TEACHING PHYSICS: Biking around a hollow sphere

    NASA Astrophysics Data System (ADS)

    Mak, Se-yuen; Yip, Din-yan

    1999-11-01

    The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.

  9. Catalytic, hollow, refractory spheres, conversions with them

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)

    1989-01-01

    Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.

  10. Mesoporous hollow spheres from soap bubbling.

    PubMed

    Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong

    2012-02-01

    The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Improved method for producing small hollow spheres

    DOEpatents

    Rosencwaig, A.; Koo, J.C.; Dressler, J.L.

    An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.

  12. Method for producing small hollow spheres

    DOEpatents

    Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.

    1981-01-01

    A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.

  13. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    NASA Technical Reports Server (NTRS)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  14. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  15. Fe2O3 hollow sphere nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming

    2018-02-01

    Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.

  16. Method and apparatus for producing small hollow spheres

    DOEpatents

    Hendricks, Charles D.

    1979-01-01

    Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.

  17. Nanoscale Hollow Spheres: Microemulsion-Based Synthesis, Structural Characterization and Container-Type Functionality

    PubMed Central

    Gröger, Henriette; Kind, Christian; Leidinger, Peter; Roming, Marcus; Feldmann, Claus

    2010-01-01

    A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples. PMID:28883333

  18. Magnetic and Optical Properties of Submicron-Size Hollow Spheres

    PubMed Central

    Ye, Quan-Lin; Yoshikawa, Hirofumi; Awaga, Kunio

    2010-01-01

    Magnetic hollow spheres with a controlled diameter and shell thickness have emerged as an important class of magnetic nanomaterials. The confined hollow geometry and pronouncedly curved surfaces induce unique physical properties different from those of flat thin films and solid counterparts. In this paper, we focus on recent progress on submicron-size spherical hollow magnets (e.g., cobalt- and iron-based materials), and discuss the effects of the hollow shape and the submicron size on magnetic and optical properties.

  19. Hollow carbon spheres in microwaves: Bio inspired absorbing coating

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.

    2016-01-01

    The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.

  20. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  1. Microwave-Assisted Solvothermal Synthesis of VO2 Hollow Spheres and Their Conversion into V2O5 Hollow Spheres with Improved Lithium Storage Capability.

    PubMed

    Pan, Jing; Zhong, Li; Li, Ming; Luo, Yuanyuan; Li, Guanghai

    2016-01-22

    Monodispersed hierarchically structured V2O5 hollow spheres were successfully obtained from orthorhombic VO2 hollow spheres, which are in turn synthesized by a simple template-free microwave-assisted solvothermal method. The structural evolution of VO2 hollow spheres has been studied and explained by a chemically induced self-transformation process. The reaction time and water content in the reaction solution have a great influence on the morphology and phase structure of the resulting products in the solvothermal reaction. The diameter of the VO2 hollow spheres can be regulated simply by changing vanadium ion content in the reaction solution. The VO2 hollow spheres can be transformed into V2O5 hollow spheres with nearly no morphological change by annealing in air. The nanorods composed of V2O5 hollow spheres have an average length of about 70 nm and width of about 19 nm. When used as a cathode material for lithium-ion batteries, the V2O5 hollow spheres display a diameter-dependent electrochemical performance, and the 440 nm hollow spheres show the highest specific discharge capacity of 377.5 mAhg(-1) at a current density of 50 mAg(-1) , and are better than the corresponding solid spheres and nanorod assemblies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices.

    PubMed

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  3. Hierarchical VOOH hollow spheres for symmetrical and asymmetrical supercapacitor devices

    NASA Astrophysics Data System (ADS)

    Jing, Xuyang; Wang, Cong; Feng, Wenjing; Xing, Na; Jiang, Hanmei; Lu, Xiangyu; Zhang, Yifu; Meng, Changgong

    2018-01-01

    Hierarchical VOOH hollow spheres with low crystallinity composed of nanoparticles were prepared by a facile and template-free method, which involved a precipitation of precursor microspheres in aqueous solution at room temperature and subsequent hydrothermal reaction. Quasi-solid-state symmetric and asymmetric supercapacitor (SSC and ASC) devices were fabricated using hierarchical VOOH hollow spheres as the electrodes, and the electrochemical properties of the VOOH//VOOH SSC device and the VOOH//AC ASC device were studied by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS). Results demonstrated that the electrochemical performance of the VOOH//AC ASC device was better than that of the VOOH//VOOH SSC device. After 3000 cycles, the specific capacitance of the VOOH//AC ASC device retains 83% of the initial capacitance, while the VOOH//VOOH SSC device retains only 7.7%. Findings in this work proved that hierarchical VOOH hollow spheres could be a promising candidate as an ideal electrode material for supercapacitor devices.

  4. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  5. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    PubMed

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  6. A novel approach for fabricating NiO hollow spheres for gas sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-03-01

    Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.

  7. Consolidation of metallic hollow spheres by electric sintering

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Tatarinov, A.; Lapkovsky, V.

    2017-07-01

    This paper considers peculiarities of the technology of production of structures from metallic hollow spheres (MHS) using magnetic fields and electric sintering. In these studies, the raw material was MHS obtained by burning of polystyrene balls coated by carbon steel. MHS had an outer diameter of 3-5 mm and a steel wall thickness of 70-120 microns. Pulsed current generators were used for electric sintering of MHS to obtain different spatial structures. Since MHS have small strength, the compressive pressure during sintering should be minimal. To improve the adhesion strength and reduce the required energy for sintering, hollow spheres were coated with copper by ion-plasma sputtering in vacuum. The coating thickness was 10-15 microns. The ferromagnetic properties of MHS allowed using of magnet fields for orientation of the spheres in the structures, as well as using of perforated tapes acting as orienting magnetic cores. Ultrasonic testing of MHS structures has been tried using through propagation of ultrasound in low kilohertz frequency range. Sensitivity of the propagation parameters to water filling of inter-spheres space and sintering temperature was demonstrated.

  8. Cobalt silicate hierarchical hollow spheres for lithium-ion batteries.

    PubMed

    Yang, Jun; Guo, Yuanyuan; Zhang, Yufei; Sun, Chencheng; Yan, Qingyu; Dong, Xiaochen

    2016-09-09

    In this paper, the synthesis of cobalt silicate novel hierarchical hollow spheres via a facile hydrothermal method is presented. With a unique hollow structure, the Co2SiO4 provides a large surface area, which can shorten the lithium ions diffusion length and effectively accommodate the volumetic variation during the lithiation/de-lithiation process. Serving as an anode material in lithium-ion battery application, the Co2SiO4 electrode demonstrates a high reversible specific capacity (first-cycle charge capacity of 948.6 mAh g(-1) at 100 mA g(-1)), a cycling durability (specific capacity of 791.4 mAh g(-1) after 100 cycles at 100 mA g(-1)), and a good rate capability (specific capacity of 349.4 mAh g(-1) at 10 A g(-1)). The results indicate that the cobalt silicate hierarchical hollow sphere holds the potential applications in energy storage electrodes.

  9. Chiral Structures of Thermoresponsive Soft Spheres in Hollow Cylinders

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew A.; Alsayed, Ahmed; Zhang, Zexin; Yodh, Arjun G.

    2009-03-01

    We experimentally observe the formation of closely packed crystalline structures in hollow cylinders. The structures have varying degrees of chiral order. The systems are created from aqueous suspensions of thermoresponsive N-isopropylacrylamide (NIPA) microgel particles packed in micron-diameter glass capillaries. We categorize these structures according to classifications used by Erickson for tubular packings of hard spheres [1]. By varying the temperature-tunable diameter of these particles, the system's volume fraction is changed, permitting observations of the resilience of these structures and their melting transitions. Melting of these thermal crystalline structures is observed. [1] R. O. Erickson, Science 181 (1973) 705-716.

  10. Theoretical prediction of low-density hexagonal ZnO hollow structures

    SciT

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  11. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit.

    PubMed

    Liu, Chang; Zhao, Liupeng; Wang, Boqun; Sun, Peng; Wang, Qingji; Gao, Yuan; Liang, Xishuang; Zhang, Tong; Lu, Geyu

    2017-06-01

    NiO/ZnO composites were synthesized by decorating numerous NiO nanoparticles on the surfaces of well dispersed ZnO hollow spheres using a facile solvothermal method. Various kinds of characterization methods were utilized to investigate the structures and morphologies of the hybrid materials. The results revealed that the NiO nanoparticles with a size of ∼10nm were successfully distributed on the surfaces of ZnO hollow spheres in a discrete manner. As expected, the NiO/ZnO composites demonstrated dramatic improvements in sensing performances compared with pure ZnO hollow spheres. For example, the response of NiO/ZnO composites to 100ppm acetone was ∼29.8, which was nearly 4.6 times higher than that of primary ZnO at 275°C, and the response/recovery time were 1/20s, respectively. Meanwhile, the detection limit could extend down to ppb level. The likely reason for the improved gas sensing properties was also proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres

    PubMed Central

    Chen, Fashen; Chen, Gen; Liu, Tao; Zhang, Ning; Liu, Xiaohe; Luo, Hongmei; Li, Junhui; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou

    2015-01-01

    Uniform gadolinium oxysulfate (Gd2O2SO4) hollow spheres were successfully fabricated by calcination of corresponding Gd-organic precursor obtained via a facile hydrothermal process. The Gd2O2SO4 hollow spheres have a mean diameter of approximately 550 nm and shell thickness in the range of 30–70 nm. The sizes and morphologies of as-prepared Gd2O2SO4 hollow spheres could be deliberately controlled by adjusting the experimental parameters. Eu-doped Gd2O2SO4 hollow spheres have also been prepared for the property modification and practical applications. The structure, morphology, and properties of as-prepared products were characterized by XRD, TEM, HRTEM, SEM and fluorescence spectrophotometer. Excited with ultraviolet (UV) pump laser, successful downconversion (DC) could be achieved for Eu-doped Gd2O2SO4 hollow spheres. PMID:26671661

  13. Dipolar magnetic interaction effects in 2D hexagonal array of cobalt hollow-spheres

    NASA Astrophysics Data System (ADS)

    Guerra, Y.; Peña-Garcia, R.; Padrón-Hernández, E.

    2018-04-01

    Planar arrangements of cobalt hollow-spheres were studied by means of micromagnetic simulation. The calculated coercivity values are in correspondence with the reported experimental data. Dipole energy effects are determinant and more significant if thickness decreases. We observed the formation of some vortex and onion configurations, solutions for individual hollow-sphere, even so there is predominance of non-homogeneous reversal. This confirms that solutions for individual spheres are not efficient in the analysis of arrays.

  14. Biomolecule-assisted construction of cadmium sulfide hollow spheres with structure-dependent photocatalytic activity.

    PubMed

    Wei, Chengzhen; Zang, Wenzhe; Yin, Jingzhou; Lu, Qingyi; Chen, Qun; Liu, Rongmei; Gao, Feng

    2013-02-25

    In this study, we report the synthesis of monodispersive solid and hollow CdS spheres with structure-dependent photocatalytic abilities for dye photodegradation. The monodispersive CdS nanospheres were constructed with the assistance of the soulcarboxymthyi chitosan biopolymer under hydrothermal conditions. The solid CdS spheres were corroded by ammonia to form hollow CdS nanospheres through a dissolution-reprecipitation mechanism. Their visible-light photocatalytic activities were investigated, and the results show that both the solid and the hollow CdS spheres have visible-light photocatalytic abilities for the photodegradation of dyes. The photocatalytic properties of the CdS spheres were demonstrated to be structure dependent. Although the nanoparticles comprising the hollow spheres have larger sizes than those comprising the solid spheres, the hollow CdS spheres have better photocatalytic performances than the solid CdS spheres, which can be attributed to the special hollow structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure.

    PubMed

    Dong, Wenyong; Cheng, Haixing; Yao, Yuan; Zhou, Yongfeng; Tong, Gangsheng; Yan, Deyue; Lai, Yijian; Li, Wei

    2011-01-04

    In this Article, we combine the characters of hyperbranched polymers and the concept of double-hydrophilic block copolymer (DHBC) to design a 3D crystal growth modifier, HPG-COOH. The novel modifier can efficiently control the crystallization of CaCO(3) from amorphous nanoparticles to vaterite hollow spheres by a nonclassical crystallization process. The obtained vaterite hollow spheres have a special puffy dandelion-like appearance; that is, the shell of the hollow spheres is constructed by platelet-like vaterite mesocrystals, perpendicular to the globe surface. The cross-section of the wall of a vaterite hollow sphere is similar to that of nacres in microstructure, in which platelet-like calcium carbonate mesocrystals pile up with one another. These results reveal the topology effect of the crystal growth modifier on biomineralization and the essential role of the nonclassical crystallization for constructing hierarchical microstructures.

  16. Shape-controlled synthesis and properties of dandelion-like manganese sulfide hollow spheres

    SciT

    Ma, Wei; State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083; Chen, Gen

    2012-09-15

    Graphical abstract: Dandelion-like MnS hollow spheres assembled with nanorods could be successfully synthesized in large quantities through a simple and convenient hydrothermal synthetic method under mild conditions using soluble hydrated manganese chloride as Mn source, L-cysteine as both a precipitator and complexing reagent. The dandelion-like MnS hollow spheres might have potential applications in microdevices and magnetic cells. Highlights: ► MnS hollow spheres assembled with nanorods could be synthesized. ► The morphologies and sizes of final products could be controlled. ► Possible formation mechanism of MnS hollow spheres is proposed. -- Abstract: Dandelion-like gamma-manganese (II) sulfide (MnS) hollow spheres assembled withmore » nanorods have been prepared via a hydrothermal process in the presence of L-cysteine and polyvinylpyrrolidone (PVP). L-cysteine was employed as not only sulfur source, but also coordinating reagent for the synthesis of dandelion-like MnS hollow spheres. The morphology, structure and properties of as-prepared products have been investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM) and photoluminescence spectra (PL). The probable formation mechanism of as-prepared MnS hollow spheres was discussed on the basis of the experimental results. This strategy may provide an effective method for the fabrication of other metal sulfides hollow spheres.« less

  17. Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot.

    PubMed

    Dash, Biraja C; Mahor, Sunil; Carroll, Oliver; Mathew, Asha; Wang, Wenxin; Woodhouse, Kimberly A; Pandit, Abhay

    2011-06-30

    Self-assembly driven processes can be utilized to produce a variety of nanostructures useful for various in vitro and in vivo applications. Characteristics such as size, stability, biocompatibility, high therapeutic loading and controlled delivery of these nanostructures are particularly crucial in relation to in vivo applications. In this study, we report the fabrication of tunable monodispersed elastin-like polypeptide (ELP) hollow spheres of 100, 300, 500 and 1000 nm by exploiting the self-assembly property and net positive charge of ELP. The microbial transglutaminase (mTGase) cross-linking provided robustness and stability to the hollow spheres while maintaining surface functional groups for further modifications. The resulting hollow spheres showed a higher loading efficiency of plasmid DNA (pDNA) by using polyplex (~70 μg pDNA/mg of hollow sphere) than that of self-assembled ELP particles and demonstrated controlled release triggered by protease and elastase. Moreover, polyplex-loaded hollow spheres showed better cell viability than polyplex alone and yielded higher luciferase expression by providing protection against endosomal degradation. Overall, the monodispersed, tunable hollow spheres with a capability of post-functionalization can provide an exciting new opportunity for use in a range of therapeutic and diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity

    NASA Astrophysics Data System (ADS)

    Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai

    2011-04-01

    Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.

  19. Method and apparatus for producing gas-filled hollow spheres. [target pellets for inertial confinement fusion

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1982-01-01

    A system for forming hollow spheres containing pressured gas is described which includes a cylinder device containing a molten solid material with a nozzle at its end. A second gas nozzle, lying slightly upstream from the tip of the first nozzle, is connected to a source that applies pressured filler gas that is to fill the hollow spheres. High pressure is applied to the molten metal, as by moving a piston within the cylinder device, to force the molten material out of the first nozzle. At the same time, pressured gas fills the center of the extruded hollow liquid pipe that breaks into hollow spheres. The environment outside the nozzles contains gas at a high pressure such as 100 atmospheres. Gas is supplied to the gas nozzle at a slightly higher pressure such as 101 atmospheres. The pressure applied to the molten material is at a still higher pressure such as 110 atmospheres.

  20. Self-assembly of silica nanoparticles into hollow spheres via a microwave-assisted aerosol process

    SciT

    Li, Shan; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164; Wang, Fei

    2016-02-15

    Highlights: • The silica hollow spheres were fabricated via a microwave-assisted aerosol process. • The formation of the hollow spheres was obtained through a one-step process. • The spheres indicated the remarkable sustained release of potassium persulfate. - Abstract: In this work, a simple and efficient strategy for fabrication of silica hollow spheres (SHSs) has been successfully introduced with a one-step microwave-assisted aerosol process using silica nanoparticles (SiO{sub 2}, 12–50 nm) and NH{sub 4}HCO{sub 3} as precursor materials. This approach combines the merits of microwave radiation and the aerosol technique. And the formation of SHSs is ascribed to solvent evaporationmore » and the as-generated gas from NH{sub 4}HCO{sub 3} decomposition in the microwave reactor. The morphology of the SHSs can be easily tuned by varying the residence time, amount of NH{sub 4}HCO{sub 3} and silica sources. The formation mechanism of SHSs was also investigated by structure analysis. In addition, the hollow spheres exhibited remarkable sustained release of potassium persulfate, by loading it into the porous structures. The results provide new sights into the fabrication of inorganic hollow spheres via a one-step process.« less

  1. Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.

    PubMed

    Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan

    2006-04-13

    We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.

  2. Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyan; Sun, Yan; Li, Chunsheng; Ci, Lijie

    2013-11-01

    In this paper, Cu3V2O8 hollow spheres have been successfully synthesized via a liquid precipitation method with colloidal carbon spheres as template followed by a subsequent heat treatment process. On the basis of XRD analysis, SEM observation, and TG-DSC analysis of the precursor and products, the formation mechanism of Cu3V2O8 hollow spheres was proposed. UV-vis diffuse reflectance spectra showed that the Cu3V2O8 hollow spheres exhibit strong absorption in a wide wavelength range from UV to visible light. The photocatalytic activity experiment indicated that the as-prepared Cu3V2O8 hollow spheres exhibited good photocatalytic activity in degradation of methyl orange (MO) under 150-W xenon arc lamp light irradiation. Furthermore, electrochemical measurements showed that the Cu3V2O8 hollow spheres exhibited high discharge capacity and excellent high-rate capability, indicating potential cathode candidates for primary lithium batteries used in long-term implantable cardiac defibrillators (ICDs).

  3. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction.

    PubMed

    Kang, Eun-Seok; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu

    2006-06-06

    Magnesium oxide hollow spheres without a template core were conveniently prepared by stabilized bubble formation in a hybrid solution containing a magnesium acetate precursor, thus avoiding the complicated preparation process using a template. The hollow sphere could be aligned along the radial striation by spin coating, and its diameter from a micrometer to submicrometer dimension could be easily modified by the solution composition. It was also possible to control the open or closed hollow sphere by changing the solvent. Thus, the produced magnesium oxide hollow sphere is envisioned to have applications in many areas such as medicine, analysis, optics, and so on.

  4. Novel one-step route for synthesizing CdS/polystyrene nanocomposite hollow spheres.

    PubMed

    Wu, Dazhen; Ge, Xuewu; Zhang, Zhicheng; Wang, Mozhen; Zhang, Songlin

    2004-06-22

    CdS/polystyrene nanocomposite hollow spheres with diameters between 240 and 500 nm were synthesized under ambient conditions by a novel microemulsion method in which the polymerization of styrene and the formation of CdS nanoparticles were initiated by gamma-irradiation. The product was characterized by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA), which show the walls of the hollow spheres are porous and composed of polystyrene containing homogeneously dispersed CdS nanoparticles. The quantum-confined effect of the CdS/polystyrene nanocomposite hollow spheres is confirmed by the ultraviolet-visible (UV-vis) and photoluminescent (PL) spectra. We propose that the walls of these nanocomposite hollow spheres originate from the simultaneous synthesis of polystyrene and CdS nanoparticles at the interface of microemulsion droplets. This novel method is expected to produce various inorganic/polymer nanocomposite hollow spheres with potential applications in the fields of materials science and biotechnology.

  5. Carbonaceous spheres—an unusual template for solid metal oxide mesoscale spheres: Application to ZnO spheres

    NASA Astrophysics Data System (ADS)

    Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana

    2013-06-01

    A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N2 adsorption-desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization.

  6. One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Zhang, Yue; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao

    2015-11-01

    Uniform-sized Fe3O4 hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe3O4 hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (Ms) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.

  7. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.

    PubMed

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-08-25

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.

  8. Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process

    PubMed Central

    Li, Fa-Liang; Zhang, Hai-Jun

    2017-01-01

    The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined. PMID:28841188

  9. Formation of metallic and metallic-glass hollow spheres and their solidification characteristics

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    Various metals and metallic glass systems have bene processed into hollow spheres with sizes ranging from 3 mm to 440 microns in diameter. The technique for the formation of the large hollow spheres, in general, is based on the fluid-dynamic instability of a hollow annular jet. A refined technique has also been developed for microshell formation, in which discrete bubbles are injected into the stream of the molten material and individually 'flushed' out at a frequency related to the Rayleigh jet instability. The surfaces of those spheres of all sizes exhibit a range of contrasting solidification behaviors and characteristics. Metal shells of varying materials, sizes, aspect ratios, sphericity and concentricity have many useful and novel applications.

  10. Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.

    PubMed

    Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue

    2016-04-18

    Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Graphitized hollow carbon spheres and yolk-structured carbon spheres fabricated by metal-catalyst-free chemical vapor deposition

    DOE PAGES

    Li, Xufan; Chi, Miaofang; Mahurin, Shannon Mark; ...

    2016-01-18

    Hard-sphere-templating method has been widely used to synthesize hollow carbon spheres (HCSs), in which the spheres were firstly coated with a carbon precursor, followed by carbonization and core removal. The obtained HCSs are generally amorphous or weakly graphitized (with the help of graphitization catalysts). In this work, we report on the fabrication of graphitized HCSs and yolk–shell Au@HCS nanostructures using a modified templating method, in which smooth, uniform graphene layers were grown on SiO 2 spheres or Au@SiO 2 nanoparticles via metal-catalyst-free chemical vapor deposition (CVD) of methane. Furthermore, our work not only provides a new method to fabricate high-quality,more » graphitized HCSs but also demonstrates a reliable approach to grow quality graphene on oxide surfaces using CVD without the presence of metal catalysts.« less

  12. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    PubMed

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  13. Nanotubes within transition metal silicate hollow spheres: Facile preparation and superior lithium storage performances

    SciT

    Zhang, Fan; An, Yongling; Zhai, Wei

    2015-10-15

    Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviationmore » in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.« less

  14. Colloidal synthesis of inorganic fullerene nanoparticles and hollow spheres of titanium disulfide.

    PubMed

    Prabakar, Sujay; Collins, Sean; Northover, Bryan; Tilley, Richard D

    2011-01-07

    The synthesis of inorganic fullerene (IF) nanoparticles and IF hollow spheres of titanium disulfide by a simple colloidal route is reported. The injection temperature of the titanium precursor into the solvent mixture was found to be important in controlling the morphology.

  15. Heterogeneous organocatalysis at work: functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst.

    PubMed

    Shi, Jiao Yi; Wang, Chang An; Li, Zhi Jun; Wang, Qiong; Zhang, Yuan; Wang, Wei

    2011-05-23

    We report a new method for the synthesis of hollow-structured phenylene-bridged periodic mesoporous organosilica (PMO) spheres with a uniform particle size of 100-200 nm using α-Fe(2)O(3) as a hard template. Based on this method, the hollow-structured phenylene PMO could be easily functionalized with MacMillan catalyst (H-PhPMO-Mac) by a co-condensation process and a "click chemistry" post-modification. The synthesized H-PhPMO-Mac catalyst has been found to exhibit high catalytic activity (98% yield, 81% enantiomeric excess (ee) for endo and 81% ee for exo) in asymmetric Diels-Alder reactions with water as solvent. The catalyst could be reused for at least seven runs without a significant loss of catalytic activity. Our results have also indicated that hollow-structured PMO spheres exhibit higher catalytic efficiency than solid (non-hollow) PMO spheres, and that catalysts prepared by the co-condensation process and "click chemistry" post-modification exhibit higher catalytic efficiency than those prepared by a grafting method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  17. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, Ran-Ran; Zhao, Dong-Lin; Bai, Li-Zhong; Yao, Ning-Na; Xu, Li

    2014-07-01

    The hollow graphene oxide spheres have been successfully fabricated from graphene oxide nanosheets utilizing a water-in-oil emulsion technique, which were prepared from natural flake graphite by oxidation and ultrasonic treatment. The hollow graphene oxide spheres were reduced to hollow graphene spheres at 500°C for 3 h under an atmosphere of Ar(95%)/H2(5%). The first reversible specific capacity of the hollow graphene spheres was as high as 903 mAh g-1 at a current density of 50 mAh g-1. Even at a high current density of 500 mAh g-1, the reversible specific capacity remained at 502 mAh g-1. After 60 cycles, the reversible capacity was still kept at 652 mAh g-1 at the current density of 50 mAh g-1. These results indicate that the prepared hollow graphene spheres possess excellent electrochemical performances for lithium storage. The high rate performance of hollow graphene spheres thanks to the hollow structure, thin and porous shells consisting of graphene sheets.

  18. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties.

    PubMed

    Mezzavilla, Stefano; Baldizzone, Claudio; Mayrhofer, Karl J J; Schüth, Ferdi

    2015-06-17

    A versatile synthetic procedure to prepare hollow mesoporous carbon spheres (HMCS) is presented here. This approach is based on the deposition of a homogeneous hybrid polymer/silica composite shell on the outer surface of silica spheres through the surfactant-assisted simultaneous polycondensation of silica and polymer precursors in a colloidal suspension. Such composite materials can be further processed to give hollow mesoporous carbon spheres. The flexibility of this method allows for independent control of the morphological (i.e., core diameter and shell thickness) and textural features of the carbon spheres. In particular, it is demonstrated that the size of the pores within the mesoporous shell can be precisely tailored over an extended range (2-20 nm) by simply adjusting the reaction conditions. In a similar fashion, also the specific carbon surface area as well as the total shell porosity can be tuned. Most importantly, the textural features can be adjusted without affecting the dimension or the morphology of the spheres. The possibility to directly modify the shell textural properties by varying the synthetic parameters in a scalable process represents a distinct asset over the multistep hard-templating (nanocasting) routes. As an exemplary application, Pt nanoparticles were encapsulated in the mesoporous shell of HMCS. The resulting Pt@HMCS catalyst showed an enhanced stability during the oxygen reduction reaction, one of the most important reactions in electrocatalysis. This new synthetic procedure could allow the expansion, perhaps even beyond the lab-scale, of advanced carbon nanostructured supports for applications in catalysis.

  19. Graphene-Wrapped Ni(OH)2 Hollow Spheres as Novel Electrode Material for Supercapacitors.

    PubMed

    Sun, Jinfeng; Wang, Jinqing; Li, Zhangpeng; Ou, Junfei; Niu, Lengyuan; Wang, Honggang; Yang, Shengrong

    2015-09-01

    Graphene-wrapped Ni(OH)2 hollow spheres were prepared via electrostatic interaction between poly(diallyldimethylammonium chloride) (PDDA) modified Ni(OH)2 and graphene oxide (GO) in an aqueous dispersion, followed by the reduction of GO. Morphological and structural analysis by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis confirmed the successful coating of graphene on Ni(OH)2 hollow spheres with a content of 3.8 wt%. And then its application as electrode material for supercapacitor has been investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. Results show that the sample displays a high capacitance of 1368 F g(-1) at a current density of 1 A g(-1), much better than that of pure Ni(OH)2, illustrating that such composite is a promising candidate as electrode material for supercapacitors.

  20. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

    DOE PAGES

    Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; ...

    2016-02-03

    The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less

  1. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

    SciT

    Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph

    2016-02-03

    Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in-situ real-time radiography experiments that provide critical spatio-temporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity onmore » the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2mm inner diameter diamond shells.« less

  2. Synthesis and characterization of hollow mesoporous BaFe{sub 12}O{sub 19} spheres

    SciT

    Xu, Xia; Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487; Park, Jihoon

    2015-02-15

    A facile method is reported to synthesize hollow mesoporous BaFe{sub 12}O{sub 19} spheres using a template-free chemical etching process. Hollow BaFe{sub 12}O{sub 19} spheres were synthesized by conventional spray pyrolysis. The mesoporous structure is achieved by alkaline ethylene glycol etching at 185 °C, with the porosity controlled by the heating time. The hollow porous structure is confirmed by SEM, TEM, and FIB-FESEM characterization. The crystal structure and magnetic properties are not significantly affected after the chemical etching process. The formation mechanism of the porous structure is explained by grain boundary etching. - Graphical abstract: Hollow spherical BaFe{sub 12}O{sub 19} particlesmore » are polycrystalline with both grains and grain boundaries. Grain boundaries have less ordered structure and lower stability. When the particles are exposed to high temperature alkaline ethylene glycol, the grain boundaries are etched, leaving small grooves between grains. These grooves allow ethylene glycol to diffuse inside to further etch the grains. As the grain size decreases, gaps appear on the particle surfaces, and a porous structure is finally formed. - Highlights: • Two-step synthesis method for hollow mesoporous BaFe{sub 12}O{sub 19} spheres is proposed. • Porosity of the product can be regulated by controlling the second step of chemical etching. • The crystal structure and magnetic properties are examined to be little affected during the chemical etching. • The mesoporous structure formation mechanism is explained by grain boundary etching.« less

  3. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  4. Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.

    PubMed

    Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk

    2013-11-20

    Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures.

    PubMed

    Chuan Tan, Ying; Chun Zeng, Hua

    2016-10-04

    An aqueous one-pot self-templating synthesis method to prepare highly uniform ZIF-67 hollow spheres (ZIF-67-HS) and their transition metal-doped derivatives (M/ZIF-67-HS, M = Cu and/or Zn) was developed. Extension of this approach to another important class of MOFs (metal carboxylates; e.g., HKUST-1) and facile design of derived nanostructures with complex architectures were also achieved.

  6. Processing and properties of Ti-6Al-4V hollow sphere foams from hydride powder

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan Uslu

    Honeycomb structures currently used in aerospace systems are expensive to manufacture, limited to sheet form, and present joining problems and mechanical anisotropy that promotes shear failure at low stresses. Metallic foams produced by point contact bonding of monosized hollow spheres offer an alternative if they can be processed into strong, light-weight, and reasonably priced structural materials. In this work, technology has been established for fabricating good quality, Ti-6Al-4V hollow sphere foams using the coaxial nozzle powder slurry technique. It was shown that hydride form of Ti-ELI can be used as the starting precursor powder and processed into fine particles of 1-10 mum size range without increasing the impurity levels. Hydride dispersion in acetone was provided by the addition of polyester/polyamine copolymers through electrosteric stabilization. Addition of PMMA to the pseudoplastically dispersed organic slurries helped bind hydride powder spherical shells. Furthermore, monosized Ti-6Al-4V hollow spheres were sintered to 98% dense cell walls in Ar and point-contact bonded into closed-cell foams through solid-state diffusion. These findings suggest that near-net shape Ti-6Al-4V structures may be produced with isotropic properties, strength, toughness, and densities as low as 10% of the bulk. Findings concerning the optimum processing parameters and implications for future research are discussed.

  7. Silicon hollow sphere anode with enhanced cycling stability by a template-free method

    NASA Astrophysics Data System (ADS)

    Chen, Song; Chen, Zhuo; Luo, Yunjun; Xia, Min; Cao, Chuanbao

    2017-04-01

    Silicon is a promising alternative anode material since it has a ten times higher theoretical specific capacity than that of a traditional graphite anode. However, the poor cycling stability due to the huge volume change of Si during charge/discharge processes has seriously hampered its widespread application. To address this challenge, we design a silicon hollow sphere nanostructure by selective etching and a subsequent magnesiothermic reduction. The Si hollow spheres exhibit enhanced electrochemical properties compared to the commercial Si nanoparticles. The initial discharge and charge capacities of the Si hollow sphere anode are 2215.8 mAh g-1 and 1615.1 mAh g-1 with a high initial coulombic efficiency (72%) at a current density of 200 mA g-1, respectively. In particular, the reversible capacity is 1534.5 mAh g-1 with a remarkable 88% capacity retention against the second cycle after 100 cycles, over four times the theoretical capacity of the traditional graphite electrode. Therefore, our work demonstrates the considerable potential of silicon structures for displacing commercial graphite, and might open up new opportunities to rationally design various nanostructured materials for lithium ion batteries.

  8. Luminescent LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres for encapsulation of biomolecules

    NASA Astrophysics Data System (ADS)

    Li, Dan; Liu, Chunlei; Jiang, Lianzhou

    2015-10-01

    In this study, LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) hollow porous spheres, synthesized via self-sacrificing templated route, are developed for enzyme immobilization and protein adsorption. The four LuVO4 hollow spheres with diameter of 180 nm, 280 nm, 370 nm and 480 nm were obtained. The size of LuVO4 hollow sphere is dependent on Lu(OH)CO3 template. Upon excitation by UV light, hollow LuVO4:Ln3+ (Ln = Eu, Sm, Dy, Er) spheres exhibit red (Eu3+), orange (Sm3+), yellow-green (Dy3+), and green (Er3+) emissions. The good biocompatibility of sample is validated by MTT assay. Due to structure feature and size of obtained sample, the rapid encapsulation of biomolecules within samples has been achieved. Furthermore, the hollow spheres show different biomolecules adsorption capacities at different buffer solution pH values. The release behaviors of two kinds of biomolecules (lysozyme and bovine serum albumin) are also investigated. LuVO4 hollow spheres are suitable carriers for biomolecules. The emission intensity of Eu3+ in the LuVO4:Eu3+ varies with the released amount of LYZ. This enables the monitoring of release process by the change in the luminescence intensity.

  9. Electrochemical characteristics of discrete, uniform, and monodispersed hollow mesoporous carbon spheres in double-layered supercapacitors.

    PubMed

    Chen, Xuecheng; Kierzek, Krzysztof; Wenelska, Karolina; Cendrowski, Krzystof; Gong, Jiang; Wen, Xin; Tang, Tao; Chu, Paul K; Mijowska, Ewa

    2013-11-01

    Core-shell-structured mesoporous silica spheres were prepared by using n-octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core-shell-structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double-layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer-Emmett-Teller (BET) area and larger pore size. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  11. Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Kechan; Wang, Guoxu; Zhang, Hongliang; Yu, Yifeng; Liu, Lei; Chen, Aibing

    2017-07-01

    Recently, the rapid development of graphene industry in the world, especially in China, provides more opportunities for the further extension of the application field of graphene-based materials. Graphene has also been considered as a promising candidate for use in supercapacitors. Here, nitrogen-doped graphene hollow spheres (NGHS) have been successfully synthesized by using industrialized and pre-processed graphene oxide (GO) as raw material, SiO2 spheres as hard templates, and urea as reducing-doping agents. The results demonstrate that the content and pretreatment of GO sheets have important effect on the uniform spherical morphologies of the obtained samples. Industrialized GO and low-cost urea are used to prepare graphene hollow spheres, which can be a promising route to achieve mass production of NGHS. The obtained NGHS have a cavity of about 270 nm, specific surface area of 402.9 m2 g-1, ultrathin porous shells of 2.8 nm, and nitrogen content of 6.9 at.%. As electrode material for supercapacitors, the NGHS exhibit a specific capacitance of 159 F g-1 at a current density of 1 A g-1 in 6 M KOH aqueous electrolyte. Moreover, the NGHS exhibit superior cycling stability with 99.24% capacitive retention after 5000 charge/discharge cycles at a current density of 5 A g-1.

  12. The Hollow Spheres of the Orgueil Meteorite: A Re-Examination

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Jerman, Gregory; Rossignold-Strick, Maritine

    2005-01-01

    In 1971, Rossignol-Strick and Barghoorn provided images and a description of a number of spherical hollow microstructures showing well-defined walls in acid macerated extract of the Orgueil CI carbonaceous meteorite. Other forms such as membranes and spiral shaped structures were also reported. The carbon-rich (kerogen) hollow spheres were found to be in a narrowly constrained distribution of sizes (mainly 7 to 10 microns in diameter). Electron microprobe analysis revealed that these spheres contained Carbon, possibly P, N, and K. It was established that these forms could not be attributed to pollen or other recent terrestrial contaminants. It was concluded that they most probably represented organic coatings on globules of glass, olivine or magnetite in the meteorite. However, recent studies of the Orgueil meteorite have been carried out at the NASA/Marshall Space Flight Center with the S-4000 Hitachi Field Emission Scanning Electron Microscope (FESEM). These investigations have revealed the presence of numerous carbon encrusted spherical magnetite platelets and spherical and ovoidal bodies of elemental iron in-situ in freshly fractured interior surfaces of the meteorite. Their size range is also very narrowly constrained (typically approximately 6 to 12 microns) in diameter. High resolution images reveal that these bodies are also encrusted with a thin carbonaceous sheath and are surrounded by short nanofibrils that are shown to be composed of high purity iron by EDAX elemental analysis. We present Secondary and Backscatter Electron FESEM images and associated EDAX elemental analyses and 2D X-ray maps of these forms as we re-examine the hollow spheres of Orgueil and attempt to determine if they are representatives of the same population of indigenous microstructures.

  13. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.

    PubMed

    Gopi, D; Indira, J; Kavitha, L; Sekar, M; Mudali, U Kamachi

    2012-07-01

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Indira, J.; Kavitha, L.; Sekar, M.; Mudali, U. Kamachi

    Hydroxyapatite (HAP) is the main inorganic component of bone material and is widely used in various biomedical applications due to its excellent bioactivity and biocompatibility. In this paper, we have reported the synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted mixed template directed method. In this method glycine-acrylic acid (GLY-AA) hollow spheres were used as an organic template which could be prepared by mixing of glycine with acrylic acid. The as-synthesized HAP nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and tunnelling electron microscope (TEM) to investigate the nature of bonding, crystallinity, size and shape. The thermal stability of as-synthesized nanoparticles was also investigated by the thermo gravimetric analysis (TGA). The effect of ultrasonic irradiation time on the crystallinity and size of the HAP nanoparticles in presence of glycine-acrylic acid hollow spheres template were investigated. From the inspection of the above results it is confirmed that the crystallinity and size of the HAP nanoparticles decrease with increasing ultrasonic irradiation time. Hence the proposed synthesis strategy provides a facile pathway to obtain nano sized HAP with high quality, suitable size and morphology.

  15. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  16. Direct Fabrication of Monodisperse Silica Nanorings from Hollow Spheres - A Template for Core-Shell Nanorings.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Brullot, Ward; Bloemen, Maarten; Volodin, Alexander; Song, Kai; Van Dorpe, Pol; Verellen, Niels; Clays, Koen

    2016-04-27

    We report a new type of nanosphere colloidal lithography to directly fabricate monodisperse silica (SiO2) nanorings by means of reactive ion etching of hollow SiO2 spheres. Detailed TEM, SEM, and AFM structural analysis is complemented by a model describing the geometrical transition from hollow sphere to ring during the etching process. The resulting silica nanorings can be readily redispersed in solution and subsequently serve as universal templates for the synthesis of ring-shaped core-shell nanostructures. As an example we used silica nanorings (with diameter of ∼200 nm) to create a novel plasmonic nanoparticle topology, a silica-Au core-shell nanoring, by self-assembly of Au nanoparticles (<20 nm) on the ring's surface. Spectroscopic measurements and finite difference time domain simulations reveal high quality factor multipolar and antibonding surface plasmon resonances in the near-infrared. By loading different types of nanoparticles on the silica core, hybrid and multifunctional composite nanoring structures could be realized for applications such as MRI contrast enhancement, catalysis, drug delivery, plasmonic and magnetic hyperthermia, photoacoustic imaging, and biochemical sensing.

  17. Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties

    PubMed Central

    Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2016-01-01

    Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967

  18. The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility.

    PubMed

    Dash, Biraja C; Réthoré, Gildas; Monaghan, Michael; Fitzgerald, Kathleen; Gallagher, William; Pandit, Abhay

    2010-11-01

    Polymeric hollow spheres can be tailored as efficient carriers of various therapeutic molecules due to their tunable properties. However, the entry of these synthetic vehicles into cells, their cell viability and blood compatibility depend on their physical and chemical properties e.g. size, surface charge. Herein, we report the effect of size and surface charge on cell viability and cellular internalization behaviour and their effect on various blood components using chitosan/polyglutamic acid hollow spheres as a model system. Negatively charged chitosan/polyglutamic acid hollow spheres of various sizes 100, 300, 500 and 1000 nm were fabricated using a template based method and covalently surface modified using linear polyethylene glycol and methoxyethanol amine to create a gradient of surface charge from negative to neutrally charged spheres respectively. The results here suggest that both size and surface charge have a significant influence on the sphere's behaviour, most prominently on haemolysis, platelet activation, plasma recalcification time, cell viability and internalization over time. Additionally, cellular internalization behaviour and viability was found to vary with different cell types. These results are in agreement with those of inorganic spheres and liposomes, and can serve as guidelines for tailoring polymeric solid spheres for specific desired applications in biological and pharmaceutical fields, including the design of nanometer to submicron-sized delivery vehicles. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Hierarchical FeTiO3-TiO2 hollow spheres for efficient simulated sunlight-driven water oxidation.

    PubMed

    Han, Taoran; Chen, Yajie; Tian, Guohui; Wang, Jian-Qiang; Ren, Zhiyu; Zhou, Wei; Fu, Honggang

    2015-10-14

    Oxygen generation is the key step for the photocatalytic overall water splitting and considered to be kinetically more challenging than hydrogen generation. Here, an effective water oxidation catalyst of hierarchical FeTiO3-TiO2 hollow spheres are prepared via a two-step sequential solvothermal processes and followed by thermal treatment. The existence of an effective heterointerface and built-in electric field in the surface space charge region in FeTiO3-TiO2 hollow spheres plays a positive role in promoting the separation of photoinduced electron-hole pairs. Surface photovoltage, transient-state photovoltage, fluorescence and electrochemical characterization are used to investigate the transfer process of photoinduced charge carriers. The photogenerated charge carriers in the hierarchical FeTiO3-TiO2 hollow spheres with a proper molar ratio display much higher separation efficiency and longer lifetime than those in the FeTiO3 alone. Moreover, it is suggested that the hierarchical porous hollow structure can contribute to the enhancement of light utilization, surface active sites and material transportation through the framework walls. This specific synergy significantly contributes to the remarkable improvement of the photocatalytic water oxidation activity of the hierarchical FeTiO3-TiO2 hollow spheres under simulated sunlight (AM1.5).

  20. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  1. Facile synthesis and microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere

    SciT

    Wu, Hongjing, E-mail: wuhongjing@mail.nwpu.edu.cn; Wu, Guanglei, E-mail: wuguanglei@mail.xjtu.edu.cn; Wu, Qiaofeng

    2014-11-15

    We reported the preparation of C@Ni–NiO core–shell hybrid solid spheres or multi-shelled NiO hollow spheres by combining a facile hydrothermal route with a calcination process in H{sub 2} or air atmosphere, respectively. The synthesized C@Ni–NiO core–shell solid spheres with diameters of approximately 2–6 μm were in fact built from dense NiO nanoparticles coated by random two-dimensional metal Ni nanosheets without any visible pores. The multi-shelled NiO hollow spheres were built from particle-like ligaments and there are a lot of pores with size of several nanometers on the surface. Combined Raman spectra with X-ray photoelectron spectra (XPS), it suggested that themore » defects in the samples play a limited role in the dielectric loss. Compared with the other samples, the permeability of the samples calcined in H{sub 2} and air was increased slightly and the natural resonance frequency shifted to higher frequency (7, 11 and 14 GHz, respectively), leading to an enhancement of microwave absorption property. For the sample calcined in H{sub 2}, an optimal reflection loss less than − 10 was obtained at 7 GHz with a matching thickness of 5.0 mm. Our study demonstrated the potential application of C@Ni–NiO core–shell hybrid solid sphere or multi-shelled NiO hollow sphere as a more efficient electromagnetic (EM) wave absorber. - Highlights: • C@Ni–NiO core–shell hybrid solid sphere was synthesized by a facile method. • Multi-shelled NiO hollow sphere was synthesized by a facile method. • It suggested that the defects in the samples play a limited role in dielectric loss. • The permeability of the samples calcined in H{sub 2} and air was increased. • Microwave absorbability of C@Ni–NiO core–shell hybrid solid sphere was investigated.« less

  2. Ultraviolet photodetector using pn junction formed by transferrable hollow n-TiO2 nano-spheres monolayer.

    PubMed

    Yang, Taeyoung; Park, Seong-Jin; Kim, Taek Gon; Shin, Dong Su; Suh, Kyung-do; Park, Jinsub

    2017-12-11

    We report an ultraviolet (UV) photodetector with a universally transferable monolayer film with ordered hollow TiO 2 spheres on p-GaN. After forming a TiO 2 monolayer film by unidirectional rubbing of hollow TiO 2 spheres on a polydimethylsiloxane (PDMS) supporting plate, we used a 5% polyvinyl alcohol (PVA) aqueous solution to transfer the film onto the target substrate. The PVA/TiO 2 monolayer film was detached from the PDMS film and transferred to the p-GaN/Al 2 O 3 substrate. To investigate the effects of crystallized phases of the TiO 2 hollow spheres, anatase and rutile TiO 2 sphere monolayers prepared by combining template synthesis and thermal treatment. The responsiveness of the UV photodetectors using anatase and rutile hollow n-TiO 2 monolayer/p-GaN was 0.203 A/W at 312 nm and 0.093 A/W at 327 nm, respectively.

  3. Response Surface Methodology for Design of Porous Hollow Sphere Thermal Insulator

    NASA Astrophysics Data System (ADS)

    Shohani, Nazanin; Pourmahdian, Saeed; Shirkavand Hadavand, Behzad

    2017-11-01

    In this study, response surface method is used for synthesizing polystyrene (PS) as sacrificial templates and optimizing the particle size. Three factors of initiator, stabilizer concentration and also stirring rate were selected as variable factors. Then, three different concentration of tetraethyl orthosilicate (TEOS) added to reaction media and core-shell structure with PS core and silica shell was developed. Finally, core-shell structure was changed to hollow silica sphere for using as thermal insulator. We observed that increased initiator concentration caused to larger PS particles, increase the stirring rate caused the smaller PS and also with increased the stabilizer concentration obtained that particle size decrease then after 2.5% began to increase. Also the optimum amount of TEOS was found.

  4. Synthesis of nano grade hollow silica sphere via a soft template method.

    PubMed

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  5. Laser absorption spectroscopy of oxygen confined in highly porous hollow sphere xerogel.

    PubMed

    Yang, Lin; Somesfalean, Gabriel; He, Sailing

    2014-02-10

    An Al2O3 xerogel with a distinctive microstructure is studied for the application of laser absorption spectroscopy of oxygen. The xerogel has an exceptionally high porosity (up to 88%) and a large pore size (up to 3.6 µm). Using the method of gas-in-scattering media absorption spectroscopy (GASMAS), a long optical path length (about 3.5m) and high enhancement factor (over 300 times) are achieved as the result of extremely strong multiple-scattering when the light is transmitted through the air-filled, hollow-sphere alumina xerogel. We investigate how the micro-physical feature influences the optical property. As part of the optical sensing system, the material's gas exchange dynamics are also experimentally studied.

  6. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.

    PubMed

    Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei

    2016-09-14

    Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.

  7. Limit analysis of hollow spheres or spheroids with Hill orthotropic matrix

    NASA Astrophysics Data System (ADS)

    Pastor, Franck; Pastor, Joseph; Kondo, Djimedo

    2012-03-01

    Recent theoretical studies of the literature are concerned by the hollow sphere or spheroid (confocal) problems with orthotropic Hill type matrix. They have been developed in the framework of the limit analysis kinematical approach by using very simple trial velocity fields. The present Note provides, through numerical upper and lower bounds, a rigorous assessment of the approximate criteria derived in these theoretical works. To this end, existing static 3D codes for a von Mises matrix have been easily extended to the orthotropic case. Conversely, instead of the non-obvious extension of the existing kinematic codes, a new original mixed approach has been elaborated on the basis of the plane strain structure formulation earlier developed by F. Pastor (2007). Indeed, such a formulation does not need the expressions of the unit dissipated powers. Interestingly, it delivers a numerical code better conditioned and notably more rapid than the previous one, while preserving the rigorous upper bound character of the corresponding numerical results. The efficiency of the whole approach is first demonstrated through comparisons of the results to the analytical upper bounds of Benzerga and Besson (2001) or Monchiet et al. (2008) in the case of spherical voids in the Hill matrix. Moreover, we provide upper and lower bounds results for the hollow spheroid with the Hill matrix which are compared to those of Monchiet et al. (2008).

  8. Micelles driven magnetite (Fe3O4) hollow spheres and a study on AC magnetic properties for hyperthermia application

    NASA Astrophysics Data System (ADS)

    Goswami, Madhuri Mandal; Dey, Chaitali; Bandyopadhyay, Ayan; Sarkar, Debasish; Ahir, Manisha

    2016-11-01

    Here we have discussed about designing the magnetic particles for hyperthermia therapy and done some studies in this direction. We have used oleylamine micelles as template to synthesize hollow-nanospheres (HNS) of magnetite by solvo-thermal technique. We have shown that oleylamine plays an important role to generate hollow particles. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM was performed to confirm the shape and size of hollow sphere particles. The detail magnetic measurements give an idea about the application of these HNS for magnetic heating in hyperthermia therapy. In vitro cytotoxicity studies reveal that tolerable dose rate for these particles can be significantly high and particles are non-toxic in nature. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, drug release, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.

  9. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  10. A hollow sphere soft lithography approach for long-term hanging drop methods.

    PubMed

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J; Bae, Hojae; Khademhosseini, Ali

    2010-04-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 microL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10-15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 microL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.

  11. A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods

    PubMed Central

    Lee, Won Gu; Ortmann, Daniel; Hancock, Matthew J.; Bae, Hojae

    2010-01-01

    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL, and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine. PMID:19505251

  12. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  13. Influence of TiO2 hollow sphere size on its photo-reduction activity for toxic Cr(VI) removal.

    PubMed

    Cai, Jiabai; Wu, Xueqing; Zheng, Fengying; Li, Shunxing; Wu, Yaling; Lin, Yanping; Lin, Liting; Liu, Biwen; Chen, Qiaoying; Lin, Luxiu

    2017-03-15

    After polystyrene@titanium dioxide (PS@TiO 2 ) composite with different size was calcined at designated temperature, TiO 2 hollow sphere with controllable size was obtained for high efficient photo-reduction of Cr(VI). The feature of the TiO 2 hollow sphere was investigated by SEM, TEM, XRD, UV-Vis, and photoluminescence. The photo-reduction of Cr(VI) were measured for the performance assessment of the TiO 2 hollow sphere, Cr(VI) was used as an electron acceptor. After irradiation for 2h, the photo-reduction rate of Cr(VI) (pH=2.82) for TiO 2 (450nm) was 96%, which exhibited an increase of 5% and 8% compared with TiO 2 (370nm) and TiO 2 (600nm). The absorption edges of TiO 2 hollow sphere (450nm) was largest with the increasing of hollow sphere size from 370 to 600nm. The optimal hollow sphere size of TiO 2 was 450nm for the photo-reduction of Cr(VI), because the light-harvesting efficiency (the best of absorption edge) and photo-generated electron-hole separation rate (the best of photo-reduction rate) of TiO 2 hollow sphere were controlled by its hollow sphere size. In addition, we find that the behavior of the hydrogen production was inhibited by the coexistence Cr(VI) solution. This study can improve our understanding of the mechanism for the activity enhancement by the optimal hollow sphere size of TiO 2 . Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    PubMed

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  15. Nitrogen and phosphorus co-doped carbon hollow spheres derived from polypyrrole for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Lv, Bingjie; Li, Peipei; Liu, Yan; Lin, Shanshan; Gao, Bifen; Lin, Bizhou

    2018-04-01

    Nitrogen and phosphorus co-doped carbon hollow spheres (NPCHSs) have been prepared by a carbonization and subsequent chemical activation route using dehydrated polypyrrole hollow spheres as the precursor and KOH as the activating agent. NPCHSs are interconnected into a unique 3D porous network, which endows the as-prepared carbon to exhibit a large specific surface area of 1155 m2 g-1 and a high specific capacitance of 232 F g-1 at a current density of 1 A g-1. The as-obtained NPCHSs present a high-level heteroatom doping with N, O and P contents of 11.4, 6.7 and 3.5 wt%, respectively. The capacitance of NPCHSs has been retained at 89.1% after 5000 charge-discharge cycles at a relatively high current density of 5 A g-1. Such excellent performance suggests that NPCHSs are attractive electrode candidates for electrical double layer capacitors.

  16. Fabrication of sub-micrometer-sized jingle bell-shaped hollow spheres from multilayered core-shell particles.

    PubMed

    Gu, Shunchao; Kondo, Tomohiro; Mine, Eiichi; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2004-11-01

    Jingle bell-shaped hollow spheres were fabricated starting from multilayered particles composed of a silica core, a polystyrene inner shell, and a titania outer shell. Composite particles of silica core-polystyrene shell, synthesized by coating a 339-nm-sized silica core with a polystyrene shell of thickness 238 nm in emulsion polymerization, were used as core particles for a succeeding titania-coating. A sol-gel method was employed to form the titania outer shell with a thickness of 37 nm. The inner polystyrene shell in the multilayered particles was removed by immersing them in tetrahydrofuran. These successive procedures could produce jingle bell-shaped hollow spheres that contained a silica core in the titania shell.

  17. Synergic nitrogen source route to inorganic fullerene-like boron nitride with vessel, hollow sphere, onion, and peanut nanostructures.

    PubMed

    Xu, Fen; Xie, Yi; Zhang, Xu; Zhang, Shuyuan; Liu, Xianming; Tian, Xiaobo

    2004-01-26

    In this paper we describe the large-scale synthesis of inorganic fullerene-like (IF-like) hexagonal boron nitride with vessel, hollow sphere, peanut, and onion structures by reacting BBr(3) with the synergic nitrogen sources NaNH(2) and NH(4)Cl at 400-450 degrees C for 6-12 h. The composition of products could be confirmed to be pure boron nitride with hexagonal structures by the XRD patterns and FT-IR, XPS, and EDXA spectra. The representative HRTEM images clearly reveal the layerlike features of the products. Here, the peanut-like structure of the IF-like BN is reported for the first time, and added to the list as one kind of new morphology of BN nanomaterials. The similarity in the structure between h-BN and graphite is responsible for the formation of IF-like BN with nanostructures of vessels, hollow spheres, peanuts, and onions.

  18. Highly efficient decomposition of organic dye by aqueous-solid phase transfer and in situ photocatalysis using hierarchical copper phthalocyanine hollow spheres.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun

    2011-07-01

    The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.

  19. A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells.

    PubMed

    Li, Ling; Choo, Eugene Shi Guang; Tang, Xiaosheng; Ding, Jun; Xue, Junmin

    2009-02-28

    Cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles incorporated in their macroporous shells are synthesized in a facile manner through a one-step oil-in-diethylene glycol (DEG) microemulsion route.

  20. A Study for Tooth Bleaching via Carbamide Peroxide-Loaded Hollow Calcium Phosphate Spheres.

    PubMed

    Qin, Tao; Mellgren, Torbjörn; Jefferies, Steven; Xia, Wei; Engqvist, Håkan

    2016-12-26

    The objective of this study was to investigate if a prolonged bleaching effect of carbamide peroxide-loaded hollow calcium phosphate spheres (HCPS) can be achieved. HCPS was synthesized via a hydrothermal reaction method. Carbamide peroxide (CP) was-loaded into HCPS by mixing with distilled water as solvent. We developed two bleaching gels containing CP-loaded HCPS: one gel with low HP concentration as at-home bleaching gel, and one with high HP concentration as in-office gel. Their bleaching effects on stained human permanent posterior teeth were investigated by measuring the color difference before and after bleaching. The effect of gels on rhodamine B degradation was also studied. To investigate the potential effect of remineralization of using HCPS, bleached teeth were soaked in phosphate buffer solution (PBS) containing calcium and magnesium ions. Both bleaching gels had a prolonged whitening effect, and showed a strong ability to degrade rhodamine B. After soaking in PBS for 3 days, remineralization was observed at the sites where HCPS attached to the teeth surface. CP-loaded HCPS could prolong the HP release behavior and improve the bleaching effect. HCPS was effective in increasing the whitening effect of carbamide peroxide and improving remineralization after bleaching process.

  1. Instantaneous, Simple, and Reversible Revealing of Invisible Patterns Encrypted in Robust Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Li, Jiaqi; Liu, Liwang; Van Cleuvenbergen, Stijn; Song, Kai; Clays, Koen

    2018-05-04

    The colors of photonic crystals are based on their periodic crystalline structure. They show clear advantages over conventional chromophores for many applications, mainly due to their anti-photobleaching and responsiveness to stimuli. More specifically, combining colloidal photonic crystals and invisible patterns is important in steganography and watermarking for anticounterfeiting applications. Here a convenient way to imprint robust invisible patterns in colloidal crystals of hollow silica spheres is presented. While these patterns remain invisible under static environmental humidity, even up to near 100% relative humidity, they are unveiled immediately (≈100 ms) and fully reversibly by dynamic humid flow, e.g., human breath. They reveal themselves due to the extreme wettability of the patterned (etched) regions, as confirmed by contact angle measurements. The liquid surface tension threshold to induce wetting (revealing the imprinted invisible images) is evaluated by thermodynamic predictions and subsequently verified by exposure to various vapors with different surface tension. The color of the patterned regions is furthermore independently tuned by vapors with different refractive indices. Such a system can play a key role in applications such as anticounterfeiting, identification, and vapor sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.

    PubMed

    Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom

    2015-01-28

    The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.

  3. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors.

    PubMed

    Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David

    2015-02-02

    Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication and characterization of millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres

    SciT

    Li, Haoting; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya

    2016-04-15

    Highlights: • Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} hollow spheres have been prepared. • The diameters of the prepared hollow spheres are 500–1300μm. • The degree of sphericity for the prepared hollow spheres is above 98%. • The mechanisms of transparency are discussed. - Abstract: Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres have been successfully prepared using the oil-in-water (paraffin-in-alumina sol) droplets as precursors made by self-made T-shape micro-emulsion device. The main crystalline phase of the obtained hollow sphere is alpha alumina. The prepared translucent La{sub 2}O{sub 3}-containing Al{sub 2}O{sub 3} ceramic hollow spheresmore » have diameters of 500–1300 μm, wall thickness of about 23 μm and the degree of sphericity of above 98%. With the increase of the La{sub 2}O{sub 3} content, grains and grain-boundaries of the alumina spherical shell for the prepared millimeter-scale hollow spheres become regular and clear gradually. When the La{sub 2}O{sub 3} content is 0.1 wt.%, the crystal surface of the obtained Al{sub 2}O{sub 3} spherical shell shows optimal grains and few pores, and its transmittance reaches 42% at 532 nm laser light. This method provides a promising technique of preparing millimeter-scale translucent ceramic hollow spheres for laser inertial confined fusion.« less

  5. Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei

    2015-12-01

    Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.

  6. Flower-like and hollow sphere-like WO{sub 3} porous nanostructures: Selective synthesis and their photocatalysis property

    SciT

    Huang, Jiarui, E-mail: jrhuang@mail.anhu.edu.cn; Xu, Xiaojuan; Gu, Cuiping, E-mail: cpgu2008@mail.anhu.edu.cn

    Graphical abstract: -- Abstract: Nanoflake-based flower-like and hollow microsphere-like hydrated tungsten oxide architectures were selectively synthesized by acidic precipitation of sodium tungstate solution at mild temperature. Several techniques, such as X-ray diffraction, scanning electron microscopy, thermogravimetric-differential thermalgravimetric analysis, transmission electron microscopy, and Brunauer–Emmett–Teller N{sub 2} adsorption–desorption analyses, were used to characterize the structure and morphology of the products. The experimental results show that the nanoflake-based flower-like and hollow sphere-like WO{sub 3}·H{sub 2}O architectures can be obtained by changing the concentration of sodium tungstate solution. The possible formation process based on the aggregation–recrystallization mechanism is proposed. The corresponding tungsten oxide three-dimensionalmore » architectures were obtained after calcination at 450 °C. Finally, the obtained WO{sub 3} three-dimensional architectures were used as photocatalyst in the experiments. Compared with WO{sub 3} microflowers, the as-prepared WO{sub 3} hollow microspheres exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hollow porous hierarchical structures.« less

  7. Preparation and Properties of C/C Hollow Spheres and the Energy Absorption Capacity of the Corresponding Aluminum Syntactic Foams.

    PubMed

    Yu, Qiyong; Zhao, Yan; Dong, Anqi; Li, Ye

    2018-06-12

    The present study focuses on the preparation and characterization of lab-scale aluminum syntactic foams (ASFs) filled with hollow carbon spheres (HCSs). A new and original process for the fabrication of HCSs was explored. Firstly, expanded polystyrene beads with an average diameter of 6 mm and coated with carbon fibers/thermoset phenolic resin were produced by the “rolling ball” method. In the next step, the spheres were cured and post-cured, and then carbonized at 1050 °C under vacuum to form the HCSs. The porosity in the shell of the HCSs was decreased by increasing the number of impregnation⁻carbonization cycles. The aluminum syntactic foams were fabricated by casting the molten aluminum into a crucible filled with HCSs. The morphology of the hollow spheres before and after carbonization was investigated by scanning electron microscope (SEM). The compressive properties of the ASF were tested and the energy absorption capacities were calculated according to stress⁻strain curves. The results showed that the ASF filled with HCSs which had been treated by more cycles of impregnation⁻carbonization had higher energy absorption capacity. The aluminum syntactic foam absorbed 34.9 MJ/m³ (28.8 KJ/Kg) at 60% strain, which was much higher than traditional closed cell aluminum foams without particles. The HCSs have a promising future in producing a novel family of metal matrix syntactic foams.

  8. Enhanced removal of toxic Cr(VI) in tannery wastewater by photoelectrocatalysis with synthetic TiO2 hollow spheres

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Ma, Lin; Qi, Xiaoxia; Li, Zenghe

    2017-05-01

    Owing to the acute toxicity and mobility, the Cr(VI) in tannery wastewater is a huge threat to biological and environmental systems. Herein, an effective photoelectrocatalytic reduction of Cr(VI) was carried out by applying electric field to photocatalysis of as-prepared TiO2 spheres. The synthesis of spherical TiO2 catalytic materials with hollow structure and high surface areas was based on a self-assembly process induced by a mixture of organic acetic acid and ethanol. The possible formation mechanism of TiO2 spheres was proposed and verified by acid concentration-dependent and temperature-dependent experiments. It was found that the reaction rate constant of photoelectrocatalytic reduction of Cr(VI) exhibited an almost 3 fold improvement (0.0362 min-1) as compared to that of photocatalysis (0.0126 min-1). As a result, the mechanism of photoelectrocatalytic reduction of Cr(VI) was described according to the simultaneous determination of Cr(VI), Cr(III) and total Cr in the system. In addition, the effect of pH value and voltage of potential were also discussed. Moreover, this photoelectrocatalysis with TiO2 hollow spheres exhibited excellent activity for reduction of Cr(VI) in actual tannery wastewater produced from three different tanning procedures. These attributes suggest that this photoelectrocatalysis has strong potential applications in the treatment of tannery pollutants.

  9. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi

  10. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications.

    PubMed

    Wen, Ting; Yang, Baocheng; Guo, Yanzhen; Sun, Jing; Zhao, Chunmei; Zhang, Shouren; Zhang, Miao; Wang, Yonggang

    2014-11-14

    Graphene quantum dots (GQDs) represent an important class of luminescent quantum dots owing to their low toxicity and superior biocompatibility. Chemical functionalization of GQDs and subsequent combination with other materials further provide attractive techniques for advanced bioapplications. Herein, we report the facile fabrication of fluorescent organosilane-functionalized graphene quantum dots (Si-GQDs) and their embedding into mesoporous hollow silica spheres as a biolabel for the first time. Well-proportioned Si-GQDs with bright and excitation dependent tunable emissions in the visible region were obtained via a simple and economical solvothermal route adopting graphite oxide as a carbon source and 3-(2-aminoethylamino)-propyltrimethoxysilane as a surface modifier. The as-synthesized Si-GQDs can be well dispersed and stored in organic solvents, easily manufactured into transparent film and bulk form, and particularly provide great potential to be combined with other materials. As a proof-of-principle experiment, we demonstrate the successful incorporation of Si-GQDs into hollow mesoporous silica spheres and conduct preliminary cellular imaging experiments. Interestingly, the Si-GQDs not only serve as fluorescent chromophores in the composite material, but also play a crucial role in the formation of mesoporous hollow silica spheres with a distinctive bi-layer architecture. The layer thickness and optical properties can be precisely controlled by simply adjusting the silane coupling agent addition procedure in the preparation process. Our demonstration of low-cost Si-GQDs and their encapsulation into multifunctional composites may expand the applications of carbon-based nanomaterials for future biomedical imaging and other optoelectronic applications.

  11. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  12. Effective, Low-Cost Recovery of Toxic Arsenate Anions from Water by Using Hollow-Sphere Geode Traps.

    PubMed

    Shenashen, Mohamed A; Akhtar, Naeem; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Kawada, Satoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; Alamoudi, Ahmad S; El-Safty, Sherif A

    2017-08-04

    Because of the devastating impact of arsenic on terrestrial and aquatic organisms, the recovery, removal, disposal, and management of arsenic-contaminated water is a considerable challenge and has become an urgent necessity in the field of water treatment. This study reports the controlled fabrication of a low-cost adsorbent based on microscopic C-,N-doped NiO hollow spheres with geode shells composed of poly-CN nanospherical nodules (100 nm) that were intrinsically stacked and wrapped around the hollow spheres to form a shell with a thickness of 500-700 nm. This C-,N-doped NiO hollow-sphere adsorbent (termed CNN) with multiple diffusion routes through open pores and caves with connected open macro/meso windows over the entire surface and well-dispersed hollow-sphere particles that create vesicle traps for the capture, extraction, and separation of arsenate (AsO 4 3- ) species from aqueous solution. The CNN structures are considered to be a potentially attractive adsorbent for AsO 4 3- species due to 1) superior removal and trapping capacity from water samples and 2) selective trapping of AsO 4 3- from real water samples that mainly contained chloride and nitrate anions and Fe 2+ , and Mn 2+ , Ca 2+ , and Mg 2+ cations. The structural stability of the hierarchal geodes was evident after 20 cycles without any significant decrease in the recovery efficiency of AsO 4 3- species. To achieve low-cost adsorbents and toxic-waste management, this superior CNN AsO 4 3- dead-end trapping and recovery system evidently enabled the continuous control of AsO 4 3- disposal in water-scarce environments, presents a low-cost and eco-friendly adsorbent for AsO 4 3- species, and selectively produced water-free arsenate species. These CNN geode traps show potential as excellent adsorbent candidates in environment remediation tools and human healthcare. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  14. Heterogeneous photo-Fenton processes using graphite carbon coating hollow CuFe2O4 spheres for the degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Wang, Kebai; Li, Dai; Qin, Jiabin

    2017-10-01

    The novel graphite carbon coating hollow CuFe2O4 spheres were fabricated through solvothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra, etc. The catalytic performance of the graphite carbon coating hollow CuFe2O4 spheres was evaluated in photo-Fenton-like degradation of methylene blue (MB) using H2O2 as a green oxidant under light irradiation (λ > 400 nm). The results demonstrated that the hollow CuFe2O4 spheres with graphite carbon coating exhibited superior catalytic activity. In the preparation process of catalyst, the addition of glucose was very important to its catalytic performance. Photoresponse analysis of the typical samples proved that CuFe2O4@graphite carbon core-shell hollow spheres possessed excellent photocurrent response and lower electrochemical impedance. In addition, a possible mechanism for photocatalytic degradation of MB had been presumed. Moreover, after five regeneration cycles, the graphite carbon coating hollow CuFe2O4 spheres still exhibited better properties.

  15. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties.

    PubMed

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-02-24

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  16. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yuan, Ren-Lu; Zhang, Ning; Ke, Chang-Ce; Ma, Shao-Xia; Zhang, Ru-Liang; Liu, Lei

    2018-04-01

    Nitrogen doped hollow carbon spheres (NHCSs) with tunable surface morphology have been prepared through one-pot carbonization method by using melamine-formaldehyde spheres as template and resorcinol-based resin as carbon precursor in ethanol-water solution. Well-dispersed NHCSs with particle size of 800 nm were obtained and the surface of NHCSs turn from smooth to tough, wrinkled, and finally concave by increasing the ethanol concentration. The fabricated NHCSs possessed high nitrogen content (3.99-4.83%) and hierarchical micro-dual mesoporous structure with surface area range of 265-405 m2 g-1 and total pore volume of 0.18-0.29 cm3 g-1, which contributed to high specific capacitance, excellent rate capability and long cycle life.

  17. Synthesis of reticulated hollow spheres structure NiCo2S4 and its application in organophosphate pesticides biosensor.

    PubMed

    Peng, Lei; Dong, Sheying; Wei, Wenbo; Yuan, Xiaojing; Huang, Tinglin

    2017-06-15

    Electrode materials play a key role in the development of electrochemical sensors, particularly enzyme-based biosensors. Here, a novel NiCo 2 S 4 with reticulated hollow spheres assembled from rod-like structures was prepared by a one-pot solvothermal method and its formation mechanism was discussed. Moreover, comparison of NiCo 2 S 4 materials from different experiment conditions as biosensors was investigated by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV), and the best one that was reticulated hollow spheres assembled from rod-like structures NiCo 2 S 4 has been successfully employed as a matrix of AChE immobilization for the special structure, superior conductivity and rich reaction active sites. When using common two kinds of organophosphate pesticides (OPs) as model analyte, the biosensors demonstrated a wide linear range of 1.0×10 -12 -1.0×10 -8 gmL -1 with the detection limit of 4.2×10 -13 gmL -1 for methyl parathion, and 1.0×10 -13 -1.0×10 -10 gmL -1 with the detection limit of 3.5×10 -14 gmL -1 for paraoxon, respectively. The proposed biosensors exhibited many advantages such as acceptable stability and low cost, providing a promising tool for analysis of OPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Improved utilization of photogenerated charge using fluorine-doped TiO(2) hollow spheres scattering layer in dye-sensitized solar cells.

    PubMed

    Song, Junling; Yang, Hong Bin; Wang, Xiu; Khoo, Si Yun; Wong, C C; Liu, Xue-Wei; Li, Chang Ming

    2012-07-25

    We demonstrate a strategy to improve utilization of photogenerated charge in dye-sensitized solar cells (DSSCs) with fluorine-doped TiO2 hollow spheres as the scattering layer, which improves the fill factor from 69.4% to 74.1% and in turn results in an overall efficiency of photoanode increased by 13% (from 5.62% to 6.31%) in comparison with the control device using undoped TiO2 hollow spheres. It is proposed that the fluorine-doping improves the charge transfer and inhibition of charge recombination to enhance the utilization of the photogenerated charge in the photoanode.

  19. Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production.

    PubMed

    Zhou, Chao; Zhao, Yufei; Bian, Tong; Shang, Lu; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2013-10-28

    Hierarchical Sn2Nb2O7 hollow spheres were prepared for the first time via a facile hydrothermal route using bubbles generated in situ from the decomposition of urea as soft templates. The as-obtained hollow spheres with a large specific surface area of 58.3 m(2) g(-1) show improved visible-light-driven photocatalytic H2 production activity in lactic acid aqueous solutions, about 4 times higher than that of the bulk Sn2Nb2O7 sample prepared by a conventional high temperature solid state reaction method.

  20. Confined Assembly of Hollow Carbon Spheres in Carbonaceous Nanotube: A Spheres-in-Tube Carbon Nanostructure with Hierarchical Porosity for High-Performance Supercapacitor.

    PubMed

    Chen, Ze; Ye, Sunjie; Evans, Stephen D; Ge, Yuanhang; Zhu, Zhifeng; Tu, Yingfeng; Yang, Xiaoming

    2018-05-01

    Carbonaceous nanotubes (CTs) represent one of the most popular and effective carbon electrode materials for supercapacitors, but the electrochemistry performance of CTs is largely limited by their relatively low specific surface area, insufficient usage of intratube cavity, low content of heteroatom, and poor porosity. An emerging strategy for circumventing these issues is to design novel porous CT-based nanostructures. Herein, a spheres-in-tube nanostructure with hierarchical porosity is successfully engineered, by encapsulating heteroatom-doping hollow carbon spheres into one carbonaceous nanotube (HCSs@CT). This intriguing nanoarchitecture integrates the merits of large specific surface area, good porosity, and high content of heteroatoms, which synergistically facilitates the transportation and exchange of ions and electrons. Accordingly, the as-prepared HCSs@CTs possess outstanding performances as electrode materials of supercapacitors, including superior capacitance to that of CTs, HCSs, and their mixtures, coupled with excellent cycling life, demonstrating great potential for applications in energy storage. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  3. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  4. Controllable fabrication of urchin-like Co3O4 hollow spheres for high-performance supercapacitors and lithium-ion batteries.

    PubMed

    Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi

    2016-09-27

    Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.

  5. Growth of semiconducting GaN hollow spheres and nanotubes with very thin shells via a controllable liquid gallium-gas interface chemical reaction.

    PubMed

    Yin, Long-Wei; Bando, Yoshio; Li, Mu-Sen; Golberg, Dmitri

    2005-11-01

    An in situ liquid gallium-gas interface chemical reaction route has been developed to synthesize semiconducting hollow GaN nanospheres with very small shell size by carefully controlling the synthesis temperature and the ammonia reaction gas partial pressure. In this process the gallium droplet does not act as a catalyst but rather as a reactant and a template for the formation of hollow GaN structures. The diameter of the synthesized hollow GaN spheres is typically 20-25 nm and the shell thickness is 3.5-4.5 nm. The GaN nanotubes obtained at higher synthesis temperatures have a length of several hundreds of nanometers and a wall thickness of 3.5-5.0 nm. Both the hollow GaN spheres and nanotubes are polycrystalline and are composed of very fine GaN nanocrystalline particles with a diameter of 3.0-3.5 nm. The room-temperature photoluminescence (PL) spectra for the synthesized hollow GaN spheres and nanotubes, which have a narrow size distribution, display a sharp, blue-shifted band-edge emission peak at 3.52 eV (352 nm) due to quantum size effects.

  6. Solvothermal Synthesis of a Hollow Micro-Sphere LiFePO4/C Composite with a Porous Interior Structure as a Cathode Material for Lithium Ion Batteries

    PubMed Central

    Liu, Yang; Zhang, Jieyu; Li, Ying; Hu, Yemin; Li, Wenxian; Zhu, Mingyuan; Hu, Pengfei; Chou, Shulei; Wang, Guoxiu

    2017-01-01

    To overcome the low lithium ion diffusion and slow electron transfer, a hollow micro sphere LiFePO4/C cathode material with a porous interior structure was synthesized via a solvothermal method by using ethylene glycol (EG) as the solvent medium and cetyltrimethylammonium bromide (CTAB) as the surfactant. In this strategy, the EG solvent inhibits the growth of the crystals and the CTAB surfactant boots the self-assembly of the primary nanoparticles to form hollow spheres. The resultant carbon-coat LiFePO4/C hollow micro-spheres have a ~300 nm thick shell/wall consisting of aggregated nanoparticles and a porous interior. When used as materials for lithium-ion batteries, the hollow micro spherical LiFePO4/C composite exhibits superior discharge capacity (163 mAh g−1 at 0.1 C), good high-rate discharge capacity (118 mAh g−1 at 10 C), and fine cycling stability (99.2% after 200 cycles at 0.1 C). The good electrochemical performances are attributed to a high rate of ionic/electronic conduction and the high structural stability arising from the nanosized primary particles and the micro-sized hollow spherical structure. PMID:29099814

  7. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  8. Hydrothermal synthesis and afterglow luminescence properties of hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres for potential application in drug delivery

    SciT

    Feng, Pengfei; Zhang, Jiachi, E-mail: zhangjch@lzu.edu.cn; Qin, Qingsong

    2014-02-01

    Highlights: • We designed a novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} for the first time. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres with afterglow were prepared by hydrothermal method. • Hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} is a potential afterglow labeling medium for drug delivery. - Abstract: A novel afterglow labeling material SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} with hollow sphere shape and intense afterglow luminescence is prepared by hydrothermal method at 180 °C for the first time. The morphology and the sphere growth process of this material are investigated by scanning electron microscopy in detail. The afterglow measurement shows thatmore » this hydrothermal obtained material exhibits obvious red afterglow luminescence (550–700 nm) of Sm{sup 3+} which can last for 542 s (0.32 mcd/m{sup 2}). The depth of traps in this hydrothermal obtained material is calculated to be as shallow as 0.58 eV. The results demonstrate that although it is necessary to further improve the afterglow performance of the hydrothermal derived hollow SnO{sub 2}:Sm{sup 3+},Zr{sup 4+} spheres, it still can be regarded as a potential afterglow labeling medium for drug delivery.« less

  9. Synthesis of MnFe2O4 magnetic nano hollow spheres by a facile solvothermal route and its characterization

    NASA Astrophysics Data System (ADS)

    Dey, Chaitali; Chaudhuri, Arka; Goswami, Madhuri Mandal

    2018-04-01

    Herein, we report the synthesis of manganese ferrite (MnFe2O4) magnetic nano hollow sphere (NHS) by a solvothermal route. Crystalline phase was confirmed by X-ray diffraction (XRD), energy dispersive x-ray (EDX). Magnetic measurements were done in vibrating sample magnetometer (VSM) and morphological structure was analyzed by field emission high resolution scanning electron microscope (FESEM) and structural characterization was confirmed by Fourier transform infrared spectroscopy (FTIR), thermal analysis was performed by thermo-gravimetric analysis-differential thermal analysis (TGA-DTA). The size of the NHS was around 470 nm, this large size may show a potential applicability in industrial application, like dye adsorption, catalysis etc. In addition, because of its ferromagnetic character at room temperature, it can be easily separated by external magnetic field after the application is done.

  10. Fabrication of hierarchical porous hollow carbon spheres with few-layer graphene framework and high electrochemical activity for supercapacitor

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Hong, Min; Chen, Jiafu; Hu, Tianzhao; Xu, Qun

    2018-06-01

    Porous amorphous carbons with large number of defects and dangling bonds indicate great potential application in energy storage due to high specific surface area and strong adsorption properties, but poor conductivity and pore connection limit their practical application. Here few-layer graphene framework with high electrical conductivity is embedded and meanwhile hierarchical porous structure is constructed in amorphous hollow carbon spheres (HCSs) by catalysis of Fe clusters of angstrom scale, which are loaded in the interior of crosslinked polystyrene via a novel method. These unique HCSs effectively integrate the inherent properties from two-dimensional sp2-hybridized carbon, porous amorphous carbon, hierarchical pore structure and thin shell, leading to high specific capacitance up to 561 F g-1 at a current density of 0.5 A g-1 as an electrode of supercapacitor with excellent recyclability, which is much higher than those of other reported porous carbon materials up to present.

  11. Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction

    DOE PAGES

    Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...

    2017-01-19

    Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less

  12. A Facile Hydrothermal Route for Synthesis of ZnS Hollow Spheres with Photocatalytic Degradation of Dyes Under Visible Light

    NASA Astrophysics Data System (ADS)

    Han, Zh.; Wang, N.; Zhang, H.; Yang, X.

    2017-01-01

    A facile hydrothermal method was employed for the synthesis of ZnS hollow spheres by using thioglycolic acid (TGA) as a capping agent under hydrothermal condition. The obtained products were characterized by X-ray powder diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). No diffraction peaks from other crystalline forms were detected, the synthesized ZnS hierarchical hollow spheres were relatively pure. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of methyl orange (MO) and rhodamine B (RhB) under the condition of visible-light irradiation. The higher the initial MO and RhB concentrations, the longer it takes to reach the same residual concentration, implying that the apparent rates of MO and RhB degradation decrease with increase in the initial MO and RhB concentration. The increase of photocatalyst dosage from 0.2 to 0.6 g/L results in a sharp increase of the photodegradation efficiency from 68.50 to 92.66% after 180 min of visible-light irradiation for MO degradation, and the increase of photocatalyst dosage from 0.2 to 0.4 g/L results in a distinct increase of the photodegradation efficiency from 65.72 to 90.85% after 180 min of visible-light irradiation for RhB. The elution of intermediates generated in the photocatalytic mineralization of MO and RhB resulted in an increase in total organic carbon (TOC) level, leading to the difference between TOC removal rate and MO and RhB decolorization rates.

  13. Research Update: Facile synthesis of CoFe2O4 nano-hollow spheres for efficient bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Rakshit, Rupali; Pal, Monalisa; Chaudhuri, Arka; Mandal, Madhuri; Mandal, Kalyan

    2015-11-01

    Herein, we report an unprecedented bilirubin (BR) adsorption efficiency of CoFe2O4 (CFO) nanostructures in contrast to the commercially available activated carbon and resin which are generally used for haemoperfusion and haemodialysis. We have synthesized CFO nanoparticles of diameter 100 nm and a series of nano-hollow spheres of diameter 100, 160, 250, and 350 nm using a simple template free solvothermal technique through proper variation of reaction time and capping agent, oleylamine (OLA), respectively, and carried out SiO2 coating by employing Stöber method. The comparative BR adsorption study of CFO and SiO2 coated CFO nanostructures indicates that apart from porosity and hollow configuration of nanostructures, the electrostatic affinity between anionic carboxyl group of BR and cationic amine group of OLA plays a significant role in adsorbing BR. Finally, we demonstrate that the BR adsorption capacity of the nanostructures can be tailored by varying the morphology as well as size of the nanostructures. We believe that our developed magnetic nanostructures could be considered as a potential material towards therapeutic applications against hyperbilirubinemia.

  14. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  15. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    NASA Astrophysics Data System (ADS)

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  16. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane.

    PubMed

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-04-21

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.

  17. Micelle-template synthesis of hollow silica spheres for improving water vapor permeability of waterborne polyurethane membrane

    PubMed Central

    Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong

    2017-01-01

    Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740

  18. DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO) m quantum dots interacting with CO, NO2 and SO3 molecules

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Sankarasubramanian; Shankar, Ramasamy; Kolandaivel, Ponmalai

    2018-03-01

    Hollow spherical (HS) and hollow cubic (HC) (ZnO) m quantum dots (QDs) were constructed and optimized using density functional theory (DFT) method. CO, NO2 and SO3 molecules were used to interact with the HC and HS (ZnO) m QDs at the centre and on the surface of the QDs. The changes in the electronic energy levels of HC and HS (ZnO) m QDs due to the interactions of CO, NO2 and SO3 molecules have been studied. The electronic and spectroscopic properties, such as density of states, HOMO-LUMO energy gap, absorption spectra, IR and Raman spectra of HC and HS (ZnO) m QDs have been studied using DFT and Time dependent-DFT (TD-DFT) methods. The interaction energy values show that the SO3 molecule has strongly interacted with HC and HS (ZnO) m QDs than the CO and NO2 molecules. The results of the density of states show that the HC QDs have peaks that are very close to each other, whereas the same is found to be broad in the HS QDs. The HOMO-LUMO energy gap is more for the HS QDs than the HC QDs, and also it gets decreased, when the NO2 and SO3 molecules interact at the centre of the HC and HS (ZnO) m QDs. The blue and red shifts were observed in the absorption spectra of HS and HC QDs. The natural transition orbital (NTO) plot reveals that the interaction of the molecules on the surface of the QDs reduce the chance of electron-hole recombination; hence the energy gap increases for NO2 and SO3 molecular interactions on the surface of the HC and HS (ZnO) m QDs. The vibrational assignments have been made for HC and HS QDs interacting with CO, NO2 and SO3 molecules.

  19. Design and Synthesis of Hierarchical SiO2@C/TiO2 Hollow Spheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Ying; Zhao, Yan; Cao, Shunsheng; Yin, Zhengliang; Cheng, Li; Wu, Limin

    2017-09-06

    TiO 2 has been widely investigated as an electrode material because of its long cycle life and good durability, but the relatively low theoretical capacity restricts its practical application. Herein, we design and synthesize novel hierarchical SiO 2 @C/TiO 2 (HSCT) hollow spheres via a template-directed method. These unique HSCT hollow spheres combine advantages from both TiO 2 such as cycle stability and SiO 2 with a high accessible area and ionic transport. In particular, the existence of a C layer is able to enhance the electrical conductivity. The SiO 2 layer with a porous structure can increase the ion diffusion channels and accelerate the ion transfer from the outer to the inner layers. The electrochemical measurements demonstrate that the HSCT-hollow-sphere-based electrode manifests a high specific capacitance of 1018 F g -1 at 1 A g -1 which is higher than those for hollow TiO 2 (113 F g -1 ) and SiO 2 /TiO 2 (252 F g -1 ) electrodes, and substantially higher than those of all the previously reported TiO 2 -based electrodes.

  20. Synthesis of Micelles Guided Magnetite (Fe3O4) Hollow Spheres and their application for AC Magnetic Field Responsive Drug Release

    PubMed Central

    Mandal Goswami, Madhuri

    2016-01-01

    This paper reports on synthesis of hollow spheres of magnetite, guided by micelles and their application in drug release by the stimulus responsive technique. Here oleyelamine micelles are used as the core substance for the formation of magnetite nano hollow spheres (NHS). Diameter and shell thickness of NHS have been changed by changing concentration of the micelles. Mechanism of NHS formation has been established by investigating the aliquot collected at different time during the synthesis of NHS. It has been observed that oleyelamine as micelles play an important role to generate hollow-sphere particles of different diameter and thickness just by varying its amount. Structural analysis was done by XRD measurement and morphological measurements, SEM and TEM were performed to confirm the shape and size of the NHS. FTIR measurement support the formation of magnetite phase too. Frequency dependent AC magnetic measurements and AC magnetic field stimulated drug release event by these particles provide a direction of the promising application of these NHS for better cancer treatment in near future. Being hollow & porous in structure and magnetic in nature, such materials will also be useful in other applications such as in removal of toxic materials, magnetic separation etc. PMID:27796329

  1. Preparation of Hollow CuO@SiO2 Spheres and Its Catalytic Performances for the NO + CO and CO Oxidation

    PubMed Central

    Niu, Xiaoyu; Zhao, Tieying; Yuan, Fulong; Zhu, Yujun

    2015-01-01

    The hollow CuO@SiO2 spheres with a mean diameter of 240 nm and a thin shell layer of about 30 nm in thickness was synthesized using an inorganic SiO2 shell coating on the surface of Cu@C composite that was prepared by a two-step hydrothermal method. The obtained hollow CuO@SiO2 spheres were characterized by ICP-AES, nitrogen adsorption-desorption, SEM, TEM, XRD, H2-TPR, CO-TPR, CO-TPD and NO-TPD. The results revealed that the hollow CuO@SiO2 spheres consist of CuO uniformly inserted into SiO2 layer. The CuO@SiO2 sample exhibits particular catalytic activities for CO oxidation and NO + CO reactions compared with CuO supported on SiO2 (CuO/SiO2). The higher catalytic activity is attributed to the special hollow shell structure that possesses much more highly dispersed CuO nanocluster that can be easy toward the CO and NO adsorption and the oxidation of CO on its surface. PMID:25777579

  2. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Longlu; Liang, Jian; Gao, Fengxian; Yin, Kai; Dai, Pei

    2017-09-01

    The rational design and preparation of hierarchical nanoarchitectures are critical for enhanced photocatalytic hydrogen evolution reaction (HER). Herein, well-integrated hollow ZnO@TiO2 heterojunctions were obtained by a simple hydrothermal method. This unique hierarchical heterostructure not only caused multiple reflections which enhances the light absorption but also improved the lifetime and transfer of photogenerated charge carriers due to the potential difference generated on the ZnO-TiO2 interface. As a result, compared to bare ZnO and TiO2, the ZnO@TiO2 composite photocatalyst exhibited higher hydrogen production rated up to 0.152 mmol h-1 g-1 under simulated solar light. In addition, highly repeated photostability was also observed on the ZnO@TiO2 composite photocatalyst even after a continuous test for 30 h. It is expected that this low-cost, nontoxic, and readily available ZnO@TiO2 catalyst could exhibit promising potential in photocatalytic H2 to meet the future fuel needs.

  3. SPHERES

    2013-08-08

    ISS036-E-029522 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  4. SPHERES

    2013-08-08

    ISS036-E-029521 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  5. SPHERES

    2013-08-08

    ISS036-E-029545 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  6. SPHERES

    2013-08-08

    ISS036-E-029539 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.

  7. SPHERES

    2013-08-27

    ISS036-E-037288 (27 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites with ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS, Nyberg performed a demonstration of how power can be transferred between two satellites without physical contact. Station crews beginning with Expedition 8 have operated these robots to test techniques that could lead to advancements in automated dockings, satellite servicing, spacecraft assembly and emergency repairs.

  8. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  9. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-04-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for Oxygen Reduction Reaction

    SciT

    Zhong, Xing; Liu, Lin; Jiang, Yu

    The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN,more » could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  11. Enhancement in hydrogen evolution using Au-TiO2 hollow spheres with microbial devices modified with conjugated oligoelectrolytes

    PubMed Central

    Ngaw, Chee Keong; Wang, Victor Bochuan; Liu, Zhengyi; Zhou, Yi; Kjelleberg, Staffan; Zhang, Qichun; Tan, Timothy Thatt Yang; Loo, Say Chye Joachim

    2015-01-01

    Objective: Although photoelectrochemical (PEC) water splitting heralds the emergence of the hydrogen economy, the need for external bias and low efficiency stymies the widespread application of this technology. By coupling water splitting (in a PEC cell) to a microbial fuel cell (MFC) using Escherichia coli as the biocatalyst, this work aims to successfully demonstrate a sustainable hybrid PEC–MFC platform functioning solely by biocatalysis and solar energy, at zero bias. Through further chemical modification of the photo-anode (in the PEC cell) and biofilm (in the MFC), the performance of the hybrid system is expected to improve in terms of the photocurrent generated and hydrogen evolved. Methods: The hybrid system constitutes the interconnected PEC cell with the MFC. Both PEC cell and MFC are typical two-chambered systems housing the anode and cathode. Au-TiO2 hollow spheres and conjugated oligoelectrolytes were synthesised chemically and introduced to the PEC cell and MFC, respectively. Hydrogen evolution measurements were performed in triplicates. Results: The hybrid PEC–MFC platform generated a photocurrent density of 0.35 mA/cm2 (~70× enhancement) as compared with the stand-alone P25 standard PEC cell (0.005 mA/cm2) under one-sun illumination (100 mW/cm2) at zero bias (0 V vs. Pt). This increase in photocurrent density was accompanied by continuous H2 production. No H2 was observed in the P25 standard PEC cell whereas H2 evolution rate was ~3.4 μmol/h in the hybrid system. The remarkable performance is attributed to the chemical modification of E. coli through the incorporation of novel conjugated oligoelectrolytes in the MFC as well as the lower recombination rate and higher photoabsorption capabilities in the Au-TiO2 hollow spheres electrode. Conclusions: The combined strategy of photo-anode modification in PEC cells and chemically modified MFCs shows great promise for future exploitation of such synergistic effects between MFCs and

  12. Remarkable activity of nitrogen-doped hollow carbon spheres encapsulated Cu on synthesis of dimethyl carbonate: Role of effective nitrogen

    NASA Astrophysics Data System (ADS)

    Li, Haixia; Zhao, Jinxian; Shi, Ruina; Hao, Panpan; Liu, Shusen; Li, Zhong; Ren, Jun

    2018-04-01

    A critical aspect in the improvement of the catalytic performance of Cu-based catalysts for the synthesis of dimethyl carbonate (DMC) is the development of an appropriate support. In this work, nitrogen-doped hollow carbon spheres (NHCSs), with 240 nm average diameter, 17 nm shell thickness, uniform mesoporous structure and a specific surface area of 611 m2 g-1, were prepared via a two-step Stӧber method. By varying the quantity of nitrogen-containing phenols used in the preparation it has been possible to control the nitrogen content and, consequently, the sphericity of the NHCSs. It was found that perfect spheres were obtained for nitrogen contents below 5.4 wt.%. The catalysts (Cu@NHCSs) were prepared by the hydrothermal impregnation method. The catalytic activity towards DMC synthesis was notably enhanced due to the immobilization effect on Cu particles and the enhanced electron transfer effect exercised by the effective nitrogen species, including pyridinic-N and graphitic-N. When the average size of the copper nanoparticles was 7.4 nm and the nitrogen content was 4.0 wt.%, the values of space-time yield of DMC and of turnover frequency (TOF) reached 1528 mg/(g h) and 11.0 h-1, respectively. The TOF value of Cu@NHCSs was 6 times higher than non-doped Cu@Carbon (2.1 h-1). The present work introduces the potential application of nitrogen-doped carbon materials and presents a novel procedure for the preparation of catalysts for DMC synthesis.

  13. One-step formation of TiO2 hollow spheres via a facile microwave-assisted process for photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamad Alosfur, Firas K.; Ridha, Noor J.; Hafizuddin Haji Jumali, Mohammad; Radiman, S.

    2018-04-01

    Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm. The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The particles had an essentially mesoporous structure, with a pore size in the range of 2-50 nm. The results confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately 172.3 m2 g-1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2 photocatalytic activity was studied by measuring the degradation rate of methylene blue. The maximum dye degradation performances with low catalyst loading (30 mg) were 99% and 63.4% using the same duration of ultraviolet and visible light irradiation, respectively (120 min).

  14. Scalable synthesis of Na3V2(PO4)(3)/C porous hollow spheres as a cathode for Na-ion batteries

    SciT

    Mao, JF; Luo, C; Gao, T

    2015-01-01

    Na3V2(PO4)(3) (NVP) has been considered as a very promising cathode material for sodium-ion batteries (SIBs) due to its typical NASICON structure, which provides an open and three dimensional (3D) framework for Na+ migration. However, the low electronic conductivity of NVP limits its rate capability and cycling ability. In this study, carbon coated hollow structured NVP/C composites are synthesized via a template-free and scalable ultrasonic spray pyrolysis process, where the carbon coated NVP particles are uniformly decorated on the inner and outer surfaces of the porous hollow carbon spheres. When evaluated as a cathode material for SIBs, the unique NVP/C porousmore » hollow sphere cathode delivers an initial discharge capacity of 99.2 mA h g(-1) and retains 89.3 mA h g(-1) after 300 charge/discharge cycles with a very low degradation rate of 0.035% per cycle. For comparison, the NVP/C composite, prepared by the traditional sol-gel method, delivers a lower initial discharge capacity of 97.4 mA h g(-1) and decreases significantly to 71.5 mA h g(-1) after 300 cycles. The superior electrochemical performance of NVP/C porous hollow spheres is attributed to their unique porous, hollow and spherical structures, as well as the carbon-coating layer, which provides a high contact area between electrode/electrolyte, high electronic conductivity, and high mechanical strength.« less

  15. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  16. Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode.

    PubMed

    Wei, Xiujuan; Tang, Chunjuan; Wang, Xuanpeng; Zhou, Liang; Wei, Qiulong; Yan, Mengyu; Sheng, Jinzhi; Hu, Ping; Wang, Bolun; Mai, Liqiang

    2015-12-09

    Hierarchical copper silicate hydrate hollow spheres-reduced graphene oxide (RGO) composite is successfully fabricated by a facile hydrothermal method using silica as in situ sacrificing template. The electrochemical performance of the composite as lithium-ion battery anode was studied for the first time. Benefiting from the synergistic effect of the hierarchical hollow structure and conductive RGO matrix, the composite exhibits excellent long-life performance and rate capability. A capacity of 890 mAh/g is achieved after 200 cycles at 200 mA/g and a capacity of 429 mAh/g is retained after 800 cycles at 1000 mA/g. The results indicate that the strategy of combining hierarchical hollow structures with conductive RGO holds the potential in addressing the volume expansion issue of high capacity anode materials.

  17. Nitrogen-doped hollow carbon spheres wrapped with graphene nanostructure for highly sensitive electrochemical sensing of parachlorophenol.

    PubMed

    Yi, Yinhui; Zhu, Gangbing; Sun, Heng; Sun, Jianfan; Wu, Xiangyang

    2016-12-15

    Owing to awfully harmful to the environment and human health, the qualitative and quantitative determination of parachlorophenol (PCP) is of great significance. In this paper, by using silica@polydopamine as template, nitrogen-doped hollow carbon spheres wrapped with reduced graphene oxide (NHCNS@RG) nanostructure was prepared successfully via a self-assembly approach due to the electrostatic interaction, and the obtained NHCNS@RG could exhibit the unique properties of NHCNS and RG: the NHCNS could impede the aggregation tendency of RG and possess high electrocatalytic activity; the RG enlarges the contacting area and offers many area-normalized edge-plane structures and active sites. Scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray diffraction and electrochemical method were used to characterize the morphology and structure of NHCNS@RG. Then, the NHCNS@RG hybrids were applied for the electrochemical sensing of PCP, under the optimized conditions, the detection limit of PCP obtained in this work is 0.01μM and the linear range is 0.03-38.00μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant ( K m) and the maximum current density ( i max) values for the biosensor were 10.94 mM and 887 μA cm-2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  19. A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of Gram-Positive Bacteria

    NASA Astrophysics Data System (ADS)

    Wang, Hongsu; Luo, Ruiping; Chen, Yang; Si, Qi; Niu, Xiaodi

    2018-05-01

    A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL-1 to 2.5 × 102 CFU mL-1, with detection limit as low as 9.0 CFU mL-1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA.

  20. Double hollow MoS2 nano-spheres: Synthesis, tribological properties, and functional conversion from lubrication to photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yueru; Hu, Kunhong; Hu, Enzhu; Guo, Jianhua; Han, Chengliang; Hu, Xianguo

    2017-01-01

    Molybdenum disulfide (MoS2) has extensive applications in industries as solid lubricants and catalysts. To improve the lubricating performance of MoS2, novel double-hollow-sphere MoS2 (DHSM) nanoparticles with an average diameter of approximately 90 nm were synthesized on sericite mica (SM). When the DHSM/SM composite was used as an additive in polyalphaolefin oil, friction and wear decreased by 22.4% and 63.5% respectively. The low friction and wear were attributed to the easy exfoliation of DHSM. The DHSM/SM composite was then rubbed under 40 MPa for 1 h to investigate the exfoliation and functional conversion behaviors of DHSM. Results showed that DHSM (lubricating structure) on SM could be completely exfoliated into nanosheets (catalytic structure) by rubbing. The nanosheets exfoliated from DHSM presented good photocatalytic activity for the removal of organic compounds from waste water. This work provided both a novel solid lubricant for industrial applications and a possible approach to designing a novel green lubricant for use as a photocatalyst in organic-waste treatment after lubricating service life.

  1. Hollow mesoporous carbon spheres-based fiber coating for solid-phase microextraction of polycyclic aromatic hydrocarbons.

    PubMed

    Hu, Xingru; Liu, Chao; Li, Jiansheng; Luo, Rui; Jiang, Hui; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-10-20

    In this study, a novel hollow mesoporous carbon spheres-based fiber (HMCSs-F) was fabricated to immobilize HMCSs onto a stainless steel wire for solid-phase microextraction (SPME). Characterization results showed that the HMCSs-F possessed a large specific surface area, high porosity and uniform pore size. To demonstrate the extraction performance, a series of polycyclic aromatic hydrocarbons (PAHs) was chosen as target analytes. The experimental parameters including extraction and desorption conditions were optimized. Compared to commercial fibers, the HMCSs-F exhibited better extraction efficiency for PAHs. More interestingly, a good extraction selectivity for PAHs from the complex matrix was observed in these HMCSs-F. The enhanced SPME performance was attributed to the unique pore structure and special surface properties of the HMCSs. Furthermore, under the optimum conditions, the limits of detection (LODs) for the HMCSs-F were in the range of 0.20-1.15ngL -1 with a corresponding relative standard deviation that was below 8.6%. The method was successfully applied for the analysis of PAHs in actual environmental water samples with recoveries ranging from 85.9% to 112.2%. These results imply that the novel HMCSs-F have potential application in environmental water analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application.

    PubMed

    Sarkar, Debasish; Mandal, Kalyan; Mandal, Madhuri

    2014-03-01

    Here solvo-thermal technique has been used to synthesize hollow-nanospheres of magnetite. We have shown that PVP plays an important role to control the particle size and also helps the particles to take the shape of hollow spheres. Structural analysis was done by XRD measurement and morphological measurements like SEM and TEM were performed to confirm the hollow type spherical particles formation and their shape and sizes were also investigated. The detail ac-dc magnetic measurements give an idea about the application of these nano spheres for hyperthermia therapy and spontaneous dye adsorption properties (Gibbs free energy deltaG0 = -0.526 kJ/mol for Eosin and -1.832 kJ/mol for MB) of these particles indicate its use in dye manufacturing company. Being hollow in structure and magnetic in nature such materials will also be useful in other application fields like in drug delivery, arsenic and heavy metal removal by adsorption technique, magnetic separation etc.

  3. Metal-Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes.

    PubMed

    Yu, Litao; Liu, Jun; Xu, Xijun; Zhang, Liguo; Hu, Renzong; Liu, Jiangwen; Yang, Lichun; Zhu, Min

    2017-01-25

    The MOFs (metal-organic frameworks) have been extensively used for electrode materials due to their high surface area, permanent porosity, and hollow structure, but the role of antimony on the MOFs is unclear. In this work, we design the hollow spheres Ni-MOFs with SbCl 3 to synthesize NiSb⊂CHSs (NiSb-embedded carbon hollow spheres) via simple annealing and galvanic replacement reactions. The NiSb⊂CHSs inherited the advantages of Ni-MOFs with hollow structure, high surface area, and permanent porosity, and the NiSb nanoparticles are coated by the formed carbon particles which could effectively solve the problem of vigorous volume changes during the Li + insertion/extraction process. The porous and network structure could well provide an extremely reduced pathway for fast Li + diffusion and electron transport and provide extra free space for alleviating the structural strain. The NiSb⊂CHSs with these features were used as Li-ion batteries for the first time and exhibited excellent cycling performance, high specific capacity, and great rate capability. When coupled with a nanostructure LiMn 2 O 4 cathode, the NiSb⊂CHSs//LiMn 2 O 4 full cell also characterized a high voltage operation of ≈3.5 V, high rate capability (210 mA h g -1 at a current density of 2000 mA g -1 ), and high Coulombic efficiency of approximate 99%, meeting the requirement for the increasing demand for improved energy devices.

  4. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  5. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  6. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui

    2018-06-01

    Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).

  7. Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries.

    PubMed

    Yang, Shiliu; Hu, Mingjun; Xi, Liujiang; Ma, Ruguang; Dong, Yucheng; Chung, C Y

    2013-09-25

    A microspherical, hollow LiFePO4 (LFP) cathode material with polycrystal structure was simply synthesized by a solvothermal method using spherical Li3PO4 as the self-sacrificed template and FeCl2·4H2O as the Fe(2+) source. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the LFP micro hollow spheres have a quite uniform size of ~1 μm consisting of aggregated nanoparticles. The influences of solvent and Fe(2+) source on the phase and morphology of the final product were chiefly investigated, and a direct ion exchange reaction between spherical Li3PO4 templates and Fe(2+) ions was firstly proposed on the basis of the X-ray powder diffraction (XRD) transformation of the products. The LFP nanoparticles in the micro hollow spheres could finely coat a uniform carbon layer ~3.5 nm by a glucose solution impregnating-drying-sintering process. The electrochemical measurements show that the carbon coated LFP materials could exhibit high charge-discharge capacities of 158, 144, 125, 101, and even 72 mAh g(-1) at 0.1, 1, 5, 20, and 50 C, respectively. It could also maintain 80% of the initial discharge capacity after cycling for 2000 times at 20 C.

  8. Synthesis and characterization of Eu{sup 3+}:Gd{sub 2}O{sub 3} hollow spheres for biomedical applications

    SciT

    Kumari, Manisha, E-mail: guptamanisha69@yahoo.co.in; Sharma, Prashant K., E-mail: prashantnac@gmail.com

    Multifunctional magnetic Nanoparticles (MFMNPs) are potentially applicable in both drug delivery systems (DDS) and hyperthermia treatment. Structural, surface morphology and optical property were investigated by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) measurement. Uniform Eu{sup 3+}:Gd{sub 2}O{sub 3} hollow microspheres of 1.8-2.0 μm diameters were synthesized by template based approach. We found that synthesized Hollow spheres are 100 nm in thickness. FE-SEM images revealed that the synthesized material are hollow in structure with good porous structure and these pores work as pathway for releasing drugs from the hollow particle inside. Luminescent properties of material were studiedmore » by room temperature photoluminescence emission spectra under the excitation of 275 nm. Material exhibit bright red emission corresponding to the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of the activator ions under ultraviolet light excitation, which might find potential applications in fields such as drug delivery or biological labeling because of their excellent luminescence properties.« less

  9. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    PubMed

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  10. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  11. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  12. L-cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime

    NASA Astrophysics Data System (ADS)

    Zhu, Chengzhang; Jiang, Zhifeng; Chen, Linlin; Qian, Kun; Xie, Jimin

    2017-03-01

    Novel hierarchical NiS2 hollow spheres modified by graphite-like carbon nitride were prepared using a facile L-cysteine-assisted solvothermal route. The NiS2/g-C3N4 composites exhibited excellent photocatalytic efficiency in rhodamine B, methyl orange and ciprofloxacin degradation as compared to single g-C3N4 and NiS2, which could be due to the synergistic effects of the unique hollow sphere-like structure, strong visible-light absorption and increased separation rate of the photoinduced electron-hole pairs at the intimate interface of heterojunctions. A suitable combination of g-C3N4 with NiS2 showed the best photocatalytic performance. In addition, an electron spin resonance and trapping experiment demonstrated that the photogenerated hydroxyl radicals and superoxide radicals were the two main photoactive species in photocatalysis. A possible photocatalytic mechanism of NiS2/g-C3N4 composites under visible light irradiation is also proposed. The strategy presented here can be extended to a general strategy for constructing 3D/2D heterostructured photocatalysts for broad applications in photocatalysis.

  13. Hierarchical NiCo2O4 Hollow Sphere as a Peroxidase Mimetic for Colorimetric Detection of H2O2 and Glucose

    PubMed Central

    Huang, Wei; Lin, Tianye; Cao, Yang; Lai, Xiaoyong; Peng, Juan; Tu, Jinchun

    2017-01-01

    In this work, the hierarchical NiCo2O4 hollow sphere synthesized via a “coordinating etching and precipitating” process was demonstrated to exhibit intrinsic peroxidase-like activity. The peroxidase-like activity of NiCo2O4, NiO, and Co3O4 hollow spheres were comparatively studied by the catalytic oxidation reaction of 3,3,5,5-tetramethylbenzidine (TMB) in presence of H2O2, and a superior peroxidase-like activity of NiCo2O4 was confirmed by stronger absorbance at 652 nm. Furthermore, the proposed sensing platform showed commendable response to H2O2 with a linear range from 10 μM to 400 μM, and a detection limit of 0.21 μM. Cooperated with GOx, the developed novel colorimetric and visual glucose-sensing platform exhibited high selectivity, favorable reproducibility, satisfactory applicability, wide linear range (from 0.1 mM to 4.5 mM), and a low detection limit of 5.31 μM. In addition, the concentration-dependent color change would offer a better and handier way for detection of H2O2 and glucose by naked eye. PMID:28124997

  14. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  15. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  16. Sandwich-like C@SnO2/Sn/void@C hollow spheres as improved anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Jiang, Xinya; Chai, Yaqin; Yang, Xia; Yuan, Ruo

    2018-03-01

    As lithium ion batteries (LIBs) anode, SnO2 suffers fast capacity fading due to its large volume expansion during discharge/charge process. To overcome the problem, sandwich-like C@SnO2/Sn/void@C hollow spheres (referred as C@SnO2/Sn/void@C HSs) are prepared by in-situ polymerization and carbonization, using hollow SnO2 as self-template and dopamine as carbon source. The C@SnO2/Sn/void@C HSs possesses the merits of hollow and core/void/shell structure, so that they can accommodate the volume change under discharge/charge process, shorten the transmission distance of Li ions, own more contact area for the electrolyte. Thanks to these advantages, C@SnO2/Sn/void@C HSs display excellent electrochemical performance as anode materials for LIBs, which deliver a high capacity of 786.7 mAh g-1 at the current density of 0.5 A g-1 after 60 cycles. The simple synthesis method for C@SnO2/Sn/void@C HSs with special structure will provide a promising method for preparing other anode materials for LIBs.

  17. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: (I) Synthesis, structural and microstructural characterization

    SciT

    Ortiz-Landeros, J.; Departamento de Ingenieria Metalurgica, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, IPN, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF; Contreras-Garcia, M.E.

    Lithium metasilicate (Li{sub 2}SiO{sub 3}) was successfully synthesized using a hydrothermal process in the presence of different surfactants with cationic, non-ionic and anionic characters. The samples obtained were compared to a sample prepared by the conventional solid-state reaction method. The structural and microstructural characterizations of different Li{sub 2}SiO{sub 3} powders were performed using various techniques. Diffraction analyses revealed the successful crystallization of pure Li{sub 2}SiO{sub 3} single phase by hydrothermal technique, even without further heat-treatments and independent of the surfactant used. Electron microscopy analyses revealed that Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow spheremore » morphology and nanostructured walls. Finally, different thermal analyses showed that Li{sub 2}SiO{sub 3} samples preserved their structure and microstructure after further thermal treatments. Specific aspects regarding the formation mechanism of the spherical aggregates under hydrothermal conditions are discussed, and there is a special emphasis on the effect of the synthesis pathway on the morphological characteristics. -- Graphical abstract: Li{sub 2}SiO{sub 3} was synthesized using a hydrothermal process in the presence of different surfactants. Li{sub 2}SiO{sub 3} powders were composed of uniform micrometric particles with a hollow sphere morphology and nanostructured walls. Display Omitted Highlights: {yields} Pure Li{sub 2}SiO{sub 3} was synthesized by the hydrothermal method. {yields} Surfactant addition produced microstructural and morphological variations. {yields} TEM reveled the generation of nanostructured hollow spheres.« less

  18. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    SciT

    Xu, X; Park, J; Hong, YK

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less

  19. A template-free solvothermal synthesis and photoluminescence properties of multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres

    NASA Astrophysics Data System (ADS)

    Sang, Xiaotong; Xu, Guangxi; Lian, Jingbao; Wu, Nianchu; Zhang, Xue; He, Jiao

    2018-06-01

    The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D4→7F5 transitions of Tb3+ ions and 5D0→7F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.

  20. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  1. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzheng; Sun, Kai; Liang, Zhan; Wang, Yanli; Ling, Licheng

    2018-01-01

    N-doped yolk-shell hollow carbon sphere wrapped with reduced graphene oxide (rGO/N-YSHCS) is designed and fabricated as sulfur host for lithium-sulfur batteries. The shuttle effect of polysulfides can be suppressed effectively by the porous yolk-shell structure, graphene layer and N-doping. A good conductivity network is provided for electron transportation through the graphene layer coupled with the unique yolk-shell carbon matrix. Such unique structure offers the synthesized rGO/N-YSHCS/S electrode with a high reversible capacity (800 mAh g-1 at 0.2 C after 100 cycles) and good high-rate capability (636 mAh g-1 at 1 C and 540 mAh g-1 at 2 C).

  2. One-Step Synthesis of Cagelike Hollow Silica Spheres with Large Through-Holes for Macromolecule Delivery.

    PubMed

    Wang, Shengnan; Chen, Min; Wu, Limin

    2016-12-07

    A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)-xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300-460 nm) with large through-holes (10-30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm 3 ) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.

  3. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries.

    PubMed

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen David

    2016-10-20

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  4. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium–sulfur batteries

    PubMed Central

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-01-01

    Lithium–sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium–sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles. PMID:27762261

  5. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Zhang, Jintao; Guan, Buyuan; Wang, Da; Liu, Li-Min; Lou, Xiong Wen (David)

    2016-10-01

    Lithium-sulfur batteries show advantages for next-generation electrical energy storage due to their high energy density and cost effectiveness. Enhancing the conductivity of the sulfur cathode and moderating the dissolution of lithium polysulfides are two key factors for the success of lithium-sulfur batteries. Here we report a sulfur host that overcomes both obstacles at once. With inherent metallic conductivity and strong adsorption capability for lithium-polysulfides, titanium monoxide@carbon hollow nanospheres can not only generate sufficient electrical contact to the insulating sulfur for high capacity, but also effectively confine lithium-polysulfides for prolonged cycle life. Additionally, the designed composite cathode further maximizes the lithium-polysulfide restriction capability by using the polar shells to prevent their outward diffusion, which avoids the need for chemically bonding all lithium-polysulfides on the surfaces of polar particles.

  6. Structural evaluations and temperature dependent photoluminescence characterizations of Eu3+-activated SrZrO3 hollow spheres for luminescence thermometry applications

    PubMed Central

    Das, Subrata; Som, Sudipta; Yang, Che-Yuan; Chavhan, Sudam; Lu, Chung-Hsin

    2016-01-01

    This research is focused on the temperature sensing ability of perovskite SrZrO3:Eu3+ hollow spheres synthesized via the sol-gel method followed by heating. The Rietveld refinement indicated that the precursors annealed at 1100 °C were crystallized to form orthorhombic SrZrO3. SrZrO3 particles exhibited non-agglomerated hollow spherical morphology with an average particle size of 300 nm. The UV-excited photoluminescence spectrum of SrZrO3:Eu3+ consisted of two regions. One region was associated with SrZrO3 trap emission, and the other one was related to the emission of Eu3+ ions. The intensity ratio of the emission of Eu3+ ions to the host emission (FIR) and the emission lifetime of Eu3+ ions were measured in the temperature range of 300–550 K. The sensitivity obtained via the lifetime method was 7.3× lower than that measured via the FIR. Within the optimum temperature range of 300–460 K, the as-estimated sensor sensitivity was increased from 0.0013 to 0.028 K−1. With a further increase in temperatures, the sensitivity started to decline. A maximum relative sensitivity was estimated to be 2.22%K−1 at 460 K. The resolutions in both methods were below 1K in the above temperature range. The results indicated the suitability of SrZrO3:Eu3+ for the distinct high temperature sensing applications. PMID:27189117

  7. Shape Engineering of Biomass-Derived Nanoparticles from Hollow Spheres to Bowls via Solvent-Induced Buckling.

    PubMed

    Chen, Chunhong; Li, Xuefeng; Jiang, Deng; Wang, Zhe; Wang, Yong

    2018-06-19

    To realize the asymmetry for the hollow carbonaceous nanostructures remains to be a great challenge, especially when biomass is chosen as the carbon resource via hydrothermal carbonization (HTC). Herein, a simple and straightforward solvent induced buckling strategy is demonstrated for the synthesis of asymmetric spherical and bowllike carbonaceous nanomaterials. The formation of the bowllike morphology was attributed to the buckling of the spherical shells induced by the dissolution of the oligomers. The bowllike particles made by this solvent-driven approach demonstrated a well-controlled morphology and a uniform particle size of ~360 nm. The obtained nanospheres and nanobowls can be loaded with CoS2 nanoparticles to act as novel heterogeneous catalysts for the selective hydrogenation of aromatic nitro compounds. With the bowllike structure in hand, as expected, the CoS2/nanobowls catalyst showed good tolerance to a wide scope of reducible groups and afforded both high activity and selectivity in almost all the tested substrates (14). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application.

    PubMed

    Jia, Qianqian; Ji, Huiming; Zhang, Ying; Chen, Yalu; Sun, Xiaohong; Jin, Zhengguo

    2014-07-15

    Hierarchical nanostructured ZnO dandelion-like spheres were synthesized via solvothermal reaction at 200°C for 4h. The products were pure hexagonal ZnO with large exposure of (002) polar facet. Side-heating gas sensor based on hierarchical ZnO spheres was prepared to evaluate the acetone gas sensing properties. The detection limit to acetone for the ZnO sensor is 0.25ppm. The response (Ra/Rg) toward 100ppm acetone was 33 operated at 230°C and the response time was as short as 3s. The sensor exhibited remarkable acetone selectivity with negligible response toward other hazardous gases and water vapor. The high proportion of electron depletion region and oxygen vacancies contributed to high gas response sensitivity. The hollow and porous structure of dandelion-like ZnO spheres facilitated the diffusion of gas molecules, leading to a rapid response speed. The largely exposed (002) polar facets could adsorb acetone gas molecules easily and efficiently, resulting in a rapid response speed and good selectivity of hierarchical ZnO spheres gas sensor at low operating temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Down-conversion emission of Ce3+-Tb3+ co-doped CaF2 hollow spheres and application for solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Yufei; Wang, Yongbo; Teng, Feng; Dong, Hua; Chen, Lida; Mu, Jianglong; Sun, Qian; Fan, Jun; Hu, Xiaoyun; Miao, Hui

    2018-03-01

    Luminescent downconversion is a promising way to harvest ultraviolet sunlight and transform it into visible light that can be absorbed by solar cells, and has potential to improve their photoelectric conversion efficiency. In this work, the uniform hollow spheres and well dispersed CaF2 phosphors doped with rare-earth Ce3+ and Tb3+ ions are prepared by a one-step hydrothermal synthesis method. Benefiting from the stronger ability of absorption and emission and excellent transparency property, we demonstrate that the application of the doped nanocrystals can efficiently improve visible light transmittance. The chosen phosphors are added in the SiO2 sols so as to get the anti-reflection coatings with wavelength conversion bi-functional films, promoting the optical transmittance in the visible and near-infrared range which matches with the range of the band gap energy of silicon semiconductor. Optimized photoelectric conversion efficiency of 14.35% and the external quantum efficiency over 70% from 450 to 950 nm are obtained through the silicon solar cells with 0.10 g phosphors coating. Compared with the pure glass devices, the photoelectric conversion efficiency is enhanced by 0.69%. This work indicates that fluorescent downconversion not only can serve as proof of principles for improving photoelectric conversion efficiency of solar cells but also may be helpful to practical application in the future.

  10. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  11. Highly selective determination of amitriptyline using Nafion-AuNPs@branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids.

    PubMed

    Zad, Zeinab Rezayati; Davarani, Saied Saeed Hosseiny; Taheri, Ali Reza; Bide, Yasamin

    2016-12-15

    In this paper, AuNPs@Polyethyleneimine-derived carbon hollow spheres were synthesized by a versatile and facile method in three steps and successfully developed and validated as Amitriptyline sensor using cyclic voltammetry (CV), chronoamperometry (CA) and differential pulse voltammetry (DPV) methods. The characterization of the electrode surface has been carried out by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photo-electron spectrum (XPS), electrochemical impedance spectroscopy (EIS) and chronocoulometry (CC). The obtained negatively charged modified electrode was highly selective to Amitriptyline and it was shown a wide linear range from 0.1 to 700μmolL(-1), with a lower detection limit of 0.034μmolL(-1) (n=5, S/N=3), revealing the high-sensitivity properties. The modified electrode is used to achieve the real-time quantitative detection of AMT for biological applications, and satisfactory results are obtained. Due to the advantages of the sensor, its selectivity, sensitivity and stability, it will have a bright future in the field of medical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Evaluation of SiO{sub 2}@CoFe{sub 2}O{sub 4} nano-hollow spheres through THz pulses

    SciT

    Rakshit, Rupali, E-mail: rupali12@bose.res.in; Pal, Monalisa; Chaudhuri, Arka

    2016-05-06

    We have synthesized cobalt ferrite (CFO) nanoparticles (NPs) of diameter 100 nm and nano-hollow spheres (NHSs) of diameter 100, 160, 250, and 350 nm by a facile one step template free solvothermal technique and carried out SiO{sub 2} coating on their surface following Stöber method. The phase and morphology of the nanostructures were confirmed by X-ray diffraction and transmission electron microscope. The magnetic measurements were carried out by vibrating sample magnetometer in order to study the influence of SiO{sub 2} coating on the magnetic properties of bare CFO nanostructures. Furthermore, we have applied THz time domain spectroscopy to investigate the THz absorptionmore » property of these nanostructures in the frequency range 1.0–2.5 THz. Detailed morphology and size dependent THz absorption study unfolds that the absorption property of these nanostructures sensitively carries the unique signature of its dielectric property.« less

  13. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    NASA Astrophysics Data System (ADS)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  14. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    NASA Astrophysics Data System (ADS)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  15. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples.

    PubMed

    Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange

    2014-11-21

    Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, <12%, n=6), and satisfactory recoveries between 84.9% and 101.0% under optimal conditions. Real environmental samples collected from rivers, local lakes, rain and spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Layer-by-Layer Assembled Architecture of Polyelectrolyte Multilayers and Graphene Sheets on Hollow Carbon Spheres/Sulfur Composite for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Wu, Feng; Li, Jian; Su, Yuefeng; Wang, Jing; Yang, Wen; Li, Ning; Chen, Lai; Chen, Shi; Chen, Renjie; Bao, Liying

    2016-09-14

    In the present work, polyelectrolyte multilayers (PEMs) and graphene sheets are applied to sequentially coat on the surface of hollow carbon spheres/sulfur composite by a flexible layer-by-layer (LBL) self-assembly strategy. Owing to the strong electrostatic interactions between the opposite charged materials, the coating agents are very stable and the coating procedure is highly efficient. The LBL film shows prominent impact on the stability of the cathode by acting as not only a basic physical barrier, and more importantly, an ion-permselective film to block the polysulfides anions by Coulombic repulsion. Furthermore, the graphene sheets can help to stabilize the polyelectrolytes film and greatly reduce the inner resistance of the electrode by changing the transport of the electrons from a "point-to-point" mode to a more effective "plane-to-point'' mode. On the basis of the synergistic effect of the PEMs and graphene sheets, the fabricated composite electrode exhibits very stable cycling stability for over 200 cycles at 1 A g(-1), along with a high average Coulombic efficiency of 99%. With the advantages of rapid and controllable fabrication of the LBL coating film, the multifunctional architecture developed in this study should inspire the design of other lithium-sulfur cathodes with unique physical and chemical properties.

  17. Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Marandi, Maziar; Rahmani, Elham; Ahangarani Farahani, Farzaneh

    2017-12-01

    CdS quantum dot-sensitized solar cells (QDSCs) have been fabricated and their photoanode optimized by altering the thickness of the photoelectrode and CdS deposition conditions and applying a ZnS electron-blocking layer and TiO2 hollow spheres. Hydrothermally grown TiO2 nanocrystals (NCs) with dominant size of 20 nm were deposited as a sublayer in the photoanode with thickness in the range from 5 μm to 10 μm using a successive ionic layer adsorption and reaction (SILAR) method. The number of deposition cycles was altered over a wide range to obtain optimized sensitization. Photoanode thickness and number of CdS sensitization cycles around the optimum values were selected and used for ZnS deposition. ZnS overlayers were also deposited on the surface of the photoanodes using different numbers of cycles of the SILAR process. The best QDSC with the optimized photoelectrode demonstrated a 153% increase in efficiency compared with a similar cell with ZnS-free photoanode. Such bilayer photoelectrodes were also fabricated with different thicknesses of TiO2 sublayers and one overlayer of TiO2 hollow spheres (HSs) with external diameter of 500 nm fabricated by liquid-phase deposition with carbon spheres as template. The optimization was performed by changing the photoanode thickness using a wide range of CdS sensitizing cycles. The maximum energy conversion efficiency was increased by about 77% compared with a similar cell with HS-free photoelectrode. The reason was considered to be the longer path length of the incident light inside the photoanode and greater light absorption. A ZnS blocking layer was overcoated on the surface of the bilayer photoanode with optimized thickness. The number of CdS sensitization cycles was also changed around the optimized value to obtain the best QDSC performance. The number of ZnS deposition cycles was also altered in a wide range for optimization of the photovoltaic performance. It was shown that the maximum efficiency was increased by

  18. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  19. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    PubMed

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  1. Filter Bed of Packed Spheres

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Wang, T. G.

    1986-01-01

    Spheres sized and treated for desired sieve properties. Filter constructed from densely packed spheres restrained by screens. Hollow gas-filled plastic or metal spheres normally used. Manufactured within one percent or better diameter tolerance. Normally, all spheres in filter of same nominal diameter. Filter used as sieve to pass only particles smaller than given size or to retain particles larger than that size. Options available under filter concept make it easy to design for specific applications.

  2. An Unusual Rolling-Sphere Phenomenon.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1996-01-01

    Discusses the theory behind a study of motion where a hollow plastic sphere racing against a steel sphere in two parallel sections of inclined channeling always reaches the bottom first; once on the floor, however, the steel sphere travels faster, speeding past the plastic sphere when both are about one meter from the base of the track. (JRH)

  3. Porous Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  4. Self-assembly synthesis of precious-metal-free 3D ZnO nano/micro spheres with excellent photocatalytic hydrogen production from solar water splitting

    NASA Astrophysics Data System (ADS)

    Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song

    2015-10-01

    A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.

  5. 3D hierarchical magnetic hollow sphere-like CuFe2O4 combined with HPLC for the simultaneous determination of Sudan I-IV dyes in preserved bean curd.

    PubMed

    Liu, Xueyan; Qi, Xinyu; Zhang, Lei

    2018-02-15

    Three-dimensional (3D) hierarchical magnetic hollow sphere-like CuFe 2 O 4 (3D HMHS-CuFe 2 O 4 ) were designed to sensitively detect four Sudan dyes combined with HPLC-DAD. The formation mechanism of 3D HMHS-CuFe 2 O 4 is also discussed. Compared to the particle-like CuFe 2 O 4 (PL-CuFe 2 O 4 ), the as-obtained 3D HMHS-CuFe 2 O 4 provided a higher extraction efficiency for the four Sudan dyes (I, II, III and IV) due to its hierarchical hollow structure with properly interconnected pores where the targets can easily diffuse into the reaction sites. Thus, a magnetic solid-phase extraction (MSPE)-HPLC method was established for the simultaneous measurement of the four Sudan dyes. Under optimized conditions, good linearity (5-4000ngg -1 , r 2 ≥0.9991), limits of detection (LODs, 0.56-0.60ngg -1 ), recoveries (91.1%-99.3%) and precision (RSDs≤4.9%) for the four Sudan dyes were obtained. The proposed MSPE-HPLC-DAD method is a convenient, effective, sensitive and time-saving method for the rapid isolation and determination of four Sudan dyes in preserved bean curd. Copyright © 2017. Published by Elsevier Ltd.

  6. Template-free fabrication of hollow N-doped carbon sphere (h-NCS) to synthesize h-NCS@PANI positive material for MoO3//h-NCS@PANI asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqin; Xiang, Xinxin; Liu, Yunhua; Xiao, Dan

    2018-06-01

    Asymmetric supercapacitors (ASCs) based on pseudocapacitor electrode materials are vital to improve the electrochemical properties of devices in aqueous electrolytes. This study fabricates hollow N-doped carbon sphere (h-NCS) to produce h-NCS@PANI nanocomposite as positive electrode and α-MoO3 as negative electrode to assemble ASC device. In particular, a facile template-free synthesis method, catalyzed by Cu2+, is used to prepare hollow PANI nanosphere precursor to build h-NCS. The mechanism of the precursor formation is illustrated in detail. After polymerization of PANI on the surface of h-NCS, the capacitance increases to 327 F g-1 at 1 A g-1. Furthermore, a hydrothermal reaction is carried out to produce α-MoO3 negative electrode material. The maximum specific capacitance of 720 F g-1 is achieved at 1 A g-1. The obtained h-NCS@PANI and α-MoO3 are utilized to construct an ASC device. The electrochemical properties of this device are investigated comprehensively. The maximum energy density of 34.1 W h kg-1 and power density of 9350.6 W kg-1 are observed, which provide an insight into the development of ASCs.

  7. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties.

    PubMed

    Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-04

    Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

  8. Sphere based fluid systems

    NASA Technical Reports Server (NTRS)

    Elleman, Daniel D. (Inventor); Wang, Taylor G. (Inventor)

    1989-01-01

    Systems are described for using multiple closely-packed spheres. In one system for passing fluid, a multiplicity of spheres lie within a container, with all of the spheres having the same outside diameter and with the spheres being closely nested in one another to create multiple interstitial passages of a known size and configuration and smooth walls. The container has an inlet and outlet for passing fluid through the interstitial passages formed between the nested spheres. The small interstitial passages can be used to filter out material, especially biological material such as cells in a fluid, where the cells can be easily destroyed if passed across sharp edges. The outer surface of the spheres can contain a material that absorbs a constitutent in the flowing fluid, such as a particular contamination gas, or can contain a catalyst to chemically react the fluid passing therethrough, the use of multiple small spheres assuring a large area of contact of these surfaces of the spheres with the fluid. In a system for storing and releasing a fluid such as hydrogen as a fuel, the spheres can include a hollow shell containing the fluid to be stored, and located within a compressable container that can be compressed to break the shells and release the stored fluid.

  9. Influence of carbon content on photocatalytic performance of C@ZnO hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Jin, Changqing; Zhu, Kexin; Jian, Zengyun; Wei, Yongxing; Gao, Ling; Zhang, Zhihong; Zheng, Deshan

    2018-02-01

    Mesoporous C@ZnO hollow spheres were successfully synthesized through a carbon-sphere template combined hydrothermal method. The photocatalytic activities of the samples to rhodamine B (RhB) were investigated, and the sample of 3 wt% carbon has the best photocatalytic activity to RhB. The excellent photocatalytic performance could come from both enhanced photogenerated electron-hole pair separation, and the larger specific surface area induced by mesoporous hollow nanostructure. The photocatalytic performance sensitively depends upon content of amorphous carbon. Too much or too little carbon content decreases sample performance. The changes in performance according to carbon content are probably a result of the competing mechanism: the increasing rate of separation efficiency of photogenerated carriers and the decreasing contact area of ZnO with RhB according to the carbon content. This work would help us to better understand the important roles of carbon content in the fabricated nano-heterojunctions and also provide us with a feasible route to improve UV photocatalytic activities of ZnO and other metal oxides greatly.

  10. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    PubMed Central

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B.N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-01-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues. PMID:26145450

  11. Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression

    NASA Astrophysics Data System (ADS)

    Puvvada, Nagaprasad; Rajput, Shashi; Kumar, B. N. Prashanth; Sarkar, Siddik; Konar, Suraj; Brunt, Keith R.; Rao, Raj R.; Mazumdar, Abhijit; Das, Swadesh K.; Basu, Ranadhir; Fisher, Paul B.; Mandal, Mahitosh; Pathak, Amita

    2015-07-01

    Low pH in the tumor micromilieu is a recognized pathological feature of cancer. This attribute of cancerous cells has been targeted herein for the controlled release of chemotherapeutics at the tumour site, while sparing healthy tissues. To this end, pH-sensitive, hollow ZnO-nanocarriers loaded with paclitaxel were synthesized and their efficacy studied in breast cancer in vitro and in vivo. The nanocarriers were surface functionalized with folate using click-chemistry to improve targeted uptake by the malignant cells that over-express folate-receptors. The nanocarriers released ~75% of the paclitaxel payload within six hours in acidic pH, which was accompanied by switching of fluorescence from blue to green and a 10-fold increase in the fluorescence intensity. The fluorescence-switching phenomenon is due to structural collapse of the nanocarriers in the endolysosome. Energy dispersion X-ray mapping and whole animal fluorescent imaging studies were carried out to show that combined pH and folate-receptor targeting reduces off-target accumulation of the nanocarriers. Further, a dual cell-specific and pH-sensitive nanocarrier greatly improved the efficacy of paclitaxel to regress subcutaneous tumors in vivo. These nanocarriers could improve chemotherapy tolerance and increase anti-tumor efficacy, while also providing a novel diagnostic read-out through fluorescent switching that is proportional to drug release in malignant tissues.

  12. Photocurrent enhancement mechanisms in bilayer nanofilm-based ultraviolet photodetectors made from ZnO and ZnS spherical nanoshells

    PubMed Central

    2014-01-01

    Hollow-sphere bilayer nanofilm-based ultraviolet light photodetectors made from ZnO and ZnS spherical nanoshells show enhanced photocurrent, which are comparable to or even better than those of other semiconductor nanostructures with different shapes. In this work, the photocurrent enhancement mechanisms of these bilayer nanofilm-based ultraviolet light photodetectors are explained, which could be attributed to the strong light absorption based on the whispering gallery mode resonances, the separation of the photogenerated carriers through the internal electric field within the bilayer nanofilms, the hopping-like electrical transport, and the effective charge injection from Cr/Au contacts to the nanofilms. PMID:25136287

  13. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  14. Y2O3:Yb,Er@mSiO2-CuxS double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-01

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small CuxS nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-CuxS composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached CuxS nanoparticles and the enhanced chemotherapy promoted by the heat from the CuxS-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large

  15. SPHERES Slosh

    2014-06-18

    ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  16. SPHERES Slosh

    2014-06-18

    ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  17. SPHERES Slosh

    2014-06-18

    ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  18. SPHERES Slosh

    2014-06-18

    ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  19. SPHERES Slosh

    2014-06-18

    ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  20. SPHERES Slosh

    2014-06-18

    ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  1. SPHERES Slosh

    2014-06-18

    ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.

  2. SPHERES HALO

    2017-06-23

    iss052e006482 (6/23/2017) --- Astronaut Peggy Whitson is photographed during a test session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Halo investigation in the Kibo module. The SPHERES Halo investigation studies the possibility of launching several separate components and then attaching them once they are in space. The investigation upgrades the International Space Station’s fleet of SPHERES to enable each SPHERE to communicate with six external objects at the same time, testing new control and remote assembly methods.

  3. Ceramic Spheres From Cation Exchange Beads

    NASA Technical Reports Server (NTRS)

    Dynys, F. W.

    2003-01-01

    Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.

  4. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  5. SPHERES Slosh

    2014-06-18

    ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.

  6. Sphere launcher

    NASA Technical Reports Server (NTRS)

    Reed, W. B.

    1972-01-01

    The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.

  7. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

    SciT

    Dem'yanets, L. N., E-mail: demianets@ns.crys.ras.ru; Artemov, V. V.; Li, L. E.

    Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.

  8. SPHERES Vertigo

    2014-07-25

    ISS040-E-079355 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  9. SPHERES Vertigo

    2014-07-25

    ISS040-E-079129 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  10. SPHERES Vertigo

    2014-07-25

    ISS040-E-079083 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson, Expedition 40 commander, enters data in a computer in preparation for a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  11. SPHERES Vertigo

    2014-07-25

    ISS040-E-079910 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  12. SPHERES Vertigo

    2014-07-25

    ISS040-E-079332 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  13. Membrane electrode assembly fabricated with the combination of Pt/C and hollow shell structured-Pt-SiO2@ZrO2 sphere for self-humidifying proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Ko, Y. D.; Yang, H. N.; Züttel, Andreas; Kim, S. D.; Kim, W. J.

    2017-11-01

    The Pt-supported hollow structured Pt-HZrO2 with the shell thickness of 27 nm is successfully synthesized. The water retention ability of Pt-HZrO2 is significantly enhanced compared with that of SiO2@ZrO2 due to the hydrophilic hollow structured HZrO2with high BET surface area. Pt-C and Pt-HZrO2 are combined with different weight fractions to prepare the double catalyst electrode (DCE). The membrane electrode assembly with the DCE is fabricated and applied to both anode and cathode or anode side only. The water flooding and thus rapid voltage drop is affected by the presence/or absence of the DCE at the cathode side. The cell test and visual experiment suggests that the Pt-HZrO2 layer adsorb the water molecules generated by the oxygen reduction reaction (ORR), preventing the water flooding. The power generation under RH 0% strongly suggests the back-diffusion of water molecules generated by the ORR. The flow rate to the cathode significantly affects the water flooding and cell performance. Higher flow rate to the cathode is advantageous to expel the water generated by the ORR, thus preventing water flooding and enhancing the cell performance. Therefore, the weight fraction of Pt-C to Pt-HZrO2 and the flow rate to the cathode should be well balanced.

  14. SPHERES test

    2013-07-05

    ISS036-E-015549 (5 July 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.

  15. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

    PubMed

    Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan

    2009-06-01

    Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent

  16. Functional integration and self-template synthesis of hollow core-shell carbon mesoporous spheres/Fe3O4/nitrogen-doped graphene to enhance catalytic activity in DSSCs.

    PubMed

    Yao, Jixin; Zhang, Kang; Wang, Wen; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Wu, Mingzai; Li, Guang

    2018-05-03

    Excellent corrosion resistance is crucial for photovoltaic devices to acquire high and stable performance under high corrosive complicated environments. Creative inspiration comes from sandwich construction, whereby Fe3O4 nanoparticles were anchored onto hollow core-shell carbon mesoporous microspheres and wrapped by N-graphene nanosheets (HCCMS/Fe3O4@N-RGO) to obtain integrated high corrosive resistance and stability. The as-prepared multiple composite material possesses outstanding performance as a result of structure optimization, performance improvement, and interface synergy. Therefore, it can effectively suppress corrosion from the electrolyte in recycled tests many times, indicating the ultrahigh corrosion resistance life of this double carbon-based nanocomposite. Furthermore, the electrical conductivity and conversion efficiency of the composite are well maintained due to the triple synergistic interactions, which could serve as a guideline in establishing high-performance multifunctional HCCMS/Fe3O4@N-RGO with great prospects in energy devices, such as lithium batteries, supercapacitors and electrode materials, etc.

  17. SPHERES Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali

    2014-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.

  18. Complex Hollow Nanostructures: Synthesis and Energy-Related Applications.

    PubMed

    Yu, Le; Hu, Han; Wu, Hao Bin; Lou, Xiong Wen David

    2017-04-01

    Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy-related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi-shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium-ion batteries and hybrid supercapacitors, sulfur hosts for lithium-sulfur batteries, and electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy-related applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  20. A Field of Hollows

    2015-04-01

    Mercury's hollows are among its most distinctive -- and unusual -- surface features. In this stunning view, we see a field of hollows in the western portion of the floor of Zeami impact basin. Hollows populate much of the rest of the basin's interior, with large concentrations several kilometers across occurring in the north and northeast parts of the floor. Individual hollows, however, can be as small as a couple of hundred meters in width. http://photojournal.jpl.nasa.gov/catalog/PIA19267

  1. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Templated fabrication of hollow nanospheres with 'windows' of accurate size and tunable number.

    PubMed

    Xie, Duan; Hou, Yidong; Su, Yarong; Gao, Fuhua; Du, Jinglei

    2015-01-01

    The 'windows' or 'doors' on the surface of a closed hollow structure can enable the exchange of material and information between the interior and exterior of one hollow sphere or between two hollow spheres, and this information or material exchange can also be controlled through altering the window' size. Thus, it is very interesting and important to achieve the fabrication and adjustment of the 'windows' or 'doors' on the surface of a closed hollow structure. In this paper, we propose a new method based on the temple-assisted deposition method to achieve the fabrication of hollow spheres with windows of accurate size and number. Through precisely controlling of deposition parameters (i.e., deposition angle and number), hollow spheres with windows of total size from 0% to 50% and number from 1 to 6 have been successfully achieved. A geometrical model has been developed for the morphology simulation and size calculation of the windows, and the simulation results meet well with the experiment. This model will greatly improve the convenience and efficiency of this temple-assisted deposition method. In addition, these hollow spheres with desired windows also can be dispersed into liquid or arranged regularly on any desired substrate. These advantages will maximize their applications in many fields, such as drug transport and nano-research container.

  3. Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment

    PubMed Central

    Li, Xia; Wang, Xiupeng; Zhang, Jun; Hanagata, Nobutaka; Wang, Xuebin; Weng, Qunhong; Ito, Atsuo; Bando, Yoshio; Golberg, Dmitri

    2017-01-01

    High global incidence of prostate cancer has led to a focus on prevention and treatment strategies to reduce the impact of this disease in public health. Boron compounds are increasingly recognized as preventative and chemotherapeutic agents. However, systemic administration of soluble boron compounds is hampered by their short half-life and low effectiveness. Here we report on hollow boron nitride (BN) spheres with controlled crystallinity and boron release that decrease cell viability and increase prostate cancer cell apoptosis. In vivo experiments on subcutaneous tumour mouse models treated with BN spheres demonstrated significant suppression of tumour growth. An orthotopic tumour growth model was also utilized and further confirmed the in vivo anti-cancer efficacy of BN spheres. Moreover, the administration of hollow BN spheres with paclitaxel leads to synergetic effects in the suppression of tumour growth. The work demonstrates that hollow BN spheres may function as a new agent for prostate cancer treatment. PMID:28059072

  4. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties

    PubMed Central

    Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-01

    Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons’ movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties. PMID:29300343

  5. Superconducting Sphere in an External Magnetic Field Revisited

    ERIC Educational Resources Information Center

    Sazonov, Sergey N.

    2013-01-01

    The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…

  6. Suspension Plasma Spray Fabrication of Nanocrystalline Titania Hollow Microspheres for Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Liu, Yi; He, Xiaoyan; Li, Hua

    2015-10-01

    Hollow inorganic microspheres with controlled internal pores in close-cell configuration are usually constructed by submicron-sized particles. Fast and efficient large-scale production of the microspheres with tunable sizes yet remains challenging. Here, we report a suspension plasma spray route for making hollow microspheres from nano titania particles. The processing permits most nano particles to retain their physiochemical properties in the as-sprayed microspheres. The microspheres have controllable interior cavities and mesoporous shell of 1-3 μm in thickness. Spray parameters and organic content in the starting suspension play the key role in regulating the efficiency of accomplishing the hollow sphere structure. For the ease of collecting the spheres for recycling use, ferriferous oxide particles were used as additives to make Fe3O4-TiO2 hollow magnetic microspheres. The spheres can be easily recycled through external magnetic field collection after each time use. Photocatalytic anti-bacterial activities of the hollow spheres were assessed by examining their capability of degrading methylene blue and sterilizing Escherichia coli bacteria. Excellent photocatalytic performances were revealed for the hollow spheres, giving insight into their potential versatile applications.

  7. Hollow mesoporous TiO2 microspheres for enhanced photocatalytic degradation of acetaminophen in water.

    PubMed

    Lin, Chin Jung; Yang, Wen-Ta; Chou, Chen-Yi; Liou, Sofia Ya Hsuan

    2016-06-01

    Hollow core-shell mesoporous TiO2 microspheres were synthesized by a template-free solvothermal route for efficient photocatalytic degradation of acetaminophen. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Barrett-Joyner-Halenda data revealed a micrometer-sized mesoporous anatase TiO2 hollow sphere with large surface area and efficient light harvesting. For the photocatalytic degradation of acetaminophen in 60 min, the conversion fraction of the drug increased from 88% over commercial Degussa P25 TiO2 to 94% over hollow spheres with about 25% increase in the initial reaction rate. Even after 10 repeated runs, the recycled hollow spheres showed good photodegradation activity. The intermediates generated in the photocatalytic reactions were eventually converted into molecules that are easier to handle. The simple fabrication route would facilitate the development of photocatalysts for the decomposition of environmental contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  9. Hollow lensing duct

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Mitchell, Scott; Lang, John; Maderas, Dennis; Speth, Joel; Payne, Stephen A.

    2000-01-01

    A hollow lensing duct to condense (intensify) light using a combination of focusing using a spherical or cylindrical lens followed by reflective waveguiding. The hollow duct tapers down from a wide input side to a narrow output side, with the input side consisting of a lens that may be coated with an antireflective coating for more efficient transmission into the duct. The inside surfaces of the hollow lens duct are appropriately coated to be reflective, preventing light from escaping by reflection as it travels along the duct (reflective waveguiding). The hollow duct has various applications for intensifying light, such as in the coupling of diode array pump light to solid state lasing materials.

  10. Ab Initio Study of Structural and Electronic Properties of (ZnO) n "Magical" Nanoclusters n = (34, 60)

    NASA Astrophysics Data System (ADS)

    Bovhyra, Rostyslav; Popovych, Dmytro; Bovgyra, Oleg; Serednytski, Andrew

    2017-01-01

    Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO) n ( n = 34, 60) in different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure geometry was performed, and the basic properties of the band structure were investigated. It was established that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with common quadrangle edges.

  11. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  12. Facile synthesis of hollow zeolite microspheres through dissolution–recrystallization procedure in the presence of organosilanes

    SciT

    Tao, Haixiang; Ren, Jiawen; Liu, Xiaohui

    2013-04-15

    Hollow zeolite microspheres have been hydrothermally synthesized in the presence of organosilanes via a dissolution–recrystallization procedure. In the presence of organosilanes, zeolite particles with a core/shell structure formed at the first stage of hydrothermal treatment, then the core was consumed and recrystallized into zeolite framework to form the hollow structure during the second hydrothermal process. The influence of organosilanes was discussed, and a related dissolution–recrystallization mechanism was proposed. In addition, the hollow zeolite microspheres exhibited an obvious advantage in catalytic reactions compared to conventional ZSM-5 catalysts, such as in the alkylation of toluene with benzyl chloride. - Graphical abstract: Hollowmore » zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure in the presence of organosiline. Highlights: ► Hollow zeolite spheres with aggregated zeolite nanocrystals were synthesized via a dissolution–recrystallization procedure. ► Organosilane influences both the morphology and hollow structure of zeolite spheres. ► Hollow zeolite spheres showed an excellent catalytic performance in alkylation of toluene with benzyl chloride.« less

  13. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  14. Feasibility Study: Hollow Plastic Spheres to Increase Hydraulic Fluid Compressibility

    DTIC Science & Technology

    1982-07-01

    S.A. Thuysbaert A.Stevens N4 Schwartz SPRL Schulmon Plastics SA Polytexco PVBA Polyform SA Plastiques Manufactures Plastimetal PVBA S.A...Plastics Corp. Plastiques GM Ltd. Rochevert, Inc. Polysar Limited, Kayson Plastics Div. Canlew Chemicals, Ltd. 4th Fl., 8-1, Hong Chou S. Rd., Sec. 1

  15. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  16. Ag/α-Fe2O3 hollow microspheres: Preparation and application for hydrogen peroxide detection

    NASA Astrophysics Data System (ADS)

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang; Zhang, Tingting; Guo, Tingting

    2015-09-01

    In this paper, we demonstrated a simple approach for preparing α-Fe2O3 hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe2O3 hollow spheres formation. Ag/α-Fe2O3 hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe2O3 hollow composites exhibited remarkable catalytic performance toward H2O2 reduction. The electrocatalytic activity mechanism of Ag/α-Fe2O3/GCE were discussed toward the reduction of H2O2 in this paper.

  17. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    PubMed

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  18. The glass spherical hollow orbital implant: a prospective study.

    PubMed

    Stephen, B E

    1999-06-01

    Various types of orbital implants are in use in the rehabilitation of anophthalmic patients. The latest is the expensive hydroxyapatite implant. The study objective was to evaluate the effectiveness of low cost glass spherical hollow implants, as primary and secondary implants. St Michaels and Frazer Private Hospitals, Colombo. 65 patients had glass sphere orbital implants between 1987 and 1995; 51 primary (evisceration 46, enucleation 5) and 14 secondary (evisceration 2, enucleation 12). At 9 to 12 months follow up, patients were evaluated for mobility of implant, prosthesis mobility, lid sulcus deformity, cosmetic results and complications. Primary glass spherical hollow implants provide excellent mobility of the implant (92%), cosmesis (88%), prosthesis mobility (67%), with a low rate of complications (9.5%). Results of primary implant was superior to that of secondary (p < 0.001). Excellent results were obtained with spherical glass spheres as primary implants following evisceration.

  19. SPHERES Slosh Run

    2014-01-22

    ISS038-E-033888 (22 Jan. 2014) --- A new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, already on the station, is featured in this image photographed by an Expedition 38 crew member in the International Space Station's Kibo laboratory. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding a plastic tank with green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  20. SPHERES Slosh Run

    2014-01-22

    ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  1. Fabrication of Pt/Au concentric spheres from triblock copolymer.

    PubMed

    Koh, Haeng-Deog; Park, Soojin; Russell, Thomas P

    2010-02-23

    Dispersion of an aqueous H(2)PtCl(6) solution into a trifluorotoluene (TFT) solution of a polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) triblock copolymer produced an emulsion-induced hollow micelle (EIHM), comprising a water nanodroplet stabilized by PEO, H(2)PtCl(6)/P2VP, and PS, sequentially. The following addition of an aqueous LiAuCl(4) solution into the dispersion led to a coordination of LiAuCl(4) and PEO. The resulting spherical EIHM structure was transformed to a hollow cylindrical micelle by the fusion of spherical EIHM with the addition of methanol. This structural transition was reversible by the alternative addition of methanol and TFT. Oxygen plasma was used to generate Pt/Au concentric spheres and hollow cylindrical Pt/Au nano-objects.

  2. Particle levitation and guidance in hollow-core photonic crystal fiber.

    PubMed

    Benabid, Fetah; Knight, J; Russell, P

    2002-10-21

    We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 m . A laser power of 80 mW was sufficient to levitate a 5 m diameter polystyrene sphere and guide it through a ~150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.

  3. Experimental Study of Hollow Formation

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Orlando, T. M.; Milliken, R. E.; Head, J. W.; Jones, B. M.; Anzures, B. A.

    2018-05-01

    Hollows are enigmatic features on the surface of Mercury caused by sublimation and/or space weathering. Here we propose a comprehensive experimental study in which candidate hollows materials are exposed to a range of relevant conditions.

  4. Science on a Sphere

    SciT

    None

    Researchers at the National Oceanic and Atmospheric Administration developed Science on a Sphere to help explain Earth system science to people of all ages. Animated images, ranging from space to ocean temperatures and more, can be seen on this interactive sphere.

  5. Balls and Spheres

    ERIC Educational Resources Information Center

    Szekely, George

    2011-01-01

    This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…

  6. Liquid hydrogen sphere project

    2011-06-22

    A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.

  7. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  8. Hollow-Core Fiber Lamp

    NASA Technical Reports Server (NTRS)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  9. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  10. How do Colluvial Hollows Fill?

    NASA Astrophysics Data System (ADS)

    Hales, T. C.; Parker, R.; Mudd, S. M.; Grieve, S. W. D.

    2016-12-01

    In humid, soil-mantled mountains shallow landslides commonly initiate in colluvial hollows, areas where convergent topography can lead to high pore pressures during storms. Immediately post-landslide initiation, a thin veneer of colluvial material accumulates by small-scale slumping from landslide headscarps. Thereafter colluvium accumulates in hollows primarily through creep-dominated processes like tree throw and animal burrowing, recording the hillslope sediment flux since the last landslide event. We measured the post-landslide hillslope sediment flux in 30 colluvial hollows in the southern Appalachians using radiocarbon measurements collected from soil pits excavated at the centre of steep, landslide-prone hollows. We collected material from the soil-saprolite/bedrock boundary at each location for radiocarbon dating and dated different chemical fractions of the soil (humic acid, humin, charcoal) in an attempt to bracket the "true" age of the soil. We calculated infilling rates of each hollow by measuring soil depths in cross-hollow transects and dividing this by the age of the hollow. The interquartile range of hollow basal ages is 2278-8184 cal. yrs B.P., demonstrating the long return period of landslides in most colluvial hollows. Hillslope erosion rates calculated assuming a linear diffusion transport law show that the transport coefficient (diffusivity) of the hollows varied by 4 orders of magnitude 10-5 to 10-1 m2 yr-1, despite the hollows being formed in regionally consistent geology and vegetation. Uncertainty in the dating and hollow geometry measurements can, at most, account for an order of magnitude of that variability. Our results show that hollows have a phase of rapid infilling that slows through time, consistent with previous observations. Despite this, the oldest hollows show several orders of magnitude variation in the transport coefficient, suggesting local, hollow scale variations in process significantly affect hillslope erosion rates.

  11. SPHERES National Lab Facility

    NASA Technical Reports Server (NTRS)

    Benavides, Jose

    2014-01-01

    SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.

  12. Experiment SPHERE status 2008

    NASA Astrophysics Data System (ADS)

    Shaulov, S. B.; Besshapov, S. P.; Kabanova, N. V.; Sysoeva, T. I.; Antonov, R. A.; Anyuhina, A. M.; Bronvech, E. A.; Chernov, D. V.; Galkin, V. I.; Tkaczyk, W.; Finger, M.; Sonsky, M.

    2009-12-01

    The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10-10 eV.

  13. Hopkins with SPHERES RINGS

    2013-11-04

    ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  14. Hopkins with SPHERES RINGS

    2013-11-04

    ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  15. Hopkins with SPHERES RINGS

    2013-11-04

    ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  16. Hopkins with SPHERES RINGS

    2013-11-04

    ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  17. Hopkins with SPHERES RINGS

    2013-11-04

    ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  18. High-speed observation of ZnO microspherical crystals produced by laser ablation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Tasaki, Ryohei; Fujiwara, Yuki; Nagasaki, Fumiaki; Higashihata, Mitsuhiro; Ikenoue, Hiroshi; Okada, Tatsuo

    2017-03-01

    ZnO nano/microstructures have attracted much attention as building blocks for optoelectronic devices because of their high crystalline quality and unique structures. We have succeeded in synthesizing ZnO microspherical crystals by a simple atmospheric laser ablation method, and demonstrated ultraviolet whispering-gallery-mode lasing from the spheres. In the microsphere synthesis process, molten droplets formed into spherical shapes by surface tension, and crystalized during ejection from the ablation spot. In this study, we observed the generation of ZnO microspheres by high-speed camera. Now we are trying to control and manipulate the microspheres using a vortex beam.

  19. An external template-free route to uniform semiconducting hollow mesospheres and their use in photocatalysis

    NASA Astrophysics Data System (ADS)

    Yang, Di; Wang, Mengye; Zou, Bin; Zhang, Gu Ling; Lin, Zhiqun

    2015-07-01

    Solid amorphous TiO2 mesospheres were synthesized by controlled hydrolysis of Ti-containing precursors. Subsequently, solid TiO2 mesospheres were exploited as scaffolds and subjected to a one-step external template-free hydrothermal treatment, yielding intriguing hollow anatase TiO2 mesospheres. The synthetic protocol was optimized by investigating the effect of buffer reagents and fluoride ions on the formation of hollow TiO2 spheres. The diameter of hollow mesospheres, ranging from 308 to 760 nm, can be readily tailored by varying the precursor concentration. The average thickness of a shell composed of TiO2 nanocrystals was approximately 40 nm with a mean crystal size of 12.4-20.0 nm. Such hollow TiO2 mesospheres possessed a large surface area and were employed in photocatalytic degradation of methylene blue under UV irradiation. Interestingly, the synthetic conditions were found to exert a significant influence on the photocatalytic ability of hollow TiO2 mesospheres. The correlation between the degradation ability of hollow TiO2 mesospheres and the precursor concentration as well as the hydrothermal time was scrutinized. The optimal photocatalytic performance of hollow TiO2 mesospheres was identified.Solid amorphous TiO2 mesospheres were synthesized by controlled hydrolysis of Ti-containing precursors. Subsequently, solid TiO2 mesospheres were exploited as scaffolds and subjected to a one-step external template-free hydrothermal treatment, yielding intriguing hollow anatase TiO2 mesospheres. The synthetic protocol was optimized by investigating the effect of buffer reagents and fluoride ions on the formation of hollow TiO2 spheres. The diameter of hollow mesospheres, ranging from 308 to 760 nm, can be readily tailored by varying the precursor concentration. The average thickness of a shell composed of TiO2 nanocrystals was approximately 40 nm with a mean crystal size of 12.4-20.0 nm. Such hollow TiO2 mesospheres possessed a large surface area and were employed

  20. StenniSphere

    2000-10-25

    The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.

  1. StenniSphere

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.

  2. SPHERES experiment session

    2007-03-24

    ISS014-E-17880 (24 March 2007) --- This medium close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.

  3. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  4. Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity.

    PubMed

    Zhou, Han; Fan, Tongxiang; Ding, Jian; Zhang, Di; Guo, Qixin

    2012-03-12

    A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.

  5. Rebound and jet formation of a fluid-filled sphere

    NASA Astrophysics Data System (ADS)

    Killian, Taylor W.; Klaus, Robert A.; Truscott, Tadd T.

    2012-12-01

    This study investigates the impact dynamics of hollow elastic spheres partially filled with fluid. Unlike an empty sphere, the internal fluid mitigates some of the rebound through an impulse driven exchange of energy wherein the fluid forms a jet inside the sphere. Surprisingly, this occurs on the second rebound or when the free surface is initially perturbed. Images gathered through experimentation show that the fluid reacts more quickly to the impact than the sphere, which decouples the two masses (fluid and sphere), imparts energy to the fluid, and removes rebound energy from the sphere. The experimental results are analyzed in terms of acceleration, momentum and an energy method suggesting an optimal fill volume in the neighborhood of 30%. While the characteristics of the fluid (i.e., density, viscosity, etc.) affect the fluid motion (i.e., type and size of jet formation), the rebound characteristics remain similar for a given fluid volume independent of fluid type. Implications of this work are a potential use of similar passive damping systems in sports technology and marine engineering.

  6. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  7. HOLLOW CARBON ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-10-11

    A device is described for producing an energetic, direct current, hollow, carbon-arc discharge in an evacuated container and within a strong magnetic field. Such discharges are particularly useful not only in dissociation and ionization of high energy molecular ion beams, but also in acting as a shield or barrier against the instreaming of lowenergy neutral particles into a plasma formed within the hollow discharge when it is used as a dissociating mechanism for forming the plasma. There is maintained a predetermined ratio of gas particles to carbon particles released from the arc electrodes during operation of the discharge. The carbon particles absorb some of the gas particles and are pumped along and by the discharge out of the device, with the result that smaller diffusion pumps are required than would otherwise be necessary to dispose of the excess gas.

  8. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  9. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  10. Spindled and hollow spars

    NASA Technical Reports Server (NTRS)

    Blyth, J D

    1926-01-01

    The most usual method of arriving at the maximum amount of spindling or hollowing out permissible in the case of any particular spar section is by trial and error, a process which is apt to become laborious in the absence of good guessing - or luck. The following tables have been got out with the object of making it possible to arrive with certainty at a suitable section at the first attempt.

  11. SPHERES-Vertigo experiment

    2014-07-25

    ISS040-E-080130 (25 July 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  12. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  13. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives.

    PubMed

    Cao, Xiong; Deng, Peng; Hu, Shuangqi; Ren, Lijun; Li, Xiaoxia; Xiao, Peng; Liu, Yu

    2018-05-16

    The spherization of nanoenergetic materials is the best way to improve the sensitivity and increase loading densities and detonation properties for weapons and ammunition, but the preparation of spherical nanoenergetic materials with high regularization, uniform size and monodispersity is still a challenge. In this paper, nanoenergetic hollow spherical hexanitrostibene (HNS) derivatives were fabricated via a one-pot copolymerization strategy, which is based on the reaction of HNS and piperazine in acetonitrile solution. Characterization results indicated the as-prepared reaction nanoenergetic products were HNS-derived oligomers, where a free radical copolymerization reaction process was inferred. The hollow sphere structure of the HNS derivatives was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), and synchrotron radiation X-ray imaging technology. The properties of the nanoenergetic hollow spherical derivatives, including thermal decomposition and sensitivity are discussed in detail. Sensitivity studies showed that the nanoenergetic derivatives exhibited lower impact, friction and spark sensitivity than raw HNS. Thermogravimetric-differential scanning calorimeter (TG-DSC) results showed that continuous exothermic decomposition occurred in the whole temperature range, which indicated that nanoenergetic derivatives have a unique role in thermal applications. Therefore, nanoenergetic hollow spherical HNS derivatives could provide a new way to modify the properties of certain energetic compounds and fabricate spherical nanomaterials to improve the charge configuration.

  14. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  15. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells.

    PubMed

    Kim, Chohui; Choi, Hongsik; Kim, Jae Ik; Lee, Sangheon; Kim, Jinhyun; Lee, Woojin; Hwang, Taehyun; Kang, Suji; Moon, Taeho; Park, Byungwoo

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (J sc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres.

  16. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  17. An external template-free route to uniform semiconducting hollow mesospheres and their use in photocatalysis.

    PubMed

    Yang, Di; Wang, Mengye; Zou, Bin; Zhang, Gu Ling; Lin, Zhiqun

    2015-08-14

    Solid amorphous TiO2 mesospheres were synthesized by controlled hydrolysis of Ti-containing precursors. Subsequently, solid TiO2 mesospheres were exploited as scaffolds and subjected to a one-step external template-free hydrothermal treatment, yielding intriguing hollow anatase TiO2 mesospheres. The synthetic protocol was optimized by investigating the effect of buffer reagents and fluoride ions on the formation of hollow TiO2 spheres. The diameter of hollow mesospheres, ranging from 308 to 760 nm, can be readily tailored by varying the precursor concentration. The average thickness of a shell composed of TiO2 nanocrystals was approximately 40 nm with a mean crystal size of 12.4-20.0 nm. Such hollow TiO2 mesospheres possessed a large surface area and were employed in photocatalytic degradation of methylene blue under UV irradiation. Interestingly, the synthetic conditions were found to exert a significant influence on the photocatalytic ability of hollow TiO2 mesospheres. The correlation between the degradation ability of hollow TiO2 mesospheres and the precursor concentration as well as the hydrothermal time was scrutinized. The optimal photocatalytic performance of hollow TiO2 mesospheres was identified.

  18. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018572 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  19. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018486 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  20. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018466 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  1. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018383 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  2. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018390 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  3. SPHERES Zero Robotics

    2014-06-24

    ISS040-E-018417 (24 June 2014) --- Russian cosmonaut Oleg Artemyev (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites Zero Robotics (SPHERES ZR) program in the Kibo laboratory of the International Space Station.

  4. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    1999-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 microns, a density of about I to about 6 pounds/ft3 and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bounded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cu ft and a compression strength of about 100 to about 1400 pounds/sq in.

  5. Hollow Polyimide Microspheres

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A shaped article composed of an aromatic polyimide has a hollow, essentially spherical structure and a particle size of about 100 to about 1500 micrometers, a density of about 1 to about 6 pounds/cubic foot and a volume change of 1 to about 20% by a pressure treatment of 30 psi for 10 minutes at room temperature. A syntactic foam, made of a multiplicity of the shaped articles which are bonded together by a matrix resin to form an integral composite structure, has a density of about 3 to about 30 pounds/cubic feet and a compression strength of about 100 to about 1400 pounds/sq inch.

  6. Hollow-tube chimes

    NASA Astrophysics Data System (ADS)

    Oliver, D. L. R.

    1998-04-01

    This note describes a simple and inexpensive method of designing and constructing a musical instrument. Often teachers of the physical sciences are called upon to advise students who are designing musical instrument prototypes. This article discusses the relationship between frequency and tube length for hollow metal tube chimes. A method is explained by which a set of chimes may be designed and constructed so that they cover all standard tones for a range of one or two octaves. The cost of materials will range from 3 to 6.

  7. Pressure mapping for sphere and half-sphere enhanced diamond anvil cells using synchrotron x-ray diffraction and fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Cai, Z.; Shu, J.

    2015-12-01

    The measurement for equation of state (EoS) of materials under pressure conditions above 200 GPa is a long-standing challenging subject. Recently, second stage anvil, which was loaded inside the diamond anvil cell (DAC), had been reported by various groups. This method could generate pressure over 300 GPa, or above 600 GPa from the EoS measurement of Re metal between the tiny anvil or 2 half-spheres. Several alternative approaches, using ruby balls, or glassy carbon, or diamond, with single sphere, 2 half-spheres, or multi spheres geometry inside DAC, were tested. The NIST X-ray powder standard, ZnO was selected as pressure marker. Focused ion beam (FIB) was used to cut the half-sphere from diamond anvil top directly to avoid the difficulty of alignment. The synchrotron x-ray diffraction with fine beam size down to 100 nm using zone plate set-up was used to map the pressure gradient at the sphere or half-sphere zone inside DAC. The pressure could be boosted at center of sphere by up to 10 - 70 GPa at about 200 GPa conditions. From broken anvils, trace element analysis using fine focusing synchrotron x-ray fluorescence method revealed the potential anvil damage from FIB cutting the diamond anvil tip, which might decrease the strength of anvils. Fine touch from FIB cutting at final stage using low ion beam current is suggested.

  8. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  9. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-01

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.

  10. Spinning the fuzzy sphere

    SciT

    Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin

    Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less

  11. Spinning the fuzzy sphere

    DOE PAGES

    Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin

    2015-08-27

    Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less

  12. Fabrication of silica hollow particles using yeast cells as a template

    NASA Astrophysics Data System (ADS)

    Liao, Shenglan; Lin, Liqin; Chen, Xiaofang; Liu, Jingru; Zhang, Biao

    2018-04-01

    Inorganic hollow particles have attracted great interest in recent years. In this study, silica micro spheres were produced. Yeast cells were used as a biological template. The silica shell was synthesized by the hydrolysis of tetraethoxysilane (TEOS) in water-alcohol mixtures as solvent using ammonia as a catalyst according to the Stoeber process. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the products. The results showed that the thermally treated samples were SiO2 hollow microspheres with a diameter varying between 1-5μm.

  13. 'Laguna Hollow'Undisturbed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the patch of soil at the bottom of the shallow depression dubbed 'Laguna Hollow' where the Mars Exploration Rover Spirit will soon begin trenching. Scientists are intrigued by the clustering of small pebbles and the crack-like fine lines, which indicate a coherent surface that expands and contracts. A number of processes can cause materials to expand and contract, including cycles of heating and cooling; freezing and thawing; and rising and falling of salty liquids within a substance. This false-color image was created using the blue, green and infrared filters of the rover's panoramic camera. Scientists chose this particular combination of filters to enhance the heterogeneity of the martian soil.

  14. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in Lithium–Sulfur Batteries

    SciT

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  15. Composite material hollow antiresonant fibers.

    PubMed

    Belardi, Walter; De Lucia, Francesco; Poletti, Francesco; Sazio, Pier J

    2017-07-01

    We study novel designs of hollow-core antiresonant fibers comprising multiple materials in their core-boundary membrane. We show that these types of fibers still satisfy an antiresonance condition and compare their properties to those of an ideal single-material fiber with an equivalent thickness and refractive index. As a practical consequence of this concept, we discuss the first realization and characterization of a composite silicon/glass-based hollow antiresonant fiber.

  16. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  17. SPHERES Zero Robotics Session

    2013-05-23

    ISS036-E-003308(23 May 2013) --- Onboard the International Space Station, Expedition 36 Flight Engineer Chris Cassidy, NASA astronaut, watches from just out of frame as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.

  18. Electromagnetic δ -function sphere

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver

    2017-10-01

    We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.

  19. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  20. Science on a Sphere exhibit

    2009-03-31

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  1. Science on a Sphere exhibit

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  2. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    PubMed

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  3. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    PubMed Central

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-01-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors. PMID:27114165

  4. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

    PubMed

    Yao, Yan; McDowell, Matthew T; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D; Cui, Yi

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.

  5. Panoramic stereo sphere vision

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian

    2013-01-01

    Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.

  6. The Electrospun Ceramic Hollow Nanofibers

    PubMed Central

    Davoudpour, Yalda; Habibi, Youssef; Elbahri, Mady

    2017-01-01

    Hollow nanofibers are largely gaining interest from the scientific community for diverse applications in the fields of sensing, energy, health, and environment. The main reasons are: their extensive surface area that increases the possibilities of engineering, their larger accessible active area, their porosity, and their sensitivity. In particular, semiconductor ceramic hollow nanofibers show greater space charge modulation depth, higher electronic transport properties, and shorter ion or electron diffusion length (e.g., for an enhanced charging–discharging rate). In this review, we discuss and introduce the latest developments of ceramic hollow nanofiber materials in terms of synthesis approaches. Particularly, electrospinning derivatives will be highlighted. The electrospun ceramic hollow nanofibers will be reviewed with respect to their most widely studied components, i.e., metal oxides. These nanostructures have been mainly suggested for energy and environmental remediation. Despite the various advantages of such one dimensional (1D) nanostructures, their fabrication strategies need to be improved to increase their practical use. The domain of nanofabrication is still advancing, and its predictable shortcomings and bottlenecks must be identified and addressed. Inconsistency of the hollow nanostructure with regard to their composition and dimensions could be one of such challenges. Moreover, their poor scalability hinders their wide applicability for commercialization and industrial use. PMID:29120403

  7. Mace-like gold hollow hierarchical micro/nanostructures fabricated by co-effect of catalytic etching and electrodeposition and their SERS performance

    NASA Astrophysics Data System (ADS)

    Zhang, Haibao; Wang, Jingjing; Wang, Hua; Tian, Xingyou

    2017-09-01

    In this paper, we presented the fabrication of mace-like gold hollow hierarchical micro/nanostructures (HMNs) grafted on ZnO nanorods array by using an electrochemical deposition in chloroauric acid solution on gold layer pre-coated ZnO nanorods array. Different from general electrochemical deposition process, the catalytic etching to ZnO and electrodeposition of gold are co-existed in our case, which lead to an inner hollow structure and an outer gold shell. Due to the appropriate electrodeposition conditions, the outer gold shell was built of many wimble-like nanoparticles, and the hierarchical micro/nanostructures were thus formed. In addition, because of the deposition rate is decreased gradually away from the top of ZnO nanorods, the final structures show mace-like appearance. The surface-enhanced Raman scattering (SERS) effect of the as-prepared gold hollow HMNs was further studied by using rhodamine 6G as probe molecule. It is demonstrated that these structures show ultrahigh SERS activity, and the detecting low limit of R6G solution can be to 10-10 M on single mace-like gold HMNs, which is quite important for their potential application in SERS-based surface analysis and sensors.

  8. Large-scale fabrication of porous YBO3 hollow microspheres with tunable photoluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Zhenhe; Yu, He; Ai, Feixue; Zhao, Guiyan; Bi, Yanfeng; Huang, Liangliang; Ding, Fu; Sun, Yaguang; Gao, Yu

    2018-04-01

    Hollow lanthanide-doped compounds are some of the most popular materials for high-performance luminescent devices. However, it is challenging to find an approach that can fabricate large-scale and well-crystallized lanthanide-doped hollow structures and that is facile, efficient and of low cost. In this study, YBO3: Eu3+/Tb3+ hollow microspheres were fabricated by using a novel multi-step transformation synthetic route for the first time with polystyrene spheres as the template, followed by the combination of a facile homogeneous precipitation method, an ion-exchange process and a calcination process. The results show that the as-obtained YBO3: Eu3+/Tb3+ hollow spheres have a uniform morphology with an average diameter of 1.65 µm and shell thickness of about 160 nm. When used as luminescent materials, the emission colours of YBO3: Eu3+/Tb3+ samples can be tuned from red, through orange, yellow and green-yellow, to green by simply adjusting the relative doping concentrations of the activator ions under the excitation of ultraviolet light, which might have potential applications in fields such as light display systems and optoelectronic devices.

  9. Method of forming frozen spheres in a force-free drop tower

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr. (Inventor)

    1982-01-01

    Hollow glass spheres are shaped by the effects of surface tension acting on bubbles of glass in its molten state. A downwardly flowing stream of air accelerated at a one-G rate of acceleration is established through a drop bubbles on molten glass are introduced into the stream of air and frozen and as they are accelerated at a one-G rate of acceleration.

  10. Controllable synthesis of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres via supercritical anti-solvent precipitation

    SciT

    Jiang Haoxi; Post-Doctor Station for Science and Technology of Chemical Engineering and Technology, Tianjin University, Tianjin 300072; Post-Doctor Workstation for Science and Technology, Shandong Haihua Group Co. Ltd, Weifang, Shandong 262737

    2012-01-15

    Nanocrystalline Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres were successfully synthesized via supercritical anti-solvent precipitation using supercritical CO{sub 2} as the anti-solvent. It was found that the as-produced samples exhibited hollow spherical structures with uniform diameters ranging from 30 to 50 nm and the sphere walls were composed of various oriented nanocrystallites, with sizes of 3-7 nm. The results of high-resolution transmission electron microscopy showed that the formation of the hollow structures could be controlled by adjusting the solution concentration. The results of temperature-programmed reduction and oxygen storage capacity measurements showed that the hollow nanospheres had enhanced redox properties. A possiblemore » mechanism for the formation of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres has also been proposed and experimental investigated.« less

  11. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.

    PubMed

    Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo

    2016-08-05

    Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).

  12. Hollow nanotubular toroidal polymer microrings.

    PubMed

    Lee, Jiyeong; Baek, Kangkyun; Kim, Myungjin; Yun, Gyeongwon; Ko, Young Ho; Lee, Nam-Suk; Hwang, Ilha; Kim, Jeehong; Natarajan, Ramalingam; Park, Chan Gyung; Sung, Wokyung; Kim, Kimoon

    2014-02-01

    Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.

  13. New route for hollow materials

    NASA Astrophysics Data System (ADS)

    Rivaldo-Gómez, C. M.; Ferreira, F. F.; Landi, G. T.; Souza, J. A.

    2016-08-01

    Hollow micro/nano structures form an important family of functional materials. We have used the thermal oxidation process combined with the passage of electric current during a structural phase transition to disclose a colossal mass diffusion transfer of Ti ions. This combination points to a new route for fabrication of hollow materials. A structural phase transition at high temperature prepares the stage by giving mobility to Ti ions and releasing vacancies to the system. The electric current then drives an inward delocalization of vacancies, condensing into voids, and finally turning into a big hollow. This strong physical phenomenon leading to a colossal mass transfer through ionic diffusion is suggested to be driven by a combination of phase transition and electrical current followed by chemical reaction. We show this phenomenon for Ti leading to TiO2 microtube formation, but we believe that it can be used to other metals undergoing structural phase transition at high temperatures.

  14. Dynamical tachyons on fuzzy spheres

    SciT

    Berenstein, David; Institute for Advanced Study, School of Natural Science, Princeton, New Jersey 08540; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set upmore » a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.« less

  15. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    SciT

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  16. Hollow tin/chromium whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Li, James C. M.

    2010-05-01

    Tin whiskers have been an engineering challenge for over five decades. The mechanism has not been agreed upon thus far. This experiment aimed to identify a mechanism by applying compressive stresses to a tin film evaporated on silicon substrate with an adhesion layer of chromium in between. A phenomenon was observed in which hollow whiskers grew inside depleted areas. Using focused ion beam, the hollow whiskers were found to contain both tin and chromium. At the bottom of the depleted areas, thin tin/tin oxide film remained over the chromium layer. It indicates that tin transport occurred along the interface between tin and chromium layers.

  17. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  18. Quartz antenna with hollow conductor

    DOEpatents

    Leung, Ka-Ngo; Benabou, Elie

    2002-01-01

    A radio frequency (RF) antenna for plasma ion sources is formed of a hollow metal conductor tube disposed within a glass tube. The hollow metal tubular conductor has an internal flow channel so that there will be no coolant leakage if the outer glass tube of the antenna breaks. A portion of the RF antenna is formed into a coil; the antenna is used for inductively coupling RF power to a plasma in an ion source chamber. The antenna is made by first inserting the metal tube inside the glass tube, and then forming the glass/metal composite tube into the desired coil shape.

  19. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  20. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  1. In situ observation of the formation of hollow zinc oxide shells

    DOE PAGES

    Tringe, J. W.; Levie, H. W.; El-Dasher, B. S.; ...

    2011-06-14

    Single crystal zinc particles, 1–2 μm1–2 μm in diameter, were observed in situ with transmission electron microscopy during sublimation. The rate of sublimation is strongly dependent on the presence of a surface oxide layer. Near 375°, minimally oxidized Zn surfaces sublime in tens of seconds, consistent with a model in which the particle behaves similarly to an isolated microscale effusion cell. By contrast, zinc particles fully enclosed by oxide sublime less than one-tenth as quickly. Here these results provide new insight into the synthesis mechanisms of hollow ZnO microspheres and related structures formed from metallic zinc at elevated temperatures.

  2. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yang, Kai; Xie, Yu; Fan, Qizhe; Yu, Jimmy C.; Shu, Qing; Wang, Chunying

    2013-02-01

    Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as-synthesized ZnO and Pt-ZnO composite nanocrystals were well characterized by powder X-ray diffraction (XRD), nitrogen-physical adsorption, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. It was found that Pt content greatly influences the morphology of Pt-ZnO composite nanocrystals. Suitable concentration of HPtCl4 in the reaction solution system can produce well hierarchically hollow Pt-ZnO nanocomposite microspheres, which are composed of an assembly of fine Pt-ZnO nanocrystals. Photocatalytic tests of the Pt-ZnO microspheres for the degradation of the dye acid orange II revealed extremely high photocatalytic activity and stability compared with those of pure ZnO and corresponding Pt deposited ZnO. The remarkable photocatalytic performance of hollow Pt-ZnO microspheres mainly originated from their unique nanostructures and the low recombination rate of the e-/h+ pairs by the platinum nanoparticles embedded in ZnO nanocrystals.Noble metal/semiconductor nanocomposites play an important role in high efficient photocatalysis. Herein, we demonstrate a facile strategy for fabrication of hollow Pt-ZnO nanocomposite microspheres with hierarchical structure under mild solvothermal conditions using Zn (CH3COO)2.2H2O and HPtCl4 as the precursors, and polyethylene glycol-6000 (PEG-6000) and ethylene glycol as the reducing agent and solvent, respectively. The as

  3. Functionalized C@TiO2 hollow spherical architecture for multifunctional applications.

    PubMed

    Chattopadhyay, Shreyasi; Mishra, Manish Kr; De, Goutam

    2016-03-28

    Hierarchical anatase titania (TiO2) with a hollow spherical architecture decorated with functionalized carbon dots (C(F)@THS) was synthesized by a solvothermal decomposition of titanium(IV) isopropoxide (TTIP) in the presence of a solution mixture containing thiourea and citric acid. Interestingly, the concomitant presence of thiourea and citric acid has been found to be essential to obtain such hierarchical hollow architecture because individual constituents produced non-hollow spheres when hydrothermally treated with TTIP. The co-existence of these two constituents also accelerates the growth of hollow spheres. BET surface area study of C(F)@THS revealed the existence of a slit like mesoporosity with a surface area value of 81 m(2) g(-1). Time dependent FESEM and TEM studies confirmed the formation of nanoflake like structures in the intermediate stages followed by the growth of a hollow spherical architecture. We proposed that these nanoflakes get accumulated on the bubble surface to form such hollow spherical morphology. The PL spectral study and Raman shift of the as prepared C(F)@THS confirmed the presence of functionalized graphitic C dots on the surface. A thorough XPS analysis was conducted to explore the nature and relative atomic concentration of the functional groups (-COOH, -CONH2, -NH2). This C(F)@THS sample showed very fast and selective dye (methylene blue and methyl violet) adsorption ability (even from a mixture of two different dye solutions) due to these δ-site containing functional groups on the surface. As C(F)@THS showed only two times reusability for adsorption, the dye adsorbed C(F)@THS was calcined at 450 °C in air to yield organic free anatase TiO2 hollow spheres (THS) with a retention of the original structure. THS was recycled as an efficient and a reusable photocatalyst (k = 9.36 × 10(-2) min(-1)) as well as a photoanode in dye sensitized solar cells (DSSCs) having Jsc value of 19.58 mA cm(-2) with overall efficiency of 6.48%.

  4. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  5. Hollow waveguide cavity ringdown spectroscopy

    NASA Technical Reports Server (NTRS)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  6. Ag/α-Fe{sub 2}O{sub 3} hollow microspheres: Preparation and application for hydrogen peroxide detection

    SciT

    Kang, Xinyuan; Wu, Zhiping; Liao, Fang, E-mail: liaozhang2003@163.com

    2015-09-15

    In this paper, we demonstrated a simple approach for preparing α-Fe{sub 2}O{sub 3} hollow spheres by mixing ferric nitrate aqueous and glucose in 180 °C. The glucose was found to act as a soft template in the process of α-Fe{sub 2}O{sub 3} hollow spheres formation. Ag/α-Fe{sub 2}O{sub 3} hollow nanocomposite was obtained under UV irradiation without additional reducing agents or initiators. Synthesized Ag/α-Fe{sub 2}O{sub 3} hollow composites exhibited remarkable catalytic performance toward H{sub 2}O{sub 2} reduction. The electrocatalytic activity mechanism of Ag/α-Fe{sub 2}O{sub 3}/GCE were discussed toward the reduction of H{sub 2}O{sub 2} in this paper. - Graphical abstract: Glucosemore » is carbonized as carbon balls in the 180 °C hydrothermal carbonization process, which plays a role of a soft template. Carbon spherical shell is rich in many hydroxyls, which have good hydrophilicity and surface reactivity. When Fe(NO{sub 3}){sub 3} is added to the aqueous solution of Glucose, the hydrophilic -OH will adsorb Fe{sup 3+} to form coordination compound by coordination bond. α-FeOOH is formed on the surface of carbon balls by hydrothermal reaction. After calcination at 500 °C, carbon spheres react with oxygen to form carbon dioxide, which disappears in the air. Meanwhile α-FeOOH is calcined to form α-Fe{sub 2}O{sub 3} hollow spheres.« less

  7. SPHERES-RINGS Time Lapse

    2014-07-10

    ISS040-E-059344 (10 July 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman (left) and European Space Agency astronaut Alexander Gerst, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  8. SPHERES-RINGS Time Lapse

    2014-07-10

    ISS040-E-059467 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst and NASA astronaut Reid Wiseman (mostly obscured), both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  9. SPHERES-RINGS Time Lapse

    2014-07-10

    ISS040-E-059478 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  10. Mastracchio during SPHERES Vertigo Experiment

    2014-01-24

    ISS038-E-035434 (23 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with a pair of basketball-sized, free-flying satellites known Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, in the Kibo laboratory of the International Space Station. For this experiment session, the crew members equipped one of the two SPHERES with a pair of stereoscopic goggles dubbed the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO. As the second SPHERES tumbled and spun, the VERTIGO-equipped robot attempted to map it and perform relative navigation around it.

  11. Mastracchio during SPHERES Vertigo Experiment

    2014-01-23

    ISS038-E-035432 (23 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with a pair of basketball-sized, free-flying satellites known Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, in the Kibo laboratory of the International Space Station. For this experiment session, the crew members equipped one of the two SPHERES with a pair of stereoscopic goggles dubbed the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO. As the second SPHERES tumbled and spun, the VERTIGO-equipped robot attempted to map it and perform relative navigation around it.

  12. Hopkins during SPHERES Slosh Run

    2014-01-22

    ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.

  13. Frontal Impact of Rolling Spheres.

    ERIC Educational Resources Information Center

    Domenech, A.; Casasus, E.

    1991-01-01

    A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)

  14. On the Crystalline Spheres Theory

    NASA Astrophysics Data System (ADS)

    Jiang, X. Y.

    1987-06-01

    This paper deals with the history of the "crystalline spheres" theory. The opinions on this theory of Aristotle, Ptolemy, Copernicus, Tycho, Kepler, Galileo, some Jesuitical astronomers and Chinese scholars are discussed.

  15. Hydrothermal-electrochemical growth of heterogeneous ZnO: Co films

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2017-10-01

    This study demonstrates the preparation of heterogeneous ZnO: Co nanostructures via hydrothermal-electrochemical deposition at 130 °C and -1.1 V (vs Ag/AgCl (satd)) in dimethyl sulfoxide (DMSO)-H2O mixture. Under the stated conditions, ZnO: Co nanostructures grow preferentially along (002) direction. Strength of directional growth progressively increases with the increasing concentration of Co(II) in the deposition bath. Films are composed of hexagonal Wurtzite ZnO, metallic cobalt, and mixed cobalt oxide on the surface and cobalt(II) oxide in deeper levels. Increasing the Co(II) concentration in the deposition bath results in different morphological features as well as phase separation. Platelets, sponge-like structures, cobalt-rich spheres, microislands of cobalt-rich spheres which are interconnected by ZnO network can be synthesized by adjusting [Co(II)]: [Zn(II)] ratio. Growth mechanisms giving rise to these particular structures, surface morphology, crystal structure, phase purity, chemical binding characteristics, and optical properties of the deposits are discussed in detail.

  16. Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles.

    PubMed

    Barick, K C; Bahadur, D

    2007-06-01

    We report here a novel process to prepare Mn doped ZnO nanoparticles by a soft chemical route at low temperature. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and manganese acetate tetrahydrate heated under reflux to 160-175 degrees C using diethylene glycol as a solvent. X-ray diffraction analysis reveals that the Mn doped ZnO crystallizes in a wurtzite structure with crystal size of 15-25 nm. These nano size crystallites of Mn doped ZnO self-organize into polydisperse spheres in size ranging from 100-400 nm. Transmission Electron Microscopy image also shows that each sphere is made up of numerous nanocrystals of average diameter 15-25 nm. By means of X-ray photoelectron spectroscopy and electron spin resonance spectroscopy, we determined the valence state of Mn ions as 2+. These nanoparticles were found to be ferromagnetic at room temperature. Monodisperse porous spheres (approximately 250 nm) were obtained by size selective separation technique and then self-assembled in a closed pack periodic array through sedimentation with slow solvent evaporation, which gives strong opalescence in visible region.

  17. Xanthoceraside hollow gold nanoparticles, green pharmaceutics preparation for poorly water-soluble natural anti-AD medicine.

    PubMed

    Meng, Da-Li; Shang, Lei; Feng, Xiao-He; Huang, Xing-Fei; Che, Xin

    2016-06-15

    In order to increase the solubility of poorly water-soluble natural product, xanthoceraside, an effective anti-AD compound from Xanthoceras sorbifolia Bunge, and maintain its natural property, the xanthoceraside hollow gold nanoparticles were successively prepared by green ultrasonic method with silica spheres as templates and HF solution as selective etching solvent. Hollow gold nanoparticles and drug-loaded hollow gold nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The solubilities of xanthoceraside loaded on hollow gold nanoparticles were increased obviously from 3.0μg/ml and 2.5μg/ml to 12.7μg/ml and 10.7μg/ml at 25°C and 37°C, respectively. The results of XRD and DSC indicated that the reason for this increase was mainly due to the amorphous state of xanthoceraside loaded on the hollow gold nanoparticles. In summary, the method of loading xanthoceraside onto hollow gold nanoparticles was a green and useful strategy to improve the solubility and dissolution of poorly water-soluble natural products and worth to applying to other natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  19. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong

    2011-09-01

    We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO

  20. Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles

    PubMed Central

    Renaud, Adèle; Cario, Laurent; Rocquelfelte, Xavier; Deniard, Philippe; Gautron, Eric; Faulques, Eric; Das, Tilak; Cheviré, François; Tessier, Franck; Jobic, Stéphane

    2015-01-01

    Owing to its high technological importance for optoelectronics, zinc oxide received much attention. In particular, the role of defects on its physical properties has been extensively studied as well as their thermodynamical stability. In particular, a large concentration of Zn vacancies in ZnO bulk materials is so far considered highly unstable. Here we report that the thermal decomposition of zinc peroxide produces wurtzite-type ZnO nanoparticles with an extraordinary large amount of zinc vacancies (>15%). These Zn vacancies segregate at the surface of the nanoparticles, as confirmed by ab initio calculations, to form a pseudo core-shell structure made of a dense ZnO sphere coated by a Zn free oxo-hydroxide mono layer. In others terms, oxygen terminated surfaces are privileged over zinc-terminated surfaces for passivation reasons what accounts for the Zn off-stoichiometry observed in ultra-fine powdered samples. Such Zn-deficient Zn1-xO nanoparticles exhibit an unprecedented photoluminescence signature suggesting that the core-shell-like edifice drastically influences the electronic structure of ZnO. This nanostructuration could be at the origin of the recent stabilisation of p-type charge carriers in nitrogen-doped ZnO nanoparticles. PMID:26333510

  1. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.

    PubMed

    Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad

    2014-05-28

    A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.

  2. Method to fabricate hollow microneedle arrays

    DOEpatents

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  3. Controllable fabrication and characterization of biocompatible core-shell particles and hollow capsules as drug carrier

    NASA Astrophysics Data System (ADS)

    Hao, Lingyun; Gong, Xinglong; Xuan, Shouhu; Zhang, Hong; Gong, Xiuqing; Jiang, Wanquan; Chen, Zuyao

    2006-10-01

    SiO 2@CdSe core-shell particles were fabricated by controllable deposition CdSe nanoparticles on silica colloidal spheres. Step-wise coating process was tracked by the TEM and XRD measurements. In addition, SiO 2@CdSe/polypyrrole(PPy) multi-composite particles were synthesized based on the as-prepared SiO 2@CdSe particles by cationic polymerization. The direct electrochemistry of myoglobin (Mb) could be performed by immobilizing Mb on the surface of SiO 2@CdSe particles. Immobilized with Mb, SiO 2@CdSe/PPy-Mb also displayed good bioelectrochemical activity. It confirmed the good biocompatible property of the materials with protein. CdSe hollow capsules were further obtained as the removal of the cores of SiO 2@CdSe spheres. Hollow and porous character of CdSe sub-meter size capsules made them becoming hopeful candidates as drug carriers. Doxorubicin, a typical an antineoplastic drug, was introduced into the capsules. A good sustained drug release behavior of the loading capsules was discovered via performing a release test in the PBS buffer (pH 7.4) solution at 310 k. Furthermore, SiO 2@CdSe/PPy could be converted to various smart hollow capsules via selectively removal of their relevant components.

  4. Emodin-Loaded Magnesium Silicate Hollow Nanocarriers for Anti-Angiogenesis Treatment through Inhibiting VEGF

    PubMed Central

    Ren, Hua; Zhu, Chao; Li, Zhaohui; Yang, Wei; Song, E

    2014-01-01

    The applications of anti-VEGF (vascular endothelial growth factor) treatment in ophthalmic fields to inhibit angiogenesis have been widely documented in recent years. However, the hydrophobic nature of many agents makes its delivery difficult in practice. Therefore, the aim of the present study was to introduce a new kind of hydrophobic drug carrier by employing nanoparticles with a hollow structure inside. Followed by the synthesis and characterization of magnesium silicate hollow spheres, cytotoxicity was evaluated in retina capillary endothelial cells. The loading and releasing capacity were tested by employing emodin, and the effect on VEGF expression was performed at the gene and protein level. Finally, an investigation on angiogenesis was carried on fertilized chicken eggs. The results indicated that the magnesium silicate nanoparticles had low toxicity. Emodin–MgSiO3 can inhibit the expression of both VEGF gene and protein effectively. Angiogenesis of eggs was also reduced significantly. Based on the above results, we concluded that magnesium silicate hollow spheres were good candidates as drug carriers with enough safety. PMID:25250911

  5. Hollow fibers for compact infrared gas sensors

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Hartwig, S.; Herbst, J.; Wöllenstein, J.

    2008-02-01

    Hollow fibers can be used for compact infrared gas sensors. The guided light is absorbed by the gas introduced into the hollow core. High sensitivity and a very small sampling volume can be achieved depending on fiber parameters i.e. attenuation, flexibility, and gas exchange rates. Different types of infrared hollow fibers including photonic bandgap fibers were characterized using quantum cascade lasers and thermal radiation sources. Obtained data are compared with available product specifications. Measurements with a compact fiber based ethanol sensor are compared with a system simulation. First results on the detection of trace amounts of the explosive material TATP using hollow fibers and QCL will be shown.

  6. Modeling the Electrostatics of Hollow Shell Suspensions: Ion Distribution, Pair Interactions, and Many-Body Effects.

    PubMed

    Hallez, Yannick; Meireles, Martine

    2016-10-11

    Electrostatic interactions play a key role in hollow shell suspensions as they determine their structure, stability, thermodynamics, and rheology and also the loading capacity of small charged species for nanoreservoir applications. In this work, fast, reliable modeling strategies aimed at predicting the electrostatics of hollow shells for one, two, and many colloids are proposed and validated. The electrostatic potential inside and outside a hollow shell with a finite thickness and a specific permittivity is determined analytically in the Debye-Hückel (DH) limit. An expression for the interaction potential between two such hollow shells is then derived and validated numerically. It follows a classical Yukawa form with an effective charge depending on the shell geometry, permittivity, and inner and outer surface charge densities. The predictions of the Ornstein-Zernike (OZ) equation with this pair potential to determine equations of state are then evaluated by comparison to results obtained with a Brownian dynamics algorithm coupled to the resolution of the linearized Poisson-Boltzmann and Laplace equations (PB-BD simulations). The OZ equation based on the DLVO-like potential performs very well in the dilute regime as expected, but also quite well, and more surprisingly, in the concentrated regime in which full spheres exhibit significant many-body effects. These effects are shown to vanish for shells with small thickness and high permittivity. For highly charged hollow shells, we propose and validate a charge renormalization procedure. Finally, using PB-BD simulations, we show that the cell model predicts the ion distribution inside and outside hollow shells accurately in both electrostatically dilute and concentrated suspensions. We then determine the shell loading capacity as a function of salt concentration, volume fraction, and surface charge density for nanoreservoir applications such as drug delivery, sensing, or smart coatings.

  7. Sphere forming method and apparatus

    NASA Technical Reports Server (NTRS)

    Youngberg, C. L.; Miller, C. G.; Stephens, J. B.; Finnerty, A. A. (Inventor)

    1983-01-01

    A system is provided for forming small accurately spherical objects. Preformed largely spherical objects are supported at the opening of a conduit on the update of hot gas emitted from the opening, so the object is in a molten state. The conduit is suddenly jerked away at a downward incline, to allow the molten object to drop in free fall, so that surface tension forms a precise sphere. The conduit portion that has the opening, lies in a moderate vacuum chamber, and the falling sphere passes through the chamber and through a briefly opened valve into a tall drop tower that contains a lower pressure, to allow the sphere to cool without deformation caused by falling through air.

  8. Synthesis and characterizations of spherical hollow composed of AgI nanoparticle using AgBr as the precursor

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhou, Kui

    2011-01-01

    Hollow spheres of AgI with an average radius of 100-200 nm have been prepared by a simple reaction between AgBr suspension and KI in the presence of gelatin. Gelatin played a decisive role as an inhibitor of the direct attack of I- ions to AgBr surfaces and coagulation of the growing AgI in producing the spherical AgI particles. The products were characterized by X-ray powder diffraction, transmission electron microscopy, UV-vis absorption spectroscopy and X-ray photoelectron spectra techniques. The band gaps are estimated to be 2.95 eV according to the results of optical measurements of the hollow spheres of AgI.

  9. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    PubMed

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  10. Structural analysis of hollow blades: Torsional stress analysis of hollow fan blades for aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Ogawa, A.; Sofue, Y.; Isobe, T.

    1979-01-01

    A torsional stress analysis of hollow fans blades by the finite element method is presented. The fans are considered to be double circular arc blades, hollowed 30 percent, and twisted by a component of the centrifugal force by the rated revolution. The effects of blade hollowing on strength and rigidity are discussed. The effects of reinforcing webs, placed in the hollowed section in varying numbers and locations, on torsional rigidity and the convergence of stresses, are reported. A forecast of the 30 percent hollowing against torsional loadings is discussed.

  11. Spheres of discharge of springs

    NASA Astrophysics Data System (ADS)

    Springer, Abraham E.; Stevens, Lawrence E.

    2009-02-01

    Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

  12. Neuroscience in the public sphere.

    PubMed

    O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene

    2012-04-26

    The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei

    2017-01-01

    Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.

  14. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  15. The "House" in Half Hollow Hills

    ERIC Educational Resources Information Center

    Karnilow, Sheldon

    2006-01-01

    In this article, the author relates how he initiated a systemic improvement to Half Hollow Hills school district when he became its superintendent. He relates that although he came to Half Hollow Hills with a deep understanding of the models of systemic change, he did not bring with him a specific prescriptive plan for improvement. His plan for…

  16. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  17. Skylight: a hollow prismatic CPC

    NASA Astrophysics Data System (ADS)

    Fernandez-Balbuena, Antonio Alvarez; Vázquez-Moliní, Daniel; Garcia-Fernandez, Berta; Garcia-Botella, Angel; Bernabeu, Eusebio

    2009-08-01

    Many applications involve the use of a compound parabolic concentrator (CPC) like, natural lighting, thermal applications, optics for illuminators, optical fibre coupling and solar energy. The use of a CPC in reverse mode for natural lighting gives the chance to use it as a lighting skylight in ceilings because light output is controlled inside the design angle, on the contrary having a low flux transfer ratio because of the reduced area of the entrance pupil regarding exit pupil. The authors propose an innovative 3D hollow prismatic CPC (HPCPC) made of a dielectric material, which has a high efficiency comparing it with aluminium CPC. The basic idea is to use a hollow prismatic light guide with CPC shape. This paper reports 2D, 3D design and numerical analysis by raytracing software, also experimental results are shown. The system works almost like a true CPC when light enters through standard entrance pupil and also collect light that enters outside entrance pupil. Performance and efficiency of the prismatic CPC is in average 300% higher than standard aluminium CPC for collimated light in a range from 0º to 85º. A prototype has been developed and tested.

  18. Tessellating the Sphere with Regular Polygons

    ERIC Educational Resources Information Center

    Soto-Johnson, Hortensia; Bechthold, Dawn

    2004-01-01

    Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.

  19. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciT

    Sexton, W.

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell wasmore » issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order

  20. Eddy currents in a conducting sphere

    NASA Technical Reports Server (NTRS)

    Bergman, John; Hestenes, David

    1986-01-01

    This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.

  1. Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline

    NASA Astrophysics Data System (ADS)

    Bu, Dan; Zhuang, Huisheng

    2013-01-01

    Copper-doped titania (Cu/TiO2) hollow microspheres were fabricated using the rape pollen as biotemplates via an improved sol-gel method and a followed calcinations process. In the fabricated process, a titanium(IV)-isopropoxide-based sol directly coated onto the surface of rape pollen. Subsequently, after calcinations, rape pollen was removed by high temperature and the hollow microsphere structure was retained. The average diameter of as-obtained hollow microspheres is 15-20 μm and the thickness of shell is approximately 0.6 μm. Knowing from XRD results, the main crystal phase of microspheres is anatase, coupled with rutile. The specific surface area varied between 141.80 m2/g and 172.51 m2/g. This hollow sphere photocatalysts with high specific surface area exhibited stronger absorption ability and higher photoactivity, stimulated by visible light. The degradation process of chlortetracycline (CTC) solution had been studied. The degradated results indicate that CTC could be effective degradated by fabricated hollow spherical materials. And the intermediate products formed in the photocatalytic process had been identified.

  2. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Archaic artifacts resembling celestial spheres

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  4. Active crystals on a sphere

    NASA Astrophysics Data System (ADS)

    Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut

    2018-05-01

    Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.

  5. Surfactant-free synthesis, luminescent properties, and drug-release properties of LaF3 and LaCO3F hollow microspheres.

    PubMed

    Lv, Ruichan; Gai, Shili; Dai, Yunlu; He, Fei; Niu, Na; Yang, Piaoping

    2014-01-21

    Uniform LaF3 and LaCO3F hollow microspheres were successfully synthesized through a surfactant-free route by employing La(OH)CO3 colloidal microspheres as a sacrificial template and NaBF4 as the fluorine source. The synthetic process consists of two steps: the preparation of a La(OH)CO3 precursor via a facile urea-based precipitation and the following formation of lanthanide fluoride hollow microspheres under aqueous conditions at low temperature (50 °C) and short reaction time (3 h), without using any surfactant and catalyst. The formation of hollow spheres with controlled size can be assigned to the Kirkendall effect. It is found that the phase and structure of the products can be simply tuned by changing the pH values of the solution. Time-dependent experiments were employed to study the possible formation process. N2 adsorption/desorption results indicate the mesoporous nature of LaF3 hollow spheres. Yb(3+)/Er(3+) (Ho(3+)) and Yb(3+)/Tm(3+)-doped LaF3 hollow spheres exhibit characteristic up-conversion (UC) emissions of Er(3+) (Ho(3+)) and Tm(3+) under 980 nm laser-diode excitation, and Ce(3+)/Tb(3+)-doped LaF3 and LaCO3F emit bright yellow-green and near-white light under UV irradiation, respectively. In particular, LaF3:Yb/Er and LaCO3F:Ce/Tb hollow microspheres exhibit obvious sustained and pH-dependent doxorubicin release properties. The luminescent properties of the carriers allow them to be tracked or monitored during the release or therapy process, suggesting their high potential in the biomedical field.

  6. Facile synthesis N-doped hollow carbon spheres from spherical solid silica.

    PubMed

    Wenelska, K; Ottmann, A; Moszyński, D; Schneider, P; Klingeler, R; Mijowska, E

    2018-02-01

    Nitrogen-doped core/shell carbon nanospheres (NHCS are prepared and their capability as an anode material in lithium-ion batteries is investigated. The synthesis methodology is based on a fast template route. The resulting molecular nanostructures are characterized by X-ray diffraction, transmission electron microscopy, thermal analysis, and nitrogen adsorption/desorption measurement as well as by cyclic voltammetry and galvanostatic cycling. The core/shell structure provides a rapid lithium transport pathway and boasts a highly reversible capacity. For undoped HCS the BET specific surface area is 623m 2 /g which increases up to 1000m 2 /g upon N-doping. While there is no significant effect of N-doping on the electrochemical performance at small scan rates, the doped NHCS shows better specific capacities than the pristine HCS at elevated rates. For instance, the discharge capacities in the 40th cycle, obtained at 1000mA/g, amount to 170mAh/g and 138mAh/g for NHCS and HCS, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-03-07

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  8. Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart

    Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen

    1992-01-01

    This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.

  9. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  10. Designing Hollow Nano Gold Golf Balls

    PubMed Central

    2015-01-01

    Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure. PMID:24937196

  11. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2012-02-01

    Microcapsules are small containers with diameters in the range of 0.1 -- 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  12. Formation of Uniform Hollow Silica microcapsules

    NASA Astrophysics Data System (ADS)

    Yan, Huan; Kim, Chanjoong

    2013-03-01

    Microcapsules are small containers with diameters in the range of 0.1 - 100 μm. Mesoporous microcapsules with hollow morphologies possess unique properties such as low-density and high encapsulation capacity, while allowing controlled release by permeating substances with a specific size and chemistry. Our process is a one-step fabrication of monodisperse hollow silica capsules with a hierarchical pore structure and high size uniformity using double emulsion templates obtained by the glass-capillary microfluidic technique to encapsulate various active ingredients. These hollow silica microcapsules can be used as biomedical applications such as drug delivery and controlled release.

  13. Microring embedded hollow polymer fiber laser

    SciT

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  14. Non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-04-15

    The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

  15. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  16. Liquid molded hollow cell core composite articles

    NASA Technical Reports Server (NTRS)

    Bernetich, Karl R. (Inventor)

    2005-01-01

    A hollow core composite assembly 10 is provided, including a hollow core base 12 having at least one open core surface 14, a bondable solid film 22 applied to the open core surface 14, at least one dry face ply 30 laid up dry and placed on top of the solid film 22, and a liquid resin 32 applied to the at least one dry face ply 30 and then cured.

  17. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  18. Analysis of ultraviolet photo-response of ZnO nanostructures prepared by electrodeposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Karam, Chantal; Lamouchi, Amina; Tingry, Sophie; Miele, Philippe; Habchi, Roland; Chtourou, Radhouane; Bechelany, Mikhael

    2018-06-01

    In this work, ZnO nanowires (ZnO NWs) and urchin-like ZnO nanowires (U-ZnO NWs) based on self-assembled ordered polystyrene sphere (PS) were successfully prepared by combining atomic layer deposition (ALD) and electrochemical deposition (ECD) processes to build UV photosensors. The photo-response of the prepared samples was investigated and compared. The growth of the nanowires on self-assembled, ordered PS introduces a significant modification on the morphology, crystal orientation and grain size of U-ZnO NWs compared to randomly, vertically aligned ZnO NWs, and therefore improves the photo-response of U-ZnO NWs. The photocurrent may be produced by either a surface or bulk-related process. For ZnO NW-based photosensors, the photocurrent was monitored by a surface related process, whereas, it was mainly governed by a bulk related process for U-ZnO NWs, resulting in a higher and faster photo-response. The study of the rise and decay time constants for both materials showed that these parameters were strikingly sensitive to the optical properties.

  19. Hollow latex particles: synthesis and applications.

    PubMed

    McDonald, Charles J; Devon, Michael J

    2002-12-02

    One of the major developments in emulsion polymerization over the last two decades has been the ability to make hollow latex particles. This has contributed many fundamental insights into the synthesis and the development of structure in particles. Hollow latex particles also enhance the performance of industrial coatings and potentially are useful in other technologies such as microencapsulation and controlled release. Ever since the publication of the initial process patents describing these particles, there has been a global R&D effort to extend the synthetic techniques and applications. One prominent synthetic approach to hollow particles is based on osmotic swelling. This dominates the literature, and usually starts with the synthesis of a structured latex particle containing an ionizable core that is subsequently expanded with the addition of base. Fundamental to this approach are a sophisticated control of transport phenomena, chemical reactivity within the particle, and the thermoplastic properties of the polymer shell. Hydrocarbon encapsulation technology has also been employed to make hollow latex particles. One approach involves a dispersed ternary system that balances transport, conversion kinetics, and phase separation variables to achieve the hollow morphology. Other techniques, including the use of blowing agents, are also present in the literature. The broad range of approaches that affords particles with a hollow structure demonstrates the unique flexibility of the emulsion polymerization process.

  20. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  1. Poisson denoising on the sphere

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.

    2009-08-01

    In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.

  2. Sticky Spheres in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Penrose, M. D.; Penrose, O.; Stell, G.

    For a 3-dimensional system of hard spheres of diameter D and mass m with an added attractive square-well two-body interaction of width a and depth ɛ, let BD, a denote the quantum second virial coefficient. Let BD denote the quantum second virial coefficient for hard spheres of diameter D without the added attractive interaction. We show that in the limit a → 0 at constant α: = ℰma2/(2ħ2) with α < π2/8, \\[ B_{D, a} =B_D -a \\left(\\frac{\\tan\\surd (2\\alpha)}{\\surd (2\\alpha)} -1\\right) \\frac{d}{dD} B_D +o (a) . \\] The result is true equally for Boltzmann, Bose and Fermi statistics. The method of proof uses the mathematics of Brownian motion. For α > π2/8, we argue that the gaseous phase disappears in the limit a → 0, so that the second virial coefficient becomes irrelevant.

  3. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  4. Sphere Drag and Heat Transfer.

    PubMed

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  5. Synthesis of Hollow Nanotubes of Zn2SiO4 or SiO2: Mechanistic Understanding and Uranium Adsorption Behavior.

    PubMed

    Tripathi, Shalini; Bose, Roopa; Roy, Ahin; Nair, Sajitha; Ravishankar, N

    2015-12-09

    We report a facile synthesis of Zn2SiO4 nanotubes using a two-step process consisting of a wet-chemical synthesis of core-shell ZnO@SiO2 nanorods followed by thermal annealing. While annealing in air leads to the formation of hollow Zn2SiO4, annealing under reducing atmosphere leads to the formation of SiO2 nanotubes. We rationalize the formation of the silicate phase at temperatures much lower than the temperatures reported in the literature based on the porous nature of the silica shell on the ZnO nanorods. We present results from in situ transmission electron microscopy experiments to clearly show void nucleation at the interface between ZnO and the silica shell and the growth of the silicate phase by the Kirkendall effect. The porous nature of the silica shell is also responsible for the etching of the ZnO leading to the formation of silica nanotubes under reducing conditions. Both the hollow silica and silicate nanotubes exhibit good uranium sorption at different ranges of pH making them possible candidates for nuclear waste management.

  6. Hollow glass for insulating layers

    NASA Astrophysics Data System (ADS)

    Merticaru, Andreea R.; Moagar-Poladian, Gabriel

    1999-03-01

    Common porous materials, some of which will be considered in the chapters of this book, include concrete, paper, ceramics, clays, porous semiconductors, chromotography materials, and natural materials like coral, bone, sponges, rocks and shells. Porous materials can also be reactive, such as in charcoal gasification, acid rock dissolution, catalyst deactivation and concrete. This study continues the investigations about the properties of, so-called, hollow glass. In this paper is presented a computer simulation approach in which the thermo-mechanical behavior of a 3D microstructure is directly computed. In this paper a computer modeling approach of porous glass is presented. One way to test the accuracy of the reconstructed microstructures is to computed their physical properties and compare to experimental measurement on equivalent systems. In this view, we imagine a new type of porous type of glass designed as buffer layer in multilayered printed boards in ICs. Our glass is a variable material with a variable pore size and surface area. The porosity could be tailored early from the deposition phases that permitting us to keep in a reasonable balance the dielectric constant and thermal conductivity.

  7. Impingement of Water Droplets on a Sphere

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Saper, Paul G.; Kadow, Charles F.

    1955-01-01

    Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere.

  8. SPRUCE Hollow Elevation Data for Experimental Plots Beginning in 2015

    SciT

    Griffiths, N. A.; Sebestyen, S. D.

    2017-01-01

    This data set provides hollow elevation data for the 17 SPRUCE experimental plots in the S1 bog on the Marcell Experimental Forest. Hollows were selected for measurement by walking along each octagonal boardwalk segment in a plot and identifying where a hollow intersected the boardwalk. The vertical distance between the surface of the boardwalk (with a known elevation) and the surface of the hollow was measured and the absolute elevation (in meters amsl) of the hollow surface was calculated. The hollow elevation measurements were carried out in October 2015, May 2016, and October 2016. These measurements will be repeated annuallymore » or more frequently.« less

  9. Magnetic torque on a rotating superconducting sphere

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.

    1975-01-01

    The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.

  10. Bio-mimetic hollow scaffolds for long bone replacement

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Deyhle, Hans; Fierz, Fabienne C.; Irsen, Stephan H.; Yoon, Jin Y.; Mushkolaj, Shpend; Boss, Oliver; Vorndran, Elke; Gburek, Uwe; Degistirici, Özer; Thie, Michael; Leukers, Barbara; Beckmann, Felix; Witte, Frank

    2009-08-01

    The tissue engineering focuses on synthesis or regeneration of tissues and organs. The hierarchical structure of nearly all porous scaffolds on the macro, micro- and nanometer scales resembles that of engineering foams dedicated for technical applications, but differ from the complex architecture of long bone. A major obstacle of scaffold architecture in tissue regeneration is the limited cell infiltration as the result of the engineering approaches. The biological cells seeded on the three-dimensional constructs are finally only located on the scaffold's periphery. This paper reports on the successful realization of calcium phosphate scaffolds with an anatomical architecture similar to long bones. Two base materials, namely nano-porous spray-dried hydroxyapatite hollow spheres and tri-calcium phosphate powder, were used to manufacture cylindrically shaped, 3D-printed scaffolds with micro-passages and one central macro-canal following the general architecture of long bones. The macro-canal is built for the surgical placement of nerves or larger blood vessels. The micro-passages allow for cell migration and capillary formation through the entire scaffold. Finally, the nanoporosity is essential for the molecule transport crucial for signaling, any cell nutrition and waste removal.

  11. Spectral Clustering and Geomorphological Analysis on Mercury Hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Pajola, M.; Galluzzi, V.; Giacomini, L.; Carli, C.; Cremonese, G.; Marzo, G. A.; Massironi, M.; Roush, T.

    2018-05-01

    Characterization of hollows located in different craters to understand whether there is a similar trend from a compositional point of view, and whether a possible correlation exists between spectral behavior of hollows and geomorphological units.

  12. Method for the production of fabricated hollow microspheroids

    DOEpatents

    Wickramanayake, Shan; Luebke, David R.

    2015-06-09

    The method relates to the fabrication of a polymer microspheres comprised of an asymmetric layer surrounding a hollow interior. The fabricated hollow microsphere is generated from a nascent hollow microsphere comprised of an inner core of core fluid surrounded by a dope layer of polymer dope, where the thickness of the dope layer is at least 10% and less than 50% of the diameter of the inner core. The nascent hollow microsphere is exposed to a gaseous environment, generating a vitrified hollow microsphere, which is subsequently immersed in a coagulation bath. Solvent exchange produces a fabricated hollow microsphere comprised of a densified outer skin surrounding a macroporous inner layer, which surrounds a hollow interior. In an embodiment, the polymer is a polyimide or a polyamide-imide, and the non-solvent in the core fluid and the coagulation bath is water. The fabricated hollow microspheres are particularly suited as solvent supports for gas separation processes.

  13. The "Magical" Sphere: Uncovering the Secret

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Bukleski, Miha

    2006-01-01

    A red sphere is seen at the bottom of a sealed glass tube filled with a colorless, transparent liquid. Holding the tube for a short period makes the sphere rise slowly from the bottom until it finally floats on the surface of the liquid. Instructions for preparing the demonstration are given, together with an explanation of the phenomenon. A…

  14. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  15. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  16. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the

  17. Method of making a non-lead hollow point bullet

    DOEpatents

    Vaughn, Norman L.; Lowden, Richard A.

    2003-10-07

    The method of making a non-lead hollow point bullet has the steps of a) compressing an unsintered powdered metal composite core into a jacket, b) punching a hollow cavity tip portion into the core, c) seating an insert, the insert having a hollow point tip and a tail protrusion, on top of the core such that the tail protrusion couples with the hollow cavity tip portion, and d) swaging the open tip of the jacket.

  18. Effective transport properties of composites of spheres

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    1994-06-01

    The effective linear transport properties of composites of spheres may be studied by the methods of statistical physics. The analysis leads to an exact cluster expansion. The resulting expression for the transport coefficients may be evaluated approximately as the sum of a mean field contribution and correction terms, given by cluster integrals over two-sphere and three-sphere correlation functions. Calculations of this nature have been performed for the effective dielectric constant, as well as the effective elastic constants of composites of spheres. Accurate numerical data for the effective properties may be obtained by computer simulation. An efficient formulation uses multiple expansion in Cartesian coordinates and periodic boundary conditions. Extensive numerical results have been obtained for the effective dielectric constant of a suspension of randomly distributed spheres.

  19. Mass balancing of hollow fan blades

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.

    1986-01-01

    A typical section model is used to analytically investigate the effect of mass balancing as applied to hollow, supersonic fan blades. A procedure to determine the best configuration of an internal balancing mass to provide flutter alleviation is developed. This procedure is applied to a typical supersonic shroudless fan blade which is unstable in both the solid configuration and when it is hollow with no balancing mass. The addition of an optimized balancing mass is shown to stabilize the blade at the design condition.

  20. Physical Processes in Hollow Cathode Discharge

    DTIC Science & Technology

    1989-12-01

    State University. Finally, many thanks to my wife, Kyoung -Sook and my son, Frederick Teut, for their love and being supportive for two and half years...recommended for all electron emission purposes. 46 REFERENCES 1. Kim Gunther, "Hollow Cathode Plasma Source" ( Spectra-Mat Hollow Cathode Manual...59 Dong 401 Ho Seoul, Republic of Korea 8. Maj. Kim , Jong-Ryul 1 Postal Code 500-00 Book-Gu, Du-Am Dong, 874-14 Kwang-Ju, Republic of Korea 9. Maj

  1. Computational predictions of zinc oxide hollow structures

    NASA Astrophysics Data System (ADS)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  2. Layer-by-layer hollow photosensitizer microcapsule design via a manganese carbonate hard template for photodynamic therapy in cells.

    PubMed

    Simioni, Andreza Ribeiro; de Jesus, Priscila Costa Carvalho; Tedesco, Antonio Claudio

    2018-06-01

    Microcapsules fabricated using layer-by-layer self-assembly have unique properties, making them attractive for drug delivery applications. The technique has been improved, allowing the deposition of multiple layers of oppositely charged polyelectrolytes on spherical, colloidal templates. These templates can be decomposed by coating multiple layers, resulting in hollow shells. In this paper, we describe a novel drug delivery system for loading photosensitizer drugs into hollow multilayered microcapsules for photoprocess applications. Manganese carbonate particles were prepared by mixing NH 4 HCO 3 and MnSO 4 and performing consecutive polyelectrolyte adsorption processes onto these templates using poly-(sodium 4-styrene sulfonate) and poly-(allylamine hydrocholoride). A photosensitizer was also incorporated into the layers. Hollow spheres were fabricated by removing the cores in the acidic solution. The hollow, multilayered microcapsules were studied by scanning electron microscopy, steady-state, and time-resolved techniques. Their biological activity was evaluated in vitro with cancer cells using a conventional MTT assay. The synthesized CaCO 3 microparticles were uniform, non-aggregated, and highly porous spheres. The phthalocyanine derivatives loaded in the microcapsules maintained their photophysical behaviour after encapsulation. The spectroscopic results presented here showed excellent photophysical behaviour of the studied drug. We observed a desirable increase in singlet oxygen production, which is favourable for the PDT protocol. Cell viability after treatment was determined and the proposed microcapsules caused 80% cell death compared to the control. The results demonstrate that photosensitizer adsorption into the CaCO 3 microparticle voids together with the layer-by-layer assembly of biopolymers provide a method for the fabrication of biocompatible microcapsules for use as biomaterials. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V.; Pillai, Vijayamohanan K.

    2014-07-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar

  4. Anomalies, conformal manifolds, and spheres

    SciT

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  5. Anomalies, conformal manifolds, and spheres

    NASA Astrophysics Data System (ADS)

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan

    2016-03-01

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.

  6. Anomalies, conformal manifolds, and spheres

    DOE PAGES

    Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...

    2016-03-04

    The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less

  7. Unsteady flow over a decelerating rotating sphere

    NASA Astrophysics Data System (ADS)

    Turkyilmazoglu, M.

    2018-03-01

    Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.

  8. Zn(II)-PEG 300 globules as soft template for the synthesis of hexagonal ZnO micronuts by the hydrothermal reaction method.

    PubMed

    Shi, Xixi; Pan, Lingling; Chen, Shuoping; Xiao, Yong; Liu, Qiaoyun; Yuan, Liangjie; Sun, Jutang; Cai, Lintao

    2009-05-19

    Hexagonal ZnO micronuts (HZMNs) have been successfully synthesized with the assistance of poly(ethylene glycol) (PEG) 300 via a hydrothermal method. The structure and morphology of the HZMNs were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). An individual ZnO micronut is revealed as twinned crystals. Time-dependent investigation shows that the growth of HZMNs involves a dissolution-recrystallization process followed by Ostwald ripening, in which is the first formed solid ZnO particles dissolve and transform to HZMNs with hollow structure. PEG 300 has been found to play a crucial role in the growth of this unique hollow structure. TEM observations show that the PEG chains aggregate to globules in water, which then have interaction with the dissolved zinc species to form the globules in a coiled state under hydrothermal conditions. These Zn(II)-PEG 300 globules act as soft template for the growth of HZMNs, and the possible growth mechanism is proposed. The room-temperature photoluminescence (PL) spectrum shows red emission around 612 nm with a full width at half-maximum (fwhm) only about 13 nm.

  9. An alternative theoretical model for an anomalous hollow beam.

    PubMed

    Cai, Yangjian; Wang, Zhaoying; Lin, Qiang

    2008-09-15

    An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.

  10. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  11. Hollow spherical rotors fabricated by electroplating

    NASA Technical Reports Server (NTRS)

    Avery, H. W.; Conroy, T. F.

    1966-01-01

    Equatorial bands are fabricated to provide a locating fit for the hemispheres of hollow spherical rotors which are then jointed by electroplating. Several nonmagnetic materials may be used to form the joint, such as aluminum, copper, iron, gold, plantinum, and zinc.

  12. Hollow atoms below, above, and at surface

    NASA Astrophysics Data System (ADS)

    Briand, Jean Pierre

    1993-12-01

    It is now quite obvious that, in most cases, when a highly charged ion approaches, or penetrates a surface, many electrons are captured in excited states of the projectile. The nature of the hollow atoms formed depends on the velocity of the ion, and whether or not capture has occurred above, below, or at the surface. I would like in this talk to discuss the nature, namely the electronic configuration of the hollow atoms formed in various circumstances. In the first two sections I shall summarize recent results, some of them are already published, or have been presented in other conferences. Section I will be devoted to the study of hollow atoms formed inside the surface, section II to those formed far from the surface. In a third section I will present some new results, obtained at very low velocities, on hollow atoms at surface. These results have been obtained through a large international collaboration: J.P. DESCLAUX, CEN, Grenoble; B. d'ETAT, G. GIARDINO, L. de BILLY, S. BARDIN, LPAN-Université P&M Curie, Paris; D. SCHNEIDER, M. BRIERE, M. CLARK, D. KNAPP, V. DECAUX, LLNL, Livermore-Californie; R. ALI, N. RENARD, M. STOCKLI, P. RICHARD, KSU, Manhattan-Kansas; A. BRENAC, G. LAMBOLLEY, AIM, Grenoble; J. FAURE, Laboratoire National Saturne, Saclay.

  13. Hollow? Is It Me Youre Looking For?

    2015-02-20

    Today's image features a color view of the peak-ringed crater Aksakov. The inner ring of Aksakov is superimposed by another crater. Both the central peak of this smaller crater and one of the northeastern massifs of the inner peak ring have small areas of hollows. http://photojournal.jpl.nasa.gov/catalog/PIA19212

  14. Aerial View of StenniSphere

    2001-04-25

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  15. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  16. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  17. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  18. DOD SPHERES-RINGS Test Session

    2013-11-04

    ISS037-E-025915 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  19. Aerial View of StenniSphere

    NASA Technical Reports Server (NTRS)

    2001-01-01

    StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.

  20. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  1. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    DOE PAGES

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle; ...

    2017-02-21

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  2. Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    SciT

    Pei, Yuchen; Qi, Zhiyuan; Li, Xinle

    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO 2, CdS, and Ni 3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon sourcemore » and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties ( E 1/2 = 0.850 V) in comparison with those of HCPs. As a result, we highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity.« less

  3. High-quality ZnO inverse opals and related heterostructures as photocatalysts produced by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Long, Jie; Fu, Ming; Li, Caixia; Sun, Cuifeng; He, Dawei; Wang, Yongsheng

    2018-10-01

    ZnO with various nanostructures is widely investigated for high photoelectrochemical (PEC) catalysis performances due to its abundant and inert semiconducting properties with elevated electronic mobility and variable morphologies. Because the solar energy conversion efficiencies could possibly be further enhanced by the introduction of nanophotonic structures with larger surface ratios, high-quality ZnO inverse opals (IOs) were achieved by ALD method using O3 as the oxidant. The intrinsic UV emission peaks and PEC currents of ZnO IOs produced by O3 atomic layer deposition (ALD) method were much improved when compared to those made by H2O ALD and electrodeposition. ALD at higher temperatures (240 °C) can further enhance the crystalline quality and PEC performances. The optimal ALD thickness and filling fraction obtained by controlling ALD cycles, as well as the optimal photonic stop band position obtained by colloidal crystals with different sphere diameters were also discussed. It was found that conformally coated samples with TiO2 protection layers by ALD method using titanium tetrachloride as a precursor enhanced the photochemical stability of ZnO IOs. The photocorrosion was further reduced by inserting ALD Al2O3 inside the TiO2 protection layers. Heterostructured photonic crystals with double-layer IO structures with different pore periodicities were also developed for enhancing the PEC performances.

  4. The photocatalytic properties of hollow (GaN)1-x(ZnO)x composite nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Ding; Zhang, Minglu; Zhuang, Huaijuan; Chen, Xu; Wang, Xianying; Zheng, Xuejun; Yang, Junhe

    2017-02-01

    (GaN)1-x(ZnO)x composite nanofibers with hollow structure were prepared by initial electrospinning, and the subsequent calcination and nitridation. The structure and morphology characteristics of samples were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The characterization results showed the phase transition from ZnGa2O4 to (GaN)1-x(ZnO)x solid-solution under ammonia atmosphere. The preparation conditions were explored and the optimum nitridation temperature and holding time are 750 °C and 2 h, respectively. The photocatalytic properties of (GaN)1-x(ZnO)x with different Ga:Zn atomic ratios were investigated by degrading Rhodamine B under the visible light irradiation. The photocatalytic activity sequence is (GaN)1-x(ZnO)x (Ga:Zn = 1:2) > (GaN)1-x(ZnO)x (Ga:Zn = 1:3) > ZnO nanofibers > (GaN)1-x(ZnO)x (Ga:Zn = 1:4) > (GaN)1-x(ZnO)x (Ga:Zn = 1:1). The photocatalytic mechanism of the (GaN)1-x(ZnO)x hollow nanofibers was further studied by UV-vis diffuse reflectance spectra. The excellent photocatalytic performance of (GaN)1-x(ZnO)x hollow nanofibers was attributed to the narrow band gap and high surface area of porous nanofibers with hollow structure.

  5. Acoustic levitation of a large solid sphere

    SciT

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setupmore » consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.« less

  6. StenniSphere reopens after Hurricane Katrina

    2006-01-18

    StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.

  7. StenniSphere reopens after Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    2006-01-01

    StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.

  8. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  9. Magnetization of small iron-nickel spheres

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1981-01-01

    Magnetic properties of small iron-nickel alloy spheres, having compositions which cover the entire Fe-Ni binary, are presented. The spheres were formed during solidification in free fall following the melting of electropolished wires of appropriate composition. The spheres with Ni not greater than 25% acquired a martensitic thermal remanence while those with Ni not less than 30% acquired a thermoremanent magnetization. A magnetic remanence-composition diagram and a coercive force-composition diagram are constructed. Magnetic hysteresis loops and derived parameters demonstrate the difference between metal-bearing and oxide-bearing natural samples. The magnetic remanence varies as the sphere size in conjunction with the microstructure. These results help to explain why coercive force is generally low, remanent coercive force is generally high, and their ratio (R/C) is always large in fine metal dispersions, such as lunar samples and chondrite meteorites.

  10. Elastic spheres can walk on water.

    PubMed

    Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T

    2016-02-04

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.

  11. Elastic spheres can walk on water

    PubMed Central

    Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.

    2016-01-01

    Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860

  12. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  13. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    AFRL-RX-WP-TP-2014-0141 SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) Shin Mou AFRL/RXAN JANUARY... SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...or disclose the work. The final publication is available at www.rsc.org/MaterialsA. 14. ABSTRACT Hierarchical superhydrophobic surfaces were

  14. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    PubMed

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables

  15. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciT

    Abdolmaleki, Amir, E-mail: abdolmaleki@cc.iut.ac.ir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR,more » specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.« less

  16. The Separate Spheres Model of Gendered Inequality.

    PubMed

    Miller, Andrea L; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.

  17. The Separate Spheres Model of Gendered Inequality

    PubMed Central

    Miller, Andrea L.; Borgida, Eugene

    2016-01-01

    Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454

  18. Hollow Gaussian beams and their propagation properties

    NASA Astrophysics Data System (ADS)

    Cai, Yangjian; Lu, Xuanhui; Lin, Qiang

    2003-07-01

    A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.

  19. Hollow Gaussian beams and their propagation properties.

    PubMed

    Cai, Yangjian; Lu, Xuanhui; Lin, Qiang

    2003-07-01

    A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.

  20. Collinear swimmer propelling a cargo sphere at low Reynolds number.

    PubMed

    Felderhof, B U

    2014-11-01

    The swimming velocity and rate of dissipation of a linear chain consisting of two or three little spheres and a big sphere is studied on the basis of low Reynolds number hydrodynamics. The big sphere is treated as a passive cargo, driven by the tail of little spheres via hydrodynamic and direct elastic interaction. The fundamental solution of Stokes equations in the presence of a sphere with a no-slip boundary condition, as derived by Oseen, is used to model the hydrodynamic interactions between the big sphere and the little spheres.

  1. Terminal energy distribution of blast waves from bursting spheres

    NASA Technical Reports Server (NTRS)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  2. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  3. Hollow cathode startup using a microplasma discharge

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1981-01-01

    Attention is given to a microplasma discharge to initiate a hollow cathode discharge for such applications as plasma flow experiments, the electric propulsion of space vehicles, and as a replacement for filament cathodes in neutral beam injector ion sources. The technique results in a cathode that is easy to start, simple in design, and which does not require external RF exciters, inserts or heating elements. Future applications may include ion beam milling and ion implantation.

  4. Hollow microgels squeezed in overcrowded environments

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Brugnoni, M.; Rudov, A. A.; Houston, J. E.; Potemkin, I. I.; Richtering, W.

    2018-05-01

    We study how a cavity changes the response of hollow microgels with respect to regular ones in overcrowded environments. The structural changes of hollow poly(N-isopropylacrylamide) microgels embedded within a matrix of regular ones are probed by small-angle neutron scattering with contrast variation. The form factors of the microgels at increasing compressions are directly measured. The decrease of the cavity size with increasing concentration shows that the hollow microgels have an alternative way with respect to regular cross-linked ones to respond to the squeezing due to their neighbors. The structural changes under compression are supported by the radial density profiles obtained with computer simulations. The presence of the cavity offers to the polymer network the possibility to expand toward the center of the microgels in response to the overcrowded environment. Furthermore, upon increasing compression, a two step transition occurs: First the microgels are compressed but the internal structure is unchanged; then, further compression causes the fuzzy shell to collapse completely and reduce the size of the cavity. Computer simulations also allow studying higher compression degrees than in the experiments leading to the microgel's faceting.

  5. Formation of hollow atoms above a surface

    NASA Astrophysics Data System (ADS)

    Briand, Jean Pierre; Phaneuf, Ronald; Terracol, Stephane; Xie, Zuqi

    2012-06-01

    Slow highly stripped ions approaching or penetrating surfaces are known to capture electrons into outer shells of the ions, leaving the innermost shells empty, and forming hollow atoms. Electron capture occurs above and below the surfaces. The existence of hollow atoms below surfaces e.g. Ar atoms whose K and L shells are empty, with all electrons lying in the M and N shells, was demonstrated in 1990 [1]. At nm above surfaces, the excited ions may not have enough time to decay before hitting the surfaces, and the formation of hollow atoms above surfaces has even been questioned [2]. To observe it, one must increase the time above the surface by decelerating the ions. We have for the first time decelerated O^7+ ions to energies as low as 1 eV/q, below the minimum energy gained by the ions due to the acceleration by their image charge. As expected, no ion backscattering (trampoline effect) above dielectric (Ge) was observed and at the lowest ion kinetic energies, most of the observed x-rays were found to be emitted by the ions after surface contact. [4pt] [1] J. P. Briand et al., Phys.Rev.Lett. 65(1990)159.[0pt] [2] J.P. Briand, AIP Conference Proceedings 215 (1990) 513.

  6. Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures

    SciT

    Zhang, Jinshui; Bai, Ying; Sun, Xiao-Guang

    2015-01-01

    The growth and proliferation of lithium (Li) dendrites during cell recharge is unavoidable, which seriously hinders the development and application of rechargeable Li metal batteries. Solid electrolytes with robust mechanical modulus are regarded as a promising approach to overcome the dendrite problems. However, their room-temperature ionic conductivities are usually too low to reach the level required for normal battery operation. Here, a class of novel solid electrolytes with liquid-like room-temperature ionic conductivities (> 1 mS cm-1) has been successfully synthesized by taking advantage of the unique nanoarchitectures of hollow silica (HS) spheres to confine liquid electrolytes in hollow space tomore » afford high conductivities. In a symmetric lithium/lithium cell, such kind of solid-like electrolytes demonstrates a robust performance against Li dendrite problems, well stabilizing the cell system from short circuiting in a long-time operation at current densities ranging from 0.16 to 0.32 mA cm-2. Moreover, the high flexibility and compatibility of HS nanoarchitectures, in principle, enables broad tunability to choose desired liquids for the fabrication of other kinds of solid-like electrolytes, such as those containing Na+, Mg2+ or Al3+ as conductive media, providing a useful alternative strategy for the development of next generation rechargeable batteries.« less

  7. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-26

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li + at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g -1 at 100 mA g -1 and 879 mA h g -1 at 5 A g -1 for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li + adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li + diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li + ; and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  9. Electrochemical system and method for electropolishing hollow metal bodies

    SciT

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    A method and system for electrochemically machining a hollow body of a metal or a metal alloy. An electrode is positioned within a hollow body including a metal or metal alloy, where the hollow body has a variable internal diameter. The hollow body is oriented vertically, with the electrode oriented vertically therein. The hollow body is at least partially filled with an aqueous, acidic electrolyte solution, the electrolyte solution being devoid of hydrofluoric acid and having a viscosity less than 15 cP. An electric current is passed between the hollow body and the electrode, where the electric current includes amore » plurality of anodic pulses and a plurality of cathodic pulses, and where the cathodic pulses are interposed between at least some of the anodic pulses.« less

  10. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  11. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  12. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O.

    PubMed

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V; Pillai, Vijayamohanan K

    2014-08-07

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, "as grown" CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ∼ 470 μA cm(-2)) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.

  13. Robotics Programming Competition Spheres, Russian Part

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia

    2016-07-01

    Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.

  14. The rising motion of spheres in structured fluids with yield stress

    NASA Astrophysics Data System (ADS)

    Mirzaagha, S.; Pasquino, R.; Iuliano, E.; D'Avino, G.; Zonfrilli, F.; Guida, V.; Grizzuti, N.

    2017-09-01

    The rising of spherical bodies in structured fluids with yield stress is studied. The system is a suspension of hydrogenated castor oil colloidal fibers in a surfactant micellar solution. The fiber network confers to the fluid a viscoelastic behavior, with a well-defined yield stress, which increases with increasing fiber concentration. Various fluids with different fiber contents are prepared and rheologically characterized. A home-made time-lapse photography setup is used to monitor the time evolution position of the spherical particles, and the rising motion of both hollow spheres and air bubbles, in the diameter range 65-550 μm, is measured. The experiments last as long as several weeks, corresponding to significantly low measured velocities. Finite element simulations are performed to support the experimental data, assuming both interfacial slip and no slip conditions. The fluid dynamic phenomenon is studied and discussed in terms of dimensionless numbers, such as yield ratio, Bingham number, and Stokes drag coefficient. The results are novel for the system (suspending medium and hollow spheres) and for the covered Bingham number range, which is extended over three orders of magnitude in comparison with already available literature results. Our values provide quantitative data of the mechanical properties (i.e., yield stress value) at very low shear rates, in a prohibitive range for a traditional rheometer, and agree with the macroscopic rheological response. Moreover, the important role of the power law index n of the Herschel-Bulkley model, used to fit the data, has been highlighted. Our results, based on a Bingham-like fluid, are compared with the experimental data already available with Carbopol, treated as a Herschel Bulkley fluid with n = 0.5. The results could have important implications in the fabric and personal care detergency, a technological area where many fluids have composition and show rheological properties similar to those considered in the

  15. Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.

    PubMed

    Rodríguez-López, Tonalli; del Río, Fernando

    2012-01-28

    In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.

  16. α clustering with a hollow structure: Geometrical structure of α clusters from platonic solids to fullerene shape

    NASA Astrophysics Data System (ADS)

    Tohsaki, Akihiro; Itagaki, Naoyuki

    2018-01-01

    We study α -cluster structure based on the geometric configurations with a microscopic framework, which takes full account of the Pauli principle, and which also employs an effective internucleon force including finite-range three-body terms suitable for microscopic α -cluster models. Here, special attention is focused upon the α clustering with a hollow structure; all the α clusters are put on the surface of a sphere. All the platonic solids (five regular polyhedra) and the fullerene-shaped polyhedron coming from icosahedral structure are considered. Furthermore, two configurations with dual polyhedra, hexahedron-octahedron and dodecahedron-icosahedron, are also scrutinized. When approaching each other from large distances with these symmetries, α clusters create certain local energy pockets. As a consequence, we insist on the possible existence of α clustering with a geometric shape and hollow structure, which is favored from Coulomb energy point of view. Especially, two configurations, that is, dual polyhedra of dodecahedron-icosahedron and fullerene, have a prominent hollow structure compared with the other six configurations.

  17. Elaborate Manipulation for Sub-10 nm Hollow Catalyst Sensitized Heterogeneous Oxide Nanofibers for Room Temperature Chemical Sensors.

    PubMed

    Jang, Ji-Soo; Choi, Seon-Jin; Koo, Won-Tae; Kim, Sang-Joon; Cheong, Jun Young; Kim, Il-Doo

    2017-07-26

    Room-temperature (RT) operation sensors are constantly in increasing demand because of their low power consumption, simple operation, and long lifetime. However, critical challenges such as low sensing performance, vulnerability under highly humid state, and poor recyclability hinder their commercialization. In this work, sub-10 nm hollow, bimetallic Pt-Ag nanoparticles (NPs) were successfully formed by galvanic replacement reaction in bioinspired hollow protein templates and sensitized on the multidimensional SnO 2 -WO 3 heterojunction nanofibers (HNFs). Formation of hollow, bimetallic NPs resulted in the double-side catalytic effect, rendering both surface and inner side chemical reactions. Subsequently, SnO 2 -WO 3 HNFs were synthesized by incorporating 2D WO 3 nanosheets (NSs) with 0D SnO 2 sphere by c-axis growth inhibition effect and fluid dynamics of liquid Sn during calcination. Hierarchically assembled HNFs effectively modulate surface depletion layer of 2D WO 3 NSs by electron transfers from WO 3 to SnO 2 stemming from creation of heterojunction. Careful combination of bimetallic catalyst NPs with HNFs provided an extreme recyclability under exhaled breath (95 RH%) with outstanding H 2 S sensitivity. Such sensing platform clearly distinguished between the breath of healthy people and simulated halitosis patients.

  18. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  19. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  20. Depletion zones and crystallography on pinched spheres

    NASA Astrophysics Data System (ADS)

    Chen, Jingyuan; Xing, Xiangjun; Yao, Zhenwei

    2018-03-01

    Understanding the interplay between ordered structures and substrate curvature is an interesting problem with versatile applications, including functionalization of charged supramolecular surfaces and modern microfluidic technologies. In this work, we investigate the two-dimensional packing structures of charged particles confined on a pinched sphere. By continuously pinching the sphere, we observe cleavage of elongated scars into pleats, proliferation of disclinations, and subsequently, emergence of a depletion zone at the negatively curved waist that is completely void of particles. We systematically study the geometrics and energetics of the depletion zone, and reveal its physical origin as a finite size effect, due to the interplay between Coulomb repulsion and concave geometry of the pinched sphere. These results further our understanding of crystallography on curved surfaces, and have implications in design and manipulation of charged, deformable interfaces in various applications.

  1. Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ai, Taotao; Yu, Qi

    2017-02-01

    Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth mechanism of pure ZnO nanorods and B-doped ZnO sheet-spheres was specifically investigated. The as-prepared BZO/PET-ITO heterojunction possessed obvious rectification properties and its positive turn-on voltage was 0.4 V. The carrier transport mechanisms involved three models such as hot carrier tunneling theory, tunneling recombination, and series-resistance effect were explored. The BZO/PET-ITO nanostructures were more effective than pure ZnO to degrade the RY 15, and the degradation rate reached 41.45%. The decomposition process with BZO nanostructure followed first-order reaction kinetics. The photocurrent and electrochemical impedance spectroscopy revealed that the B-doping could promote the separation of photo-generated electron-hole pairs, which was beneficial to enhance the photocatalytic activity. The photocurrent density of B-doped and pure ZnO/PET-ITO were 0.055 mA/cm2 and 0.016 mA/cm2, respectively. The photocatalytic mechanism of the sample was analyzed by the energy band theory.

  2. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  3. Casimir repulsion in sphere-plate geometry

    NASA Astrophysics Data System (ADS)

    Pirozhenko, Irina G.; Bordag, Michael

    2013-04-01

    The electromagnetic vacuum energy is considered in the presence of a perfectly conducting plane and a ball with dielectric permittivity ɛ and magnetic permeability μ, μ≠1. The attention is focused on the Casimir repulsion in this system caused by the magnetic permeability of the sphere. In the case of a perfectly permeable sphere, μ=∞, the vacuum energy is estimated numerically. The short- and long-distance asymptotes corresponding to the repulsive force and respective low-temperature corrections and high-temperature limits are found for a wide range of μ. The constraints on the Casimir repulsion in this system are discussed.

  4. The dissolution or growth of a sphere

    NASA Technical Reports Server (NTRS)

    Shankar, N.; Wiltshire, Timothy J.; Subramanian, R. Shankar

    1984-01-01

    The problem of the dissolution or growth of an isolated stationary sphere in a large fluid body is analyzed. The motion of the boundary as well as the the resulting motion in the liquid are properly taken into account. The governing equations are solved using a recently developed technique (Subramanian and Weinberg, 1981) which employs an asymptotic expansion in time. Results for the radius of the sphere as a function of time are calculated. The range of utility of the present solution is established by comparison with a numerical solution of the governing equations obtained by the method of finite differences.

  5. View From Outside the Viewing Sphere

    PubMed Central

    Koenderink, Jan; van Doorn, Andrea; Pepperell, Robert

    2018-01-01

    The ‘viewing sphere’, as defined by Euclid and explored by Gibson as the ‘optic array’, is generally thought of as wrapped around the eye. Can an observer step out of it? With currently popular photographic techniques, the spectator is forced to, because the viewing sphere is presented as a pictorial object. Then the question is whether human observers are able to use such pictorial representations in an intuitive manner. Can the spectator ‘mentally step into the interior’ of the pictorial viewing sphere? We explore this issue in a short experiment. Perhaps unsurprisingly, because the eye cannot see itself, the short answer is no. PMID:29854376

  6. Transparent and semitransparent conducting film deposition by reactive-environment, hollow cathode sputtering

    NASA Astrophysics Data System (ADS)

    Delahoy, A. E.; Guo, S. Y.

    2005-07-01

    Highly transparent and conductive In2O3 and ZnO films containing different doping elements such as Ti, Mo, Zr, Nb, Ta, W (for In2O3), and B (for ZnO) have been prepared by reactive-environment, hollow cathode sputtering (RE-HCS). The use of Nb and W as effective dopants is reported for the first time. Metallic targets were used exclusively, and the dopant concentration was easily controlled using a second sputtering power supply. As a result of the cathode and gas flow geometry, the sputtering is conducted in metal mode, and the target and doping materials are free from oxidation during the deposition process. Film resistivities achieved with the various dopants are reported. For In2O3:Mo (IMO), a resistivity of 1.6×10-4Ω cm and a mobility of 80 cm2/Vs were achieved for Mo concentrations in the range 0.5-5.0% as measured by inductively coupled plasma (ICP). X-ray photoelectron spectroscopy (XPS) analysis indicates Mo with a +6 valence state and that the film is stoichiometric. For In2O3:Ti (ITiO), a superior optical transmission is achieved relative to IMO, while carrier mobility and conductivity were similar. Remarkably, semitransparent films of InN:O having sheet resistances of 9.5 Ω/square have also been prepared. ZnO:B films deposited by RE-HCS exhibit superior optical properties relative to ZnO:Al, and when applied as a window layer to CIGS solar cells yield higher quantum efficiencies.

  7. Measurement of the Casimir Force between Two Spheres

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David A. T.; Munday, Jeremy N.

    2018-01-01

    Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x -y plane to maintain alignment of the two spheres to within approximately 400 nm (˜1 % of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

  8. Dependence on sphere size of the phase behavior of mixtures of rods and spheres

    NASA Astrophysics Data System (ADS)

    Urakami, Naohito; Imai, Masayuki

    2003-07-01

    By the addition of chondroitin sulfate (Chs) to the aqueous suspension of tobacco mosaic virus (TMV), the aggregation of TMV occurs at very dilute TMV concentration compared with the addition of polyethylene oxide (PEO). The difference of physical behavior between Chs and PEO is the chain conformation in solution. The Chs chain has a semirigid nature, whereas the PEO chain has a flexible nature. In this study, the Chs and PEO chains are simplified to spherical particles having different size, and we use the spherocylinder model for TMV particle. The effect of the sphere size on the phase behaviors in the mixtures of rods and spheres is investigated by Monte Carlo simulations. By the addition of small spheres, the system transforms from the miscible isotropic phase to the miscible nematic phase. On the other hand, by the addition of large spheres, the system changes from the miscible isotropic phase to the immiscible nematic phase through the immiscible isotropic phase. The different phase behaviors between the small and the large spheres originate from the difference of overlapping volume of the depletion zone. In addition, we perform the Monte Carlo simulations in the case that semirigid chains are used as the Chs chain models. The same phase behaviors are observed as the mixtures of rods and large spheres. Thus the sphere model captures the phase behaviors of rod and polymer mixture systems.

  9. A ZnO nanowire resistive switch

    NASA Astrophysics Data System (ADS)

    Karthik, K. R. G.; Ramanujam Prabhakar, Rajiv; Hai, L.; Batabyal, Sudip K.; Huang, Y. Z.; Mhaisalkar, S. G.

    2013-09-01

    An individual ZnO nanowire resistive switch is evaluated with Pt/ZnO nanowire/Pt topology. A detailed DC I-V curve analysis is performed to bring both the conduction mechanism and the device characteristics to light. The device is further studied at various vacuum pressures to ascertain the presence of polar charges in ZnO nanowires as the phenomenon leading to the formation of the switch. The disappearance of the resistive switching is also analyzed with two kinds of fabrication approaches Focused Ion/Electron Beam involved in the making the device and a summary of both length and fabrication dependences of resistive switching in the ZnO nanowire is presented.

  10. Naïve Chicks Prefer Hollow Objects

    PubMed Central

    Schill, Jana; Nencini, Andrea Maria; Vallortigara, Giorgio

    2016-01-01

    Biological predispositions influence approach and avoid responses from the time of birth or hatching. Neonates of species that require parental care (e.g. human babies and chicks of the domestic fowl) are attracted by stimuli associated with animate social partners, such as face-like configurations, biological motion and self-propulsion. The property of being filled is used as a cue of animacy by 8-month-old human infants but it is not known whether this reflects the effect of previous experience. We used chicks of the domestic fowl (Gallus gallus) to investigate whether the property of being filled vs. hollow elicits spontaneous or learned preferences. To this aim we tested preferences of naïve and imprinted chicks for hollow and closed cylinders. Contrary to our expectations, we documented an unlearned attraction for hollow stimuli. The preference for hollow stimuli decreased when chicks were imprinted on filled stimuli but did not increase when chicks were imprinted on hollow stimuli, suggesting that hollowness is not crucial to determine affiliative responses for imprinting objects. When chicks were imprinted on occluded stimuli that could be either filled or hollow, the preference for hollow stimuli emerged again, showing that imprinting does not disrupt the spontaneous preference for hollow objects. Further experiments revealed that hollow objects were mainly attractive by means of depth cues such as darker innards, more than as places to hide or as objects with high contrast. Our findings point to predisposed preferences for hollow objects, and suggest that early predispositions might be driven by factors different from animacy cues. PMID:27851773

  11. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE PAGES

    Wang, Deli; Wang, Jie; He, Huan; ...

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of Co xFe 3–xO 4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, wemore » directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  12. Water Surface Impact and Ricochet of Deformable Elastomeric Spheres

    NASA Astrophysics Data System (ADS)

    Hurd, Randy C.

    Soft and deformable silicone rubber spheres ricochet from a water surface when rigid spheres and disks (or skipping stones) cannot. This dissertation investigates why these objects are able to skip so successfully. High speed cameras allow us to see that these unique spheres deform significantly as they impact the water surface, flattening into pancake-like shapes with greater area. Though the water entry behavior of deformable spheres deviates from that of rigid spheres, our research shows that if this deformation is accounted for, their behavior can be predicted from previously established methods. Soft spheres skip more easily because they deform significantly when impacting the water surface. We present a diagram which enables the prediction of a ricochet from sphere impact conditions such as speed and angle. Experiments and mathematical representations of the sphere skipping both show that these deformable spheres skip more readily because deformation momentarily increases sphere area and produces an attack angle with the water which is favorable to skipping. Predictions from our mathematical representation of sphere skipping agree strongly with observations from experiments. Even when a sphere was allowed to skip multiple times in the laboratory, the mathematical predictions show good agreement with measured impact conditions through subsequent skipping events. While studying multiple impact events in an outdoor setting, we discovered a previously unidentified means of skipping, which is unique to deformable spheres. This new skipping occurs when a relatively soft sphere first hits the water at a high speed and low impact angle and the sphere begins to rotate very quickly. This quick rotation causes the sphere to stretch into a shape similar to an American football and maintain this shape while it spins. The sphere is observed to move nearly parallel with the water surface with the tips of this "football" dipping into the water as it rotates and the sides

  13. Up-Conversion Y2O3:Yb(3+),Er(3+) Hollow Spherical Drug Carrier with Improved Degradability for Cancer Treatment.

    PubMed

    Ge, Kun; Zhang, Cuimiao; Sun, Wentong; Liu, Huifang; Jin, Yi; Li, Zhenhua; Liang, Xing-Jie; Jia, Guang; Zhang, Jinchao

    2016-09-28

    The rare earth hollow spheres with up-conversion luminescence properties have shown potential applications in drug delivery and bioimaging fields. However, there have been few reports for the degradation properties of rare earth oxide drug carriers. Herein, uniform and well-dispersed Y2O3:Yb(3+),Er(3+) hollow spheres (YOHSs) have been fabricated by a general Pechini sol-gel process with melamine formaldehyde colloidal spheres as template. The novel YOHSs with up-conversion luminescence has good drug loading amount and drug-release efficiency; moreover, it exhibits pH-responsive release patterns. In particular, the YOHSs sample exhibits low cytotoxicity and excellent degradable properties in acid buffer. After the sample was loaded with anticancer drug doxorubicin (DOX), the antitumor result in vitro indicates that YOHS-DOX might be effective in cancer treatment. The animal imaging test also reveals that the YOHSs drug carrier can be used as an outstanding luminescent probe for bioimaging in vivo application prospects. The results suggest that the degradable drug carrier with up-conversion luminescence may enhance the delivery efficiency of drugs and improve the cancer therapy in clinical applications.

  14. Hard sphere perturbation theory for thermodynamics of soft-sphere model liquid

    NASA Astrophysics Data System (ADS)

    Mon, K. K.

    2001-09-01

    It is a long-standing consensus in the literature that hard sphere perturbation theory (HSPT) is not accurate for dense soft sphere model liquids, interacting with repulsive r-n pair potentials for small n. In this paper, we show that if the intrinsic error of HSPT for soft sphere model liquids is accounted for, then this is not completely true. We present results for n=4, 6, 9, 12 which indicate that, even first order variational HSPT can provide free energy upper bounds to within a few percent at densities near freezing when corrected for the intrinsic error of the HSPT.

  15. Fabrication of hierarchical porous ZnO/NiO hollow microspheres for adsorptive removal of Congo red

    NASA Astrophysics Data System (ADS)

    Lei, Chunsheng; Pi, Meng; Cheng, Bei; Jiang, Chuanjia; Qin, Jiaqian

    2018-03-01

    Hierarchical porous zinc oxide (ZnO)/nickel(II) oxide (NiO) hollow microspheres were fabricated by a facile hydrothermal approach and subsequent calcination process. The synthesized samples were used as adsorbent for removing Congo red (CR), a commercial azo dye. The synthesized hierarchical porous ZnO/NiO composites exhibit a superior adsorption capacity for CR (518 mg/g), compared with pure NiO (397 mg/g) and ZnO (304 mg/g). The high CR adsorption capacity of ZnO/NiO composites was associated with its hierarchical porous hollow structures and large specific surface area (130 m2/g), which provide a large quantity of active sites for CR molecules. The adsorption kinetics data were perfectly fitted to a pseudo-second-order model. The isotherms were accurately described by the Langmuir model. The results suggest that the as-prepared hierarchical porous ZnO/NiO composites are a highly efficient adsorbent for treating organic dye-impacted wastewater.

  16. Spectral Clustering of Hermean craters hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, Alice; Pajola, Maurizio; Cremonese, Gabriele; Carli, Cristian; Marzo, Giuseppe; Roush, Ted

    2017-04-01

    The Mercury Dual Imaging System (MDIS, Hawkins et al., 2007) onboard NASA MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft, provided high-resolution images of "hollows", i.e. shallow, irregular, rimless, flat-floored depressions with bright interiors and halos, often found on crater walls, rims, floors and central peaks (Blewett et al., 2011, 2013). The formation mechanism of these features was suggested to be related to the depletion of subsurface volatiles (Blewett et al., 2011, Vaughan et al., 2012). To understand the hollows' mineralogical composition, which can provide new insights on Mercury's surface characterization, we applied a spectral clustering method to different craters where hollows are present. We chose, as first test case, the 20 km wide Dominici crater due to previous multiple spectral detection (Vilas et al., 2016). We used the MDIS WAC dataset covering Dominici crater with a scale of 935 m/pixel through eight filters, ranging from 0.433 to 0.996 μm. First, the images have been photometrically corrected using the Hapke parameters (Hapke et al., 2002) derived in Domingue et al. (2015). We then applied a statistical clustering over the entire dataset based on a K-means partitioning algorithm (Marzo et al., 2006). This approach was developed and evaluated by Marzo et al. (2006, 2008, 2009) and makes use of the Calinski and Harabasz criterion (Calinski, T., Harabasz, J., 1974) to identify the intrinsically natural number of clusters, making the process unsupervised. The natural number of ten clusters was identified and spectrally separates the Dominici surrounding terrains from its interior, as well as the two hollows from their edges. The units located on the brightest part of the south wall/rim of Dominici crater clearly present a wide absorption band between 0.558 and 0.828 μm. Hollows surrounding terrains typically present a red slope in the VNIR with a possible weak absorption band centered at 0.748

  17. Experimentation on recurrent sphere collision with Audacity

    NASA Astrophysics Data System (ADS)

    Muradoglu, Murat; Ng, Enoch Ming Wei; Ng, Tuck Wah

    2014-11-01

    Under the theme of collisions that occur repeatedly, we conducted easy and inexpensive experiments of rebounding spheres and Newton’s cradle with two spheres to determine the coefficients of restitution using the sound record feature in modern laptops and a free and open source software called Audacity. In the rebounding sphere experiment, the coefficients of restitution of the golf and ping pong balls used were found to be 0.727 ± 0.025 and 0.816 ± 0.041 respectively. With the Netwon’s cradle experiment, the coefficient of restitution of two steel sphere balls was found to be 0.987 ± 0.003. The contrasts in the results obtained from both experiments permit the operational principles of a pendulum to be emphasized, and engagements to be made to consider the transfer of kinetic energy in the form of vibrational energy of the bodies’ constituents. Using a one-dimensional two-mass model with spring and damper linkages to account for harmonic motions that occur during impact, we found it possible to perform a simple analysis to account for this, and how it can be linked to high energy transfer modes such as the phenomenon of resonance and impedance matching.

  18. Effective conductivity of suspensions of overlapping spheres

    SciT

    Kim, I.C.; Torquato, S.

    1992-03-15

    An accurate first-passage simulation technique formulated by the authors (J. Appl. Phys. {bold 68}, 3892 (1990)) is employed to compute the effective conductivity {sigma}{sub {ital e}} of distributions of penetrable (or overlapping) spheres of conductivity {sigma}{sub 2} in a matrix of conductivity {sigma}{sub 1}. Clustering of particles in this model results in a generally intricate topology for virtually the entire range of sphere volume fractions {phi}{sub 2} (i.e., 0{le}{phi}{sub 2}{le}1). Results for the effective conductivity {sigma}{sub {ital e}} are presented for several values of the conductivity ratio {alpha}={sigma}{sub 2}/{sigma}{sub 1}, including superconducting spheres ({alpha}={infinity}) and perfectly insulating spheres ({alpha}=0), andmore » for a wide range of volume fractions. The data are shown to lie between rigorous three-point bounds on {sigma}{sub {ital e}} for the same model. Consistent with the general observations of Torquato (J. Appl. Phys. {bold 58}, 3790 (1985)) regarding the utility of rigorous bounds, one of the bounds provides a good estimate of the effective conductivity, even in the extreme contrast cases ({alpha}{much gt}1 or {alpha}{congruent}0), depending upon whether the system is below or above the percolation threshold.« less

  19. Dynamics of Three Vortices on a Sphere

    NASA Astrophysics Data System (ADS)

    Borisov, Alexey V.; Mamaev, Ivan S.; Kilin, Alexander A.

    2018-01-01

    This paper is concerned with the dynamics of vortices on a sphere. It is shown that, as a result of reduction, the problem reduces to investigating a system with a nonlinear Poisson bracket. The topology of a symplectic leaf in the case of three vortices is studied.

  20. Steel Spheres and Skydiver--Terminal Velocity

    ERIC Educational Resources Information Center

    Costa Leme, J.; Moura, C.; Costa, Cintia

    2009-01-01

    This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.