Science.gov

Sample records for zno nano systems

  1. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  2. Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation

    NASA Astrophysics Data System (ADS)

    Mai, Wenjie; Zhang, Long; Gu, Yudong; Huang, Shiqing; Zhang, Zongfu; Lao, Changshi; Yang, Peihua; Qiang, Pengfei; Chen, Zhongwei

    2012-08-01

    With assistance from a nano-manipulator system inside a scanning electron microscope chamber, mechanical and electrical properties of ZnO nanorings were investigated. The change of a fractured nanoring to nearly straight nanobelts was strong evidence to support the previously proposed electrostatic-force-induced self-coiling model, and our computational simulation results indicated the fracture force was 25-30 μN. The contact between a tungsten tip of the manipulator and a ZnO nanoring was confirmed as the Schottky type; therefore, the change of I-V curves of the nanoring under compression was attributed to the Schottky barrier height changes.

  3. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  4. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    PubMed Central

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-01-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions. PMID:27094203

  5. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  6. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-20

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.

  7. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  8. Self-assembly synthesis of precious-metal-free 3D ZnO nano/micro spheres with excellent photocatalytic hydrogen production from solar water splitting

    NASA Astrophysics Data System (ADS)

    Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song

    2015-10-01

    A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.

  9. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  10. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    PubMed

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  11. Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit; Kumar, Rahul; Rajamani, Saravanan; Ranwa, Sapana; Fanetti, Mattia; Valant, Matjaz; Kumar, Mahesh

    2017-09-01

    Room temperature hydrogen sensors were fabricated from Au embedded ZnO nano-networks using a 30 mW GaN ultraviolet LED. The Au-decorated ZnO nano-networks were deposited on a SiO2/Si substrate by a chemical vapour deposition process. X-ray diffraction (XRD) spectrum analysis revealed a hexagonal wurtzite structure of ZnO and presence of Au. The ZnO nanoparticles were interconnected, forming nano-network structures. Au nanoparticles were uniformly distributed on ZnO surfaces, as confirmed by FESEM imaging. Interdigitated electrodes (IDEs) were fabricated on the ZnO nano-networks using optical lithography. Sensor performances were measured with and without UV illumination, at room temperate, with concentrations of hydrogen varying from 5 ppm to 1%. The sensor response was found to be ˜21.5% under UV illumination and 0% without UV at room temperature for low hydrogen concentration of 5 ppm. The UV-photoactivated mode enhanced the adsorption of photo-induced O- and O2- ions, and the d-band electron transition from the Au nanoparticles to ZnO—which increased the chemisorbed reaction between hydrogen and oxygen. The sensor response was also measured at 150 °C (without UV illumination) and found to be ˜18% at 5 ppm. Energy efficient low cost hydrogen sensors can be designed and fabricated with the combination of GaN UV LEDs and ZnO nanostructures.

  12. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization.

    PubMed

    Nayak, Tapas R; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-06-15

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods' length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30-35 µm and diameters of 200-300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery.

  13. ZnO Nano-Rod Devices for Intradermal Delivery and Immunization

    PubMed Central

    Nayak, Tapas R.; Wang, Hao; Pant, Aakansha; Zheng, Minrui; Junginger, Hans; Goh, Wei Jiang; Lee, Choon Keong; Zou, Shui; Alonso, Sylvie; Czarny, Bertrand; Storm, Gert; Sow, Chorng Haur; Lee, Chengkuo; Pastorin, Giorgia

    2017-01-01

    Intradermal delivery of antigens for vaccination is a very attractive approach since the skin provides a rich network of antigen presenting cells, which aid in stimulating an immune response. Numerous intradermal techniques have been developed to enhance penetration across the skin. However, these methods are invasive and/or affect the skin integrity. Hence, our group has devised zinc oxide (ZnO) nano-rods for non-destructive drug delivery. Chemical vapour deposition was used to fabricate aligned nano-rods on ZnO pre-coated silicon chips. The nano-rods’ length and diameter were found to depend on the temperature, time, quality of sputtered silicon chips, etc. Vertically aligned ZnO nano-rods with lengths of 30–35 µm and diameters of 200–300 nm were selected for in vitro human skin permeation studies using Franz cells with Albumin-fluorescein isothiocyanate (FITC) absorbed on the nano-rods. Fluorescence and confocal studies on the skin samples showed FITC penetration through the skin along the channels formed by the nano-rods. Bradford protein assay on the collected fluid samples indicated a significant quantity of Albumin-FITC in the first 12 h. Low antibody titres were observed with immunisation on Balb/c mice with ovalbumin (OVA) antigen coated on the nano-rod chips. Nonetheless, due to the reduced dimensions of the nano-rods, our device offers the additional advantage of excluding the simultaneous entrance of microbial pathogens. Taken together, these results showed that ZnO nano-rods hold the potential for a safe, non-invasive, and painless intradermal drug delivery. PMID:28617335

  14. [Chemical modification on the surface of nano-particles of ZnO and its characterization].

    PubMed

    Yu, Hai-yin; Du, Jun; Gu, Jia-shan; Guan, Ming-yun; Wu, Zheng-cui; Ling, Qing; Sun, Yi-min

    2004-02-01

    After nano-particles (ZnO) had been encapsulated by a kind of water-soluble cellulose Hydoxyl-Propyl-Methyl Cellulose (HPMC), then methyl methacrylate was grafted onto the surface of them. Thus the surface of nano-ZnO had been successfully modified. FTIR, DTA and TEM were utilized to confirm the results. FTIR shows that HPMC was adsorbed onto the surface of ZnO, and PMMA was also grafted onto its surface, DTA says that the heat stability of HPMC, HPMC-g-PMMA and ZnO/HPMC-g-PMMA increased greatly, TEM photo demonstrates that polymer adhered onto the surface of nano-ZnO which was encapsulated by a layer of film-like polymer.

  15. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Velayi, Elmira; Norouzbeigi, Reza

    2018-05-01

    Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.

  16. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    NASA Astrophysics Data System (ADS)

    Hsiao, I.-Lun; Huang, Yuh-Jeen

    2013-09-01

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  17. Novel nano coordination polymer based synthesis of porous ZnO hexagonal nanodisk for higher gas sorption and photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Rakibuddin, M.; Ananthakrishnan, Rajakumar

    2016-01-01

    Zinc(II)-based nano co-ordination polymers (NCPs) are first prepared at room temperature from three different isomers of dihydroxysalophen (DHS) ligand with Zn(OAc)2·2H2O and 1,4-benzenedicarboxylic acid (BDC) in DMF solvent. Facile calcinations of [Zn (DHS) (BDC)]·nH2O (shortly denoted as Zn(II)-based NCP) at ambient conditions produces porous ZnO hexagonal nanodisks. Moreover, a novel approach has been introduced to observe the effect of ligand of the NCP on the physico-chemical properties of the as-synthesized ZnO. The porous ZnO nanodisks are characterized by FT-IR, PXRD, TEM, FESEM, EDX and BET analysis, and the results exhibit that they possess different sizes, surface areas and porosities. Nitrogen gas sorption capacity and photocatalytic activities of the as-prepared ZnO nanodisks are also checked, and it is noticed that they differ in these physico-chemical properties due to having different porosities and surface areas. A comparative study is also done with commercially available ZnO; interestingly, the commercial ZnO exhibited lower surface area, gas sorption and photocatalytic activity compared to the ZnO nanodisks. Hence, preparation of the ZnO through the NCP route and tuning their physico-chemical properties would offer new directions in synthesis of various nano metal oxides of unique properties.

  18. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  19. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  20. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    PubMed

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  1. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process

    PubMed Central

    2014-01-01

    Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601

  2. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  3. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    PubMed

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  4. Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.

    PubMed

    Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John

    2014-03-01

    A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.

  5. REVIEW ARTICLE: Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano

    NASA Astrophysics Data System (ADS)

    Singh, Shubra; Thiyagarajan, P.; Mohan Kant, K.; Anita, D.; Thirupathiah, S.; Rama, N.; Tiwari, Brajesh; Kottaisamy, M.; Ramachandra Rao, M. S.

    2007-10-01

    ZnO is a unique material that offers about a dozen different application possibilities. In spite of the fact that the ZnO lattice is amenable to metal ion doping (3d and 4f), the physics of doping in ZnO is not completely understood. This paper presents a review of previous research works on ZnO and also highlights results of our research activities on ZnO. The review pertains to the work on Al and Mg doping for conductivity and band gap tuning in ZnO followed by a report on transition metal (TM) ion doped ZnO. This review also highlights the work on the transport and optical studies of TM ion doped ZnO, nanostructured growth (ZnO polycrystalline and thin films) by different methods and the formation of unique nano- and microstructures obtained by pulsed laser deposition and chemical methods. This is followed by results on ZnO encapsulated Fe3O4 nanoparticles that show promising trends suitable for various applications. We have also reviewed the non-linear characteristic studies of ZnO based heterostructures followed by an analysis on the work carried out on ZnO based phosphors, which include mainly the nanocrystalline ZnO encapsulated SiO2, a new class of phosphor that is suitable for white light emission.

  6. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    SciTech Connect

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  7. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    SciTech Connect

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  8. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  9. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechano-micro/nano systems

    NASA Astrophysics Data System (ADS)

    Horie, Mikio

    2004-10-01

    In recent years, the researches about Micro/Nano Systems are down actively in the bio-medical research fields, DNA research fields, chemical analysis systems fields, etc. In the results, a new materials and new functions in the systems are developed. In this invited paper, Mechano-Micro/Nano Systems, especially, motion systems are introduced. First, the research activities concerning the Mechano-Micro/Nano Systems in the world(MST2003, MEMS2003 and MEMS2004) and in Japan(Researech Projects on Nanotechnology and Materials in Ministry of Education, Culture, Sports, Science and Technology) are shown. Secondary, my research activities are introduced. As my research activities, (1) a comb-drive static actuator for the motion convert mechanisms, (2) a micro-nano fabrication method by use of FAB(Fast Atom Beam) machines, (3) a micro optical mirror manipulator for inputs-outputs optical switches, (4) a miniature pantograph mechanism with large-deflective hinges and links made of plastics are discussed and their performances are explained.

  11. Piezo-phototronic effect enhanced photo-detector based on ZnO nano-arrays/NiO structure

    NASA Astrophysics Data System (ADS)

    Sun, Jingchang; Li, Peida; Gao, Ruixue; Lu, Xue; Li, Chengren; Lang, Yueyi; Zhang, Xiwen; Bian, Jiming

    2018-01-01

    A photo-detector with n-ZnO nano-arrays/p-NiO film structure was synthesized on flexible Ni foil substrate. In contrast to conventional detectors that detect only the photon energies greater than the band gap of working materials, the visible light with smaller photon energies (3.0 eV) than the band gap of both ZnO (3.3 eV) and NiO (3.7 eV) can be sensitively detected by this detector due to the spatially indirect type-II transition between ZnO nano-arrays and NiO film. The increase in output currents of the photo-detector with illumination density was observed at both forward and reverse bias, and it can be further enhanced by exerting external compressive strain along the c axis of ZnO nano-arrays by piezo-phototronic effect. A maximum enhancement of 1020% of the responsivity (R) was achieved under external compressive strain. The similar behaviors were demonstrated at four different excitation wavelengths (325, 365, 388 and 405 nm), providing compelling evidence that the responses performance of the photo-detector can be effectively enhanced using piezo-phototronic effect. Moreover, the piezo-phototronic effect enhanced performance can be well elucidated by the corresponding energy band diagram.

  12. Synthesis, Optical and Photoluminescence Properties of Cu-Doped Zno Nano-Fibers Thin Films: Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Salem, G. F.; Yahia, I. S.; Yakuphanoglu, F.

    2018-03-01

    Different concentrations of copper-doped zinc oxide thin films were coated on a glass substrate by sol-gel/spin-coating technique. The structural properties of pure and Cu-doped ZnO films were characterized by different techniques, i.e., atomic force microscopy (AFM), photoluminescence and UV-Vis-NIR spectroscopy. The AFM study revealed that pure and doped ZnO films are formed as nano-fibers with a granular structure. The photoluminescence spectra of these films showed a strong ultraviolet emission peak centered at 392 nm and a strong blue emission peak cantered at 450 nm. The optical band gap of the pure and copper-doped ZnO thin films calculated from optical transmission spectra (3.29-3.23 eV) were found to be increasing with increasing copper doping concentration. The refractive index dispersion curve of pure and Cu-doped ZnO film obeyed the single-oscillator model. The optical dispersion parameters such as E o , E d , and n_{∞}2 were calculated. Further, the nonlinear refractive index and nonlinear optical susceptibility were also calculated and interpreted.

  13. Self-assembled Ag nanoparticle network passivated by a nano-sized ZnO layer for transparent and flexible film heaters

    SciTech Connect

    Seo, Ki-Won; Kim, Han-Ki, E-mail: imdlhkkim@khu.ac.kr; Kim, Min-Yi

    2015-12-15

    We investigated a self-assembled Ag nanoparticle network electrode passivated by a nano-sized ZnO layer for use in high-performance transparent and flexible film heaters (TFFHs). The low temperature atomic layer deposition of a nano-sized ZnO layer effectively filled the uncovered area of Ag network and improved the current spreading in the self-assembled Ag network without a change in the sheet resistance and optical transmittance as well as mechanical flexibility. The time-temperature profiles and heat distribution analysis demonstrate that the performance of the TFTH with the ZnO/Ag network is superior to that of a TFFH with Ag nanowire electrodes. In addition, themore » TFTHs with ZnO/Ag network exhibited better stability than the TFFH with a bare Ag network due to the effective current spreading through the nano-sized ZnO layer.« less

  14. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  15. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    PubMed

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  16. Fabrication and Characterization of Fully Transparent ZnO Thin-Film Transistors and Self-Switching Nano-Diodes

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Ashida, K.; Sasaki, S.; Koyama, M.; Maemoto, T.; Sasa, S.; Kasai, S.; Iñiguez-de-la-Torre, I.; González, T.

    2015-10-01

    Fully transparent zinc oxide (ZnO) based thin-film transistors (TFTs) and a new type of rectifiers calls self-switching nano-diodes (SSDs) were fabricated on glass substrates at room temperature by using low resistivity and transparent conducting Al- doped ZnO (AZO) thin-films. The deposition conditions of AZO thin-films were optimized with pulsed laser deposition (PLD). AZO thin-films on glass substrates were characterized and the transparency of 80% and resistivity with 1.6*10-3 Ωcm were obtained of 50 nm thickness. Transparent ZnO-TFTs were fabricated on glass substrates by using AZO thin-films as electrodes. A ZnO-TFT with 2 μm long gate device exhibits a transconductance of 400 μS/mm and an ON/OFF ratio of 2.8*107. Transparent ZnO-SSDs were also fabricated by using ZnO based materials and clear diode-like characteristics were observed.

  17. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    PubMed Central

    Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-01-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method. PMID:27877777

  18. Local Structures Around Co Atoms in Wurtzite ZnO Nano-Composites Probed by Fluorescence XAFS

    SciTech Connect

    Shi Tongfei; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029; Liu Wenhan

    2007-02-02

    The local structures around Co ions in the Zn1-xCoxO nano-composites prepared by the sol-gel method have been investigated by fluorescence X-ray absorption fine structure (XAFS) technique. The results indicate that for dilute Co-doped ZnO (x=0.02, 0.05), the Co2+ ions are incorporated into the ZnO lattice, and are located at the position of the substitutional Zn2+ ions. As the Co content increases to 0.10 or higher, only part of the Co ions enter the lattice of the wurtzite and the others exist in the form of a Co3O4 phase whose content increases with the doped Co concentration. In the substitutional Zn0.98Co0.02Omore » sample, the bond length of the first shell RCo-O and the second shell RCo-Zn is smaller than the second shell Zn-Zn distance in ZnO by about 0.01{approx}0.02 A. These results imply that only small local lattice deformation is induced by dilute Co2+ substituting into the Zn2+ sites.« less

  19. Cd-doped ZnO nano crystalline thin films prepared at 723K by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Joishy, Sumanth; Rajendra B., V.

    2018-04-01

    Ternary Zn1-xCdxO(x=0.10, 0.40, 0.70 at.%) thin films of 0.025M precursor concentration have been successfully deposited on preheated (723K) glass substrates using spray pyrolysis route. The structure, morphology and optical properties of deposited films have been characterized by X-ray diffraction, Scanning Electron Microscopy (SEM) and UV-Visible spectrophotometry. X-ray diffraction study shows that the prepared films are polycrystalline in nature. 10% Cd doped ZnO film belongs to the hexagonal wurtzite system and 70% Cd doped ZnO film belongs to the cubic system, although mixed phases were formed for 40% Cd doped ZnO film. The optical transmittance spectra has shown red shift with increasing cadmium content. Optical energy band gap has been reduced with cadmium dopant.

  20. In-situ sonosynthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties.

    PubMed

    Behzadnia, Amir; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2015-08-01

    Here, a simple processing route is introduced for preparation of N-doped nano structure ZnO at 75-80°C using in-situ sonosynthesis method through hydrolysis of zinc acetate at pH≈9-10 adjusting with ammonia. Synthesis and fabrication of nano N-doped ZnO were carried out on the wool fabric through impregnation of the fabric in ultrasound bath using different concentrations of zinc acetate followed by curing. The antibacterial and antifungal activities of the treated fabrics were assessed against two common pathogenic bacteria including Escherichia coli, Staphylococcus aureus and the diploid fungus namely Candida albicans. The photo-catalytic activity of nano N-doped ZnO particles on the wool fabric was determined by degradation of Methylene Blue under daylight irradiation. Increasing zinc acetate and prolonged sonication time led to higher photo-catalytic activity as more dye stain degraded from the stained treated fabric under daylight. Higher photo-catalytic activity was observed on the nano N-doped ZnO sonotreated wool fabric having more hydrophilicity. Finally, the treatment indicated no negative effect on the fabric safety while reduced alkaline solubility and yellowness even enhanced the fabric tensile strength. The response surface methodology was also utilized to optimize the wool fabric treatment conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Selmane, Naceur; Cheknane, Ali; Gabouze, Nourddine; Maloufi, Nabila; Aillerie, Michel

    2017-11-01

    ZnO films deposited on silicon porous substrates (PS) were prepared by electro-deposition anodization on n type (100) silicon wafer. This ZnO/PS structure combines substrates having specific structural and optical properties (IR emission), with nano-composites of ZnO potentially interesting due to their functional properties (UV emission) to be integrated as constitutive elements of devices in various optoelectronic applications mainly in blue light emitters. With this combined structure, the blue shift in the PL peak is possible and easy to obtain (467nm). The vibration modes of PS and ZnO films on PS substrates (ZnO /PS) were investigated by infrared (FTIR) measurements and their behaviors were analyzed and discussed by considering the structural properties characterized by X-ray diffraction (DRX) and scanning electronic microscopy (MEB).

  2. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Lin, Weisheng; Xu, Yi; Huang, Chuan-Chin; Ma, Yinfa; Shannon, Katie B.; Chen, Da-Ren; Huang, Yue-Wern

    2009-01-01

    This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose-response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

  3. Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) for light-weight superior electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoqing

    2017-02-01

    Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) with superior electromagnetic interferece (EMI) shielding efficiency (SE) was fabricated through a UV enhanced hydrothermal process. In this study, a composite with 10 wt% of 3D-RGO/ZnO was tested in a broadband frequency range from 2 to 18 GHz. Under the whole test conditions, the ratio of SEA/SET is higher than 50% and the maximum value can reach to 94%, indicating the shielding mechanism mainly attributes to absorption. The EMI SE showed that the thinnest thicknesses to shield different frequency range are 0.7 mm for 10 dB, 1.6 mm for 20 dB and 3.7 mm for 30 dB, which suggests 3D-RGO/ZnO could meet the requirement of new generate EMI shielding material.

  4. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    PubMed

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  6. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  7. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions.

    PubMed

    Huang, Jing; Huang, Guohe; An, Chunjiang; He, Yuan; Yao, Yao; Zhang, Peng; Shen, Jian

    2018-07-01

    Global water safety is facing great challenges due to increased population and demand. There is an urgent need to develop suitable water treatment strategy for small rural and remote communities in low-income developing countries. In order to find a low-cost solution, the reduction of E. coli using ceramic water disk coated with nano ZnO was investigated in this study. The performance of modified ceramic disk filters was influenced by several factors in the filter production process. Based on the factorial analysis, the pore size of the disk filters was the most significant factor for influencing E. coli removal efficiency and the clay content was the most significant one for influencing flow rate of modified disk filters. The coating of nano ZnO led to the change of disk filter surface and porosity. The reduction of E. coli could be attributed to both filter retention and photocatalytic antibacterial activity of nano ZnO. The effects of filter operation factors including initial E. coli concentration, illumination time and lamp power on E. coli removal effectiveness were also revealed. The results can help find a safe and cost-effective approach to solve drinking water problems in small rural and remote communities of developing regions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  9. Micro and Nano Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Manohara, Harish

    2007-01-01

    This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.

  10. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  11. Spectroscopic investigation on assisted sonocatalytic damage of bovine serum albumin (BSA) by metronidazole (MTZ) under ultrasonic irradiation combined with nano-sized ZnO

    NASA Astrophysics Data System (ADS)

    Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan

    2010-11-01

    The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.

  12. Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications

    NASA Astrophysics Data System (ADS)

    Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal

    2017-06-01

    In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.

  13. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light.

    PubMed

    Pourmoslemi, Shabnam; Mohammadi, Ali; Kobarfard, Farzad; Amini, Mohsen

    2016-10-01

    Zinc oxide nano-particles were synthesized, characterized and used for photocatalytic degradation of doxycycline using UV-C and visible light. Effects of several operational factors including initial pH of antibiotic solution, initial antibiotic concentration and ZnO nano-particles loading amount were investigated. Comparing photocatalytic degradation and mineralization of doxycycline under UV-C and visible light showed successful application of the method under both light sources. However, reaction rate was higher under UV-C irradiation, which degraded doxycycline almost completely in 5 hours, and 68% mineralization was achieved. Synthesized ZnO nano-particles were successfully applied for photocatalytic degradation of doxycycline in a pharmaceutical wastewater sample. The process was fitted to the pseudo first order kinetic model with rate constants in the range of 6-22(×10 -3 ) mg L -1 min -1 with respect to initial concentration of doxycycline under UV-C irradiation. The Langmuir-Hinshelwood model was also employed for describing the photocatalytic reaction with surface reaction kinetic constant k c and equilibrium adsorption constant K LH values calculated as 0.12 mg L -1 min -1 and 2.2 L mg -1 , respectively. Degradation of doxycycline was followed by UV-visible spectroscopy and a validated stability indicating high-performance liquid chromatography method that was developed using stressed samples of doxycycline and could selectively determine doxycycline in the presence of its degradation products. Mass spectrometry was used for determining final degradation products.

  14. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  15. ZnO core spike particles and nano-networks and their wide range of applications

    NASA Astrophysics Data System (ADS)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  16. Correlation between reflectance and photoluminescent properties of al-rich ZnO nano-structures

    NASA Astrophysics Data System (ADS)

    Khan, Firoz; Baek, Seong-Ho; Ahmad, Nafis; Lee, Gun Hee; Seo, Tae Hoon; Suh, Eun-kyung; Kim, Jae Hyun

    2015-05-01

    Al rich zinc oxide nano-structured films were synthesized using spin coating sol-gel technique. The films were annealed in oxygen ambient in the temperature range of 200-700 °C. The structural, optical, and photoluminescence (PL) properties of the films were studied at various annealing temperatures using X-ray diffraction spectroscopy, field emission scanning electron microscopy, photoluminescence emission spectra measurement, and Raman and UV-Vis spectroscopy. The optical band gap was found to decrease with the increase of the annealing temperature following the Gauss Amp function due to the confinement of the exciton. The PL peak intensity in the near band region (INBE) was found to increase with the increase of the annealing temperature up to 600 °C, then to decrease fast to a lower value for the annealing temperature of 700 °C due to crystalline quality. The Raman peak of E2 (low) was red shifted from 118 cm-1 to 126 cm-1 with the increase of the annealing temperature. The intensity of the second order phonon (TA+LO) at 674 cm-1 was found to decrease with the increase of the annealing temperature. The normalized values of the reflectance and the PL intensity in the NBE region were highest for the annealing temperature of 600 °C. A special correlation was found between the reflectance at λ = 1000 nm and the normalized PL intensity in the green region due to scattering due to presence of grains.

  17. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.

  18. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line

    PubMed Central

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Chaudhary, Dharmendra

    2015-01-01

    Metallic nanoparticles are widely used in cosmetics, food products and textile industry. These particles are known to cause respiratory toxicity and epithelial inflammation. They are eventually released to aquatic environment necessitating toxicity studies in cells from respiratory organs of aquatic organisms. Hence, we have developed and characterized a new cell line, WAG, from gill tissue of Wallago attu for toxicity assessment of TiO2 and ZnO nanoparticles. The efficacy of the cell line as an in vitro system for nanoparticles toxicity studies was established using electron microscopy, cytotoxicity assays, genotoxicity assays and oxidative stress biomarkers. Results obtained with MTT assay, neutral red uptake assay and lactate dehydrogenase assay showed acute toxicity to WAG cells with IC50 values of 25.29±0.12, 34.99±0.09 and 35.06±0.09 mg/l for TiO2 and 5.716±0.1, 3.160±0.1 and 5.57±0.12 mg/l for ZnO treatment respectively. The physicochemical properties and size distribution of nanoparticles were characterized using electron microscopy with integrated energy dispersive X-ray spectroscopy and Zetasizer. Dose dependent increase in DNA damage, lipid peroxidation and protein carbonylation along with a significant decrease in activity of Superoxide Dismutase, Catalase, total Glutathione levels and total antioxidant capacity with increasing concentration of exposed nanoparticles indicated that the cells were under oxidative stress. The study established WAG cell line as an in vitro system to study toxicity mechanisms of nanoparticles on aquatic organisms. PMID:26011447

  19. Nano-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Schliesser, Albert; Fiore, Andrea

    2018-01-01

    A new class of hybrid systems that couple optical, electrical and mechanical degrees of freedom in nanoscale devices is under development in laboratories worldwide. These nano-opto-electro-mechanical systems (NOEMS) offer unprecedented opportunities to control the flow of light in nanophotonic structures, at high speed and low power consumption. Drawing on conceptual and technological advances from the field of optomechanics, they also bear the potential for highly efficient, low-noise transducers between microwave and optical signals, in both the classical and the quantum domains. This Perspective discusses the fundamental physical limits of NOEMS, reviews the recent progress in their implementation and suggests potential avenues for further developments in this field.

  20. Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol.

    PubMed

    Selvam, N Clament Sagaya; Narayanan, S; Kennedy, L John; Vijaya, J Judith

    2013-10-01

    A novel self-assembled pure and Mg doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts showed high crystallinity with a uniform size distribution of the NPs. The degradation of cholorphenols is highly mandatory in today's scenario as they are affecting the environment adversely. Thus, the photocatalytic degradation of 4-chlorophenol (4-CP), a potent endocrine disrupting chemical in aqueous medium was investigated by both pure and Mg-doped ZnO NPs under UV-light irradiation in the present study. The influence of the Mg content on the structure, morphology, PL character and photocatalytic activity of ZnO NPs were investigated systematically. Furthermore,the effect of different parameters such as 4-CP concentration, photocatalyst amount, pH and UV-light wavelength on the resulting photocatalytic activity was investigated.

  1. System Design for Nano-Network Communications

    NASA Astrophysics Data System (ADS)

    ShahMohammadian, Hoda

    The potential applications of nanotechnology in a wide range of areas necessities nano-networking research. Nano-networking is a new type of networking which has emerged by applying nanotechnology to communication theory. Therefore, this dissertation presents a framework for physical layer communications in a nano-network and addresses some of the pressing unsolved challenges in designing a molecular communication system. The contribution of this dissertation is proposing well-justified models for signal propagation, noise sources, optimum receiver design and synchronization in molecular communication channels. The design of any communication system is primarily based on the signal propagation channel and noise models. Using the Brownian motion and advection molecular statistics, separate signal propagation and noise models are presented for diffusion-based and flow-based molecular communication channels. It is shown that the corrupting noise of molecular channels is uncorrelated and non-stationary with a signal dependent magnitude. The next key component of any communication system is the reception and detection process. This dissertation provides a detailed analysis of the effect of the ligand-receptor binding mechanism on the received signal, and develops the first optimal receiver design for molecular communications. The bit error rate performance of the proposed receiver is evaluated and the impact of medium motion on the receiver performance is investigated. Another important feature of any communication system is synchronization. In this dissertation, the first blind synchronization algorithm is presented for the molecular communication channels. The proposed algorithm uses a non-decision directed maximum likelihood criterion for estimating the channel delay. The Cramer-Rao lower bound is also derived and the performance of the proposed synchronization algorithm is evaluated by investigating its mean square error.

  2. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat.

    PubMed

    Rahman, P Mujeeb; Mujeeb, V M Abdul; Muraleedharan, K

    2017-04-01

    As a breakthrough to open up the industrial use of novel environmentally benign packaging material, we propose the first report on portable chitosan-ZnO nano-composite pouches that will serve as elite entrants in smart packaging. A facile, one pot procedure was adopted for the preparation of the C-ZnC films. In order to tune the property of C-ZnC films, four different composite films were prepared by varying the concentration of ZnO. The prepared films were found to be much superior when compared to bare chitosan and other conventional films. Two bacterial strains that commonly contaminate in packed meat were selected as target microbes to elucidate the antimicrobial activity of the prepared C-ZnO film. Detailed investigations revealed that the antimicrobial efficiency is linearly related to the amount of ZnO nano-particles in the composite. The C-2 films exhibited excellent antimicrobial activity and was fabricated into packaging pouches for raw meat. The prepared pouches showed significant action against the microbes in raw meat owing to its complete inhibition of microbial growth on the sixth day of storage at 4°C. The C-2 pouches stand as a top-notch material when compared to polyethylene bag in extending the shelf life of raw meat. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Optical Assembly and Characterization System for Nano-Photonics Research

    DTIC Science & Technology

    2016-03-01

    Unlimited Final Report: Optical Assembly and Characterization System for Nano -Photonics Research The views, opinions and/or findings contained in this...reviewed journals: Final Report: Optical Assembly and Characterization System for Nano -Photonics Research Report Title With this equipment funding support...Assembly and Characterization System for Nano -Photonics Research PI: Prof. Weidong Zhou, University of Texas at Arlington (UTA) 500 S. Cooper St

  4. Photosynthetic Machineries in Nano-Systems

    PubMed Central

    Nagy, László; Magyar, Melinda; Szabó, Tibor; Hajdu, Kata; Giotta, Livia; Dorogi, Márta; Milano, Francesco

    2014-01-01

    Photosynthetic reaction centres are membrane-spanning proteins, found in several classes of autotroph organisms, where a photoinduced charge separation and stabilization takes place with a quantum efficiency close to unity. The protein remains stable and fully functional also when extracted and purified in detergents thereby biotechnological applications are possible, for example, assembling it in nano-structures or in optoelectronic systems. Several types of bionanocomposite materials have been assembled by using reaction centres and different carrier matrices for different purposes in the field of light energy conversion (e.g., photovoltaics) or biosensing (e.g., for specific detection of pesticides). In this review we will summarize the current status of knowledge, the kinds of applications available and the difficulties to be overcome in the different applications. We will also show possible research directions for the close future in this specific field. PMID:24678673

  5. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics

    PubMed Central

    Khan, Mohd Farhan; Ansari, Akhter H.; Hameedullah, M.; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A.; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-01-01

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm−1 to 525 cm−1. The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C–120 °C) and (240 °C–280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic. PMID:27349836

  6. A Comparison of the Effects of Packaging Containing Nano ZnO or Polylysine on the Microbial Purity and Texture of Cod (Gadus morhua) Fillets

    PubMed Central

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja

    2018-01-01

    Portions of fresh Baltic cod fillets were packed into cellulose boxes (control samples), which were covered with Methyl Hydroxypropyl Celluloses (MHPC) coating with 2% polylysine. The cellulose boxes had square PE films and were enclosed in MHPC coating containing ZnO nanoparticles. The cod fillets were stored at 5 °C and examined after 72 h and 144 h storage times. Results obtained in this study showed that the textural parameters of the cod fillets increased, with both Springiness and Cohesiveness found greater after 144 h of storage for all analysed packaging materials. The Gumminess of fillets increased after storage, but the lowest increase was noted in cod samples that were stored in boxes containing PE films with ZnO nanoparticles. It was found that water loss from the cod fillets in these boxes was also lowest. The Adhesiveness of the fish samples stored in boxes devoid of active coatings also increased. In contrast to the packaging material devoid of active coatings, the storage of fillets in active coating boxes resulted in a decrease of adhesiveness. Microbial analysis showed that packaging material containing nano-ZnO was found to be more active against mesophilic and psychotropic bacterial cells than the coatings with polylysine after 72 h and 144 h of storage. PMID:29534544

  7. A Comparison of the Effects of Packaging Containing Nano ZnO or Polylysine on the Microbial Purity and Texture of Cod (Gadus morhua) Fillets.

    PubMed

    Mizielińska, Małgorzata; Kowalska, Urszula; Jarosz, Michał; Sumińska, Patrycja

    2018-03-12

    Portions of fresh Baltic cod fillets were packed into cellulose boxes (control samples), which were covered with Methyl Hydroxypropyl Celluloses (MHPC) coating with 2% polylysine. The cellulose boxes had square PE films and were enclosed in MHPC coating containing ZnO nanoparticles. The cod fillets were stored at 5 °C and examined after 72 h and 144 h storage times. Results obtained in this study showed that the textural parameters of the cod fillets increased, with both Springiness and Cohesiveness found greater after 144 h of storage for all analysed packaging materials. The Gumminess of fillets increased after storage, but the lowest increase was noted in cod samples that were stored in boxes containing PE films with ZnO nanoparticles. It was found that water loss from the cod fillets in these boxes was also lowest. The Adhesiveness of the fish samples stored in boxes devoid of active coatings also increased. In contrast to the packaging material devoid of active coatings, the storage of fillets in active coating boxes resulted in a decrease of adhesiveness. Microbial analysis showed that packaging material containing nano-ZnO was found to be more active against mesophilic and psychotropic bacterial cells than the coatings with polylysine after 72 h and 144 h of storage.

  8. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S. H.; Riekstina, U.

    2016-11-01

    Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived cancer cells. Moreover, SSEA-4 targeted ZnO nanorods bind to the patient-derived cancer cells with high selectivity and the photoluminescence signal increased tremendously compared to the signal from the control samples. Furthermore, the photoluminescence intensity increase correlated with the extent of malignancy in the target cell population. A novel portable bioanalytical system, based on optical ZnO nanorods and fiber optic detection system was developed. We propose that carbohydrate SSEA-4 specific ZnO nanorods could be used for the development of cancer diagnostic biosensors and for targeted therapy.

  9. Current HPLC Methods for Assay of Nano Drug Delivery Systems.

    PubMed

    Tekkeli, Serife Evrim Kepekci; Kiziltas, Mustafa Volkan

    2017-01-01

    In nano drug formulations the mechanism of release is a critical process to recognize controlled and targeted drug delivery systems. In order to gain high bioavailability and specificity from the drug to reach its therapeutic goal, the active substance must be loaded into the nanoparticles efficiently. Therefore, the amount in biological fluids or tissues and the remaining amount in nano carriers are very important parameters to understand the potential of the nano drug delivery systems. For this aim, suitable and validated quantitation methods are required to determine released drug concentrations from nano pharmaceutical formulations. HPLC (High Performance Liquid Chromatography) is one of the most common techniques used for determination of released drug content out of nano drug formulations, in different physical conditions, over different periods of time. Since there are many types of HPLC methods depending on detector and column types, it is a challenge for the researchers to choose a suitable method that is simple, fast and validated HPLC techniques for their nano drug delivery systems. This review's goal is to compare HPLC methods that are currently used in different nano drug delivery systems in order to provide detailed and useful information for researchers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. High-density two-dimensional electron system induced by oxygen vacancies in ZnO

    NASA Astrophysics Data System (ADS)

    Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K.; Kumigashira, H.; Santander-Syro, A. F.

    2018-05-01

    We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultrahigh vacuum and characterize its electronic structure by using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two s -type subbands, that we compare with the d -like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a two-dimensional Fermi liquid with a Debye distribution of phonons.

  11. Correlation between nano-scale microstructural behavior and the performance of ZnO thin-film transistors.

    PubMed

    Ahn, Cheol Hyoun; Lee, Ju Ho; Lee, Jeong Yong; Cho, Hyung Koun

    2014-12-01

    Binary ZnO active layers possessing a polycrystalline structure were deposited with various argon/oxygen flow ratios at 250 degrees C via sputtering. Then ZnO thin-film-transistors (TFTs) were fabricated without additional thermal treatments. As the oxygen content increased during the deposition, the preferred orientation along the (0002) was weakened and the rotation of the grains increased, and furthermore, less conducting films were observed. On the other hand, the reduced oxygen flow rate induced the formation of amorphous-like transition layers during the initial growth due to a high growth rate and high energetic bombardment of the adatoms. As a result, the amorphous phases at the gate dielectric/channel interface were responsible for the formation of a hump shape in the subthreshold region of the TFT transfer curve. In addition, the relationship between the crystal properties and the shift in the threshold voltage was experimentally confirmed by a hysteresis test.

  12. Effect of Temperature, Precursor Type and Dripping Time on the Crystallite Size of Nano ZnO Obtained by One-Pot Synthesis: 2 k Full Factorial Design Analysis.

    PubMed

    Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael

    2018-06-01

    The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.

  13. The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.

    PubMed

    Du, Jingjing; Qv, Mingxiang; Zhang, Yuyan; Yin, Xiaoyun; Wan, Ning; Zhang, Baozhong; Zhang, Hongzhong

    2018-06-06

    With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. [Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].

    PubMed

    Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-08-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  15. [Influence of different sol-gel systems on the luminescence of nanocrystalline ZnO powders].

    PubMed

    Guo, Shu-xia; Zhang, Zhong-suo; Zhang, Xing-tang; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-11-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of the powdersamples was examined by XRD and TEM. The results indicate that two ZnO samples have the same crystal and energy band structure. Their photolurminescence (PL) spectra in the ultraviolet region are analogous, but their photoluminescence (PL) spectra in the visible region are different. The reason is that two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  16. Enhancement of ZnO based flexible nano generators via sol gel technique for sensing and energy harvesting applications.

    PubMed

    Rajagopalan, Pandey; Singh, Vipul; I A, Palani

    2018-01-10

    Zinc oxide (ZnO) is a remarkable inorganic semiconductor with exceptional piezoelectric properties compared to other semiconductors. However, in comparison to lead-based hazardous piezoelectric materials, its features have undesired limitations. Here we report the 5~6 folds enhancement in the piezoelectric properties via chemical doping of copper matched to intrinsic ZnO. The flexible piezoelectric nanogenerator (F-PENG) device was fabricated using an unpretentious solution process of spin coating with other advantages like robust, low weight, improved adhesion, and low cost. The devices were used to demonstrate energy harvesting from a Standard weight as low as 4 gm and can work as a self-powered mass sensor in a broad range of 4 to 100 gm. The device exhibited a novel energy harvesting technique from a wind source due to its inherent flexibility. At three different velocities (10~30 m/s) and five different angles of attack (0~180 degrees), the device validated the ability to discern different velocities and directions of flow. The device will be useful for mapping the flow of air apart from harvesting the energy. The simulation was done to verify the underlining mechanism of aerodynamics involved in it. © 2018 IOP Publishing Ltd.

  17. Synthesis, growth and characterization of ZnO microtubes using a traveling-wave mode microwave system

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Wang, Han

    Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μmmore » in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.« less

  18. About Nano-JASMINE Satellite System and Project Status

    NASA Astrophysics Data System (ADS)

    Sako, Nobutada

    Intelligent Space Systems Laboratory, The University of Tokyo (ISSL) and National Astronomical Observatory of Japan (NAO) have been developing a small infrared astrometry satellite named “Nano-JASMINE”. The satellite size is about 50cm cubic and 20kg, which plays a pre-cursor role of JASMINE Project which is programmed by NAO and JAXA. In addition, since there has been only one astrometry satellite HIPPARCOS by ESA in the past, Nano-JASMINE is also expected to achieve certain scientific results in the field of astrometry. In this project, ISSL aims to develop new advanced small satellite bus system whose performance is comparable to that of 100-500kg sized satellites, including attitude stability of 1 arc-second and thermal stability of the mission subsystem of 1 mK. This paper overviews the Nano-JASMINE bus system with emphasis on attitude and thermal control systems.

  19. Demonstration of a Nano-Enabled Space Power System

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne; Hunter, Roger C.; Baker, Christopher

    2017-01-01

    The Nano-Enabled Space Power System will demonstrate power systems with nanomaterial-enhanced components as are placement for CubeSat power generation, transmission, and storage. Successful flights of these nano-power systems will accelerate the use of this revolutionary technology in the aerospace industry. The use of nano materials in solar cells, wire harnesses,and lithium ion batteries can increase the device performance without significantly altering the devices physical dimensions or the devices operating range (temperature,voltage, current). In many cases, the use of nanomaterials widens the viable range of operating conditions, such as increased depth of discharge of lithium ion batteries, tunable bandgaps in solar cells, and increased flexure tolerance of wire harnesses.

  20. Nano-sized Adsorbate Structure Formation in Anisotropic Multilayer System

    NASA Astrophysics Data System (ADS)

    Kharchenko, Vasyl O.; Kharchenko, Dmitrii O.; Yanovsky, Vladimir V.

    2017-05-01

    In this article, we study dynamics of adsorbate island formation in a model plasma-condensate system numerically. We derive the generalized reaction-diffusion model for adsorptive multilayer system by taking into account anisotropy in transfer of adatoms between neighbor layers induced by electric field. It will be found that with an increase in the electric field strength, a structural transformation from nano-holes inside adsorbate matrix toward separated nano-sized adsorbate islands on a substrate is realized. Dynamics of adsorbate island sizes and corresponding distributions are analyzed in detail. This study provides an insight into details of self-organization of adatoms into nano-sized adsorbate islands in anisotropic multilayer plasma-condensate systems.

  1. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  2. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  3. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  4. Highly conductive and transparent thin ZnO films prepared in situ in a low pressure system

    NASA Astrophysics Data System (ADS)

    Ataev, B. M.; Bagamadova, A. M.; Mamedov, V. V.; Omaev, A. K.; Rabadanov, M. R.

    1999-03-01

    Sucessful preparation of ZnO : M epitaxial thin films (ETF) in situ doped with donor impurity M=Ga, Sn by chemical vapor despsition in a low-pressure system is reported. Highly conductive (up to 10 -4 Ω cm) and transparent ( T>85%) ZnO : M ETF have been successfully produced on single crystal (1012) sapphire substrates. Electrical properties of the films as well as their excition luminescence were studied.

  5. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    PubMed

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    PubMed

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  7. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  8. Preliminary Design of Nano Satellite for Regional Navigation System

    NASA Astrophysics Data System (ADS)

    Fathurrohim, L.; Poetro, R. E.; Kurniadi, B.; Fadillah, P. A.; Iqbal, M.

    2018-04-01

    A Low cost Regional Navigation Satellite System employing constellation of nano satellites has been proposed for Indonesian coverage. The constellation of Low Earth Orbit nano satellites off course will not be able to give better position fixed to the GPS. However, the design of navigation system has much lower in cost compare to the current navigation system. This paper tells about preliminary design of the proposed regional navigation satellite system. The results of our satellite design has 3 kg on its weight, 10 W on power requirement at the peak condition, and 2.7 years of lifetime. Payload communication of the satellite will use UHF and TT&C communication will use VHF. Total area of solar panel will be 0.11 m2.

  9. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    PubMed Central

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-01-01

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1–100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products. PMID:26225989

  10. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    PubMed

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-07-28

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1-100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  11. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  12. Optimization of headspace solid phase microextraction based on nano-structured ZnO combined with gas chromatography-mass spectrometry for preconcentration and determination of ultra-traces of chlorobenzenes in environmental samples.

    PubMed

    Ghasemi, Ensieh; Sillanpää, Mika

    2014-12-01

    In this study, a simple, novel and efficient preconcentration method for the determination of some chlorobenzenes (monochlorobenzene (MCB), three isomeric forms of dichlorobenzene (diCB), 1,3,5-trichlorobenzene (triCB) and hexachlorobenze (hexaCB)) has been developed using a headspace solid phase microextraction (HS-SPME) based on nano-structured ZnO combined with capillary gas chromatography-mass spectrometry (GC-MS). ZnO nanorods have been grown on fused silica fibers using a hydrothermal process. The diameter of ZnO nanorods was in the range of 50-80 nm. The effect of different variables on the extraction efficiency was studied simultaneously using an experimental design. The variables of interest in the HS-SPME were stirring rate, desorption time and temperature, ionic strength, extraction time and temperature. For this purpose, a multivariate strategy was applied based on an experimental design using a Plackett-Burman design for screening and a Box-Behnken design for optimizing of the significant factors. The detection limit and relative standard deviation (RSD) (n=5) for the target analytes were in the range of 0.01-0.1 ng L(-1) and 4.3-7.6%, respectively. The developed technique was found to be successfully applicable to preconcentration and determination of the target analytes in environmental water and soil samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2009-04-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  14. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    PubMed Central

    Hu, Daning; Dang, Yan; Chen, Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2008-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976–2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005–2006 identified through the Nano Mapper system. PMID:21170121

  15. A nano continuous variable transmission system from nanotubes

    NASA Astrophysics Data System (ADS)

    Cai, Kun; Shi, Jiao; Xie, Yi Min; Qin, Qing H.

    2018-02-01

    A nano continuous variable transmission (nano-CVT) system is proposed by means of carbon nanotubes (CNTs). The dynamic behavior of the CNT-based nanosystem is assessed using molecular dynamics simulations. The system contains a rotary CNT-motor and a CNT-bearing. The tube axes of the nanomotor and the rotor in the bearing are laid in parallel, and the distance between them is known as the eccentricity of the rotor with a diameter of d. By changing the eccentricity (e) of the rotor from 0 to d, some interesting rotation transmission phenomena are discovered, whose procedures can be used to design various nanodevices. This might include the failure of rotation transmission—i.e. the rotor has no rotation—when e ≥ d at an extremely low temperature, or when the edges of the two tubes are orthogonal at their intersections in any condition. This hints that the state of the nanosystem can be used as an on/off switch or breaker. For a system with e = d and a high temperature, the rotor rotates in the reverse direction of the motor. This means that the output signal (rotation) is the reverse of the input signal. When changing the eccentricity from 0 to d continuously, the output signal gradually decreases from a positive value to a negative value; as a result a nano-CVT system is obtained.

  16. Malaria treatment using novel nano-based drug delivery systems.

    PubMed

    Baruah, Uday Krishna; Gowthamarajan, Kuppusamy; Vanka, Ravisankar; Karri, Veera Venkata Satyanarayana Reddy; Selvaraj, Kousalya; Jojo, Gifty M

    2017-08-01

    We reside in an era of technological innovation and advancement despite which infectious diseases like malaria remain to be one of the greatest threats to the humans. Mortality rate caused by malaria disease is a huge concern in the twenty-first century. Multiple drug resistance and nonspecific drug targeting of the most widely used drugs are the main reasons/drawbacks behind the failure in malarial therapy. Dose-related toxicity because of high doses is also a major concern. Therefore, to overcome these problems nano-based drug delivery systems are being developed to facilitate site-specific or target-based drug delivery and hence minimizing the development of resistance progress and dose-dependent toxicity issues. In this review, we discuss about the shortcomings in treating malaria and how nano-based drug delivery systems can help in curtailing the infectious disease malaria.

  17. Micro and nano devices in passive millimetre wave imaging systems

    NASA Astrophysics Data System (ADS)

    Appleby, R.

    2013-06-01

    The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.

  18. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  19. Taheri-Saramad x-ray detector (TSXD): a novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane.

    PubMed

    Taheri, A; Saramad, S; Ghalenoei, S; Setayeshi, S

    2014-01-01

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  20. Nano Entry System for CubeSat-Class Payloads Project (Nano-ADEPT)

    NASA Technical Reports Server (NTRS)

    Smith, Brandon Patrick

    2014-01-01

    This project is developing a mechanically deployed system through a mission application study, deployment/ejection testing, and wind tunnel testing. Adaptable Deployable Entry and Placement Technology (ADEPT) has been under development at NASA since 2011. Nano-ADEPT is the application of this revolutionary entry technology for small spacecraft. The unique capability of ADEPT for small science payloads comes from its ability to stow within a slender volume and deploy passively to achieve a mass-efficient drag surface with a high heat rate capability. Near-term applications for this technology include return of small science payloads or CubeSat technology from Low Earth Orbit (LEO) and delivery of secondary payloads to the surface of Mars.

  1. CO oxidation on Alsbnd Au nano-composite systems

    NASA Astrophysics Data System (ADS)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  2. VIDANA: Data Management System for Nano Satellites

    NASA Astrophysics Data System (ADS)

    Montenegro, Sergio; Walter, Thomas; Dilger, Erik

    2013-08-01

    A Vidana data management system is a network of software and hardware components. This implies a software network, a hardware network and a smooth connection between both of them. Our strategy is based on our innovative middleware. A reliable interconnection network (SW & HW) which can interconnect many unreliable redundant components such as sensors, actuators, communication devices, computers, and storage elements,... and software components! Component failures are detected, the affected device is disabled and its function is taken over by a redundant component. Our middleware doesn't connect only software, but also devices and software together. Software and hardware communicate with each other without having to distinguish which functions are in software and which are implemented in hardware. Components may be turned on and off at any time, and the whole system will autonomously adapt to its new configuration in order to continue fulfilling its task. In VIDANA we aim dynamic adaptability (run tine), static adaptability (tailoring), and unified HW/SW communication protocols. For many of these aspects we use "learn from the nature" where we can find astonishing reference implementations.

  3. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  4. Review on Applications of NanoFluids used in Vapour Compression Refrigeration System for Cop Enhancement

    NASA Astrophysics Data System (ADS)

    Veera Raghavalu, K.; Govindha Rasu, N.

    2018-03-01

    The present research paper focuses on the use of Nano additive refrigerants in vapor compression refrigeration system (VCRS) because of their amazing development during Thermo Physical along with heat transfer potential to improve the coefficient of performance (COP) and reliability of refrigeration system. Furthermore, challenges and future instructions of performance enhancement of VCRS using Nano additive refrigerants were presented. Lubricant oil is essential in the entire vapour compression refrigeration systems, mostly for the efficient function of the compressor. But, some assign of the oil is entire the cycle oil circulates with the refrigerant. Presently, an assortment of investigation is going on in the field of the Nano-particles like metals, oxides, carbon Nano-tubes or carbides. Nano-lubricants are unique type of Nano-fluids which are varieties of Nano-particles, lubricants and have a wide variety in the fields of refrigeration systems. This paper, has been done on the application of Nano-particles balanced in lubricating oils of refrigerating systems are reviewed. The aim of this investigation is to study and find which type of lubricant oil works better with Nano-particles in the area of refrigeration. From the review of literature, it has been observed that Nano-particles mixed with mineral oil gives enhanced results than polyolester (POE) oil.

  5. Fourier Transform IR Spectroscopic Study of Nano-ZrO2 + Nano-SiO2 + Nano-H2O Systems Upon the Action of Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Agayev, T. N.; Gadzhieva, N. N.; Melikova, S. Z.

    2018-05-01

    The radiation decomposition of water in a nano-ZrO2 + nano-SiO2 + H2O system at 300 K by the action of gamma radiation has been studied by Fourier transform IR spectroscopy. Water adsorption in the zirconium and silicon nanooxides is attributed to molecular and dissociative mechanisms. Active intermediates in this radiation-induced heterogeneous decomposition of water were detected including zirconium and silicon hydrides and hydroxyl groups. Variation in the ratio of ZrO2 and SiO2 nanopowders was shown to lead to change in their radiation catalytic activity compared to initial ZrO2.

  6. Micro/nano electro mechanical systems for practical applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2009-09-01

    Silicon MEMS as electrostatically levitated rotational gyroscope, 2D optical scanner and wafer level packaged devices as integrated capacitive pressure sensor and MEMS switch are described. MEMS which use non-silicon materials as diamond, PZT, conductive polymer, CNT (carbon nano tube), LTCC with electrical feedthrough, SiC (silicon carbide) and LiNbO3 for multi-probe data storage, multi-column electron beam lithography system, probe card for wafer-level burn-in test, mould for glass press moulding and SAW wireless passive sensor respectively are also described.

  7. [Drug delivery systems using nano-sized drug carriers].

    PubMed

    Nakayama, Masamichi; Okano, Teruo

    2005-07-01

    Nanotechnology has attracted great attention all over the world in recent several years and has led to the establishment of the novel technical field of "nanomedicine" through collaboration with advanced medical technology. Particularly, site-specific drug targeting using particle drug carrier systems has made substantial progress and been actively developed. This review explains the essential factors (size and chemical character) of drug carriers to allow long circulation in the bloodstream avoiding the reticuloendothelial system, and shows the present status and future perspective of several types of nano-carrier systems (water-soluble polymer, liposome and polymeric micelle). We also introduce the novel concept of multi-targeting system (combination of two or more targeting methodologies) for ideal drug therapies.

  8. Infiltration of CdTe nano crystals into a ZnO wire vertical matrix by using the isothermal closed space technique

    NASA Astrophysics Data System (ADS)

    Larramendi, S.; Vaillant Roca, Lidice; Saint-Gregoire, Pierre; Ferraz Dias, Johnny; Behar, Moni

    2017-10-01

    A ZnO nanorod structure was grown by the hydrothermal method and interpenetrated with CdTe using the isothermal closed space sublimation technique. The obtained structure was studied by using the Rutherford backscattering spectrometry (RBS), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). The X-ray Diffraction (XRD) technique confirmed the presence of CdTe nanocrystals (NCs) of very small size formed on the surface and in the interspaces between the ZnO nanorods. The RBS observations together with the SEM observations give information on the obtained structure. Finally the photoluminescence studies show a strong energy confinement effect on the grown CdTe NCs.

  9. Preparation, characterization and properties of ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Jiaolian; Zhang, Xiaoming; Chen, Ruxue; Wang, Xiaohui; Zhu, Ji; Wang, Xiaomin

    2017-06-01

    In this paper, using the hydrothermal synthesis method, NaOH, Zn(NO3)2, anhydrous ethanol, deionized water as raw material to prepare ZnO nanomaterial, and by X ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) on the synthesis of nano materials, surface morphology and phase luminescence characterization. The results show that the nano materials synthesized for single-phase ZnO, belonging to the six wurtzite structure; material surface shaped, arranged evenly distributed, and were the top six party structure; ZnO nano materials synthesized with strong emission spectra, emission peak is located at 394nm.

  10. Complete transformation of ZnO and CuO nanoparticles in ...

    EPA Pesticide Factsheets

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  11. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.

    PubMed

    V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan

    2017-08-01

    Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy.

    PubMed

    Yang, Kai; Feng, Liangzhu; Liu, Zhuang

    2016-10-01

    Nano-graphene as a class of two-dimensional sp 2 carbon nanomaterial has attracted tremendous attentions in various fields in the past decade. Utilizing its unique physical and chemical properties, nano-graphene has also shown great promises in the area of biomedicine, for application in biosensing, imaging and therapy. In particular, with all atoms exposed on its surface, nano-graphene exhibits ultra-high surface area available for efficient binding/loading of various biomolecules of interests, and has been widely used as multifunctional nano-carriers for drug and gene delivery. In this review article, we will summarize the recent advances in the development of nano-graphene as stimuli-responsive nano-carriers for drug delivery, as well as the applications of these smart systems for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Paclitaxel Nano-Delivery Systems: A Comprehensive Review

    PubMed Central

    Ma, Ping; Mumper, Russell J.

    2013-01-01

    Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles. PMID:24163786

  14. Nano to micro delivery systems: targeting angiogenesis in brain tumors.

    PubMed

    Gilert, Ariel; Machluf, Marcelle

    2010-10-08

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.

  15. Nano to micro delivery systems: targeting angiogenesis in brain tumors

    PubMed Central

    2010-01-01

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain. PMID:20932320

  16. Ligand induced ferromagnetism in ZnO nanostructures.

    PubMed

    Wang, Qian; Sun, Qiang; Jena, P

    2008-10-28

    Complementary to the experimental finding that ZnO nanoparticles become ferromagnetic when coated with N and S containing ligands such as dodecylamine and dodecanethiol [Garcia et al., Nano Lett. 7, 1489 (2007)], we provide the first theoretical understanding of the origin of magnetism in ligated ZnO nanoparticles as well as the structural properties of the ligated systems by using density functional theory and generalized gradient approximation for exchange and correlation, and a cluster model for the nanoparticles. We show that N or S atoms of the ligand bind to the Zn sites. The accompanying changes in the Zn-O bond length, hybridization between Zn 4s orbitals with N 2p or S 3p orbitals, and consequently the redistribution of charges between Zn and O atoms result in a magnetic system where the 2p electrons in O and N, and 3p electrons in S sites are spin polarized. Furthermore, the sites nearest to the Zn atom attached to the ligand carry bulk of the magnetic moment. Studies, as a function of cluster size, also illustrate that magnetism resides only on the surface. Our results confirm that the use of ligands can pave a new way for introducing magnetism in ZnO nanostructures, which can be used to develop magnetic sensors to detect N and S containing molecules.

  17. Role of defects in one-step synthesis of Cu-doped ZnO nano-coatings by electrodeposition method with enhanced magnetic and electrical properties

    NASA Astrophysics Data System (ADS)

    Niranjan, K.; Dutta, Subhajit; Varghese, Soney; Ray, Ajoy Kumar; Barshilia, Harish C.

    2017-04-01

    We report the growth of flower-like ferromagnetic Cu-doped ZnO (CZO) nanostructures using electrochemical deposition on FTO-coated glass substrates. X-ray photoelectron spectroscopy studies affirmed the presence of Cu in ZnO with an oxidation state of 2+. In order to find the optimized dopant concentration, different Cu dopant concentrations of 0.28, 0.30, 0.32, 0.35, 0.38, and 0.40 mM are applied and their magnetic, optical, and electrical properties are studied. Magnetic moment increased with the increasing dopant concentration up to 0.35 mM and then decreased with further increase in the concentration. Diamagnetic pure ZnO showed ferromagnetic nature even with a low doping concentration of 0.28 mM. Band gap increased with the increasing Cu concentration until a value of 0.35 mM and then remained the same for the higher dopant concentrations. It is ascribed to the Burstein-Moss effect. Defect-related broad photoluminescence (PL) peak is observed for the pure ZnO in the visible range. In contrast, Cu-doped samples showed a sharp and intense PL peak at 426 nm due to increased Zn interstitials. Kelvin probe measurements revealed that the Fermi level shifts toward the conduction band for the Cu-doped samples with respect to pure material. Electron transport mechanism in the samples is observed to be dominated by space charge-limited current and Schottky behavior with improved ideality factor up to 0.38 mM Cu.

  18. MEMS based pumped liquid cooling systems for micro/nano spacecraft thermal control

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Shakkottai, P.; Sur, T. W.

    2000-01-01

    The electronic and other payload power densities in future micro/nano spacecraft are expected to exceed 25 Watts/cm(sup 2) and require advanced thermal control concepts and technologies to keep their payload within allowable temperature limits. This paper presents background on the need for pumped liquid cooling systems for future micro/nano spacecraft and results from this ongoing experimental investigation.

  19. Effect of annealing on the spectral and optical characteristics of nano ZnO: Evaluation of adsorption of toxic metal ions from industrial waste water.

    PubMed

    Radhakrishnan, Asha; Rejani, P; Shanavas Khan, J; Beena, B

    2016-11-01

    The present work accentuates an unexploited and environmentally benign method of synthesizing ZnO nanomaterials using Sugar cane juice. The synthesized nanomaterials were characterized by XRD, SEM, TEM, BET, EDS and FTIR. UV-visible and photoluminescence studies were also carried out to understand the absorption properties of synthesized nanomaterial. From the adsorption studies, it would be clear that synthesized ZnO should be used as an effective adsorbent for Pb(ll) and Cd(ll) removal. The kinetic data followed the pseudo-second-order model. The equilibrium attained at 120min and isotherm follows the order Sips>Langmuir>Freundlich. The adsorption-desorption studies conducted over 6 cycles illustrate the viability and repeated use of the adsorbent for the removal of Pb(ll)and Cd(ll) from aqueous solutions. The practical efficiency and usefulness of the adsorbent was tested using real industrial wastewater also. Cytotoxicity result shows that, ZnO was biocompatible at lower concentrations, and it was used as an ecofriendly nanoadsorbent for industrial and environmental applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection.

    PubMed

    Liu, Lei; Zhang, Diming; Zhang, Qian; Chen, Xing; Xu, Gang; Lu, Yanli; Liu, Qingjun

    2017-07-15

    Volatile organic compounds (VOCs) detection is in high demand for clinic treatment, environment monitoring, and food quality control. Especially, VOCs from human exhaled breath can serve as significant biomarkers of some diseases, such as lung cancer and diabetes. In this study, a smartphone-based sensing system was developed for real-time VOCs monitoring using alternative current (AC) impedance measurement. The interdigital electrodes modified with zinc oxide (ZnO), graphene, and nitrocellulose were used as sensors to produce impedance responses to VOCs. The responses could be detected by a hand-held device, sent out to a smartphone by Bluetooth, and reported with concentration on an android program of the smartphone. The smartphone-based system was demonstrated to detect acetone at concentrations as low as 1.56ppm, while AC impedance spectroscopy was used to distinguish acetone from other VOCs. Finally, measurements of the exhalations from human being were carried out to obtain the concentration of acetone in exhaled breath before and after exercise. The results proved that the smartphone-based system could be applied on the detection of VOCs in real settings for healthcare diagnosis. Thus, the smartphone-based system for VOCs detection provided a convenient, portable and efficient approach to monitor VOCs in exhaled breath and possibly allowed for early diagnosis of some diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    SciTech Connect

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  2. Advances in lasers and optical micro-nano-systems

    NASA Astrophysics Data System (ADS)

    Laurell, F.; Fazio, E.

    2010-09-01

    Lasers represent a well consolidated technology: nevertheless, research in this field remains very active and productive, in both basic and applied directions. At the moment significant attention is given to those sources that bring together high power and compactness. Such high power lasers find important applications for material treatments and such applications are presented by Ehsani et al and Saiedeh Saghafi et al, in the treatment of dielectric thin films (Alteration of optical and morphological properties of polycarbonate illuminated by visible/IR laser beams) or of biological tissues like pistachio seeds (Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis). In particular the latter paper show how laser sources can find very important applications in new domains, preserving goods and food without the need for preservatives or pesticides by simply sterilizing them using light. Optical Micro and Nano Systems presents a new domain for exploration. In this framework this special issue is very attractive, because it assembles papers reporting new results in three directions: new techniques for monitoring integrated micro- and nano-systems, new integrated systems and novel high performance metamaterial configurations. Integrated micro-components can be monitored and controlled using reflectance measurements as presented by Piombini et al (Toward the reflectance measurement of micro components). Speckle formation during laser beam reflection can also be a very sophisticated tool for detecting ultra-precise displacements, as presented by Filter et al (High resolution displacement detection with speckles : accuracy limits in linear displacement speckle metrology). Three dimensional integrated optical structures is indeed a big challenge and a peculiarity of photonics, they can be formed through traditional holography or using more sophisticated and novel ! technologies. Thus, special

  3. Ames Infusion Stories for NASA Annual Technology Report: Nano Entry System for CubeSat-Class Payloads

    NASA Technical Reports Server (NTRS)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Etiraj

    2015-01-01

    The Nano Entry System for CubeSat-Class Payloads led to the development of the Nano-Adaptable Deployable Entry and Placement Technology ("Nano-ADEPT"). Nano-ADEPT is a mechanically deployed entry, descent, and landing (EDL) system that stows during launch and cruise (like an umbrella) and serves as both heat shield and primary structure during EDL. It is especially designed for small spacecraft where volume is a limiting constraint.

  4. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  5. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  6. An AFM-SIMS Nano Tomography Acquisition System

    NASA Astrophysics Data System (ADS)

    Swinford, Richard William

    An instrument, adding the capability to measure 3D volumetric chemical composition, has been constructed by me as a member of the Sanchez Nano Laboratory. The laboratory's in situ atomic force microscope (AFM) and secondary ion mass spectrometry systems (SIMS) are functional and integrated as one instrument. The SIMS utilizes a Ga focused ion beam (FIB) combined with a quadrupole mass analyzer. The AFM is comprised of a 6-axis stage, three coarse axes and three fine. The coarse stage is used for placing the AFM tip anywhere inside a (13x13x5 mm3) (xyz) volume. Thus the tip can be moved in and out of the FIB processing region with ease. The planned range for the Z-axis piezo was 60 microm, but was reduced after it was damaged from arc events. The repaired Z-axis piezo is now operated at a smaller nominal range of 18 microm (16.7 microm after pre-loading), still quite respectable for an AFM. The noise floor of the AFM is approximately 0.4 nm Rq. The voxel size for the combined instrument is targeted at 50 nm or larger. Thus 0.4 nm of xyz uncertainty is acceptable. The instrument has been used for analyzing samples using FIB beam currents of 250 pA and 5.75 nA. Coarse tip approaches can take a long time so an abbreviated technique is employed. Because of the relatively long thro of the Z piezo, the tip can be disengaged by deactivating the servo PID. Once disengaged, it can be moved laterally out of the way of the FIB-SIMS using the coarse stage. This instrument has been used to acquire volumetric data on AlTiC using AFM tip diameters of 18.9 nm and 30.6 nm. Acquisition times are very long, requiring multiple days to acquire a 50-image stack. New features to be added include auto stigmation, auto beam shift, more software automation, etc. Longer term upgrades to include a new lower voltage Z-piezo with strain-gauge feedback and a new design to extend the life for the coarse XY nano-positioners. This AFM-SIMS instrument, as constructed, has proven to be a great proof

  7. Wrinkling of flexoelectric nano-film/substrate systems

    NASA Astrophysics Data System (ADS)

    Su, Shengkai; Huang, Huaiwei; Liu, Yijie; Zhu, Zheng H.

    2018-02-01

    The study of wrinkling mechanisms essentially helps to establish stable and controllable performance in electronic products. To gain some basic understanding of the wrinkling process in flexoelectric dielectrics, this paper models the wrinkling of nano-film/substrate systems, typically seen in stretchable electronics, subjected to substrate prestrain and voltage loading on electrodes. Flexoelectricity is considered through the constitutive equations proposed by Shen and Hu, and Euler-Bernoulli beam theory is applied to formulate the expressions of wrinkling wavelength and amplitude through the Ritz method. The effects of flexoelectricity, surface parameters, prestrain, applied voltage, structural scale etc on wrinkling behaviors, including wrinkling deformation and the wrinkling critical condition, are discussed. Results reveal that the action of both flexoelectric and surface effects is significant over only a small scale range, with film thickness less than 10 nm. Alongside these issues, the fundamental difference between flexoelectric and piezoelectric effects on wrinkling behaviors is highlighted. Piezoelectricity may act as a promoter or suppressor of wrinkling initiation and amplitude, depending on the applied voltage, while flexoelectricity not only reduces the critical prestrain or voltage required for wrinkling, but also decreases the wrinkling wavelength and amplitude.

  8. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing.

    PubMed

    Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo

    2017-03-01

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO 4 - exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO 4 was added. Likewise, Cu XANES spectra for CuO and CuSO 4 -exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.

  9. On the possibility of room temperature ferromagnetism on chunk-shape BaSnO3/ZnO core/shell nanostructures

    NASA Astrophysics Data System (ADS)

    Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Core/shell BaSnO3/ZnO (BS-ZO) nanostructures were prepared by oxalate precipitation method and wet-chemical method. BaSnO3 (BSO) cubic perovskite structure and ZnO hexagonal wurtzite structure were confirmed by X-ray diffraction (XRD). The crystallite sizes is 23 nm, 29 nm and 27 nm for BSO, ZnO and BS-ZO, respectively. Chunk-shape and cuboids morphology observed from scanning electron microscopy (SEM) analysis. The magnetic properties were studied by VSM for bare and core-shell nano systems and the room temperature ferromagnetism observed for core-shell nanostructures. The BSO/ZnO shows enhanced coercivity and saturated magnetization as compared with BSO and ZnO nanostructures.

  10. Nano-Composite Foam Sensor System in Football Helmets.

    PubMed

    Merrell, A Jake; Christensen, William F; Seeley, Matthew K; Bowden, Anton E; Fullwood, David T

    2017-12-01

    American football has both the highest rate of concussion incidences as well as the highest number of concussions of all contact sports due to both the number of athletes and nature of the sport. Recent research has linked concussions with long term health complications such as chronic traumatic encephalopathy and early onset Alzheimer's. Understanding the mechanical characteristics of concussive impacts is critical to help protect athletes from these debilitating diseases and is now possible using helmet-based sensor systems. To date, real time on-field measurement of head impacts has been almost exclusively measured by devices that rely on accelerometers or gyroscopes attached to the player's helmet, or embedded in a mouth guard. These systems monitor motion of the head or helmet, but do not directly measure impact energy. This paper evaluates the accuracy of a novel, multifunctional foam-based sensor that replaces a portion of the helmet foam to measure impact. All modified helmets were tested using a National Operating Committee Standards for Athletic Equipment-style drop tower with a total of 24 drop tests (4 locations with 6 impact energies). The impacts were evaluated using a headform, instrumented with a tri-axial accelerometer, mounted to a Hybrid III neck assembly. The resultant accelerations were evaluated for both the peak acceleration and the severity indices. These data were then compared to the voltage response from multiple Nano Composite Foam sensors located throughout the helmet. The foam sensor system proved to be accurate in measuring both the HIC and Gadd severity index, as well as peak acceleration while also providing additional details that were previously difficult to obtain, such as impact energy.

  11. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  12. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  13. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Suresh, D.; Udayabhanu; Nethravathi, P. C.; Lingaraju, K.; Rajanaika, H.; Sharma, S. C.; Nagabhushana, H.

    2015-02-01

    Zinc oxide nanopowders were synthesized by solution combustion method using Epigallocatechin gallate (EGCG) a tea catechin as fuel. The structure and morphology of the product was characterized by Powder X-ray Diffraction, Scanning Electron Microscopy, photoluminescence and UV-Visible spectroscopy. The nanopowders (Nps) were subjected to photocatalytic and biological activities such as antimicrobial and antioxidant studies. PXRD patterns demonstrate that the formed product belongs to hexagonal wurtzite system. SEM images show that the particles are agglomerated to form sponge like structure and the average crystallite sizes were found to be ∼10-20 nm. PL spectra exhibit broad and strong peak at 590 nm due to the Zn-vacancies, and O-vacancies. The prepared ZnO Nps exhibit excellent photocatalytic activity for the photodegradation of malachite green (MG) and methylene blue (MB) indicating that the ZnO NPs are potential photocatalytic semiconductor materials. ZnO NPs exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus using the agar well diffusion method. Furthermore, the ZnO nano powders show good antioxidant activity by potentially scavenging DPPH radicals. The study successfully demonstrates synthesis of ZnO NPs by simple ecofriendly route employing EGCG as fuel that exhibit superior photodegradative, antibacterial and antioxidant activities.

  14. Multi-scale Modeling and Analysis of Nano-RFID Systems on HPC Setup

    NASA Astrophysics Data System (ADS)

    Pathak, Rohit; Joshi, Satyadhar

    In this paper we have worked out on some the complex modeling aspects such as Multi Scale modeling, MATLAB Sugar based modeling and have shown the complexities involved in the analysis of Nano RFID (Radio Frequency Identification) systems. We have shown the modeling and simulation and demonstrated some novel ideas and library development for Nano RFID. Multi scale modeling plays a very important role in nanotech enabled devices properties of which cannot be explained sometimes by abstraction level theories. Reliability and packaging still remains one the major hindrances in practical implementation of Nano RFID based devices. And to work on them modeling and simulation will play a very important role. CNTs is the future low power material that will replace CMOS and its integration with CMOS, MEMS circuitry will play an important role in realizing the true power in Nano RFID systems. RFID based on innovations in nanotechnology has been shown. MEMS modeling of Antenna, sensors and its integration in the circuitry has been shown. Thus incorporating this we can design a Nano-RFID which can be used in areas like human implantation and complex banking applications. We have proposed modeling of RFID using the concept of multi scale modeling to accurately predict its properties. Also we give the modeling of MEMS devices that are proposed recently that can see possible application in RFID. We have also covered the applications and the advantages of Nano RFID in various areas. RF MEMS has been matured and its devices are being successfully commercialized but taking it to limits of nano domains and integration with singly chip RFID needs a novel approach which is being proposed. We have modeled MEMS based transponder and shown the distribution for multi scale modeling for Nano RFID.

  15. Degradation of lindane by a novel embedded bio-nano hybrid system in aqueous environment.

    PubMed

    Salam, Jaseetha Abdul; Das, Nilanjana

    2015-03-01

    The objective of this study was to evaluate the effect of an embedded bio-nano hybrid system using nanoscale zinc oxide (n-ZnO) and lindane-degrading yeast Candida VITJzN04 for lindane degradation. Nano-embedding of the yeast was done with chemically synthesized n-ZnO particles (50 mg/mL) and was visualized by atomic force microscope (AFM) and scanning electron microscope (SEM). Nanoparticles were embedded substantially on the surfaces of the yeast cells and translocated into the cell cytoplasm without causing any lethal effect to the cell until 50 mg/mL. Lindane (600 mg/L) degradation was studied both in the individual and hybrid system. Rapid reductive-dechlorination of lindane was attained with n-ZnO under illuminated conditions, with the generation of chlorobenzene and benzene as dechlorination products. The bio-nano hybrid was found to be more effective compared to the native yeasts for lindane degradation and resulted in complete removal within 3 days. The kinetic data analysis implied that the half-life of lindane was 9 h for bio-nano hybrid and 28 h for Candida VITJzN04. The enhanced lindane degradation by bio-nano hybrid might be due to increased porosity and permeability of the yeast cell membrane, facilitating the easy entry of lindane into cell cytoplasm and n-ZnO-mediated dechlorination. To the best of our knowledge, this report, for the first time, suggests the use of n-ZnO-mediated dechlorination of lindane and the novel bio-nano hybrid system that reduces the half-life to one third of the time taken by the yeast alone. The embedded bio-nano hybrid system may be exploited as an effective remediation tool for the treatment of lindane-contaminated wastewaters.

  16. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  17. Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant.

    PubMed

    Thennarasu, G; Sivasamy, A

    2016-12-01

    Stringent Environmental standards followed worldwide led to the emergence of advanced oxidation process for the removal of toxic contaminants from water and wastewater. Among all semiconductor photocatalysts have great potential in the degradation of organic and inorganic pollutants into lesser harmful products under visible light irradiations. The present research work describes the synthesis of Cu doped ZnO (CuDZ) via a co-precipitation method to attain high crystallized powder confirmed by XRD analysis. The FE-SEM images showed that the CuDZ has cotton ball like morphology with a uniform size ranged from 25 to 40nm. TEM, FT-IR and UV-DRS studies of the synthesized CuDZ are also discussed in detail. The photocatalytic activity of the as prepared CuDZ catalyst was tested for the degradation of Direct Blue 71 (DB 71) dye in aqueous phase under visible light irradiation. The degree of degradation was found to be dependent on aqueous phase pH, duration of irradiation time, amount of photocatalyst, the initial dye concentration and kinetics of photodegradation. The maximum photocatytic degradation of DB 71 dye was found to be effective at pH 6.8. The optimum amount of photocatalyst was found 3gL -1 of CuDZ for the complete degradation of DB 71 dye (0.01gL -1 ). The reusability of the photocatalyst indicates that 96% of DB 71 dye was degraded up to 3rd cycles of use. The visible photodegradation of DB 71 dye was exhibited pseudo-first-order kinetics. Chemical oxygen demand and ESI-MS studies confirmed the complete mineralization of DB 71 dye molecules. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    PubMed Central

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters. PMID:27877895

  19. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    NASA Astrophysics Data System (ADS)

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

  20. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films.

    PubMed

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs 2 Mo 6 I 8 (OOC 2 F 5 ) 6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo 6 clusters.

  1. Effect of Silver Dopants on the ZnO Thin Films Prepared by a Radio Frequency Magnetron Co-Sputtering System

    PubMed Central

    Liu, Fang-Cheng; Li, Jyun-Yong; Chen, Tai-Hong; Chang, Chun-How; Lee, Ching-Ting; Hsiao, Wei-Hua; Liu, Day-Shan

    2017-01-01

    Ag-ZnO co-sputtered films at various atomic ratios of Ag (Ag/(Ag + Zn) at.%) were prepared by a radio frequency magnetron cosputtering system, using the co-sputtered targets of Ag and ZnO. The activation of the Ag acceptors (AgZn) and the formation of the Ag aggregations (Ag0) in the ZnO matrix were investigated from XRD, Raman scattering, and XPS measurements. The Ag-ZnO co-sputtered film behaving like a p-type conduction was achievable after annealing at 350 °C under air ambient for 1 h. PMID:28773159

  2. Nano-Ceramic Coated Plastics

    NASA Technical Reports Server (NTRS)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (<100 C) is also a key to generating these ceramic coatings on the plastics. One possible way of processing nanoceramic coatings at low temperatures (< 90 C) is to take advantage of in-situ precipitated nanoparticles and nanostructures grown from aqueous solution. These nanostructures can be tailored to ceramic film formation and the subsequent microstructure development. In addition, the process provides environment- friendly processing because of the

  3. The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    PubMed

    Eslick, Enid M; Keall, Paul J

    2015-10-01

    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements. © The Author(s) 2014.

  4. A liposomal steroid nano-drug for treating systemic lupus erythematosus.

    PubMed

    Moallem, E; Koren, E; Ulmansky, R; Pizov, G; Barlev, M; Barenholz, Y; Naparstek, Y

    2016-10-01

    Glucocorticoids have been known for years to be the most effective therapy in systemic lupus erythematosus. Their use, however, is limited by the need for high doses due to their unfavorable pharmacokinetics and biodistribution. We have previously developed a novel liposome-based steroidal (methylprednisolone hemisuccinate (MPS)) nano-drug and demonstrated its specific accumulation in inflamed tissues, as well as its superior therapeutic efficacy over that of free glucocorticoids (non-liposomal) in the autoimmune diseases, including the adjuvant arthritis rat model and the experimental autoimmune encephalomyelitis mouse model. In the present work we have evaluated the therapeutic effect of the above liposome-based steroidal (MPS) nano-drug in the MRL-lpr/lpr murine model of SLE and compared it with similar doses of the free MPS. MRL-lpr/lpr mice were treated with daily injections of free MPS or weekly injections of 10% dextrose, empty nano-liposomes or the steroidal nano-drug and the course of their disease was followed up to the age of 24 weeks. Treatment with the steroidal nano-drug was found to be significantly superior to the free MPS in suppressing anti-dsDNA antibody levels, proliferation of lymphoid tissue and renal damage, and in prolonging survival of animals. This significant superiority of our liposome based steroidal nano-drug administered weekly compared with daily injections of free methylprednisolone hemisuccinate in suppressing murine lupus indicates this glucocorticoid nano-drug formulation may be a good candidate for the treatment of human SLE. © The Author(s) 2016.

  5. pH-sensitive nano-systems for drug delivery in cancer therapy.

    PubMed

    Liu, Juan; Huang, Yuran; Kumar, Anil; Tan, Aaron; Jin, Shubin; Mozhi, Anbu; Liang, Xing-Jie

    2014-01-01

    Nanotechnology has been widely used in the development of new strategies for drug delivery and cancer therapy. Compared to traditional drug delivery systems, nano-based drug delivery system have greater potential in a variety of areas, such as multiple targeting functionalization, in vivo imaging, combined drug delivery, extended circulation time, and systemic control release. Nano-systems incorporating stimulus-responsive materials have remarkable properties which allow them to bypass biological barriers and achieve targeted intracellular drug delivery. As a result of the active metabolism of tumor cells, the tumor microenvironment (TME) is highly acidic compared to normal tissues. pH-Sensitive nano-systems have now been developed in which drug release is specifically triggered by the acidic tumor environment. Studies have demonstrated that novel pH-sensitive drug delivery systems are capable of improving the efficiency of cancer treatment. A number of these have been translated from bench to clinical application and have been approved by the Food and Drug Administration (FDA) for treatment of various cancerous diseases. Herein, this review mainly focuses on pH-sensitive nano-systems, including advances in drug delivery, mechanisms of drug release, and possible improvements in drug absorption, with the emphasis on recent research in this field. With deeper understanding of the difference between normal and tumor tissues, it might be possible to design ever more promising pH-responsive nano-systems for drug delivery and cancer therapy in the near future. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Electronic and thermoelectric analysis of phases in the In 2O 3(ZnO) k system

    DOE PAGES

    Hopper, E. Mitchell; Zhu, Qimin; Song, Jung-Hwan; ...

    2011-01-01

    The high-temperature electrical conductivity and thermopower of several compounds in the In 2O 3(ZnO) k system (k = 3, 5, 7, and 9) were measured, and the band structures of the k = 1, 2, and 3 structures were predicted based on first-principles calculations. These phases exhibit highly dispersed conduction bands consistent with transparent conducting oxide behavior. Jonker plots (Seebeck coefficient vs. natural logarithm of conductivity) were used to obtain the product of the density of states and mobility for these phases, which were related to the maximum achievable power factor (thermopower squared times conductivity) for each phase by Ioffemore » analysis (maximum power factor vs. Jonker plot intercept). With the exception of the k = 9 phase, all other phases were found to have maximum predicted power factors comparable to other thermoelectric oxides if suitably doped.« less

  7. Theory and Device Modeling for Nano-Structured Transistor Channels

    DTIC Science & Technology

    2011-06-01

    zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.

  8. Novel delivery system for natural products: Nano-curcumin formulations.

    PubMed

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer's, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): ("Curcumin" OR "Curcuma longa") AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions.

  9. Novel delivery system for natural products: Nano-curcumin formulations

    PubMed Central

    Rahimi, Hamid Reza; Nedaeinia, Reza; Sepehri Shamloo, Alireza; Nikdoust, Shima; Kazemi Oskuee, Reza

    2016-01-01

    Objective: Curcumin is extracted from Curcuma longa and regulates the intracellular signal pathways which control the growth of cancerous cell, inflammation, invasion and apoptosis. Curcumin molecules have special intrinsic features that can target the intracellular enzymes, genome (DNA) and messengers (RNA). A wide range of studies have been conducted on the physicochemical traits and pharmacological effects of curcumin on different diseases like cardiovascular diseases, diabetes, cancer, rheumatoid arthritis, Alzheimer’s, inflammatory bowel disease (IBD), and even it has wound healing. Oral bioavailability of curcumin is rather poor, which would certainly put some boundaries in the employment of this drug. Materials and Methods: Bibliographical searches were performed using MEDLINE/ScienceDirect/OVID up to February 2015 using the following keywords (all fields): (“Curcumin” OR “Curcuma longa”) AND [(nanoparticles) OR (Nanomicelles) OR (micro emulsions) OR (liposome) OR (phospholipid). Results: Consequently, for any developments of curcumin in the future, analogues of curcumin that have better bioavailability or substitute formulations are needed crucially. Conclusion: These studies indicated that nanotechnology can formulate curcumin effectively, and this nano-formulated curcumin with a potent ability against various cancer cells, were represented to have better efficacy and bioavailability under in vivo conditions. PMID:27516979

  10. Carbon-Based Nano-Electro-Mechanical-Systems

    NASA Technical Reports Server (NTRS)

    Kaul, A. B.; Khan, A. R.; Megerian, K. G.; Epp, L.; LeDuc, G.; Bagge, L.; Jennings, A. T.; Jang, D.; Greer, J. R.

    2011-01-01

    We provide an overview of our work where carbon-based nanostructures have been applied to two-dimensional (2D) planar and three-dimensional (3D) vertically-oriented nano-electro-mechanical (NEM) switches. In the first configuration, laterally oriented single-walled nanotubes (SWNTs) synthesized using thermal chemical vapor deposition (CVD) were implemented for forming bridge-type 2D NEMS switches, where switching voltages were on the order of a few volts. In the second configuration, vertically oriented carbon nanofibers (CNFs) synthesized using plasma-enhanced (PE) CVD have been explored for their potential application in 3D NEMS. We have performed nanomechanical measurements on such vertically oriented tubes using nanoindentation to determine the mechanical properties of the CNFs. Electrostatic switching was demonstrated in the CNFs synthesized on refractory metallic nitride substrates, where a nanoprobe was used as the actuating electrode inside a scanning-electron-microscope. The switching voltages were determined to be in the tens of volts range and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical pull-in voltage which was compared to experimental results.

  11. Nano opto-mechanical systems (NOMS) as a proposal for tactile displays

    NASA Astrophysics Data System (ADS)

    Campo, E. M.; Roig, J.; Roeder, B.; Wenn, D.; Mamojka, B.; Omastova, M.; Terentjev, E. M.; Esteve, J.

    2011-10-01

    For over a decade, special emphasis has been placed in the convergence of different fields of science and technology, in an effort to serve human needs by way of enhancing human capabilities. The convergence of the Nano-Bio-Info-Cogni (NBIC) quartet will provide unique solutions to specific needs. This is the case of, Nano-opto mechanical Systems (NOMS), presented as a solution to tactile perception, both for the visually-impaired and for the general public. NOMS, based on photoactive polymer actuators and devices, is a much sought-after technology. In this scheme, light sources promote mechanical actuation producing a variety of nano-opto mechanical systems such as nano-grippers. In this paper, we will provide a series of specifications that the NOMS team is targeting towards the development of a tactile display using optically-activated smart materials. Indeed, tactile displays remain mainly mechanical, compromising reload speeds and resolution which inhibit 3D tactile representation of web interfaces. We will also discuss how advantageous NOMS tactile displays could be for the general public. Tactile processing based on stimulation delivered through the NOMS tablet, will be tested using neuropsychology methods, in particular event-related brain potentials. Additionally, the NOMS tablet will be instrumental to the development of basic neuroscience research.

  12. Development and characterization of nanopore system for nano-vesicle analysis

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system

  13. Characterization of Nano Bamboo Charcoal Drug Delivery System for Eucommia ulmoides Extract and Its Anticancer Effect In vitro.

    PubMed

    Zeng, Zhaoyan; Li, Xiangzhou; Zhang, Sheng; Huang, Dan

    2017-01-01

    Nano bamboo charcoal is being widely used as sustained release carrier for chemicals for its high specific surface area, sound biocompatibility, and nontoxicity; however, there have been no reports on nano bamboo charcoal as sustained release carrier for traditional Chinese medicine (TCM). To study the effect of nano bamboo charcoal in absorbing and sustained releasing Eucommia ulmoides extract (EUE) and to verify the in vitro anticancer effect of the sustained release liquid, so as to provide a theoretical basis for the development and utilization of nano bamboo charcoal as TCM sustained-release preparation. The adsorption capacity for the nano bamboo charcoal on EUE was measured by Langmuir model, and the release experiment was carried out under intestinal fluid condition. Characteristic changes for the nano bamboo charcoal nano-drug delivery system with and without adsorption of E. ulmoides were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and specific surface area. In addition, the anticancer effect from this novel bamboo charcoal E. ulmoides delivery system was evaluated against a human colon cancer cell line (HCT116). It was found that nano bamboo charcoal exhibits good adsorption capacity (up to 462.96 mg/g at 37°C). The cumulative release rate for EUE from this nano bamboo charcoal delivery system was 70.67%, and specific surface area for the nano bamboo charcoal decreased from 820.32 m 2 /g to 443.80 m 2 /g after EUE was loaded. An in vitro anticancer study showed that the inhibition rate for E. ulmoides against HCT116 cancer cells was 23.07%, for this novel bamboo charcoal nano-drug delivery system. This study provides a novel strategy for the delivery of traditional Chinese medicine using bamboo charcoal nano-drug delivery system. The adsorption equilibrium was reached after 30 min of ultrasonic treatmentThe saturated adsorption capacity of Eucommia ulmoides extract by nano bamboo

  14. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    SciTech Connect

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cellsmore » (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  15. Conceptual energy and water recovery system for self-sustained nano membrane toilet.

    PubMed

    Hanak, Dawid P; Kolios, Athanasios J; Onabanjo, Tosin; Wagland, Stuart T; Patchigolla, Kumar; Fidalgo, Beatriz; Manovic, Vasilije; McAdam, Ewan; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, Elise

    2016-10-15

    With about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kg settledsolids and water recovery rate of 13.4 dm 3 /day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kg settledsolids . Such household-scale system would deliver the net power output (1.9-5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.

  16. Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong

    2017-02-01

    Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.

  17. High Performance Computing and Enabling Technologies for Nano and Bio Systems and Interfaces

    DTIC Science & Technology

    2014-12-12

    data analysis of protein – aptamer interaction systems were developed. All research investigations contributed to the research education , and training...achieved a 3.5 GPA to 4.0 (4.0 max scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research...Research, education and training of future US work force in such nano- bio systems have significant potential for advancement in medical and health

  18. Micro- and nano-NDE systems for aircraft: great things in small packages

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  19. A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb.

    PubMed

    Little, Shannon J; Ralph, Stephen F; Mano, Nicolas; Chen, Jun; Wallace, Gordon G

    2011-08-21

    A novel bioelectrode system has been prepared in which an enzyme and a conducting polymer hydrogel are combined in a nanostructured scaffold. The latter consists of fibres of carbon NanoWeb, grown by chemical vapour deposition onto reticulated vitreous carbon (RVC). The catalytic currents produced by this new bioelectrode system are significantly larger than those obtained using conventional electrodes. This journal is © The Royal Society of Chemistry 2011

  20. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  1. Effects of the ZnO layer on the structure and white light emission properties of a ZnS:Mn/GaN nanocomposite system.

    PubMed

    Wang, Cai-Feng; Hu, Bo

    2017-10-01

    ZnO films were inserted between the ZnS:Mn films and GaN substrates by pulsed laser deposition (PLD). The structure, morphology, and optical properties of the ZnS:Mn/ZnO/GaN nanocomposite systems have been investigated. X-ray diffraction results show that there are three diffraction peaks located at 28.4°, 34.4°, and 34.1°, which correspond to the β-ZnS(111), ZnO(002), and GaN(002) planes, respectively. Due to the insertion of ZnO films, the diffraction peak intensity of ZnS:Mn in ZnS:Mn/ZnO/GaN is stronger than that of ZnS:Mn in ZnS:Mn/GaN, and the full width at half-maximum is smaller. Though the transmittance of ZnS:Mn/ZnO films is slightly lower than that of ZnS:Mn films, the transmittance is still higher than 80%. Compared with ZnS:Mn/GaN, an ultraviolet (UV) emission at 387 nm (originated from the near-band emission of ZnO) and a green light emission at about 520 nm appeared in the photoluminescence (PL) spectra of ZnS:Mn/ZnO/GaN, in addition to the blue emission at 435 nm and the orange-red emission at 580 nm. The emission at 520 nm may be related to the deep-level emission from ZnO and the interface of ZnS:Mn/ZnO. The PL spectrum of ZnS:Mn/ZnO/GaN covers the visible region from the blue light to the red light (400-700 nm), and its color coordinate and color temperature are (0.3103,0.3063) and 6869 K, respectively, presenting strong white light emission.

  2. Antagonistic effect of nano-ZnO and cetyltrimethyl ammonium chloride on the growth of Chlorella vulgaris: Dissolution and accumulation of nano-ZnO.

    PubMed

    Liu, Na; Wang, Yipeng; Ge, Fei; Liu, Shixiang; Xiao, Huaixian

    2018-04-01

    The interaction of nanoparticles with coexisting chemicals affects the fate and transport of nanoparticles, as well as their combined effects on aquatic organisms. Here, we evaluated the joint effect of ZnO nanoparticle (nano-ZnO) and cetyltrimethyl ammonium chloride (CTAC) on the growth of Chlorella vulgaris and explored the possible mechanism. Results showed that an antagonistic effect of nano-ZnO and CTAC (0.1, 0.2 and 0.3 mg L -1 ) was found because CTAC stop nano-ZnO being broken down into solution zinc ions (Zn 2+ ). In the presence of CTAC, the zinc (including nano-ZnO and released Zn 2+ ) showed a higher adsorption on bound extracellular polymeric substances (B-EPS) but lower accumulation in the algal cells. Moreover, we directly demonstrated that nano-ZnO was adsorbed on the algal B-EPS and entered into the algal cells by transmission electron microscope coupled with energy dispersive X-ray (TEM-EDX). Hence, these results suggested that the combined system of nano-ZnO and CTAC exhibited an antagonistic effect due to the inhibition of CTAC on dissolution of nano-ZnO and accumulation of the zinc in the algal cells. Copyright © 2017. Published by Elsevier Ltd.

  3. Mars NanoOrbiter: A CubeSat for Mars System Science

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal

    2017-10-01

    The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.

  4. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    SciTech Connect

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  5. High Temperature Superconducting State in Metallic Nanoclusters and Nano-Based Systems

    DTIC Science & Technology

    2011-10-01

    ac.Semenova, 1a Chernogolovka, Moscow District, Russia 142432 EOARD ISTC 09-7006 (Project Number 4084p) October 2011 Interim Report for 01...Nano-Based Systems 5a. CONTRACT NUMBER ISTC Registration No: 4084p 5b. GRANT NUMBER ISTC 09-7006 5c. PROGRAM ELEMENT NUMBER 6...Keywords: Superconductivity, tunneling, creep, resonance tunneling, clusters, nets, fluctuations, phase transitions. ISTC № 4084p

  6. High Temperature Superconducting State in Metallic Nanoclusters and Nano-Based Systems

    DTIC Science & Technology

    2013-12-01

    pr.ac Semenova 1a Russia EOARD ISTC 09-7006/P-4084p Report Date: December 2013 Final Report from 01 October 2010 to 30 September 2013...CONTRACT NUMBER ISTC PPA 4084p 5b. GRANT NUMBER ISTC 09-7006 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...discussed in the conventional theory. High Temperature Superconducting State in Metallic Nanoclusters and Nano-Based Systems ISTC Project No. 4084p

  7. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    PubMed

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  8. Residual stress and bending strength of ZnO films deposited on polyimide sheet by RF sputtering system

    SciTech Connect

    Kusaka, Kazuya, E-mail: kusaka@tokushima-u.ac.jp; Maruoka, Yutaka, E-mail: ymaruoka1116@gmail.com; Matsue, Tatsuya, E-mail: tmatsue@mat.niihama-nct.ac.jp

    2016-05-15

    Zinc oxide (ZnO) films were deposited on a soft polyimide sheet substrate by radio frequency sputtering with a ZnO powder target, and the films' crystal orientations and residual stress were investigated using x-ray diffraction as a function of substrate temperature. C-axis oriented ZnO films were achieved using this ZnO powder target method. The ZnO films exhibited high compressive residual stresses between −0.7 and −1.4 GPa. Finally, the authors examined the strength of the obtained film by applying tensile bending loads. No cracks were observed on the surfaces of the ZnO films after a bending test using cylinders with diameters >25 mm. Aftermore » a bending test using a cylinder with a diameter of 19 mm, large cracks were formed on the films. Therefore, the authors concluded that the tensile bending strength of the obtained films was greater than ∼420 MPa.« less

  9. Effect of morphology on the non-ohmic conduction in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Jayakumar, K.

    2016-05-01

    Nanostructures of ZnO is synthesized with nanoflower like morphology by simple wet chemical method. The structural, morphological and electrical characterization have been carried out. The temperature dependent electrical characterization of ZnO pellets of thickness 1150 µm is made by the application of 925MPa pressure. The morphological dependence of non-ohmic conduction beyond some arbitrary tunneling potential and grain boundary barrier thickness is compared with the commercially available bulk ZnO. Our results show the suitability of nano-flower like ZnO for the devices like sensors, rectifiers etc.

  10. Nano drug delivery systems and gamma radiation sterilization.

    PubMed

    Sakar, F; Özer, A Y; Erdogan, S; Ekizoglu, M; Kart, D; Özalp, M; Colak, S; Zencir, Y

    2017-09-01

    In recent years, drug delivery systems such as liposomes and microparticles have been used in clinic for the treatment of different diseases and from a regulatory point of view, a parenterally applied drug and drug delivery systems must be sterile and pyrogen free. Radiation sterilization is a method recognized by pharmacopoeias to achieve sterility criteria of parenterals. It has the ability to kill microorganisms in therapeutic products. The ability of, however, irradiation might also affect the performance of drug delivery systems. One of the most critical points is irradiation dose, because certain undesirable chemical and physical changes may accompany with the irradiation, especially with the traditionally applied dose of 25 kGy. Its ionizing property may cause fragmentation of covalent bond. The care must be paid to the applied dose. In this research, the effects of gamma irradiation on different drug delivery systems such as chitosan microparticles, liposomes, niosomes and sphingosomes were investigated. According to the experimental data, it can be concluded that gamma irradiation can be a suitable sterilization technique for liposome, niosome and sphingosome dispersions. When all irradiated drug carrier systems were taken into consideration, chitosan glutamate microparticles were found as the most radioresistant drug delivery system among the others.

  11. A nano-delivery system for bioactive ingredients using supercritical carbon dioxide and its release behaviors.

    PubMed

    Situ, Wenbei; Song, Xianliang; Luo, Shucan; Liang, Yan

    2017-08-01

    For the purpose of ensuring the bioavailability of bioactive ingredients, a nano-delivery system with low toxicity was developed using supercritical carbon dioxide (SC-CO 2 ). Compared to thin-film hydration (TFH), obtaining nano-scale liposomes is easier using SC-CO 2 . The characteristic of these liposomes was also demonstrated by the analysis of particle size and morphology. An in vitro release study showed that liposomes produced using SC-CO 2 were resistant to low pH in simulated gastric conditions. In a simulated intestinal environment, enteric solubility of these liposomes was enhanced, which are important properties for controlled releasing bioactive ingredient. Furthermore, SC-CO 2 -produced liposomes had a higher storage stability than those produced using TFH. Analysis of the organic solvent residue in the liposomes by gas chromatography-mass spectrometry (GC-MS) indicated that SC-CO 2 -produced liposomes had lower toxicity than those produced by TFH. A chemical free nano-delivery system using SC-CO 2 has been revealed for storage and controlled release of bioactive ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermoelastic Damping in FGM Nano-Electromechanical System in Axial Vibration Based on Eringen Nonlocal Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, Z.; Rashahmadi, S.

    2017-11-01

    The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.

  13. Integrated ZnO nanoparticles on paper-based microfluidic: toward efficient analytical device for glucose detection based on impedance and FTIR measurement

    NASA Astrophysics Data System (ADS)

    Yuwono, Rio Akbar; Izdiharruddin, Mokhammad Fahmi; Wahyuono, Ruri Agung

    2016-11-01

    Microfluidic paper-based analytical devices decorated with ZnO nanospherical (nanoSPs) aggregates (ZnO-μPAD) for glucose detection have been fabricated. ZnO nanoSPs were prepared by wet chemical synthesis and integrated on the optimized geometry of ZnO-μPAD has 0.2 and 0.4 mm of channel width and length, respectively. Glucose detection measurements were based on electrochemical and infrared transmission measurements. The glucose concentrations were adjusted as 5, 6.5, and 9 mmol, i.e. typical glucose level for normal, pre-diabetes and diabetes, in a mixture of ringer lactate as simulated biological fluid and red blood cells. ZnO nanoSPs in this study possess an average aggregate size of 160 nm formed by clustered 18 nm crystallite size and ordered porous matrix as well as a surface area of 15 m2·g-1.The separation process of the glucose sample on ZnO-μPAD requires approximately 45 s. The glucose detection results show that both electrochemical-based and FTIR-based measurements perform a linear measurement system (R2 of 0.81 to 0.99) with a relatively high sensitivity. A linearly decreasing impedance spanning from 2.2 - 0.6 Ohm and linearly increasing ΔIR transmission spanning from 3 - 19% are obtained for glucose level ranging from 5 - 9 mmol.

  14. High-precision micro/nano-scale machining system

    DOEpatents

    Kapoor, Shiv G.; Bourne, Keith Allen; DeVor, Richard E.

    2014-08-19

    A high precision micro/nanoscale machining system. A multi-axis movement machine provides relative movement along multiple axes between a workpiece and a tool holder. A cutting tool is disposed on a flexible cantilever held by the tool holder, the tool holder being movable to provide at least two of the axes to set the angle and distance of the cutting tool relative to the workpiece. A feedback control system uses measurement of deflection of the cantilever during cutting to maintain a desired cantilever deflection and hence a desired load on the cutting tool.

  15. Nano-based systems for oil spills control and cleanup.

    PubMed

    Avila, Antonio F; Munhoz, Viviane C; de Oliveira, Aline M; Santos, Mayara C G; Lacerda, Glenda R B S; Gonçalves, Camila P

    2014-05-15

    This paper reports the development of superhydrophobic nanocomposite systems which are also oleophilic. As hydrophobicity is based on low energy surface and surface roughness, the electrospinning technique was selected as the manufacturing technique. N,N' dimethylformamide (DMF) was employed as the polystyrene (PS) solvent. The "Tea-bag" (T-B) nanocomposite system is based on exfoliated graphite surrounded by PS superhydrophobic membranes. The T-B systems were tested regarding its adsorption and absorption rates. To test these properties, it was employed three different water/oil emulsions, i.e., new and used motor oil, which have physical properties (viscosity and specific gravity) similar to heavy crude oil extracted in Brazil, and vacuum pump oil (which does not form oil/water emulsion). It was observed that oil adsorption rate is dependent on oil surface tension, while the absorption rate is mainly dependent on membrane/exfoliated graphite surface area. Experimental data show that oil absorption rates ranged between 2.5g/g and 40g/g, while the adsorption rate oscillated from 0.32g/g/min to 0.80g/g/min. Furthermore, T-B systems were tested as containment barriers and sorbent materials with good results including its recyclability. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application

    PubMed Central

    Chao, Chung-Hua; Wei, Da-Hua

    2015-01-01

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561

  17. Gas sensing performance of nano zinc oxide sensors

    SciTech Connect

    Sharma, Shiva, E-mail: shivasharmaau@gmail.com; Chauhan, Pratima, E-mail: mangu167@yahoo.co.in

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH{sub 3}) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 secmore » respectively.« less

  18. Smart Micro/Nano-robotic Systems for Gene Delivery.

    PubMed

    Pedram, Alireza; Pishkenari, Hossein Nejat

    2017-01-01

    Small scale robotics have attracted growing attention for the prospect of targeting and accessing cell-sized sites, necessary for high precision biomedical applications and drug/gene delivery. The loss of controlled gene therapy, inducing systemic side effects and reduced therapeutic efficiency, can be settled utilizing these intelligent carriers. Newly proposed solutions for the main challenges of control, power supplying, gene release and final carrier extraction/degradation have shifted these smart miniature robots to the point of being employed for practical applications of transferring oligonucleotides (pDNA, siRNA, mRNA, etc.) in near future. In this paper, different scenarios and their endeavors to address the vital working demands and steps, in particular, carrier attachment and release, cell internalization, manipulation concerns as well as actuation systems are discussed.This review highlights some promising experimental results showing controlled gene release of robotic systems in comparison with current non-specific gene delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. EFFECTS OF Au ON THE GROWTH OF ZnO NANOSTRUCTURES ON Si BY MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-06-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  20. Superior model for fault tolerance computation in designing nano-sized circuit systems

    SciTech Connect

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com; Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalizationmore » of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.« less

  1. R&D in micro-nano-bio systems and contribution to pHealth.

    PubMed

    Lymberis, Andreas

    2012-01-01

    The capacity to research, develop and manufacture systems that employ components based on nano- and microstructures with biological functionality, and are capable to share, ubiquitously, information is at the forefront of worldwide competition. A new generation of advanced materials, processes and emerging technologies is building up enabling highly integrated, miniaturized and smart micro-nano-bio-systems to be engineered. These fast technology developments are also stimulating the explosive growth in life sciences, which is leading to an ever increasing understanding of life at the sub-cellular and molecular level. By bringing these parallel developments to biomedicine and health, ultrafast and sensitive systems can be developed to prevent illness, to support lifestyle, to make early diagnosis or treat diseases with high accuracy and less invasiveness, and to support body functions or to replace lost functionality. Such systems will enable the delivery of individualized health services with better access and outcomes at lower costs than previously deemed possible, making a substantial contribution to bringing healthcare expenditures under control and increase its productivity. The MNBS (Micro-Nano-Bio Systems) group of EU funded projects aims at speeding up the convergence of micro- and nanotechnology with the life sciences and accelerating the development of highly integrated diagnostic, monitoring and therapeutics devices. This paper presents R&D activities supported through the MNBS group that are relevant to pHealth and discusses directions to be taken in order to overcome the current problems. Finally, it addresses future challenges to build highly integrated and reliable systems including innovation and usability issues.

  2. Nano/micro-electro mechanical systems: a patent view

    NASA Astrophysics Data System (ADS)

    Hu, Guangyuan; Liu, Weishu

    2015-12-01

    Combining both bibliometrics and citation network analysis, this research evaluates the global development of micro-electro mechanical systems (MEMS) research based on the Derwent Innovations Index database. We found that worldwide, the growth trajectory of MEMS patents demonstrates an approximate S shape, with United States, Japan, China, and Korea leading the global MEMS race. Evidenced by Derwent class codes, the technology structure of global MEMS patents remains steady over time. Yet there does exist a national competitiveness component among the top country players. The latecomer China has become the second most prolific country filing MEMS patents, but its patent quality still lags behind the global average.

  3. Tumor target amplification: Implications for nano drug delivery systems.

    PubMed

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Recent Progress of Nano-drug Delivery System for Liver Cancer Treatment.

    PubMed

    Zhou, Feilong; Teng, Fangfang; Deng, Peizong; Meng, Ning; Song, Zhimei; Feng, Runliang

    2018-02-07

    Liver cancer is one of serious diseases which threaten human life and health. Studies on the treatment of liver cancer have attracted widespread attention. Application of nano-drug delivery system (NDDS) can not only improve selective drug delivery to liver tissue and improve the bioavailability of drug, but also can reduce the side effects of drugs when it is specially modified in the respects of structure modification or specific target molecules decoration. This review will address the latest development of liver-targeted drug delivery system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Nano- and Microdelivery Systems for Marine Bioactive Lipids

    PubMed Central

    Pereira, David M.; Valentão, Patrícia; Andrade, Paula B.

    2014-01-01

    There is an increasing body of evidence of the positive impact of several marine lipids on human health. These compounds, which include ω-3 polyunsaturated fatty acids, have been shown to improve blood lipid profiles and exert anti-inflammatory and cardioprotective effects. The high instability of these compounds to oxidative deterioration and their hydrophobicity have a drastic impact in their pharmacokinetics. Thus, the bioavailability of these compounds may be affected, resulting in their inability to reach the target sites at effective concentrations. In this regard; micro/nanoparticles can offer a wide range of solutions that can prevent the degradation of targeted molecules, increase their absorption, uptake and bioavailability. In this work we will present the options currently available concerning micro- and nanodelivery systems for marine lipids; with emphasis on micro/nanoparticles; such as micro/nanocapsules and emulsions. A wide range of bottom-up approaches using casein, chitosan, cyclodextrins, among others; will be discussed. PMID:25522314

  6. Enhanced antimicrobial activity in biosynthesized ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumari, Niraj; Kumari, Priti; Jha, Anal K.; Prasad, K.

    2018-05-01

    Biological synthesis of different metallic and/or oxide nanoparticles and their applications especially in agriculture and biomedical sciences are gaining prominence nowadays due to their handy and reproducible synthetic protocols which are cost-effective and eco-friendly. In this work, green synthesis of zinc oxide nanoparticles (ZnO NPs) using the alcoholic extract of Azadirachta indica as a reducing and stabilizing agent has been presented. Formation of ZnO NPs was confirmed by X-ray diffraction, scanning and transmission electron microscopy techniques. The phytochemicals responsible for nano-transformation were principally alkaloids, flavanoids, terpenoids, tannins and organic acids present in the Azadirachta indica leaves. The synthesized ZnO NPs were used for antimicrobial assays by disc diffusion method against Staphylococcus aureus and Candida albicans. Results showed that ZnO NPs may act as antimicrobial agent especially against skin infections.

  7. Carbon Nanotube Based Nano-Electro-Mechanical Systems (NEMS)

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai, Hongjie; Saini, Subhash

    1998-01-01

    Carbon nanotubes (CNT) enable nanoelectromechanical systems (NEMS) because of their inherent nanostructure, intrinsic electric conductivity and mechanical resilience. The collaborative work between Stanford (experiment) and NASA Ames (theory and simulation) has made progress in two types of CNT based NEMS for nanoelectronics and sensor applications. The CNT tipped scanning probe microscopy (SPM) is a NEMS in which CNT tips are used for nanoscale probing, imaging and manipulating. It showed great improvement in probing surfaces and biological systems over conventional tips. We have recently applied it to write (lithography) and read (image) uniform SiO2 lines on large Si surface area at speed up to 0.5 mm per s. Preliminary work using approximately 10 nm multiwall nanotube tips produced approximately 10 nm structures and showed that the CNT tips didn't wear down when crashed as conventional tips often do. This presents a solution to the long standing tip-wear problem in SPM nanolithography. We have also explored potential of CNT tips in imaging DNA in water. Preliminary experiment using 10 nm CNT tips reached 5 nm resolution. The 1 nm nanolithography and 1 nm DNA imaging can be expected by using approximately 1 nm CNT tips. In contrast to CNT tipped SPM, we also fabricated CNT devices on silicon wafer in which CNTs connect patterned metallic lines on SiO2/Si by a simple chemical vapor deposition process. Using conventional lithography for silicon wafer, we have been able to obtain CNT based transistors and sensors. Investigations of the CNT NEMS as physical, biological and chemical sensors are in progress and will be discussed.

  8. Ternary Oxides in the TiO2-ZnO System as Efficient Electron-Transport Layers for Perovskite Solar Cells with Efficiency over 15.

    PubMed

    Yin, Xiong; Xu, Zhongzhong; Guo, Yanjun; Xu, Peng; He, Meng

    2016-11-02

    Perovskite solar cells, which utilize organometal-halide perovskites as light-harvesting materials, have attracted great attention due to their high power conversion efficiency (PCE) and potentially low cost in fabrication. A compact layer of TiO 2 or ZnO is generally applied as electron-transport layer (ETL) in a typical perovskite solar cell. In this study, we explored ternary oxides in the TiO 2 -ZnO system to find new materials for the ETL. Compact layers of titanium zinc oxides were readily prepared on the conducting substrate via spray pyrolysis method. The optical band gap, valence band maximum and conduction band minimum of the ternary oxides varied significantly with the ratio of Ti to Zn, surprisingly, in a nonmonotonic way. When a zinc-rich ternary oxide was applied as ETL for the device, a PCE of 15.10% was achieved, comparable to that of the device using conventional TiO 2 ETL. Interestingly, the perovskite layer deposited on the zinc-rich ternary oxide is stable, in sharp contrast with that fabricated on a ZnO layer, which will turn into PbI 2 readily when heated. These results indicate that potentially new materials with better performance can be found for ETL of perovskite solar cells in ternary oxides, which deserve more exploration.

  9. Preparation of photocatalytic ZnO nanoparticles and application in photochemical degradation of betamethasone sodium phosphate using taguchi approach

    NASA Astrophysics Data System (ADS)

    Giahi, M.; Farajpour, G.; Taghavi, H.; Shokri, S.

    2014-07-01

    In this study, ZnO nanoparticles were prepared by a sol-gel method for the first time. Taguchi method was used to identify the several factors that may affect degradation percentage of betamethasone sodium phosphate in wastewater in UV/K2S2O8/nano-ZnO system. Our experimental design consisted of testing five factors, i.e., dosage of K2S2O8, concentration of betamethasone sodium phosphate, amount of ZnO, irradiation time and initial pH. With four levels of each factor tested. It was found that, optimum parameters are irradiation time, 180 min; pH 9.0; betamethasone sodium phosphate, 30 mg/L; amount of ZnO, 13 mg; K2S2O8, 1 mM. The percentage contribution of each factor was determined by the analysis of variance (ANOVA). The results showed that irradiation time; pH; amount of ZnO; drug concentration and dosage of K2S2O8 contributed by 46.73, 28.56, 11.56, 6.70, and 6.44%, respectively. Finally, the kinetics process was studied and the photodegradation rate of betamethasone sodium phosphate was found to obey pseudo-first-order kinetics equation represented by the Langmuir-Hinshelwood model.

  10. Structural, mechanical and optical investigations in the TeO2-rich part of the TeO2-GeO2-ZnO ternary glass system

    NASA Astrophysics Data System (ADS)

    Ghribi, N.; Dutreilh-Colas, M.; Duclère, J.-R.; Gouraud, F.; Chotard, T.; Karray, R.; Kabadou, A.; Thomas, P.

    2015-02-01

    Stable glasses are successfully synthesized in the TeO2-GeO2-ZnO system at 850 °C by the melt-quenching method and the glass forming domain is determined in the TeO2-rich part of the diagram. The thermal study, carried out using differential scanning calorimetry, reveals that the glass transition temperature, as well as the thermal stability, increases with the addition of ZnO or GeO2. Bulk glass samples are elaborated within two series of compositions, corresponding to fixed concentrations in GeO2 (respectively 5 or 10 mol. %), and to various contents in ZnO. Structural changes caused by the ZnO addition are discussed based on Raman spectroscopy data. A progressive but very moderate network depolymerization is shown with increasing amount of ZnO. However, two different regimes can be identified, depending on the ZnO content. It is believed that ZnO acts as a network modifier for compositions below 20 mol. %, and starts to participate as a glass network former over such concentration. It is well evidenced that GeO2 contributes to the increase in Young's modulus E, evaluated from ultrasonic echography measurements. In addition, this oxide favors the network reticulation detected by the decrease of the Poisson ratio and the increase of the fractal bond connectivity. However, the role of ZnO is more complicated and will be extensively discussed. The decrease in the atomic packing density Cg probably explains the global evolution of E as a function of ZnO content. The refractive indices and optical band gap energies are extracted from UV-Visible-NIR optical transmission data. For the studied glasses, it is found that the transmission threshold decreases with larger ZnO contents, reflecting the increase in the optical band gap value. Refractive index is finally seen to decrease as a function of both ZnO and GeO2 contents. Such variation is explained by the decrease of the molar electronic polarizability, and by the lower optical basicity values known for TeO3 entities

  11. Emerging research in micro and nano systems: opportunities and challenges for societal impact

    NASA Astrophysics Data System (ADS)

    Gianchandani, Yogesh B.

    2010-02-01

    In just a few decades, micro and nano technologies have changed the way that we live - how we work and communicate; the food and medicine that we consume; the clothing that we use; and the entertainment that we seek. While these technologies are being actively investigated in several research communities, the potential for continued societal impact is constrained by resources available for system-level research. Given the long time-lines and levels of investment that are typically necessary to develop functional systems, strategic prioritization of research directions from the perspective of societal needs can be helpful. This paper outlines the findings of an NSF-sponsored road-mapping workshop that was held in 2009, with the intention of initiating a conversation about the opportunities and challenges for micro and nano systems. Four areas of need were discussed: environmental sensing; health care; infrastructure monitoring; and energy alternatives. Possible research trajectories were identified by envisioning technological goals for the year 2040, and linking these to horizons for 2015 and 2025. This paper also provides few examples of current research in each of the four application domains. It is noted that a systems perspective can help to keep the research focused, accelerating and amplifying the societal gain with available resources. Practical and affordable solutions at the system level will require partnerships between specialists, and also between academia and industry.

  12. Diffusion, swelling, cross linkage study and mechanical properties of ZnO doped PVA/NaAlg blend polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.

  13. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    SciTech Connect

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in nanomaterials using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities or dopants affect the properties of the host phase. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic contaminants. The reductive transformation of ferrihydrite (Fe(OH)3) to nano-particulate iron oxyhydroxide minerals in the presencemore » of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (a-FeOOH) over lepidocrocite (g-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. Using this model system, we demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations of traditional shell-by-shell EXAFS modeling, enabling the detailed analysis of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multi-phase nano-systems.« less

  14. Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting

    NASA Astrophysics Data System (ADS)

    Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing

    2016-03-01

    Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.

  15. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    PubMed

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P < 0.05). Mylar strip and "PoGo" created equally smooth surfaces, while significantly rougher surfaces were obtained after applications of "Sof-Lex spiral" and "OneGloss" (P < 0.05). Polishing ability of Tetric N-Ceram is better than Filtek Z350 XT. "PoGo" seems to be a better polishing system than "OneGloss" and "Sof-Lex Spiral."

  16. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering.

    PubMed

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E

    2015-01-09

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  17. Exploring Our Solar System with CubeSats and NanoSats

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony; Norton, Charles

    2015-01-01

    The Jet Propulsion Laboratory (JPL) is NASA's lead center for robotic exploration of our solar system. We are known for our large, flagship missions, such as Voyager, which gave humanity its first close look at Jupiter and Saturn; and the Mars Rovers, which have excited millions worldwide with their daring landing exploits. Less familiar to those outside NASA may be our role in developing the Kepler mission, which has discovered more than 2000 planets around other stars; or the recently launched Soil Moisture Active Passive (SMAP) mission, one of many JPL Earth Science missions. A recent JPL initiative has emphasized low cost missions that use rapidly evolving technology developed for CubeSats and NanoSat s to explore our solar system. Costs are significantly lower (by one or two orders of magnitude) than for conventional JPL missions, and development time is also significantly shorter. At present 21 such CubeSat flight projects are under way at the laboratory with various partners : some in flight, some in development, some in advanced formulation. Four are planned as deep space missions. To succeed in exploring deep space CubeSat/NanoSat missions have to address several challenges: the more severe radiation environment, communications and navigation at a distance, propulsion, and packaging of instruments that can return valuable science into a compact volume/mass envelope. Instrument technologies, including cameras, magnetometers, spectrometers, radiometers, and even radars are undergoing miniaturization to fit on these smaller platforms. Other key technologies are being matured for smallsats and NanoSats in deep space, including micro -electric propulsion, compact radio (and optical) communications, and onboard data reduction. This paper will describe missions that utilize these developments including the first two deep space CubeSats (INSPIRE), planned for launch in 2017; the first pair of CubeSats to be sent to another planet (MARCO), manifested with the In

  18. A Review on Potential of Proteins as an Excipient for Developing a Nano-Carrier Delivery System.

    PubMed

    Chakraborty, Amrita; Dhar, Pubali

    2017-01-01

    In neo-age research, nano-materials have emerged as potential tools for the revolution of diagnostic and therapeutic field because of their nano-scale effects, increased surface area-volume ratio, and other beneficial properties. For the last few decades, protein has been regarded as the most attractive and versatile natural bio-macromolecule among all of the available biopolymers. Protein is largely exploited as a nano-carrier system in the pharmaceutical industry due to its low cytotoxocity, biocompatibility, biodegradability, abundant renewable sources, significant attaching ability, clinically useful targeting, and site-specific efficient uptake. This review mainly emphasizes on the latest development and progress achieved in the utilization of protein as a nano-vehicle for a large number of therapeutics such as drugs, genes, hormones, enzymse, nutraceuticals, antibodies, peptides, etc. We also discuss the sources of protein materials, fabrication aspects, advantages, constraints, in vivo and in vitro studies and provide a comparative analysis between the different types of proteins as nano-carriers. The variation of the release pattern and molecular mechanism of the encapsulated molecule with respect to different protein types and various nano-structures are also highlighted here to explore the enormous promises of this novel approach.

  19. Nano-enabled drug delivery systems for brain cancer and Alzheimer's disease: research patterns and opportunities.

    PubMed

    Ma, Jing; Porter, Alan L; Aminabhavi, Tejraj M; Zhu, Donghua

    2015-10-01

    "Tech mining" applies bibliometric and text analytic methods to scientific literature of a target field. In this study, we compare the evolution of nano-enabled drug delivery (NEDD) systems for two different applications - viz., brain cancer (BC) and Alzheimer's disease (AD) - using this approach. In this process, we derive research intelligence from papers indexed in MEDLINE. Review by domain specialists helps understand the macro-level disease problems and pathologies to identify commonalities and differences between BC and AD. Results provide a fresh perspective on the developmental pathways for NEDD approaches that have been used in the treatment of BC and AD. Results also point toward finding future solutions to drug delivery issues that are critical to medical practitioners and pharmaceutical scientists addressing the brain. Drug delivery to brain cells has been very challenging due to the presence of the blood-brain barrier (BBB). Suitable and effective nano-enabled drug delivery (NEDD) system is urgently needed. In this study, the authors utilized "tech-mining" tools to describe and compare various choices of delivery system available for the diagnosis, as well as treatment, of brain cancer and Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes.

    PubMed

    Esmailzadeh, Hakimeh; Sangpour, Parvaneh; Shahraz, Farzaneh; Hejazi, Jalal; Khaksar, Ramin

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. Copyright © 2015. Published by Elsevier B.V.

  1. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    PubMed

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  2. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin.

    PubMed

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M; Herrera-Ruiz, Dea; Smyth, Hugh D C

    2013-01-01

    Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.

  3. Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas.

    PubMed

    Pham, Jimmy; Nayel, Amy; Hoang, Christina; Elbayoumi, Tamer

    2016-06-01

    The potent anti-proliferative and pro-apoptotic actions of tocotrienols (T3) against cancer, but not normal tissues, have been hampered by their limited systemic bioavailabilty. Recent expansive development of diverse nanoemulsion (NE) vehicles emphasized their vast potential to improve the effective dosing of different clinical and experimental drugs of lipophilic nature, such as T3. The emphasis of the present work is to develop a pharmaceutically scalable, low-energy nano-emulsification approach for optimized incorporation of T3-rich palm oil (Tocomin®), possessing anticancer activity as a potential cutaneous delivery platform for adjunctive therapy of skin carcinomas, either alone or in combination with other chemotherapeutic agents. Different Tocomin®-NEs, obtained with different homogenization strategies, were screened based on physicochemical uniformity (droplet size, charge and polydispersity) and subjected to stress physical stability testing, along with chemical content analysis (≥90% Tocomin® - incorporation efficiency). Adopted hybrid nano-emulsification of Tocomin®, correlated with highest preservation of DPPH-radical scavenging capacity of active T3 in prototype formulation, Tocomin®-NE, which effectively permeated diffusion cell membranes 4-folds higher than propyleneglycol (PG)-admixed Tocomin® control. Against two different cell models of human cutaneous carcinoma, Tocomin®-hybrid NE demonstrated significantly stronger cytotoxic profiles (p ≤ 0.01), visible in both concentration- and time- dependent manners, with at least 5-folds lower IC50 values, compared to those estimated for the closest Tocomin®-control. The proposed hybrid nano-emulsified formulation of Tocomin® provides simple and stable delivery platform, for effective topical application against keratinocyte tumors.

  4. Development of low loss soft nano magnetic system for antenna miniaturization at ultra high frequency

    NASA Astrophysics Data System (ADS)

    Manhas, Anita; Daya, K. S.; Singh, M.

    2018-05-01

    Sol gel auto combustion processed nano magnetic system of Co2Z hexaferrite of composition Ba3-xSrxCo2InyFe24-yO41 (x=1.5 and y=0.1) was investigated for microwave antenna miniaturization in the frequency range 2 GHz to 3.43 GHz. The structural properties performed by XRD and TEM with SAED clearly indicate the formation of single phased Z-type hexagonal nanoferrite with high crystallization. The magnetic property was measured using VSM show a typical feature of magnetically soft material with low coercivity. Successfully obtained appreciable microwave properties using network analyzer, as the nano magnetic system Ba1.5Sr1.5Co2In0.1Fe23.90O41 attained best results were μ' = 5.4 and ɛ' = 4.6 at 2GHz with controlled magnetic and electric loss tangents close to zero i.e. 0.005 and 0.008, respectively. Microwave results are explained on the basis of relevant existing theories and models.

  5. Evaluation of the adhesion on the nano-scaled polymeric film systems.

    PubMed

    Park, Tae Sung; Park, Ik Keun; Yoshida, Sanichiro

    2017-04-01

    We applied scanning acoustic microscopy known as the V(z) curve technique to photoresist thin-film systems for the evaluation of the adhesive strength at the film-substrate interface. Through the measurement of the SAW (Surface Acoustic Wave) velocity, the V(z) curve analysis allows us to quantify the stiffness of the film-substrate interface. In addition, we conducted a nano-scratch test to quantify the ultimate strength of the adhesion through the evaluation of the critical load. To vary the adhesive conditions, we prepared thin-film specimens with three different types of pre-coating surface treatments, i.e., oxygen-plasma bombardment, HMDS (Hexametyldisilazane) treatment and untreated. The magnitudes of the quantified stiffness and ultimate strength are found consistent with each other for all the specimens tested, indicating that the pre-coating surface treatment can strengthen both the stiffness and ultimate strength of the adhesion. The results of this study demonstrate the usefulness of the V(Z) analysis as a nondestructive method to evaluate the adhesion strength of nano-structured thin-film systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok

    2018-01-01

    Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.

  7. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems.

    PubMed

    Tanaka, Shigenori; Mochizuki, Yuji; Komeiji, Yuto; Okiyama, Yoshio; Fukuzawa, Kaori

    2014-06-14

    Recent developments in the fragment molecular orbital (FMO) method for theoretical formulation, implementation, and application to nano and biomolecular systems are reviewed. The FMO method has enabled ab initio quantum-mechanical calculations for large molecular systems such as protein-ligand complexes at a reasonable computational cost in a parallelized way. There have been a wealth of application outcomes from the FMO method in the fields of biochemistry, medicinal chemistry and nanotechnology, in which the electron correlation effects play vital roles. With the aid of the advances in high-performance computing, the FMO method promises larger, faster, and more accurate simulations of biomolecular and related systems, including the descriptions of dynamical behaviors in solvent environments. The current status and future prospects of the FMO scheme are addressed in these contexts.

  8. Design and development of a multifunctional nano carrier system for imaging, drug delivery, and cell targeting in cancer research

    NASA Astrophysics Data System (ADS)

    Cho, Hoon-Sung

    There has been an increasing need in the last decade for early diagnosis and treatment of cancer prior to the tumor mass becoming evident as anatomical anomaly. A major challenge in cancer diagnosis is to distinguish cancer cells from the surrounding, normal tissue. For early cancer diagnosis and treatment, a nano carrier system was designed and developed with key components uniquely structured according to biomedical and clinical requirements: targeting, drug storage capabilities, fluorescent emissions near the infrared range for in vivo imaging, and magnetic hyperthermia. For in vivo imaging, quantum dots with emissions near infrared range (˜800 nm) were conjugated onto the surface of carbon nanotubes and nanospheres consisting of a spherical polystyrene matrix (˜100 nm) and high fraction of superparamagnetic Fe3O4 nanoparticles (˜10 nm) embedded. The QDs on these nano carriers exhibited intense visible emissions using fluorescent spectroscopy and successfully facilitated in vivo soft tissue imaging in mice. For drug storage, the chemotherapeutic agent, paclitaxel (PTX) was loaded onto the surfaces of these nano-carriers by using a layer of biodegradable poly(lactic-co-glycolic acid) (PLGA). A cell-based cytotoxicity assay was employed to verify successful loading of pharmacologically active drug, PTX. Cell viability of human, metastatic PC3mm2 prostate cancer cells was assessed in the presence and absence of various nano-carrier populations using the MTT assay. For hyperthermia, Fe3O 4 nanoparticles were conjugated onto the surfaces of carbon nanotubes (CNT) and embedded into the nanospheres. Magnetization measurements showed nearly reversible hysteresis curves from the Fe3O4-conjugated CNTs and the magnetic nanospheres (MNS). Application of an alternating electromagnetic field effectively induced heating the solution of the Fe3O 4-conjugated CNTs and the magnetic nanospheres (MNS) into temperature ranges (up to 55ºC) suitable for therapeutic hyperthermia

  9. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  10. Sustainable nano-catalysis

    EPA Science Inventory

    A novel nano-catalyst system which bridges the homogenous and heterogeneous system is described that is cheaper, easily accessible (sustainable) and requires no need of catalyst filtration during the work-up. Because of its nano-size, i.e. high surface area, the contact between r...

  11. Covalent nano delivery systems for selective imaging and treatment of brain tumors.

    PubMed

    Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard

    2017-04-01

    Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. New active control nano-system to use in composites structure

    NASA Astrophysics Data System (ADS)

    Arche, M. R.

    2012-09-01

    The present abstract, is a brief description about our project (NEDEA). We considered this project as very important, because it reunites in his development, several basic technologies: electronics, communications, software and new materials, all very interesting in the European industry. The project is developed in the CSIC (Spanish Researcher Center). We are involved. Across the project, in the development of nano-sensors, specialized in detecting defects, difficulties or problems in structures of composed materials. These materials are being used, and in the future more, in applications where a high degree of security is necessary. Some fields in the system usage are Aeronautical and military applications whit a necessary high security degree. The development proposed, is based in nano-sensors and active devices. They are installed into the material structure. The information from sensors is transmitted by optical fibers, to a radio transmitter, equally installed into the material. An external receptor picks up those data and transmits them to an external device. This external device presents/displays all the information across an interface GUI, in real time, to the supervisor. He can see than is happening in the material, in real time. Alarms can be programmed, by the supervisor. Is possible a tracking for the problem. All the devices and software are in develop in our laboratories. We think that this development will be used by the industry of materials, and that gradually, it will have other applications in the transport area (like new vehicles, wagons of train and metro, etc.).

  13. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    NASA Astrophysics Data System (ADS)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  14. A robust rotation-invariance displacement measurement method for a micro-/nano-positioning system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Zhang, Xianmin; Wu, Heng; Li, Hai; Gan, Jinqiang

    2018-05-01

    A robust and high-precision displacement measurement method for a compliant mechanism-based micro-/nano-positioning system is proposed. The method is composed of an integer-pixel and a sub-pixel matching procedure. In the proposed algorithm (Pro-A), an improved ring projection transform (IRPT) and gradient information are used as features for approximating the coarse candidates and fine locations, respectively. Simulations are conducted and the results show that the Pro-A has the ability of rotation-invariance and strong robustness, with a theoretical accuracy of 0.01 pixel. To validate the practical performance, a series of experiments are carried out using a computer micro-vision and laser interferometer system (LIMS). The results demonstrate that both the LIMS and Pro-A can achieve high precision, while the Pro-A has better stability and adaptability.

  15. ZnO nanorods for electronic and photonic device applications

    NASA Astrophysics Data System (ADS)

    Yi, Gyu-Chul; Yoo, Jinkyoung; Park, Won Il; Jung, Sug Woo; An, Sung Jin; Kim, H. J.; Kim, D. W.

    2005-11-01

    We report on catalyst-free growth of ZnO nanorods and their nano-scale electrical and optical device applications. Catalyst-free metalorganic vapor-phase epitaxy (MOVPE) enables fabrication of size-controlled high purity ZnO single crystal nanorods. Various high quality nanorod heterostructures and quantum structures based on ZnO nanorods were also prepared using the MOVPE method and characterized using scanning electron microscopy, transmission electron microscopy, and optical spectroscopy. From the photoluminescence spectra of ZnO/Zn 0.8Mg 0.2O nanorod multi-quantum-well structures, in particular, we observed a systematic blue-shift in their PL peak position due to quantum confinement effect of carriers in nanorod quantum structures. For ZnO/ZnMgO coaxial nanorod heterostructures, photoluminescence intensity was significantly increased presumably due to surface passivation and carrier confinement. In addition to the growth and characterizations of ZnO nanorods and their quantum structures, we fabricated nanoscale electronic devices based on ZnO nanorods. We report on fabrication and device characteristics of metal-oxidesemiconductor field effect transistors (MOSFETs), Schottky diodes, and metal-semiconductor field effect transistors (MESFETs) as examples of the nanodevices. In addition, electroluminescent devices were fabricated using vertically aligned ZnO nanorods grown p-type GaN substrates, exhibiting strong visible electroluminescence.

  16. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    PubMed Central

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I — Filtek Z350 and Group II — Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a — OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c — Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Result: Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P < 0.05). Mylar strip and “PoGo” created equally smooth surfaces, while significantly rougher surfaces were obtained after applications of “Sof-Lex spiral” and “OneGloss” (P < 0.05). Conclusion: Polishing ability of Tetric N-Ceram is better than Filtek Z350 XT. “PoGo” seems to be a better polishing system than “OneGloss” and “Sof-Lex Spiral.” PMID:26957791

  17. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    SciTech Connect

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB)more » by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.« less

  18. Development of method of optimized flavor production systems design based on nano-emulsification Kawista (Feronia limonia) Fruit extraction

    NASA Astrophysics Data System (ADS)

    Suyanto, A.; Noor, E.; Fahma, F.; Rusli, M. S.; Djatna, T.

    2018-01-01

    ‘Kawista’ (Feronia limonia) as a tropical fruit has unique flavor that can be applied as a flavor for food products. Flavor as volatile components are unstable by environment factors such as temperature and storage. Flavor nano emulsification form to improve the stability towards environment and increase its use in food products. Research carried out is system development of the nano emulsification Kawista extract flavor with sonication method. The best treatments are selected by Response Surface Methodology (RSM) for independent variable are amplitude (70-100%), time (90-150s) and temperature (5-45°C) controlled by the software of the device. The Flavor Extraction by maceration technique extended highest yield and flavor components. Nano-emulsions made with composition 1% (w/w) flavor extract, 2% (w/w) surfactant (tween 80), 0.25% Gum, and 96.75% (w/w) deionized water. The probe of sonication successfully for preparing stable O/W nano emulsions at amplitude, time and temperature 81.01%, 150s, 45°C, respectively. Characteristic of nano-emulsions i.e energy input (15.489J), viscosity (2.076 mPa.s), droplet size (13.446nm), and Polydispersity index (0.469).

  19. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates.

    PubMed

    Ocakoglu, Kasim; Joya, Khurram S; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T

    2014-08-21

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.

  20. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    NASA Astrophysics Data System (ADS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  1. Preclinical safety assessments of nano-sized constructs on cardiovascular system toxicity: A case for telemetry.

    PubMed

    Cheah, Hoay Yan; Kiew, Lik Voon; Lee, Hong Boon; Japundžić-Žigon, Nina; Vicent, Marίa J; Hoe, See Ziau; Chung, Lip Yong

    2017-11-01

    While nano-sized construct (NSC) use in medicine has grown significantly in recent years, reported unwanted side effects have raised safety concerns. However, the toxicity of NSCs to the cardiovascular system (CVS) and the relative merits of the associated evaluation methods have not been thoroughly studied. This review discusses the toxicological profiles of selected NSCs and provides an overview of the assessment methods, including in silico, in vitro, ex vivo and in vivo models and how they are related to CVS toxicity. We conclude the review by outlining the merits of telemetry coupled with spectral analysis, baroreceptor reflex sensitivity analysis and echocardiography as an appropriate integrated strategy for the assessment of the acute and chronic impact of NSCs on the CVS. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Performance Improvement of Energy Storage System with nano-additivesin HTF

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Saravanakumar, B.; Jayaprabakar, J.

    2017-05-01

    This paper is intended to improve the heat transfer rate of thermal energy storage system with copper oxide (CuO) as nano-additivesin heat transfer fluid (HTF) by varying encapsulation materials. The experimentation is done with different encapsulating materials like copper, brass and aluminium. The results are analysed for their thermal performance characteristics during charging and discharging processes. D-Sorbitol and therminol-66 with CuO is used as PCM and HTF respectively. A comparison was made between the different encapsulations and it was found that copper encapsulation has higher efficient, storing and recovering energy. However, its high thermal conductivity promotes larger heat losses and its cost is also high on other side. So the economical use of encapsulation material is aluminium compared to other two materials.

  3. A targeted drug delivery system based on dopamine functionalized nano graphene oxide

    NASA Astrophysics Data System (ADS)

    Masoudipour, Elham; Kashanian, Soheila; Maleki, Nasim

    2017-01-01

    The cellular targeting property of a biocompatible drug delivery system can widely increase the therapeutic effect against various diseases. Here, we report a dopamine conjugated nano graphene oxide (DA-nGO) carrier for cellular delivery of the anticancer drug, Methotrexate (MTX) into DA receptor positive human breast adenocarcinoma cell line. The material was characterized using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy and UV-vis spectroscopy. Furthermore, the antineoplastic action of MTX loaded DA-nGO against DA receptor positive and negative cell lines were explored. The results presented in this article demonstrated that the application of DA functionalized GO as a targeting drug carrier can improve the drug delivery efficacy for DA receptor positive cancer cell lines and promise future designing of carrier conjugates based on it.

  4. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs)

    NASA Astrophysics Data System (ADS)

    Arutt, Charles N.; Alles, Michael L.; Liao, Wenjun; Gong, Huiqi; Davidson, Jim L.; Schrimpf, Ronald D.; Reed, Robert A.; Weller, Robert A.; Bolotin, Kirill; Nicholl, Ryan; Pham, Thang Toan; Zettl, Alex; Qingyang, Du; Hu, Juejun; Li, Mo; Alphenaar, Bruce W.; Lin, Ji-Tzuoh; Shurva, Pranoy Deb; McNamara, Shamus; Walsh, Kevin M.; X-L Feng, Philip; Hutin, Louis; Ernst, Thomas; Homeijer, Brian D.; Polcawich, Ronald G.; Proie, Robert M.; Jones, Jacob L.; Glaser, Evan R.; Cress, Cory D.; Bassiri-Gharb, Nazanin

    2017-01-01

    The potential of micro and nano electromechanical systems (M and NEMS) has expanded due to advances in materials and fabrication processes. A wide variety of materials are now being pursued and deployed for M and NEMS including silicon carbide (SiC), III-V materials, thin-film piezoelectric and ferroelectric, electro-optical and 2D atomic crystals such as graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2). The miniaturization, functionality and low-power operation offered by these types of devices are attractive for many application areas including physical sciences, medical, space and military uses, where exposure to radiation is a reliability consideration. Understanding the impact of radiation on these materials and devices is necessary for applications in radiation environments.

  5. Elastic moduli in nano-size samples of amorphous solids: System size dependence

    NASA Astrophysics Data System (ADS)

    Cohen, Yossi; Procaccia, Itamar

    2012-08-01

    This letter is motivated by some recent experiments on pan-cake-shaped nano-samples of metallic glass that indicate a decline in the measured shear modulus upon decreasing the sample radius. Similar measurements on crystalline samples of the same dimensions showed a much more modest change. In this letter we offer a theory of this phenomenon; we argue that such results are generically expected for any amorphous solid, with the main effect being related to the increased contribution of surfaces with respect to the bulk when the samples get smaller. We employ exact relations between the shear modulus and the eigenvalues of the system's Hessian matrix to explore the role of surface modes in affecting the elastic moduli.

  6. Highly miniaturized FEEP propulsion system (NanoFEEP) for attitude and orbit control of CubeSats

    NASA Astrophysics Data System (ADS)

    Bock, Daniel; Tajmar, Martin

    2018-03-01

    A highly miniaturized Field Emission Electric Propulsion (FEEP) system is currently under development at TU Dresden, called NanoFEEP [1]. The highly miniaturized thruster heads are very compact and have a volume of less than 3 cm3 and a weight of less than 6 g each. One thruster is able to generate continuous thrust of up to 8 μN with short term peaks of up to 22 μN. The very compact design and low power consumption (heating power demand between 50 and 150 mW) are achieved by using Gallium as metal propellant with its low melting point of approximately 30 °C. This makes it possible to implement an electric propulsion system consisting of four thruster heads, two neutralizers and the necessary electronics on a 1U CubeSat with its strong limitation in space, weight and available power. Even formation flying of 1U CubeSats using an electric propulsion system is possible with this system, which is shown by the example of a currently planned cooperation project between Wuerzburg University, Zentrum fuer Telematik and TU Dresden. It is planned to use the NanoFEEP electric propulsion system on the UWE (University Wuerzburg Experimental) 1U CubeSat platform [2] to demonstrate orbit and two axis attitude control with our electric propulsion system NanoFEEP. We present the latest performance characteristics of the NanoFEEP thrusters and the highly miniaturized electronics. Additionally, the concept and the current status of a novel cold neutralizer chip using Carbon Nano Tubes (CNTs) is presented.

  7. Fate of nano- and microplastic in freshwater systems: A modeling study.

    PubMed

    Besseling, Ellen; Quik, Joris T K; Sun, Muzhi; Koelmans, Albert A

    2017-01-01

    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles like microbeads (100 nm-10 mm) with a state of the art spatiotemporally resolved hydrological model. The model accounts for advective transport, homo- and heteroaggregation, sedimentation-resuspension, polymer degradation, presence of biofilm and burial. Literature data were used to parameterize the model and additionally the attachment efficiency for heteroaggregation was determined experimentally. The attachment efficiency ranged from 0.004 to 0.2 for 70 nm and 1050 nm polystyrene particles aggregating with kaolin or bentonite clays in natural freshwater. Modeled effects of polymer density (1-1.5 kg/L) and biofilm formation were not large, due to the fact that variations in polymer density are largely overwhelmed by excess mass of suspended solids that form heteroaggregates with microplastic. Particle size had a dramatic effect on the modeled fate and retention of microplastic and on the positioning of the accumulation hot spots in the sediment along the river. Remarkably, retention was lowest (18-25%) for intermediate sized particles of about 5 μm, which implies that the smaller submicron particles as well as larger micro- and millimetre sized plastic are preferentially retained. Our results suggest that river hydrodynamics affect microplastic size distributions with profound implications for emissions to marine systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Impact of ZnO embedded feed spacer on biofilm development in membrane systems.

    PubMed

    Ronen, Avner; Semiat, Raphael; Dosoretz, Carlos G

    2013-11-01

    The concept of suppressing biofouling formation using an antibacterial feed spacer was investigated in a bench scale-cross flow system mimicking a spiral wound membrane configuration. An antibacterial composite spacer containing zinc oxide-nanoparticles was constructed by modification of a commercial polypropylene feed spacer using sonochemical deposition. The ability of the modified spacers to repress biofilm development on membranes was evaluated in flow-through cells simulating the flow conditions in commercial spiral wound modules. The experiments were performed at laminar flow (Re = 300) with a 200 kDa molecular weight cut off polysulfone ultrafiltration membrane using Pseudomonas putida S-12 as model biofilm bacteria. The modified spacers reduced permeate flux decrease at least by 50% compared to the unmodified spacers (control). The physical properties of the modified spacer and biofilm development were evaluated using high resolution/energy dispersive spectrometry-scanning electron microscopy, atomic force microscopy and confocal laser scanning microscopy imaging (HRSEM, EDS, AFM and CLSM). HRSEM images depicted significantly less bacteria attached to the membranes exposed to the modified spacer, mainly scattered and in a sporadic monolayer structure. AFM analysis indicated the influence of the modification on the spacer surface including a phase change on the upper surface. Dead-live staining assay by CLSM indicated that most of the bacterial cells attached on the membranes exposed to the modified spacer were dead in contrast to a developed biofilm which was predominant in the control samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Pre-patterned ZnO nanoribbons on soft substrates for stretchable energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Ma, Teng; Wang, Yong; Tang, Rui; Yu, Hongyu; Jiang, Hanqing

    2013-05-01

    Three pre-patterned ZnO nanoribbons in different configurations were studied in this paper, including (a) straight ZnO nanoribbons uniformly bonded on soft substrates that form sinusoidal buckles, (b) straight ZnO nanoribbons selectively bonded on soft substrates that form pop-up buckles, and (c) serpentine ZnO nanoribbons bonded on soft substrates via anchors. The nonlinear dynamics and random analysis were conducted to obtain the fundamental frequencies and to evaluate their performance in energy harvesting applications. We found that pop-up buckles and overhanging serpentine structures are suitable for audio frequency energy harvesting applications. Remarkably, almost unchanged fundamental natural frequency upon strain is achieved by properly patterning ZnO nanoribbons, which initiates a new and exciting direction of stretchable energy harvesting using nano-scale materials in audio frequency range.

  10. Formulation and stabilization of nano-/microdispersion systems using naturally occurring edible polyelectrolytes by electrostatic deposition and complexation.

    PubMed

    Kuroiwa, Takashi; Kobayashi, Isao; Chuah, Ai Mey; Nakajima, Mitsutoshi; Ichikawa, Sosaku

    2015-12-01

    This review paper presents an overview of the formulation and functionalization of nano-/microdispersion systems composed of edible materials. We first summarized general aspects on the stability of colloidal systems and the roles of natural polyelectrolytes such as proteins and ionic polysaccharides for the formation and stabilization of colloidal systems. Then we introduced our research topics on (1) stabilization of emulsions by the electrostatic deposition using natural polyelectrolytes and (2) formulation of stable nanodispersion systems by complexation of natural polyelectrolytes. In both cases, the preparation procedures were relatively simple, without high energy input or harmful chemical addition. The properties of the nano-/microdispersion systems, such as particle size, surface charge and dispersion stability were significantly affected by the concerned materials and preparation conditions, including the type and concentration of used natural polyelectrolytes. These dispersion systems would be useful for developing novel foods having high functionality and good stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Pavithra, N. S.; Lingaraju, K.; Raghu, G. K.; Nagaraju, G.

    2017-10-01

    In the present work, Zinc oxide nanoparticles (ZnO Nps) have been successfully prepared through a simple, effective and low cost solution combustion method using Zn (NO3)2·6H2O as an oxidizer, chakkota (Common name = Pomelo) fruit juice as novel fuel. X-ray diffraction pattern indicates the hexagonal wurtzite structure with average crystallite size of 22 nm. ZnO Nps were characterized with the aid of different spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Photoluminescence and UV-Visible spectroscopy. FTIR shows characteristic ZnO vibrational mode at 393 cm- 1. SEM images show that the particles are agglomerated. TEM image shows the size of the particles are about 10-20 nm. Further, in order to establish practical applicability of the synthesized ZnO Nps, photocatalytic degradation of methylene blue (MB) dye as a model system was studied in presence of UV (665 nm) light. In addition to this, the antibacterial activity was screen against 3 bacterial strains and electrochemical sensor performance towards the quantification of dopamine at nano molar concentrations was also explored.

  12. High-speed observation of ZnO microspherical crystals produced by laser ablation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Tasaki, Ryohei; Fujiwara, Yuki; Nagasaki, Fumiaki; Higashihata, Mitsuhiro; Ikenoue, Hiroshi; Okada, Tatsuo

    2017-03-01

    ZnO nano/microstructures have attracted much attention as building blocks for optoelectronic devices because of their high crystalline quality and unique structures. We have succeeded in synthesizing ZnO microspherical crystals by a simple atmospheric laser ablation method, and demonstrated ultraviolet whispering-gallery-mode lasing from the spheres. In the microsphere synthesis process, molten droplets formed into spherical shapes by surface tension, and crystalized during ejection from the ablation spot. In this study, we observed the generation of ZnO microspheres by high-speed camera. Now we are trying to control and manipulate the microspheres using a vortex beam.

  13. A Novel Nonviral Gene Delivery System: Multifunctional Envelope-Type Nano Device

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Hiroto; Akita, Hidetaka; Kogure, Kentaro; Harashima, Hideyoshi

    In this review we introduce a new concept for developing a nonviral gene delivery system which we call "Programmed Packaging." Based on this concept, we succeeded in developing a multifunctional envelope-type nano device (MEND), which exerts high transfection activities equivalent to those of an adenovirus in a dividing cell. The use of MEND has been extended to in vivo applications. PEG/peptide/DOPE ternary conjugate (PPD)-MEND, a new in vivo gene delivery system for the targeting of tumor cells that dissociates surface-modified PEG in tumor tissue by matrix metalloproteinase (MMP) and exerts significant transfection activities, was developed. In parallel with the development of MEND, a quantitative gene delivery system, Confocal Image-assisted 3-dimensionally integrated quantification (CIDIQ), also was developed. This method identified the rate-limiting step of the nonviral gene delivery system by comparing it with adenoviral-mediated gene delivery. The results of this analysis provide a new direction for the development of rational nonviral gene delivery systems.

  14. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    SciTech Connect

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less

  15. A system approach for reducing the environmental impact of manufacturing and sustainability improvement of nano-scale manufacturing

    NASA Astrophysics Data System (ADS)

    Yuan, Yingchun

    This dissertation develops an effective and economical system approach to reduce the environmental impact of manufacturing. The system approach is developed by using a process-based holistic method for upstream analysis and source reduction of the environmental impact of manufacturing. The system approach developed consists of three components of a manufacturing system: technology, energy and material, and is useful for sustainable manufacturing as it establishes a clear link between manufacturing system components and its overall sustainability performance, and provides a framework for environmental impact reductions. In this dissertation, the system approach developed is applied for environmental impact reduction of a semiconductor nano-scale manufacturing system, with three case scenarios analyzed in depth on manufacturing process improvement, clean energy supply, and toxic chemical material selection. The analysis on manufacturing process improvement is conducted on Atomic Layer Deposition of Al2O3 dielectric gate on semiconductor microelectronics devices. Sustainability performance and scale-up impact of the ALD technology in terms of environmental emissions, energy consumption, nano-waste generation and manufacturing productivity are systematically investigated and the ways to improve the sustainability of the ALD technology are successfully developed. The clean energy supply is studied using solar photovoltaic, wind, and fuel cells systems for electricity generation. Environmental savings from each clean energy supply over grid power are quantitatively analyzed, and costs for greenhouse gas reductions on each clean energy supply are comparatively studied. For toxic chemical material selection, an innovative schematic method is developed as a visual decision tool for characterizing and benchmarking the human health impact of toxic chemicals, with a case study conducted on six chemicals commonly used as solvents in semiconductor manufacturing. Reliability of

  16. MULTI-STAGE DELIVERY NANO-PARTICLE SYSTEMS FOR THERAPEUTIC APPLICATIONS

    PubMed Central

    Serda, Rita E.; Godin, Biana; Blanco, Elvin; Chiappini, Ciro; Ferrari, Mauro

    2010-01-01

    Background The daunting task for drug molecules to reach pathological lesions has fueled rapid advances in Nanomedicine. The progressive evolution of nanovectors has led to the development of multi-stage delivery systems aimed at overcoming the numerous obstacles encountered by nanovectors on their journey to the target site. Scope of Review This review summarizes major findings with respect to silicon-based drug delivery vectors for cancer therapeutics and imaging. Based on rational design, well established silicon technologies have been adapted for the fabrication of nanovectors with specific shapes, sizes, and porosities. These vectors are part of a multi-stage delivery system that contains multiple nano-components, each designed to achieve a specific task with the common goal of site-directed delivery of therapeutics. Major Conclusions Quasi-hemispherical and discoidal silicon microparticles are superior to spherical particles with respect to margination in the blood, with particles of different shapes and sizes having unique distributions in vivo. Cellular adhesion and internalization of silicon microparticles is influenced by microparticle shape and surface charge, with the latter dictating binding of serum opsonins. Based on in vitro cell studies, the internalization of porous silicon microparticles by endothelial cells and macrophages is compatible with cellular morphology, intracellular trafficking, mitosis, cell cycle progression, cytokine release, and cell viability. In vivo studies support superior therapeutic efficacy of liposomal encapsulated siRNA when delivered in multi-stage systems compared to free nanoparticles. PMID:20493927

  17. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin.

    PubMed

    Fan, Junjun; Bi, Long; Wu, Tao; Cao, Liangguo; Wang, Dexin; Nan, Kaihui; Chen, Jingdi; Jin, Dan; Jiang, Shan; Pei, Guoxian

    2012-02-01

    Icariin, a plant-derived flavonol glycoside, has been proved as an osteoinductive agent for bone regeneration. For this reason, we developed an icariin-loaded chitosan/nano-sized hydroxyapatite (IC-CS/HA) system which controls the release kinetics of icariin to enhance bone repairing. First, by Fourier transform infrared spectroscopy, we found that icariin was stable in the system developed without undergoing any chemical changes. On the other hand, X-ray diffraction, scanning electron microscopy and mechanical test revealed that the introduction of icariin did not remarkably change the phase, morphology, porosity and mechanical strength of the CS/HA composite. Then the hydrolytic degradation and drug release kinetics in vitro were investigated by incubation in phosphate buffered saline solution. The results indicated that the icariin was released in a temporally controlled manner and the release kinetics could be governed by degradation of both chitosan and hydroxyapatite matrix. Finally the in vitro bioactivity assay revealed that the loaded icariin was biologically active as evidenced by stimulation of bone marrow derived stroma cell alkaline phosphatase activity and formation of mineralized nodules. This successful IC-CS/HA system offers a new delivery method of osteoinductive agents and a useful scaffold design for bone regeneration.

  18. The silicon chip: A versatile micro-scale platform for micro- and nano-scale systems

    NASA Astrophysics Data System (ADS)

    Choi, Edward

    Cutting-edge advances in micro- and nano-scale technology require instrumentation to interface with the external world. While technology feature sizes are continually being reduced, the size of experimentalists and their instrumentation do not mirror this trend. Hence there is a need for effective application-specific instrumentation to bridge the gap from the micro and nano-scale phenomena being studied to the comparative macro-scale of the human interfaces. This dissertation puts forward the idea that the silicon CMOS integrated circuit, or microchip in short, serves as an excellent platform to perform this functionality. The electronic interfaces designed for the semiconductor industry are particularly attractive as development platforms, and the reduction in feature sizes that has been a hallmark of the industry suggests that chip-scale instrumentation may be more closely coupled to the phenomena of interest, allowing finer control or improved measurement capabilities. Compatibility with commercial processes will further enable economies of scale through mass production, another welcome feature of this approach. Thus chip-scale instrumentation may replace the bulky, expensive, cumbersome-to-operate macro-scale prototypes currently in use for many of these applications. The dissertation examines four specific applications in which the chip may serve as the ideal instrumentation platform. These are nanorod manipulation, polypyrrole bilayer hinge microactuator control, organic transistor hybrid circuits, and contact fluorescence imaging. The thesis is structured around chapters devoted to each of these projects, in addition to a chapter on preliminary work on an RFID system that serves as a wireless interface model. Each of these chapters contains tools and techniques developed for chip-scale instrumentation, from custom scripts for automated layout and data collection to microfabrication processes. Implementation of these tools to develop systems for the

  19. The era of micro and nano systems in the biomedical area: bridging the research and innovation gap.

    PubMed

    Lymberis, A

    2011-01-01

    The area of Micro and Nano systems (MNS) focuses on heterogeneous integration of technologies (e.g. electronics, mechanics and biotechnology) and implementation of multiple functionalities (e.g. sensing, processing, communication, energy and actuation) into small systems. A significant amount of MNS activities targets development and testing of systems enabling biomedicine and personal health solutions. Convergence of micro-nano-bio and Information & communication technologies is being leading to enabling innovative solutions e.g. for in-vitro testing and in vivo interaction with the human body for early diagnosis and minimally invasive therapy. Of particular interest are smart wearable systems such as smart textiles aiming at the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable non-invasive personal health, lifestyle, safety and emergency applications. The paper presents on going major R&D activities on micro-nano-bio systems (MNBS) and wearable systems for pHealth under the European Union R&D Programs, Information and Communication Technologies (ICT) priority; it also identifies gaps and discusses key challenges for the future.

  20. TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathawala, Mustafa Hussain; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-06-01

    Nanoparticles have been a subject of intense safety screenings due to their influx in various applications. Although recent studies have reported on the plausible cytotoxicity of nanoparticles, many of these focused only on single-material nanoparticles, while the cytotoxicity of dual-nanoparticle systems (e.g., ZnO with TiO2) has remained unexplored. For example, commercial products like sunscreens and cosmetics contain both nano-sized ZnO and TiO2, but cytotoxicity studies of such systems are meager. In this paper, the cytotoxicity of this dual-nanoparticle system comprising both ZnO and TiO2 was evaluated in vitro on skin-mimicking human primary epidermal keratinocytes (HPEKs). Inductively coupled plasma mass spectrometry, flow cytometry, and confocal microscopy were used to investigate the uptake of nanoparticles and free ions. Results revealed that ZnO nanoparticles were partially soluble (up to 20 μg ml-1 after 1 day) and could induce strong cytotoxicity as compared to the insoluble TiO2 nanoparticles which remained non-toxic until very high concentrations. It was found that TiO2 nanoparticles could play "vigilante" by protecting keratinocytes from acute toxicity of ZnO nanoparticles. This is in agreement with the observation that TiO2 nanoparticles caused an attenuation of free intracellular Zn2+ ions concentration, by adsorbing and immobilizing free Zn2+ ions. This study reveals a unique dual-nanoparticle observation in vitro on HPEKs, and highlights the importance of dual-nanoparticulate toxicity studies, especially in applications where more than one nanoparticle material-type is present.

  1. Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei

    2012-08-01

    One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.

  2. A Novel Bioinspired PVDF Micro/Nano Hair Receptor for a Robot Sensing System

    PubMed Central

    Li, Fei; Liu, Weiting; Stefanini, Cesare; Fu, Xin; Dario, Paolo

    2010-01-01

    This paper describes the concept and design of a novel artificial hair receptor for the sensing system of micro intelligent robots such as a cricket-like jumping mini robot. The concept is inspired from the natural hair receptor of animals, also called cilium or filiform hair by different research groups, which is usually used as a vibration receptor or a flow detector by insects, mammals and fishes. The suspended fiber model is firstly built and the influence of scaling down is analyzed theoretically. The design of this artificial hair receptor is based on aligned suspended PVDF (polyvinylidene fluoride) fibers, manufactures with a novel method called thermo-direct drawing technique, and aligned suspended submicron diameter fibers are thus successfully fabricated on a flexible Kapton. In the post process step, some key problems such as separated electrodes deposition along with the fiber drawing direction and poling of micro/nano fibers to impart them with good piezoeffective activity have been presented. The preliminary validation experiments show that the artificial hair receptor has a reliable response with good sensibility to external pressure variation and, medium flow as well as its prospects in the application on sensing system of mini/micro bio-robots. PMID:22315581

  3. Next Generation Programmable Bio-Nano-Chip System for On-Site Detection in Oral Fluids.

    PubMed

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W; McRae, Michael P; Wong, Jorge; Newton, Thomas F; Kosten, Thomas R; Haque, Ahmed; McDevitt, John T

    2015-11-23

    Current on-site drug of abuse detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. Test confirmation and quantitative assessment of a presumptive positive are then provided by remote laboratories, an inefficient and costly process decoupled from the initial sampling. Recently, a new noninvasive oral fluid sampling approach that is integrated with the chip-based Programmable Bio-Nano-Chip (p-BNC) platform has been developed for the rapid (~ 10 minutes), sensitive detection (~ ng/ml) and quantitation of 12 drugs of abuse. Furthermore, the system can provide the time-course of select drug and metabolite profiles in oral fluids. For cocaine, we observed three slope components were correlated with cocaine-induced impairment using this chip-based p-BNC detection modality. Thus, this p-BNC has significant potential for roadside drug testing by law enforcement officers. Initial work reported on chip-based drug detection was completed using 'macro' or "chip in the lab" prototypes, that included metal encased "flow cells", external peristaltic pumps and a bench-top analyzer system instrumentation. We now describe the next generation miniaturized analyzer instrumentation along with customized disposables and sampling devices. These tools will offer real-time oral fluid drug monitoring capabilities, to be used for roadside drug testing as well as testing in clinical settings as a non-invasive, quantitative, accurate and sensitive tool to verify patient adherence to treatment.

  4. Lapatinib nano-delivery systems: a promising future for breast cancer treatment.

    PubMed

    Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar

    2018-05-01

    Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

  5. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential

    PubMed Central

    Sotiriou, Georgios A.; Watson, Christa; Murdaugh, Kimberly M.; Darrah, Thomas H.; Pyrgiotakis, Georgios; Elder, Alison; Brain, Joseph D.; Demokritou, Philip

    2014-01-01

    Zinc oxide (ZnO) nanoparticles absorb UV light efficiently while remaining transparent in the visible light spectrum rendering them attractive in cosmetics and polymer films. Their broad use, however, raises concerns regarding potential environmental health risks and it has been shown that ZnO nanoparticles can induce significant DNA damage and cytotoxicity. Even though research on ZnO nanoparticle synthesis has made great progress, efforts on developing safer ZnO nanoparticles that maintain their inherent optoelectronic properties while exhibiting minimal toxicity are limited. Here, a safer-by-design concept was pursued by hermetically encapsulating ZnO nanorods in a biologically inert, nanothin amorphous SiO2 coating during their gas-phase synthesis. It is demonstrated that the SiO2 nanothin layer hermetically encapsulates the core ZnO nanorods without altering their optoelectronic properties. Furthermore, the effect of SiO2 on the toxicological profile of the core ZnO nanorods was assessed using the Nano-Cometchip assay by monitoring DNA damage at a cellular level using human lymphoblastoid cells (TK6). Results indicate significantly lower DNA damage (>3 times) for the SiO2-coated ZnO nanorods compared to uncoated ones. Such an industry-relevant, scalable, safer-by-design formulation of nanostructured materials can liberate their employment in nano-enabled products and minimize risks to the environment and human health. PMID:24955241

  6. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  7. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  8. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Fornaguera, C.; Feiner-Gracia, N.; Calderó, G.; García-Celma, M. J.; Solans, C.

    2015-07-01

    Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from aqueous and micellar solutions. The enzymatic activity of the drug was maintained at 80% after its encapsulation into nanoparticles that were non-cytotoxic at the required therapeutic concentration. Therefore, novel galantamine-loaded polymeric nanoparticles have been designed for the first time using the nano-emulsification approach and showed the appropriate features to become advanced drug delivery systems to treat neurodegenerative diseases.Polymeric nanoparticles could be promising drug delivery systems to treat neurodegenerative diseases. Among the various methods of nanoparticle preparation, nano-emulsion templating was used in the present study to prepare galantamine-loaded nano-emulsions by a low-energy emulsification method followed by solvent evaporation to obtain galantamine-loaded polymeric nanoparticles. This approach was found to be suitable because biocompatible, biodegradable and safe nanoparticles with appropriate features (hydrodynamic radii around 20 nm, negative surface charge and stability higher than 3 months) for their intravenous administration were obtained. Encapsulation efficiencies higher than 90 wt% were obtained with a sustained drug release profile as compared to that from

  9. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  10. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells.

    PubMed

    Yu, Jiantao; He, Sihui; Shao, Chen; Zhao, Haoran; Li, Jing; Tian, Leilei

    2018-04-19

    The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.

  11. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin.

    PubMed

    Salem, Heba F; Kharshoum, Rasha M; Halawa, Abdel Khalek A; Naguib, Demiana M

    2018-06-01

    Rosuvastatin (ROS) calcium is the latest synthetic drug in the statin group that has an anti-hyperlipidemic activity. It is available as tablets, and its poor aqueous solubility, slow dissolution rate and low-absorption extent result in less than 20% bioavailability and about 80% being excreted unchanged in the feces without absorption. To utilize nanotechnology to reformulate ROS as a self-nano-emulsifying drug delivery system (SNEDDS), and utilizing design optimization to fabricate the SNEDDS as a tablet. The solubility of ROS in different oils, surfactants and co-surfactants was tested. Pseudo-ternary phase diagrams were developed and various SNEDDS formulations were prepared and evaluated regarding globule size, self-emulsification, viscosity and transmittance. The optimized system was examined using transmission electron microscopy. The self-nano-emulsifying tablets were prepared using two types of nano-silica and different percentages of Avicel as a binder and Ac-Di-Sol as a disintegrant. The prepared tablets were evaluated for their physicochemical properties. Bioavailability in human volunteers was assessed. A SNEDDS system was successfully developed with a droplet size range of 15 nm and a composition of 10% Labrafac, 80% Cremophore RH40 and 10% Propylene glycol. The optimized tablet formula contained: hydrophilic nano-silica, 3% Ac-Di-Sol and 30% Avicel. The pharmacokinetic study revealed that the bioavailability was enhanced by more than 2.4-fold compared with the commercially available tablet. Tablets containing SNEDDS loaded with ROS represent a promising novel formula that has higher gastrointestinal absorption and enhanced systemic bioavailability.

  12. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    NASA Astrophysics Data System (ADS)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  13. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  14. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  15. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    PubMed

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  17. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  18. Structuring in Cement Systems with Introduction of Graphene Nano-Additives

    NASA Astrophysics Data System (ADS)

    Yanturina, R. A.; Trofimov, B. Ya; Ahmedjanov, R. M.

    2017-11-01

    At present, one of the most promising areas in the field of concrete research is the study of the effect of nano-additives for the production of highly effective concretes. Many authors have already obtained primary results which testify to the very effective role of nanoadditives based on carbon in modifying concrete. In this paper, the influence of a nano-additive of graphene on the phase composition and microstructure of the cement stone was studied. It has been found that, when a nano-additive of graphene is introduced, low-basic calcium hydrosilicates are mainly formed. This leads to an increase in the compressive strength of concrete. The results of the study of the microstructure of cement stone with nano-additive graphene showed that the high compressive strength of concrete modified with nano-additive graphene is explained by the cement stone dense structure. Thus, it was found that the nanoadditive of graphene contributes to the formation of a dense structure of cement stone, composed mainly of low-basic calcium hydrosilicates, and due to this, the physical and mechanical characteristics of concrete and its resistance to frost and other forms of aggression.

  19. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    NASA Astrophysics Data System (ADS)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  20. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    NASA Astrophysics Data System (ADS)

    Coso, Dusan

    The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat

  1. Micro and Nano Electromechanical Systems for Near-Zero Power Infrared Detection

    NASA Astrophysics Data System (ADS)

    Qian, Zhenyun

    Light is one of the most important tools for human beings to probe and sense the physical world. Infrared (IR) radiation located in longer wavelengths than those of visible light carries rich information of an environment as it reveals the temperature distribution and chemical composition of objects. In addition, it has been utilized for communication and distance measurement owing to the atmospheric window and insensitiveness of human eyes to the IR radiation. As a result, IR detectors nowadays can be found in a wide variety of applications, including thermal imaging, automotive night vision, standoff chemical detection, remote control and laser ranging, just to mention a few. On the other hand, due to the recent fast development of the Internet of Things (IoT), there is a growing demand for miniaturized and power efficient unattended sensors that can be widely distributed in large volumes to form a wireless sensor networks capable of monitoring the environment with high accuracy and long lifetime. In this context, micro and nano electromechanical systems (MEMS/NEMS) may provide a huge impact, since they can be used for the implementation of miniaturized, low power, high-performance sensors and wireless communication devices fully compatible with standard integrated circuitry. This dissertation presents the design and the experimental verification of high performance uncooled IR detectors based on Aluminum Nitride (AlN) nano electromechanical resonators, and a first-of-its-kind near-zero power IR digitizer based on plasmonically-enhanced micromechanical photoswitches. The unique advantages of the piezoelectric AlN thin film in terms of scaling in thickness and transduction efficiency are exploited by the first experimental demonstration of ultra-fast (thermal time constant, tau ˜ 80 mus) and high resolution (noise equivalent power, NEP ˜ 656 pW/Hz1/2) AlN NEMS resonant IR detectors with reduced pixel size comparable to the state-of-the-art microbolometers

  2. Micro and nano liposome vesicles containing curcumin for a drug delivery system

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Anh; Duoc Tang, Quan; Chanh Tin Doan, Duc; Chien Dang, Mau

    2016-09-01

    Micro and nano liposome vesicles were prepared using a lipid film hydration method and a sonication method. Phospholipid, cholesterol and curcumin were used to form micro and nano liposomes containing curcumin. The size, structure and properties of the liposomes were characterized by using optical microscopy, transmission electron microscopy, and UV-vis and Raman spectroscopy. It was found that the size of the liposomes was dependent on their composition and the preparation method. The hydration method created micro multilamellars, whereas nano unilamellars were formed using the sonication method. By adding cholesterol, the vesicles of the liposome could be stabilized and stored at 4 °C for up to 9 months. The liposome vesicles containing curcumin with good biocompatibility and biodegradability could be used for drug delivery applications.

  3. Self-organized semiconductor nano-network on graphene

    NASA Astrophysics Data System (ADS)

    Son, Dabin; Kim, Sang Jin; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Kang, Jae-Wook; Lee, Sang Hyun

    2017-04-01

    A network structure consisting of nanomaterials with a stable structural support and charge path on a large area is desirable for various electronic and optoelectronic devices. Generally, network structures have been fabricated via two main strategies: (1) assembly of pre-grown nanostructures onto a desired substrate and (2) direct growth of nanomaterials onto a desired substrate. In this study, we utilized the surface defects of graphene to form a nano-network of ZnO via atomic layer deposition (ALD). The surface of pure and structurally perfect graphene is chemically inert. However, various types of point and line defects, including vacancies/adatoms, grain boundaries, and ripples in graphene are generated by growth, chemical or physical treatments. The defective sites enhance the chemical reactivity with foreign atoms. ZnO nanoparticles formed by ALD were predominantly deposited at the line defects and agglomerated with increasing ALD cycles. Due to the formation of the ZnO nano-network, the photocurrent between two electrodes was clearly changed under UV irradiation as a result of the charge transport between ZnO and graphene. The line patterned ZnO/graphene (ZnO/G) nano-network devices exhibit sensitivities greater than ten times those of non-patterned structures. We also confirmed the superior operation of a fabricated flexible photodetector based on the line patterned ZnO/G nano-network.

  4. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets

    PubMed Central

    Xia, Tian; Lai, Wenqing; Han, Miaomiao; Han, Meng; Ma, Xi; Zhang, Liying

    2017-01-01

    The present study was carried out to determine whether low dose of zinc oxide nanoparticles (Nano-ZnO) could serve as a potential substitute of pharmacological dose of traditional ZnO in weaned piglets. 180 crossbred weaning piglets were randomly assigned to 3 treatments. Experimental animals were fed basal diet supplemented with 0 mg Zn/kg (Control), 600 mg Zn/kg (Nano-ZnO) and 2000 mg Zn/kg (ZnO) for 14 days. On day 14 after weaning, the piglets fed Nano-ZnO did not differ from those fed traditional ZnO in growth performance and jejunal morphology, while Nano-ZnO treatment could significantly alleviate the incidence of diarrhea (P < 0.05). In jejunum, the mRNA expressions of intestinal antioxidant enzymes and tight junction proteins were increased (P < 0.05) in Nano-ZnO treatment. In ileum, the expression levels of IFN-γ, IL-1β, TNF-α and NF-κB were decreased (P < 0.05). Gene sequencing analysis of 16S rRNA revealed that dietary Nano-ZnO increased the bacterial richness and diversity in ileum, while decreased both of them in cecum and colon. Specifically, the relative abundances of Streptococcus in ileum, Lactobacillus in colon were increased, while the relative abundances of Lactobacillus in ileum, Oscillospira and Prevotella in colon were decreased (P < 0.05). In conclusion, our data reveal that low dose of Nano-ZnO (600 mg Zn/kg) can effectively reduce piglet diarrhea incidence, similar to high dose of traditional ZnO (2000 mg Zn/kg), which may be mediated by improving intestinal microbiota and inflammation response in piglets, and help to reduce zinc environmental pollution. PMID:29029398

  5. A power system design and analysis of carbon nano-tubes field emission displays

    NASA Astrophysics Data System (ADS)

    Wang, Jong C.; Yao, W. C.

    2006-01-01

    In new generation Flat Panel Displays(FPD), a lot of design methods are being deployed, including OLED, PDP, TFT-LCD, Back Projection and Field Emission Display(FED) etc. These new generation FPDs have their respective pluses and minuses. Each has its selling points and market attractions. But among them, FED principles are most close to that of CRT displays. Not only FEDs are advantageous in their good degree of saturation of color, but also they have excellent contrast, luminance and electricity consumption etc. It has been considered as the main products of future generation FPDs. Japan and countries all over the world are successively proposing and launching related FED products in the fields. This will not only drive the FEDs into a wave of new trends, but also it will be able to replace most of the current FPD products within a short time. In this paper, based on these solid trends, we are determined to put into our resources and efforts to perform research on these important FEDs technologies and products, particularly in Carbon Nano-Tubes FEDs(CNT-FED). Our research group has already performed research on CNT-FED subjects for almost three years. During the course of our research, we have run into a lot of issues and problems. We have made every effort to overcome some of them. This paper performs comparative analysis of three power option for small size (4-inch) CNT-FEDs to drive the FED effects such as the direct current power, pulsed power and sinusoidal power respectively. This paper performs comparative analysis of three power options for small sized CNT-FEDs. It was concluded that the pulsed power option will produce the best results overall among the three power options. It is felt that these data presented can then be referenced and used to design a power system circuit to get an optimum design for better luminance and least power consumption for small sized commercial CNT-FED products.

  6. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System

    PubMed Central

    Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution. PMID:28287526

  7. Structural Information from Single-molecule FRET Experiments Using the Fast Nano-positioning System.

    PubMed

    Dörfler, Thilo; Eilert, Tobias; Röcker, Carlheinz; Nagy, Julia; Michaelis, Jens

    2017-02-09

    Single-molecule Förster Resonance Energy Transfer (smFRET) can be used to obtain structural information on biomolecular complexes in real-time. Thereby, multiple smFRET measurements are used to localize an unknown dye position inside a protein complex by means of trilateration. In order to obtain quantitative information, the Nano-Positioning System (NPS) uses probabilistic data analysis to combine structural information from X-ray crystallography with single-molecule fluorescence data to calculate not only the most probable position but the complete three-dimensional probability distribution, termed posterior, which indicates the experimental uncertainty. The concept was generalized for the analysis of smFRET networks containing numerous dye molecules. The latest version of NPS, Fast-NPS, features a new algorithm using Bayesian parameter estimation based on Markov Chain Monte Carlo sampling and parallel tempering that allows for the analysis of large smFRET networks in a comparably short time. Moreover, Fast-NPS allows the calculation of the posterior by choosing one of five different models for each dye, that account for the different spatial and orientational behavior exhibited by the dye molecules due to their local environment. Here we present a detailed protocol for obtaining smFRET data and applying the Fast-NPS. We provide detailed instructions for the acquisition of the three input parameters of Fast-NPS: the smFRET values, as well as the quantum yield and anisotropy of the dye molecules. Recently, the NPS has been used to elucidate the architecture of an archaeal open promotor complex. This data is used to demonstrate the influence of the five different dye models on the posterior distribution.

  8. Bioavailability of curcumin and curcumin glucuronide in the central nervous system of mice after oral delivery of nano-curcumin.

    PubMed

    Szymusiak, Magdalena; Hu, Xiaoyu; Leon Plata, Paola A; Ciupinski, Paulina; Wang, Zaijie Jim; Liu, Ying

    2016-09-10

    Curcumin is a bioactive molecule extracted from Turmeric roots that has been recognized to possess a wide variety of important biological activities. Despite its great pharmacological activities, curcumin is highly hydrophobic, which results in poor bioavailability. We have formulated this hydrophobic compound into stable polymeric nanoparticles (nano-curcumin) to enhance its oral absorption. Pharmacokinetic analysis after oral delivery of nano-curcumin in mice demonstrated approximately 20-fold reduction in dose requirement when compared to unformulated curcumin to achieve comparable plasma and central nervous system (CNS) tissue concentrations. This investigation corroborated our previous study of curcumin functionality of attenuating opioid tolerance and dependence, which shows equivalent efficacy of low-dose (20mg/kg) nano-curcumin and high-dose (400mg/kg) pure curcumin in mice. Furthermore, the highly selective and validated liquid chromatography-mass spectrometry (LC-MS) method was developed to quantify curcumin glucuronide, the major metabolite of curcumin. The results suggest that the presence of curcumin in the CNS is essential for prevention and reversal of opioid tolerance and dependence. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of ZnO nanorod on the luminescent and electrical properties of fluorescent dye-doped polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Xu, Z.; Qian, L.; Tao, D. L.; Teng, F.; Xu, X. R.

    2006-11-01

    The luminescent properties of fluorescent dye-doped polymer dispersed with ZnO nanorods were investigated. Embedding ZnO nanorods in blend film results in a blue-shifted emission of fluorescent dye. It is accounted for in terms of the difference in permittivity between inorganic oxide nano-material and dye-doped polymer. Moreover, polymer light-emitting diodes with the addition of ZnO nanorods showed the lower threshold voltage and the higher charge current and electroluminescence efficiency.

  10. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE PAGES

    Wang, Sibo; Wu, Yunchao; Miao, Ran; ...

    2017-07-26

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  11. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    SciTech Connect

    Wang, Sibo; Wu, Yunchao; Miao, Ran

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  12. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  13. Magnetic Nano-Materials: Truly Sustainable Green Chemistry Nano Catalysis

    EPA Science Inventory

    We envisioned a novel nano-catalyst system, which can bridge the homogenous and heterogeneous system, and simultaneously be cheaper, easily accessible (sustainable) and possibly does not require elaborate work-up. Because of its nano-size, i.e. high surface area, the contact betw...

  14. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization.

    PubMed

    Kabra, Vinay; Aamir, Lubna; Malik, M M

    2014-01-01

    A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si) diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The effect of UV illumination on the I-V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V) under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  15. Magnetic properties of Sn-substituted Ni-Zn ferrites synthesized from nano-sized powders of NiO, ZnO, Fe2O3, and SnO2

    NASA Astrophysics Data System (ADS)

    Ali, MA; Uddin, MM; Khan, MNI; Chowdhury, FUZ; Hoque, SM; Liba, SI

    2017-06-01

    A series of Ni0.6-x/2Zn0.4-x/2Sn x Fe2O4 (x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.3) (NZSFO) ferrite composities have been synthesized from nano powders using a standard solid state reaction technique. The spinel cubic structure of the investigated samples has been confirmed by x-ray diffraction (XRD). The magnetic properties such as saturation magnetization ({M}{{s}}), remanent magnetization ({M}{{r}}), coercive field ({H}{{c}}), and Bohr magneton (μ) are calculated from the hysteresis loops. The value of {M}{{s}} is found to decrease with increasing Sn content in the samples. This change is successfully explained by the variation of A-B interaction strength due to Sn substitution in different sites. The compositional stability and quality of the prepared ferrite composites have also been endorsed by the fairly constant initial permeability ({μ }^{\\prime }) over a wide range of frequency. The decreasing trend of {μ }^{\\prime } with increasing Sn content has been observed. Curie temperature {T}{{C}} has been found to increase with the increase in Sn content. A wide spread frequency utility zone indicates that the NZSFO can be considered as a good candidate for use in broadband pulse transformers and wide band read-write heads for video recording. The composition of x = 0.05 shows unusual results and the possible reason is also mentioned with the established formalism.

  16. Nano-scale imaging and spectroscopy of plasmonic systems, thermal near-fields, and phase separation in complex oxides

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.

    Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast techniques, further insight into the real-time dynamics of elementary interactions can be gained. However, the resolution of far-field microscopy techniques is restricted by the diffraction limit setting a spatial resolution limit in the 100s nm to micron range for visible and IR light, respectively. This resolution is too coarse for the characterization of mesoscopic phenomena in condensed matter physics. The development of experimental techniques with nanoscale resolution and sensitivity to optical fields has been a long standing obstacle to the characterization of condensed matter systems on their natural length scales. This dissertation focuses on the fundamental near-field optical properties of surfaces and nanoscale systems as well as the utilization of nano-optical techniques, specifically apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM), to characterize said optical properties with nanometer scale resolution. First, the s-SNOM characterization of the field enhancement associated with the localized surface plasmon resonances on metallic structures is discussed. With their ability to localize light, plasmonic nano-structures are promising candidate systems to serve as molecular sensors and nano-photonic devices; however, it is well known that particle morphology and the plasmon resonance alone do not uniquely reflect the details of the local field distribution. Here, I demonstrate the use interferometric s-SNOM for imaging of the near-fields associated with plasmonic resonances of crystalline triangular silver nano-prisms in the visible spectral range. I subsequently show the extension of the concept of a localized plasmon into the mid-IR spectral range with the characterization of near-fields of silver nano

  17. Fabrication of 1-dimension nano-material-based device and its electrical characteristics

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong; Zhang, Min

    2008-12-01

    In recent years, many kinds of 1-dimension nano-materials (Carbon nanotube, ZnO nanobelt and nanowire etc.) continue to emerge which exhibit distinct and unique electromechanical, piezoelectric, photoelectrical properties. In this paper, a 1-dimension nano-materials-based device was proposed. The bottom-up and top-down combined process were used for constructing CNT-array-based device and ZnO nanowire device. The electrical characteristics of the 1D nano-materials-based devices were also investigated. The measurement results of electrical characteristics demonstrate that it is ohm electrical contact behavior between the nano-material and micro-electrodes in the proposed device which also have the field effect. The proposed 1D nano-material-based device shows the application potential in the sensing fields.

  18. Nano Step

    NASA Image and Video Library

    2012-09-25

    ISS033-E-007358 (25 Sept. 2012) --- Japan Aerospace Exploration Agency astronaut Aki Hoshide, Expedition 33 flight engineer, services the Nano Step payload in the Kibo laboratory of the International Space Station.

  19. Development of optimized self-nano-emulsifying drug delivery systems (SNEDDS) of carvedilol with enhanced bioavailability potential.

    PubMed

    Singh, Bhupinder; Khurana, Lalit; Bandyopadhyay, Shantanu; Kapil, Rishi; Katare, O O P

    2011-11-01

    Carvedilol, a widely prescribed cardiovascular drug for hypertension and congestive heart failure, exhibits low and variable bioavailability owing to poor absorption and extensive hepatic first-pass metabolism. The current research work, therefore, entails formulation development of liquid self-nano-emulsifying drug delivery systems (SNEDDS) to enhance the bioavailability of carvedilol by facilitating its transport via lymphatic circulation. The formulation constituents, i.e. lipids, surfactants, and co-surfactants, were selected on the basis of solubility studies. Pseudo-ternary phase diagrams were constructed to embark upon the selection of blend of lipidic (i.e. Capmul PG8) and hydrophilic components (i.e. Cremophor EL as surfactant and Transcutol HP as co-surfactant) for efficient and robust formulation of SNEDDS. The SNEDDS, systematically optimized employing a central composite design (CCD), were evaluated for various response variables viz drug release parameters, emulsification time, emulsion droplet size, and mean dissolution time. In vitro drug release studies depicted that the release from SNEDDS systems followed a non-Fickian kinetic behavior. The TEM imaging of the optimized formulation affirmed the uniform shape and nano size of the system. Accelerated studies of the optimized formulation indicated high stability of the formulation for 6 months. The in situ perfusion studies carried out in wistar rats construed several fold augmentation in the permeability and absorption potential of the optimized formulation vis-à-vis marketed formulation. Thus, the present studies ratified the potential of SNEDDS in augmenting the oral bioavailability of BCS class II drugs.

  20. Effect of gamma radiation on the optical and structural properties of ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Reyhani, A.; Gholizadeh, A.; vahedi, V.; Khanlary, M. R.

    2018-01-01

    The effects of gamma-irradiation are studied on the morphology and structural properties of ZnO nanowire with various diameters. The ZnO nanowires are grown using Zn thin films at various initial thicknesses including 125, 250 and 500 nm in air ambient. The results illustrate dramatic effects of Gamma-irradiation on the deformation of ZnO nanowires. Thus, radiation induce ripple ZnO surfaces instead ZnO nanowires. Gamma-irradiation has also been effective on the optical and crystalline properties of the nanowires. X-ray diffraction attests that size of the ZnO nano-structures has changed and (l00) crystalline direction related to Zn metal has been created after irradiation. UV-Visible spectra display two areas for transmittance of irradiated ZnO nanowires, one in the Visible-light and the other in IR sub-region. In the Visible-light area, the layer gets thicker from 125 to 500 nm; the difference between the layer transmittance spectra is reduced before and after gamma irradiation. In the IR-light region, with increasing of ZnO initial thickness, the difference between the layer transmittance spectra is increased before and after gamma irradiation. The photoluminescence spectroscopy displays that intensity of green-yellow band improves in compared to near-band-edge emission due to formation of Zn metal and oxygen vacancies after gamma irradiation.

  1. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  2. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    NASA Astrophysics Data System (ADS)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  3. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    PubMed

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not

  4. Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements

    PubMed Central

    McRae, Michael. P.; Simmons, Glennon. W.; Wong, Jorge; Shadfan, Basil; Gopalkrishnan, Sanjiv; Christodoulides, Nicolaos

    2015-01-01

    The development of integrated instrumentation for universal bioassay systems serves as a key goal for the lab-on-a-chip community. The programmable bio-nano-chip (p-BNC) system is a versatile multiplexed and multiclass chemical- and bio-sensing system for bioscience and clinical measurements. The system is comprised of two main components, a disposable cartridge and a portable analyzer. The customizable single-use plastic cartridges, which now can be manufactured in high volumes using injection molding, are designed for analytical performance, ease of use, reproducibility, and low cost. These labcard devices implement high surface area nano-structured biomarker capture elements that enable high performance signaling and are index matched to real-world biological specimens. This detection modality, along with the convenience of on-chip fluid storage in blisters and self-contained waste, represents a standard process to digitize biological signatures at the point-of-care. A companion portable analyzer prototype has been developed to integrate fluid motivation, optical detection, and automated data analysis, and it serves as the human interface for complete assay automation. In this report, we provide a systems-level perspective of the p-BNC universal biosensing platform with an emphasis on flow control, device integration, and automation. To demonstrate the flexibility of the p-BNC, we distinguish diseased and non-case patients across three significant disease applications: prostate cancer, ovarian cancer, and acute myocardial infarction. Progress towards developing a rapid 7 minute myoglobin assay is presented using the fully automated p-BNC system. PMID:26308851

  5. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  6. Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: From nano- to macro scopes.

    PubMed

    Kim, Bongkyu; An, Junyeong; Fapyane, Deby; Chang, In Seop

    2015-11-01

    The current trend of bio-electrochemical systems is to improve strategies related to their applicability and potential for scaling-up. To date, literature has suggested strategies, but the proposal of correlations between each research field remains insufficient. This review paper provides a correlation based on platform techniques, referred to as bio-electronics platforms (BEPs). These BEPs consist of three platforms divided by scope scale: nano-, micro-, and macro-BEPs. In the nano-BEP, several types of electron transfer mechanisms used by electrochemically active bacteria are discussed. In the micro-BEP, factors affecting the formation of conductive biofilms and transport of electrons in the conductive biofilm are investigated. In the macro-BEP, electrodes and separators in bio-anode are debated in terms of real applications, and a scale-up strategy is discussed. Overall, the challenges of each BEP are highlighted, and potential solutions are suggested. In addition, future research directions are provided and research ideas proposed to develop research interest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.

    PubMed

    Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing

    2017-06-08

    In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.

  8. Signal Processing for Wireless Communication MIMO System with Nano- Scaled CSDG MOSFET based DP4T RF Switch.

    PubMed

    Srivastava, Viranjay M

    2015-01-01

    In the present technological expansion, the radio frequency integrated circuits in the wireless communication technologies became useful because of the replacement of increasing number of functions, traditional hardware components by modern digital signal processing. The carrier frequencies used for communication systems, now a day, shifted toward the microwave regime. The signal processing for the multiple inputs multiple output wireless communication system using the Metal- Oxide-Semiconductor Field-Effect-Transistor (MOSFET) has been done a lot. In this research the signal processing with help of nano-scaled Cylindrical Surrounding Double Gate (CSDG) MOSFET by means of Double- Pole Four-Throw Radio-Frequency (DP4T RF) switch, in terms of Insertion loss, Isolation, Reverse isolation and Inter modulation have been analyzed. In addition to this a channel model has been presented. Here, we also discussed some patents relevant to the topic.

  9. Multifunctional, chitosan-based nano therapeutics: design and application for two- and three-dimensional cell culture systems

    NASA Astrophysics Data System (ADS)

    Suarato, Giulia

    There is a constant demand for sensitive and effective anti-cancer drug delivery systems, capable of detecting early-stage pathological conditions and increasing patient survival. Recently, chitosan-based drug delivery nanocomplexes have shown to smartly respond to the distinctive features of the tumor microenvironment, a complex network of extracellular molecules, stromal and endothelial cells, which supports the tumor formation and its metastatic invasion. Due to biocompatibility, easy chemical tailorability, and pH-responsiveness, chitosan has emerged as a promising candidate for the formulation of supramolecular multifunctional materials. The present study focuses on the design, fabrication and characterization of fluorescently labelled, hydrophobically modified glycol chitosan nano-micelles (HGC NPs), suitably tailored for the delivery of anti-neoplastic compounds to various tumor models. Doxorubicin-loaded HGC NPs have been delivered to a bone cancer model, both in monolayer and in 3D spheroid configuration, to assess for differences in the delivery profiles and in the therapeutic efficacy. Compared to the free drug, nanocomplexes showed rapid uptake and a more homogeneous distribution in 3D spheroids, a powerful cellular tool which recapitulates some of the in vivo tumor microenvironment features. In a second part of this thesis work, with the purpose of designing an active targeting tumor-homing nano-therapeutic system, HGC NPs have been linked, via avidin-biotin interaction, with a IVS4 peptide, a small molecule with inhibitory activity on MMP-14-mediated functions. An extensive study conducted on triple negative breast cancer cells in monolayer revealed the MMP-14-IVS4-HGC association at the cancer cell membrane, the preferential uptake, and the consequent impairment of protease-associated migratory ability. As an additional application of our engineered construct, HGC micelles have been decorated with a liver kinase B1 (LKB1), a critical kinase involved

  10. PREFACE: 1st Nano-IBCT Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Huber, Bernd A.; Malot, Christiane; Domaracka, Alicja; Solov'yov, Andrey V.

    2012-07-01

    The 1st Nano-IBCT Conference entitled 'Radiation Damage in Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy' was held in Caen, France, in October 2011. The Meeting was organised in the framework of the COST Action MP1002 (Nano-IBCT) which was launched in December 2010 (http://fias.uni-frankfurt.de/nano-ibct). This action aims to promote the understanding of mechanisms and processes underlying the radiation damage of biomolecular systems at the molecular and nanoscopic level and to use the findings to improve the strategy of Ion Beam Cancer Therapy. In the hope of achieving this, participants from different disciplines were invited to represent the fields of physics, biology, medicine and chemistry, and also included those from industry and the operators of hadron therapy centres. Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal healthy tissue, while maximizing cell killing within the tumour. Several ion beam cancer therapy clinical centres are now operating in Europe and elsewhere. However, the full potential of such therapy can only be exploited by better understanding the physical, chemical and biological mechanisms that lead to cell death under ion irradiation. Considering a range of spatio-temporal scales, the proposed action therefore aims to combine the unique experimental and theoretical expertise available within Europe to acquire greater insight at the nanoscopic and molecular level into radiation damage induced by ion impact. Success in this endeavour will be both an important scientific breakthrough and give great impetus to the practical improvement of this innovative therapeutic technique. Ion therapy potentially provides an important advance in cancer therapy and the COST action MP1002 will be very significant in ensuring Europe's leadership in this field, providing the scientific background, required data and mechanistic insight which

  11. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    PubMed

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  12. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    PubMed

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  13. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle.

    PubMed

    De Niz, Mariana; Stanway, Rebecca R; Wacker, Rahel; Keller, Derya; Heussler, Volker T

    2016-04-21

    Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate

  14. Meissner effect measurement of single indium particle using a customized on-chip nano-scale superconducting quantum interference device system

    NASA Astrophysics Data System (ADS)

    Wu, Long; Chen, Lei; Wang, Hao; Liu, Xiaoyu; Wang, Zhen

    2017-04-01

    As many emergent phenomena of superconductivity appear on a smaller scale and at lower dimension, commercial magnetic property measurement systems (MPMSs) no longer provide the sensitivity necessary to study the Meissner effect of small superconductors. The nano-scale superconducting quantum interference device (nano-SQUID) is considered one of the most sensitive magnetic sensors for the magnetic characterization of mesoscopic or microscopic samples. Here, we develop a customized on-chip nano-SQUID measurement system based on a pulsed current biasing method. The noise performance of our system is approximately 4.6 × 10-17 emu/Hz1/2, representing an improvement of 9 orders of magnitude compared with that of a commercial MPMS (~10-8 emu/Hz1/2). Furthermore, we demonstrate the measurement of the Meissner effect of a single indium (In) particle (of 47 μm in diameter) using our on-chip nano-SQUID system. The system enables the observation of the prompt superconducting transition of the Meissner effect of a single In particle, thereby providing more accurate characterization of the critical field Hc and temperature Tc. In addition, the retrapping field Hre as a function of temperature T of single In particle shows disparate behavior from that of a large ensemble.

  15. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.

    PubMed

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  16. Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Zriouel, S.; Bahmad, L.

    2018-04-01

    Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.

  17. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  18. Phase diagram of the LiNO3-NaNO3-NaCl-Sr(NO3)2 salt system

    NASA Astrophysics Data System (ADS)

    Rasulov, A. I.; Gasanaliev, A. M.; Mamedova, A. K.; Gamataeva, B. Yu.

    2015-04-01

    The phase diagram of the quaternary LiNO3-NaNO3-NaCl-Sr(NO3)2 system is studied by means of differential thermal analysis, and the compositions and crystallization temperatures of nonvariant equilibrium phases are revealed. The temperature dependence of conductivity in eutectic and peritectic salt compositions is investigated.

  19. X-ray reflectivity of ruthenium nano-oxide layer in a CoFe-Ru-CoFe trilayer system

    NASA Astrophysics Data System (ADS)

    Asghari Zadeh, Saeid; Sutton, Mark; Altonian, Zaven; Mao, Ming; Lee, Chih-Ling

    2006-03-01

    A grazing incidence X-ray reflectivity technique is used to determine electron density profile(EDP) as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano oxide layer(NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8,8.5 and 9 å.08cm and one with Ru8.5.05cmå.05cmNOL, prepared by a dc planetary sputtering system, were investigated. For all samples, EDP shows a central peak which is related to the Ru layer. Natural oxidation in all samples introduces a graded EDP of the top CoFe layer that decreases gradually to zero. The large surface resistivity of Ru8.5 å.05cm NOL compared to Ru 8.5å.08cm can be related to the remarkable difference between their EDP.

  20. A Review of Luminescent Anionic Nano System: d10 Metallocyanide Excimers and Exciplexes in Alkali Halide Hosts

    PubMed Central

    Li, Xiaobo; Patterson, Howard H.

    2013-01-01

    Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in solution and in doped hosts. A series of spectroscopic methods (luminescence, UV-reflectance, IR, and Raman) as well as theoretical calculations have confirmed the existence of excimers and exciplexes. This leads to the tunability of these nano systems over a wide wavelength interval. The population of these nanoclusters varies with temperature and external laser irradiation, which explains the thermochromism and optical memory. DFT calculations indicate an MLCT transition for each nanocluster and the emission energy decreases with increasing cluster size. This is in agreement with the relatively long life-time for the emission peaks and the multiple emission peaks dependence upon cluster concentration. PMID:28811397

  1. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform.

    PubMed

    Dash, Aneesh; Selvaraja, S K; Naik, A K

    2018-02-15

    We present a scheme for on-chip optical transduction of strain and displacement of graphene-based nano-electro-mechanical systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: the Mach-Zehnder interferometer (MZI), the micro-ring resonator, and the ring-loaded MZI. An index sensing based technique using an MZI loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28  fm/Hz and 6.5×10 -6 %/Hz for displacement and strain, respectively. Though any phase-sensitive integrated-photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  2. On-chip optical transduction scheme for graphene nano-electro-mechanical systems in silicon-photonic platform

    NASA Astrophysics Data System (ADS)

    Dash, Aneesh; Selvaraja, S. K.; Naik, A. K.

    2018-02-01

    We present a scheme for on-chip optical transduction of strain and displacement of Graphene-based Nano-Electro-Mechanical Systems (NEMS). A detailed numerical study on the feasibility of three silicon-photonic integrated circuit configurations is presented: Mach-Zehnder Interferometer(MZI), micro-ring resonator and ring-loaded MZI. An index-sensing based technique using a Mach-Zehnder Interferometer loaded with a ring resonator with a moderate Q-factor of 2400 can yield a sensitivity of 28 fm/sqrt(Hz), and 6.5E-6 %/sqrt(Hz) for displacement and strain respectively. Though any phase sensitive integrated photonic device could be used for optical transduction, here we show that optimal sensitivity is achievable by combining resonance with phase sensitivity.

  3. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets

    PubMed Central

    Long, Lina; Chen, Jiashun; Zhang, Yonggang; Liang, Xiao

    2017-01-01

    The aim of this study was to compare the effect of dietary supplementation with low dose of porous and nano zinc oxide (ZnO) on weaning piglets, and to evaluate the possibility of using them as an alternative to high dose of regular ZnO. Piglets were randomly allocated into four treatment groups fed with four diets: (1) basal diet (NC), (2) NC+ 3000 mg/kg ZnO (PC), (3) NC + 500 mg/kg porous ZnO (HiZ) and (4) NC + 500 mg/kg nano ZnO (ZNP). The result showed that piglets in HiZ group had less diarrhea than ZNP group (P < 0.05). Besides, there was no significant difference between PC, HiZ and ZNP groups in terms of serum malondialdeyhde (MDA) concentration and glutathione peroxidase (GSH-Px) activity (P > 0.05). Analysis of trace metal elements revealed that piglets fed with high dose of regular ZnO had the highest Zn level in kidney (P < 0.05), which may induce kidney stone formation. Additionally, a decrease in ileal crypt depth was observed in PC, HiZ and ZNP group, suggesting an effective protection against intestinal injury. Results of mRNA analysis in intestine showed that ZNP supplementation had better effects on up-regulated trefoil factor 3 (TFF3) and nuclear factor erythroid 2-related factor 2 (Nrf2) levels in duodenum and jejunum than HiZ did (P < 0.05), implying that nano ZnO may possess higher anti-inflammatory capacity than porous ZnO. In conclusion, dietary supplementation with low dose of porous and nano ZnO had similar (even better) effect on improving growth performance and intestinal morphology, reducing diarrhea and intestinal inflammatory as high dose of regular ZnO in weaning piglets. Compared with nano ZnO, porous ZnO had better performance on reducing diarrhea but less effect on up-regulation of intestinal TFF3 and Nrf2. PMID:28792520

  4. Dependence of seed layer thickness on sensitivity of nano-ZnO cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Lu, Yang-Ming; Wang, Po-Chin; Tang, Jian-Fu; Chu, Sheng-Yuan

    2017-01-01

    The anemone-like ZnO nanostructures have been synthesized by hydrothermal method and were further adsorbed immobilized cholesterol oxidase (ChOx) as a nano-biosensor. In this study, the sensitivity of biosensor were improved by varying the thickness of the ZnO seed layer. The SEM analysis showed changes in thickness of seed layer will not affect the morphologies of anemone-like ZnO nanostructures. The X-ray Diffraction patterns showed that the (002) plane of anemone-like ZnO grown on various thickness of the seed layer was more prouded than other crystal plane. Abioelectrode (ChOx/ZnO/ITO/glass) grown on the 30nm of ZnO seed layer with high sensitivity of 57.533μAmM-1cm-2 (1.488 μA (mg/dl) -1cm-2), a wide sensitive range from 25 to 500 mg/dl. It is concluded that the thinner sputtered ZnO seed layer for growing anemone-like ZnO nanostructure can effectively improve the sensitivity of the ZnO biosensor.

  5. GaN and ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Fündling, Sönke; Sökmen, Ünsal; Behrends, Arne; Al-Suleiman, Mohamed Aid Mansur; Merzsch, Stephan; Li, Shunfeng; Bakin, Andrey; Wehmann, Hergo-Heinrich; Waag, Andreas; Lähnemann, Jonas; Jahn, Uwe; Trampert, Achim; Riechert, Henning

    2010-07-01

    GaN and ZnO are both wide band gap semiconductors with interesting properties concerning optoelectronic and sensor device applications. Due to the lack or the high costs of native substrates, alternatives like sapphire, silicon, or silicon carbide are taken, but the resulting lattice and thermal mismatches lead to increased defect densities which reduce the material quality. In contrast, nanostructures with high aspect ratio have lower defect densities as compared to layers. In this work, we give an overview on our results achieved on both ZnO as well as GaN based nanorods. ZnO nanostructures were grown by a wet chemical approach as well as by VPT on different substrates - even on flexible polymers. To compare the growth results we analyzed the structures by XRD and PL and show possible device applications. The GaN nano- and microstructures were grown by metal organic vapor phase epitaxy either in a self- organized process or by selective area growth for a better control of shape and material composition. Finally we take a look onto possible device applications, presenting our attempts, e.g., to build LEDs based on GaN nanostructures.

  6. Study of morphology effects on magnetic interactions and band gap variations for 3d late transition metal bi-doped ZnO nanostructures by hybrid DFT calculations

    NASA Astrophysics Data System (ADS)

    Datta, Soumendu; Kaphle, Gopi Chandra; Baral, Sayan; Mookerjee, Abhijit

    2015-08-01

    Using density functional theory (DFT) based electronic structure calculations, the effects of morphology of semiconducting nanostructures on the magnetic interaction between two magnetic dopant atoms as well as a possibility of tuning band gaps have been studied in the case of the bi-doped (ZnO)24 nanostructures with the impurity dopant atoms of the 3d late transition metals—Mn, Fe, Co, Ni, and Cu. To explore the morphology effect, three different structures of the host (ZnO)24 nano-system, having different degrees of spatial confinement, have been considered: a two dimensional nanosheet, a one dimensional nanotube, and a finite cage-shaped nanocluster. The present study employs hybrid density functional theory to accurately describe the electronic structure of all the systems. It is shown here that the magnetic coupling between the two dopant atoms remains mostly anti-ferromagnetic in the course of changing the morphology from the sheet geometry to the cage-shaped geometry of the host systems, except for the case of energetically most stable bi-Mn doping, which shows a transition from ferromagnetic to anti-ferromagnetic coupling with decreasing aspect ratio of the host system. The effect of the shape change, however, has a significant effect on the overall band gap variations of both the pristine as well as all the bi-doped systems, irrespective of the nature of the dopant atoms and provides a means for easy tunability of their optoelectronic properties.

  7. Nonlinear Optical Properties of ZnO for BioimagingCell and Cell Destruction

    NASA Astrophysics Data System (ADS)

    Urban, Ben; Chakki, Samudyatha; Senthilkumar, Os; Senthilkumar, Kasilingam; Fujita, Yasuhisa; Neogi, Arup

    2011-03-01

    As of recent years nanotechnology has been at the forefront of scientific research. It promises to have a broad range of applications from turning unhealthy foods into health foods, making computers faster and curing cancer. We present results on using nonlinear optical processes of ZnO nano-crystals to detect, track and destroy cells. By incorporating ZnO into a hydrophobic nano-hydrogel matrix with trace amounts of H2 O2 , we can attach antibodies or microRNA for specific cell targeting and, using the heat generating properties of the third order nonlinear process, release H2 O2 in the cell causing instant cell death. Theoretically, with the appropriate sequence for microRNA or the appropriate antibodies, we could target cancer cells in the body and destroy them. This presentation gives our results until now.

  8. 1-dimension nano-material-based flexible device

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Zheng, Fuzhong

    2009-11-01

    1D nano-material-based flexible devices has attracted considerable attention owing to the growing need of the high-sensitivity flexible sensor, portable consumer electronics etc.. In this paper, the 1D nano-materials-based flexible device on polyimide substrate was proposed. The bottom-up and top-down combined process were used for constructing the ZnO nanowire and the CNT-based flexible devices. Their electrical characteristics were also investigated. The measurement results demonstrate that the flexible device covered with a layer of Al2O3 has good ohm electrical contact behavior between the nano-material and micro-electrodes. The proposed 1D nano-material-based flexible device shows the application potential in the sensing fields.

  9. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system

    NASA Astrophysics Data System (ADS)

    Tang, Erjun; Cheng, Guoxiang; Ma, Xiaolu; Pang, Xingshou; Zhao, Qiang

    2006-05-01

    Commercial zinc oxide nanoparticles were modified by polymethacrylic acid (PMAA) in aqueous system. The hydroxyl groups of nano-ZnO particle surface can interact with carboxyl groups (COO-) of PMAA and form poly(zinc methacrylate) complex on the surface of nano-ZnO. The formation of poly(zinc methacrylate) complex was testified by Fourier-transform infrared spectra (FT-IR). Thermogravimetric analysis (TGA) indicated that PMAA molecules were absorbed or anchored on the surface of nano-ZnO particle, which facilitated to hinder the aggregation of nano-ZnO particles. Through particle size analysis and transmission electron micrograph (TEM) observation, it was found that PMAA enhanced the dispersibility of nano-ZnO particles in water. The dispersion stabilization of modified ZnO nanoparticles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nanoparticles. The modification did not alter the crystalline structure of the ZnO nanoparticles according to the X-ray diffraction patterns.

  10. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  11. On-line HPLC-UV/Nano-TiO2-ICPMS system for the determination of inorganic selenium species.

    PubMed

    Sun, Y C; Chang, Y C; Su, C K

    2006-04-15

    We have developed an UV/nano-TiO2 vapor generation (VG) device that when coupled between a chromatographic column and an ICP mass spectrometer provides a simple and sensitive hyphenated method for the determination of Se(IV) and Se(VI) without the need to use conventional chemical VG techniques. Because our proposed VG device allows both Se(IV) and Se(VI) species in the column effluent to be converted on-line into volatile Se products, which are then measured directly by the ICPMS, the safety risks and the probability of contamination arising from the use of additional chemicals are both low. To achieve the maximum signal intensity, we optimized a number of the operating parameters of the UV/nano-TiO2 VG device, including the acidity, the amounts of TiO2 and formic acid, and the length of the reaction coil, with respect to their effects on the reduction efficiency of the analyte species. This hyphenated method achieves excellent detection limits-0.06 and 0.03 ng mL(-1) for Se(IV) and Se(VI), respectively-because of the high efficiencies of the conversions of Se(IV) and Se(VI) to their respective volatile products and the lower blank level achieved, relative to those of other traditional systems. In addition, because the conversion efficiency of the analyte selenium species reached its maximum level within 36 s of irradiation, the working time (approximately 12 min) was limited primarily by time required for the chromatographic separation. A series of validation experiments-analysis of the 1643e Standard Reference Material and natural water samples-indicated that our proposed methods can be applied satisfactorily to the determination of inorganic selenium species in water samples.

  12. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    SciTech Connect

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  13. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    DOE PAGES

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; ...

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  14. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer.

    PubMed

    Guo, Chunjing; Yin, Jungang; Chen, Daquan

    2018-02-01

    In this work, in order to enhance the stability, bioavailability and antioxidant activity of insoluble antioxidants used into juice, yoghourt and nutritional supplements, the oligo-hyalurosomes nano-delivery system (CRHs) based on oligo-hyaluronic acid -curcumin (oHC) polymer loaded curcumin(Cur) and resveratrol (Res) was fabricated with new nanotechnolgy. The rosy biodegradable amphiphilic oHC polymer was successfully synthesized and used to fabricate the hyalurosomes containing both Cur and Res, called CRHs. The CRHs can spontaneously self-assemble into nano-sized spherical shape of average particle size 134.5±5.1nm and Zeta potential -29.4±1.2 at pH 7.4 PBS conditions. In vitro gastrointestinal release test showed a perfect stability and outstanding sustained release character. Moreover, compared to the single formulations and liposomes, CRHs showed a dose-dependent manner with a higher radical scavenging activity. Therefore, the novel CRHs nano-food manifested the hopeful properties for the new effective gastrointestinal formulation and promising new nano-food delivery system in the use of juice, yoghourt and nutritional supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.

    PubMed

    Tortorella, Stephanie; Karagiannis, Tom C

    2014-01-01

    sensitivity. Four transferrin-modified nano-based drug delivery systems are currently in early phases of human clinical trials. Despite the collective promise, inconsistencies in some studies have exposed some limitations in current formulations and the difficulty in translating preliminary studies into clinically-relevant therapeutic options. The main objective of this review is to investigate the development of transferrin targeted nano-based drug delivery systems in order to establish the use of transferrin as a cancer-targeted moiety, and to ultimately evaluate the progression of cancer therapeutic strategies for future research.

  16. An Information Theoretical Analysis of Human Insulin-Glucose System Toward the Internet of Bio-Nano Things.

    PubMed

    Abbasi, Naveed A; Akan, Ozgur B

    2017-12-01

    Molecular communication is an important tool to understand biological communications with many promising applications in Internet of Bio-Nano Things (IoBNT). The insulin-glucose system is of key significance among the major intra-body nanonetworks, since it fulfills metabolic requirements of the body. The study of biological networks from information and communication theoretical (ICT) perspective is necessary for their introduction in the IoBNT framework. Therefore, the objective of this paper is to provide and analyze for the first time in the literature, a simple molecular communication model of the human insulin-glucose system from ICT perspective. The data rate, channel capacity, and the group propagation delay are analyzed for a two-cell network between a pancreatic beta cell and a muscle cell that are connected through a capillary. The results point out a correlation between an increase in insulin resistance and a decrease in the data rate and channel capacity, an increase in the insulin transmission rate, and an increase in the propagation delay. We also propose applications for the introduction of the system in the IoBNT framework. Multi-cell insulin glucose system models may be based on this simple model to help in the investigation, diagnosis, and treatment of insulin resistance by means of novel IoBNT applications.

  17. Nano Materials

    DTIC Science & Technology

    2007-03-01

    materials: • Electrical conductivity -- probably the best conductor of electricity on a nanoscale level that can ever be possible. • Thermal ...for high purity nanotubes. RTO-EN-AVT-129bis 3 - 1 van Heeren, H. (2007) Nano Materials. In Nanotechnology Aerospace Applications...2006 (pp. 3- 1 – 3-4). Educational Notes RTO-EN-AVT-129bis, Paper 3. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int

  18. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Hwang, Hyeon Jun; Ha, Min-Woo; Kim, Jiyoung

    2015-03-01

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm2/V.s and the lowest n-type carrier concentration of approximately 1.0 × 1018/cm3 were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  19. Acceptors in bulk and nanoscale ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.

    2012-02-01

    Zinc oxide (ZnO) is a semiconductor that emits bright UV light, with little wasted heat. This intrinsic feature makes it a promising material for energy-efficient white lighting, nano-lasers, and other optical applications. For devices to be competitive, however, it is necessary to develop reliable p-type doping. Although substitutional nitrogen has been considered as a potential p-type dopant for ZnO, theoretical and experimental work indicates that nitrogen is a deep acceptor and will not lead to p-type conductivity. This talk will highlight recent experiments on ZnO:N at low temperatures. A red/near-IR photoluminescence (PL) band is correlated with the presence of deep nitrogen acceptors. PL excitation (PLE) measurements show an absorption threshold of 2.26 eV, in good agreement with theory. Magnetic resonance experiments provide further evidence for this assignment. The results of these studies seem to rule out group-V elements as shallow acceptors in ZnO, contradicting numerous reports in the literature. If these acceptors do not work as advertised, is there a viable alternative? Optical studies on ZnO nanocrystals show some intriguing leads. At liquid-helium temperatures, a series of sharp IR absorption peaks arise from an unknown acceptor impurity. The data are consistent with a hydrogenic acceptor 0.46 eV above the valence band edge. While this binding energy is still too deep for many practical applications, it represents a significant improvement over the ˜ 1.3 eV binding energy for nitrogen acceptors. Nanocrystals present another twist. Due to their high surface-to-volume ratio, surface states are especially important. Specifically, electron-hole recombination at the surface give rises to a red luminescence band. From our PL and IR experiments, we have developed a ``unified'' model that attempts to explain acceptor and surface states in ZnO nanocrystals. This model could provide a useful framework for designing future nanoscale ZnO devices.

  20. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  1. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    NASA Astrophysics Data System (ADS)

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-07-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles.

  2. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    PubMed Central

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-01-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles. PMID:27878001

  3. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates

    PubMed Central

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

  4. Effects of interplanetary coronal mass ejections on the transport of nano-dust generated in the inner solar system

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Juhász, Antal; Sternovsky, Zoltan; Horányi, Mihály

    2018-07-01

    This article reports on an investigation of the effect of interplanetary coronal mass ejections (ICMEs) on the transport and delivery of nano-dust to 1 AU. Charged nanometer-sized dust particles are expected to be generated close to the Sun and interact strongly with the solar wind as well as solar transient events. Nano-dust generated outside of ∼0.2 AU are picked up and transported away from the Sun due to the electromagnetic forces exerted by the solar wind. A numerical model has been developed to calculate the trajectories of nano-dust through their interaction with the solar wind and explore the potential for their detection near Earth's orbit (Juhasz and Horanyi, 2013). Here, we extend the model to include the interaction with interplanetary coronal mass ejections. We report that ICMEs can greatly alter nano-dust trajectories, their transport to 1 AU, and their distribution near Earth's orbit. The smallest nano-dust (<10 nm) can be delivered to 1 AU in high concentration. Thus, the nature of the interaction between nano-dust and ICMEs could potentially be revealed by simultaneous measurements of nano-dust fluxes and solar wind particles/magnetic fields.

  5. Micro-nano-bio acoustic system for the detection of foodborne pathogens in real samples.

    PubMed

    Papadakis, George; Murasova, Pavla; Hamiot, Audrey; Tsougeni, Katerina; Kaprou, Georgia; Eck, Michael; Rabus, David; Bilkova, Zuzana; Dupuy, Bruno; Jobst, Gerhard; Tserepi, Angeliki; Gogolides, Evangelos; Gizeli, Electra

    2018-07-15

    The fast and efficient detection of foodborne pathogens is a societal priority, given the large number of food-poisoning outbreaks, and a scientific and technological challenge, given the need to detect as little as 1 viable cell in 25 gr of food. Here, we present the first approach that achieves the above goal, thanks to the use of a micro/nano-technology and the detection capability of acoustic wave sensors. Starting from 1 Salmonella cell in 25 ml of milk, we employ immuno-magnetic beads to capture cells after only 3 h of pre-enrichment and subsequently demonstrate efficient DNA amplification using the Loop Mediated Isothermal Amplification method (LAMP) and acoustic detection in an integrated platform, within an additional ½ h. The demonstrated 4 h sample-to-analysis time comes as a huge improvement to the current need of few days to obtain the same result. In addition, the work presents the first reported Lab-on-Chip platform that comprises an acoustic device as the sensing element, exhibiting impressive analytical features, namely, an acoustic limit of detection of 2 cells/μl or 3 aM of the DNA target and ability to detect in a label-free manner dsDNA amplicons in impure samples. The use of food samples together with the incorporation of the necessary pre-enrichment step and ability for multiple analysis with an internal control, make the proposed methodology highly relevant to real-world applications. Moreover, the work suggests that acoustic wave devices can be used as an attractive alternative to electrochemical sensors in integrated platforms for applications in food safety and the point-of-care diagnostics. Copyright © 2018. Published by Elsevier B.V.

  6. New Insights into Mechanism of Surface Reactions of ZnO Nanorods During Electrons Beam Irradiation.

    PubMed

    Cho, Youngseung; Ji, Hyunjin; Kim, Hyoungsub; Yoon, Jinsuop; Choi, Byoungdeog

    2018-09-01

    This study provides new insight into mechanisms of ionic reactions on the surface of ZnO nanorod networks, which could result in enhanced performance in optical or molecular sensors. The current- voltage characteristics of ZnO nanorod network devices exhibit typical nonlinear behavior in air, which implies the formation of a Schottky barrier when metals are used as contacts. The conductance of the device increased significantly in vacuum, which can be explained by the desorption of hydroxyl groups at very low pressure. While physisorbed water or oxygen-related ions can detach from the ZnO surface during evacuation, exposure to high energy in the electron beam is believed to detach the chemisorbed anions of O- and O-2 from the surface of ZnO nanorods, which releases more electrons into the channel. The increase in available electrons enhances the conductance of the ZnO nanorods. Slow initialization of the conductance under ambient conditions indicates that the ionic re-adsorption is inactive under these conditions. Thus, the electron irradiation process can be used to reset the surface ionic molecules on metal oxide nano-structures by tuning the surface potential prior to the passivation process.

  7. Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis

    PubMed Central

    Deshpande, Dipti; Kethireddy, Sravani; Janero, David R.; Amiji, Mansoor M.

    2016-01-01

    Atherosclerosis and its consequences remain prevalent clinical challenges throughout the world. Initiation and progression of atherosclerosis involves a complex, dynamic interplay among inflammation, hyperlipidemia, and endothelial dysfunction. A multicomponent treatment approach targeted for delivery within diseased vessels could prove beneficial in treating atherosclerosis. This study was undertaken to evaluate the multimodal effects of a novel ω-3-fatty acid-rich, 17-β-estradiol (17-βE)-loaded, CREKA-peptide-modified nanoemulsion system on experimental atherosclerosis. In vitro treatment of cultured human aortic endothelial cells (ECs) with the 17-βE-loaded, CREKA-peptide-modified nanoemulsion system increased cellular nitrate/nitrite, indicating improved nitric oxide formation. In vivo, systemic administration of this nanoemulsion system to apolipoprotein-E knock out (ApoE-/-) mice fed a high-fat diet significantly improved multiple parameters related to the etiology and development of occlusive atherosclerotic vasculopathy: lesion area, circulating plasma lipid levels, and expression of aortic-wall inflammatory markers. These salutary effects were attributed selectively to the 17-βE and/or ω-3 polyunsaturated fatty acid components of the nano-delivery system. At therapeutic doses, the 17-βE-loaded, CREKA-peptide modified nanoemulsion system appeared to be biocompatible in that it elicited no apparent adverse/toxic effects, as indexed by body weight, plasma alanine aminotransferase/aspartate aminotransferase levels, and liver and kidney histopathology. The study demonstrates the therapeutic potential of a novel, 17-βE-loaded, CREKA-peptide-modified nanoemulsion system against atherosclerosis in a multimodal fashion by reducing lesion size, lowering the levels of circulating plasma lipids and decreasing the gene expression of inflammatory markers associated with the disease. PMID:26840601

  8. A comparison study of nanofiber, microfiber, and new composite nano/microfiber polymers used as sorbents for on-line solid phase extraction in chromatography system.

    PubMed

    Háková, Martina; Havlíková, Lucie Chocholoušová; Chvojka, Jiří; Erben, Jakub; Solich, Petr; Švec, František; Šatínský, Dalibor

    2018-09-06

    Three different approaches has been used to obtain nano/micro fibers and their diversity and extraction properties were examined. The effect of their structure on stability in an ultra-high-performance liquid chromatography (UHPLC) system during on-line SPE procedure was monitored. Five types of various nano/micro fiber polymers were used as sorbents: polyamide 6 nanofibers, polyvinylidene difluoride nanofibers, polyethylene microfibers, and two new polycaprolactone microfiber/nanofiber and polycaprolactone microfibers/polyvinylidene difluoride nanofibers composite polymers. The fiber polymers were filled in a cartridge directly connected to the UHPLC system and tested. For each polymer, the optimal conditions of the on-line extraction were found and potential applicability on real samples was tested. The determination of ochratoxin A (OTA) in beer matrix was chosen as a case study. Relevant factors such as the mechanical and chemical stability of the nano/microfibers, filling the cartridges, fiber reusability and the possibility and the repeatability of all processes were involved in the proposed study. A new nano/micro composite sorbent consisting of polycaprolactone microfibers/polyvinylidene difluoride nanofibers was chosen as the most suitable sorbent for the on-line extraction of OTA from a beer matrix. The tested validation parameters had the value of intra-day precision lower than 1.48%, linearity in the range from 0.5 to 100 μg L -1 with r 2  ≥ 0.9999 for standard and matrix calibration curve, and recovery in the range 99.1-103.9% at five concentration levels. Long-term precision evaluated for 31 analyses over the period of three months did not exceed 2.9% RSD. It confirmed the column reusability and perfect stability of nano/micro composite sorbent in the presence of organic solvents and after repeated injection of a complex beer matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Understanding Nano-scale Electronic Systems via Large-scale Computation

    NASA Astrophysics Data System (ADS)

    Cao, Chao

    2009-03-01

    Nano-scale physical phenomena and processes, especially those in electronics, have drawn great attention in the past decade. Experiments have shown that electronic and transport properties of functionalized carbon nanotubes are sensitive to adsorption of gas molecules such as H2, NO2, and NH3. Similar measurements have also been performed to study adsorption of proteins on other semiconductor nano-wires. These experiments suggest that nano-scale systems can be useful for making future chemical and biological sensors. Aiming to understand the physical mechanisms underlying and governing property changes at nano-scale, we start off by investigating, via first-principles method, the electronic structure of Pd-CNT before and after hydrogen adsorption, and continue with coherent electronic transport using non-equilibrium Green’s function techniques combined with density functional theory. Once our results are fully analyzed they can be used to interpret and understand experimental data, with a few difficult issues to be addressed. Finally, we discuss a newly developed multi-scale computing architecture, OPAL, that coordinates simultaneous execution of multiple codes. Inspired by the capabilities of this computing framework, we present a scenario of future modeling and simulation of multi-scale, multi-physical processes.

  10. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders.

    PubMed

    Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André

    2012-02-14

    Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.

  11. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    NASA Astrophysics Data System (ADS)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  12. Release and toxicity comparison between industrial- and sunscreen-derived nano-ZnO particles

    EPA Science Inventory

    Many consumer products containing ZnO have raised concern for safety in regards toenvironmental impact and the public health. Widely used sunscreens for protectingagainst UV and avoiding sunburns represent a great exposure to nano-ZnO, one of theingredients commonly applied in su...

  13. ZnO Thin Film Electronics for More than Displays

    NASA Astrophysics Data System (ADS)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  14. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  15. Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration

    NASA Astrophysics Data System (ADS)

    Song, Liming; Yue, He; Li, Haiying; Liu, Li; Li, Yu; Du, Liting; Duan, Haojie; Klyui, N. I.

    2018-05-01

    Hierarchical porous and non-porous ZnO microflowers have been successfully fabricated by hydrothermal method. Their crystal structure, morphology and gas-sensing properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and chemical gas sensing intelligent analysis system (CGS). Compared with hierarchical non-porous ZnO microflowers, hierarchical porous ZnO microflowers exhibited ultra-high sensitivity with 50 ppm ethanol at 260 °C and the response is 110, which is 1.8 times higher than that of non-porous ZnO microflowers. Moreover, the lowest concentration limit of hierarchical porous ZnO microflowers (non-porous ZnO microflowers) to ethanol is 0.1 (1) ppm, the response value is 1.6 (1).

  16. Nano-Satellite Avionics

    NASA Technical Reports Server (NTRS)

    Culver, Harry

    1999-01-01

    Abstract NASA's Goddard Space Flight Center (GSFC) is currently developing a new class of satellites called the nano-satellite (nano-sat). A major objective of this development effort is to provide the technology required to enable a constellation of tens to hundreds of nano-satellites to make both remote and in-situ measurements from space. The Nano-sat will be a spacecraft weighing a maximum of 10 kg, including the propellant mass, and producing at least 5 Watts of power to operate the spacecraft. The electronics are required to survive a total radiation dose rate of 100 krads for a mission lifetime of two years. There are many unique challenges that must be met in order to develop the avionics for such a spacecraft. The first challenge is to develop an architecture that will operate on the allotted 5 Watts and meet the diverging requirements of multiple missions. This architecture will need to incorporate a multitude of new advanced microelectronic technologies. The microelectronics developed must be a modular and scalable packaging of technology to solve the problem of developing a solution to both reduce cost and meet the requirements of various missions. This development will utilize the most cost effective approach, whether infusing commercially driven semiconductor devices into spacecraft applications or partnering with industry to design and develop low cost, low power, low mass, and high capacity data processing devices. This paper will discuss the nano-sat architecture and the major technologies that will be developed. The major technologies that will be covered include: (1) Light weight Low Power Electronics Packaging, (2) Radiation Hard/Tolerant, Low Power Processing Platforms, (3) High capacity Low Power Memory Systems (4) Radiation Hard reconfiguragble field programmable gate array (rFPGA)

  17. Development of a Design Supporting System for Nano-Materials based on a Framework for Integrated Knowledge of Functioning-Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro

    In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.

  18. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye

    2013-03-01

    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  19. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano-CaCO3 and poloxamer 188.

    PubMed

    Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin

    2014-04-01

    Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.

  20. Establishment of a total liquid ventilation system using saline-based oxygen micro/nano-bubble dispersions in rats.

    PubMed

    Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji

    2015-09-01

    Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.

  1. Efficiency enhancement of ZnO nanostructure assisted Si solar cell based on fill factor enlargement and UV-blue spectral down-shifting

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.

    2017-05-01

    ZnO nanostructures (including nano-plates and nano-rods (NRs)) are grown in various temperatures and Ar/O2 flow rates using thermal chemical vapor deposition, which affect the structure, nano-plate/NR population, and the quality of ZnO nanostructures. X-ray diffraction (XRD) attests that the peak intensity of the crystallographic plane (1 0 0) is correlated to nano-plate abundance. Moreover, optical properties elucidate that the population of nano-plates in samples strongly affect the band gap, binding energy of the exciton, and UV-visible (UV-vis) absorption and spectral luminescence emissions. In fact, the exciton binding energy reduces from ~100 to 80 meV when the population of nano-plates increases in samples. Photovoltaic characteristics based on the drop-casting on Si solar cells reveals three dominant factors, namely, the equivalent series resistance, decreasing reflectance, and down-shifting, in order to scale up the absolute efficiency by 3%. As a consequence, the oxygen vacancies in ZnO nanostructures give rise to the down-shifting and increase of free-carriers, leading to a reduction in the equivalent series resistance and an enlargement of fill factor. To obtain a larger I sc, reduction of spectral reflectance is essential; however, the down-shifting process is shown to be dominant by lessening the surface electron-hole recombination rate over the UV-blue spectral range.

  2. Harvesting vibrational energy due to intermodal systems via nano coated piezo electric devices.

    DOT National Transportation Integrated Search

    2015-12-01

    Vibrational energy resulting from intermodal transport systems can be recovered through the use of energy harvesting system consisting of PZT piezo electric material as the primary energy harvesting component. The ability of traditional PZT piezo ele...

  3. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems

    NASA Astrophysics Data System (ADS)

    Berthias, F.; Feketeová, L.; Della Negra, R.; Dupasquier, T.; Fillol, R.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Märk, T. D.

    2018-01-01

    The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.

  4. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil.

    PubMed

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Straalen, Nico M; van Gestel, Cornelis A M

    2013-07-01

    To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Extension of nano-scaled exploration into solution/liquid systems using tip-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Pienpinijtham, Prompong; Vantasin, Sanpon; Kitahama, Yasutaka; Ekgasit, Sanong; Ozaki, Yukihiro

    2017-08-01

    This review shows updated experimental cases of tip-enhanced Raman scattering (TERS) operated in solution/liquid systems. TERS in solution/liquid is still infancy, but very essential and challenging because crucial and complicated biological processes such as photosynthesis, biological electron transfer, and cellular respiration take place and undergo in water, electrolytes, or buffers. The measurements of dry samples do not reflect real activities in those kinds of systems. To deeply understand them, TERS in solution/liquid is needed to be developed. The first TERS experiment in solution/liquid is successfully performed in 2009. After that time, TERS in solution/liquid has gradually been developed. It shows a potential to study structural changes of biomembranes, opening the world of dynamic living cells. TERS is combined with electrochemical techniques, establishing electrochemical TERS (EC-TERS) in 2015. EC-TERS creates an interesting path to fulfil the knowledge about electrochemical-related reactions or processes. TERS tip can be functionalized with sensitive molecules to act as a "surface-enhanced Raman scattering (SERS) at tip" for investigating distinct properties of systems in solution/liquid e.g., pH and electron transfer mechanism. TERS setup is continuously under developing. Versatile geometry of the setup and a guideline of a systematic implementation for a setup of TERS in solution/liquid are proposed. New style of setup is also reported for TERS imaging in solution/liquid. From all of these, TERS in solution/liquid will expand a nano-scaled exploration into solution/liquid systems of various fields e.g., energy storages, catalysts, electronic devices, medicines, alternative energy sources, and build a next step of nanoscience and nanotechnology.

  6. Efficacy of saccharides bio-template on structural, morphological, optical and antibacterial property of ZnO nanoparticles.

    PubMed

    Dhanalakshmi, A; Palanimurugan, A; Natarajan, B

    2018-09-01

    Mono, di and polysaccharides of glucose (C 6 H 12 O 6 ), sucrose (C 12 H 24 O 12 ) and starch (C 6 H 12 O 6 ) n bio-template ZnO nanoparticles (NPs) has prepared by chemical precipitation method. Saccharides bio-template ZnO (SBts-ZnO) NPs were efficiently prepared for their structural and optical properties were examined by using XRD, FE-SEM, AFM, FTIR, UV and PL techniques. All the samples are polycrystalline nature with a preferential orientation depending on the (1 0 1) plane. The reduction of crystalline size by utilizing glucose, sucrose and starch bio-template of ZnO NPs. FE-SEM images revealed that the spherical and nano-rods like morphologies for ZnO and SBts-ZnO NPs respectively. AFM recorded images shows spherical features that confirmed and also the morphological changes were noticed with the addition of polymers. Interaction of bio-templated saccharides (glucose G 1 , sucrose S 2 & starch S n ) molecules was proved by FTIR study. Optical absorbance and emission behaviours were investigated using UV-Vis and photoluminescence techniques. The antibacterial study revealed that SBts-ZnO have excellent antibacterial effect than ZnO. The S n -ZnO sample has potent antibacterial activity against the Proteus vulgaris followed by Klebsiella pneumoniae, Escherichia coli and Staphylococcus aureus. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Ruthenium nano-oxide layer in CoFe-Ru-CoFe trilayer system: An x-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Asgharizadeh, S.; Sutton, M.; Altounian, Z.; Mao, M.; Lee, C. L.

    2008-05-01

    A grazing incidence x-ray reflectivity technique is used to determine the electron density profile as a function of depth in CoFe-Ru-CoFe and CoFe-Ru nano-oxide layer (NOL)-CoFe trilayers. Four trilayers with ruthenium thicknesses of 8, 8.5, and 9Å and one with Ru 8.5Å NOL, prepared by a dc planetary sputtering system, were investigated. For all samples, the electron density profile (EDP) shows a central peak that is related to the Ru layer. Natural oxidation in all of the samples introduces a graded EDP of the top CoFe layers, which decreases gradually to zero. The large surface resistivity of Ru 8.5Å NOL as compared to Ru 8.5Å is related to the remarkable difference between their EDPs. EDP changes have also been investigated in Ru NOL trilayers after annealing at 280°C. The Ru phase in the EDP was observed to confirm the thermal stability of the spacer layer after annealing.

  8. Structural and magnetic properties on the Fe-B-P-Cu-W nano-crystalline alloy system

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Yaocen; Makino, Akihiro

    2018-04-01

    In the present article, the structural and soft magnetic properties of Fe-B-P-Cu alloy system with W addition have been studied as well as the annealing configurations required for magnetic softness. It is found that the substitution of B by W deteriorates the soft magnetic properties after annealing. The reason of such impact with W addition may lie in the insufficient bonding strength between W and B so that the addition of W is not effective enough to suppress grain growth against the high concentration and high crystallization tendency of Fe during annealing. The addition of 4 at.% W is also found to reduce the saturation magnetization of the nano-crystalline alloy by 14%. It is also found that the addition of P in the Fe-based alloys could help reduce the coercivity upon annealing with high heating rate. The existence of P could also help slightly increase the overall saturation magnetization by enhancing the electron transfer away from Fe in the residual amorphous structure.

  9. A Low-Voltage and High Uniformity Nano-Electro-Mechanical System Tunable Color Filter Based on Subwavelength Grating

    NASA Astrophysics Data System (ADS)

    Honma, Hiroaki; Takahashi, Kazuhiro; Ishida, Makoto; Sawada, Kazuaki

    2012-11-01

    This paper reports on the construction of a nano-electro-mechanical system (NEMS) tunable color filter based on a subwavelength grating with high color uniformity and a low drive voltage. We recently proposed a ground-voltage-ground (GVG)-type tunable color filter with a parallel-plate actuator with three pairs of electrodes to decrease the crosstalk due to the electrostatic attractive force between each pair of actuators. Our finite element method (FEM) simulation results indicate that the drive voltage is decreased by 10 V, as compared to that of the previously reported GV type. The proposed structure was fabricated using a silicon-on-insulator (SOI) wafer. The color tuning capability of the device was demonstrated by applying a drive voltage of 6.7 V. The reflected light intensity was decreased by 34% at a wavelength of 680 nm. Color uniformity was also obtained in the filter area by reducing the variation of the displacement on the one-dimensional actuator arrays.

  10. The element level time domain (ELTD) method for the analysis of nano-optical systems: I. Nondispersive media

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick

    2012-04-01

    We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.

  11. Physicochemical and photocatalytic studies of Ln3+- ZnO for water disinfection and wastewater treatment applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; Asal, Saad

    2017-12-01

    In the present work, x mol Ln3+ modified ZnO Nano-particles (Ln = Sm3+, Eu3+ and Gd3+ ions; x = 0.008, 0.015, 0.025, 0.03 and 0.05) were synthesized by precipitation method. These Nano-particles are characterized by different advanced techniques; such as X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopic (EDX), UV-Visible diffuse reflectance, and fluorescence (FL) spectroscopy. Doping by lanthanides improves the crystal, surface area, porosity, morphology, as well as the optical adsorption and emission of UV light properties of the prepared photo-catalysts. Photo-catalytic activity for the prepared Nano-materials was determined using both, fluorescent probe and dye methods. Results showed that the highly active Nano-particle is 0.025 Gd3+-ZnO. The highly active sample (0.025 mol Gd3+- ZnO) successfully mineralized textile dye and real refractory wastewater samples under sunlight illumination using CPC photo-reactor. Prepared photo-catalysts were also applied for water disinfection.

  12. Investigation and characterization of ZnO single crystal microtubes

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  13. Establishment of Airborne Nanoparticle Exposure Chamber System to Assess Nano TiO2 Induced Mice Lung Effects

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Hua; Li, Jui-Ping; Huang, Nai-Chun; Yang, Chung-Shi; Chen, Jen-Kun

    2011-12-01

    A great many governments have schemed their top priority to support the research and development of emerging nanotechnology, which lead to increasing products containing nanomaterials. However, platforms and protocols to evaluate the safety of nanomaterials are not yet established. We therefore design and fabricate a nanoparticle exposure chamber system (NECS) and try to standardize protocols to assess potential health risk of inhalable nanoparticles. This platform comprises: (1) nano-aerosol generators to produce homogeneous airborne nanoparticles, (2) double isolated container to prevent from unexpected exposure to humans, (3) gas supply system for housing animals or incubating cultured cells, and (4) system for automatic control and airborne nanoparticle analysis. The NECS providing multiple functions includes: (1) a secure environment to handle nanomaterials, (2) real-time measurement for the size and distribution of airborne nanoparticles, (3) SOP of safety evaluation for nanomaterials, and (4) key technology for the development of inhalable pharmaceuticals. We used NECS to mimic occupational environment for exploring potential adverse effects of TiO2 nanoparticles. The adult male ICR mice were exposed to 25nm, well-characterized TiO2 particles for 1 and 4 weeks. More than 90% of the inhaled TiO2 nanoparticles deposit in lung tissue, which tends to be captured by alveolar macrophages. Pulmonary function test does not show significant physiological changes between one and 4 weeks exposure. For plasma biochemistry analysis, there are no obvious inflammation responses after exposure for one and 4 weeks; however, disruption of alveolar septa and increased thickness of alveolar epithelial cells were observed. According to our results, the NECS together with our protocols show comprehensive integration and ideally fit the standard of OECD guildelines-TG403, TG412, TG413; it can be further customized to fulfill diverse demands of industry, government, and third party

  14. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment.

    PubMed

    Zhang, Wen; Li, Changzheng; Shen, Chengwu; Liu, Yuguo; Zhao, Xiaoting; Liu, Ying; Zou, Dongna; Gao, Zhenfa; Yue, Chunwen

    2016-09-01

    Paclitaxel (PTX) and carboplatin (CBP) are widely used for the combined chemotherapy of non-small cell lung cancer (NSCLC). However, the development of multidrug resistance of cancer cells, as well as systemic toxic side effects resulting from nonspecific localization of anticancer drugs to non-tumor areas are major obstacles to the success of chemotherapy in treating cancers. This study aimed to engineer a prodrug-based nano-drug delivery system for co-encapsulate hydrophilic (CBP) and hydrophobic anti-tumor drugs (PTX). This system was expected to resolve the multidrug resistance cause by single drug, and the dual-drug-loaded liposome was also planned to specifically target the cancer cells without obvious influence on normal cells and tissues. In this paper, PLGA-PEG-CBP was synthesized by the conjugation between the carboxylic group of PLGA-PEG-COOH and the amino group of CBP. Then, self-assembled nanoparticles for combination delivery of PTX and PLGA-PEG-CBP (PTX/CBP NPs) were prepared by solvent displacement technique. The in vitro and in vivo anti-tumor efficacy was assessed in NCL-H460 human non-small cell lung carcinoma cell line. PTX/CBP NPs achieved the highest cytotoxic effect among all formulations in vitro, as compared with single drug delivery NPs. In vivo investigation on NSCLC animal models showed that co-delivery of PTX and CBP possessed high tumor-targeting capacity and strong anti-tumor activity. The PTX/CBP NPs constructed in this research offers an effective strategy for targeted combinational lung cancer therapy.

  15. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    PubMed

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  17. Effect of annealing on the sub-bandgap, defects and trapping states of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Wahyuono, Ruri Agung; Hermann-Westendorf, Felix; Dellith, Andrea; Schmidt, Christa; Dellith, Jan; Plentz, Jonathan; Schulz, Martin; Presselt, Martin; Seyring, Martin; Rettenmeyer, Markus; Dietzek, Benjamin

    2017-02-01

    Annealing treatment was applied to different mesoporous ZnO nanostructures prepared by wet chemical synthesis, i.e. nanoflowers (NFs), spherical aggregates (SPs), and nanorods (NRs). The sub-bandgap, defect properties as well as the trapping state characteristics after annealing were characterized spectroscopically, including ultrasensitive photothermal deflection spectroscopy (PDS), photoluminescence and photo-electrochemical methods. The comprehensive experimental analysis reveals that annealing alters both the bandgap and the sub-bandgap. The defect concentration and the density of surface traps in the ZnO nanostructures are suppressed upon annealing as deduced from photoluminescence and open-circuit voltage decay analysis. The photo-electrochemical investigations reveal that the surface traps dominate the near conduction band edge of ZnO and, hence, lead to high recombination rates when used in DSSCs. The density of bulk traps in ZnO SPs is higher than that in ZnO NFs and ZnO NRs and promote lower recombination loss between photoinjected electrons with the electrolyte-oxidized species on the surface. The highest power conversion efficiency of ZnO NFs-, ZnO SPs-, and ZnO NRs-based DSSC obtained in our system is 2.0, 4.5, and 1.8%, respectively.

  18. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-01

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.

  19. Nano-technology and nano-toxicology.

    PubMed

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  20. Nano-technology and nano-toxicology

    PubMed Central

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology. PMID:22662021

  1. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems.

    PubMed

    Khurana, Rajneet Kaur; Gaspar, Balan Louis; Welsby, Gail; Katare, O P; Singh, Kamalinder K; Singh, Bhupinder

    2018-06-01

    The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.

  2. Novel Nano-particle, Temperature-Independent Damping System: Basic Science and Applications

    DTIC Science & Technology

    2009-12-31

    based impact damping or a fluid -based viscous damping system, and/d =fn in a frictional damping systems.. The increase in frequency is caused by either...to provide temperature independent damping. While the damping performance of a dry particle medium unlike a viscous fluid is said to be unaffected by...the mechanical components of the dampers are filled with selected particles. The advantages of particle damping over the conventional damping

  3. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR)

    PubMed Central

    Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265–300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5–10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9–10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid

  4. Experimental study on electromagnetic-assisted ZnO nanofluid flooding for enhanced oil recovery (EOR).

    PubMed

    Adil, Muhammad; Lee, Keanchuan; Mohd Zaid, Hasnah; Ahmad Latiff, Noor Rasyada; Alnarabiji, Mohamad Sahban

    2018-01-01

    Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for

  5. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    PubMed

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Design of novel multifunctional targeting nano-carrier drug delivery system based on CD44 receptor and tumor microenvironment pH condition.

    PubMed

    Chen, Daquan; Lian, Shengnan; Sun, Jingfang; Liu, Zongliang; Zhao, Feng; Jiang, Yongtao; Gao, Mingming; Sun, Kaoxiang; Liu, Wanhui; Fu, Fenghua

    2016-01-01

    In this study, to develop a multifunctional targeting nano-carrier drug delivery system for cancer therapy, the novel pH-sensitive ketal based oligosaccharides of hyaluronan (oHA) conjugates were synthesized by chemical conjugation of hydrophobic menthone 1,2-glycerol ketal (MGK) to the backbone of oHA with the histidine as the linker of proton sponge effect. The multifunctional oHA conjugates, oHA-histidine-MGK (oHM) carried the pH-sensitive MGK as hydrophobic moieties and oHA as the target of CD44 receptor. The oHM could self-assemble to nano-sized spherical shape with the average diameters of 128.6 nm at pH 7.4 PBS conditions. The oHM nanoparticles (oHMN) could release encapsulated curcumin (Cur) with 82.6% at pH 5.0 compared with 49.3% at pH 7.4. The results of cytotoxicity assay indicated that encapsulated Cur in oHMN (Cur-oHMN) were stable and have less toxicity compared to Cur suspension. The anti-tumor efficacy in vivo suggested that Cur-oHMN suppressed tumor growth most efficiently. These results present the promising potential of oHMN as a stable and effective nano-sized pH-sensitive drug delivery system for cancer treatment.

  7. Incorporating high-pressure electroosmotic pump and a nano-flow gradient generator into a miniaturized liquid chromatographic system for peptide analysis.

    PubMed

    Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong

    2014-09-24

    We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.

  8. Highly sensitive H2 gas sensor of Co doped ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bhati, Vijendra Singh; Ranwa, Sapana; Kumar, Mahesh

    2018-04-01

    In this report, the hydrogen gas sensing properties based on Co doped ZnO nanostructures are explored. The undoped and Co doped nanostructures were grown by RF magnetron sputtering system, and its structural, morphological, and hydrogen sensing behavior are investigated. The maximum relative response was occurred by the 2.5% Co doped ZnO nanostructures among undoped and other doped sensors. The enhancement of relative response might be due to large chemisorbed sites formation on the ZnO surface for the reaction to hydrogen gas.

  9. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition.

    PubMed

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent

    2017-03-03

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10 7 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  10. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    NASA Astrophysics Data System (ADS)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  11. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    SciTech Connect

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscaleengineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on themore » macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscaleengineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.« less

  12. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Cai, Hui; Huang, Jingyun

    2013-11-01

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm-2 mM-1 and a wide linear range of 0.2-5.6 mM along with a low detection limit of 10 μM.

  13. Light-controlled resistive switching characteristics in ZnO/BiFeO3/ZnO thin film

    NASA Astrophysics Data System (ADS)

    Liang, Dandan; Li, Xiaoping; Wang, Junshuai; Wu, Liangchen; Chen, Peng

    2018-07-01

    ZnO/BiFeO3/ZnO multilayer was fabricated on silicon (Si) substrate by radio-frequency magnetron sputtering system. The resistive switching characteristics in ZnO/BiFeO3/ZnO devices are observed, and the resistive switching behavior can be modulated by white light.

  14. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  15. Hydrothermal Growth of ZnO Nanowires on UV-Nanoimprinted Polymer Structures.

    PubMed

    Park, Sooyeon; Moore, Sean A; Lee, Jaejong; Song, In-Hyouk; Farshchian, Bahador; Kim, Namwon

    2018-05-01

    Integration of zinc oxide (ZnO) nanowires on miniaturized polymer structures can broaden its application in multi-functional polymer devices by taking advantages of unique physical properties of ZnO nanowires and recent development of polymer microstructures in analytical systems. In this paper, we demonstrate the hydrothermal growth of ZnO nanowires on polymer microstructures fabricated by UV nanoimprinting lithography (NIL) using a polyurethane acrylate (PUA). Since PUA is a siloxane-urethane-acrylate compound containing the alpha-hydroxyl ketone, UV-cured PUA include carboxyl groups, which inhibit and suppress the nucleation and growth of ZnO nanowires on polymer structures. The presence of carboxyl groups in UV-cured PUA was substantiated by Fourier transform infrared spectroscopy (FTIR), and a Ag thin film was deposited on the nanoimprinted polymer structures to limit their inhibitive influence on the growth of ZnO nanowires. Furthermore, the naturally oxidized Ag layer (Ag2O) reduced crystalline lattice mismatches at the interface between ZnO-Ag during the seed annealing process. The ZnO nanowires grown on the Ag-deposited PUA microstructures were found to have comparable morphological characteristics with ZnO nanowires grown on a Si wafer.

  16. Nano-optomechanical system based on microwave frequency surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  17. EDITORIAL: Nano-enhanced! Nano-enhanced!

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-08-01

    In the early 19th century, a series of engineering and scientific breakthroughs by Nicolas Léonard Sadi Carnot, James Watt and many others led to the foundations of thermodynamics and a new pedigree of mechanical designs that reset the standards of engineering efficiency. The result was the industrial revolution. In optical- and electronics- based nanotechnology research, a similarly subtle bargain is being made; we cannot alter the fact that systems have a finite response to external excitations, but what we can do is enhance that response. The promising attributes of ZnO have long been recognised; its large band gap and high exciton binding energy lend it to a number of applications from laser diodes, LEDs, optical waveguides and switches, and acousto-optic applications to sun cream. When this material is grown into nanowires and nanorods, the material gains a whole new dimension, as quantum confinement effects come into play. Discovery of the enhanced radiative recombination, which has potential for exploitation in many optical and opto-electronic applications, drove intensive research into investigating these structures and into finding methods to synthesise them with optimised properties. This research revealed further subtleties in the properties of these materials. One example is the work by researchers in the US reporting synthesis procedures that produced a yield—defined as the weight ratio of ZnO nanowires to the original graphite flakes—of 200%, and which also demonstrated, through photoluminescence analysis of nanowires grown on graphite flakes and substrates, that graphite induces oxygen vacancies during annealing, which enhances the deep-level to near-band-edge emission ratio [1]. Other one-dimensional materials that provide field emission enhancements include carbon nanotubes, and work has been performed to find ways of optimising the emission efficiency from these structures, such as through control of the emitter density [2]. One of the

  18. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    PubMed Central

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  19. Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications

    NASA Astrophysics Data System (ADS)

    Pal, Kaushik; Zhan, Bihong; Madhu Mohan, M. L. N.; Schirhagl, Romana; Wang, Guoping

    2015-12-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. In this article, we exhibit a simple, one-step bench top synthesis of zinc oxide nano-tetrapods and nano-spheres which were tailored by the facial growth of nano-wires (diameter ≈ 24 nm; length ≈ 118 nm) and nano-cubes (≈395 nm edge) to nano-sphere (diameter ≈ 585 nm) appeaded. The possibilities of inexpensive, simple solvo-chemical synthesis of nanostructures were considered. In this article, a successful attempt has been made that ZnO nano-structures dispersed on well aligned hydrogen bonded liquid crystals (HBLC) comprising azelaic acid (AC) with p-n-alkyloxy benzoic acid (nBAO) by varying the respective alkyloxy carbon number (n = 5). The dispersion of nanomaterials with HBLC is an effective route to enhance the existing functionalities. A series of these composite materials were analyzed by polarizing optical microscope's electro-optical switching. An interesting feature of AC + nBAO is the inducement of tilted smectic G phase with increasing carbon chain length. Phase diagrams of the above hybrid ZnO nanomaterial influenced LC complex and pure LC were constructed and compared. The switching times, the contrast ratio and spontaneous polarization of the nanostructures-HBLC composite film were carried out by systematic investigation. The sample preparation parameters, such as the curing time and curing intensity were optimized. The critical applied voltage to achieve the switching bi-stability of our device is only 4.5 V, which is approximately twice its threshold voltage for Freedericksz transition. This performance puts the hybrid structure at the top level in the state of the art in application oriented research in optics of liquid crystalline composite materials.

  20. Voltage controlled nano-injection system for single-cell surgery

    PubMed Central

    Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2015-01-01

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383

  1. Voltage controlled nano-injection system for single-cell surgery.

    PubMed

    Adam Seger, R; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2012-09-28

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes.

  2. A Self Sustaining Solar-Bio-Nano Based Wastewater Treatment System for Forward Operating Bases

    DTIC Science & Technology

    2017-06-21

    fouling problem and requires a relatively high operational pressure (more than 500 psi) [52]. It has also been reported that pulsed electric discharge as...large amount of working fluid to the targeted temperature. In addition, energy loss to the ambient environment is another problem that significantly...heat. Gas and steam turbines as engine units were compared to determine the most suitable for the studied solar–bio hybrid system. The net capacity

  3. Photodynamic action of curcumin derived polymer modified ZnO nanocomposites

    SciTech Connect

    Hariharan, R.; Senthilkumar, S.; Suganthi, A., E-mail: suganthiphd09@gmail.com

    2012-11-15

    Highlights: ► ZnO/PVA nano sensitized with curcumin and its metal complex were synthesized by vacuum evaporation method. ► M/cur sensitized on ZnO/PVA nanocomposites were characterized. ► Generation of {sup 1}O{sub 2} and ROS were detected by optical and EPR-spin trapping method. ► It was found that photoinduced cleavage of DNA using Zn/cur–ZnO/PVA was superior. ► Photodegradation of MB in water catalyzed by ZnO/PVA–Zn/cur was also superior under visible light. -- Abstract: The photodynamic action of ZnO nano can be improved by modifying the surface by PVA and encapsulating the natural product, curcumin. The synthesized ZnO/PVA nanocomposites have been characterized usingmore » XRD, SEM, TEM, FTIR, TG–DTA, etc. Here we are reporting the photodynamic effect of ZnO nanocomposites on pUC18 DNA. Based on optical and EPR measurements, singlet oxygen and other ROS were responsible for photocleavage of DNA. Most importantly, derived curcumin modified ZnO/PVA nanocomposites were comparatively more effective than derived curcumin complex against HeLa cell lines under in vitro condition. In addition, photodegradation of methylene blue (MB) in water catalyzed by nano ZnO/PVA–curcumin derivative was investigated at room temperature. Under visible irradiation photocatalytic activity of ZnO nanomaterial sensitized curcumin was higher than those of curcumin and nano ZnO.« less

  4. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    SciTech Connect

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH)3] to nanoparticulate iron oxyhydroxide minerals in themore » presence of uranyl (UO 2) 2+(aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.« less

  5. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System.

    PubMed

    McBriarty, Martin E; Soltis, Jennifer A; Kerisit, Sebastien; Qafoku, Odeta; Bowden, Mark E; Bylaska, Eric J; De Yoreo, James J; Ilton, Eugene S

    2017-05-02

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH) 3 ] to nanoparticulate iron oxyhydroxide minerals in the presence of uranyl (UO 2 ) 2+ (aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.

  6. Design of a Customized Multipurpose Nano-Enabled Implantable System for In-Vivo Theranostics

    PubMed Central

    Juanola-Feliu, Esteve; Miribel-Català, Pere Ll.; Páez Avilés, Cristina; Colomer-Farrarons, Jordi; González-Piñero, Manel; Samitier, Josep

    2014-01-01

    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device. PMID:25325336

  7. Enhanced emission and photoconductivity due to photo-induced charge transfer from Au nanoislands to ZnO

    SciTech Connect

    Wu, Shang-Hsuan; Chan, Ching-Hsiang; Liang, Ching-Tarng

    2016-01-25

    We report systematic studies based on photoluminescence, Hall, and photoconductivity measurements together with theoretical modeling in order to identify mechanisms for the photo-induced charge transfer effects in ZnO thin film incorporated with the Au nano-islands (AuNIs). Significant enhancement of near band edge emission and improvement in conductivity of ZnO/AuNIs samples after illumination are observed, which are attributed to the photo-induced hot electrons in Au which are then transferred into the conduction band of ZnO as long as the excitation energy is higher than the offset between the ZnO conduction-band minimum and Au Fermi level. Our experimental results are consistent withmore » the general features predicted by first principles calculations.« less

  8. Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids.

    PubMed

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W; McRae, Michael P; Wong, Jorge; Newton, Thomas F; Smith, Regina; Mahoney, James J; Hohenstein, Justin; Gomez, Sobeyda; Floriano, Pierre N; Talavera, Humberto; Sloan, Daniel J; Moody, David E; Andrenyak, David M; Kosten, Thomas R; Haque, Ahmed; McDevitt, John T

    2015-08-01

    There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable bio-nano-chip (p-BNC) platform for the detection of drugs of abuse. The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. Rapid (∼10min), sensitive detection (∼ng/mL) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Application of Programmable Bio-Nano-Chip System for the Quantitative Detection of Drugs of Abuse in Oral Fluids*

    PubMed Central

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Newton, Thomas F.; Smith, Regina; Mahoney, James J.; Hohenstein, Justin; Gomez, Sobeyda; Floriano, Pierre N.; Talavera, Humberto; Sloan, Daniel J.; Moody, David E.; Andrenyak, David M.; Kosten, Thomas R.; Haque, Ahmed; McDevitt, John T.

    2015-01-01

    Objective There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable Bio-Nano-Chip (p-BNC) platform for the detection of drugs of abuse. Method The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. Results Rapid (~10 minutes), sensitive detection (~ng/ml) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. Conclusions This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace. PMID:26048639

  10. Removing heavy metals using permeable pavement system with a titanate nano-fibrous adsorbent column as a post treatment.

    PubMed

    Sounthararajah, Danious Pratheep; Loganathan, Paripurnanda; Kandasamy, Jayakumar; Vigneswaran, Saravanamuthu

    2017-02-01

    Permeable pavement systems (PPS) are a widely-used treatment measure in sustainable stormwater management and groundwater recharge. However, PPS are not very efficient in removing heavy metals from stormwater. A pilot scale study using zeolite or basalt as bed material in PPS removed 41-72%, 67-74%, 38-43%, 61-72%, 63-73% of Cd, Cu, Ni, Pb, and Zn, respectively, from synthetic stormwater (pH 6.5; Cd, Cu, Ni, Pb, and Zn concentrations of 0.04, 0.6, 0.06, 1.0, and 2.0 mg L -1 , respectively) over a period of 80 h. The total volume of stormwater that passed through the PPS was equivalent to runoff in 10 years of rainfall in Sydney, Australia. The concentrations of metals in the PPS effluent failed fresh and marine water quality trigger values recommended in the Australian and New Zealand guidelines. An addition of a post-treatment of a horizontal filter column containing a titanate nano-fibrous (TNF) material with a weight < 1% of zeolite weight and mixed in with granular activated carbon (GAC) at a GAC:TNF weight ratio of 25:1 removed 77% of Ni and 99-100% of all the other metals. The effluent easily met the required standards of marine waters and just met those concerning fresh waters. Batch adsorption data from solutions of metals mixtures fitted the Langmuir model with adsorption capacities in the following order, TNF ≫ zeolite > basalt; Pb > Cu > Cd, Ni, Zn. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Research on the Dielectric Properties of Nano-ZnO/Silicone Rubber Composites

    NASA Astrophysics Data System (ADS)

    Wang, Fei-feng; Yan, Dan-dan; Su, Yi; Lu, Yu-feng; Xia, Xiao-fei; Huang, Hui-min

    2017-09-01

    The samples of 1%, 2%, 3% and 4% Zinc Oxide (ZnO) nano-composite silicone rubber were prepared by mechanical method. The dielectric properties of each sample were measured by dielectric spectroscopy. The experimental results showed that the dielectric constant of the silicone rubber composite increases with the increase of the content of nano-ZnO. The breakdown test results showed that with the increase of the content of nano-ZnO, the breakdown strength of silicone rubber composites increased first and then decreased. The breakdown test results indicate that the nano-ZnO can reduce the breakdown strength of silicone rubber. The hydrophobic test results showed that nano-ZnO will reduce the hydrophobic of silicone rubber.

  12. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process.

    PubMed

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-07-01

    Monoethanolamine (shortly ethanolamine (ETA)), usually used as a corrosion inhibitor, is a contaminant of wastewater from the secondary cooling system of nuclear power plants (NPPs) and is not readily biodegradable. We conducted various experiments, including treatments with nano zero-valent iron (nZVI), nano-iron/calcium, and calcium oxide (nFe/Ca/CaO) with ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ) to reduce the concentration of ETA and to decrease the chemical demand of oxygen (COD) of these wastewaters. During this study, wastewater with ETA concentration of 7465 mg L -1 and COD of 6920 mg L -1 was used. As a result, the ETA concentration was reduced to 5 mg L -1 (a decrease of almost 100%) and COD was reduced to 2260 mg L -1 , a reduction of 67%, using doses of 26.8 mM of nZVI and 1.5 mM of H 2 O 2 at pH 3 for 3 h. Further treatment for 48 h allowed a decrease of COD by almost 97%. Some mechanistic considerations are proposed in order to explain the degradation pathway. The developed hybrid nano zero-valent iron-initiated oxidation process with H 2 O 2 is promising in the treatment of ETA-contaminated wastewaters.

  13. Creation of Functional Micro/Nano Systems through Top-down and Bottom-up Approaches

    PubMed Central

    Wong, Tak-Sing; Brough, Branden; Ho, Chih-Ming

    2009-01-01

    Mimicking nature’s approach in creating devices with similar functional complexity is one of the ultimate goals of scientists and engineers. The remarkable elegance of these naturally evolved structures originates from bottom-up self-assembly processes. The seamless integration of top-down fabrication and bottom-up synthesis is the challenge for achieving intricate artificial systems. In this paper, technologies necessary for guided bottom-up assembly such as molecular manipulation, molecular binding, and the self assembling of molecules will be reviewed. In addition, the current progress of synthesizing mechanical devices through top-down and bottom-up approaches will be discussed. PMID:19382535

  14. Nano-Carbon-Based Systems for the Delivery of Bioactive Agents:. Pros and Cons

    NASA Astrophysics Data System (ADS)

    Nayak, Tapas R.; Pastorin, Giorgia

    2013-09-01

    Nanotechnology has become a distinctive field of research, aimed to modernize the way scientists have addressed urgent needs and sophisticated problems, towards the achievement of unprecedented discoveries. Amidst the myriad of materials extensively used in the modern society, carbon-based systems seem to embody a significant role especially where endurance and strength are required: carbon nanoparticles, nanotubes, graphite, diamonds and fullerenes et al. In addition to the above advantages, this review also emphasizes some concerns on the carbonnanosystems and which are mainly attributable to the lack of an exhaustive characterization and to the potential hazardous effects deriving from their potential accumulation in the environment and inside the body.

  15. The Obtaining of Nano Oxide Systems SiO2-REE with Alkoxide Technology

    NASA Astrophysics Data System (ADS)

    Amelina, Anna; Grinberg, Evgenii

    A lot of oxides systems with REE as dopants are used in catalytic processes in organic synthesis. They are very perspectives as thermostable coating in aerospace technics. These systems are usually based on silicon or aluminium oxides and doped with rare-earth elements. This systems can be produced by different methods. One of the most perspective of them is “sol-gel”-method with silicium, aluminium and rare-earth alkoxides as a precursor of doped silica and alumina, or their derivatives. Thus the obtaining of composite SiO _{2} - REE oxide materials by the hydrolysis doped with rare-earth elements was suggested. Some of alcoholate derivatives such as El(OR)n were used in this processes. The SiO _{2}- REE oxides were precipitated during the sol-gel process, where tetraethoxysilane (TEOS) as used as SiO _{2} sources. Also it is known that alkoxides of alkali metals, including lithium alkoxides, are widely used in industry and synthetic chemistry, as well as a source of lithium in various mixed oxide compositions, such as lithium niobate, lithium tantalate or lithium silicate. Therefore, we attempted to obtain the lithium silicate, which is also doped with rare-earth elements. Lithium silicate was obtained by alkaline hydrolysis of tetraethoxysilane with lithium alkoxide. Lithium alkoxide were synthesized by dissolving at metal in the corresponding alcohol are examined. The dependence of the rate of dissolving of the metal on the method of mixing of the reaction mixture and the degree of metal dispersion was investigated. The mathematical model of the process was composed and also optimization of process was carried out. Some oxide SiO _{2}, Al _{2}O _{3} and rare-earth nanostructured systems were obtained by sol-gel-method. The size of particle was determined by electron and X-ray spectroscopy and was in the range of 5 - 15 nm. Purity of this oxide examples for contaminating of heavy metals consists n.(1E-4...1E-5) wt%. Sols obtained by this method may be used

  16. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components.

    PubMed

    Li, Mei; Zhu, Lizhong; Lin, Daohui

    2011-03-01

    Water chemistry can be a major factor regulating the toxicity mechanism of ZnO nanoparticles (nano-ZnO) in water. The effect of five commonly used aqueous media with various chemical properties on the toxicity of nano-ZnO to Escherichia coli O111 (E. coli) was investigated, including ultrapure water, 0.85% NaCl, phosphate-buffered saline (PBS), minimal Davis (MD), and Luria-Bertani (LB). Combined results of physicochemical characterization and antibacterial tests of nano-ZnO in the five media suggest that the toxicity of nano-ZnO is mainly due to the free zinc ions and labile zinc complexes. The toxicity of nano-ZnO in the five media deceased as follows: ultrapure water > NaCl > MD > LB > PBS. The generation of precipitates (Zn(3)(PO(4))(2) in PBS) and zinc complexes (of zinc with citrate and amino acids in MD and LB, respectively) dramatically decreased the concentration of Zn(2+) ions, resulting in the lower toxicity in these media. Additionally, the isotonic and rich nutrient conditions improved the tolerance of E. coli to toxicants. Considering the dramatic difference of the toxicity of nano-ZnO in various aqueous media, the effect of water chemistry on the physicochemical properties of nanoparticles should be paid more attention in future nanotoxicity evaluations.

  17. Nano-porous electrode systems by colloidal lithography for sensitive electrochemical detection: fabrication technology and properties

    NASA Astrophysics Data System (ADS)

    Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin

    2008-11-01

    A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.

  18. Comet Assay: A Method to Evaluate Genotoxicity of Nano-Drug Delivery System

    PubMed Central

    Vandghanooni, Somayeh; Eskandani, Morteza

    2011-01-01

    Introduction Drug delivery systems could induce cellular toxicity as side effect of nanomaterials. The mechanism of toxicity usually involves DNA damage. The comet assay or single cell gel electrophoresis (SCGE) is a sensitive method for detecting strand damages in the DNA of a cell with applications in genotoxicity testing and molecular epidemiology as well as fundamental research in DNA damage and repair. Methods In the current study, we reviewed recent drug delivery researches related to SCGE. Results We found that one preference for choosing the assay is that comet images may result from apoptosis-mediated nuclear fragmentation. This method has been widely used over the last decade in several different areas. Overall cells, such as cultured cells are embedded in agarose on a microscope slide, lysed with detergent, and treated with high salt. Nucleoids are supercoiled DNA form. When the slide is faced to alkaline electrophoresis any breakages present in the DNA cause the supercoiling to relax locally and loops of DNA extend toward the anode as a ‘‘comet tail’’. Conclusion This article provides a relatively comprehensive review upon potentiality of the comet assay for assessment of DNA damage and accordingly it can be used as an informative platform in genotoxicity studies of drug delivery systems. PMID:23678412

  19. Magnetic high throughput screening system for the development of nano-sized molecularly imprinted polymers for controlled delivery of curcumin.

    PubMed

    Piletska, Elena V; Abd, Bashar H; Krakowiak, Agata S; Parmar, Anitha; Pink, Demi L; Wall, Katie S; Wharton, Luke; Moczko, Ewa; Whitcombe, Michael J; Karim, Kal; Piletsky, Sergey A

    2015-05-07

    Curcumin is a versatile anti-inflammatory and anti-cancer agent known for its low bioavailability, which could be improved by developing materials capable of binding and releasing drug in a controlled fashion. The present study describes the preparation of magnetic nano-sized Molecularly Imprinted Polymers (nanoMIPs) for the controlled delivery of curcumin and their high throughput characterisation using microtitre plates modified with magnetic inserts. NanoMIPs were synthesised using functional monomers chosen with the aid of molecular modelling. The rate of release of curcumin from five polymers was studied under aqueous conditions and was found to correlate well with the binding energies obtained computationally. The presence of specific monomers was shown to be significant in ensuring effective binding of curcumin and to the rate of release obtained. Characterisation of the polymer particles was carried out using dynamic light scattering (DLS) technique and scanning electron microscopy (SEM) in order to establish the relationship between irradiation time and particle size. The protocols optimised during this study could be used as a blueprint for the development of nanoMIPs capable of the controlled release of potentially any compound of interest.

  20. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  1. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  2. Effects of strain on phonon interactions and phase nucleation in several semiconductor and nano particle systems

    NASA Astrophysics Data System (ADS)

    Tallman, Robert E.

    Raman scattering is utilized to explore the effects of applied pressure and strain on anharmonic phonon interactions and nucleation of structural transitions in several bulk and nanoparticle semiconductor systems. The systems investigated are bulk ZnS and ZnSe in several isotopic compositions, InP/CdS core/shell nanoparticles exhibiting confined and surface optical Raman modes, and amorphous selenium films undergoing photo-induced crystallization. The anharmonic decay of long-wavelength optical modes into two-phonon acoustic combinations modes is studied in 64Zn32S, 64Zn34S, natZnatS bulk crystals by measuring the TO(Gamma) Raman line-shape as a function of applied hydrostatic pressure. The experiments are carried out at room temperature and 16K for pressures up to 150 kbars using diamond-anvil cells. The most striking effects occur in 68Zn32S where the TO(Gamma) peak narrows by a factor of 10 and increases in intensity at pressures for which the TO(Gamma) frequency has been tuned into a gap in the two-phonon density of states (DOS). In all the isotopic compositions, the observed phonon decay processes can be adequately explained by a second order perturbation treatment of the anharmonic coupling between TO(Gamma) and TA + LA combinations at various critical points, combined with an adiabatic bond-charge model for the phonon DOS and the known mode Gruneisen parameters. Bulk ZnSe crystals exhibit very different behavior. Here we find that anharmonic decay alone can not explain the excessive (˜ 60 cm-1 ) broadening in the TO(Gamma) Raman peak observed as the pressure approaches to within 50kbar of the ZB -> B1 phase transition (at P ˜ 137 kbar). Rather the broadening appears to arise from antecedent nucleation of structural changes within nanoscopic domains, with the mechanism for line-shape changes being mode mixing via localization and disorder instead of anharmonicity. To sort out these contributions, pressure experiments on natural ZnSe and on isotopically pure

  3. Nanoscale strengthening mechanisms in metallic thin film systems

    NASA Astrophysics Data System (ADS)

    Schoeppner, Rachel Lynn

    Nano-scale strengthening mechanisms for thin films were investigated for systems governed by two different strengthening techniques: nano-laminate strengthening and oxide dispersion strengthening. Films were tested under elevated temperature conditions to investigate changes in deformation mechanisms at different operating temperatures, and the structural stability. Both systems exhibit remarkable stability after annealing and thus long-term reliability. Nano-scale metallic multilayers with smaller layer thicknesses show a greater relative resistance to decreasing strength at higher temperature testing conditions than those with larger layer thicknesses. This is seen in both Cu/Ni/Nb multilayers as well as a similar tri-component bi-layer system (Cu-Ni/Nb), which removed the coherent interface from the film. Both nanoindentation and micro-pillar compression tests investigated the strain-hardening ability of these two systems to determine what role the coherent interface plays in this mechanism. Tri-layer films showed a higher strain-hardening ability as the layer thickness decreased and a higher strain-hardening exponent than the bi-layer system: verifying the presence of a coherent interface increases the strain-hardening ability of these multilayer systems. Both systems exhibited hardening of the room temperature strength after annealing, suggesting a change in microstructure has occurred, unlike that seen in other multilayer systems. Oxide dispersion strengthened Au films showed a marked increase in hardness and wear resistance with the addition of ZnO particles. The threshold for stress-induced grain-refinement as opposed to grain growth is seen at concentrations of at least 0.5 vol%. These systems exhibited stable microstructures during thermal cycling in films containing at least 1.0%ZnO. Nanoindentation experiments show the drop in hardness following annealing is almost completely attributed to the resulting grain growth. Four-point probe resistivity

  4. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  5. Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles

    NASA Astrophysics Data System (ADS)

    Tijani, Jimoh O.; Mouele, Massima E. S.; Fatoba, Ojo O.; Babajide, Omotola O.; Petrik, Leslie F.

    2017-09-01

    In this study we report the synthesis and catalytic properties of polyethylene glycol stabilized nano zero valent iron particles (PEG-nZVI) added to the dielectric barrier discharge (DBD) system to induce photo-Fenton process in the degradation of bisphenol A (BPA) in aqueous solution. The influence of operating parameters such as solution pH, initial concentration of the modelled pollutant and PEG-nZVI dosage on the extent of BPA degradation was investigated. The residual concentration of BPA and its intermediates were determined using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LCMS). The high resolution scanning electron microscope (HRSEM), x-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and x-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of filamentous, high surface area iron nanoparticles in the zero valent state. The BPA mineralization rate was monitored using total organic carbon (TOC) analyser. 100% BPA removal was achieved with DBD/PEG-nZVI system within 30 min compared to 67.9% (BPA) with DBD alone after 80 min. The complete BPA removal within a short reaction time was attributed to the existence of a synergetic effect in the combined DBD/PEG-nZVI system. Five new transformation products of BPA namely: 4-nitrophenol (C6H5NO3), 4-nitrosophenolate (C6H4NO2), 4-(prop-1-en-2-yl) cyclohexa-3,5-diene-1,2-dione, (C9H8O2), 4-(2-hydroxylpropan-2-yl)cyclohexane-3,5-diene-1,2-dione (C9H10O3), and 1,2-dimethyl-4-(2-nitropropan-2-yl)benzene (C9H10NO4) were identified. BPA degradation proceeded via ozonation, hydroxylation, dimerization, and decarboxylation and nitration step. The combined DBD/photo-Fenton-induced process was found to be the most efficient in the elimination of BPA in aqueous solutions and DBD alone.

  6. Solar photocatalytic disinfection of E. coli and bacteriophages MS2, ΦX174 and PR772 using TiO2, ZnO and ruthenium based complexes in a continuous flow system.

    PubMed

    Mac Mahon, Joanne; Pillai, Suresh C; Kelly, John M; Gill, Laurence W

    2017-05-01

    The performance of photocatalytic treatment processes were assessed using different photocatalysts against E. coli and bacteriophages MS2, ΦX174 and PR772, in a recirculating continuous flow compound parabolic collector system under real sunlight conditions. Suspended TiO 2 and ZnO nanoparticle powders and Tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate in solution were tested separately, as well as in combination, using E. coli. For a 3-log reduction of E. coli in distilled water, inactivation rates in terms of cumulative dose were in the order Ru(bpy) 3 Cl 2 >(TiO 2 & Ru(bpy) 3 Cl 2 )>(ZnO & Ru(bpy) 3 Cl 2 )>ZnO>TiO 2 >photolysis. Reactivation of E. coli was observed following all trials despite the detection limit being reached, although the reactivated colonies were observed to be under stress and much slower growing when compared to original colonies. Treatment with Ru(bpy) 3 Cl 2 was also compared against standard photolysis of bacteriophages MS2, ΦX174 and PR772 with the order of photolytic inactivation for a 3-log reduction in terms of cumulative UV-A dose being ΦX174>PR772>MS2. However, MS2 was found to be the most susceptible bacteriophage to treatment with Ru(bpy) 3 Cl 2 , with complete removal of the phage observed within the first 15min of exposure. Ru(bpy) 3 Cl 2 also significantly improved inactivation rates for PR772 and ΦX174. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities.

    PubMed

    Lu, Yi-Hsuan; Lin, Wei-Hao; Yang, Chao-Yao; Chiu, Yi-Hsuan; Pu, Ying-Chih; Lee, Min-Han; Tseng, Yuan-Chieh; Hsu, Yung-Jung

    2014-08-07

    An environmentally benign antisolvent method has been developed to prepare Cu(2+)-doped ZnO nanocrystals with controllable dopant concentrations. A room temperature ionic liquid, known as a deep eutectic solvent (DES), was used as the solvent to dissolve ZnO powders. Upon the introduction of the ZnO-containing DES into a bad solvent which shows no solvation to ZnO, ZnO was precipitated and grown due to the dramatic decrease of solubility. By adding Cu(2+) ions to the bad solvent, the growth of ZnO from the antisolvent process was accompanied by Cu(2+) introduction, resulting in the formation of Cu(2+)-doped ZnO nanocrystals. The as-prepared Cu(2+)-doped ZnO showed an additional absorption band in the visible range (400-800 nm), which conduced to an improvement in the overall photon harvesting efficiency. Time-resolved photoluminescence spectra, together with the photovoltage information, suggested that the doped Cu(2+) may otherwise trap photoexcited electrons during the charge transfer process, inevitably depressing the photoconversion efficiency. The photoactivity of Cu(2+)-doped ZnO nanocrystals for photoelectrochemical water oxidation was effectively enhanced in the visible region, which achieved the highest at 2.0 at% of Cu(2+). A further increase in the Cu(2+) concentration however led to a decrease in the photocatalytic performance, which was ascribed to the significant carrier trapping caused by the increased states given by excessive Cu(2+). The photocurrent action spectra illustrated that the enhanced photoactivity of the Cu(2+)-doped ZnO nanocrystals was mainly due to the improved visible photon harvesting achieved by Cu(2+) doping. These results may facilitate the use of transition metal ion-doped ZnO in other photoconversion applications, such as ZnO based dye-sensitized solar cells and magnetism-assisted photocatalytic systems.

  8. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    PubMed

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  9. Oxygen sensing glucose biosensors based on alginate nano-micro systems

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rashmi; Joshi, Abhijeet; Srivastava, Rohit

    2014-04-01

    Clinically glucose monitoring in diabetes management is done by point-measurement. However, an accurate, continuous glucose monitoring, and minimally invasive method is desirable. The research aims at developing fluorescence-mediated glucose detecting biosensors based on near-infrared radiation (NIR) oxygen sensitive dyes. Biosensors based on Glucose oxidase (GOx)-Rudpp loaded alginate microspheres (GRAM) and GOx-Platinum-octaethylporphyrin (PtOEP)-PLAalginate microsphere system (GPAM) were developed using air-driven atomization and characterized using optical microscopy, CLSM, fluorescence spectro-photometry etc. Biosensing studies were performed by exposing standard solutions of glucose. Uniform sized GRAM and GPAM with size 50+/-10μm were formed using atomization. CLSM imaging of biosensors suggests that Rudpp and PtOEP nanoparticles are uniformly distributed in alginate microspheres. The GRAM and GPAM showed a good regression constant of 0.974 and of 0.9648 over a range of 0-10 mM of glucose with a high sensitivity of 3.349%/mM (625 nm) and 2.38%/mM (645 nm) at 10 mM of glucose for GRAM and GPAM biosensor. GRAM and GPAM biosensors show great potential in development of an accurate and minimally invasive glucose biosensor. NIR dye based assays can aid sensitive, minimally-invasive and interference-free detection of glucose in diabetic patients.

  10. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.

    PubMed

    Vij, Neeraj; Min, Taehong; Bodas, Manish; Gorde, Aakruti; Roy, Indrajit

    2016-11-01

    The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer.

    PubMed

    Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R; Guterres, Silvia S; Collares, Tiago; Seixas, Fabiana Kömmling

    2017-01-01

    Mycobacterium bovis bacillus Calmette-Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.

  12. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer

    PubMed Central

    Buss, Julieti Huch; Begnini, Karine Rech; Bender, Camila Bonemann; Pohlmann, Adriana R.; Guterres, Silvia S.; Collares, Tiago; Seixas, Fabiana Kömmling

    2018-01-01

    Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer. PMID:29379438

  13. Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mollar, M.; Marí, B.

    2011-01-01

    High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.

  14. Superhydrophobic Surface Based on a Coral-Like Hierarchical Structure of ZnO

    PubMed Central

    Wu, Jun; Xia, Jun; Lei, Wei; Wang, Baoping

    2010-01-01

    Background Fabrication of superhydrophobic surfaces has attracted much interest in the past decade. The fabrication methods that have been studied are chemical vapour deposition, the sol-gel method, etching technique, electrochemical deposition, the layer-by-layer deposition, and so on. Simple and inexpensive methods for manufacturing environmentally stable superhydrophobic surfaces have also been proposed lately. However, work referring to the influence of special structures on the wettability, such as hierarchical ZnO nanostructures, is rare. Methodology This study presents a simple and reproducible method to fabricate a superhydrophobic surface with micro-scale roughness based on zinc oxide (ZnO) hierarchical structure, which is grown by the hydrothermal method with an alkaline aqueous solution. Coral-like structures of ZnO were fabricated on a glass substrate with a micro-scale roughness, while the antennas of the coral formed the nano-scale roughness. The fresh ZnO films exhibited excellent superhydrophilicity (the apparent contact angle for water droplet was about 0°), while the ability to be wet could be changed to superhydrophobicity after spin-coating Teflon (the apparent contact angle greater than 168°). The procedure reported here can be applied to substrates consisting of other materials and having various shapes. Results The new process is convenient and environmentally friendly compared to conventional methods. Furthermore, the hierarchical structure generates the extraordinary solid/gas/liquid three-phase contact interface, which is the essential characteristic for a superhydrophobic surface. PMID:21209931

  15. Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector

    NASA Astrophysics Data System (ADS)

    Wei, Ming; Xu, Chun-Xiang; Qin, Fei-Fei; Gowri Manohari, Arumugam; Lu, Jun-Feng; Zhu, Qiu-Xiang

    2017-07-01

    ZnO microrods are synthesized using the vapor phase transport method, and the magnetron sputtering is used to decorate the Al nanoparticles (NPs) on a single ZnO microrod. The micro-PL and I-V responses are measured before and after the decoration of Al NPs. The FDTD stimulation is also carried out to demonstrate the optical field distribution around the decoration of Al NPs on the surface of a ZnO microrod. Due to an implementation of Al NPs, the ZnO microrod exhibits an improved photoresponse behavior. In addition, Al NPs induced localized surface plasmons (LSPs) as well as improved optical field confinement can be ascribed to an enhancement of ultraviolet (UV) response. This research provides a method for improving the responsivity of photodetectors. Supported by the National Natural Science Foundation of China under Grant Nos 61475035 and 61275054, the Science and Technology Support Program of Jiangsu Province under Grant No BE2016177, and the Collaborative Innovation Center of Suzhou Nano Science and Technology.

  16. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation

    NASA Astrophysics Data System (ADS)

    Matinise, N.; Fuku, X. G.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M.

    2017-06-01

    The research work involves the development of better and reliable method for the bio-fabrication of Zinc oxide nanoparticles through green method using Moringa Oleifera extract as an effective chelating agent. The electrochemical activity, crystalline structure, morphology, isothermal behavior, chemical composition and optical properties of ZnO nanoparticles were studied using various characterization techniques i.e. Cyclic voltammetry (CV), X-ray powder diffraction (XRD), High resolution transmission electron microscopy (HRTEM), Selected area electron diffraction (SEAD), Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA), Fourier Transform Infrared analysis (FTIR) and Ultraviolet spectroscopy studies (UV-vis). The electrochemical analysis proved that the ZnO nano has high electrochemical activity without any modifications and therefore are considered as a potential candidate in electrochemical applications. The XRD pattern confirmed the crystallinity and pure phase of the sample. DSC/TGA analysis of ZnO sample (before anneal) revealed three endothermic peaks around 140.8 °C, 223.7 °C and 389.5 °C. These endothermic peaks are attributed to the loss of volatile surfactant, conversion of zinc hydroxide to zinc oxide nanoparticles and transformation of zinc oxide into zinc nanoparticles. Mechanisms of formation of the ZnO nanoparticles via the chemical reaction of the Zinc nitrate precursor with the bioactive compounds of the Moringa oleifera are proposed for each of the major family compounds: Vitamins, Flavonoids, and Phenolic acids.

  17. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect.

    PubMed

    Nikam, Pratibha R; Baviskar, Prashant K; Majumder, Sutripto; Sali, Jaydeep V; Sankapal, Babasaheb R

    2018-08-15

    Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (<100 °C). Different characterization techniques viz. X-ray diffractometer, UV-Vis spectrophotometer, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy have been used to know the structural, optical, morphological and compositional properties of synthesized nano heterostructure. The photovoltaic performance of the cells with variation in SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. From non-linear magnetoacoustics and spin reorientation transition to magnetoelectric micro/nano-systems

    NASA Astrophysics Data System (ADS)

    Tiercelin, Nicolas; Preobrazhensky, Vladimir; BouMatar, Olivier; Talbi, Abdelkrim; Giordano, Stefano; Dusch, Yannick; Klimov, Alexey; Mathurin, Théo.; Elmazria, Omar; Hehn, Michel; Pernod, Philippe

    2017-09-01

    The interaction of a strongly nonlinear spin system with a crystalline lattice through magnetoelastic coupling results in significant modifications of the acoustic properties of magnetic materials, especially in the vicinity of magnetic instabilities associated with the spin-reorientation transition (SRT). The magnetoelastic coupling transfers the critical properties of the magnetic subsystem to the elastic one, which leads to a strong decrease of the sound velocity in the vicinity of the SRT, and allows a large control over acoustic nonlinearities. The general principles of the non-linear magneto-acoustics (NMA) will be introduced and illustrated in `bulk' applications such as acoustic wave phase conjugation, multi-phonon coupling, explosive instability of magneto-elastic vibrations, etc. The concept of the SRT coupled to magnetoelastic interaction has been transferred into nanostructured magnetoelastic multilayers with uni-axial anisotropy. The high sensitivity and the non-linear properties have been demonstrated in cantilever type actuators, and phenomena such as magneto-mechanical RF demodulation have been observed. The combination of the magnetic layers with piezoelectric materials also led to stress-mediated magnetoelectric (ME) composites with high ME coefficients, thanks to the SRT. The magnetoacoustic effects of the SRT have also been studied for surface acoustic waves propagating in the magnetoelastic layers and found to be promising for highly sensitive magnetic field sensors working at room temperature. On the other hand, mechanical stress is a very efficient way to control the magnetic subsystem. The principle of a very energy efficient stress-mediated magnetoelectric writing and reading in a magnetic memory is described.

  19. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  20. [Effect of a nano hydroxyapatite desensitizing paste application on dentin bond strength of three self-etch adhesive systems].

    PubMed

    Pei, D D; Liu, S Y; Yang, H Y; Gan, J; Huang, C

    2017-05-09

    Objective: To evaluate a nano-hydroxyapatite (nano-HA) desensitizing paste application on the bond strength of three self-etch adhesives. Methods: Three dentin specimens of about 1 mm thick were cut from two teeth. Scanning electron microscope (SEM) was used to evaluate the dentin surfaces without treatment, after citric acid treatment and after nano-HA treatment. Thirty-six intact third molars extracted for surgical reasons were cut to remove the occlusal enamel with isomet, and then were etched with 1% citric acid for 20 s to simulate the sensitive dentin and divided into two groups randomly using a table of random numbers ( n= 18): the control group (no treatment) and the HA treated group (with nano-HA paste treatment). Each group was divided into three subgroups randomly using a table of random numbers ( n= 6). Subgroup A, B and C was bonded with G-Bond, Clearfil S(3) Bond and FL-Bond Ⅱ according to the manufacture's instruction separately. At 24 h after bonding procedure, and after water storage for 6 months, microtensile bond strength of the specimens was tested and the failure mode was analyzed. Results: SEM obeservation showed that citric acid could open the dentin tubules to set up the sensitive dentin model, and the nano-HA could occlude the dentin tubules effectively. For subgroup A, bonding strength of specimens treated with nano-HA ([41.14±8.91] MPa) was significantly high than that of the control group ([34.27±6.16] MPa) at 24 h after bonding procedure ( P< 0.05). However, after 6 month water ageing, the bonding strength of the control group and the HA treated group showed no significant difference ( P> 0.05). For subgroup B, specimens with nano-HA application showed lower bonding strength ([30.87±6.41] MPa) than that of the control group ([36.73±5.82] MPa) at 24 h after bonding procedure ( P< 0.05), and after 6 month water ageing, the bond strength of nano-HA application ([25.73±6.99] MPa) was also lower than that of the control group ([32.33

  1. Active control of nano dimers response using piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Mekkawy, Ahmed A.; Ali, Tamer A.; Badawi, Ashraf H.

    2016-09-01

    Nano devices can be used as building blocks for Internet of Nano-Things network devices, such as sensors/actuators, transceivers, and routers. Although nano particles response can be engineered to fit in different regimes, for such a nano particle to be used as an active nano device, its properties should be dynamically controlled. This controllability is a challenge, and there are many proposed techniques to tune nanoparticle response on the spot through a sort of control signal, wither that signal is optical (for all-optical systems) or electronic (for opto-electronic systems). This will allow the use of nano particles as nano-switches or as dynamic sensors that can pick different frequencies depending on surrounding conditions or depending on a smart decisions. In this work, we propose a piezoelectric substrate as an active control mediator to control plasmonic gaps in nano dimers. This method allows for integrating nano devices with regular electronics while communicating control signals to nano devices through applying electric signals to a piezoelectric material, in order to control the gaps between nano particles in a nano cluster. We do a full numerical study to the system, analyzing the piezoelectric control resolution (minimum gap change step) and its effect on a nanodimer response as a nanoantenna. This analysis considers the dielectric functions of materials within the visible frequencies range. The effects of different parameters, such as the piezoelectric geometrical structure and materials, on the gap control resolution and the operating frequency are studied.

  2. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    NASA Astrophysics Data System (ADS)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  3. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    SciTech Connect

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  4. Multi-tip nano-prisms: Controlled growth and emission enhancement properties

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Cong; Xue, Zheng-Hong; Xiong, Xiang; Shu, Da-Jun; Peng, Ru-Wen; Wu, Qiang; Hu, Zheng; Wang, Mu

    2013-10-01

    We report here the experimental observations that the tip topography of ZnO nano-prisms sensitively depends on the percentage of oxygen in the flux of the carrying gas in vapor growth. At a relatively high oxygen concentration, a number of thin filaments can be nucleated atop nano-prisms, forming a unique fish-spear-like multi-tip morphology. The length and density of the “spear tines” depend on the flux of the carrying gas. The field emission properties of the nanorod array with different tip morphology are investigated. The structures with longer and denser spear tines possess lower turn-on electric field and higher electric current density. The cathodoluminescence properties of the ZnO nano-prisms have also been studied. The luminescence related to defects in multi-tip nano-prisms possesses the strongest intensity, and the nanorod without any tine structure possesses the lowest defect luminescence intensity. The intrinsic luminescence of ZnO around 385 nm, however, has the opposite tendency. We suggest that our observation is inspiring in optimizing the emission properties of the nanowire devices.

  5. Characterization of structural and electrical properties of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Gu, Yu-Dong; Mai, Wen-Jie; Jiang, Peng

    2011-12-01

    ZnO tetrapods were synthesized by a typical thermal vapor-solid deposition method in a horizontal tube furnace. Structural characterization was carried out by transmission electron microscopy (TEM) and select-area electron diffraction (SAED), which shows the presence of zinc blende nucleus in the center of tetrapods while the four branches taking hexagonal wurtzite structure. The electrical transport property of ZnO tetrapods was investigated through an in-situ nanoprobe system. The three branches of a tetrapod serve as source, drain, and "gate", respectively; while the fourth branch pointing upward works as the force trigger by vertically applying external force downward. The conductivity of each branch of ZnO-tetrapods increases 3-4 times under pressure. In such situation, the electrical current through the branches of ZnO tetrapods can be tuned by external force, and therefore a simple force sensor based on ZnO tetrapods has been demonstrated for the first time.

  6. The low coherence Fabry-Pérot interferometer with diamond and ZnO layers

    NASA Astrophysics Data System (ADS)

    Majchrowicz, D.; Den, W.; Hirsch, M.

    2016-09-01

    The authors present a fiber-optic Fabry-Pérot interferometer built with the application of diamond and zinc oxide (ZnO) thin layers. Thin ZnO films were deposited on the tip of a standard telecommunication single-mode optical fiber (SMF- 28) while the diamond layer was grown on the plate of silicon substrate. Investigated ZnO layers were fabricated by atomic layer deposition (ALD) and the diamond films were deposited using Microwave Plasma Enhanced Chemical Vapor Deposition (μPE CVD) system. Different thickness of layers was examined. The measurements were performed for the fiber-optic Fabry-Pérot interferometer working in the reflective mode. Spectra were registered for various thicknesses of ZnO layer and various length of the air cavity. As a light source, two superluminescent diodes (SLD) with central wavelength of 1300 nm and 1550 nm were used in measurement set-up.

  7. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue.

    PubMed

    Hua, Susan; Marks, Ellen; Schneider, Jennifer J; Keely, Simon

    2015-07-01

    Colon targeted drug delivery is an active area of research for local diseases affecting the colon, as it improves the efficacy of therapeutics and enables localized treatment, which reduces systemic toxicity. Targeted delivery of therapeutics to the colon is particularly advantageous for the treatment of inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease. Advances in oral drug delivery design have significantly improved the bioavailability of drugs to the colon; however in order for a drug to have therapeutic efficacy during disease, considerations must be made for the altered physiology of the gastrointestinal (GI) tract that is associated with GI inflammation. Nanotechnology has been used in oral dosage formulation design as strategies to further enhance uptake into diseased tissue within the colon. This review will describe some of the physiological challenges faced by orally administered delivery systems in IBD, the important developments in orally administered nano-delivery systems for colon targeting, and the future advances of this research. Inflammatory Bowel Disease (IBD) poses a significant problem for a large number of patients worldwide. Current medical therapy mostly aims at suppressing the active inflammatory episodes. In this review article, the authors described and discussed the various approaches current nano-delivery systems can offer in overcoming the limitations of conventional drug formulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.

    2018-07-01

    Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.

  9. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    SciTech Connect

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  10. Single crystalline ZnO radial homojunction light-emitting diodes fabricated by metalorganic chemical vapour deposition

    DOE PAGES

    Yoo, Jinkyoung; Ahmed, Towfiq; Tang, Wei; ...

    2017-09-05

    ZnO radial p–n junction architecture has the potential for forward-leap of light-emitting diode (LED) technology in terms of higher efficacy and economical production. Here, we report on ZnO radial p–n junction-based light emitting diodes prepared by full metalorganic chemical vapour deposition (MOCVD) with hydrogen-assisted p-type doping approach. The p-type ZnO(P) thin films were prepared by MOCVD with the precursors of dimethylzinc, tert-butanol, and tertiarybutylphosphine. Controlling the precursor flow for dopant results in the systematic change of doping concentration, Hall mobility, and electrical conductivity. Moreover, the approach of hydrogen-assisted phosphorous doping in ZnO expands the understanding of doping behaviour in ZnO.more » Ultraviolet and visible electroluminescence of ZnO radial p–n junction was demonstrated through a combination of position-controlled nano/microwire and crystalline p-type ZnO(P) radial shell growth on the wires. Lastly, the reported research opens a pathway of realisation of production-compatible ZnO p–n junction LEDs.« less

  11. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators

  12. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Feng, Weiyue; Wang, Meng; Wang, Tiancheng; Gu, Yiqun; Zhu, Motao; Ouyang, Hong; Shi, Junwen; Zhang, Fang; Zhao, Yuliang; Chai, Zhifang; Wang, Haifang; Wang, Jing

    2008-02-01

    In this work, the acute oral toxicity of 20- and 120-nm ZnO powder at doses of 1-, 2-, 3-, 4-, 5-g/kg body weight was evaluated referred to the OECD guidelines for testing of chemicals. As the results, both 20- and 120-nm ZnO belong to non-toxic chemicals according to the Globally Harmonized Classification System (GHS) for the classification of chemicals. The distribution determination showed that Zn was mainly retained in the bone, kidney and pancreas after 20- and 120-nm ZnO administration. However, the results of blood measurement suggest that the increase in blood viscosity could be induced by low and median dose of 20-nm ZnO but high dose of 120-nm ZnO. The pathological examination showed that the 120-nm ZnO treated mice had dose-effect pathological damages in stomach, liver, heart and spleen, whereas, 20-nm ZnO displayed negative dose-effect damages in liver, spleen and pancreas. Therefore, we conclude that the liver, spleen, heart, pancreas and bone are the target organs for 20- and 120-nm ZnO oral exposure. More attention should be paid on the potential toxicity induced by low dose of 20-nm ZnO oral exposure.

  13. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    NASA Astrophysics Data System (ADS)

    Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.

    2017-08-01

    Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.

  14. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil.

    PubMed

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M

    2012-10-01

    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (<12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.

  15. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan

    2018-01-01

    Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

  16. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  17. Programmable Bio-Nano-Chip Systems for Serum CA125 Quantification: Towards Ovarian Cancer Diagnostics at the Point-of-Care

    PubMed Central

    Raamanathan, Archana; Simmons, Glennon W.; Christodoulides, Nicolaos; Floriano, Pierre N.; Furmaga, Wieslaw B.; Redding, Spencer W.; Lu, Karen H.; Bast, Robert C.; McDevitt, John T.

    2013-01-01

    Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, modular (Programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multi-modal and multi-marker screening approaches. In the p-BNC, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a 3-D microfluidic environment, the p-BNC operating variables (incubation times, flow rates and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (Inter- and intra-assay precision of 1.2% and 1.9% and LODs of 1.0 U/mL) was achieved on this mini-sensor ensemble. Further validation with sera of ovarian cancer patients (n=20) demonstrated excellent correlation (R2 = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics. PMID:22490510

  18. Programmable bio-nano-chip systems for serum CA125 quantification: toward ovarian cancer diagnostics at the point-of-care.

    PubMed

    Raamanathan, Archana; Simmons, Glennon W; Christodoulides, Nicolaos; Floriano, Pierre N; Furmaga, Wieslaw B; Redding, Spencer W; Lu, Karen H; Bast, Robert C; McDevitt, John T

    2012-05-01

    Point-of-care (POC) implementation of early detection and screening methodologies for ovarian cancer may enable improved survival rates through early intervention. Current laboratory-confined immunoanalyzers have long turnaround times and are often incompatible with multiplexing and POC implementation. Rapid, sensitive, and multiplexable POC diagnostic platforms compatible with promising early detection approaches for ovarian cancer are needed. To this end, we report the adaptation of the programmable bio-nano-chip (p-BNC), an integrated, microfluidic, and modular (programmable) platform for CA125 serum quantitation, a biomarker prominently implicated in multimodal and multimarker screening approaches. In the p-BNCs, CA125 from diseased sera (Bio) is sequestered and assessed with a fluorescence-based sandwich immunoassay, completed in the nano-nets (Nano) of sensitized agarose microbeads localized in individually addressable wells (Chip), housed in a microfluidic module, capable of integrating multiple sample, reagent and biowaste processing, and handling steps. Antibody pairs that bind to distinct epitopes on CA125 were screened. To permit efficient biomarker sequestration in a three-dimensional microfluidic environment, the p-BNC operating variables (incubation times, flow rates, and reagent concentrations) were tuned to deliver optimal analytical performance under 45 minutes. With short analysis times, competitive analytical performance (inter- and intra-assay precision of 1.2% and 1.9% and limit of detection of 1.0 U/mL) was achieved on this minisensor ensemble. Furthermore, validation with sera of patients with ovarian cancer (n = 20) showed excellent correlation (R(2) = 0.97) with gold-standard ELISA. Building on the integration capabilities of novel microfluidic systems programmed for ovarian cancer, the rapid, precise, and sensitive miniaturized p-BNC system shows strong promise for ovarian cancer diagnostics.

  19. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    NASA Astrophysics Data System (ADS)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  20. How the guest molecules in nanoporous Zn(II) metal-organic framework can prevent agglomeration of ZnO nanoparticles

    SciTech Connect

    Moeinian, Maryam; Akhbari, Kamran, E-mail: akhbari.k@khayam.ut.ac.ir

    The host and the apohost framework of [Zn{sub 2}(BDC){sub 2}(H{sub 2}O){sub 2}·(DMF){sub 2}]{sub n} (1·2H{sub 2}O·2DMF), (BDC{sup 2−}=benzene-1,4-dicarboxylate and DMF=N,N-Dimethylformamide), were synthesized and subsequently used for preparation of ZnO nanomaterials. With calcination of the host framework of 1·2H{sub 2}O·2DMF, ZnO nanoparticles were obtained. By the same process on the apohost framework of 1, agglomerated nanoparticles of ZnO were formed. These nano-structures were characterized by X-ray powder diffraction (XRD) and Scanning electron microscopy (SEM). These results indicate that with removal of the guest DMF and coordinated H{sub 2}O molecules from the one-dimensional channels of 1·2H{sub 2}O·2DMF, the tendency of nanoparticles tomore » agglomerate increases and the role of this MOF in preparation of ZnO nanoparticles from this precursor was reduced. - Graphical abstract: Nano-porous zinc(II) MOF with guest DMF and coordinated H{sub 2}O molecules has been synthesized and characterized. The host and the apohost framework of it were used for preparation of ZnO nanomaterials. The role of these species in preparation of ZnO nanoparticles from the host framework is probably similar to the role of polymeric stabilizers in formation of nanoparticles. - Highlights: • Nanoparticles of ZnO were fabricated from nanoporous metal-organic framework. • The effect of guest DMF and coordinated H{sub 2}O molecules on this process was studied. • The effect of them in formation nanoparticle is similar to polymeric stabilizers.« less

  1. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers.

    PubMed

    Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Wang, Qi Jie; Xie, Erqing

    2011-10-14

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  2. Seedless-grown of ZnO thin films for photoelectrochemical water splitting application

    NASA Astrophysics Data System (ADS)

    Abdullah, Aidahani; Hamid, Muhammad Azmi Abdul; Chiu, W. S.

    2018-04-01

    We developed a seedless hydrothermal method to grow a flower like ZnO nanorods. Prior to the growth, a layer of Au thin film is sputtered onto the surface of indium tin oxide (ITO) coated glass substrate. The morphological, structural and optical properties of the ZnO nanostructures were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflection measurement to understand the growth process of the working thin film. The photoelectrochemical (PEC) results suggest that the deposition of ZnO nanorods on Au nanoparticles plays an important role in enhancing the photoelectrode activity. H2 evolution from photo-splitting of water over Au-incorporated ZnO in the 0.1M NaOH liquid system was enhanced, compared to that over bare ZnO; particularly, the production of 15.5 µL of H2 gas after twenty five minutes exposure of ZnO grown on Au-coated thin film.

  3. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l-1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  4. Facile combustion synthesis of ZnO nanoparticles using Cajanus cajan (L.) and its multidisciplinary applications

    SciTech Connect

    Manjunath, K.; Ravishankar, T.N.; Kumar, Dhanith

    Graphical abstract: Facile combustion synthesis of ZnO nanoparticles using Cajanuscajan (L.) and its multidisciplinary applications.Zinc oxide nanoparticles were successfully synthesized by solution combustion method (SCM) using pigeon pea as a combustible fuel for the first time. The as-prepared product shows good photocatalytic, dielectric, antibacterial, electrochemical properties. - Highlights: • ZnO Nps were synthesized via combustion method using pigeon pea as a fuel. • The structure of the product was confirmed by XRD technique. • The morphology was confirmed by SEM and TEM images. • The as-prepared product shown good photocatalytic activity, dielectric property. • It has also shown good antibacterialmore » and electrochemical properties. - Abstract: Zinc oxide nanoparticles (ZnO Nps) were successfully synthesized by solution combustion method (SCM) using pigeon pea as a fuel for the first time. X-Ray diffraction pattern reveals that the product belongs to hexagonal system. FTIR spectrum of ZnO Nps shows the band at 420 cm{sup −1} associated with the characteristic vibration of Zn–O. TEM images show that the nanoparticles are found to be ∼40–80 nm. Furthermore, the as-prepared ZnO Nps exhibits good photocatalytic activity for the photodegradation of methylene blue (MB), indicating that they are indeed a promising photocatalytic semiconductor. The antibacterial properties of ZnO nanopowders were investigated by their bactericidal activity against four bacterial strains.« less

  5. Sol-gel synthesized ZnO for optoelectronics applications: a characterization review

    NASA Astrophysics Data System (ADS)

    Harun, Kausar; Hussain, Fayaz; Purwanto, Agus; Sahraoui, Bouchta; Zawadzka, Anna; Azmin Mohamad, Ahmad

    2017-12-01

    The rapid growth in green technology has resulted in a marked increase in the incorporation of ZnO in energy and optoelectronic devices. Research involving ZnO is being given renewed attention in the quest to fully exploit its promising properties. The purity and state of defects in the ZnO system are optimized through several modifications to the synthesis conditions and the starting materials. These works have been verified through a series of characterizations. This review covers the essential characterization outcomes of pure ZnO nanoparticles. Emphasis is placed on recent techniques, examples and some issues concerning sol-gel synthesized ZnO nanoparticles. Thermal, phase, structural and morphological observations are combined to ascertain the level of purity of ZnO. The subsequent elemental and optical characterizations are also discussed. This review would be the collective information and suggestions at one place for investigators to focus on the best development of ZnO-based optical and energy devices.

  6. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies

    PubMed Central

    Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-01-01

    In this study, photocatalytic experiments of 20 mg l−1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed. PMID:29765630

  7. Photocatalytic degradation of sulfamethazine in aqueous solution using ZnO with different morphologies.

    PubMed

    Yi, Zhigang; Wang, Juan; Jiang, Tao; Tang, Qiong; Cheng, Ying

    2018-04-01

    In this study, photocatalytic experiments of 20 mg l -1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.

  8. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    PubMed

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  9. Phase behavior and formation of o/w nano-emulsion in vegetable oil/ mixture of polyglycerol polyricinoleate and polyglycerin fatty acid ester/water systems.

    PubMed

    Wakisaka, Satoshi; Nakanishi, Masami; Gohtani, Shoichi

    2014-01-01

    It is reported that mixing polyglycerol polyricinoleate (PGPR) and polyglycerol laurilester has a great emulsifying capacity, and consequently fine oil-in-water (o/w) emulsions can be formed. However, the role of PGPR is not clear. The objective of this research is to investigate the phase behavior of vegetable oil/mixture of PGPR and polyglycerol fatty acid ester/water systems, and to clarify the role of PGPR in making a fine emulsion. Phase diagrams were constructed to elucidate the optimal process for preparing fine emulsions. In all the systems examined in this study, the phases, including the liquid crystal phase (L(c)) and sponge phase (L(3)), spread widely in the phase diagrams. We examined droplet size of the emulsions prepared from each phase and found that o/w nano-emulsions with droplet sizes as small as 50 nm were formed by emulsifying either from a single L(3) phase or a two-phase region, L(c) + L(3). These results indicate that a sponge phase L(3) or liquid crystal phase L(c) or both is necessary to form an o/w nano-emulsion whose average droplet diameter is less than 50 nm for PGPR and polyglycerin fatty acid ester mixtures used as surfactant.

  10. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    NASA Astrophysics Data System (ADS)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  11. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  12. Thermal behaviour and corrosion resistance of nano-ZnO/polyurethane film

    NASA Astrophysics Data System (ADS)

    Virgawati, E.; Soegijono, B.

    2018-03-01

    Hybrid materials Nano-ZnO/polyurethane film was prepared with different zinc oxide (ZnO) content in polyurethane as a matrix. The film was deposited on low carbon steel plate using high volume low pressure (HVLP) method. To observe thermal behaviour of the film, the sample was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to see whether any chemical reaction of ZnO in polyurethane occured. TGA and FTIR results showed that the decomposition temperature shifted to a higher point and the chemical reaction of zinc oxide in polyurethane occurred. The surface morphology changed and the corrosion resistance increased with an increase of ZnO content

  13. Nano-extrusion: a promising tool for continuous manufacturing of solid nano-formulations.

    PubMed

    Baumgartner, Ramona; Eitzlmayr, Andreas; Matsko, Nadejda; Tetyczka, Carolin; Khinast, Johannes; Roblegg, Eva

    2014-12-30

    Since more than 40% of today's drugs have low stability, poor solubility and/or limited ability to cross certain biological barriers, new platform technologies are required to address these challenges. This paper describes a novel continuous process that converts a stabilized aqueous nano-suspension into a solid oral formulation in a single step (i.e., the NANEX process) in order to improve the solubility of a model drug (phenytoin). Phenytoin nano-suspensions were prepared via media milling using different stabilizers. A stable nano-suspension was obtained using Tween(®) 80 as a stabilizer. The matrix material (Soluplus(®)) was gravimetrically fed into the hot melt extruder. The suspension was introduced through a side feeding device and mixed with the molten polymer to immediately devolatilize the water in the nano-suspension. Phenytoin nano-crystals were dispersed and embedded in the molten polymer. Investigation of the nano-extrudates via transmission electron microscopy and atomic force microscopy showed that the nano-crystals were embedded de-aggregated in the extrudates. Furthermore, no changes in the crystallinity (due to the mechanical and thermal stress) occurred. The dissolution studies confirmed that the prepared nano-extrudates increased the solubility of nano-crystalline phenytoin, regardless of the polymer. Our work demonstrates that NANEX represents a promising new platform technology in the design of novel drug delivery systems to improve drug performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Zinc oxide nano-rods based glucose biosensor devices fabrication

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El Saeid, A. A.; Willander, M.; Nur, O.; Battisha, I. K.

    2018-06-01

    ZnO is distinguished multifunctional material that has wide applications in biochemical sensor devices. For extracellular measurements, Zinc oxide nano-rods will be deposited on conducting plastic substrate with annealing temperature 150 °C (ZNRP150) and silver wire with annealing temperature 250 °C (ZNRW250), for the extracellular glucose concentration determination with functionalized ZNR-coated biosensors. It was performed in phosphate buffer saline (PBS) over the range from 1 μM to 10 mM and on human blood plasma. The prepared samples crystal structure and surface morphologies were characterized by XRD and field emission scanning electron microscope FESEM respectively.

  15. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  16. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    PubMed

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (p< 0.001). However, these bacteria were not totally eliminated. CuO and ZnO-CuO nanoparticles coated brackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  17. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    PubMed

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. <0.45 μm) iron. Since coagulation and sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH < 4.4, activities of Fe(iii) are strongly and negatively correlated with pH. Geochemical modelling suggests that the activity of Fe(iii) is controlled by the solubility of hydrous ferric oxides and oxyhydroxysulfates, supported by scanning and transmission electron microscopic analysis of solids. Nevertheless, the waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete

  18. Combined Amendments of Nano-hydroxyapatite Immobilized Cadmium in Contaminated Soil-Potato (Solanum tuberosum L.) System.

    PubMed

    Liu, Chang; Wang, Lei; Yin, Jiang; Qi, Lipan; Feng, Yan

    2018-04-01

    The toxicity of cadmium (Cd) has posed major public health concern in crops grown in the Cd-contaminated soils. The effects of five amendments, nano-hydroxyapatite (n-HA) and it combined with lime, zeolite, bone mill and fly ash on Cd immobilization in soils and uptake in potatoes, were investigated in a contaminated soil by pot experiments. The result showed that the applications of combined amendments significantly decreased the bioavailable Cd concentrations extracted by TCLP, DTPA-TEA and MgCl 2 in the contaminated soils, and changed the soluble and exchangeable and specifically sorbed fractions to oxide-bound and organic-bound fractions. Compared to the control group, the concentrations of Cd in the potato tubers grown in n-HA, n-HA + Fly ash, n-HA + Lime, n-HA + Bone mill and n-HA + Zeolite soil were reduced 17.4%, 20.7%, 15.2%, 32.6% and 39.1%, respectively. Nano-hydroxyapatite combined amendments was more effective in reducing bioavailable Cd concentrations and Cd accumulations in potatoes, especially for n-HA + Z.

  19. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors.

    PubMed

    Pant, Bishweshwar; Park, Mira; Ojha, Gunendra Prasad; Park, Juhyeong; Kuk, Yun-Su; Lee, Eun-Jung; Kim, Hak-Yong; Park, Soo-Jin

    2018-07-15

    A combination of electrospinning technique and hydrothermal process was carried out to fabricate zinc oxide nano-flakes wrapped carbon nanofibers (ZnO/CNFs) composite as an effective electrode material for supercapacitor. The morphology of the as-synthesized composite clearly revealed that the carbon nanofibers were successfully wrapped with ZnO nano-flakes. The electrochemical performance of the as-synthesized nanocomposite electrode was evaluated by the cyclic voltammetry (CV), galvanostatic charge-discharge (GDC), and electrochemical impedance spectroscopy (EIS), and compared with the pristine ZnO nanofibers. It was found that the composite exhibited a higher specific capacitance (260 F/g) as compared to pristine ZnO NFs (118 F/g) at the scan rate of 5 mV/s. Furthermore, the ZnO/CNFs composite also exhibited good capacity retention (73.33%). The obtained results indicated great potential applications of ZnO/CNFs composite in developing energy storage devices with high energy and power densities. The present work might provide a new route for utilizing ZnO based composites for energy storage applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Acute and Cumulative Effects of Unmodified 50-nm Nano-ZnO on Mice.

    PubMed

    Kong, Tao; Zhang, Shu-Hui; Zhang, Ji-Liang; Hao, Xue-Qin; Yang, Fan; Zhang, Cai; Yang, Zi-Jun; Zhang, Meng-Yu; Wang, Jie

    2018-01-02

    Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.

  1. Thermodynamic Investigation of the Eutectic Mixture of the LiNO3-NaNO3-KNO3-Ca(NO3)2 System

    NASA Astrophysics Data System (ADS)

    Peng, Qiang; Ding, Jing; Wei, Xiaolan; Jiang, Gan

    2017-09-01

    Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the LiNO3-NaNO3-KNO3-Ca(NO3)2 system is determined by conformal ionic solution theory according to the solid-liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is 93.17 {°}C, which is close to the experimental value of 93.22 {°}C obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches 50 {°}C, and the degree of melting increases with temperature. The mixture is completely melted at 130 {°}C. The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.

  2. Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS)

    NASA Astrophysics Data System (ADS)

    Partridge, J. G.; Mayes, E. L. H.; McDougall, N. L.; Bilek, M. M. M.; McCulloch, D. G.

    2013-04-01

    ZnO films have been reactively deposited on sapphire substrates at 300 °C using a high impulse power magnetron sputtering deposition system and characterized structurally, optically and electronically. The unintentionally doped n-type ZnO films exhibit high transparency, moderate carrier concentration (˜5 × 1018 cm-3) and a Hall mobility of 8.0 cm2 V-1 s-1, making them suitable for electronic device applications. Pt/ZnO Schottky diodes formed on the HiPIMS deposited ZnO exhibited rectification ratios up to 104 at ±2 V and sensitivity to UV light.

  3. Nano Mechanical Machining Using AFM Probe

    NASA Astrophysics Data System (ADS)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  4. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  5. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  6. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles

    PubMed Central

    Oytam, Yalchin; Kirby, Jason K.; Gomez-Fernandez, Laura; Baxter, Brent; McCall, Maxine J.

    2014-01-01

    Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn (68Zn) from 68ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in 68Zn/64Zn ratios, 68Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of 68Zn tracer were detected in internal organs of mice receiving topical applications of 68ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of 68Zn in organs of virgin mice treated with sunscreen containing 68ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger 68ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite 68Zn absorption, which may have been in the form of soluble 68Zn species or 68ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. PMID:24266363

  7. Zinc oxide piezoelectric nano-generators for low frequency applications

    NASA Astrophysics Data System (ADS)

    Nour, E. S.; Nur, O.; Willander, M.

    2017-06-01

    Piezoelectric Zinc Oxide (ZnO) nanogenerators (NGs) have been fabricated for low frequency (<100 Hz) energy harvesting applications. Different types of NGs based on ZnO nanostructures have been carefully developed, and studied for testing under different kinds of low frequency mechanical deformations. Well aligned ZnO nanowires (NWs) possessing high piezoelectric coefficient were synthesized on flexible substrates using the low temperature hydrothermal route. These ZnO NWs were then used in different configurations to demonstrate different low frequency energy harvesting devices. Using piezoelectric ZnO NWs, we started with the fabrication of a sandwiched NG for a handwriting enabled energy harvesting device based on a thin silver layer coated paper substrate. Such device configurations can be used for the development of electronic programmable smart paper. Further, we developed this NG to work as a triggered sensor for a wireless system using footstep pressure. These studies demonstrate the feasibility of using a ZnO NWs piezoelectric NG as a low-frequency self- powered sensor, with potential applications in wireless sensor networks. After that, we investigated and fabricated a sensor on a PEDOT: PSS plastic substrate using a one-sided growth and double-sided growth technique. For the first growth technique, the fabricated NG has been used as a sensor for an acceleration system; while the fabricated NG by the second technique works as an anisotropic direction sensor. This fabricated configuration showed stability for sensing and can be used in surveillance, security, and auto-Mobil applications. In addition to that, we investigated the fabrication of a sandwiched NG on plastic substrates. Finally, we demonstrated that doping ZnO NWs with extrinsic elements (such as Ag) will lead to the reduction of the piezoelectric effect due to the loss of crystal symmetry. A brief summary into future opportunities and challenges is also presented.

  8. SU-E-T-391: Assessment and Elimination of the Angular Dependence of the Response of the NanoDot OSLD System in MV Beams

    SciTech Connect

    Lehmann, J; University of Sydney, Sydney; RMIT University, Melbourne

    2014-06-01

    Purpose: Assess the angular dependence of the nanoDot OSLD system in MV X-ray beams at depths and mitigate this dependence for measurements in phantoms. Methods: Measurements for 6 MV photons at 3 cm and 10 cm depth and Monte Carlo simulations were performed. Two special holders were designed which allow a nanoDot dosimeter to be rotated around the center of its sensitive volume (5 mm diameter disk). The first holder positions the dosimeter disk perpendicular to the beam (en-face). It then rotates until the disk is parallel with the beam (edge on). This is referred to as Setup 1. Themore » second holder positions the disk parallel to the beam (edge on) for all angles (Setup 2). Monte Carlo simulations using GEANT4 considered detector and housing in detail based on microCT data. Results: An average drop in response by 1.4±0.7% (measurement) and 2.1±0.3% (Monte Carlo) for the 90° orientation compared to 0° was found for Setup 1. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming 100% active material (Al??O??) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response (within simulation uncertainty of about 1%). For Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusion: The nanoDot dosimeter system exhibits a small angular dependence off approximately 2%. Changing the orientation of the dosimeter so that a coplanar beam arrangement always hits the detector material edge on reduces the angular dependence to within the measurement uncertainty of about 1%. This makes the dosimeter more attractive for phantom based clinical measurements and audits with multiple coplanar beams. The Australian Clinical Dosimetry Service is a joint initiative between the Australian Department of Health and the Australian Radiation Protection

  9. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  10. High-quality ZnO growth, doping, and polarization effect

    NASA Astrophysics Data System (ADS)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  11. Synthesis, self-assembly, and properties of Mn doped ZnO nanoparticles.

    PubMed

    Barick, K C; Bahadur, D

    2007-06-01

    We report here a novel process to prepare Mn doped ZnO nanoparticles by a soft chemical route at low temperature. The synthesis process is based on the hydrolysis of zinc acetate dihydrate and manganese acetate tetrahydrate heated under reflux to 160-175 degrees C using diethylene glycol as a solvent. X-ray diffraction analysis reveals that the Mn doped ZnO crystallizes in a wurtzite structure with crystal size of 15-25 nm. These nano size crystallites of Mn doped ZnO self-organize into polydisperse spheres in size ranging from 100-400 nm. Transmission Electron Microscopy image also shows that each sphere is made up of numerous nanocrystals of average diameter 15-25 nm. By means of X-ray photoelectron spectroscopy and electron spin resonance spectroscopy, we determined the valence state of Mn ions as 2+. These nanoparticles were found to be ferromagnetic at room temperature. Monodisperse porous spheres (approximately 250 nm) were obtained by size selective separation technique and then self-assembled in a closed pack periodic array through sedimentation with slow solvent evaporation, which gives strong opalescence in visible region.

  12. Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement

    PubMed Central

    Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj.; Yahaya, Muhammad

    2016-01-01

    Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface –OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device. PMID:27587295

  13. Mass production of polymer nano-wires filled with metal nano-particles.

    PubMed

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Mark