Sample records for zno microcrystal tubes

  1. Magnetically responsive calcium carbonate microcrystals.

    PubMed

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  2. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  3. Neutron and X-ray single-crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels.

    PubMed

    Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa

    2016-07-01

    Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.

  4. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian

    With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less

  5. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography

    DOE PAGES

    Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian; ...

    2018-04-19

    With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less

  6. Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media.

    PubMed

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.

  7. Acoustically Mounted Microcrystals Yield High Resolution X-ray Structures†,‡

    PubMed Central

    Soares, Alexei S.; Engel, Matthew A.; Stearns, Richard; Datwani, Sammy; Olechno, Joe; Ellson, Richard; Skinner, John M.; Allaire, Marc; Orville, Allen M.

    2011-01-01

    We demonstrate a general strategy to determine structures from showers of microcrystals. It uses acoustic droplet ejection (ADE) to transfer 2.5 nanoliter droplets from the surface of microcrystal slurries, through the air, and onto mounting micromesh pins. Individual microcrystals are located by raster-scanning a several micron X-ray beam across the cryocooled micromeshes. X-ray diffraction datasets merged from several micron-sized crystals are used to solve 1.8 Å resolution crystal structures. PMID:21542590

  8. Insulin microcrystal suspension as a long-acting formulation for pulmonary delivery.

    PubMed

    Kwon, Jai-Hyun; Lee, Byung-Ha; Lee, Jae-Jeong; Kim, Chan-Wha

    2004-06-01

    Pulmonary delivery provides the most promising non-parenteral route of insulin administration. Insulin was used as a model protein to demonstrate the feasibility of using protein crystals for the pulmonary delivery of a sustained-release protein drug formulation. Insulin microcrystals with a mean diameter of 3 microm were prepared using a seed zone method. The yield of crystallization was very high (95.8 +/- 0.97%), and the microcrystals were recovered with high efficiency (>98%) by centrifugation. Morphological examination using scanning electron microphotography showed the microcrystals to be of a homogeneous rhombohedral shape, with some rhombus forms, without aggregates. After the administration of 32 U/kg of the microcrystal suspension to STZ-induced diabetic SD rats by intratracheal instillation, the blood glucose levels were reduced and hypoglycemia was prolonged over 13 h, as compared to the insulin solution. The percent minimum reductions of the blood glucose concentration (% MRBG) produced by the microcrystal suspension and insulin solution reached 36.5 and 37.2%, respectively, of the initial level, and the percent total reductions in blood glucose (% TRBG(13 h)) were 34.4 and 25.0%, respectively. In the case of inhalation using a sieve-type ultrasonic nebulizer, the % MRBG produced by the microcrystal suspension and insulin solution were 21.7 and 26.3%, respectively, of the initial level, and the % TRBG(13 h) were 66.7 and 58.4%, respectively. However, the hypoglycemic effects of the microcrystal suspension were prolonged over 7 h, which compares favorably with the insulin solution (P<0.5 by unpaired t-test). These results could be attributed to the sustained-release of insulin from the microcrystals, which were deposited widely throughout the entire lung.

  9. Detection of birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Mirhej, Andrew; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.

  10. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE PAGES

    Yoon, Joonseok; Kim, Howon; Chen, Xian; ...

    2015-12-29

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  11. Controlling the Temperature and Speed of the Phase Transition of VO 2 Microcrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Joonseok; Kim, Howon; Chen, Xian

    Here, we investigated the control of two important parameters of vanadium dioxide (VO 2 ) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ~70 to ~1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition bymore » using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 10 2 to 1.7 × 10 4 μm/s as the width decreases from ~50 to ~2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO 2 , the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO 2 microcrystals. These findings not only enhance the understanding of VO 2 intrinsic properties but also contribute to the development of innovative electronic devices.« less

  12. Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions.

    PubMed

    Darville, Nicolas; Saarinen, Jukka; Isomäki, Antti; Khriachtchev, Leonid; Cleeren, Dirk; Sterkens, Patrick; van Heerden, Marjolein; Annaert, Pieter; Peltonen, Leena; Santos, Hélder A; Strachan, Clare J; Van den Mooter, Guy

    2015-10-01

    Drug nano-/microcrystals are being used for sustained parenteral drug release, but safety and efficacy concerns persist as the knowledge of the in vivo fate of long-living particulates is limited. There is a need for techniques enabling the visualization of drug nano-/microcrystals in biological matrices. The aim of this work was to explore the potential of coherent anti-Stokes Raman scattering (CARS) microscopy, supported by other non-linear optical methods, as an emerging tool for the investigation of cellular and tissue interactions of unlabeled and non-fluorescent nano-/microcrystals. Raman and CARS spectra of the prodrug paliperidone palmitate (PP), paliperidone (PAL) and several suspension stabilizers were recorded. PP nano-/microcrystals were incubated with RAW 264.7 macrophages in vitro and their cellular disposition was investigated using a fully-integrated multimodal non-linear optical imaging platform. Suitable anti-Stokes shifts (CH stretching) were identified for selective CARS imaging. CARS microscopy was successfully applied for the selective three-dimensional, non-perturbative and real-time imaging of unlabeled PP nano-/microcrystals having dimensions larger than the optical lateral resolution of approximately 400nm, in relation to the cellular framework in cell cultures and ex vivo in histological sections. In conclusion, CARS microscopy enables the non-invasive and label-free imaging of (sub)micron-sized (pro-)drug crystals in complex biological matrices and could provide vital information on poorly understood nano-/microcrystal-cell interactions in future. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  15. Direct Observation of Protein Microcrystals in Crystallization Buffer by Atmospheric Scanning Electron Microscopy

    PubMed Central

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called “crystallization bottleneck”. Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals. PMID:22949879

  16. Direct observation of protein microcrystals in crystallization buffer by atmospheric scanning electron microscopy.

    PubMed

    Maruyama, Yuusuke; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Konyuba, Yuji; Senda, Miki; Numaga-Tomita, Takuro; Senda, Toshiya; Suga, Mitsuo; Sato, Chikara

    2012-01-01

    X-ray crystallography requires high quality crystals above a given size. This requirement not only limits the proteins to be analyzed, but also reduces the speed of the structure determination. Indeed, the tertiary structures of many physiologically important proteins remain elusive because of the so-called "crystallization bottleneck". Once microcrystals have been obtained, crystallization conditions can be optimized to produce bigger and better crystals. However, the identification of microcrystals can be difficult due to the resolution limit of optical microscopy. Electron microscopy has sometimes been utilized instead, with the disadvantage that the microcrystals usually must be observed in vacuum, which precludes the usage for crystal screening. The atmospheric scanning electron microscope (ASEM) allows samples to be observed in solution. Here, we report the use of this instrument in combination with a special thin-membrane dish with a crystallization well. It was possible to observe protein crystals of lysozyme, lipase B and a histone chaperone TAF-Iβ in crystallization buffers, without the use of staining procedures. The smallest crystals observed with ASEM were a few μm in width, and ASEM can be used with non-transparent solutions. Furthermore, the growth of salt crystals could be monitored in the ASEM, and the difference in contrast between salt and protein crystals made it easy to distinguish between these two types of microcrystals. These results indicate that the ASEM could be an important new tool for the screening of protein microcrystals.

  17. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  19. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  20. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  1. Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Peng, Li-Li; Tang, Ying; Wu, Huijie

    2017-06-01

    Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.

  2. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samotoin, N. D., E-mail: samnik@igem.ru

    2008-09-15

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 {mu}m in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ inmore » sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as {approx}10{sup 9} cm{sup -2}. Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.« less

  3. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    NASA Astrophysics Data System (ADS)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  4. Synthesis, growth and characterization of ZnO microtubes using a traveling-wave mode microwave system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Wang, Han

    Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μmmore » in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.« less

  5. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    DOE PAGES

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; ...

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating themore » solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.« less

  6. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots.

    PubMed

    Silva, Anderson Clayton da; Santos, Priscila Dayane de Freitas; Palazzi, Nicole Campezato; Leimann, Fernanda Vitória; Fuchs, Renata Hernandez Barros; Bracht, Lívia; Gonçalves, Odinei Hess

    2017-05-24

    Nontoxic conserving agents are in demand by the food industry due to consumers concern about synthetic conservatives, especially in minimally processed food. The antimicrobial activity of curcumin, a natural phenolic compound, has been extensively investigated but hydrophobicity is an issue when applying curcumin to foodstuff. The objective of this work was to evaluate curcumin microcrystals as an antimicrobial agent in minimally processed carrots. The antimicrobial activity of curcumin microcrystals was evaluated in vitro against Gram-positive (Bacillus cereus and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) microorganisms, showing a statistically significant (p < 0.05) decrease in the minimum inhibitory concentration compared to in natura, pristine curcumin. Curcumin microcrystals were effective in inhibiting psychrotrophic and mesophile microorganisms in minimally processed carrots. Sensory analyses were carried out showing no significant difference (p < 0.05) between curcumin microcrystal-treated carrots and non-treated carrots in triangular and tetrahedral discriminative tests. Sensory tests also showed that curcumin microcrystals could be added as a natural preservative in minimally processed carrots without causing noticeable differences that could be detected by the consumer. One may conclude that the analyses of the minimally processed carrots demonstrated that curcumin microcrystals are a suitable natural compound to inhibit the natural microbiota of carrots from a statistical point of view.

  7. Preparation of Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography

    PubMed Central

    Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim

    2014-01-01

    We have recently established a procedure for serial femtosecond crystallography in lipidic cubic phase (LCP-SFX) for protein structure determination at X-ray free electron lasers (XFELs). LCP-SFX uses the gel-like lipidic cubic phase (LCP) as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase, composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room temperature high-resolution data with minimal effects of radiation damage from sub-10 µm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared to SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2–3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3–5 days, including the time required for crystals to grow. PMID:25122522

  8. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography.

    PubMed

    Liu, Wei; Ishchenko, Andrii; Cherezov, Vadim

    2014-09-01

    We have recently established a procedure for serial femtosecond crystallography (SFX) in lipidic cubic phase (LCP) for protein structure determination at X-ray free-electron lasers (XFELs). LCP-SFX uses the gel-like LCP as a matrix for growth and delivery of membrane protein microcrystals for crystallographic data collection. LCP is a liquid-crystalline mesophase composed of lipids and water. It provides a membrane-mimicking environment that stabilizes membrane proteins and supports their crystallization. Here we describe detailed procedures for the preparation and characterization of microcrystals for LCP-SFX applications. The advantages of LCP-SFX over traditional crystallographic methods include the capability of collecting room-temperature high-resolution data with minimal effects of radiation damage from sub-10-μm crystals of membrane and soluble proteins that are difficult to crystallize, while eliminating the need for crystal harvesting and cryo-cooling. Compared with SFX methods for microcrystals in solution using liquid injectors, LCP-SFX reduces protein consumption by 2-3 orders of magnitude for data collection at currently available XFELs. The whole procedure typically takes 3-5 d, including the time required for the crystals to grow.

  9. A microcrystal selection technique in protein crystallization

    NASA Astrophysics Data System (ADS)

    Han, Qing; Lin, Sheng-Xiang

    1996-10-01

    The goal of protein crystallization is to obtain high quality single crystals for X-ray diffraction analysis. A new and easy technique was employed to control the number and quality of crystals by eliminating poor microcrystals after the spontaneous nucleation. The process was carried out with two samples: human 17β-hydroxysteroid dehydrogenase (17β-HSD) and hen egg white lysozyme. The present study suggests a useful method for the successful crystal growth of biomacromolecules.

  10. Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji-Min; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005; Liu, Qing

    2014-10-15

    Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were successfully obtained by solvothermal method. The products were characterized by powder X-ray diffraction (PXRD), energy dispersive spectrometry (EDS), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), inductively coupled plasma optical emission spectrometer (ICP-OES), elemental analysis, UV–vis and infrared (IR) spectroscopy. The factors influencing the crystal morphology and size were investigated. The gas sorption measurements reveal that highly crystalline particles have large Langmuir surface area. It was found that the Co(II)-doped MOF-5 shows enhanced hydrostability and the sorption profiles of the Co(II)-doped MOF-5 nano/microcrystals are dependent on the morphology and sizemore » of the particles. Porous Co(II)-doped MOF-5 is stable upon the removal of guest molecules and exhibits different colour with accommodating different solvent molecule, which means that it can act as solvatochromic sensing materials for recognition of solvent molecules. - Graphical abstract: Co(II)-doped MOF-5 nano/microcrystals with different shapes and sizes were synthesized by a facile hydrothermal method, which not only enhance gas sorption properties and structural stability of MOFs towards moisture, but also act as new sensing materials for sensing small molecules. - Highlights: • Co(II)-doped MOF-5 nano/microcrystals with controllable morphology and size were obtained. • Co(II)-doped MOF-5 nano/microcrystals enhance the structural stability towards moisture. • Co(II)-doped MOF-5 can act as new sensing material for sensing small molecules.« less

  11. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  12. From Macrocrystals to Microcrystals: A Strategy for Membrane Protein Serial Crystallography.

    PubMed

    Dods, Robert; Båth, Petra; Arnlund, David; Beyerlein, Kenneth R; Nelson, Garrett; Liang, Mengling; Harimoorthy, Rajiv; Berntsen, Peter; Malmerberg, Erik; Johansson, Linda; Andersson, Rebecka; Bosman, Robert; Carbajo, Sergio; Claesson, Elin; Conrad, Chelsie E; Dahl, Peter; Hammarin, Greger; Hunter, Mark S; Li, Chufeng; Lisova, Stella; Milathianaki, Despina; Robinson, Joseph; Safari, Cecilia; Sharma, Amit; Williams, Garth; Wickstrand, Cecilia; Yefanov, Oleksandr; Davidsson, Jan; DePonte, Daniel P; Barty, Anton; Brändén, Gisela; Neutze, Richard

    2017-09-05

    Serial protein crystallography was developed at X-ray free-electron lasers (XFELs) and is now also being applied at storage ring facilities. Robust strategies for the growth and optimization of microcrystals are needed to advance the field. Here we illustrate a generic strategy for recovering high-density homogeneous samples of microcrystals starting from conditions known to yield large (macro) crystals of the photosynthetic reaction center of Blastochloris viridis (RC vir ). We first crushed these crystals prior to multiple rounds of microseeding. Each cycle of microseeding facilitated improvements in the RC vir serial femtosecond crystallography (SFX) structure from 3.3-Å to 2.4-Å resolution. This approach may allow known crystallization conditions for other proteins to be adapted to exploit novel scientific opportunities created by serial crystallography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High purity silver microcrystals recovered from silver wastes by eco-friendly process using hydrogen peroxide.

    PubMed

    Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet

    2017-07-01

    A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Facile synthesis and shape evolution of oleic acid decorated Cu2O microcrystals

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Cao, Xiaohai; Zhu, Bingchun; Lou, Baiyang; Ma, Xiaocun; Li, Xiao; Wang, Yuguang

    2015-11-01

    A facile synthetic method of oleic acid decorated Cu2O microcrystals has been developed by thermal decomposition of copper formate-octylamine complexes in paraffin using oleic acid as dispersing agent. This new method showed many advantages, which include free-reducing agent, enhancing antioxidant properties of Cu2O and good dispersity in paraffin, etc. The phase structure and morphology were investigated by means of XRD, SEM and TEM. It is found that the reaction time and temperature play the important roles in the crystallite morphology. With the increase of the reaction time, the Cu2O rhombic dodecahedron is gradually transformed into the spherical particle by intraparticle ripening. The shape evolution of Cu2O microcrystals can be accelerated with the increase of temperature.

  15. Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography.

    PubMed

    Ishchenko, Andrii; Cherezov, Vadim; Liu, Wei

    2016-09-20

    Membrane proteins (MPs) are essential components of cellular membranes and primary drug targets. Rational drug design relies on precise structural information, typically obtained by crystallography; however MPs are difficult to crystallize. Recent progress in MP structural determination has benefited greatly from the development of lipidic cubic phase (LCP) crystallization methods, which typically yield well-diffracting, but often small crystals that suffer from radiation damage during traditional crystallographic data collection at synchrotron sources. The development of new-generation X-ray free-electron laser (XFEL) sources that produce extremely bright femtosecond pulses has enabled room temperature data collection from microcrystals with no or negligible radiation damage. Our recent efforts in combining LCP technology with serial femtosecond crystallography (LCP-SFX) have resulted in high-resolution structures of several human G protein-coupled receptors, which represent a notoriously difficult target for structure determination. In the LCP-SFX technique, LCP is recruited as a matrix for both growth and delivery of MP microcrystals to the intersection of the injector stream with an XFEL beam for crystallographic data collection. It has been demonstrated that LCP-SFX can substantially improve the diffraction resolution when only sub-10 µm crystals are available, or when the use of smaller crystals at room temperature can overcome various problems associated with larger cryocooled crystals, such as accumulation of defects, high mosaicity and cryocooling artifacts. Future advancements in X-ray sources and detector technologies should make serial crystallography highly attractive and practicable for implementation not only at XFELs, but also at more accessible synchrotron beamlines. Here we present detailed visual protocols for the preparation, characterization and delivery of microcrystals in LCP for serial crystallography experiments. These protocols include

  16. Note: Self-biased voltage to suppress secondary electrons by a ZnO varistor in a compact pulsed neutron generator

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Li, X.; Li, J.; Long, J. D.; Lan, C. H.; Wang, T.; Dong, P.; He, J. L.

    2017-03-01

    A large amount of back streaming electrons will bring about a part of current drain on power supply, cause sparking or high-voltage breakdowns, and affect the neutron yield and waveform for a compact sealed-tube pulsed neutron generator. A novel idea which uses a ZnO varistor to provide a constant self-biased voltage to suppress the secondary electrons is introduced. The I-V curve for the ZnO varistor was measured in the experiment. The effects of suppressing the secondary electrons were investigated using a ZnO varistor, linear resistors, and an independent power supply, respectively. The results show that the secondary electrons are suppressed effectively by the compact ZnO varistor, while not increasing the size and the component of the device. It is a promising design for compact sealed-tube neutron generators.

  17. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)

    2007-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  18. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  19. Protein-ligand complex structure from serial femtosecond crystallography using soaked thermolysin microcrystals and comparison with structures from synchrotron radiation.

    PubMed

    Naitow, Hisashi; Matsuura, Yoshinori; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Tanaka, Rie; Tanaka, Tomoyuki; Sugahara, Michihiro; Kobayashi, Jun; Nango, Eriko; Iwata, So; Kunishima, Naoki

    2017-08-01

    Serial femtosecond crystallography (SFX) with an X-ray free-electron laser is used for the structural determination of proteins from a large number of microcrystals at room temperature. To examine the feasibility of pharmaceutical applications of SFX, a ligand-soaking experiment using thermolysin microcrystals has been performed using SFX. The results were compared with those from a conventional experiment with synchrotron radiation (SR) at 100 K. A protein-ligand complex structure was successfully obtained from an SFX experiment using microcrystals soaked with a small-molecule ligand; both oil-based and water-based crystal carriers gave essentially the same results. In a comparison of the SFX and SR structures, clear differences were observed in the unit-cell parameters, in the alternate conformation of side chains, in the degree of water coordination and in the ligand-binding mode.

  20. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  1. Study of space charge layer in silver bromide microcrystals by means of ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Inami, Yoshiyasu

    2000-09-01

    Ultraviolet photoelectron spectroscopy has been successfully used to measure the heights of the tops of the valence bands of the surfaces of AgBr layers on Ag substrates for the verification of the space charge layer model. According to this model, the positive space charge layer (composed of negative charges with excess negative kink sites on the surface and corresponding positive charges with interstitial silver ions in the interior) is formed in silver halides, causing the difference in the electronic energy levels between their surface and interior. The depression of the positive space charge layer of AgBr caused by such adsorbates as photographic stabilizers and antifoggants was estimated from the decrease in the ionic conductivity of cubic AgBr microcrystals by the adsorbates. It was confirmed by the decrease in the heights of the tops of the valence bands of the surfaces of AgBr layers caused by the adsorbates in the presence of thin gelatin membranes on their surfaces. This result provided the explanation for the fact that the adsorbates increased the number of the microcrystals which formed latent image centers on the surface and decreased the number of the microcrystals, which formed latent image centers in the interior.

  2. The strength and dislocation microstructure evolution in superalloy microcrystals

    NASA Astrophysics Data System (ADS)

    Hussein, Ahmed M.; Rao, Satish I.; Uchic, Michael D.; Parthasarathay, Triplicane A.; El-Awady, Jaafar A.

    2017-02-01

    In this work, the evolution of the dislocations microstructure in single crystal two-phase superalloy microcrystals under monotonic loading has been studied using the three-dimensional discrete dislocation dynamics (DDD) method. The DDD framework has been extended to properly handle the collective behavior of dislocations and their interactions with large collections of arbitrary shaped precipitates. Few constraints are imposed on the initial distribution of the dislocations or the precipitates, and the extended DDD framework can support experimentally-obtained precipitate geometries. Full tracking of the creation and destruction of anti-phase boundaries (APB) is accounted for. The effects of the precipitate volume fraction, APB energy, precipitate size, and crystal size on the deformation of superalloy microcrystals have been quantified. Correlations between the precipitate microstructure and the dominant deformation features, such as dislocation looping versus precipitate shearing, are also discussed. It is shown that the mechanical strength is independent of the crystal size, increases linearly with increasing the volume fraction, follows a near square-root relationship with the APB energy and an inverse square-root relationship with the precipitate size. Finally, the flow strength in simulations having initial dislocation pair sources show a flow strength that is about one half of that predicted from simulations starting with single dislocation sources. The method developed can be used, with minimal extensions, to simulate dislocation microstructure evolution in general multiphase materials.

  3. Picosecond dynamics of excited singlet states in organic microcrystals: Diffuse reflectance laser photolysis study

    NASA Astrophysics Data System (ADS)

    Ikeda, Noriaki; Koshioka, Masanori; Masuhara, Hiroshi; Yoshihara, Keitaro

    1988-09-01

    Absorption spectra and picosecond dynamics of the singlet exciton states of benzil and p-terphenyl in a microcrystal have been measured for the first time by analyzing the diffuse reflected spectra of the picosecond continuum.

  4. Synthesis and annealing study of RF sputtered ZnO thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.

    2016-05-23

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less

  5. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  6. Cell proliferation by silk gut incorporating FGF-2 protein microcrystals.

    PubMed

    Kotani, Eiji; Yamamoto, Naoto; Kobayashi, Isao; Uchino, Keiro; Muto, Sayaka; Ijiri, Hiroshi; Shimabukuro, Junji; Tamura, Toshiki; Sezutsu, Hideki; Mori, Hajime

    2015-06-08

    Silk gut processed from the silk glands of the silkworm could be an ideal biodegradable carrier for cell growth factors. We previously demonstrated that polyhedra, microcrystals of Cypovirus 1 polyhedrin, can serve as versatile carrier proteins. Here, we report the generation of a transgenic silkworm that expresses polyhedrin together with human basic fibroblast growth factor (FGF-2) in its posterior silk glands to utilize silk gut as a proteinaceous carrier to protect and slowly release active cell growth factors. In the posterior silk glands, polyhedrin formed polyhedral microcrystals, and FGF-2 became encapsulated within the polyhedra due to a polyhedron-immobilization signal. Silk gut powder prepared from posterior silk glands containing polyhedron-encapsulated FGF-2 stimulated the phosphorylation of p44/p42 MAP kinase and induced the proliferation of serum-starved NIH3T3 cells by releasing bioactive FGF-2. Even after a one-week incubation at 25 °C, significantly higher biological activity of FGF-2 was observed for silk gut powder incorporating polyhedron-encapsulated FGF-2 relative to silk gut powder with non-encapsulated FGF-2. Our results demonstrate that posterior silk glands incorporating polyhedron-encapsulated FGF-2 are applicable to the preparation of biodegradable silk gut, which can protect and release FGF-2 that is produced in a virus- and serum-free expression system with significant application potential.

  7. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Stanford University, Stanford, CA 94305; Stanford University, Stanford, CA 94305

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressablemore » points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  8. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  9. Controlled synthesis and luminescence properties of CaMoO4:Eu3+ microcrystals

    NASA Astrophysics Data System (ADS)

    Xie, Ying; Ma, Siming; Wang, Yu; Xu, Mai; Lu, Chengxi; Xiao, Linjiu; Deng, Shuguang

    2018-03-01

    Pure tetragonal-phased Ca0.9MoO4:0.1Eu3+ (CaMoO4:Eu3+) microcrystals with varying particle sizes were prepared via a co-deposition in water/oil (w/o) phase method. The particle sizes of as-prepared samples were controlled by calcination temperature and calcination time, and the crystallinity of the samples enhances with increasing particle size. The luminescence properties of CaMoO4:Eu3+ microcrystals were studied with varying particle size. The results reveal that the intensity of emission spectra of the CaMoO4:Eu3+ samples increases with increasing particle size, and they have closely correlation with each other. It is the same with the luminescence lifetime. The luminescence lifetime of the CaMoO4:Eu3+ samples decreases from 0.637 ms to 0.447 ms with increasing particle size from 0.12 μm to 1.79 μm, respectively. This study not only provides information for size-dependent luminescence properties of CaMoO4:Eu3+ but also gives a reference for potential applications in high voltage electric porcelain material.

  10. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    PubMed

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  11. The transformation of ZnO submicron dumbbells into perfect hexagonal tubular structures using CBD: a post treatment route.

    PubMed

    Borade, P; Joshi, K U; Gokarna, A; Lerondel, G; Jejurikar, S M

    2016-01-15

    In this paper, we report the synthesis of dumbbell-shaped ZnO structures and their subsequent transformation into perfect hexagonal tubes by the extended chemical bath deposition (CBD) method, retaining all advantages such as reproducibility, simplicity, quickness and economical aspect. Well-dispersed sub-micron-sized dumbbell-shaped ZnO structures were synthesized on a SiO2/Si substrate by the CBD method. As an extension of the CBD process the synthesized ZnO dumbbells were exposed to the evaporate coming out of the chemical bath for a few minutes (simply by adjusting the height of the deposit so that it remained just above the solution) to convert them into hexagonal tubes via the dissolution process. The possible dissolution mechanism responsible for the observed conversion is discussed. The optical properties (photo-luminescence) recorded at low temperature on both the structures showed an intense, sharp excitonic peak located at ∼370 nm. The improved intensity and low FWHM of the UV peak observed in the hexagonal tubular structures assures high optical quality, and hence can be used for optoelectronic applications.

  12. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  13. Novel Gas Sensor Based on ZnO Nanorod Circular Arrays for C2H5OH Gas Detection.

    PubMed

    Jianjiao, Zhang; Hongyan, Yue; Erjun, Guo; Shaolin, Zhang; Liping, Wang; Chunyu, Zhang; Xin, Gao; Jing, Chang; Hong, Zhang

    2015-03-01

    Novel side-heating gas sensor based on ZnO nanorod circular arrays was firstly fabricated by hydrothermal treatment assisted with a kind of simple dip-coating technique. The structure and morphologies of ZnO nanorods were characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), respectively. XRD result indicates that the obtained ZnO nanorods have good crystalline with the hexagonal wurtzite structure. SEM result indicates that ZnO nanorod arrays are vertically growth on the surface of ceramic tube of side-heating sensor with controlled diameter and length, narrow size distribution and high orientation. The gas sensing properties of ZnO nanorod circular arrays are also evaluated. Comparative to the sensor based on scattered ZnO nanorods responding to 25 ppm H2, CO, C6H5CH3 and C2H5OH gas, respectively, the sensing values of high orientation gas sensor are generally increased by 5%. This novel sensor has good application promising for the fabrication of cost effective and high performance gas sensors.

  14. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography.

    PubMed

    Barnes, Christopher O; Kovaleva, Elena G; Fu, Xiaofeng; Stevenson, Hilary P; Brewster, Aaron S; DePonte, Daniel P; Baxter, Elizabeth L; Cohen, Aina E; Calero, Guillermo

    2016-07-15

    Serial femtosecond crystallography (SFX) employing high-intensity X-ray free-electron laser (XFEL) sources has enabled structural studies on microcrystalline protein samples at non-cryogenic temperatures. However, the identification and optimization of conditions that produce well diffracting microcrystals remains an experimental challenge. Here, we report parallel SFX and transmission electron microscopy (TEM) experiments using fragmented microcrystals of wild type (WT) homoprotocatechuate 2,3-dioxygenase (HPCD) and an active site variant (H200Q). Despite identical crystallization conditions and morphology, as well as similar crystal size and density, the indexing efficiency of the diffraction data collected using the H200Q variant sample was over 7-fold higher compared to the diffraction results obtained using the WT sample. TEM analysis revealed an abundance of protein aggregates, crystal conglomerates and a smaller population of highly ordered lattices in the WT sample as compared to the H200Q variant sample. While not reported herein, the 1.75 Å resolution structure of the H200Q variant was determined from ∼16 min of beam time, demonstrating the utility of TEM analysis in evaluating sample monodispersity and lattice quality, parameters critical to the efficiency of SFX experiments. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  16. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  17. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays

    PubMed Central

    2017-01-01

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7–34 μm and was controlled by the PRX concentration in the feed solution (15–25 g L–1), antisolvent/solvent volume ratio (5–30), and type of antisolvent (Milli-Q water or 0.1–0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L–1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals. PMID:29234241

  18. Bone regeneration by polyhedral microcrystals from silkworm virus

    PubMed Central

    Matsumoto, Goichi; Ueda, Takayo; Shimoyama, Junko; Ijiri, Hiroshi; Omi, Yasushi; Yube, Hisato; Sugita, Yoshihiko; Kubo, Katsutoshi; Maeda, Hatsuhiko; Kinoshita, Yukihiko; Arias, Duverney Gaviria; Shimabukuro, Junji; Kotani, Eiji; Kawamata, Shin; Mori, Hajime

    2012-01-01

    Bombyx mori cypovirus is a major pathogen which causes significant losses in silkworm cocoon harvests because the virus particles are embedded in micrometer-sized protein crystals called polyhedra and can remain infectious in harsh environmental conditions for years. But the remarkable stability of polyhedra can be applied on slow-release carriers of cytokines for tissue engineering. Here we show the complete healing in critical-sized bone defects by bone morphogenetic protein-2 (BMP-2) encapsulated polyhedra. Although absorbable collagen sponge (ACS) safely and effectively delivers recombinant human BMP-2 (rhBMP-2) into healing tissue, the current therapeutic regimens release rhBMP-2 at an initially high rate after which the rate declines rapidly. ACS impregnated with BMP-2 polyhedra had enough osteogenic activity to promote complete healing in critical-sized bone defects, but ACS with a high dose of rhBMP-2 showed incomplete bone healing, indicating that polyhedral microcrystals containing BMP-2 promise to advance the state of the art of bone healing. PMID:23226833

  19. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms.

    PubMed

    Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C

    2017-05-01

    The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.

  20. Preparation and spectral properties of europium hydrogen squarate microcrystals

    NASA Astrophysics Data System (ADS)

    Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.

    2018-04-01

    A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.

  1. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE PAGES

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; ...

    2015-03-27

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  2. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat formore » conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  3. Innovatively Continuous Mass Production Couette-taylor Flow: Pure Inorganic Green-Emitting Cs4PbBr6 Perovskite Microcrystal for display technology.

    PubMed

    Song, Young Hyun; Choi, Seung Hee; Park, Won Kyu; Yoo, Jin Sun; Kwon, Seok Bin; Kang, Bong Kyun; Park, Sang Ryul; Seo, Young Soo; Yang, Woo Seok; Yoon, Dae Ho

    2018-01-31

    We report for the first time the mass production of Cs 4 PbBr 6 perovskite microcrystal with a Couette-Taylor flow reactor in order to enhance the efficiency of the synthesis reaction. We obtained a pure Cs 4 PbBr 6 perovskite solid within 3 hrs that then realized a high photoluminescence quantum yield (PLQY) of 46%. Furthermore, the Cs 4 PbBr 6 perovskite microcrystal is applied with red emitting K 2 SiF 6 phosphor on a blue-emitting InGaN chip, achieving a high-performance luminescence characteristics of 9.79 lm/W, external quantum efficiency (EQE) of 2.9%, and correlated color temperature (CCT) of 2976 K; therefore, this perovskite is expected to be a promising candidate material for applications in optoelectronic devices.

  4. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  5. KAMO: towards automated data processing for microcrystals.

    PubMed

    Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki

    2018-05-01

    In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. open access.

  6. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  7. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  8. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  9. Morphology control, defect engineering and photoactivity tuning of ZnO crystals by graphene oxide--a unique 2D macromolecular surfactant.

    PubMed

    Pan, Xiaoyang; Yang, Min-Quan; Xu, Yi-Jun

    2014-03-28

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are strongly dependent on its morphology and defect structure, particularly for a semiconductor ZnO-based photocatalyst. Here, we demonstrate a simple strategy for simultaneous morphology control, defect engineering and photoactivity tuning of semiconductor ZnO by utilizing the unique surfactant properties of graphene oxide (GO) in a liquid phase. By varying the amount of GO added during the synthesis process, the morphology of ZnO gradually evolves from a one dimensional prismatic rod to a hexagonal tube-like architecture while GO is converted into reduced GO (RGO). In addition, the introduction of GO can create oxygen vacancies in the lattice of ZnO crystals. As a result, the absorption edge of the wide band gap semiconductor ZnO is effectively extended to the visible light region, which thus endows the RGO-ZnO nanocomposites with visible light photoactivity; in contrast, the bare ZnO nanorod is only UV light photoactive. The synergistic integration of the unique morphology and the presence of oxygen vacancies imparts the RGO-ZnO nanocomposite with remarkably enhanced visible light photoactivity as compared to bare ZnO and its counterpart featuring different structural morphologies and the absence of oxygen vacancies. Our promising results highlight the versatility of the 2D GO as a solution-processable macromolecular surfactant to fabricate RGO-semiconductor nanocomposites with tunable morphology, defect structure and photocatalytic performance in a system-materials-engineering way.

  10. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al contentmore » in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.« less

  11. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  12. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    PubMed

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  13. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    PubMed Central

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus

    2013-01-01

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336

  14. Large-scale uniform ZnO tetrapods on catalyst free glass substrate by thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Hassan, Z.; Ahmed, Naser M.

    2016-07-15

    Highlights: • Investigate the growth of ZnO-Ts on glass substrate by thermal evaporation method. • Glass substrate without any catalyst or a seed layer. • The morphology was controlled by adjusting the temperature of the material and the substrate. • Glass substrate was placed vertically in the quartz tube. - Abstract: Here, we report for the first time the catalyst-free growth of large-scale uniform shape and size ZnO tetrapods on a glass substrate via thermal evaporation method. Three-dimensional networks of ZnO tetrapods have needle–wire junctions, an average leg length of 2.1–2.6 μm, and a diameter of 35–240 nm. The morphologymore » and structure of ZnO tetrapods were investigated by controlling the preparation temperature of each of the Zn powder and the glass substrate under O{sub 2} and Ar gases. Studies were carried out on ZnO tetrapods using X-ray diffraction, field emission scanning electron microscopy, UV–vis spectrophotometer, and a photoluminescence. The results showed that the sample grow in the hexagonal wurtzite structure with preferentially oriented along (002) direction, good crystallinity and high transmittance. The band gap value is about 3.27 eV. Photoluminescence spectrum exhibits a very sharp peak at 378 nm and a weak broad green emission.« less

  15. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  16. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  17. Effect of aging on ZnO and nitrogen doped P-Type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Bhunia, S.

    2012-06-01

    The withholding of p-type conductivity in as-prepared and 3% nitrogen (N) doped zinc oxide (ZnO) even after 2 months of preparation was systematically studied. The films were grown on glass substrates by pulsed laser deposition (PLD) at 350 °C under different conditions, viz. under vacuum and at oxygen (O) ambience using 2000 laser pulses. In O ambience for as-prepared ZnO the carrier concentration reduces and mobility increases with increasing number of laser shots. The resistivity of as-prepared and 3% N-doped ZnO is found to increase with reduction in hole concentration after 60 days of aging while maintaining its p-type conductivity irrespective of growth condition. AFM and electrical properties showed aging effect on the doped and undoped samples. For as-prepared ZnO, with time, O migration makes the film high resistive by reducing free electron concentrations. But for N-doped p-type ZnO, O-migration, metastable N and hydrogen atom present in the source induced instability in structure makes it less conducting p-type.

  18. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  19. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    PubMed Central

    Conrad, Chelsie E.; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A.; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C.; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C. H.; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F.; Liu, Wei

    2017-01-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  20. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    PubMed

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  1. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE PAGES

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett; ...

    2017-05-24

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  2. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Garcia, Jose M.; Conrad, Chelsie E.; Nelson, Garrett

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advancedmore » Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  3. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  4. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-01-01

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454

  5. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  6. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  7. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  8. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle.

    PubMed

    Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng

    2018-03-12

    The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  10. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  11. SnTe microcrystals: Surface cleaning of a topological crystalline insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.

    Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferredmore » into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.« less

  12. Characterization of ZnO Nanoparticles using Superconducting Tunnel Junction Cryodetection Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Plath, Logan D.; Wang, Zongyu; Yan, Jiajun; Matyjaszewski, Krzysztof; Bier, Mark E.

    2017-06-01

    Zinc oxide (ZnO) nanoparticles coated with either n-octylamine (OA) or α-amino poly(styrene- co-acrylonitrile) (PSAN) ligands (L) have been analyzed using laser desorption/ionization and matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) superconducting tunnel junction (STJ) cryodetection mass spectrometry. STJ cryodetection has the advantage of high m/ z detection and allows for the determination of average molecular weights and dispersities for 500-600 kDa ZnO-L nanoparticles. The ability to detect the relative energies deposited into the STJs has allowed for investigation of ZnO-L metastable fragmentation. ZnO-L precursor ions gain enough internal energy during the MALDI process to undergo metastable fragmentation in the flight tube. These fragments produced a lower energy peak, which was assigned as ligand-stripped ZnO cores whereas the individual ligands were at too low of an energy to be observed. From these STJ energy resolved peaks, the average weight percentage of inorganic material making up the nanoparticle was determined, where ZnO-OA and ZnO-PSAN nanoparticles are comprised of 62% and 68% wt ZnO, respectively. In one example, grafting densities were calculated based on the metastable fragmentation of ligands from the core to be 16 and 1.1 nm-2 for ZnO-OA and ZnO-PSAN, respectively, and compared with values determined by thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). [Figure not available: see fulltext.

  13. Electrochemical modification of properties of ZnO films

    NASA Astrophysics Data System (ADS)

    Abe, Koji; Okubo, Takamasa; Ishikawa, Hirohito

    2017-12-01

    The properties of Al-doped ZnO films and Li- and Al-doped ZnO films were modified by electrochemical treatment. A constant current was applied between a ZnO film and a Pt electrode in an electrolyte solution. The sheet resistance of the ZnO film increased and decreased depending on the direction of current flow during the electrochemical treatment. When the ZnO film was used as a cathode (forward biased condition), the sheet resistance of the ZnO film decreased with increasing treatment time. The optical bandgap of the H2-annealed ZnO film also depended on the direction of current flow and increased under the forward biased condition. The electrochemical treatment caused the Burstein-Moss effect.

  14. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  15. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.

    PubMed

    Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.

  16. Temperature measurement based on photoluminescence of Er3+ doped Sr0.3Cd0.7F2 microcrystal coupled to scanning thermal microscopy

    NASA Astrophysics Data System (ADS)

    Trannoy, N.; Sayoud, A.; Diaf, M.; Duvaut, Th.; Jouart, J. P.; Grossel, Ph.

    2015-04-01

    Rare earth doped sub-micrometric luminescent materials are promising candidates for temperature sensing and play an efficient role in many technological fields. In this paper, a new optical sensor is developed for measuring local temperatures. This sensor is based on a thermal-resistive probe and on photoluminescence of a luminescent fluoride microcrystal. The final purpose is to develop a device calibrated in temperature and capable of acquiring images of local temperature at sub-micrometric scale. Indeed, the sensor temperature can be obtained in two distinct ways: one from the thermal probe parameters and the other from the green photoluminescence generated in the anti-Stokes mode by the active Er ions directly excited by a red laser. The thermal probe is based on Wollaston wire whose thermal-resistive element is in platinum/rhodium. Its temperature is estimated from the probe electrical characteristics and a modeling. A microcrystal of Sr0.3Cd0.7F2: Er3+(4%)-Yb3+(6%) of about 25 μm in diameter is glued at the probe extremity. This luminescent material has the particularity to give a green emission spectrum with intensities sensitive to small temperature variations. Using the fluorescence intensity ratio (FIR) technique, the crystal temperature is estimated from the intensity measurements at green wavelengths 522, 540 and 549 nm by taking advantage of particular optical properties due to the crystalline nature of Sr0.3Cd0.7F2: Er3+-Yb3+. The microcrystal temperature is then assessed as a function of electric current in the thermal probe by applying the Boltzmann's equations. The coupling of the scanning thermal microscope (SThM) with the photoluminescence probe reveals that the particle fluorescence signal is affected by the temperature rise of an electrical microsystem submitted to a Joule heating. The first results are presented and discussed.

  17. An analysis of the specificity of defects embedded into (1 0 0) and (1 1 1) faceted CVD diamond microcrystals grown on Si and Mo substrates by using E/H field discharge

    NASA Astrophysics Data System (ADS)

    Nasieka, Iurii; Strelchuk, Victor; Naseka, Victor; Stubrov, Yuriy; Dudnik, Stanislav; Gritsina, Vasiliy; Opalev, Oleg; Koshevoy, Konstantin; Strel'nitskij, Vladimir; Tkach, Vasyl; Boyko, Mykola; Antypov, Ievgen

    2018-06-01

    The PE CVD method with magnetic field discharge stabilization was applied for the growth of arrays of freestanding diamond grains (island films) as well as continuous films on Mo and Si substrates with (1 1 1) and (1 0 0) faceted microcrystals, respectively. Raman, SEM, XRD and PL methods were used for search of the specific features of defects embedded into (1 0 0) and (1 1 1) faceted grains. The main characteristic differences in the defect states of the diamond island films grown on Si and Mo substrates with (1 0 0) and (1 1 1) faceted diamond microcrystals were discussed on the base of the experimental data.

  18. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  19. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam

    PubMed Central

    Cherezov, Vadim; Hanson, Michael A.; Griffith, Mark T.; Hilgart, Mark C.; Sanishvili, Ruslan; Nagarajan, Venugopalan; Stepanov, Sergey; Fischetti, Robert F.; Kuhn, Peter; Stevens, Raymond C.

    2009-01-01

    Crystallization of human membrane proteins in lipidic cubic phase often results in very small but highly ordered crystals. Advent of the sub-10 µm minibeam at the APS GM/CA CAT has enabled the collection of high quality diffraction data from such microcrystals. Herein we describe the challenges and solutions related to growing, manipulating and collecting data from optically invisible microcrystals embedded in an opaque frozen in meso material. Of critical importance is the use of the intense and small synchrotron beam to raster through and locate the crystal sample in an efficient and reliable manner. The resulting diffraction patterns have a significant reduction in background, with strong intensity and improvement in diffraction resolution compared with larger beam sizes. Three high-resolution structures of human G protein-coupled receptors serve as evidence of the utility of these techniques that will likely be useful for future structural determination efforts. We anticipate that further innovations of the technologies applied to microcrystallography will enable the solving of structures of ever more challenging targets. PMID:19535414

  20. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    PubMed Central

    Zhang, Zheng-Yong; Xiong, Huan-Ming

    2015-01-01

    During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs) have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV) emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS) and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  1. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  2. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  3. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  4. Trioctylphosphine-assisted morphology control of ZnO nanoparticles.

    PubMed

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  5. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  6. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  7. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm-1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  8. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  9. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  10. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    PubMed Central

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  11. A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry

    PubMed Central

    Meenakshisundaram, Guruguhan; Pandian, Ramasamy P.; Eteshola, Edward; Lee, Stephen C.; Kuppusamy, Periannan

    2009-01-01

    Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen (Pandian et al. J. Mater. Chem., 19, 4138, 2009). However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation. PMID:20006529

  12. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  13. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    NASA Astrophysics Data System (ADS)

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-07-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles.

  14. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  15. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  16. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  17. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Surender, E-mail: surender40@gmail.com; Sahare, P.D.

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} dopedmore » ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.« less

  18. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  19. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  20. Synthesis and characterization of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  1. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    PubMed Central

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-01-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles. PMID:27878001

  2. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.

    2018-01-01

    Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode

  3. Theory of copper impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.

    Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.

  4. ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.

    2016-12-01

    In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.

  5. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  6. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  7. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  8. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process

    NASA Astrophysics Data System (ADS)

    Safa, S.; Mokhtari, S.; Khayatian, A.; Azimirad, R.

    2018-04-01

    Encapsulated ZnO nanorods (NRs) with different Cr concentration (0-4.5 at.%) were prepared in two different steps. First, ZnO NRs were grown by hydrothermal method. Then, they were encapsulated by dip coating method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, and ultraviolet (UV)-visible spectrophotometer analyses. XRD analysis proved that Cr incorporated into the ZnO structure successfully. Based on optical analysis, band gap changes in the range of 2.74-3.84 eV. Finally, UV responses of all samples were deeply investigated. It revealed 0.5 at.% Cr doped sample had the most photocurrent (0.75 mA) and photoresponsivity (0.8 A/W) of all which were about three times greater than photocurrent and photoresponsivity of the undoped sample.

  10. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less

  11. Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.

    Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

  12. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.

    PubMed

    V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan

    2017-08-01

    Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of ZnO Photocatalysts Using Various Surfactants

    NASA Astrophysics Data System (ADS)

    Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin

    2017-12-01

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.

  14. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl 2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparation of "Cauliflower-Like" ZnO Micron-Sized Particles.

    PubMed

    Gordon, Tamar; Grinblat, Judith; Margel, Shlomo

    2013-11-14

    Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl₂ in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl₂-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.

  16. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  17. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  18. Manipulation of ZnO composition affecting electrical properties of MEH-PPV: ZnO nanocomposite thin film via spin coating for OLEDs application

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. Morphology, optical and electrical of nanocomposites thin films based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanotetrapods with various ZnO composition (0 wt% to 0.4 wt%) have been investigated. The MEH-PPV: ZnO nanocomposite thin film was deposited using spin-coating method. Surface morphology was characterized using field emission scanning electron microscopy and shows the uniform dispersion of MEH-PPV and ZnO phases for sample deposited at 0.2 wt%. The photoluminescence (PL) spectra shows the visible emission intensities increased when the ZnO composition increased. The current-voltage (I-V) measurement shows the highest conductivity of nanocomposite thin film deposited at 0.2 wt% of ZnO is 7.40 × 10-1 S. cm-1. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  19. ZnO based potentiometric and amperometric nanosensors.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field.

  20. Defect evolution in ZnO and its effect on radiation tolerance.

    PubMed

    Lv, Jinpeng; Li, Xingji

    2018-05-03

    The origin of ZnO radiation resistance is fascinating but still unclear. Herein, we found that radiation tolerance of ZnO can be tuned by engineering intrinsic defects into the ZnO. The role played by native defects in the radiation tolerance of ZnO was systematically explored by carrying out N+ implantation on a set of home-grown ZnO nanocrystals with various lattice defect types and concentrations. Interestingly, decreasing the VO and Zni concentration significantly aggravated N+ radiation damage, indicating the presence of O-deficient defects to be the potential cause of the radiation hardness of ZnO. A similar phenomenon was also observed for H+-implanted ZnO. This work offers a new way to manipulate ZnO and endow it with desired physicochemical properties, and is expected to pave the way for its application in radiative environments.

  1. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    NASA Astrophysics Data System (ADS)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  2. A ZnO nanowire resistive switch

    NASA Astrophysics Data System (ADS)

    Karthik, K. R. G.; Ramanujam Prabhakar, Rajiv; Hai, L.; Batabyal, Sudip K.; Huang, Y. Z.; Mhaisalkar, S. G.

    2013-09-01

    An individual ZnO nanowire resistive switch is evaluated with Pt/ZnO nanowire/Pt topology. A detailed DC I-V curve analysis is performed to bring both the conduction mechanism and the device characteristics to light. The device is further studied at various vacuum pressures to ascertain the presence of polar charges in ZnO nanowires as the phenomenon leading to the formation of the switch. The disappearance of the resistive switching is also analyzed with two kinds of fabrication approaches Focused Ion/Electron Beam involved in the making the device and a summary of both length and fabrication dependences of resistive switching in the ZnO nanowire is presented.

  3. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  4. Investigation of ZnO Nanowire Interfaces for Multi-Scale Composites

    DTIC Science & Technology

    2012-03-06

    growth of zinc oxide ( ZnO ) nanowires on the surface of the...through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. The nanowires functionally grade the interface, improve bonding...bulk composite. This has been accomplished through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. ZnO

  5. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  6. Enhanced photoluminescence properties of Al doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Ding, J. J.

    2018-01-01

    Al doped ZnO films are fabricated by radio frequency magnetron sputtering. In general, visible emission is related to various defects in ZnO films. However, too much defects will cause light emission quench. So it is still a controversial issue to control appropriate defect concentrations. In this paper, based on our previous results, appropriate Al doping concentration is chosen to introduce more both interstitial Zn and O vacancy defects, which is responsible for main visible emission of ZnO films. A strong emission band located at 405 nm and a long tail peak is observed in the samples. As Al is doped in ZnO films, the intensity of emission peaks increases. Zn interstitial might increase with the increasing Al3+ substitute because ZnO was a self-assembled oxide compound. So Zn interstitial defect concentration in Al doped ZnO films will increase greatly, which results in the intensity of emission peaks increases.

  7. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  8. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  9. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    PubMed Central

    Yang, Lili; Yang, Yong; Ma, Yunfeng; Li, Shuai; Wei, Yuquan; Huang, Zhengren; Long, Nguyen Viet

    2017-01-01

    Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application. PMID:29156600

  10. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  11. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  12. Nanoparticle Self-Assembled Grain Like Curcumin Conjugated ZnO: Curcumin Conjugation Enhances Removal of Perylene, Fluoranthene, and Chrysene by ZnO

    PubMed Central

    Moussawi, Rasha N.; Patra, Digambara

    2016-01-01

    Curcumin conjugated ZnO, referred as Zn(cur)O, nanostructures have been successfully synthesized, these sub-micro grain-like structures are actually self-assemblies of individual needle-shaped nanoparticles. The nanostructures as synthesized possess the wurtzite hexagonal crystal structure of ZnO and exhibit very good crystalline quality. FT-Raman and TGA analysis establish that Zn(cur)O is different from curcumin anchored ZnO (ZnO@cur), which is prepared by physically adsorbing curcumin on ZnO surfaces. Chemically Zn(cur)O is more stable than ZnO@cur. Diffuse reflectance spectroscopy indicates Zn(cur)O have more impurities compared to ZnO@cur. The solid-state photoluminescence of Zn(cur)O has been investigated, which demonstrates that increase of curcumin concentration in Zn(cur)O suppresses visible emission of ZnO prepared through the same method, this implies filling ZnO defects by curcumin. However, at excitation wavelength 425 nm the emission is dominated by fluorescence from curcumin. The study reveals that Zn(cur)O can remove to a far extent high concentrations of perylene, fluoranthene, and chrysene faster than ZnO. The removal depends on the extent of curcumin conjugation and is found to be faster for PAHs having smaller number of aromatic rings, particularly, it is exceptional for fluoranthene with 93% removal after 10 minutes in the present conditions. The high rate of removal is related to photo-degradation and a mechanism has been proposed. PMID:27080002

  13. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  14. Inverter Circuits using Pentacene and ZnO Transistors

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2007-04-01

    We report two types of integrated circuits based on a pentacene static-induction transistor (SIT), a pentacene thin-film transistor (TFT) and a zinc oxide (ZnO) TFT. The operating characteristics of a p-p inverter using pentacene SITs and a complementary inverter using a p-channel pentacene TFT and an n-channel ZnO TFT are described. The basic operation of logic circuits at a low voltage was achieved for the first time using the pentacene SIT inverter and complementary circuits with hybrid inorganic and organic materials. Furthermore, we describe the electrical properties of the ZnO films depending on sputtering conditions, and the complementary circuits using ZnO and pentacene TFTs.

  15. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  16. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  17. Complete transformation of ZnO and CuO nanoparticles in ...

    EPA Pesticide Factsheets

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  18. Hydrothermal growth of ZnO nanowires on flexible fabric substrates

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Yun, Sang-Ho; Kim, Joo-Hyung

    2016-04-01

    ZnO nanowires (NWs) would provide significant enhancement in sensitivity due to high surface to volume ratio. We investigated the first methodical study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and properties of ZnO NWs grown on different flexible fabric surfaces. To develop a fundamental following concerning various substrates, we controlled the growth speed of ZnO NWs and nanowires on cotton surface with easy and moderate cost fabrication method. Using ammonium hydroxide as the reactant with zinc nitrate hexahydrate, ZnO NWs layer have been grown on metal layers, instead of seed layer. ZnO NWs fabrication was done on different fabric substrates such as wool, nylon and polypropylene (PP). After the ZnO NWs grown to each substrates, we coated insulating layer with polyurethane (PU) and ethyl cellulose for prevent external intervention. Detailed electrical characterization was subsequently performed to reveal the working characteristics of the hybrid fabric. For electrical verification of fabricated ZnO NWs, we implemented measurement impact test and material properties with FFT analyzer and LCR meter.

  19. Room temperature ferromagnetism in Cu doped ZnO

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  20. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  1. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  2. microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh

    2014-05-01

    We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.

  3. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less

  4. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  5. Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles.

    PubMed

    Karunakaran, C; Jayabharathi, J; Sathishkumar, R; Jayamoorthy, K; Vimal, K

    2013-11-01

    A new fluorophore 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazole has been synthesized and characterized by spectroscopic techniques. Nanoparticulate ZnO enhances the fluorescence of the synthesised fluorophore. The absorption, fluorescence, lifetime, cyclic voltammetry and infrared studies reveal that fluorophore is attached to the surface of ZnO semiconductor. Photo-induced electron transfer (PET) explains the enhancement of fluorescence by nanoparticulate ZnO and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazole derivative on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to the zinc ion on the surface of nanocrystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2014-09-10

    Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise

  7. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  8. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  9. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  10. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  11. Defect-induced magnetic order in pure ZnO films

    NASA Astrophysics Data System (ADS)

    Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.

    2009-07-01

    We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.

  12. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  13. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  14. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  15. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    NASA Astrophysics Data System (ADS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  16. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    PubMed

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  17. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  18. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  19. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.

    PubMed

    Etacheri, Vinodkumar; Roshan, Roshith; Kumar, Vishwanathan

    2012-05-01

    Magnesium-doped ZnO (ZMO) nanoparticles were synthesized through an oxalate coprecipitation method. Crystallization of ZMO upon thermal decomposition of the oxalate precursors was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. XRD studies point toward a significant c-axis compression and reduced crystallite sizes for ZMO samples in contrast to undoped ZnO, which was further confirmed by HRSEM studies. X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy and photoluminescence (PL) spectroscopy were employed to establish the electronic and optical properties of these nanoparticles. (XPS) studies confirmed the substitution of Zn(2+) by Mg(2+), crystallization of MgO secondary phase, and increased Zn-O bond strengths in Mg-doped ZnO samples. Textural properties of these ZMO samples obtained at various calcination temperatures were superior in comparison to the undoped ZnO. In addition to this, ZMO samples exhibited a blue-shift in the near band edge photoluminescence (PL) emission, decrease of PL intensities and superior sunlight-induced photocatalytic decomposition of methylene blue in contrast to undoped ZnO. The most active photocatalyst 0.1-MgZnO obtained after calcination at 600 °C showed a 2-fold increase in photocatalytic activity compared to the undoped ZnO. Band gap widening, superior textural properties and efficient electron-hole separation were identified as the factors responsible for the enhanced sunlight-driven photocatalytic activities of Mg-doped ZnO nanoparticles.

  20. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  1. Thermoelectric properties of rocksalt ZnO from first-principles calculations

    DOE PAGES

    Alvarado, Andrew; Attapattu, Jeevake; Zhang, Yi; ...

    2015-10-22

    Zinc oxide (ZnO) undergoes a pressure-induced structural transition from its normal ambient-pressure wurtzite (WZ) phase to a rocksalt (RS) phase around 10 GPa. A recent experiment shows that the high-pressure RS ZnO phase can be recovered and stabilized at ambient conditions, which raises exciting prospects of expanding the range of properties of ZnO. For a fundamental understanding of the RS ZnO phase, we have performed first-principles calculations to determine its electronic, phonon, and thermodynamic properties at high (20 GPa) and ambient (0 GPa) pressure. Furthermore, we have calculated its electrical and thermal transport properties, which allow an evaluation of itsmore » thermoelectric figure of merit ZT at different temperature and doping levels. Our calculations show that the ambient-pressure RS ZnO phase can reach ZT values of 0.25 to 0.3 under both n-type and p-type doping in a large temperature range of 400 K to 800 K, which is considerably lower than the temperature range of 1400 K to 1600 K where WZ ZnO reaches similar ZT values. Lastly, these results establish RS ZnO as a promising material for thermoelectric devices designed to operate at temperatures desirable for many heat recovery applications.« less

  2. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  3. The growth of ZnO nanostructures using Arginine

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Moudgil, Lovika; Singh, Gurinder; Kaura, Aman

    2018-05-01

    The growth mechanism of Zinc oxide (ZnO) nanomaterial with amino acid (Arginine) is explained at different shapes. The present study of ZnO nanostructures (NSs) in the presence of Arginine has enabled us to not only determine the growth mechanism of ZnO NSs but also to determine the effect of Arginine at different temperature of reactants. The synthesized samples are characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results reveal that Arginine is responsible for formation of NSs. Based on these results, a plausible mechanism is explained.

  4. Influence Al doped ZnO nanostructure on structural and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramelan, Ari Handono, E-mail: aramelan@mipa.uns.ac.id; Wahyuningsih, Sayekti; Chasanah, Uswatul

    2016-04-19

    The preparation of Al-doped ZnO (AZO) thin films prepared by the spin-coating method was reported. Preparation of AZO was conducted by annealing treatment at a temperature of 700°C. While the spin-coating process of AZO thin films were done at 2000 and 3000 rpm respectively. The structural properties of ZnO were determined by X- ray diffraction (XRD) analysis. ZnOnanostructure was formed after annealed at atemperature of 400°C.The morphology of ZnO was determined by Scanning Electron Microscopy (SEM) showed the irregular morphology about 30-50µm in size. Al doped on ZnO influenced the optical properties of those material. Increasing Al contain on ZnO causemore » of shifting to the lower wavelength. The optical properties of the ZnO as well as AZO films showed that higher reflectance on the ultraviolet region so those materials were used as anti-reflecting agent.Al addition significantly enhance the optical transparency and induce the blue-shift in optical bandgap of ZnO films.« less

  5. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  6. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  7. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  8. Impact of nanostructured thin ZnO film in ultraviolet protection.

    PubMed

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field.

  9. Variable range hopping in ZnO films

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Ghosh, Subhasis

    2018-04-01

    We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.

  10. Defect-induced ferromagnetism in ZnO nanoparticles prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Phan, The-Long; Zhang, Y. D.; Yang, D. S.; Nghia, N. X.; Thanh, T. D.; Yu, S. C.

    2013-02-01

    Though ZnO is known as a diamagnetic material, recent studies have revealed that its nanostructures can be ferromagnetic (FM). The FM origin has been ascribed to intrinsic defects. This work shines light on an alternate method based on mechanical milling to induce defect-related ferromagnetism in ZnO nanoparticles (NPs) from initial diamagnetic ZnO powders. Our idea is motivated by the fact that mechanical milling introduces more defects to a ground material. We point out that the FM order increases with increasing the density of defects in ZnO NPs. The experimental results obtained from analyzing X-ray absorption, electron spin resonance, and Raman scattering spectra demonstrate that the ferromagnetism in ZnO NPs is due to intrinsic defects mainly related to oxygen and zinc vacancies. Among these, zinc vacancies play a decisive role in introducing a high FM order in ZnO NPs.

  11. Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2018-04-01

    Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.

  12. Ferromagnetic behaviour of ZnO: the role of grain boundaries

    PubMed Central

    Protasova, Svetlana G; Mazilkin, Andrei A; Goering, Eberhard; Schütz, Gisela; Straumal, Petr B; Baretzky, Brigitte

    2016-01-01

    The possibility to attain ferromagnetic properties in transparent semiconductor oxides such as ZnO is very promising for future spintronic applications. We demonstrate in this review that ferromagnetism is not an intrinsic property of the ZnO crystalline lattice but is that of ZnO/ZnO grain boundaries. If a ZnO polycrystal contains enough grain boundaries, it can transform into the ferromagnetic state even without doping with “magnetic atoms” such as Mn, Co, Fe or Ni. However, such doping facilitates the appearance of ferromagnetism in ZnO. It increases the saturation magnetisation and decreases the critical amount of grain boundaries needed for FM. A drastic increase of the total solubility of dopants in ZnO with decreasing grain size has been also observed. It is explained by the multilayer grain boundary segregation. PMID:28144542

  13. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  14. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  15. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition.

    PubMed

    Pal, Partha P; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I; Nasibulin, Albert G

    2016-12-02

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  16. Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion.

    PubMed

    Mu, Hui; Chen, Yinguang

    2011-11-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) raises concerns about their environmental impacts, but the potential effect of ZnO NPs on sludge anaerobic digestion remains unknown. In this paper, long-term exposure experiments were carried out to investigate the influence of ZnO NPs on methane production during waste activated sludge (WAS) anaerobic digestion. The presence of 1 mg/g-TSS of ZnO NPs did not affect methane production, but 30 and 150 mg/g-TSS of ZnO NPs induced 18.3% and 75.1% of inhibition respectively, which showed that the impact of ZnO NPs on methane production was dosage dependant. Then, the mechanisms of ZnO NPs affecting sludge anaerobic digestion were investigated. It was found that the toxic effect of ZnO NPs on methane production was mainly due to the release of Zn(2+) from ZnO NPs, which may cause the inhibitory effects on the hydrolysis and methanation steps of sludge anaerobic digestion. Further investigations with enzyme and fluorescence in situ hybridization (FISH) assays indicated that higher concentration of ZnO NPs decreased the activities of protease and coenzyme F(420), and the abundance of methanogenesis Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Preparation, characterization and properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  18. CdTe quantum-dot-modified ZnO nanowire heterostructure

    NASA Astrophysics Data System (ADS)

    Shahi, Kanchana; Singh, R. S.; Singh, Ajaya Kumar; Aleksandrova, Mariya; Khenata, Rabah

    2018-03-01

    The effect of CdTe quantum-dot (QD) decoration on the photoluminescence (PL) behaviour of ZnO nanowire (NW) array is presented in the present work. Highly crystalline and vertically 40-50 nm diameter range and 1 µm in length aligned ZnO NWs are synthesized using low-cost method. The crystallinity and morphology of the NWs are studied by scanning electron microscopy and X-ray powder diffraction methods.Optical properties of the nanowires are studied using photo-response and PL spectroscopy. CdTe QDs are successfully synthesized on ZnO nanowire surface by dip-coating method. ZnO NWs are sensitized with CdTe QDs characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and PL spectroscopy. The highly quenched PL intensity indicates the charge transfer at interface between CdTe QDs and ZnO NWs and is due to the formation of type-II heterostructure between QDs and NWs. Photo-response behaviour of heterostructure of the film is also been incorporated in the present work.

  19. Confocal Raman microscopy of one dimensional ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Gupta, Maneesh; Yang, Rusen; Wang, Zhong; Tsukruk, Vladimir

    2009-03-01

    ZnO nanostructures with various shapes (vertically aligned nanorods, nanobelts, nanohelixes, nanorings) have been synthesized using both vapor phase and solution growth methods. In the simplest example of a nanobelt, the fast growth direction can be either (21 1 0) or (011 0) or (0001). Here, we show that confocal Raman microscopy can be employed as a fast and nondestructive analytical technique to identify the crystal planes and reveal the relative orientation of the ZnO nanostructure. Various features of the Raman spectrum of ZnO nanostructures (presence of the A1(TO) mode, width of the E2 mode) were found to be sensitive to relative orientation of the incident source laser and the crystal plane. Furthermore, owing to the optical anisotropy of ZnO, Raman scattering from the substrate is modulated (either enhanced or suppressed with respect to the background) depending on the polarization of the incident light with respect to orientation of the nanobelt. The results presented here describe a novel method to nondestructively identify the growth, relative orientation, and the waveguiding properties of the ZnO nanostructures.

  20. Hydrothermal Growth of ZnO Nanowires on UV-Nanoimprinted Polymer Structures.

    PubMed

    Park, Sooyeon; Moore, Sean A; Lee, Jaejong; Song, In-Hyouk; Farshchian, Bahador; Kim, Namwon

    2018-05-01

    Integration of zinc oxide (ZnO) nanowires on miniaturized polymer structures can broaden its application in multi-functional polymer devices by taking advantages of unique physical properties of ZnO nanowires and recent development of polymer microstructures in analytical systems. In this paper, we demonstrate the hydrothermal growth of ZnO nanowires on polymer microstructures fabricated by UV nanoimprinting lithography (NIL) using a polyurethane acrylate (PUA). Since PUA is a siloxane-urethane-acrylate compound containing the alpha-hydroxyl ketone, UV-cured PUA include carboxyl groups, which inhibit and suppress the nucleation and growth of ZnO nanowires on polymer structures. The presence of carboxyl groups in UV-cured PUA was substantiated by Fourier transform infrared spectroscopy (FTIR), and a Ag thin film was deposited on the nanoimprinted polymer structures to limit their inhibitive influence on the growth of ZnO nanowires. Furthermore, the naturally oxidized Ag layer (Ag2O) reduced crystalline lattice mismatches at the interface between ZnO-Ag during the seed annealing process. The ZnO nanowires grown on the Ag-deposited PUA microstructures were found to have comparable morphological characteristics with ZnO nanowires grown on a Si wafer.

  1. Bi-layer channel structure-based oxide thin-film transistors consisting of ZnO and Al-doped ZnO with different Al compositions and stacking sequences

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun

    2015-03-01

    Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.

  2. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less

  3. Magnetic properties of ZnO nanoparticles.

    PubMed

    Garcia, M A; Merino, J M; Fernández Pinel, E; Quesada, A; de la Venta, J; Ruíz González, M L; Castro, G R; Crespo, P; Llopis, J; González-Calbet, J M; Hernando, A

    2007-06-01

    We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.

  4. Cu-Doped ZnO Thin Films Grown by Co-deposition Using Pulsed Laser Deposition for ZnO and Radio Frequency Sputtering for Cu

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-05-01

    Cu-doped ZnO (CZO) thin films were fabricated on single-crystalline (0001) Al2O3 substrates by co-deposition using pulsed laser deposition for ZnO and radio frequency sputtering for Cu. CZO thin films with 0-20% molar concentrations are obtained by adjusting the deposition rates of ZnO and Cu. The CZO thin films exhibit room temperature ferromagnetism, and CZO with 5% Cu molar concentration has maximum remanent magnetization, which is consistent with theoretical results.

  5. Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles.

    PubMed

    Dutta, Raj Kumar; Nenavathu, Bhavani Prasad; Talukdar, Soumita

    2014-02-01

    Selenium doped ZnO nanoparticles synthesized by mechanochemical method were spherically shaped of size distribution of 10.2±3.4 nm measured by transmission electron microscopy. Diffused reflectance spectroscopy revealed increase in the band gap, ranging between 3.47 eV and 3.63 eV due to Se doping in ZnO nanoparticles. The antibacterial activity of pristine and Se doped ZnO nanoparticles was attributed to ROS (reactive oxygen species) generation in culture media confirmed by TBARS assay. Compared to complete inhibition of growth by 0.45 mg/mL of pristine ZnO nanoparticles, the batches of 0.45 mg/mL of selenium doped ZnO nanoparticles exhibited only 51% inhibition of growth of Escherichia coli. The reduced antibacterial activity of selenium doped ZnO nanoparticles was attributed to two opposing factors, e.g., ROS generation for inhibition of growth, countered by sustaining growth of E. coli due to availability of Se micronutrients in culture media, confirmed by inductively coupled plasma mass spectrometer measurement. Higher ROS generation by selenium doped ZnO nanoparticles was attributed to creation of oxygen vacancies, confirmed from green emission peak observed at 565 nm. The impact of higher ROS generation by selenium doped ZnO nanoparticles was evident from enhanced photocatalytic degradation of trypan blue dye, than pristine ZnO nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application.

    PubMed

    Khataee, Alireza; Karimi, Atefeh; Zarei, Mahmoud; Joo, Sang Woo

    2015-03-30

    Undoped and europium (III)-doped ZnO nanoparticles were prepared by a sonochemical method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analysis. The crystalline sizes of undoped and 3% Eu-doped ZnO were found to be 16.04 and 8.22nm, respectively. The particle size of Eu-doped ZnO nanoparticles was much smaller than that of pure ZnO. The synthesized nanocatalysts were used for the sonocatalytic degradation of Acid Red 17. Among the Eu-doped ZnO catalysts, 3% Eu-doped ZnO nanoparticles showed the highest sonocatalytic activity. The effects of various parameters such as catalyst loading, initial dye concentration, pH, ultrasonic power, the effect of oxidizing agents, and the presence of anions were investigated. The produced intermediates of the sonocatalytic process were monitored by GC-Mass (GC-MS) spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Sol-gel synthesized ZnO for optoelectronics applications: a characterization review

    NASA Astrophysics Data System (ADS)

    Harun, Kausar; Hussain, Fayaz; Purwanto, Agus; Sahraoui, Bouchta; Zawadzka, Anna; Azmin Mohamad, Ahmad

    2017-12-01

    The rapid growth in green technology has resulted in a marked increase in the incorporation of ZnO in energy and optoelectronic devices. Research involving ZnO is being given renewed attention in the quest to fully exploit its promising properties. The purity and state of defects in the ZnO system are optimized through several modifications to the synthesis conditions and the starting materials. These works have been verified through a series of characterizations. This review covers the essential characterization outcomes of pure ZnO nanoparticles. Emphasis is placed on recent techniques, examples and some issues concerning sol-gel synthesized ZnO nanoparticles. Thermal, phase, structural and morphological observations are combined to ascertain the level of purity of ZnO. The subsequent elemental and optical characterizations are also discussed. This review would be the collective information and suggestions at one place for investigators to focus on the best development of ZnO-based optical and energy devices.

  8. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    AFRL-RX-WP-TP-2014-0141 SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) Shin Mou AFRL/RXAN JANUARY... SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...or disclose the work. The final publication is available at www.rsc.org/MaterialsA. 14. ABSTRACT Hierarchical superhydrophobic surfaces were

  9. ZnO nanostructures with different morphology for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peter, I. John; Praveen, E.; Vignesh, G.; Nithiananthi, P.

    2017-12-01

    ZnO nanomaterials of different morphologies have been synthesized and the effect of morphology on Photocatalytic activity on natural dye has been investigated. Crystalline size and lattice strain of the synthesized particles are determined by XRD analysis and Williamson-Hall (W-H) method respectively. All other important physical parameters such as strain, stress and energy density values are also calculated using W-H analysis using different models such as uniform deformation model, uniform deformation stress model and uniform deformation energy density model. A shift in the peak of FTIR spectrum of ZnO is observed due to morphology effects. The SEM analysis reveals that the synthesized ZnO nanoparticles appear as flake, rod and dot. ZnO quantum dot exhibits higher photocatalytic activity comparing to the other morphologies. Larger surface area, high adsorption rate, large charge separation and the slow recombination of electrons/holes in ZnO dots establish dots as favorable morphology for good photocatalysis. Among the three, ZnO quantum dot shows three-times enhancement in the kinetic rate constants of photocatalysis. The results confirm that availability of specific (active) surface area, photocatalytic potential and quantum confinement of photo-induced carriers differ with morphology.

  10. Impact of nanostructured thin ZnO film in ultraviolet protection

    PubMed Central

    Sasani Ghamsari, Morteza; Alamdari, Sanaz; Han, Wooje; Park, Hyung-Ho

    2017-01-01

    Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. PMID:28096668

  11. Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei

    2012-08-01

    One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.

  12. The structural properties of flower-like ZnO nanostructures on porous silicon

    NASA Astrophysics Data System (ADS)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  13. Threshold pressure for mechanoluminescence of macrocrystals, microcrystals and nanocrystals of doped zinc sulphide

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush; Sonwane, V. D.

    2016-06-01

    The threshold pressure for elastico-mechanoluminescence (EML) of ZnS:Mn macrocrystals is 20 MPa, and ZnS:Cu,Al macrocrystals do not show ML during elastic deformation. However, the threshold pressure for EML of ZnS:Mn and ZnS:Cu,Cl microcrystals and nanocrystals is nearly 1 MPa. Thus, it seems that high concentration of defects in microcrystalline and nanocrystalline ZnS:Mn and ZnS:Cu,Cl produces disorder and distortion in lattice and changes the local crystal-structure near impurities, and consequently, the enhanced piezoelectric constant of local region produces EML for low value of applied pressure. The threshold pressure for the ML of ZnS:Mn and ZnS:Cu,Al single macrocrystals is higher because such crystals possess comparatively less number of defects near the impurities where the phase-transition is not possible and their ML is caused for high value of stress because the bulk piezoelectric constant is less. Thus, size-dependent threshold pressure for ML supports the origin of EML from piezoelectricity in local region of the crystals. The finding of present investigation may be useful in tailoring phosphors emitting intense EML of different colours.

  14. Emission and Structure-Varying ZnO and Carbon Nanocrystal Composite in Mechanical Processing

    NASA Astrophysics Data System (ADS)

    Torchynska, T.; Perez Millan, B.; Polupan, G.; Kakazey, M.

    2018-03-01

    Morphology, photoluminescence (PL), and Raman scattering spectra have been investigated for mixtures of ZnO+0.1%C nanocrystals (NCs) at different stages of mechanical processing (MP). The transformation of graphite into graphene monolayers covering the ZnO NC surface is revealed for the first MP stage. The interaction with oxygen has been detected in the second MP stage which leads to the dissolution of oxygen interstitials in the ZnO NCs and to the formation of graphene (graphite) oxides. Increasing the concentration of the oxygen interstitials in ZnO NCs also enhances the intensity stimulation of the orange PL band (2.18eV). Simultaneously, the PL band peaking at 2.82-2.90 eV is detected in the PL spectra of the ZnO+0.1%C NC mixture after MP for 9-90 min. Then, the variation of the ZnO NC shape, agglomeration of ZnO NCs, modification of ZnO defects and decreasing PL intensity have been detected after prolonged MP for 390 min. It is expected that short stages of MP can be useful for ZnO NC surface covering by graphene layers or graphene (graphite) oxides.

  15. UV-Enhanced Ethanol Sensing Properties of RF Magnetron-Sputtered ZnO Film.

    PubMed

    Huang, Jinyu; Du, Yu; Wang, Quan; Zhang, Hao; Geng, Youfu; Li, Xuejin; Tian, Xiaoqing

    2017-12-26

    ZnO film was deposited by the magnetron sputtering method. The thickness of ZnO film is approximately 2 μm. The influence of UV light illumination on C₂H₅OH sensing properties of ZnO film was investigated. Gas sensing results revealed that the UV-illuminated ZnO film displays excellent C₂H₅OH characteristics in terms of high sensitivity, excellent selectivity, rapid response/recovery, and low detection limit down to 0.1 ppm. The excellent sensing performance of the sensor with UV activation could be attributed to the photocatalytic oxidation of ethanol on the surface of the ZnO film, the planar film structure with high utilizing efficiency of UV light, high electron mobility, and a good surface/volume ratio of of ZnO film with a relatively rough and porous surface.

  16. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    PubMed

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  17. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  18. High-mobility low-temperature ZnO transistors with low-voltage operation

    NASA Astrophysics Data System (ADS)

    Bong, Hyojin; Lee, Wi Hyoung; Lee, Dong Yun; Kim, Beom Joon; Cho, Jeong Ho; Cho, Kilwon

    2010-05-01

    Low voltage high mobility n-type thin film transistors (TFTs) based on sol-gel processed zinc oxide (ZnO) were fabricated using a high capacitance ion gel gate dielectric. The ion gel gated solution-processed ZnO TFTs were found to exhibit excellent electrical properties. TFT carrier mobilities were 13 cm2/V s, ON/OFF current ratios were 105, regardless of the sintering temperature used for the preparation of the ZnO thin films. Ion gel gated ZnO TFTs are successfully demonstrated on plastic substrates for the large area flexible electronics.

  19. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal.

    PubMed

    Zheng, Xiong; Wu, Rui; Chen, Yinguang

    2011-04-01

    With the increasing utilization of nanomaterials, zinc oxide nanoparticles (ZnO NPs) have been reported to induce adverse effects on human health and aquatic organisms. However, the potential impacts of ZnO NPs on wastewater nitrogen and phosphorus removal with an activated sludge process are unknown. In this paper, short-term exposure experiments were conducted to determine whether ZnO NPs caused adverse impacts on biological nitrogen and phosphorus removal in the unacclimated anaerobic-low dissolved oxygen sequencing batch reactor. Compared with the absence of ZnO NPs, the presence of 10 and 50 mg/L of ZnO NPs decreased total nitrogen removal efficiencies from 81.5% to 75.6% and 70.8%, respectively. The corresponding effluent phosphorus concentrations increased from nondetectable to 10.3 and 16.5 mg/L, respectively, which were higher than the influent phosphorus (9.8 mg/L), suggesting that higher concentration of ZnO NPs induced the loss of normal phosphorus removal. It was found that the inhibition of nitrogen and phosphorus removal induced by higher concentrations of ZnO NPs was due to the release of zinc ions from ZnO NPs dissolution and increase of reactive oxygen species (ROS) production, which caused inhibitory effect on polyphosphate-accumulating organisms and decreased nitrate reductase, exopolyphosphatase, and polyphosphate kinase activities.

  20. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates

    PubMed Central

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

  1. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  2. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  3. Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties

    PubMed Central

    Zhou, Qu; Chen, Weigen; Xu, Lingna; Peng, Shudi

    2013-01-01

    Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil. PMID:23666136

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Kun; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn; Da, Min

    Highlights: Black-Right-Pointing-Pointer Highly oriented and well-defined ZnO urchin-like crystals were successfully fabricated by a facile and effective hydrotherm method. Black-Right-Pointing-Pointer Polyvinylpyrrolidone- and hydrogen peroxide-assisted synthesis of ZnO could optimize its crystalline quality and the obtained ZnO have smooth surface, radial growth of morphology, obvious crystal edges and decreased defects. Black-Right-Pointing-Pointer The physicochemical properties of samples were studied by analysis of its structure, morphology, surface and optical properties. Black-Right-Pointing-Pointer This study represented a multistep mechanism based on [Zn(OH){sub 4}]{sup 2-} growth units about formation such urchin-like structure. -- Abstract: The urchin-like ZnO microcrystals with high crystallinity decomposed from [Zn(OH){sub 4}]{sup 2-}more » directly were obtained via a hydrothermal method. The morphology, particle size, crystalline structure and fluorescence of the as-prepared ZnO were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and photoluminescence (PL) analyses. The results demonstrated that the urchin-like ZnO crystals with wurtzite structure had a narrow distribution in size, which could be adjusted in the range of 30-80 {mu}m by varying reaction time. Broad visible light emission peak was also observed in the PL spectra of the synthesized ZnO products. A multistep growth process about how to form such a structure was proposed.« less

  5. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  6. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  7. Plasmonic enhanced optical characteristics of Ag nanostructured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sarkar, Arijit; Gogurla, Narendar; Shivakiran Bhaktha, B. N.; Ray, Samit K.

    2016-04-01

    We have demonstrated the enhanced photoluminescence and photoconducting characteristics of plasmonic Ag-ZnO films due to the light scattering effect from Ag nanoislands. Ag nanoislands have been prepared on ITO-coated glass substrates by thermal evaporation followed by annealing. Plasmonic Ag-ZnO films have been fabricated by depositing ZnO over Ag nanoislands by sol-gel process. The band-edge emission of ZnO is enhanced for 170 nm sized Ag nanoislands in ZnO as compared to pure ZnO. The defect emission is also found to be quenched simultaneously for plasmonic Ag-ZnO films. The enhancement and quenching of photoluminescence at different wavelengths for Ag-ZnO films can be well understood from the localized surface plasmon resonance of Ag nanoislands. The Ag-ZnO M-S-M photoconductor device showed a tenfold increment in photocurrent and faster photoresponse as compared to the control ZnO device. The enhancement in photoresponse of the device is due to the increased photon absorption in ZnO films via scattering of the incident illumination.

  8. Elemental, morphological, structural, optical, and magnetic properties of erbium doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Poornaprakash, B.; Chalapathi, U.; Purusottam Reddy, B.; Prabhakar Vattikuti, S. V.; Siva Pratap Reddy, M.; Park, Si-Hyun

    2018-03-01

    The sensible tuning of the structural, optical, and magnetic properties of ZnO nanoparticles (NPs) with suitable doping can enhance their applicability in diverse fields. In this study, we synthesized ZnO NPs with Er (0-4 at%) doping and their elemental, structural, optical, and magnetic properties were studied. Both field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) studies of the suspensions consist of hexagonal shaped NPs. All the prepared NPs exhibited hexagonal phase as demonstrated by powder x-ray diffraction studies. A blue shift was observed in the Er doped ZnO NPs compared to pure ZnO, indicating the increased optical bandgap. Vibrating sample magnetometer studies exhibited the pure ZnO NPs was typical diamagnetic feature whereas all the Er doped ZnO NPs were paramagnetic feature at 300 K. This is the first paramagnetic report on Er doped ZnO NPs.

  9. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  10. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  11. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests.

    PubMed

    Gonçalves, Renata Amanda; de Oliveira Franco Rossetto, Ana Letícia; Nogueira, Diego José; Vicentini, Denice Schulz; Matias, William Gerson

    2018-04-01

    Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50 (48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  13. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules.

    PubMed

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-08

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (R air/R gas = 12.8) compared to that (R air/R gas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  14. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  15. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  16. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    NASA Astrophysics Data System (ADS)

    Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun

    2015-04-01

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100-200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800-3200 mg/kg). Both Zn concentration in shoots and roots correlated positively ( P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO4) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO4. Although significantly lower compared to bulk ZnO and ZnSO4, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

  17. Anti-cancer activity of ZnO chips by sustained zinc ion release.

    PubMed

    Moon, Seong-Hee; Choi, Won Jin; Choi, Sik-Won; Kim, Eun Hye; Kim, Jiyeon; Lee, Jeong-O; Kim, Seong Hwan

    2016-01-01

    We report anti-cancer activity of ZnO thin-film-coated chips by sustained release of zinc ions. ZnO chips were fabricated by precisely tuning ZnO thickness using atomic layer deposition, and their potential to release zinc ions relative to the number of deposition cycles was evaluated. ZnO chips exhibited selective cytotoxicity in human B lymphocyte Raji cells while having no effect on human peripheral blood mononuclear cells. Of importance, the half-maximal inhibitory concentration of the ZnO chip on the viability of Raji cells was 121.5 cycles, which was comparable to 65.7 nM of daunorubicin, an anti-cancer drug for leukemia. Molecular analysis of cells treated with ZnO chips revealed that zinc ions released from the chips increased cellular levels of reactive oxygen species, including hydrogen peroxide, which led to the down-regulation of anti-apoptotic molecules (such as HIF-1α, survivin, cIAP-2, claspin, p-53, and XIAP) and caspase-dependent apoptosis. Because the anti-cancer activity of ZnO chips and the mode of action were comparable to those of daunorubicin, the development and optimization of ZnO chips that gradually release zinc ions might have clinical anti-cancer potential. A further understanding of the biological action of ZnO-related products is crucial for designing safe biomaterials with applications in disease treatment.

  18. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Wojnarowicz, Jacek; Chudoba, Tadeusz; Koltsov, Iwona; Gierlotka, Stanislaw; Dworakowska, Sylwia; Lojkowski, Witold

    2018-02-01

    The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.

  19. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability

    NASA Astrophysics Data System (ADS)

    Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.

    2013-05-01

    It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.

  20. Highly active lanthanum doped ZnO nanorods for photodegradation of metasystox.

    PubMed

    Korake, P V; Dhabbe, R S; Kadam, A N; Gaikwad, Y B; Garadkar, K M

    2014-01-05

    La-doped ZnO nanorods with different La contents were synthesized by microwave assisted method and characterized by various sophisticated techniques such as XRD, UV-Vis., EDS, XPS, SEM and TEM. The XRD patterns of the La-doped ZnO indicate hexagonal crystal structure with an average crystallite size of 30nm. It was found that the crystallite size of La-doped ZnO is much smaller as compared to pure ZnO and decreases with increasing La content. The photocatalytic activity of 0.5mol% La-doped ZnO in the degradation of metasystox was studied. It was observed that degradation efficiency of metasystox over La-doped ZnO increases up to 0.5mol% doping then decreases for higher doping levels. Among the catalyst studied, the 0.5mol% La-doped ZnO was the most active, showing high photocatalytic activity for the degradation of metasystox. The maximum reduction of concentration of metasystox was observed under static condition at pH 8. Reduction in the Chemical Oxygen Demand (COD) of metasystox was observed after 150min. The cytotoxicological studies of meristematic root tip cells of Allium cepa were studied. The results obtained indicate that photocatalytically degraded products of metasystox were less toxic as compared to metasystox. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  2. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.

    PubMed

    Cho, Seungho; Kim, Semi; Lee, Kun-Hong

    2011-09-15

    We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.

    PubMed

    Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo

    2013-10-22

    Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.

  4. Size-controlled synthesis of ZnO quantum dots in microreactors

    NASA Astrophysics Data System (ADS)

    Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

    2014-04-01

    In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

  5. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization

    NASA Astrophysics Data System (ADS)

    He, J. H.; Lin, Yen H.; McConney, Michael E.; Tsukruk, Vladimir V.; Wang, Zhong L.; Bao, Gang

    2007-10-01

    UV photodetector fabricated using a single ZnO nanobelt (NB) has shown a photoresponse enhancement up to 750 times higher than that of a bare ZnO NB after coating with ˜20nm plasma polymerized acrylonitrile (PP-AN) nanoscale film. The mechanism for this colossal photoconductivity is suggested as a consequence of the efficient exciton dissociation under UV illumination due to enhanced electron transfer from valence band of ZnO NB to the PP-AN and then back to the conduction band of ZnO. This process has demonstrated an easy and effective method for improving the performance of the nanowire/NB-based devices, possibly leading to supersensitive UV detector for applications in imaging, photosensing, and intrachip optical interconnects.

  6. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  7. Electrochemical Sensing, Photocatalytic and Biological Activities of ZnO Nanoparticles: Synthesis via Green Chemistry Route

    NASA Astrophysics Data System (ADS)

    Yadav, L. S. Reddy; Archana, B.; Lingaraju, K.; Kavitha, C.; Suresh, D.; Nagabhushana, H.; Nagaraju, G.

    2016-05-01

    In this paper, we have successfully synthesized ZnO nanoparticles (Nps) via solution combustion method using sugarcane juice as the novel fuel. The structure and morphology of the synthesized ZnO Nps have been analyzed using various analytical tools. The synthesized ZnO Nps exhibit excellent photocatalytic activity for the degradation of methylene blue dye, indicating that the ZnO Nps are potential photocatalytic semiconductor materials. The synthesized ZnO Nps also show good electrochemical sensing of dopamine. ZnO Nps exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Eschesichia coli and Staphylococcus aureus using agar well diffusion method. Furthermore, the ZnO Nps show good antioxidant activity by potentially scavenging 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The above studies clearly demonstrate versatile applications of ZnO synthesized by simple eco-friendly route.

  8. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate.

    PubMed

    Sun, Xuefei; Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2008-05-19

    ZnO twin-cones, a new member to the ZnO family, were prepared directly by a solvothermal method using a mixed solution of zinc nitrate and ethanol. The reaction and growth mechanisms of ZnO twin-cones were investigated by X-ray diffraction, UV-visible spectra, infrared and ion trap mass spectra, and transmission electron microscopy. All as-prepared ZnO cones consisted of tiny single crystals with lengths of several micrometers. With prolonging of the reaction time from 1.5 h to 7 days, the twin-cone shape did not change at all, while the lattice parameters increased slightly and the emission peak of photoluminescence shifted from the green region to the near orange region. ZnO twin-cones are also explored as an additive to promote the thermal decomposition of ammonium perchlorate. The variations of photoluminescence spectra and catalytic roles in ammonium perchlorate decomposition were discussed in terms of the defect structure of ZnO twin-cones.

  9. Seedless-grown of ZnO thin films for photoelectrochemical water splitting application

    NASA Astrophysics Data System (ADS)

    Abdullah, Aidahani; Hamid, Muhammad Azmi Abdul; Chiu, W. S.

    2018-04-01

    We developed a seedless hydrothermal method to grow a flower like ZnO nanorods. Prior to the growth, a layer of Au thin film is sputtered onto the surface of indium tin oxide (ITO) coated glass substrate. The morphological, structural and optical properties of the ZnO nanostructures were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflection measurement to understand the growth process of the working thin film. The photoelectrochemical (PEC) results suggest that the deposition of ZnO nanorods on Au nanoparticles plays an important role in enhancing the photoelectrode activity. H2 evolution from photo-splitting of water over Au-incorporated ZnO in the 0.1M NaOH liquid system was enhanced, compared to that over bare ZnO; particularly, the production of 15.5 µL of H2 gas after twenty five minutes exposure of ZnO grown on Au-coated thin film.

  10. Low temperature synthesis of hexagonal ZnO nanorods and their hydrogen sensing properties

    NASA Astrophysics Data System (ADS)

    Qurashi, Ahsanulhaq; Faiz, M.; Tabet, N.; Alam, Mir Waqas

    2011-08-01

    The growth of hexagonal ZnO nanorods was demonstrated by low temperature chemical synthesis approach. X-ray diffraction (XRD) analysis revealed a wurtzite hexagonal structure of the ZnO nanorods. The optical properties were measured by UV-vis spectrophotometer at room temperature. X-ray photoelectron spectroscopy (XPS) confirmed high purity of the ZnO nanorods. The hydrogen sensor made of the ZnO nanorods showed reversible response. The hydrogen gas tests were carried out in presence of ambient air and the influence of operation temperature on the hydrogen gas sensing property of ZnO nanorods was also investigated.

  11. Growth of ZnO nanorods on glass substrate deposited using dip coating method

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Ghafar, Safiah Ab; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    ZnO unique properties make it attractive for electronics and optoelectronics application. There are varieties synthesis of ZnO nanostructure but one of the best ways is by using dip coating method due to its simplicity, low cost and reliability. This research investigated the effect of precursor concentration on the morphology of ZnO nanorods using dip coating technique. ZnO nanorods is synthesized by using zinc nitrate as precursor and glass slide as substrate. The morphology of ZnO is characterized using Field Emission Scanning Electron Microscope (FESEM). By using different concentration of precursor, each outcome demonstrated diverse morphologies.

  12. Optical and structural properties of individual Co-doped ZnO microwires

    NASA Astrophysics Data System (ADS)

    Kolomys, O. F.; Strelchuk, V. V.; Rarata, S. V.; Hayn, R.; Savoyant, A.; Giovannelli, F.; Delorme, F.; Tkach, V.

    2018-06-01

    The Co-doped ZnO microwires (MWs) were grown using the optical furnace method. We used Scanning electron microscopy (SEM), polarized micro-Raman spectroscopy, photoluminescence (PL) and optical absorption spectroscopy to systematic investigation of the optical and structural properties of Co-doped ZnO MWs. The SEM analysis reveals that Co-doped ZnO MWs has hexagonal facets and cavity inside. The EDS results confirmed the presence and non-uniform distribution of Co impurities in the samples. Co doping of ZnO MWs leads to the decreased intensity, drastically broadening and high-energy shift of the NBE PL band. The red emission band at 1.85 eV originates from 2E(2G) → 4A2 (4F) intra-3d-transition of Co2+ in the ZnO lattice has been observed. The intense structured absorption bands within the near infrared ranges 3800-4800 and 5500-9000 cm-1 are caused by electronic spin-allowed transitions 4T2(F) ← 4A2(F) and 4T1(F) ← 4A2(F) of the tetrahedrally coordinated Co2+ (3 d7) ions substituting Zn2+ ions in Co-doped ZnO MWs. Micro-Raman studies of Co doped ZnO MWs show doping/disorder induced additional modes as compared to the undoped sample. The resonant enhancement of the additional local Co-related A1-symmetry Raman mode is observed in the parallel polarization geometry y(z , z) ybar . For the Co doped ZnO MWs, the enhancement of the additional Co-related local vibration mode with an increase in the excitation photon energy is also observed in the Raman spectra.

  13. Polycrystalline ZnO and Mn-doped ZnO nanorod arrays with variable dopant content via a template based synthesis from Zn(II) and Mn(II) Schiff base type single source molecular precursors

    NASA Astrophysics Data System (ADS)

    Pashchanka, Mikhail; Hoffmann, Rudolf C.; Burghaus, Olaf; Corzilius, Björn; Cherkashinin, Gennady; Schneider, Jörg J.

    2011-01-01

    The synthesis and full characterisation of pure and Mn-doped polycrystalline zinc oxide nanorods with tailored dopant content are obtained via a single source molecular precursor approach using two Schiff base type coordination compounds is reported. The infiltration of precursor solutions into the cylindrical pores of a polycarbonate template and their thermal conversion into a ceramic green body followed by dissolution of the template gives the desired ZnO and Mn-doped ZnO nanomaterial as compact rods. The ZnO nanorods have a mean diameter between 170 and 180 nm or 60-70 nm, depending on the template pore size employed, comprising a length of 5-6 μm. These nanorods are composed of individual sub-5 nm ZnO nanocrystals. Exact doping of these hierarchically structured ZnO nanorods was achieved by introducing Mn(II) into the ZnO host lattice with the precursor complex Diaquo-bis[2-(meth-oxyimino)-propanoato]manganese, which allows to tailor the exact Mn(II) doping content of the ZnO rods. Investigation of the Mn-doped ZnO samples by XRD, TEM, XPS, PL and EPR, reveals that manganese occurs exclusively in its oxidation state + II and is distributed within the volume as well as on the surface of the ZnO host.

  14. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    PubMed

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  15. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  16. Simple chemical synthesis of novel ZnO nanostructures: Role of counter ions

    NASA Astrophysics Data System (ADS)

    Pudukudy, Manoj; Yaakob, Zahira

    2014-04-01

    This article reports the synthesis, characterisation and photocatalytic activity of novel ZnO nanostructures prepared via the thermal decomposition of hydrozincite. Hydrozincites were obtained by the conventional precipitation route using different zinc salts such as acetate, nitrate, chloride and sulphate. The effect of counter ions (CH3COO-, Cl-, NO3-, and SO42-) on the structural, textural, morphological and optical properties was investigated. Various characterisations depicted the active role of counter ions in the properties of ZnO. Hexagonal wurtzite structure of ZnO with fine crystalline size was obvious from the XRD results, irrespective of the counter ions. Electron microscopic images indicated the role of counter ions in the surface and internal morphology of ZnO nanomaterials. Special coral like agglomerated morphology of elongated particles with high porosity was observed for the ZnO prepared from acetate precursor. Spherical, elongated and irregular shaped bigger lumps of ZnO nanoparticles with various novel morphologies were resulted for the sulphate, nitrate and chloride precursors respectively. Highly ordered porous micro disc like morphology was noted for the ZnO samples prepared from the sulphate and nitrate salts. Photoluminescence spectra showed the characteristic blue and green emission bands, depicting the presence of large crystal defects and high oxygen vacancies in the samples. Photocatalytic activity of the as-prepared ZnO catalysts was examined by the degradation of methylene blue under UV light irradiation. Degradation results indicated their substantial activity with respect to the counter ions. ZnO prepared from the acetate precursor showed highest photoactivity due to its high surface area, special morphology and high oxygen vacancies.

  17. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  18. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its

  19. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma.

    PubMed

    Xie, Hui; Tian, Shengtao; Yu, Haipeng; Yang, Xueling; Liu, Jia; Wang, Huaming; Feng, Fan; Guo, Zhi

    2018-01-01

    Radiofrequency ablation (RFA) is the foremost treatment option for advanced hepatocellular carcinoma (HCC), however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial-mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. In this study, we prepared an apatinib microcrystal formulation (Apa-MS) that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial-mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC.

  20. Hydrothermal-electrochemical growth of heterogeneous ZnO: Co films

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2017-10-01

    This study demonstrates the preparation of heterogeneous ZnO: Co nanostructures via hydrothermal-electrochemical deposition at 130 °C and -1.1 V (vs Ag/AgCl (satd)) in dimethyl sulfoxide (DMSO)-H2O mixture. Under the stated conditions, ZnO: Co nanostructures grow preferentially along (002) direction. Strength of directional growth progressively increases with the increasing concentration of Co(II) in the deposition bath. Films are composed of hexagonal Wurtzite ZnO, metallic cobalt, and mixed cobalt oxide on the surface and cobalt(II) oxide in deeper levels. Increasing the Co(II) concentration in the deposition bath results in different morphological features as well as phase separation. Platelets, sponge-like structures, cobalt-rich spheres, microislands of cobalt-rich spheres which are interconnected by ZnO network can be synthesized by adjusting [Co(II)]: [Zn(II)] ratio. Growth mechanisms giving rise to these particular structures, surface morphology, crystal structure, phase purity, chemical binding characteristics, and optical properties of the deposits are discussed in detail.

  1. Acceptor Type Vacancy Complexes In As-Grown ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  2. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V.

  3. Theoretical investigation on thermodynamic properties of ZnO1-x Te x alloys

    NASA Astrophysics Data System (ADS)

    Long, Debing; Li, Mingkai; Luo, Minghai; Zhu, Jiakun; Yang, Hui; Huang, Zhongbing; Ahuja, Rajeev; He, Yunbin

    2017-05-01

    In this study, the formation energy, phase diagram (with/without phonon contribution) and the relationship between bond stiffness and bond length for wurtzite (WZ) and zincblende (ZB) structures of ZnO1-x Te x (0  ⩽  x  ⩽  1) alloys have been investigated by combining first-principles calculations and cluster expansion method. The formation energy of ZnO1-x Te x alloys is very high in both structures, which means that it is difficult for ZnO and ZnTe to form stable ternary alloys ZnO1-x Te x . In the phase diagrams, both structures do not have stable phase of ternary alloys and ZnO1-x Te x ternary alloys can only exist in the form of metastable phase. These results indicate that ZnO and ZnTe easily form solid solubility gap when they form alloys. After considering vibrational free energy, we found the solubility of Te in ZnO and O in ZnTe was increased and the vibrational entropy improved the solubility furthermore. The phonon contribution is not ignorable to improve solid solubility. The phonon density of states was analyzed for ZnO1-x Te x alloys and the contribution from vibrational entropy was discussed.

  4. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Superior photoelectrochemical properties of ZnO nanorods/poly(3-hexylthiophene) hybrid photoanodes

    NASA Astrophysics Data System (ADS)

    Majumder, T.; Hmar, J. J. L.; Dhar, S.; Mondal, S. P.

    2017-06-01

    Photoelectrochemical properties of ZnO nanorods (ZnO NRs) and poly(3-hexylthiophene) (P3HT) polymer hybrid photoanodes have been studied. The hybrid photoanodes demonstrated higher photoconversion efficiency, incident photon to current conversion efficiency (IPCE) and lower interfacial resistance compared to pristine ZnO nanorods and P3HT based electrodes. The origin of superior photoelectrochemical properties of ZnO/P3HT photoanodes has been explained using carrier transport mechanism at semiconductor/electrolyte junction. The stability of ZnO NRs/P3HT photoanode has been demonstrated.

  6. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  7. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    NASA Astrophysics Data System (ADS)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  8. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  9. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  10. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  11. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  12. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-02

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor.

  13. EFFECTS OF Au ON THE GROWTH OF ZnO NANOSTRUCTURES ON Si BY MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-06-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  14. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  15. Investigation and characterization of ZnO single crystal microtubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  16. Self-focused ZnO transducers for ultrasonic biomicroscopy

    NASA Astrophysics Data System (ADS)

    Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.

    2008-04-01

    A simple fabrication technique was developed to produce high frequency (100MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18μm thick ZnO layer on 2mm diameter aluminum rods with ends shaped and polished to produce a 2mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101MHz with a -6dB bandwidth of 49%. The measured two way insertion loss was 44dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.

  17. Field emission and photoluminescence of ZnO nanocombs

    NASA Astrophysics Data System (ADS)

    Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H.

    2013-11-01

    Three kinds of new comb-shape nanostructures of ZnO have been grown on single silicon substrates without catalyst-assisted thermal evaporation of Zn and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The growth mechanism of the ZnO nanocombs can be explained on the basis of the vapor-solid (VS) processes. In nanocombs 1 and nanocombs 2, the comb teeth grow along [0001] and the comb stem grows along [], while in nanocombs 3, nanoteeth grow along [] and stem grows along [0001]. The photoluminescence and field-emission properties of ZnO nanocombs 1-3 have been investigated. The turn-on electric field of ZnO nanocombs 1-3, which is defined as the field required to producing a current density of 10 μA/cm2, is 9, 7.7 and 7.1 V/μm, respectively. The field-emission performance relies not only on the tip’s radius of curvature and field enhancement factor, but also on the factor evaluating the degree of the screening effect.

  18. Ligand induced ferromagnetism in ZnO nanostructures.

    PubMed

    Wang, Qian; Sun, Qiang; Jena, P

    2008-10-28

    Complementary to the experimental finding that ZnO nanoparticles become ferromagnetic when coated with N and S containing ligands such as dodecylamine and dodecanethiol [Garcia et al., Nano Lett. 7, 1489 (2007)], we provide the first theoretical understanding of the origin of magnetism in ligated ZnO nanoparticles as well as the structural properties of the ligated systems by using density functional theory and generalized gradient approximation for exchange and correlation, and a cluster model for the nanoparticles. We show that N or S atoms of the ligand bind to the Zn sites. The accompanying changes in the Zn-O bond length, hybridization between Zn 4s orbitals with N 2p or S 3p orbitals, and consequently the redistribution of charges between Zn and O atoms result in a magnetic system where the 2p electrons in O and N, and 3p electrons in S sites are spin polarized. Furthermore, the sites nearest to the Zn atom attached to the ligand carry bulk of the magnetic moment. Studies, as a function of cluster size, also illustrate that magnetism resides only on the surface. Our results confirm that the use of ligands can pave a new way for introducing magnetism in ZnO nanostructures, which can be used to develop magnetic sensors to detect N and S containing molecules.

  19. Development of nanostructured ZnO thin film via electrohydrodynamic atomization technique and its photoconductivity characteristics.

    PubMed

    Duraisamy, Navaneethan; Kwon, Ki Rin; Jo, Jeongdai; Choi, Kyung-Hyun

    2014-08-01

    This article presents the non-vacuum technique for the preparation of nanostructured zinc oxide (ZnO) thin film on glass substrate through electrohydrodynamic atomization (EHDA) technique. The detailed process parameters for achieving homogeneous ZnO thin films are clearly discussed. The crystallinity and surface morphology of ZnO thin film are investigated by X-ray diffraction and field emission scanning electron microscopy. The result shows that the deposited ZnO thin film is oriented in the wurtzite phase with void free surface morphology. The surface roughness of deposited ZnO thin film is found to be ~17.8 nm. The optical properties of nanostructured ZnO thin films show the average transmittance is about 90% in the visible region and the energy band gap is found to be 3.17 eV. The surface chemistry and purity of deposited ZnO thin films are analyzed by fourier transform infrared and X-ray photoelectron spectroscopy, conforming the presence of Zn-O in the deposited thin films without any organic moiety. The photocurrent measurement of nanostructured ZnO thin film is examined in the presence of UV light illumination with wavelength of 365 nm. These results suggest that the deposited nanostructured ZnO thin film through EHDA technique possess promising applications in the near future.

  20. Study of ZnO nanoparticles: Antibacterial property and light depolarization property using light scattering tool

    NASA Astrophysics Data System (ADS)

    Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.

    2013-03-01

    Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.

  1. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  2. Single and couple doping ZnO nanocrystals characterized by positron techniques

    NASA Astrophysics Data System (ADS)

    Pasang, Tenzin; Namratha, Keerthiraj; Guagliardo, Paul; Byrappa, Kullaiah; Ranganathaiah, Chikkakuntappa; Samarin, S.; Williams, J. F.

    2015-04-01

    Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag1+ and Pd2+ dopants occupy interstitial sites of the ZnO lattice and single Ru3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn4+ + Co2+) shows similar CDB ratios as Ru3+ single-doping. Also co-doping with (Ag1+ + Pd2+) or (Ag1+ + W6+) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material.

  3. Mesoporous single-crystal ZnO nanobelts: supported preparation and patterning.

    PubMed

    Nasi, Lucia; Calestani, Davide; Fabbri, Filippo; Ferro, Patrizia; Besagni, Tullo; Fedeli, Paolo; Licci, Francesca; Mosca, Roberto

    2013-02-07

    We demonstrate that highly porous ZnO nanobelts can be prepared by thermally decomposing ZnS(en)(0.5) hybrid nanobelts (NBs) synthesized through a solvothermal route using Zn layers deposited on alumina substrates as both the Zn substrate and source. Hybrid decomposition by thermal annealing at 400 °C gives porous ZnS NBs that are transformed by further annealing at 600 °C into wurtzite single crystal ZnO nanobelts with an axial direction of [0001]. The evolution of the morphological and structural transformation ZnS(en)(0.5)→ ZnS → ZnO is investigated at the nanoscale by transmission and scanning electron microscopy analyses. Control of the ZnO NB distributions by patterning the Zn metallization on alumina is achieved as a consequence of the parent hybrid NB patterned growth. The presence of NBs on alumina in a ∼100 μm wide region between Zn stripes allows us to fabricate two contact devices where contact pads are electrically connected through a porous ZnO NB entanglement. Such devices are suitable for employment in photodetectors as well as in gas and humidity sensors.

  4. Blue emitting ZnO nanostructures grown through cellulose bio-templates.

    PubMed

    Oudhia, Anjali; Sharma, Savita; Kulkarni, Pragya; Kumar, Rajesh

    2016-06-01

    This paper presents a green and cost-effective recipe for the synthesis of blue-emitting ZnO nanoparticles (NPs) using cellulose bio-templates. Azadirachta indica (neem) leaf extract prepared in different solvents were used as biological templates to produce nanostructures of wurtzite ZnO with a particle size ~12-36 nm. A cellulose-driven capping mechanism is used to describe the morphology of ZnO NPs. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and photoluminescence (PL) studies showed that solvents affect the growth process and the capping mechanism of bio-template severely. Structural changes in ZnO NPs were evident with variation in pH, dielectric constants (DC) and boiling points (BP) of solvents. Furthermore, an energy band model is proposed to explain the origin of the blue emission in the as-obtained ZnO NPs. PL excitation studies and the theoretical enthalpy values of individual defects were used to establish the association between the interstitial-zinc-related defect levels and the blue emission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor.

    PubMed

    Sarangi, Sachindra Nath; Nozaki, Shinji; Sahu, Surendra Nath

    2015-06-01

    The highly sensitive, interference-free and non-enzymatic optical sensing of glucose has been made possible for the first time using the hydrothermally synthesized ZnO nanorods. The UV irradiation of glucose-treated ZnO nanorods decomposes glucose into hydrogen peroxide (H2O2) and gluconic acid by UV oxidation. The ZnO nanorods play the role of a catalyst similar to the oxidase used in the enzymatic glucose sensors. The photoluminescence (PL) intensity of the near-band edge emission of the ZnO nanorods linearly decreased with the increased concentration of H2O2. Therefore, the glucose concentration is monitored over the wide range of 0.5-30 mM, corresponding to 9-540 mg/dL. The concentration range of the linear region in the calibration curve is suitable for its clinical use as a glucose sensor, because the glucose concentration of human serum is typically in the range of 80-120 mg/dL. In addition, the optical glucose sensor made of the ZnO nanorods is free from interference by bovin serum albumin, ascorbic acid or uric acid, which are also present in human blood. The non-enzymatic ZnO-nanorod sensor has been demonstrated with human serum samples from both normal persons and diabetic patients. There is a good agreement between the glucose concentrations measured by the PL quenching and standard clinical methods.

  6. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  7. Substrate effect on the room-temperature ferromagnetism in un-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Xie, Zheng; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-07-01

    Room-temperature ferromagnetism was achieved in un-doped ZnO films on silicon and quartz substrates. Photoluminescence measurement and positron annihilation analysis suggested that the ferromagnetism was originated from singly occupied oxygen vacancies (roughly estimated as ˜0.55 μB/vacancy), created in ZnO films by annealing in argon. The saturated magnetization of ZnO films was enhanced from ˜0.44 emu/g (on quartz) to ˜1.18 emu/g (on silicon) after annealing at 600 °C, as silicon acted as oxygen getter and created more oxygen vacancies in ZnO films. This study clarified the origin of ferromagnetism in un-doped ZnO and provides an idea to enhance the ferromagnetism.

  8. Effect of ZnO facet on ethanol steam reforming over Co/ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Zhang, He; Davidson, Stephen D.

    2016-01-01

    The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.

  9. Oxygen vacancy-induced ferromagnetism in un-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Liu, Can; Hu, Yang; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-02-01

    ZnO films became ferromagnetic when defects were introduced by thermal-annealing in flowing argon. This ferromagnetism, as shown by the photoluminescence measurement and positron annihilation analysis, was induced by the singly occupied oxygen vacancy with a saturated magnetization dependent positively on the amount of this vacancy. This study clarified the origin of the ferromagnetism of un-doped ZnO thin films and provides possibly an alternative way to prepare ferromagnetic ZnO films.

  10. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation.

    PubMed

    Hunge, Y M; Yadav, A A; Mathe, V L

    2018-07-01

    The present work deals with the preparation of WO 3 and WO 3 -ZnO nanocomposites in presence of ultrasonic irradiation, and its use in the sonocatalytic degradation of brilliant blue dye. WO 3 -ZnO nanocomposite is prepared using one step in-situ ultrasound assisted method. The successfully prepared WO 3 and WO 3 -ZnO nanocomposites were characterized using different characterization techniques such as XRD, Raman, BET, FE-SEM and EDS. The XRD pattern reveals that the formation of monoclinic and hexagonal crystal structures of WO 3 and ZnO respectively. BET study shows that WO 3 -ZnO nanocomposite have maximum surface area than that of the WO 3 . EDS study confirms the formation of WO 3 -ZnO nanocomposites. Further the use of the prepared WO 3 and WO 3 -ZnO nanocomposites as a sonocatalyst for the degradation of brilliant blue dye. The rate constant (k) was evaluated as a function of the initial concentration of brilliant blue dye. It is found that WO 3 -ZnO nanocomposites exhibits maximum sonocatalytic activity as compared to WO 3 photocatalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of Pressure on the Stability and Electronic Structure of ZnO0.5S0.5 and ZnO0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Manotum, R.; Klinkla, R.; Phaisangittisakul, N.; Pinsook, U.; Bovornratanaraks, T.

    2017-12-01

    Structures and high-pressure phase transitions in ZnO0.5S0.5 and ZnO0.5Se0.5 have been investigated using density functional theory calculations. The previously proposed structures of ZnO0.5S0.5 and ZnO0.5Se0.5 which are chalcopyrite ( I\\bar{4}2d ), rocksalt ( Fm3m ), wurtzite ( P63 mc ) and CuAu-I ( P\\bar{4}m2 ) have been fully investigated. Stabilities of these materials have been systematically studied up to 40 GPa using various approaches. We have confirmed the stability of the chalcopyrite structure up to 30 GPa for which the CuAu-I structure has been previously proposed. However, our calculation revealed that CuAu-I is not a stable structure under 32 GPa and 33 GPa for both ZnO0.5S0.5 and ZnO0.5Se0.5, respectively, which could explain the failure in several attempts to fabricate these materials under such conditions. We have also examined the pressure-dependence of the bandgap and electronic structure up to 30 GPa. We can conclude from our PDOS analysis that the applied pressure does not change the atomic state characters of electronic states near the top of valence and the bottom of conduction bands, but mainly modifies the dominant Zn-3d atomic state of the deep Bloch state at -1 eV below Fermi level.

  12. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  13. Fabrication of Vertical Organic Light-Emitting Transistor Using ZnO Thin Film

    NASA Astrophysics Data System (ADS)

    Yamauchi, Hiroshi; Iizuka, Masaaki; Kudo, Kazuhiro

    2007-04-01

    Organic light-emitting diodes (OLEDs) combined with thin film transistor (TFT) are well suitable elements for low-cost, large-area active matrix displays. On the other hand, zinc oxide (ZnO) is a transparent material and its electrical conductivity is controlled from conductive to insulating by growth conditions. The drain current of ZnO FET is 180 μA. The OLED uses ZnO thin film (Al-doped) for the electron injection layer and is controlled by radio frequency (rf) and direct current (dc) sputtering conditions, such as Al concentration and gas pressure. Al concentration in the ZnO film and deposition rate have strong effects on electron injection. Furthermore, the OLED driven by ZnO FET shows a luminance of 13 cd/m2, a luminance efficiency of 0.7 cd/A, and an on-off ratio of 650.

  14. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  15. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun

    2012-03-01

    A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ~1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.

  16. A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures.

    PubMed

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Muhammad, Safdar; Huang, Ying; He, Jun

    2012-04-21

    A low-cost, compatible with flexible electronics, high performance UV sensor has been achieved from a reduced graphene oxide (RGO) decorated hydrangea-like ZnO film on a PDMS substrate. The hydrangea-like ZnO UV sensor has the best UV sensing performance among devices made of three kinds of ZnO nanostructures synthesized by a hydrothermal method, and demonstrated a dramatic enhancement in on/off ratio and photoresponse current by introducing an appropriate weight ratio of RGO. The on/off ratio of the 0.05% RGO/ZnO sensor increases almost one order of magnitude compared to that of a pristine hydrangea-like ZnO UV sensor. While for the 5% RGO decorated ZnO sensor, the photoresponse current reaches as high as ∼1 μA and exceeds 700 times that of a ZnO UV sensor. These results indicate that RGO is an appropriate material to enhance the performance of ZnO nanostructure UV sensors based on its unique features, especially the high optical transparency and excellent electronic conductivity. Our findings will make RGO/ZnO nanohybrids extraordinarily promising in optoelectronics, flexible electronics and sensor applications.

  17. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  18. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    NASA Astrophysics Data System (ADS)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo; Mohamed, Azman Seeni; Saifuddin, Siti Nazmin; Masudi, Sam'an Malik; Mohamad, Dasmawati

    2015-04-01

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shifted of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.

  19. Toxicity evaluation of ZnO nanostructures on L929 fibroblast cell line using MTS assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Ann, Ling Chuo

    2015-04-24

    ZnO has wide applications in medical and dentistry apart from being used as optoelectronic devices such as solar cells, photodetectors, sensors and light emitting diodes (LEDs). Therefore, the toxicity evaluation is important to know the toxicity level on normal cell line. The toxicity of two grades ZnO nanostructures, ZnO-4 and ZnO-8 have been carried out using cytotoxicity test of MTS assay on L929 rat fibroblast cell line. Prior to that, ZnO-4 and ZnO-8 were characterized for its morphology, structure and optical properties using FESEM, X-ray diffraction, and Photoluminescence respectively. The two groups revealed difference in morphology and exhibit slightly shiftedmore » of near band edge emission of Photoluminescence other than having a similar calculated crystallite size of nanostructures. The viability of cells after 72h were obtained and the statistical significance value was calculated using SPSS v20. The p value is more than 0.05 between untreated and treated cell with ZnO. This insignificant value of p>0.05 can be summarized as a non-toxic level of ZnO-4 and ZnO-8 on the L929 cell line.« less

  20. Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin

    2017-02-01

    Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.

  1. Improved luminescence intensity and stability of thermal annealed ZnO incorporated Alq3 composite films.

    PubMed

    Cuba, M; Muralidharan, G

    2015-11-01

    The 30 wt% of ZnO (weight percentage of ZnO has been optimised) incorporated tris- (8-hydroxyquinoline)aluminum (Alq3) has been synthesised and coated on to glass substrates using dip coating method. The structural and optical properties of the Alq3/ZnO composite film after thermal annealing from 50 to 300 °C insteps 50° has been studied and reported. XRD pattern reveals the presence of crystalline ZnO in all the annealed films. The films annealed above 150 °C reveal the presence of crystalline Alq3 along with crystalline ZnO. The FTIR spectra confirm the presence of hydroxyquinoline and ZnO vibration in all the annealed composite films. The composite films annealed above 150 °C show a partial sublimation and degradation of hydroxyquinoline compounds. The ZnO incorporated composite films (Alq3/ZnO) exhibit two emission peaks, one corresponding to ZnO at 487 nm and another at 513 nm due to Alq3. The films annealed at 200 °C exhibit maximum photoluminescence (PL) intensity than pristine film at 513 nm when excited at 390 nm.

  2. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  3. Inhibition of growth of S. epidermidis by hydrothermally synthesized ZnO nanoplates

    NASA Astrophysics Data System (ADS)

    Abinaya, C.; Mayandi, J.; Osborne, J.; Frost, M.; Ekstrum, C.; Pearce, J. M.

    2017-07-01

    The antibacterial effect of zinc oxide (ZnO#1) as prepared and annealed (ZnO#2) at 400 °C, Cu doped ZnO (CuZnO), and Ag doped ZnO (AgZnO) nanoplates on Staphylococcus epidermidis was investigated for the inhibition and inactivation of cell growth. The results shows that pure ZnO and doped ZnO samples exhibited antibacterial activity against Staphylococcus epidermidis (S. epidermidis) as compared to tryptic soy broth (TSB). Also it is observed that S. epidermidis was extremely sensitive to treatment with ZnO nanoplates and it is clear that the effect is not purely depend on Cu/Ag. Phase identification of a crystalline material and unit cell dimensions were studied by x-ray powder diffraction (XRD). The scanning electron microscopy (SEM) provides information on sample’s surface topography and the EDX confirms the presence of Zn, O, Cu and Ag. X-ray photo-electron spectroscopy (XPS) was used to analyze the elemental composition and electronic state of the elements that exist within the samples. These studies confirms the formation of nanoplates and the presence of Zn, O, Ag, Cu with the oxidation states  +2, -2, 0 and  +2 respectively. These results indicates promising antibacterial applications of these ZnO-based nanoparticles synthesized with low-cost hydrothermal methods.

  4. The magnetic and adsorption properties of ZnO1-xSx nanoparticles.

    PubMed

    Zhang, Huiyun; Liu, Guixian; Cao, Yanqiang; Chen, Jing; Shen, Kai; Kumar, Ashwini; Xu, Mingxiang; Li, Qi; Xu, Qingyu

    2017-10-11

    Sulfur is easy to be incorporated into ZnO nanoparticles by the solution-combustion method. Herein, the magnetic and adsorption properties of a series of ZnO 1-x S x (x = 0, 0.05, 0.1, 0.15, and 0.2) nanoparticles were systematically investigated. The X-ray diffraction patterns show that the as-prepared ZnO 1-x S x nanoparticles have the hexagonal wurtzite structure of ZnO with a low sulfur content that gradually transforms into the zinc blende structure of ZnS when the x value is greater than 0.1. PL spectra show several bands due to different transitions, which have been explained by the recombination of free excitons or defect-induced transitions. The introduction of sulfur not only modifies the bandgap of ZnO, but also impacts the concentration of Zn vacancies. The as-prepared ZnO shows weak room-temperature ferromagnetism, and the incorporation of sulfur improves the ferromagnetism owing to the increased concentration of Zn vacancies, which may be stabilized by the doped sulfur ions. The adsorption capability of ZnO 1-x S x nanoparticles has been significantly improved, and the process can be well described by the pseudo-first-order kinetic model and the Freundlich isotherm model. The mechanism has been confirmed to be due to the active sulfate groups existing in zinc oxysulfide nanoparticles.

  5. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  6. Effect of bath temperature on surface morphology and photocatalytic activity of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sriharan, N.; Senthil, T. S., E-mail: tssenthi@gmail.com; Muthukumarasamy, N.

    2016-05-06

    ZnO nanorods were prepared by using simple hydrothermal method using four different bath temperatures. All the prepared ZnO nanorods are annealed at 450°C and are characterized by using various techniques such as X-ray diffraction, UV spectra and scanning electron microscopy. Photocatalytic activity of the prepared ZnO nanorods is analyzed. A novel photocatalytic reactor designed with ZnO nanorods prepared at 90°C shows enhanced catalytic efficiency. The role of light irradiation time, bath temperature and surface morphology of the ZnO nanorods on the performance of photocatalytic reaction is analyzed.

  7. Tube Formation in Nanoscale Materials

    PubMed Central

    2008-01-01

    The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities. PMID:20592945

  8. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  9. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  10. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  11. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  12. Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications

    PubMed Central

    Wang, Xiaoliang; Ahmad, Mashkoor

    2017-01-01

    Zinc oxide (ZnO) nanostructures have been studied extensively in the past 20 years due to their novel electronic, photonic, mechanical and electrochemical properties. Recently, more attention has been paid to assemble nanoscale building blocks into three-dimensional (3D) complex hierarchical structures, which not only inherit the excellent properties of the single building blocks but also provide potential applications in the bottom-up fabrication of functional devices. This review article focuses on 3D ZnO hierarchical nanostructures, and summarizes major advances in the solution phase synthesis, applications in environment, and electrical/electrochemical devices. We present the principles and growth mechanisms of ZnO nanostructures via different solution methods, with an emphasis on rational control of the morphology and assembly. We then discuss the applications of 3D ZnO hierarchical nanostructures in photocatalysis, field emission, electrochemical sensor, and lithium ion batteries. Throughout the discussion, the relationship between the device performance and the microstructures of 3D ZnO hierarchical nanostructures will be highlighted. This review concludes with a personal perspective on the current challenges and future research. PMID:29137195

  13. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil.

    PubMed

    García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D

    2015-11-01

    This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

  14. ZnO Nanoparticles Protect RNA from Degradation Better than DNA.

    PubMed

    McCall, Jayden; Smith, Joshua J; Marquardt, Kelsey N; Knight, Katelin R; Bane, Hunter; Barber, Alice; DeLong, Robert K

    2017-11-08

    Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  15. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  16. Luminescent ZnO quantum dots as an efficient sensor for free chlorine detection in water.

    PubMed

    Singh, Kulvinder; Mehta, S K

    2016-04-21

    Highly luminescent ZnO quantum dots (QDs) synthesized via a simple and facile route are used for the preparation of an optical sensor for the detection of free chlorine. The concentration of free chlorine greatly affects the PL emission of the ZnO QDs at 525 nm. Since hypochlorite gains electrons with high efficiency, it takes electrons from the oxygen vacancies of ZnO QDs, which gives rise to defect emission in ZnO QDs. UV-vis data analysis shows that free chlorine does not affect the optical absorption spectra of ZnO QDs. The optical sensing of free chlorine using ZnO QDs has several advantages, like quick response time, good selectivity and of course high sensitivity. The pH has very little effect on the PL emission of ZnO QDs. It does not interfere in the sensing mechanism for free chlorine. After 60 s, the response of the ZnO QDs remains stable. The present sensor shows high selectivity with respect to various common cations, as well as anions.

  17. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  18. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  19. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  20. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  1. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    DOE PAGES

    Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...

    2015-04-28

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less

  2. Influence of Co doping on combined photocatalytic and antibacterial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Anandan, M.; Dinesh, S.; Krishnakumar, N.; Balamurugan, K.

    2016-11-01

    The present work aims to investigate the structural, optical, photocatalyst and antibacterial properties of bare and cobalt doped ZnO nanoparticles (NPs) with different concentrations Zn1-x Co x O (x = 0, 0.03, 0.06 and 0.09) synthesized by co-precipitation method. The XRD patterns confirmed that all samples of cobalt doped ZnO nanostructures revealed the formation of single phase having hexagonal wurtzite structure with crystallite size in the range of 31-41 nm. Further, the decreasing trend in lattice parameters and grain sizes were also seen with increasing doping concentrations which confirms the incorporation of Co ions into the ZnO lattice. This result was further supported by the FT-IR data. HR-TEM images demonstrated the distinct hexagonal like morphology with small agglomeration. The UV-visible absorption spectra exhibits red shift with increase in Co doping concentration in ZnO while corresponding bandgap energy of cobalt doped ZnO NPs decreased with increased Co doping concentration. PL spectra showed a weak UV and visible emission band which may be ascribed to the reduction in oxygen vacancy and defects by cobalt doping. XPS and EDX spectral results confirm the composition and the purity of Co doped ZnO NPs. Furthermore, the Co doped ZnO NPs were found to exhibit lesser photocatalytic activity for the degradation of methyl green dye under UV light illumination in comparison with the bare ZnO NPs. Moreover, anti-bacterial studies reveals that the Co doped ZnO NPs possess more antibacterial effect against gram positive Basillus subtills and gram negative Klebsiella pneumoniae bacterial strains than the bare ZnO NPs.

  3. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    PubMed

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Miao, Ting-Ting; Guo, Yuan-Ru; Pan, Qing-Jiang

    2013-06-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  5. Enhanced Structural and Luminescent Properties of Carbon-Assisted ZnO Nanorod Arrays on (100) Si Substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.

    2018-02-01

    We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.

  6. Electrochemical Synthesis of Highly Oriented, Transparent, and Pinhole-Free ZnO and Al-Doped ZnO Films and Their Use in Heterojunction Solar Cells.

    PubMed

    Kang, Donghyeon; Lee, Dongho; Choi, Kyoung-Shin

    2016-10-04

    Electrochemical synthesis conditions using nonaqueous solutions were developed to prepare highly transparent (T > 90%) and crystalline ZnO and Al-doped ZnO (AZO) films for use in solar energy conversion devices. A focused effort was made to produce pinhole-free films in a reproducible manner by identifying a key condition to prevent the formation of cracks during deposition. The polycrystalline domains in the resulting films had a uniform orientation (i.e., the c-axis perpendicular to the substrate), which enhanced the electron transport properties of the films. Furthermore, electrochemical Al doping of ZnO using nonaqueous media, which was demonstrated for the first time in this study, effectively increased the carrier density and raised the Fermi level of ZnO. These films were coupled with an electrodeposited p-type Cu 2 O to construct p-n heterojunction solar cells to demonstrate the utilization of these films for solar energy conversion. The resulting n-ZnO/p-Cu 2 O and n-AZO/p-Cu 2 O cells showed excellent performance compared with previously reported n-ZnO/p-Cu 2 O cells prepared by electrodeposition. In particular, replacing ZnO with AZO resulted in simultaneous enhancements in short circuit current and open circuit potential, and the n-AZO/p-Cu 2 O cell achieved an average power conversion efficiency (η) of 0.92 ± 0.09%. The electrodeposition condition reported here will offer a practical and versatile way to produce ZnO or AZO films, which play key roles in various solar energy conversion devices, with qualities comparable to those prepared by vacuum-based techniques.

  7. Ionic displacement induced ferroelectricity in multiferroic Cr doped ZnO

    NASA Astrophysics Data System (ADS)

    Tiwari, Jeetendra Kumar; Ali, Nasir; Ghosh, Subhasis

    2018-05-01

    Cr doped ZnO thin film was grown on quartz substrate using RF magnetron sputtering. Room temperature magnetic and ferroelectric properties of Cr doped ZnO were investigated. It is shown that ZnO becomes ferromagnetic upon Cr doping. It is considered that breaking of centrosymmetry due strain developed by doping of Cr should be responsible for the ferroelectricity. These films were characterized by X-ray diffraction (XRD), which shows that the films possess crystalline structure with preferred orientation along the (002) crystal plane and there is no extra peak due to Cr i.e. single phase.

  8. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA.

    PubMed

    Jothiprakasam, Vinoth; Sambantham, Murugan; Chinnathambi, Stalin; Vijayaboopathi, Singaravel

    2017-01-01

    Biofilm of Candida tropicalis denote as a complex cellular congregation with major implication in pathogenesis. This lifestyle of fungus as a biofilm can inhibit immune system and antifungal therapy in treatment of infectious disease especially medical device associated chronic disease. In this study effects of Zinc Oxide (ZnO) nanoparticles and EDTA were evaluated on C. tropicalis biofilm by using different techniques. ZnO nanoparticles were synthesized from Egg albumin. To assay the formation of biofilm of yeast cells like Fluconazole-susceptible C. tropicalis (ATCC 13,803) and fluconazole-resistant standard strains of C. tropicalis (ATCC 750) were grown in 24 well plates and antifungal effect of ZnO and EDTA were evaluated on C. tropicalis biofilm using ATP bioluminescence and tetrasodium salt (XTT) reduction assays. Synthesized ZnO NPs and EDTA had effective antifungal properties at the concentration of 5.2, 8.6μg/ml for Fluconazole susceptible strain and 5.42, 10.8μg/ml Fluconazole resistant strains of C. tropicalis biofilms compared to fluconazole drug. In present study we conclude, ZnO considered as a new agent in field of prevention C. tropicalis biofilms especially biofilms formed surface of medical device. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Microstructure of ZnO Thin Films Deposited by High Power Impulse Magnetron Sputtering (Postprint)

    DTIC Science & Technology

    2015-03-01

    AFRL-RX-WP-JA-2015-0185 MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON SPUTTERING (POSTPRINT) A. N. Reed...COVERED (From – To) 29 January 2013 – 16 February 2015 4. TITLE AND SUBTITLE MICROSTRUCTURE OF ZNO THIN FILMS DEPOSITED BY HIGH POWER IMPULSE MAGNETRON...ABSTRACT High power impulse magnetron sputtering was used to deposit thin (~100 nm) zinc oxide (ZnO) films from a ceramic ZnO target onto substrates

  10. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. Copyright © 2015. Published by Elsevier B.V.

  11. Bio-inorganic synthesis of ZnO powders using recombinant His-tagged ZnO binding peptide as a promoter.

    PubMed

    Song, Lei; Liu, Yingying; Zhang, Zhifang; Wang, Xi; Chen, Jinchun

    2010-10-01

    Inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs), are small peptide sequences selected via combinatorial biology-based protocols of phage or cell surface display technologies. Recent advances in nanotechnology and molecular biology allow the engineering of these peptides with specific affinity to inorganics, often used as molecular linkers or assemblers, to facilitate materials synthesis, which provides a new insight into the material science and engineering field. As a case study on this biomimetic application, here we report a novel biosynthetic ZnO binding protein and its application in promoting bio-inorganic materials synthesis. In brief, the gene encoding a ZnO binding peptide(ZBP) was genetically fused with His(6)-tag and GST-tag using E.coli expression vector pET-28a (+) and pGEX-4T-3. The recombinant protein GST-His-ZBP was expressed, purified with Ni-NTA system, identified by SDS-PAGE electrophoresis and Western blot analysis and confirmed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis. Affinity adsorption test demonstrated that the fusion protein had a specific avidity for ZnO nanoparticles (NPs). Results from the bio-inorganic synthesis experiment indicated that the new protein played a promoting part in grain refinement and accelerated precipitation during the formation of the ultra-fine precursor powders in the Zn(OH)(2) sol. X-ray diffraction (XRD) analysis on the final products after calcining the precursor powders showed that hexagonal wurtzite ZnO crystals were obtained. Our work suggested a novel approach to the application about the organic-inorganic interactions.

  12. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    PubMed

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the

  14. A hetero-homogeneous investigation of chemical bath deposited Ga-doped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Rakhsha, Amir Hosein; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    One-dimensional nanostructures of zinc oxide (ZnO) have been in the center of attention, mostly for electronic applications due to their distinctive properties such as high electron mobility (100 cm2V-1s-1) and crystallinity. Thanks to its high density of vacancies and interstitial sites, wurtzite lattice of ZnO is a suitable host for gallium (Ga) as a dopant element. Herein, ZnO nanorod arrays (NRAs) are synthesized by a low-temperature chemical bath deposition (CBD) method with various concentrations of gallium nitrate hydrate as a dopant precursor. Structural and morphological analyses confirm that optimum properties of gallium-doped ZnO (GZO) are obtained at 1% (Ga to Zn molar ratio). Owing to the replacement of smaller Ga3+ ions with Zn2+ ions in the GZO structure, a slight shift of (002) peak to higher angles could be observed in XRD pattern of GZO NRAs. The scanning electron microscope images demonstrate a proliferation in the ZnO NRAs length from 650 nm for undoped ZnO (UZO) to 1200 nm for GZO-1%. However, increasing the dopant concentration above 2.5% results in formation of homogeneous zinc gallium oxide in the bulk solution, which is a sign of inefficient process of doping in GZO NRAs. Furthermore, photoluminescence spectroscopy is used to characterize the band-gap variation of the samples, which demonstrates a small red-shift in the UV emission peak and a decrease in visible emission peak intensity with introducing Ga in ZnO lattice. Lower resistivity for GZO-1% (1.1 MΩ) sample compared to UZO (1.4 MΩ) is recorded, which is compelling evidence for the presence of Ga3+ in ZnO lattice. The results suggest that incorporating Ga into ZnO lattice using CBD method is an easy and effective technique to improve the electrical properties of ZnO NRAs that is an essential factor for a broad range of devices.

  15. Synthesis and physicochemical characterizations and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Bhumika K.; Patel, Kinjal; Roy, Debesh R.

    2018-05-01

    Nanoparticles exhibit very interesting and useful physicochemical properties when they interact with substrates and goes through some physicochemical and/or biological processes. ZnO is known to be a highly demanding nanomaterial due to its discreet properties, shapes and sizes. A detail experimental study on the synthesis, characterization and antibacterial activity of ZnO nanoparticles (NPs) is performed. ZnO NPs are synthesized using chemical precipitation method. The understanding of crystal structure, morphology and elemental compositions are explained using Powder X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) respectively. Fourier transform infrared spectroscopy (FTIR) is performed to achieve the information on the presence of various functional groups. The antibacterial activity of these ZnO NPs is investigated in terms of Zone of Inhibition (ZOI) against Escherichia coli (Gram negative) microorganisms.

  16. Growth of bulk ZnO crystals by self-selecting CVT method

    NASA Astrophysics Data System (ADS)

    Fan, Long; Jiang, Tao; Xiao, TingTing; Chen, Jie; Peng, Liping; Wang, Xuemin; Yan, Dawei; Wu, Weidong

    2018-05-01

    Bulk ZnO crystals were grown by self-selecting CVT method using carbon as the transport agent. The crystal growth process took place on the top of the polycrystalline source material, and deep-red colored ZnO crystals of several millimeters were obtained. The as-grown crystals were characterized by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman scattering (RS) spectroscopy, visible-near infrared (VIS-NIR) spectrophotometer and room temperature photoluminescence (PL) spectroscopy. XRD results indicate good crystallinity of the ZnO crystal. The EDS analysis shows that the crystal has a stoichiometry ratio Zn: O = 52: 48. The results suggest the existence of native defects of oxygen vacancies (OV) in the as-grown ZnO samples, which is caused by the stoichiometry shift to Zn-rich.

  17. Control of the ZnO nanowires nucleation site using microfluidic channels.

    PubMed

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  18. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.

    PubMed

    Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-01-01

    The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.

  19. Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, K.; D’Almeida, Steven; Naveen Kumar, P.; Sahaya Selva Mary, J.; Tenkyong, Tenzin; Sharmila, D. J.; J, Madhavan; Merline Shyla, J.

    2018-04-01

    The proposed work reports the synthesis and characterisation of novel and hybrid nanocomposites TiO2/ZnO and TiO2/Al plasmon impregnated ZnO, prepared using sol-gel method. X-Ray Diffraction analysis confirmed the crystalline nature of the nanocomposites with high degree of purity and the crystallite size was found to be 22 nm (TiO2/ZnO) and 21 nm (TiO2/Al-ZnO) using Scherrer’s formula. The surface chemistry, elemental compositions and purity were investigated and established using Energy Dispersive X-ray Analysis. The specific surface area of TiO2/ZnO was observed to be 23 m2 g‑1 whereas on comparison, a slight decrease was observed in the case of TiO2/Al-ZnO to 19 m2 g‑1 from Brunauer–Emmett–Teller analysis and in addition, both the samples were identified to be mesoporous in nature. The vibrational assignments were observed using Fourier Transform Infra-Red spectroscopy and results confirmed the existence of TiO2, ZnO and Al groups. The electrical response of the nanocomposites to the incident radiation with applied electric field was examined using Field Dependent Dark and Photo conductivity studies. The observed measurements revealed that the photocurrent values are greater than the dark currents which confirmed the photoconductive nature of the nanocomposites. While both the prepared nanocomposites qualify as good candidates for usage as efficient photoanodes for DSSCs, TiO2/Al-ZnO indicates a slight edge over the other.

  20. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  1. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  2. Water-repellent coatings prepared by modification of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  3. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector

    NASA Astrophysics Data System (ADS)

    Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang

    2017-07-01

    ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

  4. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    PubMed Central

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-01-01

    Abstract This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 ~ 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors. PMID:28740560

  5. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U.; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-12-01

    This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors.

  6. Electrical properties of Mg doped ZnO nanostructure annealed at different temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, R., E-mail: ruziana12@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Rusop, M., E-mail: nanouitm@gmail.com

    In this work, ZincOxide (ZnO) nanostructures doped with Mg were successfully grown on the glass substrate. Magnesium (Mg) metal element was added in the ZnO host which acts as a doping agent. Different temperature in range of 250°C to 500°C was used in order to investigate the effect of annealing temperature of ZnO thin films. Field Emission Scanning Electron Microscopy (FESEM) was used to investigate the physical characteristic of ZnO thin films. FESEM results have revealed that ZnO nanorods were grown vertically aligned. The structural properties were determined by using X-Ray Diffraction (XRD) analysis. XRD results showed Mg doped ZnOmore » thin have highest crystalinnity at 500°C annealing temperature. The electrical properties were investigating by using Current-Voltage (I-V) measurement. I-V measurement showed the electrical properties were varied at different annealing temperature. The annealing temperature at 500°C has the highest electrical conductance properties.« less

  7. Charge states and lattice sites of dilute implanted Sn in ZnO

    NASA Astrophysics Data System (ADS)

    Mølholt, T. E.; Gunnlaugsson, H. P.; Johnston, K.; Mantovan, R.; Röder, J.; Adoons, V.; Mokhles Gerami, A.; Masenda, H.; Matveyev, Y. A.; Ncube, M.; Unzueta, I.; Bharuth-Ram, K.; Gislason, H. P.; Krastev, P.; Langouche, G.; Naidoo, D.; Ólafsson, S.; Zenkevich, A.; ISOLDE Collaboration

    2017-04-01

    The common charge states of Sn are 2+  and 4+. While charge neutrality considerations favour 2+  to be the natural charge state of Sn in ZnO, there are several reports suggesting the 4+  state instead. In order to investigate the charge states, lattice sites, and the effect of the ion implantation process of dilute Sn atoms in ZnO, we have performed 119Sn emission Mössbauer spectroscopy on ZnO single crystal samples following ion implantation of radioactive 119In (T ½  =  2.4 min) at temperatures between 96 K and 762 K. Complementary perturbed angular correlation measurements on 111mCd implanted ZnO were also conducted. Our results show that the 2+  state is the natural charge state for Sn in defect free ZnO and that the 4+  charge state is stabilized by acceptor defects created in the implantation process.

  8. Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst

    NASA Astrophysics Data System (ADS)

    Faisal, M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Jamal, Aslam; Abdullah, M. M.

    2012-07-01

    ZnO nanoparticles (NPs) were prepared by hydrothermal treatment with starting materials (zinc chloride and urea) in the presence of ammonium hydroxide and characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV-vis spectroscopy. The synthesized nanoparticles are crystalline with wurtzite hexagonal phase having average particle size in the range of 80-130 nm. Photocatalytic activity of the prepared ZnO NPs was evaluated by the degradation of methylene blue and almost complete degradation (91.0%) takes place within 85 min of irradiation time. Prepared ZnO nanostructures possessed high photocatalytic activity when compared with TiO2-UV100. Additionally, the sensing properties of the ZnO films were investigated for various concentrations of methanol in liquid phase by simple I-V technique at room conditions. It was observed that ZnO thin film exhibits good sensitivity (0.9554 μA cm-2 mM-1) towards detection of methanol at room conditions.

  9. Li diffusion in epitaxial (11 $bar 2$ 0) ZnO thin films

    NASA Astrophysics Data System (ADS)

    Wu, P.; Zhong, J.; Emanetoglu, N. W.; Chen, Y.; Muthukumar, S.; Lu, Y.

    2004-06-01

    Zinc oxide (ZnO) possesses many interesting properties, such as a wide energy bandgap, large photoconductivity, and high excitonic binding energy. Chemical-vapor-deposition-grown ZnO films generally show n-type conductivity. A compensation doping process is needed to achieve piezoelectric ZnO, which is needed for surface acoustic wave (SAW), bulk acoustic wave, and micro-electromechanical system devices. In this work, a gas-phase diffusion process is developed to achieve piezoelectric (11bar 20) ZnO films. Comparative x-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements confirmed that high crystal quality and good surface morphology were preserved after diffusion. Photoluminescence (PL) measurements show a broad band emission with a peak wavelength at ˜580 nm, which is associated with Li doping. The SAW, including both Rayleigh-wave and Love-wave modes, is achieved along different directions in piezoelectric (11bar 20) ZnO films grown on an r-plane sapphire substrate.

  10. Characterization of ZnO nanoparticles grown in presence of Folic acid template

    PubMed Central

    2012-01-01

    Background ZnO nanoparticles (grown in the template of folic acid) are biologically useful, luminescent material. It can be used for multifunctional purposes, e.g., as biosensor, bioimaging, targeted drug delivery and as growth promoting medicine. Methods Sol–gel chemical method was used to develop the uniform ZnO nanoparticles, in a folic acid template at room temperature and pH ~ 7.5. Agglomeration of the particles was prevented due to surface charge density of folic acid in the medium. ZnO nanoparticle was further characterized by different physical methods. Results Nanocrystalline, wurtzite ZnO particles thus prepared show interesting structural as well as band gap properties due to capping with folic acid. Conclusions A rapid, easy and chemical preparative method for the growth of ZnO nanoparticles with important surface physical properties is discussed. Emphatically, after capping with folic acid, its photoluminescence properties are in the visible region. Therefore, the same can be used for monitoring local environmental properties of biosystems. PMID:22788841

  11. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.

    PubMed

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-07

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  12. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Kwon, Yang Hyeog; Lee, Min Hyung; Jung, Joo-Yun; Seol, Jae Hun; Nah, Junghyo

    2016-01-01

    We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07185b

  13. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as...processing. For this work, we report on the foundational study needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a...array of ZnO nanowires. Zinc oxide nanowires become more conductive in the presence of ethanol – as analyte sorbs to the surface, electron density

  14. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-01

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.

  15. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  16. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  17. Direct growth of ZnO tetrapod on glass substrate by Chemical Vapor Deposition Technique

    NASA Astrophysics Data System (ADS)

    Fadzil, M. F. M.; Rahman, R. A.; Azhar, N. E. A.; Aziz, T. N. T. A.; Zulkifli, Z.

    2018-03-01

    This research demonstrates the growth of ZnO tetrapod structure on glass substrate for different types of flow gas and at different growth temperatures. The study on the morphological structure and electrical properties of ZnO thin film growth by Chemical Vapour Deposition (CVD) technique showed that the optimum growth temperature was obtained at 750°C with ZnO nanotetrapod morphological structure. Introducing Nitrogen gas flow during the growth process exhibited leg-to-leg linking ZnO tetrapods morphology. The electrical properties of ZnO tetrapods film were measured by using two point probes and it shows that, the sample growth in Ar and O2 atmosphere have better I-V characteristic.

  18. Structural and electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles synthesized by hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.

    TiO{sub 2}/ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO{sub 2}. The obtained ZnO, TiO{sub 2} and TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO{sub 2} and ZnO phases in TiO{sub 2}/ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO{sub 2} nanoparticles have a spherical shape, and TiO{sub 2}/ZnO core–shellmore » nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2}/ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles were investigated. • The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about E{sub a} = 101 meV.« less

  19. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity Short Running Title: Genotoxicity of ZnO NPs

    PubMed Central

    Scherzad, Agmal; Meyer, Till; Kleinsasser, Norbert

    2017-01-01

    Background: Zinc oxide nanoparticles (ZnO NPs) are among the most frequently applied nanomaterials in consumer products. Evidence exists regarding the cytotoxic effects of ZnO NPs in mammalian cells; however, knowledge about the potential genotoxicity of ZnO NPs is rare, and results presented in the current literature are inconsistent. Objectives: The aim of this review is to summarize the existing data regarding the DNA damage that ZnO NPs induce, and focus on the possible molecular mechanisms underlying genotoxic events. Methods: Electronic literature databases were systematically searched for studies that report on the genotoxicity of ZnO NPs. Results: Several methods and different endpoints demonstrate the genotoxic potential of ZnO NPs. Most publications describe in vitro assessments of the oxidative DNA damage triggered by dissoluted Zn2+ ions. Most genotoxicological investigations of ZnO NPs address acute exposure situations. Conclusion: Existing evidence indicates that ZnO NPs possibly have the potential to damage DNA. However, there is a lack of long-term exposure experiments that clarify the intracellular bioaccumulation of ZnO NPs and the possible mechanisms of DNA repair and cell survival. PMID:29240707

  20. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses.

    PubMed

    Mousavi Kouhi, Seyed Mousa; Lahouti, Mehrdad; Ganjeali, Ali; Entezari, Mohammad H

    2015-07-01

    Rapid development of nanotechnology in recent years has raised concerns about nanoparticle (NPs) release into the environment and its adverse effects on living organisms. The present study is the first comprehensive report on the anatomical and ultrastructural changes of a variety of cells after long-term exposure of plant to NPs or bulk material particles (BPs). Light and electron microscopy revealed some anatomical and ultrastructural modifications of the different types of cell in the root and leaf, induced by both types of treatment. Zinc oxide (ZnO) BPs-induced modifications were surprisingly more than those induced by ZnO NPs. The modifications induced by ZnO BPs or ZnO NPs were almost similar to those induced by excess Zn. Zn content of the root and leaf of both ZnO NPs- and ZnO BPs-treated plants was severely increased, where the increase was greater in the plants treated with ZnO BPs. Overall, these results indicate that the modifications induced by ZnO particles can be attributed, at least partly, to the Zn(2+) dissolution by ZnO particles rather than their absorption by root and their subsequent effects.

  1. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation

    NASA Astrophysics Data System (ADS)

    Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner

    2018-02-01

    The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.

  2. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interaction and photodegradation characteristics of fluorescein dye in presence of ZnO nanoparticles.

    PubMed

    Bardhan, Munmun; Mandal, Gopa; Ganguly, Tapan

    2011-04-01

    The interaction between xanthene dye Fluorescein (Fl) and zinc oxide (ZnO) nanoparticles is investigated under physiological conditions. From the analysis of the steady state and time resolved spectroscopic studies in aqueous solution static mode is found to be responsible in the mechanism of fluorescence quenching of the dye Fl in presence of ZnO. ZnO nanoparticles are used as photocatalyst in order to degrade Fl dye. At pH 7, a maximum degradation efficiency of 44.4% of the dye has been achieved in presence of ZnO as a nanophotocatalyst and the photodegradation follows second-order kinetics.

  4. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  5. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less

  6. Sodium doping in ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, N. S.; Lynn, K. G.

    2015-01-01

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1-3.5) × 1017 cm-3. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a NaZn level at ˜(220-270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4-5) orders of magnitude at room temperature.

  7. Emission Properties from ZnO Quantum Dots Dispersed in SiO2 Matrix

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-07-01

    Dispersion of ZnO quantum dots in SiO2 matrix has been achieved in two techniques based on StÖber method to form ZnO QDs-SiO2 nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO2 composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  8. Surface-emitting stimulated emission in high-quality ZnO thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Suemune, Ikuo; Kumano, H.; Wang, J.; Huang, S. H.

    2004-10-01

    High-quality ZnO thin films were grown by plasma-enhanced molecular-beam epitaxy on sapphire substrates. Three excitonic transitions associated with the valence bands A, B, and C were clearly revealed in the reflectance spectrum measured at 33K. This result indicates that the ZnO thin films have the wurtzite crystalline structure. The emission spectra were measured with backscattering geometry at room temperature. When the excitation exceeded a certain value, linewidth narrowing, nonlinear rise of emission intensity, and the shortening of the carrier lifetime were clearly observed and these demonstrate the onset of stimulated emission. Together with the ZnO thickness dependence, we conclude that the observation of a stimulated emission in a direction perpendicular to the film surface is predominantly due to scattering of the in-plane stimulated emission by slightly remaining surface undulations in the ZnO films.

  9. Study of vertical type organic light emitting transistor using ZnO

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2006-04-01

    We propose a new type organic light emitting transistor (OLET) combining static induction transistor (SIT) with double hetero junction type organic light emitting diodes (OLED) using n-type zinc oxide (ZnO) films which works as a transparent and electron injection layer. The device characteristics of newly developed OLED and ZnO-SIT showed relatively high luminance of about 500 cd/m2 at 7.6 mA/cm2 and is able to control by gate voltage as low as a few volts, respectively. The crystal structures of the ZnO films as a function of Ar/O II flow ratio and the basic characteristics of the thin film transistor (TFT) and SIT depending on the ZnO sputtering conditions are investigated. The results obtained here show that the OLET using ZnO film is a suitable element for flexible sheet displays.

  10. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  11. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

    PubMed

    Dutta, R K; Nenavathu, Bhavani P; Gangishetty, Mahesh K; Reddy, A V R

    2012-06-01

    Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  13. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  14. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.

    PubMed

    Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo

    2016-08-05

    Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).

  15. Nature of native defects in ZnO.

    PubMed

    Selim, F A; Weber, M H; Solodovnikov, D; Lynn, K G

    2007-08-24

    This study revealed the nature of native defects and their roles in ZnO through positron annihilation and optical transmission measurements. It showed oxygen vacancies are the origin for the shift in the optical absorption band that causes the red or orange coloration. It also revealed experimental evidence that the donor nature of oxygen vacancy is approximately 0.7 eV. In addition, this work showed the Zn interstitial was not the donor in the as-grown ZnO and supported recent calculations that predicted hydrogen in an oxygen vacancy forms multicenter bonds and acts as a shallow donor.

  16. Fabrication of highly efficient ZnO nanoscintillators

    NASA Astrophysics Data System (ADS)

    Procházková, Lenka; Gbur, Tomáš; Čuba, Václav; Jarý, Vítězslav; Nikl, Martin

    2015-09-01

    Photo-induced synthesis of high-efficiency ultrafast nanoparticle scintillators of ZnO was demonstrated. Controlled doping with Ga(III) and La(III) ions together with the optimized method of ZnO synthesis and subsequent two-step annealing in air and under reducing atmosphere allow to achieve very high intensity of UV exciton luminescence, up to 750% of BGO intensity magnitude. Fabricated nanoparticles feature extremely short sub-nanosecond photoluminescence decay times. Temperature dependence of the photoluminescence spectrum within 8-340 K range was investigated and shows the absence of visible defect-related emission within all temperature intervals.

  17. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  18. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  19. Investigation of Excitonic Polaritons in ZnO Microcavities

    DTIC Science & Technology

    2006-07-28

    defects on the nonradiative processes in L-MBE ZnO were studied using time-resolved PL making a connection with the results of positron annihilation...IMPLANTATION DEPTH (nm) S PA R A M E T E R POSITRON ENERGY (keV) 150010005003001000 0 5 10 15 20 25 30 0.42 0.44 0.46 0.48 0.50 ZnO single crystal 0.42...photoluminescence (TRPL) and monoenergetic positron annihilation methods, and elimination of point defects as a fundamental pathway in improving

  20. Room temperature ferromagnetism in Mg-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaspal, E-mail: jaspal0314@gmail.com; Vashihth, A.; Gill, Pritampal Singh

    Zn{sub 1-x}Mg{sub x}O (x = 0, 0,10) nanoparticles were successfully synthesized using sol-gel method. X-ray diffraction (XRD) confirms that the synthesized nanoparticles possess wurtzite phase having hexagonal structure. Morphological analysis was carried out using transmission electron microscopy (TEM) which depicts the spherical morphology of ZnO nanoparticles. Energy dispersive spectroscopy (EDS) showed the presence of Mg in ZnO nanoparticles. Electron spin resonance (ESR) signal was found to be decreasing with increasing of Mg-doping concentration. The room temperature ferromagnetism was observed in undoped and Mg-doped ZnO nanoparticles. The increase of Mg-doping concentration resulted in decrease of saturation magnetization value which could bemore » attributed to decrease of oxygen vacancies present in host nanoparticles.« less

  1. Effect of Water on Ethanol Conversion over ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidationmore » of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).« less

  2. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    PubMed

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  3. Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.

    2018-07-01

    In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.

  4. Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials

    NASA Astrophysics Data System (ADS)

    Buckley, Darragh; McCormack, Robert; O'Dwyer, Colm

    2017-04-01

    The angle-resolved reflectance of high crystalline quality, c-axis oriented ZnO and AZO single and periodic quasi-superlattice (QSL) spin-coated TFT channels materials are presented. The data is analysed using an adapted model to accurately determine the spectral region for optical thickness and corresponding reflectance. The optical thickness agrees very well with measured thickness of 1-20 layered QSL thin films determined by transmission electron microscopy if the reflectance from lowest interference order is used. Directional reflectance for single layers or homogeneous QSLs of ZnO and AZO channel materials exhibit a consistent degree of anti-reflection characteristics from 30 to 60° (~10-12% reflection) for thickness ranging from ~40 nm to 500 nm. The reflectance of AZO single layer thin films is  <10% from 30 to 75° at 514.5 nm, and  <6% at 632.8 nm from 30-60°. The data show that ZnO and AZO with granular or periodic substructure behave optically as dispersive, continuous thin films of similar thickness, and angle-resolved spectral mapping provides a design rule for transparency or refractive index determination as a function of film thickness, substructure (dispersion) and viewing angle.

  5. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  6. ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis.

    PubMed

    Zhang, Sha; Chen, Hsueh-Shih; Matras-Postolek, Katarzyna; Yang, Ping

    2015-11-11

    In this paper, ZnO nanoflowers (NFs) were fabricated by thermal decomposition in an organic solvent and their application in gas sensors and photocatalysis was investigated. These single crystal ZnO NFs, which were observed for the first time, with an average size of ∼60 nm and were grown along the {100} facet. It was suggested that oleylamine used in the synthesis inhibited the growth and agglomeration of ZnO through the coordination of the oleylamine N atoms. The NFs exhibited excellent selectivity to acetone with a concentration of 25 ppm at 300 °C because they had a high specific surface area that provided more active sites and the surface adsorbed oxygen species for interaction with acetone. In addition, the ZnO NFs showed enhanced gas sensing response which was also ascribed to abundant oxygen vacancies at the junctions between petals of the NFs. Furthermore, ZnO-reduced graphene oxide (RGO) composites were fabricated by loading the ZnO NFs on the surface of the stratiform RGO sheet. In the photodegradation of rhodamine B tests, the composite revealed an enhanced photocatalytic performance compared with ZnO NFs under UV light irradiation.

  7. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    NASA Astrophysics Data System (ADS)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  8. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  9. LiFePO4 microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G.

    PubMed

    Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh

    2014-01-01

    We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.

  10. Significantly enhanced UV luminescence by plasmonic metal on ZnO nanorods patterned by screen-printing.

    PubMed

    Zhao, Jun; Cui, Shuyuan; Zhang, Xingang; Li, Wenqing

    2018-08-31

    A smart synthetic method is conceived to construct large batches of ZnO nanostructures to meet market demand for light-emitting diodes. Utilizing the localized surface plasmon resonance of metal nanoparticles (NPs) facilitates the recombination of electron-hole pairs and the release of photons. Compared to raw ZnO nanorods (NRs), ZnO NRs@HfO 2 @Al NPs show a ∼120× enhancement in ultraviolet (UV) photoluminescence (PL), while ZnO NRs@HfO 2 @Ag NPs show a six-fold enhancement. Because the surface plasmon energy of Al is nearer the ZnO band gap, the PL enhancement of ZnO NRs covered with Al is stronger than that of those covered with Ag. Based on this analysis, three-dimensional graphical ZnO NR arrays were manufactured by screen-printing, a mass production technique. After covering the arrays with layers of HfO 2 and Al NPs, the UV PL intensities of the corresponding substrates were increased by approximately 16×. This indicates the potential to mass-produce highly efficient optoelectronic devices.

  11. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  12. Synthesis of porous and nonporous ZnO nanobelt, multipod, and hierarchical nanostructure from Zn-HDS

    NASA Astrophysics Data System (ADS)

    Jang, Eue-Soon; Won, Jung-Hee; Kim, Young-Woon; Cheng, Zhen; Choy, Jin-Ho

    2010-08-01

    Zn based hydroxide double salts (Zn-HDS) with an interlayer spacing of 20 Å was produced by dissolving dumbbell-like ZnO crystal. The resulting Zn-HDS with a ribbon-like shape has a suitable morphology to explore the remarkably mild procedure for synthesis of ZnO nanobelts. We found that the intercalated water molecules into the Zn-HDS could play a key role in the ZnO nanobelts porosity. The nonporous ZnO nanobelts were successfully synthesized from the Zn-HDS by soft-solution process at 95 °C through mild dehydration agent as Na 2CO 3. As-synthesized ZnO nanobelts were grown along not only the [0 1 -1 0], but also the [2 -1 -1 0]. On the other hand, the porous ZnO nanobelts were obtained from the Zn-HDS by calcinations at 200 and 400 °C. In addition, flower-like ZnO multipod and hierarchical nanostructures were produced from the Zn-HDS by using of strong dehydration agent (NaOH) through hydrothermal reaction at 150 and 230 °C.

  13. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis

    PubMed Central

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora

    2017-01-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760

  14. Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications

    NASA Astrophysics Data System (ADS)

    Pandiyarasan, V.; Suhasini, S.; Archana, J.; Navaneethan, M.; Majumdar, Abhijit; Hayakawa, Y.; Ikeda, H.

    2017-10-01

    We have investigated ZnO nanostructures on cotton fabric (CF) s a flexible material for an application of wearable thermoelectric (TE) power generator which requires super-hydrophobicity, UV protection, and high TE efficiency. Field emission scanning electron microscopy images revealed that the formed ZnO nanostructures have a mixture of nanorods and nanosheets and are uniformly coated on the CF. XRD pattern and Raman spectra revealed that the ZnO nanostructure has a wurtzite structure. Contact angle measurements showed that the ZnO-nanostructures-coated CF possessed a high super hydrophobic nature with an angle of 132.5°. ZnO nanocomposite/CF sample exhibited an excellent UV protection factor 183.84. Seebeck coefficient, electrical resistivity and thermoelectric power factor of the ZnO nanostructures on cotton fabric were evaluated to be 28 μV/K, 0.04 Ω-cm, and 22 μW/m K2, respectively.

  15. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    PubMed Central

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578

  16. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  17. Hydrothermal temperature effect on crystal structures, optical properties and electrical conductivity of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Dhafina, Wan Almaz; Salleh, Hasiah; Daud, Mohd Zalani; Ghazali, Mohd Sabri Mohd; Ghazali, Salmah Mohd

    2017-09-01

    ZnO is an wide direct band gap semiconductor and possess rich family of nanostructures which turned to be a key role in the nanotechnology field of applications. Hydrothermal method was proven to be simple, robust and low cost among the reported methods to synthesize ZnO nanostructures. In this work, the properties of ZnO nanostructures were altered by varying temperatures of hydrothermal process. The changes in term of morphological, crystal structures, optical properties and electrical conductivity were investigated. A drastic change of ZnO nanostructures morphology and decreases of 002 diffraction peak were observed as the hydrothermal temperature increased. The band gap of samples decreased as the size of ZnO nanostructure increased, whereas the electrical conductivity had no influence on the band gap value but more on the morphology of ZnO nanostructures instead.

  18. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm

    NASA Astrophysics Data System (ADS)

    Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun

    2017-05-01

    Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.

  19. Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.

    PubMed

    Liu, Yan; Lin, Ziyin; Lin, Wei; Moon, Kyoung Sik; Wong, C P

    2012-08-01

    Tuning the surface wettability is of great interest for both scientific research and practical applications. We demonstrated reversible transition between superhydrophobicity and superhydrophilicity on a ZnO nanorod/epoxy composite film. The epoxy resin serves as an adhesion and stress relief layer. The ZnO nanorods were exposed after oxygen reactive ion etching of the epoxy matrix. A subsequent chemcial treatment with fluoroalkyl and alkyl silanes resulted in a superhydrophobic surface with a water contact angle up to 158.4° and a hysteresis as low as 1.3°. Under UV irradiation, the water contact angle decreased gradually, and the surface eventually became superhydrophilic because of UV induced decomposition of alkyl silanes and hydroxyl absorption on ZnO surfaces. A reversible transition of surface wettability was realized by alternation of UV illumination and surface treatment. Such ZnO nanocomposite surface also showed improved mechanical robustness.

  20. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Tolosa, Maria D. Reyes; Damonte, Laura C.; Brine, Hicham; Bolink, Henk J.; Hernández-Fenollosa, María A.

    2013-03-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  1. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition.

    PubMed

    Tolosa, Maria D Reyes; Damonte, Laura C; Brine, Hicham; Bolink, Henk J; Hernández-Fenollosa, María A

    2013-03-23

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion.

  2. Hydrogen-related complexes in Li-diffused ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Corolewski, Caleb D.; Parmar, Narendra S.; Lynn, Kelvin G.; McCluskey, Matthew D.

    2016-07-01

    Zinc oxide (ZnO) is a wide band gap semiconductor and a potential candidate for next generation white solid state lighting applications. In this work, hydrogen-related complexes in lithium diffused ZnO single crystals were studied. In addition to the well-known Li-OH complex, several other hydrogen defects were observed. When a mixture of Li2O and ZnO is used as the dopant source, zinc vacancies are suppressed and the bulk Li concentration is very high (>1019 cm-3). In that case, the predominant hydrogen complex has a vibrational frequency of 3677 cm-1, attributed to surface O-H species. When Li2CO3 is used, a structured blue luminescence band and O-H mode at 3327 cm-1 are observed at 10 K. These observations, along with positron annihilation measurements, suggest a zinc vacancy-hydrogen complex, with an acceptor level ˜0.3 eV above the valence-band maximum. This relatively shallow acceptor could be beneficial for p-type ZnO.

  3. Positive and negative ZnO micropatterning on functionalized polymer surfaces.

    PubMed

    Yang, Peng; Zou, Shengli; Yang, Wantai

    2008-09-01

    Patterned ZnO deposition on substrates has received increasing attention because of its great potential in photocatalysis, energy conversion, and electro-optical techniques. Chemical solution growth is especially promising for organic substrates due to its very mild reaction conditions. Here this method is used on functionality-patterned polymer surfaces in order to fabricate positive and negative ZnO micropatterns. A ZnO film made of arrayed rods, typically 500-750 nm in diameter and 2.5 microm in length, is selectively obtained on sulfated and hydroxylated regions of biaxially oriented poly(propylene), giving rise to positive patterns. For reactive polyesters such as poly(ethylene terephthalate), the ZnO rods selectively remain on the unmodified original regions, creating negative patterns. Unlike complex photolithography procedures, the irradiation and patterning processes do not require the use of positive or negative photoresists, and possible damage from acidic solutions on the underlying substrate during the chemical etching process is avoided. The process thus proves to be a simple, creditable, and low-cost method, which could be easily applied on a variety of inert and reactive polymer surfaces.

  4. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.

    Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less

  5. ZnO synthesized in air by fs laser irradiation on metallic Zn thin films

    NASA Astrophysics Data System (ADS)

    Esqueda-Barrón, Y.; Herrera, M.; Camacho-López, S.

    2018-05-01

    We present results on rapid femtosecond laser synthesis of nanostructured ZnO. We used metallic Zn thin films to laser scan along straight tracks, until forming nanostructured ZnO. The synthesis dependence on laser irradiation parameters such as the per pulse fluence, integrated fluence, laser scan speed, and number of scans were explored carefully. SEM characterization showed that the morphology of the obtained ZnO is dictated by the integrated fluence and the laser scan speed; micro Raman and XRD results allowed to identify optimal laser processing conditions for getting good quality ZnO; and cathodoluminescence measurements demonstrated that a single laser scan at high per pulse laser fluence, but a medium integrated laser fluence and a medium laser scan speed favors a low density of point-defects in the lattice. Electrical measurements showed a correlation between resistivity of the laser produced ZnO and point-defects created during the synthesis. Transmittance measurements showed that, the synthesized ZnO can reach down to the supporting fused silica substrate under the right laser irradiation conditions. The physical mechanism for the formation of ZnO, under ultrashort pulse laser irradiation, is discussed in view of the distinct times scales given by the laser pulse duration and the laser pulse repetition rate.

  6. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles

    PubMed Central

    Gutul, Tatyana; Condur, Nadejda; Ursaki, Veaceslav; Goncearenco, Evgenii; Vlazan, Paulina

    2014-01-01

    Summary We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone) (PVP) as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV) which corresponds to the emission of the free exciton recombination in ZnO nanoparticles. PMID:24778966

  7. Synthesis and magnetic properties of Zr doped ZnO Nanoparticles.

    PubMed

    Zhang, Jing; Gao, Daqiang; Yang, Guijin; Zhang, Jinlin; Shi, Zhenhua; Zhang, Zhaohui; Zhu, Zhonghua; Xue, Desheng

    2011-11-10

    Zr doped ZnO nanoparticles are prepared by the sol-gel method with post-annealing. X-ray diffraction results show that all samples are the typical hexagonal wurtzite structure without any other new phase, as well as the Zr atoms have successfully entered into the ZnO lattices instead of forming other lattices. Magnetic measurements indicate that all the doping samples show room temperature ferromagnetism and the pure ZnO is paramagneism. The results of Raman and X-ray photoelectron spectroscopy indicate that there are a lot of oxygen vacancies in the samples by doping element of Zr. It is considered that the observed ferromagnetism is related to the doping induced oxygen vacancies.

  8. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials

    NASA Astrophysics Data System (ADS)

    Pham, Chuyen V.; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-01

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn-) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively ``heal'' the oxygen vacancy (VO+) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL

  9. Temperature dependent optical properties of ZnO thin film using ellipsometry and photoluminescence

    NASA Astrophysics Data System (ADS)

    Bouzourâa, M.-B.; Battie, Y.; Dalmasso, S.; Zaïbi, M.-A.; Oueslati, M.; En Naciri, A.

    2018-05-01

    We report the temperature dependence of the dielectric function, the exciton binding energy and the electronic transitions of crystallized ZnO thin film using spectroscopic ellipsometry (SE) and photoluminescence (PL). ZnO layers were prepared by sol-gel method and deposited on crystalline silicon (Si) by spin coating technique. The ZnO optical properties were determined between 300 K and 620 K. Rigorous study of optical responses was achieved in order to demonstrate the quenching exciton of ZnO as a function of temperature. Numerical technique named constrained cubic splines approximation (CCS), Tauc-Lorentz (TL) and Tanguy dispersion models were selected for the ellipsometry data modeling in order to obtain the dielectric function of ZnO. The results reveals that the exciton bound becomes widely flattening at 470 K on the one hand, and on the other that the Tanguy dispersion law is more appropriate for determining the optical responses of ZnO thin film in the temperature range of 300 K-420 K. The Tauc-Lorentz, for its part, reproduces correctly the ZnO dielectric function in 470 K-620 K temperature range. The temperature dependence of the electronic transition given by SE and PL shows that the exciton quenching was observed in 420 K-∼520 K temperature range. This quenching effect can be explained by the equilibrium between the Coulomb force of exciton and its kinetic energy in the film. The kinetic energy was found to induce three degrees of freedom of the exciton.

  10. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  11. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    DTIC Science & Technology

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  12. Effect of K-doping on structural and optical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Li, Xiangyin; Yuan, Jun

    2008-09-01

    In this work, K-doped ZnO thin films were prepared by a sol-gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.

  13. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer.

    PubMed

    Liu, Jinzhang; Motta, Nunzio; Lee, Soonil

    2012-01-01

    ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  14. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  15. Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Liu, Jin-Ran; Yao, Da-Chuan; Chen, Yong; Wang, Mao-Hua

    2017-03-01

    In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol-gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage ( V b = 420 V/mm) and excellent nonlinear coefficient ( α = 61.7), compared with the varistors obtained without carbon coating.

  16. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.

  17. The Synthesis of Photocatalyst Material ZnO using the Simple Sonication Method

    NASA Astrophysics Data System (ADS)

    Faradis, R.; Azizah, E. N.; Marella, S. D.; Aini, N.; Prasetyo, A.

    2018-03-01

    ZnO is well known as photocatalyst material therefore potentially to applied in many purposes. The particle size of photocatalyst material influenced the catalytic activities. In this research, ZnO was synthesized using the simple sonication method to obtain the the smaller particle with sonication time variation respectively: 30, 60, 160, 360 minute. X-ray diffraction data showed that the synthesized material have wurtzite structure with space group P63 mc. The synthesized ZnO with 30 minutes sonication time produced the smallest particle size and have the lowest band gap energy (2.79 eV). The photocatalytic test at methylene blue also showed that the optimum activity was gained from ZnO which synthesized at 30 minute sonication time (degradation percentage of metylene blue is 77.93%).

  18. Fe-tannic acid complex dye as photo sensitizer for different morphological ZnO based DSSCs

    NASA Astrophysics Data System (ADS)

    Çakar, Soner; Özacar, Mahmut

    2016-06-01

    In this paper we have synthesized different morphological ZnO nanostructures via microwave hydrothermal methods at low temperature within a short time. We described different morphologies of ZnO at different Zn(NO3)2/KOH mole ratio. The ZnO nanostructures were characterized via X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and UV-vis spectrophotometry. All ZnO structures have hexagonal wurtzite type structures. The FESEM images showed various morphologies of ZnO such as plate, rod and nanoparticles. Dye sensitized solar cells have been assembled by these different morphological structures photo electrode and tannic acid or Fe-tannic acid complex dye as sensitizer. We have achieved at maximum efficiencies of photovoltaic cells prepared with ZnO plate in all dye systems. The conversion efficiencies of dye sensitized solar cells are 0.37% and 1.00% with tannic acid and Fe-tannic acid complex dye, respectively.

  19. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    PubMed

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  20. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  1. Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.

    PubMed

    Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun

    2015-07-28

    Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.

  2. Effect of cobalt doping on structural and optical properties of ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, J.; Chanda, A., E-mail: anupamamatsc@gmail.com; Gupta, S.

    Cobalt doped ZnO nanoparticles of uniform sizes were prepared by a chemical method using ZnCl{sub 2} and NaOH as the source materials. The formation of Co-doped ZnO nanoparticles was confirmed by transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) studies. The optical properties of obtained products were examined using room temperature UV-visible and FTIR spectroscopy. SAED of cobalt doped ZnO nanoparticles shows homogeneous distribution of nanoparticles with hexagonal structure. The HRTEM image of the Co-doped ZnO nanoparticles reveals a clear lattice spacing of 0.52 nm corresponding to the interplanar spacing of wurtzite ZnO (002) plane.more » The absorption band at 857 cm{sup −1} in FTIR spectra confirmed the tetrahedral coordination of Zn and a shift of absorption peak to shorter wavelength region and decrease in absorbance with Co doping.is observed in UV-Visible spectra.« less

  3. Adrenaline (epinephrine) microcrystal sublingual tablet formulation: enhanced absorption in a preclinical model.

    PubMed

    Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J

    2015-01-01

    For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P < 0.05) than after placebo RDSTs administration (reflecting endogenous adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.

  4. Structural, morphological, optical and biological properties of pure ZnO and agar/zinc oxide nanocomposites.

    PubMed

    Magesh, G; Bhoopathi, G; Nithya, N; Arun, A P; Ranjith Kumar, E

    2018-05-26

    In this work, ZnO nanoparticles were prepared by in situ chemical precipitation method in the presence of Agar biopolymer. The influence of Agar concentrations on the structural, morphological and optical properties of ZnO have been investigated. The XRD pattern of Pure ZnO and Agar/ZnO nanocomposites indicates the hexagonal wurtzite phase of ZnO. The crystallite size of pure ZnO and Agar/ZnO nanocomposites was found to be in the range of 35.5 to 19.73 nm. Pure ZnO and Agar/ZnO nanocomposites showed nanospheroid and nanopaddy shaped morphology from FESEM studies. The interplanar distance observed from the HRTEM image confirms the plane of the prepared material. The elemental composition of the samples were characterized by EDX. The optical properties of Pure ZnO and Agar/ZnO nanocomposites were characterized by UV, FTIR and PL. The band gap of Agar/ZnO nanocomposites were varied with the Agar concentration. Oxygen vacancy induced photoluminescence of ZnO are observed and its intensity is found to be increased linearly with the Agar concentration. The antibacterial activity of ZnO and Agar/ZnO nanocomposites was evaluated by disc diffusion method against Gram-positive (B.subtilis) and Gram-negative (P. aeruginosa) bacteria. The cytotoxicity of Agar/ZnO nanocomposites was studied against Normal (L929) and Breast cancer cell line (MB231). The result of this investigation reveals that the Agar/ZnO nanocomposites deliver a dose dependent toxicity in normal and cancer cell line. Copyright © 2018. Published by Elsevier B.V.

  5. Influence of the morphology of ZnO nanostructures on luminescent and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh.; Ilyassov, B. R.; Afanasyev, D. A.

    2017-03-01

    Arrays of ZnO nanorods and nanoplates are synthesized by the hydrothermal and electrochemical methods, respectively. The photoluminescence spectra indicate that the nanoplates have a more defective structure than the nanorods. The obtained ZnO nanostructures are used as the basis to construct dye-sensitized solar cells. The influence of morphology and defectiveness of ZnO nanostructures on the luminescent and photovoltaic properties of the cells is studied.

  6. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dyemore » loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.« less

  7. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  9. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential

    PubMed Central

    Sotiriou, Georgios A.; Watson, Christa; Murdaugh, Kimberly M.; Darrah, Thomas H.; Pyrgiotakis, Georgios; Elder, Alison; Brain, Joseph D.; Demokritou, Philip

    2014-01-01

    Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO2 coating during their gas-phase synthesis. It is demonstrated that the SiO2 nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO2 on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO2-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health. PMID:24955241

  10. Charge transfer and surface defect healing within ZnO nanoparticle decorated graphene hybrid materials.

    PubMed

    Pham, Chuyen V; Repp, Sergej; Thomann, Ralf; Krueger, Michael; Weber, Stefan; Erdem, Emre

    2016-05-05

    To harness the unique properties of graphene and ZnO nanoparticles (NPs) for novel applications, the development of graphene-ZnO nanoparticle hybrid materials has attracted great attention and is the subject of ongoing research. For this contribution, graphene-oxide-ZnO (GO-ZnO) and thiol-functionalized reduced graphene oxide-ZnO (TrGO-ZnO) nanohybrid materials were prepared by novel self-assembly processes. Based on electron paramagnetic resonance (EPR) and photoluminescence (PL) investigations on bare ZnO NPs, GO-ZnO and TrGO-ZnO hybrid materials, we found that several physical phenomena were occurring when ZnO NPs were hybridized with GO and TrGO. The electrons trapped in Zn vacancy defects (VZn(-)) within the core of ZnO NPs vanished by transfer to GO and TrGO in the hybrid materials, thus leading to the disappearance of the core signals in the EPR spectra of ZnO NPs. The thiol groups of TrGO and sulfur can effectively "heal" the oxygen vacancy (VO(+)) related surface defects of ZnO NPs while oxygen-containing functionalities have low healing ability at a synthesis temperature of 100 °C. Photoexcited electron transfer from the conduction band of ZnO NPs to graphene leads to photoluminescence (PL) quenching of near band gap emission (NBE) of both GO-ZnO and TrGO-ZnO. Simultaneously, electron transfer from graphene to defect states of ZnO NPs is the origin of enhanced green defect emission from GO-ZnO. This observation is consistent with the energy level diagram model of hybrid materials.

  11. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  12. Fabrication of ZnO and doped ZnO waveguides deposited by Spin Coating

    NASA Astrophysics Data System (ADS)

    Mohan, Rosmin Elsa; R, Neha P.; T, Shalu; C, Darshana K.; Sreelatha, K. S.

    2015-02-01

    In this paper, the synthesis of ZnO and doped Zn1-xAgxO (where x=0.03) nanoparticles by co- precipitation is reported. The precursors used were Zinc Nitrate and Potassium hydroxide pellets. For doping, 3% AgNO3 in ZnNO3 was considered as a separate buffer solution. The prepared nanoparticles were subsequently spin coated onto silica glass substrates at a constant chuck rate of 3000 rpm. The substrate acts as the lower cladding of a waveguide structure. The upper cladding is assumed to be air in the present investigation. The nanostructures of the ZnO powders in the doped and undoped cases were studied using X-ray Diffraction patterns. There was a decrease in the grain size with doping which increase the tunability of the powders to be used as photoluminescent devices. The optical characteristics of the sample were also investigated using UV-Visible spectrophotometer at 200-900 nm wavelengths. The photoluminescence peaks also report a dramatic increase in intensity at the same wavelength for the doped case compared to the undoped one.

  13. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  14. Significant mobility enhancement in extremely thin highly doped ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Look, David C., E-mail: david.look@wright.edu; Wyle Laboratories, Inc., 2601 Mission Point Blvd., Dayton, Ohio 45431; Air Force Research Laboratory Sensors Directorate, 2241 Avionics Circle, Wright-Patterson AFB, Ohio 45433

    2015-04-13

    Highly Ga-doped ZnO (GZO) films of thicknesses d = 5, 25, 50, and 300 nm, grown on 160-nm ZnO buffer layers by molecular beam epitaxy, had 294-K Hall-effect mobilities μ{sub H} of 64.1, 43.4, 37.0, and 34.2 cm{sup 2}/V-s, respectively. This extremely unusual ordering of μ{sub H} vs d is explained by the existence of a very high-mobility Debye tail in the ZnO, arising from the large Fermi-level mismatch between the GZO and the ZnO. Scattering theory in conjunction with Poisson analysis predicts a Debye-tail mobility of 206 cm{sup 2}/V-s at the interface (z = d), falling to 58 cm{sup 2}/V-s at z = d + 2 nm. Excellent fits to μ{sub H}more » vs d and sheet concentration n{sub s} vs d are obtained with no adjustable parameters.« less

  15. Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mollar, M.; Marí, B.

    2011-01-01

    High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.

  16. Characterization of Non-Polar ZnO Layers with Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zúñiga-Pérez, J.; Muñoz-San José, V.

    2008-11-01

    We applied positron annihilation spectroscopy to study the effect of growth polarity on the vacancy defects in ZnO grown by metal-organic vapor phase deposition on sapphire. Both c-plane and a-plane ZnO layers were measured, and Zn vacancies were identified as the dominant defects detected by positrons. The results are qualitatively similar to those of earlier experiments in GaN. The Zn vacancy concentration decreases in c-plane ZnO by almost one order of magnitude (from high 1017 cm-3 to low 1017 cm-3) when the layer thickness is increased from 0.5 to 2 μm. Interestingly, in a-plane ZnO the Zn vacancy concentration is constant at a level of about 2×1017 cm-3 in all the samples with thicknesses varying from 0.6 to 2.4 μm. The anisotropy of the Doppler broadening of the annihilation radiation parallel and perpendicular to the hexagonal c-axis was also measured.

  17. Thermal process induced change of conductivity in As-doped ZnO

    NASA Astrophysics Data System (ADS)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  18. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.

    2014-05-01

    Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.

  19. Nucleant layer effect on nanocolumnar ZnO films grown by electrodeposition

    PubMed Central

    2013-01-01

    Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole combination when used in optoelectronic devices. Structural and optical characterizations were carried out by scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used. Previous studies on different electrodeposition methods for nucleation and growth are considered in the final discussion. PMID:23522332

  20. Self-Assembly of ZnO Nanoplatelets into Hierarchical Mesocrystals and Their Photocatalytic Property

    NASA Astrophysics Data System (ADS)

    Yang, Yongqiang; Wang, Qinsheng; Liu, Zheng; Jin, Ling; Ou, Bingxian; Han, Pengju; Wang, Qun; Cheng, Xiaobao; Liu, Wenjun; Wen, Yu; Liu, Yuan; Zhao, Weifang

    2018-03-01

    In this work, a simple chemical procedure was developed for the preparation of mesocrystals consisiting of ZnO nanoplateletes. By simple mixing the aqueous solutions Zn(NO3)2, NaOH and ethanol at certain temperatures, the hierarchical mesocrystals with big at both ends but small in the middle were obtained. After being annealed in air at certain temperatures, the same structured ZnO mesocrystals were generated. The morphology, crystalline structure and chemical composition were characterized using SEM, XRD FT-IR and Raman. The photocatalytic properties of the ZnO mesocrystals were also investigated. It was illustrated that the ZnO mesocrystals show decent photocatalytic performance to the photodegradation of methyl blue.

  1. Growth and dielectric properties of ZnO nanoparticles deposited by using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Chung, Yoonsung; Park, Hyejin; Kim, Dong-Joo; Cho, Sung Baek; Yoon, Young Soo

    2015-05-01

    The deposition behavior of ZnO nanoparticles on metal plates and conductive fabrics was investigated using electrophoretic deposition (EPD). The deposition kinetics on both metal plates and fabrics were examined using the Hamaker equation. Fabric substrates give more deposited weight than flat substrates due to their rougher shape and higher surface area. The morphologies and the structures of the deposited ZnO layers showed uniform deposition without any preferred orientation on both substrates. The dielectric properties of the ZnO layers formed by using EPD showed values that were reduced, but comparable to those of bulk ZnO. This result suggests that EPD is a convenient method to deposit functional oxides on flexible substrates.

  2. Facile one-step synthesis of magnesium-doped ZnO nanoparticles: optical properties and their device applications

    NASA Astrophysics Data System (ADS)

    Oh, Ji-Young; Lim, Sang-Chul; Ahn, Seong Deok; Lee, Sang Seok; Cho, Kyoung-Ik; Bon Koo, Jae; Choi, Rino; Hasan, Musarrat

    2013-07-01

    In this study, magnesium-doped (Mg-doped) zinc oxide (ZnO) nanoparticles were successfully synthesized by a sonochemical process under mild conditions. The x-ray diffraction pattern indicated that the Mg-doped ZnO nanoparticles maintain a wurtzite structure without impurities. We observed a blue-shift of the bandgap of the Mg-doped ZnO nanoparticles as the Mg-doping ratio increased. We also fabricated thin-film transistor (TFT) devices with the doped-ZnO nanoparticles. Devices using Mg-doped ZnO nanoparticles as a channel layer showed insensibility to white-light irradiation compared with undoped ZnO TFTs.

  3. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh

    2018-04-01

    In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.

  4. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  5. ZnO nanorods/AZO photoanode for perovskite solar cells fabricated in ambient air

    NASA Astrophysics Data System (ADS)

    La Ferrara, Vera; De Maria, Antonella; Rametta, Gabriella; Della Noce, Marco; Vittoria Mercaldo, Lucia; Borriello, Carmela; Bruno, Annalisa; Delli Veneri, Paola

    2017-08-01

    ZnO nanorods are a good candidate for replacing standard photoanodes, such as TiO2, in perovskite solar cells and in principle superseding the high performances already obtained. This is possible because ZnO nanorods have a fast electron transport rate due to their large surface area. An array of ZnO nanorods is grown by chemical bath deposition starting from Al-doped ZnO (AZO) used both as a seed layer and as an efficient transparent anode in the visible spectral range. In particular, in this work we fabricate methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells using glass/AZO/ZnO nanorods/perovskite/Spiro-OMeTAD/Au as the architecture. The growth of ZnO nanorods has been optimized by varying the precursor concentrations, growth time and solution temperature. All the fabrication process and photovoltaic characterizations have been carried out in ambient air and the devices have not been encapsulated. Power conversion efficiency as high as 7.0% has been obtained with a good stability over 20 d. This is the highest reported value to the best of our knowledge and it is a promising result for the development of perovskite solar cells based on ZnO nanorods and AZO.

  6. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l-1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  7. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    PubMed Central

    Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-01-01

    In this study, photocatalytic experiments of 20 mg l−1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed. PMID:29765630

  8. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies.

    PubMed

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l -1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  9. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  11. Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids

    NASA Astrophysics Data System (ADS)

    Rocha-Mendoza, Israel; Camacho-López, Santiago; Luna-Palacios, Yryx Y.; Esqueda-Barrón, Yasmín; Camacho-López, Miguel A.; Camacho-López, Marco; Aguilar, Guillermo

    2018-02-01

    We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5-8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state.

  12. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    NASA Astrophysics Data System (ADS)

    Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra

    2016-12-01

    ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  13. Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)

    DTIC Science & Technology

    2014-01-15

    dependence of mobility (µ) on thickness (d). 15. SUBJECT TERMS microcavity; polariton ; strong coupling; ZnO 16. SECURITY CLASSIFICATION OF: 17...dimensions below the diffraction limit. Keywords: microcavity; polariton ; strong coupling; ZnO INTRODUCTION The field of plasmonics has received...optical computing and chips, enhanced signal detectors, etc3. Surface plasmon polaritons (SPPs) are quasi-particles or excitations that result from

  14. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  15. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  16. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  17. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  18. ZnO and related materials: Plasma-Assisted molecular beam epitaxial growth, characterization and application

    NASA Astrophysics Data System (ADS)

    Hong, S. K.; Chen, Y.; Ko, H. J.; Wenisch, H.; Hanada, T.; Yao, T.

    2001-06-01

    This paper will address features of plasma-assisted molecular beam epitaxial growth of ZnO and related materials and their characteristics. Two-dimensional, layer-by-layer growth is achieved both on c-plane sampphire by employing MgO buffer layer growth and on (0001) GaN/Al2O3 template by predepositing a low-temperature buffer layer followed by high-temperature annealing. Such two-dimensional growth results in the growth of high-quality heteroepitaxial ZnO epilayers. Biexciton emission is obtained from such high quality epilayers The polarity of heteroepitaxial ZnO epilayers is controlled by engineering the heterointerfaces. We achieved selective growth of Zn-polar and O-polar ZnO heteroepitaxial layers. The origin of different polarities can be successfully explained by an interface bonding sequence model. N-type conductivity in Gadoped ZnO epilayers is successfully controlled. High conductivity, enough to be applicable to devices, is achieved. MgxZn1-xO/ZnO heterostructures are grown and emission from a ZnO quantum well is observed. Mg incorporation in a MgZnO alloy is determined by in-situ reflection high-energy electron diffraction intensity oscillations, which enables precise control of the composition. Homoepitaxy on commericial ZnO substrates has been examined. Reflection high-energy electron diffraction intensity oscillations during homoepitaxy growth are observed.

  19. Role of physical and chemical interactions in the antibacterial behavior of ZnO nanoparticles against E. coli.

    PubMed

    Jiang, Yunhong; Zhang, Lingling; Wen, Dongsheng; Ding, Yulong

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) exhibit antibacterial activity against both Gram-positive and Gram-negative bacteria. However, the antimicrobial mechanism of ZnO NPs remains unclear. In this study, we investigated the interactions among ZnO NPs, released chemicals (Zn(2+) and Reactive Oxygen Species, ROS) and Escherichia coli (E. coli) cells. ZnO NPs without contacting with bacterial cells showed strong antibacterial effect. The results of the leakage of intracellular K(+) and integrity of carboxyfluoresce in-filled liposomes showed that ZnO NPs have antimicrobial activity against E. coli by non-specifically disrupting E. coli membranes. Traces of zinc ions (1.25mg/L) and hydrogen peroxide (from 1.25 to 4.5μM/L) were detected in ZnO NPs suspensions, but was insufficient to cause the antibacterial effect. However, the addition of radical scavengers suppressed the bactericidal effect of ZnO coated films against E. coli, potentially implicating ROS generation, especially hydroxyl radicals, in the antibacterial ability of ZnO NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Augmented Photoelectrochemical Efficiency of ZnO/TiO2 Nanotube Heterostructures

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Shah, Mohammad Ashraf

    2017-11-01

    ZnO/TiO2 nanotube heterostructures have been fabricated by electrodeposition of ZnO microcrystals over electrochemically anodized TiO2 nanotube arrays. The resulting ZnO/TiO2 nanotube heterostructures showed enhanced photocurrent density of 5.72 mA cm-2, about 1.5 times the value of 3.68 mA cm-2 shown by bare compact TiO2 nanotubes. This enhanced photocurrent density of the ZnO/TiO2 nanotube heterostructures is due to high electron mobility in the ZnO crystals, thereby decreasing the electron-hole recombination process, good interfacial quality between the ZnO and TiO2 structures, and a proposed smooth charge-transfer mechanism due to band bending at the interface. The morphological features of the as-prepared heterostructures were determined by field-emission scanning electron microscopy (FESEM). The crystallinity and phase purity of the samples were confirmed by x-ray diffraction (XRD) analysis. The light absorption properties of the prepared samples were investigated by ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The photoelectrochemical efficiency of bare and ZnO-modified TiO2 nanotube heterostructures was determined by electrochemical analyzer.

  1. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  2. On-chip surface modified nanostructured ZnO as functional pH sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  3. Ferromagnetism induced by oxygen-vacancy complex in (Mn, in) codoped ZnO

    NASA Astrophysics Data System (ADS)

    Wu, Kongping; Gu, Shulin; Tang, Kun; Zhu, Shunming; Zhou, Mengran; Huang, Yourui; Xu, Mingxiang; Zhang, Rong; Zheng, Youdou

    2012-07-01

    Mn doped Zinc oxide (ZnO) thin films were prepared by metal organic chemical vapor deposition (MOCVD) technique. Structural characterizations by X-ray diffraction technique (XRD) and photoluminescence (PL) indicate the crystal quality of ZnO films. PL and Raman show a large fraction of oxygen vacancies (VO2+) are generated by vacuum annealed the film. The enhancement of ferromagnetism in post-annealed (Mn, In) codoped ZnO could result from VO2+ incorporation. The effect of VO2+ on the magnetic properties of (Mn, In) codoped ZnO has been studied by first-principles calculations. It is found that only In donor cannot induce ferromagnetism (FM) in Mn-doped ZnO. Besides, the presence of VO2+ makes the Mn empty 3d-t2g minority state broadened, and a t2g-VO2+ hybrid level at the conduction band minimum forms. The presence of VO2+ can lead to strong ferromagnetic coupling with the nearest neighboring Mn cation by BMP model based on defects reveal that the ferromagnetic exchange is mediated by the donor impurity state, which mainly consists of Mn 3d electrons trapped in oxygen vacancies.

  4. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  5. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Cho, Moo Hwan; Lee, Jintae

    2014-12-01

    The opportunistic pathogen Pseudomonas aeruginosa produces a variety of virulence factors, and biofilms of this bacterium are much more resistant to antibiotics than planktonic cells. Thirty-six metal ions have been investigated to identify antivirulence and antibiofilm metal ions. Zinc ions and ZnO nanoparticles were found to markedly inhibit biofilm formation and the production of pyocyanin, Pseudomonas quinolone signal (PQS), pyochelin, and hemolytic activity of P. aeruginosa without affecting the growth of planktonic cells. Transcriptome analyses showed that ZnO nanoparticles induce the zinc cation efflux pump czc operon and several important transcriptional regulators (porin gene opdT and type III repressor ptrA), but repress the pyocyanin-related phz operon, which explains observed phenotypic changes. A mutant study showed that the effects of ZnO nanoparticles on the control of pyocyanin production and biofilm formation require the czc regulator CzcR. In addition, ZnO nanoparticles markedly increased the cellular hydrophilicity of P. aeruginosa cells. Our results support that ZnO nanoparticles are potential antivirulence materials against recalcitrant P. aeruginosa infections and possibly other important pathogens. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua

    2018-03-01

    Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.

  7. Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process

    NASA Astrophysics Data System (ADS)

    Tan, S. T.; Umar, A. A.; Yahaya, M.; Yap, C. C.; Salleh, M. M.

    2013-04-01

    One dimensional (1D) zinc oxide, ZnO nanostructures have shown promising results for usage in photodiode and optoelectronic device due to their high surface area. Faster and conventional method for synthesis ZnO nanorods has become an attention for researcher today. In this paper, ZnO nanorods have been successfully synthesized via two-step process, namely alcothermal seeding and seed-mediated microwave hydrolysis process. In typical process, the ZnO nanoseeds were grown in the growth solution that contained equimolar (0.04 M) of zinc nitrate hexahydrate, Zn (NO3).6H2O and hexamethylenetetramine, HMT. The growth process was carried inside the inverted microwave within 5- 20 s. The effect of growth parameters (i.e. concentration, microwave power, time reaction) upon the modification of ZnO morphology was studied. ZnO nanostructures were characterized by Field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). The densities of nanorods were evaluated by the Image J analysis. It was found that the morphology (e.g. shape and size) of nanostructures has changed drastically with the increment of growth solution concentration. The density of ZnO nanorods was proven to increase with the increasing of reaction time and microwave power. We hypothesize that the microwave power might enhance the rate of nucleation and promote the faster nanostructure growth as compared with the normal heating condition due to the superheating phenomenon. This method might promote a new and faster alternative way in nanostructure growth which can be applied in currently existing application.

  8. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  9. Single-crystalline twinned ZnO nanoleaf structure via a facile hydrothermal process.

    PubMed

    Qiu, Jijun; Lil, Xiaomin; Gao, Xiangdong; Gan, Xiaoyan; He, Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2011-03-01

    A single-crystalline twinned ZnO nanostructure with a 2-dimensional leaf-like morphology (nanoleaves) was synthesized using a facile hydrothermal strategy. The ZnO nanoleaves had 2-fold symmetric branches, which were identified by the existence of an inversion domain boundary (IDB) along the [2110] growth direction of the ribbon-like stems with both side surfaces of the stems terminated with a chemically active Zn-(0001) plane. A proposed growth mechanism suggested that the formation of IDB and the leaf-like shape are related to the dissolution of seed particles on the substrate surfaces and an OH- shielding effect in solution, respectively. Optical measurements revealed visible emission, suggesting the possession of defects in the as-grown and annealed ZnO nanoleaves. In addition, various ZnO nanostructures were synthesized by simply controlling the fabrication conditions.

  10. Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects

    NASA Astrophysics Data System (ADS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan

    2009-10-01

    The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.

  11. Texture control of zircaloy tubing during tube reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, N.; Kakuma, T.; Fujita, K.

    1982-01-01

    Seven batches of Zircaloy-2 nuclear fuel cladding tubes with different textures were processed from tube shells of the same size, by different reduction routes, using pilger and 3-roll mills. Based on the texture data of these tubes, the texture control of Zircaloy tubing, the texture gradient across the wall, and the texture change during annealing were studied. The deformation texture of Zicaloy-2 tubing was dependent on the tool's curvature and was independent of the dimensions of the mother tubes. The different slopes of texture gradients were observed between the tubing of higher strain ration and that of lower strain ratio.

  12. C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer

    NASA Astrophysics Data System (ADS)

    Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu

    2013-11-01

    A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.

  13. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    PubMed Central

    Motta, Nunzio; Lee, Soonil

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse. PMID:23016139

  14. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  15. Structural, spectroscopic and anti-microbial inspection of PEG capped ZnO nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Meshram, J. V.; Koli, V. B.; Kumbhar, S. G.; Borde, L. C.; Phadatare, M. R.; Pawar, S. H.

    2018-04-01

    Zinc oxide (ZnO) nanoparticles (NPs) have a wide range of biomedical applications. Present study demonstrates the new methodology in sol-gel technology for synthesizing Polyethylene glycol (PEG) capped ZnO NPs and its size effect on anti-microbial activity. The reaction time was increased from 1 h to 5 h for the synthesis of ZnO NPs at 130 °C. The size of PEG capped ZnO NPs is increased from 10 to 84 nm by increasing the reaction upto 5 h. The x-ray diffraction studies and transmission electron microscopy analysis reveals the phase purity and hexagonal wurtzite crystal structure with uniform PEG capping on the surface of ZnO NPs. UV–visible spectroscopy exhibits the peak at 366 nm which is attributed to ZnO NPs. No adverse effect is observed in case of absorbance spectroscopy. Further, Fourier transforms infrared spectroscopy and thermo gravimetric analysis depicts the adsorption of PEG molecules on the ZnO NPs surface. The anti-microbial activities for both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria were studied by optical density (OD) mesurement. The remarkable anti-microbial activity was observed for PEG capped ZnO NPs synthesized at 1 h reaction time showing higher activity in comparison with that synthesized from 2 h to 5 h reaction time. The microbial growth was found to be inhibited after 10 h OD measurement for both the bacteria. The anti-microbial activity may be attributed to the generation of ROS and H2O2. However, these generated species plays a vital role in inhibition of microbial growth. Hence, PEG capped ZnO NPs has promising biomedical applications.

  16. Synthesis of highly efficient antibacterial agent Ag doped ZnO nanorods: Structural, Raman and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Tariq; Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk; Ismail, Muhammad

    Here, synthesis, structural, morphological, Raman, optical properties and antibacterial activity of undoped and Ag doped ZnO nanorods by chemical co-precipitation technique have been reported. Structural analysis has revealed that Ag doping cannot deteriorate the structure of ZnO and wurtzite phase is maintained. Lattice constants are found to be decreased with the Ag doping. Fourier transform infrared and Raman spectroscopy also confirm the X-ray diffraction results. Scanning electron microscopy results have demonstrated the formation of ZnO nanorods with average diameter and length of 96 nm and 700 nm, respectively. Raman spectroscopy results suggest that the Ag doping enhances the number of defects inmore » ZnO crystal. It has been found from optical study that Ag doping results in positional shift of band edge absorption peak. This is attributed to the successful incorporation of Ag dopant into ZnO host matrix. The antibacterial activity of prepared nanorods has been determined by two different methods and compared to that of undoped ZnO nanorods. Ag doped ZnO nanorods exhibit excellent antibacterial activity as compared to that of undoped ZnO nanorods. This excellent antibacterial activity may be attributed to the presence of oxygen vacancies and Zn{sup 2+} interstitial defects. Our preliminary findings suggest that Ag doped ZnO nanorods can be used externally to control the spreading of infections related with tested bacterial strains.« less

  17. Effect of Er3+ doping on structural, morphological and photocatalytical properties of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Bouhouche, S.; Bensouici, F.; Toubane, M.; Azizi, A.; Otmani, A.; Chebout, K.; Kezzoula, F.; Tala-Ighil, R.; Bououdina, M.

    2018-05-01

    In this research work, structure, microstructure, optical and photocatalytic properties of undoped and Erbium doped nanostructured ZnO thin films prepared by sol-gel dip-coating are investigated. X-ray diffraction (XRD) analysis indicates that the deposited films crystallize within the hexagonal wurtzite-type structure with a preferential growth orientation along (002) plane. Morphological observations using scanning electron microscopy (SEM) reveal important influence of Er concentration; displaying homogeneous and dense aspect for undoped to 0.3% then grid-like morphology for 0.4 and 0.5%. UV/vis/NIR transmittance spectroscopy spectra display a transmittance over 70%, and small variation in the energy gap energy 3.263–3.278 eV. Wettability test of ZnO thin films surface ranges from hydrophilic aspect for pure ZnO to hydrophobic one for Er doped ZnO, and the contact angle is found to increase from 58.7° for pure ZnO up to 98.4° for 0.4% Er doped ZnO. The photocatalytic activity measurements evaluated using the degradation of methylene blue (MB) under UV light irradiation demonstrate that undoped ZnO film shows higher photocatalytic activity compared to Er doped ZnO films, which may be attributed to the deterioration of films’crystallinity resulting in lower transmittance.

  18. Colloidal ZnO and Zn(1-x)Co(x)O tetrapod nanocrystals with tunable arm lengths.

    PubMed

    Hodges, James M; Fenton, Julie L; Gray, Jennifer L; Schaak, Raymond E

    2015-10-28

    Tetrapod-shaped ZnO nanocrystals exhibit exceptional optoelectronic properties, including intense ultraviolet photoluminescence emission, that make them attractive for applications that include lasers, sensors, and photocatalysts. However, synthetic methods that produce ZnO tetrapods typically include high-temperature vapor-deposition approaches that do not readily achieve characteristic dimensions of less than 100 nm or colloidal methods that require added metal dopants, which modify the inherent properties of ZnO. Here, we report a robust, modified solution-phase synthetic protocol for generating colloidal ZnO tetrapods that does not require the use of metal dopants. The ZnO tetrapod arm lengths can be tuned from 10 to 25 nm by adjusting the amount of Zn reagent used in the reaction. Subsequent seeded-growth produced even larger colloidal ZnO tetrapods with 62 nm arms. Photoluminescence (PL) measurements confirm that the tetrapods are of high crystalline quality, and the ultraviolet PL emission wavelengths that are observed fall between those of previously reported metal-doped colloidal ZnO tetrapods, which exhibit dopant-induced red- or blue-shifts. Furthermore, the reaction strategy can be modified to produce cobalt-substituted ZnO, offering a chemical pathway to tetrapod-shaped Zn1-xCoxO nanocrystals.

  19. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  20. Performance of Dye-Sensitized Solar Cells (DSSCs) Fabricated with Zinc Oxide (ZnO) Nanpowders and Nanorods

    NASA Astrophysics Data System (ADS)

    Chatterjee, Suman

    2018-03-01

    Due to their high efficiencies, along with lower production costs, many researchers are working on dye-sensitized solar cells (DSSCs) over last few decades as a substitute technology for nonconventional energy. Nanostructured ZnO has got many interesting properties such as wide band gap, large exciton binding energy, good exciton stability, and high breakdown strength, which are applicable as DSSC electrodes. This present work compares the device properties of DSSC fabricated using ZnO nanorods on a ZnO film and ZnO nanopowders. Different types of ZnO photoanode and dye combinations are used to study the stability and photovoltaic properties of the DSSC cell. The photovoltaic properties of the ZnO-based DSSC samples were systematically investigated. The photovoltaic properties of fabricated cell obtained are discussed in the light of band structure and density of states of different types of ZnO nanolayers. The ZnO nanorods fabricated through the sol-gel route have more uniform thickness resulting in enhanced photovoltaic properties of the fabricated device.

  1. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    PubMed

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.

  2. Mobility of indium on the ZnO(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinhold, R.; Reeves, R. J.; Allen, M. W.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentionalmore » In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.« less

  3. ZnO nanodisk based UV detectors with printed electrodes.

    PubMed

    Alenezi, Mohammad R; Alshammari, Abdullah S; Alzanki, Talal H; Jarowski, Peter; Henley, Simon John; Silva, S Ravi P

    2014-04-08

    The fabrication of highly functional materials for practical devices requires a deep understanding of the association between morphological and structural properties and applications. A controlled hydrothermal method to produce single crystal ZnO hexagonal nanodisks, nanorings, and nanoroses using a mixed solution of zinc sulfate (ZnSO4) and hexamethylenetetramine (HMTA) without the need of catalysts, substrates, or templates at low temperature (75 °C) is introduced. Metal-semiconductor-metal (MSM) ultraviolet (UV) detectors were fabricated based on individual and multiple single-crystal zinc oxide (ZnO) hexagonal nanodisks. High quality single crystal individual nanodisk devices were fabricated with inkjet-printed silver electrodes. The detectors fabricated show record photoresponsivity (3300 A/W) and external quantum efficiency (1.2 × 10(4)), which we attribute to the absence of grain boundaries in the single crystal ZnO nanodisk and the polarity of its exposed surface.

  4. Direct Heteroepitaxial Growth of ZnO over GaN Crystal in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Hamada, Takahiro; Ito, Akihiro; Nagao, Nobuaki; Suzuki, Nobuyasu; Fujii, Eiji; Tsujimura, Ayumu

    2013-04-01

    We report on the structural and electrical properties of ZnO films grown on surface-treated GaN/Al2O3 substrates by chemical bath deposition. X-ray diffraction analysis indicated that the ZnO films had a single-crystalline wurtzite structure with c-axis orientation. The ZnO film exhibited n-type conduction with a carrier concentration of 6.9 ×1018 cm-3, an electron mobility of 41 cm2/(V.s), and a resistivity of 2.2 ×10-2 Ω.cm. A low specific contact resistivity of 4.3 ×10-3 Ω.cm2 was obtained at the ZnO/n-GaN interface. Additionally, the ZnO film exhibited high transparency in the visible and infrared region.

  5. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    NASA Astrophysics Data System (ADS)

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  6. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn

  7. Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor.

    PubMed

    Khan, Sher Bahadar; Faisal, M; Rahman, Mohammed M; Jamal, Aslam

    2011-08-15

    Well-crystalline ZnO nanoparticles (NPs) were synthesized in large-quantity via simple hydrothermal process using the aqueous mixtures of zinc chloride and ammonium hydroxide. The detailed structural properties were examined using X-ray diffraction pattern (XRD) and field emission scanning electron microscope (FESEM) which revealed that the synthesized NPs are well-crystalline and possessing wurtzite hexagonal phase. The NPs are almost spherical shape with the average diameters of ∼ 50 ± 10 nm. The quality and composition of the synthesized NPs were obtained using Fourier transform infrared (FTIR) and electron dispersed spectroscopy (EDS) which confirmed that the obtained NPs are pure ZnO and made with almost 1:1 stoichiometry of zinc and oxygen, respectively. The optical properties of ZnO NPs were investigated by UV-vis absorption spectroscopy. Synthesized ZnO NPs were extensively applied as a photocatalyst for the degradation of acridine orange (AO) and as a chemi-sensor for the electrochemical sensing of acetone in liquid phase. Almost complete degradation of AO has taken place after 80 min of irradiation time. The fabricated acetone sensor based on ZnO NPs exhibits good sensitivity (∼ 0.14065 μA cm(-2) mM(-1)) with lower detection limit (0.068 ± 0.01 mM) in short response time (10s). Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Parenteral oil-based drospirenone microcrystal suspensions-evaluation of physicochemical stability and influence of stabilising agents.

    PubMed

    Nippe, Stefanie; General, Sascha

    2011-09-15

    Drospirenone (DRSP) is a contraceptive drug substance with challenging physicochemical properties, due to insufficient solubility in aqueous and oil-based vehicles as well as low chemical stability in aqueous fluids. Although it is one of the most popular orally used progestins, no parenteral long-acting contraceptive containing the drug substance is marketed. An oil-based DRSP microcrystal suspension (MCS) might be an attractive formulation option. The main focus of this study was to investigate the physicochemical stability of such preparations. Moreover, syringeability and injectability via autoinjector were analysed using a materials testing machine. A high chemical stability of DRSP was found in oil-based vehicles. Span(®) 83, cholesteryl oleate, lecithin, methyl cholate, Aerosil(®) R972 and 200 Pharma were tested for increasing the physical stability of DRSP dispersions. Changes in viscosity, rheological properties, and solubility were analysed. The intention was to show a stabilising effect of the excipients without increasing viscosity and solubility. To evaluate the physical stability of DRSP MCS with and without addition of stabilising agents, sedimentation and particle growth after storage were examined. Especially, the silica derivatives Aerosil(®) 200 and R972 Pharma influenced the physical stability positively. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques

    NASA Astrophysics Data System (ADS)

    Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.

    2018-02-01

    Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.

  10. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-01

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  11. Micropatternable Double-Faced ZnO Nanoflowers for Flexible Gas Sensor.

    PubMed

    Kim, Jong-Woo; Porte, Yoann; Ko, Kyung Yong; Kim, Hyungjun; Myoung, Jae-Min

    2017-09-27

    Micropatternable double-faced (DF) zinc oxide (ZnO) nanoflowers (NFs) for flexible gas sensors have been successfully fabricated on a polyimide (PI) substrate with single-walled carbon nanotubes (SWCNTs) as electrode. The fabricated sensor comprises ZnO nanoshells laid out on a PI substrate at regular intervals, on which ZnO nanorods (NRs) were grown in- and outside the shells to maximize the surface area and form a connected network. This three-dimensional network structure possesses multiple gas diffusion channels and the micropatterned island structure allows the stability of the flexible devices to be enhanced by dispersing the strain into the empty spaces of the substrate. Moreover, the micropatterning technique on a flexible substrate enables highly integrated nanodevices to be fabricated. The SWCNTs were chosen as the electrode for their flexibility and the Schottky barrier they form with ZnO, improving the sensing performance. The devices exhibited high selectivity toward NO 2 as well as outstanding sensing characteristics with a stable response of 218.1, fast rising and decay times of 25.0 and 14.1 s, respectively, and percent recovery greater than 98% upon NO 2 exposure. The superior sensing properties arose from a combination of high surface area, numerous active junction points, donor point defects in the ZnO NRs, and the use of the SWCNT electrode. Furthermore, the DF-ZnO NF gas sensor showed sustainable mechanical stability. Despite the physical degradation observed, the devices still demonstrated outstanding sensing characteristics after 10 000 bending cycles at a curvature radius of 5 mm.

  12. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  13. Vanadium substitution: A simple and economic way to improve UV sensing in ZnO

    NASA Astrophysics Data System (ADS)

    Srivastava, Tulika; Bajpai, Gaurav; Rathore, Gyanendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya

    2018-04-01

    The UV sensing in pure ZnO is due to oxygen adsorption/desorption process from the ZnO surface. Vanadium doping improves the UV sensitivity of ZnO. The enhancement in UV sensitivity in vanadium-substituted ZnO is attributed to trapping and de-trapping of electrons at V4+ and V5+-related defect states. The V4+ state has an extra electron than the V5+ state. A V4+ to V5+ transformation happens with excitation of this electron to the conduction band, while a reverse trapping process liberates a visible light. An analytic study of response phenomenon reveals this trapping and de-trapping process.

  14. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  15. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  16. Deep levels due to hydrogen in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra; Weber, Marc; Lynn, Kelvin

    2009-05-01

    Hydrogen impurities and oxygen vacancies are involved in the ˜0.7 eV shift of the optical absorption edge of ZnO. Deuterium causes a smaller shift. Titanium metal is used to bind hydrogen as it diffuses out of ZnO. Positron annihilation spectroscopy coupled with other techniques point to the presence of oxygen vacancies. Removing hydrogen followed by annealing in oxygen reduces the carrier concentration.

  17. REVIEW ARTICLE: Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano

    NASA Astrophysics Data System (ADS)

    Singh, Shubra; Thiyagarajan, P.; Mohan Kant, K.; Anita, D.; Thirupathiah, S.; Rama, N.; Tiwari, Brajesh; Kottaisamy, M.; Ramachandra Rao, M. S.

    2007-10-01

    ZnO is a unique material that offers about a dozen different application possibilities. In spite of the fact that the ZnO lattice is amenable to metal ion doping (3d and 4f), the physics of doping in ZnO is not completely understood. This paper presents a review of previous research works on ZnO and also highlights results of our research activities on ZnO. The review pertains to the work on Al and Mg doping for conductivity and band gap tuning in ZnO followed by a report on transition metal (TM) ion doped ZnO. This review also highlights the work on the transport and optical studies of TM ion doped ZnO, nanostructured growth (ZnO polycrystalline and thin films) by different methods and the formation of unique nano- and microstructures obtained by pulsed laser deposition and chemical methods. This is followed by results on ZnO encapsulated Fe3O4 nanoparticles that show promising trends suitable for various applications. We have also reviewed the non-linear characteristic studies of ZnO based heterostructures followed by an analysis on the work carried out on ZnO based phosphors, which include mainly the nanocrystalline ZnO encapsulated SiO2, a new class of phosphor that is suitable for white light emission.

  18. ZnO layers prepared by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Messaoudi, C.; Abd-Lefdil, S.; Sayah, D.; Cadene, M.

    1998-02-01

    Highly transparent undoped and indium doped ZnO thin films have been grown on glass substrates by using the spray pyrolysis process. Conditions of preparation have been optimized to get good quality and reproducible films with required properties. Polycrystalline films with an hexagonal Wurtzite-type structure were easily obtained under the optimum spraying conditions. Both of samples have shown high transmission coefficient in the visible and infrared wavelength range with sharp absorption edge around 380 nm which closely corresponds to the intrinsic band-gap of ZnO (3.2 eV). Orientation and crystallites size were remarkably modified by deposition temperature and indium doping. Des couches minces de ZnO, hautement transparentes, non dopées et dopées à l'indium ont été élaborées sur un substrat en verre par le procédé de pulvérisation chimique réactive spray. Les conditions de préparation ont été optimisées pour l'obtention de couches reproductibles, de bonne qualité et ayant les propriétés requises. Des films polycristallins, présentant une structure hexagonale de type Wurtzite, ont été aisément obtenus dans les conditions optimales de pulvérisation. Tous les échantillons ont présenté un coefficient de transmission élevé dans le domaine du visible et du proche infrarouge, avec une absorption brutale au voisinage de 380 nm, correspondant au gap optique du ZnO (3,2 eV). L'orientation et la taille des cristallites ont été remarquablement modifiées par la température du dépôt et par le dopage à l'indium.

  19. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    PubMed

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  20. Cr2O3-modified ZnO thick film resistors as LPG sensors.

    PubMed

    Patil, D R; Patil, L A

    2009-02-15

    Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr(2)O(3) were obtained by dipping pure ZnO thick films into 0.01M aqueous solution of chromium trioxide (CrO(3)). The dipped films were fired at 500 degrees C for 30 min. Upon firing, the CrO(3) would reduce to Cr(2)O(3). Cr(2)O(3)-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr(2)O(3) and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 degrees C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response ( approximately 18s) and fast recovery ( approximately 42s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.