Sample records for zno nanowire nw

  1. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Kuei; Hong, Franklin Chau-Nan

    2009-05-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min-1), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 105, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm2 V-1 s-1. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  2. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing.

    PubMed

    Chang, Yi-Kuei; Hong, Franklin Chau-Nan

    2009-05-13

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min(-1)), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10(5), a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm(2) V(-1) s(-1). The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  3. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates

    PubMed Central

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556

  4. Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    DTIC Science & Technology

    2012-01-01

    12] J. P. Liu, C. X. Guo, C. M. Li et al., “Carbon-decorated ZnO nanowire array: a novel platform for direct electrochemistry of enzymes and...cited. Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as...deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct

  5. CdTe quantum-dot-modified ZnO nanowire heterostructure

    NASA Astrophysics Data System (ADS)

    Shahi, Kanchana; Singh, R. S.; Singh, Ajaya Kumar; Aleksandrova, Mariya; Khenata, Rabah

    2018-03-01

    The effect of CdTe quantum-dot (QD) decoration on the photoluminescence (PL) behaviour of ZnO nanowire (NW) array is presented in the present work. Highly crystalline and vertically 40-50 nm diameter range and 1 µm in length aligned ZnO NWs are synthesized using low-cost method. The crystallinity and morphology of the NWs are studied by scanning electron microscopy and X-ray powder diffraction methods.Optical properties of the nanowires are studied using photo-response and PL spectroscopy. CdTe QDs are successfully synthesized on ZnO nanowire surface by dip-coating method. ZnO NWs are sensitized with CdTe QDs characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and PL spectroscopy. The highly quenched PL intensity indicates the charge transfer at interface between CdTe QDs and ZnO NWs and is due to the formation of type-II heterostructure between QDs and NWs. Photo-response behaviour of heterostructure of the film is also been incorporated in the present work.

  6. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  7. Effects of mechanical strain on optical properties of ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  8. Single ZnO nanowire-PZT optothermal field effect transistors.

    PubMed

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  9. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-10-01

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on.

  10. Electronic Transport Properties of One Dimensional Zno Nanowires Studied Using Maximally-Localized Wannier Functions

    NASA Astrophysics Data System (ADS)

    Sun, Xu; Gu, Yousong; Wang, Xueqiang

    2012-08-01

    One dimensional ZnO NWs with different diameters and lengths have been investigated using density functional theory (DFT) and Maximally Localized Wannier Functions (MLWFs). It is found that ZnO NWs are direct band gap semiconductors and there exist a turn on voltage for observable current. ZnO nanowires with different diameters and lengths show distinctive turn-on voltage thresholds in I-V characteristics curves. The diameters of ZnO NWs are greatly influent the transport properties of ZnO NWs. For the ZnO NW with large diameter that has more states and higher transmission coefficients leads to narrow band gap and low turn on voltage. In the case of thinner diameters, the length of ZnO NW can effects the electron tunneling and longer supercell lead to higher turn on voltage.

  11. Engineered ZnO nanowire arrays using different nanopatterning techniques

    NASA Astrophysics Data System (ADS)

    Volk, János; Szabó, Zoltán; Erdélyi, Róbert; Khánh, Nguyen Q.

    2012-02-01

    The impact of various masking patterns and template layers on the wet chemically grown vertical ZnO nanowire arrays was investigated. The nanowires/nanorods were seeded at nucleation windows which were patterned in a mask layer using various techniques such as electron beam lithography, nanosphere photolithography, and atomic force microscope type nanolithography. The compared ZnO templates included single crystals, epitaxial layer, and textured polycrystalline films. Scanning electron microscopy revealed that the alignment and crystal orientation of the nanowires were dictated by the underlying seed layer, while their geometry can be tuned by the parameters of the certain nanopatterning technique and of the wet chemical process. The comparison of the alternative nanolithography techniques showed that using direct writing methods the diameter of the ordered ZnO nanowires can be as low as 30-40 nm at a density of 100- 1000 NW/μm2 in a very limited area (10 μm2-1 mm2). Nanosphere photolithography assisted growth, on the other hand, favors thicker nanopillars (~400 nm) and enables large-area, low-cost patterning (1-100 cm2). These alternative lowtemperature fabrication routes can be used for different novel optoelectronic devices, such as nanorod based ultraviolet photodiode, light emitting device, and waveguide laser.

  12. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.

    PubMed

    Jia, Shuangfeng; Hu, Shuaishuai; Zheng, He; Wei, Yanjie; Meng, Shuang; Sheng, Huaping; Liu, Huihui; Zhou, Siyuan; Zhao, Dongshan; Wang, Jianbo

    2018-06-11

    Unraveling the phase selection mechanisms of semiconductor nanowires (NWs) is critical for the applications in future advanced nanodevices. In this study, the atomistic vapor-solid-liquid growth processes of Sn-catalyzed wurtzite (WZ) and zinc blende (ZB) ZnO are directly revealed based on the in situ transmission electron microscopy. The growth kinetics of WZ and ZB crystal phases in ZnO appear markedly different in terms of the NW-droplet interface, whereas the nucleation site as determined by the contact angle ϕ between the seed particle and the NW is found to be crucial for tuning the NW structure through combined experimental and theoretical investigations. These results offer an atomic-scale view into the dynamic growth process of ZnO NW, which has implications for the phase-controllable synthesis of II-VI compounds and heterostructures with tunable band structures.

  13. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less

  14. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  15. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    PubMed

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  16. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  17. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Wu, Xinghui; Liu, Bing; Li, Bing; Zhang, Xingtang; Du, Zuliang

    2011-11-01

    ZnO nanowire (NW) ultraviolet (UV) photodetectors have high sensitivity, while the long recovery time is an important limitation for its applications. In this paper, we demonstrate the promising applications of ZnO NW Schottky barrier as high performance UV photodetector with high sensitivity and fast recovery speed. The on/off ratio, sensitivity, and photocurrent gain are 4 × 105, 2.6 × 103 A/W, and 8.5 × 103, respectively. The recovery time is 0.28 s when photocurrent decreases by 3 orders of magnitude, and the corresponding time constant is as short as 46 ms. The physical mechanisms of the fast recovery properties have also been discussed.

  18. Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors.

    PubMed

    Chen, Qi; Ding, Huaiyi; Wu, Yukun; Sui, Mengqiao; Lu, Wei; Wang, Bing; Su, Wenming; Cui, Zheng; Chen, Liwei

    2013-05-21

    The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures.

  19. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  20. A ZnO nanowire resistive switch

    NASA Astrophysics Data System (ADS)

    Karthik, K. R. G.; Ramanujam Prabhakar, Rajiv; Hai, L.; Batabyal, Sudip K.; Huang, Y. Z.; Mhaisalkar, S. G.

    2013-09-01

    An individual ZnO nanowire resistive switch is evaluated with Pt/ZnO nanowire/Pt topology. A detailed DC I-V curve analysis is performed to bring both the conduction mechanism and the device characteristics to light. The device is further studied at various vacuum pressures to ascertain the presence of polar charges in ZnO nanowires as the phenomenon leading to the formation of the switch. The disappearance of the resistive switching is also analyzed with two kinds of fabrication approaches Focused Ion/Electron Beam involved in the making the device and a summary of both length and fabrication dependences of resistive switching in the ZnO nanowire is presented.

  1. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  2. Mechanical behavior enhancement of ZnO nanowire by embedding different nanowires

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Yang, Shuming; Lambada, Dasaradha Rao; Wang, Yiming

    2018-06-01

    In this work, we employed commercial finite element modeling (FEM) software package ABAQUS to analyze mechanical properties of ZnO nanowire before and after embedding with different kinds of nanowires, having different materials and cross-section models such as Au (circular), Ag (pentagonal) and Si (rectangular) using three point bending technique. The length and diameter of the ZnO nanowire were measured to be 12,280 nm and 103.2 nm, respectively. In addition, Au, Ag and Si nanowires were considered to have the length of 12,280 nm and the diameter of 27 nm. It was found that after embedding Si nanowire with rectangular cross-section into the ZnO nanowire, the distribution of Von Misses stresses criterion, displacement and strain were decreased than the other nanowires embedded. The highest stiffness, the elastic deformation and the high strength against brittle failure have been made by Si nanowire comparison to the Au and Ag nanowires, respectively.

  3. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.

    PubMed

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-07

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  4. Investigation of ZnO Nanowire Interfaces for Multi-Scale Composites

    DTIC Science & Technology

    2012-03-06

    growth of zinc oxide ( ZnO ) nanowires on the surface of the...through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. The nanowires functionally grade the interface, improve bonding...bulk composite. This has been accomplished through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. ZnO

  5. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.

    PubMed

    Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong

    2011-11-01

    Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.

  6. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    PubMed

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  7. Tunable, flexible antireflection layer of ZnO nanowires embedded in PDMS.

    PubMed

    Kim, Min Kyu; Yi, Dong Kee; Paik, Ungyu

    2010-05-18

    In this article, we report the fabrication of ordered hybrid structures composed of ZnO nanowires and a polymeric matrix with a polymer precursor infiltrating the nanowire arrays. The antireflective properties of the resulting ZnO nanowire-embedded polydimethylsiloxane composite (ZPC) were investigated at various ZnO nanowire lengths and ZPC bending angles. Interestingly, we found that whereas the antireflective properties showed a strong dependence on the length of the embedded ZnO nanowires in PDMS, the bending of ZPC has little effect on the antireflective properties.

  8. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    DTIC Science & Technology

    2012-01-01

    scattering (SERS) applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography...plasmonic nanowires to investigate this SERS effect. Here we used two types of vertical NWs, ZnO NWs, and Si NWs, respectively, to investigate SERS...successfully grow vertically aligned ZnO nanowires by the well-known VLS process. In this way, the ZnO NWs can be arranged in a repeatable hexagonal pattern

  9. Origin of magnetic properties in carbon implanted ZnO nanowires.

    PubMed

    Wang, Y F; Shao, Y C; Hsieh, S H; Chang, Y K; Yeh, P H; Hsueh, H C; Chiou, J W; Wang, H T; Ray, S C; Tsai, H M; Pao, C W; Chen, C H; Lin, H J; Lee, J F; Wu, C T; Wu, J J; Chang, Y M; Asokan, K; Chae, K H; Ohigashi, T; Takagi, Y; Yokoyama, T; Kosugi, N; Pong, W F

    2018-05-17

    Various synchrotron radiation-based spectroscopic and microscopic techniques are used to elucidate the room-temperature ferromagnetism of carbon-doped ZnO-nanowires (ZnO-C:NW) via a mild C + ion implantation method. The photoluminescence and magnetic hysteresis loops reveal that the implantation of C reduces the number of intrinsic surface defects and increases the saturated magnetization of ZnO-NW. The interstitial implanted C ions constitute the majority of defects in ZnO-C:NW as confirmed by the X-ray absorption spectroscopic studies. The X-ray magnetic circular dichroism spectra of O and C K-edge respectively indicate there is a reduction in the number of unpaired/dangling O 2p bonds in the surface region of ZnO-C:NW and the C 2p-derived states of the implanted C ions strongly affect the net spin polarization in the surface and bulk regions of ZnO-C:NW. Furthermore, these findings corroborate well with the first-principles calculations of C-implanted ZnO in surface and bulk regions, which highlight the stability of implanted C for the suppression and enhancement of the ferromagnetism of the ZnO-C:NW in the surface region and bulk phase, respectively.

  10. High performance non-volatile ferroelectric copolymer memory based on a ZnO nanowire transistor fabricated on a transparent substrate

    NASA Astrophysics Data System (ADS)

    Nedic, Stanko; Tea Chun, Young; Hong, Woong-Ki; Chu, Daping; Welland, Mark

    2014-01-01

    A high performance ferroelectric non-volatile memory device based on a top-gate ZnO nanowire (NW) transistor fabricated on a glass substrate is demonstrated. The ZnO NW channel was spin-coated with a poly (vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) layer acting as a top-gate dielectric without buffer layer. Electrical conductance modulation and memory hysteresis are achieved by a gate electric field induced reversible electrical polarization switching of the P(VDF-TrFE) thin film. Furthermore, the fabricated device exhibits a memory window of ˜16.5 V, a high drain current on/off ratio of ˜105, a gate leakage current below ˜300 pA, and excellent retention characteristics for over 104 s.

  11. Hydrothermal Growth of ZnO Nanowires on UV-Nanoimprinted Polymer Structures.

    PubMed

    Park, Sooyeon; Moore, Sean A; Lee, Jaejong; Song, In-Hyouk; Farshchian, Bahador; Kim, Namwon

    2018-05-01

    Integration of zinc oxide (ZnO) nanowires on miniaturized polymer structures can broaden its application in multi-functional polymer devices by taking advantages of unique physical properties of ZnO nanowires and recent development of polymer microstructures in analytical systems. In this paper, we demonstrate the hydrothermal growth of ZnO nanowires on polymer microstructures fabricated by UV nanoimprinting lithography (NIL) using a polyurethane acrylate (PUA). Since PUA is a siloxane-urethane-acrylate compound containing the alpha-hydroxyl ketone, UV-cured PUA include carboxyl groups, which inhibit and suppress the nucleation and growth of ZnO nanowires on polymer structures. The presence of carboxyl groups in UV-cured PUA was substantiated by Fourier transform infrared spectroscopy (FTIR), and a Ag thin film was deposited on the nanoimprinted polymer structures to limit their inhibitive influence on the growth of ZnO nanowires. Furthermore, the naturally oxidized Ag layer (Ag2O) reduced crystalline lattice mismatches at the interface between ZnO-Ag during the seed annealing process. The ZnO nanowires grown on the Ag-deposited PUA microstructures were found to have comparable morphological characteristics with ZnO nanowires grown on a Si wafer.

  12. Low temperature preparation of Ag-doped ZnO nanowire arrays for sensor and light-emitting diode applications

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Viana, B.; Cretu, V.; Postica, V.; Adelung, R.; Pauporté, T.

    2016-02-01

    Transition metal doped-oxide semiconductor nanostructures are important to achieve enhanced and new properties for advanced applications. We describe the low temperature preparation of ZnO:Ag nanowire/nanorod (NW/NR) arrays by electrodeposition at 90 °C. The NWs have been characterized by SEM, EDX, transmittance and photoluminescence (PL) measurements. The integration of Ag in the crystal is shown. Single nanowire/nanorod of ZnO:Ag was integrated in a nanosensor structure leading to new and enhanced properties. The ultraviolet (UV) response of the nanosensor was investigated at room temperature. Experimental results indicate that ZnO:Ag (0.75 μM) nanosensor possesses faster response/recovery time and better response to UV light than those reported in literature. The sensor structure has been also shown to give a fast response for the hydrogen detection with improved performances compared to pristine ZnO NWs. ZnO:Ag nanowire/nanorod arrays electrochemically grown on p-type GaN single crystal layer is also shown to act as light emitter in LED structures. The emission wavelength is red-shifted compared to pristine ZnO NW array. At low Ag concentration a single UV-blue emission is found whereas at higher concentration of dopant the emission is broadened and extends up to the red wavelength range. Our study indicates that high quality ZnO:Ag NW/NR prepared at low temperature by electrodeposition can serve as building nanomaterials for new sensors and light emitting diodes (LEDs) structures with low-power consumption.

  13. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  14. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    AFRL-RX-WP-TP-2014-0141 SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) Shin Mou AFRL/RXAN JANUARY... SUPERHYDROPHOBICITY OF HIERARCHICAL ZNO NANOWIRE COATINGS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...or disclose the work. The final publication is available at www.rsc.org/MaterialsA. 14. ABSTRACT Hierarchical superhydrophobic surfaces were

  15. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules.

    PubMed

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-08

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (R air/R gas = 12.8) compared to that (R air/R gas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  16. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  17. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  18. Effect of in situ Al doping on structure and optical properties of ZnO nanowires grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Souissi, H.; Jabri, S.; Souissi, A.; Lusson, A.; Galtier, P.; Meftah, A.; Sallet, V.; Oueslati, M.

    2018-01-01

    Al-doped ZnO nanowires (NWs) were grown on C-axis oriented sapphire by metal organic chemical vapor deposition using dimethylzinc-triethylamine (DMZn-TEN), nitrogen dioxide (NO2) and TMAl as zinc, oxygen and aluminum doping sources respectively. The NWs morphology has been characterized by scanning electron microscopy and transmission electron microscopy. The photoluminescence (PL) spectra exhibit a strong excitonic transition bond that confirms the Al incorporation in the ZnO NWs. Raman results support PL conclusion by showing additional modes in Al-doped ZnO NWs at nearly 270, 510, 579 and 641 cm-1. The micro-Raman scattering analysis along a single Al-doped ZnO needle-like NW shows an increase of the Al concentration from the basis to the tip of the wire.

  19. Visible light-sensitive APTES-bound ZnO nanowire toward a potent nanoinjector sensing biomolecules in a living cell

    NASA Astrophysics Data System (ADS)

    Lee, Jooran; Choi, Sunyoung; Bae, Seon Joo; Yoon, Seok Min; Choi, Joon Sig; Yoon, Minjoong

    2013-10-01

    Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon interaction with a complementary sequence-based double stranded (ds) DNA, whereas it is not significantly affected by non-complementary ds DNA. Further, the tip of a single APTES-ZnO NW can be inserted into the subcellular region of living HEK 293 cells without significant toxicity, and it can also detect the enhancement of the tip emission from subcellular regions with high spatial resolution. These results indicate that the single APTES-ZnO NW would be useful as a potent nanoinjector which can guide visible light into intracellular compartments of mammalian cells, and can also detect nanoscopic optical signal changes induced by interaction with the subcellular specific target biomolecules without separate optical probes.Nanoscale cell injection techniques combined with nanoscopic photoluminescence (PL) spectroscopy have been important issues in high-resolution optical biosensing, gene and drug delivery and single-cell endoscopy for medical diagnostics and therapeutics. However, the current nanoinjectors remain limited for optical biosensing and communication at the subwavelength level, requiring an optical probe such as semiconductor quantum dots, separately. Here, we show that waveguided red emission is observed at the tip of a single visible light-sensitive APTES-modified ZnO nanowire (APTES-ZnO NW) and it exhibits great enhancement upon

  20. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as...processing. For this work, we report on the foundational study needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a...array of ZnO nanowires. Zinc oxide nanowires become more conductive in the presence of ethanol – as analyte sorbs to the surface, electron density

  1. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    PubMed

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  2. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    PubMed Central

    2012-01-01

    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices. PMID:22502639

  3. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V.

  4. Control of the ZnO nanowires nucleation site using microfluidic channels.

    PubMed

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  5. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  6. Single Zno Nanowire-Based Biofet Sensors for Ultrasensitive, Label-Free and Real-Time Detection of Uric Acid

    NASA Astrophysics Data System (ADS)

    Lin, Pei; Liu, Xi; Yan, Xiaoqin; Kang, Zhuo; Lei, Yang; Zhao, Yanguang

    2012-08-01

    Qualitative and quantitative detection of biological and chemical species is crucial in many areas, ranging from clinical diagnosis to homeland security. Due to the advantages of ultrahigh sensitivity, label-free, fast readout and easy fabrication over the traditional detection systems, semiconductor nanowire based electronic devices have emerged as a potential platform. In this paper, we fabricated a single ZnO nanowire-based bioFET sensor for the detection of low and high concentration uric acid solution at the same time. The addition of uric acid with the concentrations from 1 pM to 0.5 mM resulted in the electrical conductance changes of up to 227 nS, and the response time turns out to be in the order of millisecond. The ZnO NW biosensor could easily detect as low as 1 pM of the uric acid with 14.7 nS of conductance increase, which implied that the sensitivity of the biosensor can be below the 1pM concentration.

  7. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.

    PubMed

    Donatini, Fabrice; Pernot, Julien

    2018-03-09

    In semiconductor nanowires (NWs) the exciton diffusion coefficient can be determined using a scanning electron microscope fitted with a cathodoluminescence system. High spatial and temporal resolution cathodoluminescence experiments are needed to measure independently the exciton diffusion length and lifetime in single NWs. However, both diffusion length and lifetime can be affected by the electron beam bombardment during observation and measurement. Thus, in this work the exciton lifetime in a ZnO NW is measured versus the electron beam dose (EBD) via a time-resolved cathodoluminescence experiment with a temporal resolution of 50 ps. The behavior of the measured exciton lifetime is consistent with our recent work on the EBD dependence of the exciton diffusion length in similar NWs investigated under comparable SEM conditions. Combining the two results, the exciton diffusion coefficient in ZnO is determined at room temperature and is found constant over the full span of EBD.

  8. Characterization of planar pn heterojunction diodes constructed with Cu2O nanoparticle films and single ZnO nanowires.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-05-01

    In this study, we fabricate planar pn heterojunction diodes composed of Cu2O nanoparticle (NP) films and single ZnO nanowires (NWs) on SiO2 (300 nm)/Si substrates and investigate their characteristics in the dark and under the illumination of white light and 325 nm wavelength light. The diode at bias voltages of +/- 1 V shows rectification ratios of 10 (in the dark) and 34 (under the illumination of white light). On the other hand, the diode exposed to the 325 nm wavelength light exhibits Ohmic characteristics which are associated with efficient photocurrent generation in both the Cu2O NP film and the single ZnO NW.

  9. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis

    PubMed Central

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora

    2017-01-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g−1, which is about 30 times larger than the previous result. PMID:28989760

  10. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer.

    PubMed

    Liu, Jinzhang; Motta, Nunzio; Lee, Soonil

    2012-01-01

    ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse.

  11. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  12. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    PubMed Central

    Motta, Nunzio; Lee, Soonil

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse. PMID:23016139

  13. Electrostatically Gated Graphene-Zinc Oxide Nanowire Heterojunction.

    PubMed

    You, Xueqiu; Pak, James Jungho

    2015-03-01

    This paper presents an electrostatically gated graphene-ZnO nanowire (NW) heterojunction for the purpose of device applications for the first time. A sub-nanometer-thick energy barrier width was formed between a monatomic graphene layer and electrochemically grown ZnO NWs. Because of the narrow energy barrier, electrons can tunnel through the barrier when a voltage is applied across the junction. A near-ohmic current-voltage (I-V) curve was obtained from the graphene-electrochemically grown ZnO NW heterojunction. This near-ohmic contact changed to asymmetric I-V Schottky contact when the samples were exposed to an oxygen environment. It is believed that the adsorbed oxygen atoms or molecules on the ZnO NW surface capture free electrons of the ZnO NWs, thereby creating a depletion region in the ZnO NWs. Consequentially, the electron concentration in the ZnO NWs is dramatically reduced, and the energy barrier width of the graphene-ZnO NW heterojunction increases greatly. This increased energy barrier width reduces the electron tunneling probability, resulting in a typical Schottky contact. By adjusting the back-gate voltage to control the graphene-ZnO NW Schottky energy barrier height, a large modulation on the junction current (on/off ratio of 10(3)) was achieved.

  14. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    DOE PAGES

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less

  15. Stability Enhancement of Silver Nanowire Networks with Conformal ZnO Coatings Deposited by Atmospheric Pressure Spatial Atomic Layer Deposition.

    PubMed

    Khan, Afzal; Nguyen, Viet Huong; Muñoz-Rojas, David; Aghazadehchors, Sara; Jiménez, Carmen; Nguyen, Ngoc Duy; Bellet, Daniel

    2018-06-06

    Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.

  16. Simulation of Young’s moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations

    NASA Astrophysics Data System (ADS)

    Bandura, Andrei V.; Evarestov, Robert A.; Lukyanov, Sergey I.; Piskunov, Sergei; Zhukovskii, Yuri F.

    2017-08-01

    Morphologically reproducible wurtzite-structured zinc oxide nanowires (ZnO NWs) can be synthesized by different methods. Since ZnO NWs have been found to possess piezoelectricity, a comprehensive study of their mechanical properties, e.g. deformations caused by external compression or stretching, is one of the actual tasks of this paper. We have calculated wurtzite-structured [0 0 0 1]-oriented ZnO NWs whose diameters have been varied within 1-5 nm and 1-20 nm ranges when using either ab initio (hybrid DFT-LCAO) or force-field (molecular mechanical) methods, respectively (the minimum diameter d NW of experimentally synthesized NWs has been estimated on average to be ~20 nm). When using both chosen calculation approaches, the values of Young’s moduli determined for the mentioned ranges of NW diameters have been found to be qualitatively compatible (168-169 GPa for 5 nm NW thickness), whereas results of molecular mechanical simulations on Y NW for 20 nm-thick NWs (160-162 GPa) have been qualitatively comparable with those experimentally measured along the [0 0 0 1] direction of NW loading. In all the cases, a gradual increase of the NW diameter has resulted in an asymptotic decrease of Young’s modulus consequently approaching that (Y b) of wurtzite-structured ZnO bulk along its [0 0 0 1] axis. The novelty of this study is that we combine the computation methods of quantum chemistry and molecular mechanics, while the majority of previous studies with the same aim have focused on the application of different classical molecular dynamical methods.

  17. Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays

    PubMed Central

    2014-01-01

    Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices. PMID:24521308

  18. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  19. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis.

    PubMed

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-07-21

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion.

  20. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis

    PubMed Central

    Shih, Po-Hsun

    2017-01-01

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030

  1. A simple and transparent well-aligned ZnO nanowire array ultraviolet photodetector with high responsivity

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Ding, Hesheng; Yuan, Zhaolin; Huang, Wendeng; Shuai, Chunjiang; Xiong, Zhaoxin; Deng, Jianping; Lv, Tengbo

    2018-06-01

    Well-aligned zinc oxide (ZnO) nanowire arrays were grown on an interdigital patterned fluorine tin oxide (FTO)-coated glass substrate by a facile chemical bath deposition at low temperature. Morphology, crystalline structure, and optical properties of the ZnO nanowire arrays were analyzed in detail. The results revealed that the ZnO nanowires had wurtzite structure, typically ∼40-60 nm in diameter, and ∼700-800 nm in length, a great number of highly uniform and dense nanowires grew vertically on the substrate to form the well-aligned ZnO nanowire arrays, which had very high optical transmission (>86%) in the visible light region. In addition, the performance of ZnO nanowire arrays ultraviolet (UV) photodetector was systematically examined. The photosensitivity (S), responsivity (R), response and decay time of the photodetector were 703 at +0.2 V, 113 A/W at +5 V, 23 s and 73 s respectively. Also, the photoresponse mechanism of the UV photodetector was illuminated in terms of the oxygen adsorption-photodesorption process.

  2. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications.

  3. Hydrothermal growth of ZnO nanowires on flexible fabric substrates

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Yun, Sang-Ho; Kim, Joo-Hyung

    2016-04-01

    ZnO nanowires (NWs) would provide significant enhancement in sensitivity due to high surface to volume ratio. We investigated the first methodical study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and properties of ZnO NWs grown on different flexible fabric surfaces. To develop a fundamental following concerning various substrates, we controlled the growth speed of ZnO NWs and nanowires on cotton surface with easy and moderate cost fabrication method. Using ammonium hydroxide as the reactant with zinc nitrate hexahydrate, ZnO NWs layer have been grown on metal layers, instead of seed layer. ZnO NWs fabrication was done on different fabric substrates such as wool, nylon and polypropylene (PP). After the ZnO NWs grown to each substrates, we coated insulating layer with polyurethane (PU) and ethyl cellulose for prevent external intervention. Detailed electrical characterization was subsequently performed to reveal the working characteristics of the hybrid fabric. For electrical verification of fabricated ZnO NWs, we implemented measurement impact test and material properties with FFT analyzer and LCR meter.

  4. Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei

    2012-08-01

    One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.

  5. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  6. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    NASA Astrophysics Data System (ADS)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  7. High-Density ZnO Nanowires as a Reversible Myogenic-Differentiation Switch.

    PubMed

    Errico, Vito; Arrabito, Giuseppe; Fornetti, Ersilia; Fuoco, Claudia; Testa, Stefano; Saggio, Giovanni; Rufini, Stefano; Cannata, Stefano; Desideri, Alessandro; Falconi, Christian; Gargioli, Cesare

    2018-04-25

    Mesoangioblasts are outstanding candidates for stem-cell therapy and are already being explored in clinical trials. However, a crucial challenge in regenerative medicine is the limited availability of undifferentiated myogenic progenitor cells because growth is typically accompanied by differentiation. Here reversible myogenic-differentiation switching during proliferation is achieved by functionalizing the glass substrate with high-density ZnO nanowires (NWs). Specifically, mesoangioblasts grown on ZnO NWs present a spherical viable undifferentiated cell state without lamellopodia formation during the entire observation time (8 days). Consistently, the myosin heavy chain, typically expressed in skeletal muscle tissue and differentiated myogenic progenitors, is completely absent. Remarkably, NWs do not induce any damage while they reversibly block differentiation, so that the differentiation capabilities are completely recovered upon cell removal from the NW-functionalized substrate and replating on standard culture glass. This is the first evidence of a reversible myogenic-differentiation switch that does not affect the viability. These results can be the first step toward for the in vitro growth of a large number of undifferentiated stem/progenitor cells and therefore can represent a breakthrough for cell-based therapy and tissue engineering.

  8. Quantum dots coupled ZnO nanowire-array panels and their photocatalytic activities.

    PubMed

    Liao, Yulong; Que, Wenxiu; Zhang, Jin; Zhong, Peng; Yuan, Yuan; Qiu, Xinku; Shen, Fengyu

    2013-02-01

    Fabrication and characterization of a heterojunction structured by CdS quantum dots@ZnO nanowire-array panels were presented. Firstly, ZnO nanowire-array panels were prepared by using a chemical bath deposition approach where wurtzite ZnO nanowires with a diameter of about 100 nm and 3 microm in length grew perpendicularly to glass substrate. Secondly, CdS quantum dots were deposited onto the surface of the ZnO nanowire-arrays by using successive ion layer absorption and reaction method, and the CdS shell/ZnO core heterojunction were thus obtained. Field emission scanning electron microscopy and transmission electron microscope were employed to characterize the morphological properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. X-ray diffraction was adopted to characterize the crystalline properties of the as-obtained CdS quantum dots@ZnO nanowire-array panels. Methyl orange was taken as a model compound to confirm the photocatalytic activities of the CdS shell/ZnO core heterojunction. Results indicate that CdS with narrow band gap not only acts as a visible-light sensitizer but also is responsible for an effective charge separation.

  9. Electrical tuning of spin splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin

    2018-01-01

    The effect of applying an external electric field on doping-induced spin-orbit splitting of the lowest conduction-band states in a bismuth-doped zinc oxide nanowire is studied by performing electronic structure calculations within the framework of density functional theory. It is demonstrated that spin splitting in Bi-doped ZnO nanowires could be tuned and enhanced electrically via control of the strength and direction of the applied electric field, thanks to the nonuniform and anisotropic response of the ZnO:Bi nanowire to external electric fields. The results reported here indicate that a single ZnO nanowire doped with a low concentration of Bi could function as a spintronic device, the operation of which is controlled by applied lateral electric fields.

  10. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less

  11. Effect of gamma radiation on the optical and structural properties of ZnO nanowires with various diameters

    NASA Astrophysics Data System (ADS)

    Reyhani, A.; Gholizadeh, A.; vahedi, V.; Khanlary, M. R.

    2018-01-01

    The effects of gamma-irradiation are studied on the morphology and structural properties of ZnO nanowire with various diameters. The ZnO nanowires are grown using Zn thin films at various initial thicknesses including 125, 250 and 500 nm in air ambient. The results illustrate dramatic effects of Gamma-irradiation on the deformation of ZnO nanowires. Thus, radiation induce ripple ZnO surfaces instead ZnO nanowires. Gamma-irradiation has also been effective on the optical and crystalline properties of the nanowires. X-ray diffraction attests that size of the ZnO nano-structures has changed and (l00) crystalline direction related to Zn metal has been created after irradiation. UV-Visible spectra display two areas for transmittance of irradiated ZnO nanowires, one in the Visible-light and the other in IR sub-region. In the Visible-light area, the layer gets thicker from 125 to 500 nm; the difference between the layer transmittance spectra is reduced before and after gamma irradiation. In the IR-light region, with increasing of ZnO initial thickness, the difference between the layer transmittance spectra is increased before and after gamma irradiation. The photoluminescence spectroscopy displays that intensity of green-yellow band improves in compared to near-band-edge emission due to formation of Zn metal and oxygen vacancies after gamma irradiation.

  12. Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Wang, Yong-Ping; Liu, Wen-Jun; Ji, Xin-Ming; Devi, Anjana; Jiang, An-Quan; Zhang, David Wei

    2018-01-10

    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g -1 ), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g -1 ). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications.

  13. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  14. In situ biasing and off-axis electron holography of a ZnO nanowire

    NASA Astrophysics Data System (ADS)

    den Hertog, Martien; Donatini, Fabrice; McLeod, Robert; Monroy, Eva; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2018-01-01

    Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.

  15. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, L.; Lu, H. B.; Li, J. C.

    2007-10-22

    In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.

  16. Detecting Liquefied Petroleum Gas (LPG) at Room Temperature Using ZnSnO3/ZnO Nanowire Piezo-Nanogenerator as Self-Powered Gas Sensor.

    PubMed

    Fu, Yongming; Nie, Yuxin; Zhao, Yayu; Wang, Penglei; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2015-05-20

    High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

  17. Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector.

    PubMed

    Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung

    2011-03-01

    We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.

  18. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.

    PubMed

    Li, Huifeng; Huang, Yunhua; Zhang, Qi; Qiao, Yi; Gu, Yousong; Liu, Jing; Zhang, Yue

    2011-02-01

    In this article, Co/Mn-codoped ZnO nanowires (NWs) were successfully synthesized on a silicon substrate by the thermal evaporation method with Au catalyst. The X-ray diffraction pattern indicated that the Co/Mn-codoped ZnO NWs are a hexagonal wurtzite structure without a second phase, and energy dispersive X-ray spectroscopy revealed that the Co and Mn ions were introduced into the ZnO NWs with the content of ∼0.8 at% and ∼1.2 at%, respectively. Photoluminescence spectra and Raman spectra showed that the Co/Mn were doped into the NWs and resulted in the shift of the near-band-edge emission. Moreover, the novel Raman peak at 519.3 cm(-1) has suggested that the two kinds of cations via doping could affect the local polarizability. Compared with the undoped ZnO NW, the electrical measurement showed that the Co/Mn-codoping enhanced the conductivity by an order of magnitude due to the presence of Co, Mn cations. The electron mobility and carrier concentration of a fabricated field effect transistor (FET) device is 679 cm2 V(-1) s(-1) and 2×10(18) cm(-3), respectively. Furthermore, the M-H curve demonstrated that the Co/Mn-codoped ZnO NWs have obvious ferromagnetic characteristics at room temperature. Our study enhances the understanding of the novel performances of transition-metal codoped ZnO NWs and also provides a potential way to fabricate optoelectronic devices.

  19. Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires.

    PubMed

    Van Hieu, Nguyen; Khoang, Nguyen Duc; Trung, Do Dang; Toan, Le Duc; Van Duy, Nguyen; Hoa, Nguyen Duc

    2013-01-15

    Carbon dioxide (CO(2)) and carbon monoxide (CO) emissions from industries and combustion fuels such as coal, oil, hydrocarbon, and natural gases are increasing, thus causing environmental pollution and climate change. The selective detection of CO(2) and CO gases is important for environmental monitoring and industrial safety applications. In this work, LaOCl-coated ZnO nanowires (NWs) sensors are fabricated and characterized for the detection of CO(2) (250-4000 ppm) and CO (10-200 ppm) gases at different operating temperatures. The effects of the LaCl(3) coating concentration and calcination temperature of the sensors are studied. They are found to have a strong influence on the sensing performance to CO(2) gas, but a relatively slight influence on that to CO. The LaOCl coating enhances the response and shortens the response and recovery times to CO(2) compared with those to CO. The enhanced response of the LaOCl-coated ZnO NW sensors is attributed to the extension of the electron depletion layer due to the formation of p-LaOCl/n-ZnO junctions on the surfaces of the ZnO NWs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    PubMed

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  1. Photo-assisted hysteresis of electronic transport for ZnO nanowire transistors

    NASA Astrophysics Data System (ADS)

    Du, Qianqian; Ye, Jiandong; Xu, Zhonghua; Zhu, Shunming; Tang, Kun; Gu, Shulin; Zheng, Youdou

    2018-03-01

    Recently, ZnO nanowire field effect transistors (FETs) have received renewed interest due to their extraordinary low dimensionality and high sensitivity to external chemical environments and illumination conditions. These prominent properties have promising potential in nanoscale chemical and photo-sensors. In this article, we have fabricated ZnO nanowire FETs and have found hysteresis behavior in their transfer characteristics. The mechanism and dynamics of the hysteresis phenomena have been investigated in detail by varying the sweeping rate and range of the gate bias with and without light irradiation. Significantly, light irradiation is of great importance on charge trapping by regulating adsorption and desorption of oxygen at the interface of ZnO/SiO2. Carriers excited by light irradiation can dramatically promote trapping/detrapping processes. With the assistance of light illumination, we have demonstrated a photon-assisted nonvolatile memory which employs the ZnO nanowire FET. The device exhibits reliable programming/erasing operations and a large on/off ratio. The proposed proto-type memory has thus provided a possible novel path for creating a memory functionality to other low-dimensional material systems.

  2. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance

    PubMed Central

    2012-01-01

    In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046

  3. Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Pezeshki, Atiye; Ali Raza, Syed Raza; Choi, Kyunghee; Min, Sung-Wook; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2014-05-27

    We demonstrate a hybrid inverter-type nanodevice composed of a MoS2 nanoflake field-effect transistor (FET) and ZnO nanowire Schottky diode on one substrate, aiming at a one-dimensional (1D)-two-dimensional (2D) hybrid integrated electronic circuit with multifunctional capacities of low power consumption, high gain, and photodetection. In the present work, we used a nanotransfer printing method using polydimethylsiloxane for the fabrication of patterned bottom-gate MoS2 nanoflake FETs, so that they could be placed near the ZnO nanowire Schottky diodes that were initially fabricated. The ZnO nanowire Schottky diode and MoS2 FET worked respectively as load and driver for a logic inverter, which exhibits a high voltage gain of ∼50 at a supply voltage of 5 V and also shows a low power consumption of less than 50 nW. Moreover, our inverter effectively operates as a photoinverter, detecting visible photons, since MoS2 FETs appear very photosensitive, while the serially connected ZnO nanowire Schottky diode was blind to visible light. Our 1D-2D hybrid nanoinverter would be quite promising for both logic and photosensing applications due to its performance and simple device configuration as well.

  4. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  5. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    PubMed Central

    2013-01-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130

  6. Hierarchically structured nanowires on and nanosticks in ZnO microtubes

    PubMed Central

    Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.

    2015-01-01

    We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527

  7. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  8. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  9. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.

    PubMed

    Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub

    2016-04-06

    Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.

  10. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    NASA Astrophysics Data System (ADS)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; Stavitski, Eli; Sadowski, Jerzy T.; Vescovo, Elio; Walter, Andrew; Attenkofer, Klaus; Stacchiola, Darío J.; Liu, Mingzhao

    2017-12-01

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices such as ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of the reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.

  11. Electrical properties of lightly Ga-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Alagha, S.; Heedt, S.; Vakulov, D.; Mohammadbeigi, F.; Senthil Kumar, E.; Schäpers, Th; Isheim, D.; Watkins, S. P.; Kavanagh, K. L.

    2017-12-01

    We investigated the growth, crystal structure, elemental composition and electrical transport characteristics of ZnO nanowires, a promising candidate for optoelectronic applications in the UV-range. Nominally-undoped and Ga-doped ZnO nanowires were grown by metal-organic chemical vapor deposition. Photoluminescence measurements confirmed the incorporation of Ga via donor-bound exciton emission. With atom-probe tomography we estimated an upper limit of the Ga impurity concentration ({10}18 {{cm}}-3). We studied the electrical transport characteristics of these nanowires with a W-nanoprobe technique inside a scanning electron microscope and with lithographically-defined contacts allowing back-gated measurements. An increase in apparent resistivity by two orders of magnitude with decreasing radius was measured with both techniques with a much larger distribution width for the nanoprobe method. A drop in the effective carrier concentration and mobility was found with decreasing radius which can be attributed to carrier depletion and enhanced scattering due to surface states. Little evidence of a change in resistivity was observed with Ga doping, which indicates that the concentration of native or background dopants is higher than the Ga doping concentration.

  12. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  13. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    NASA Astrophysics Data System (ADS)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  14. Reconstruction of perfect ZnO nanowires facets with high optical quality

    NASA Astrophysics Data System (ADS)

    Zehani, E.; Hassani, S.; Lusson, A.; Vigneron, J.; Etcheberry, A.; Galtier, P.; Sallet, V.

    2017-07-01

    ZnO nanowires were grown on sapphire substrates using metalorganic chemical vapor deposition. The samples were subsequently annealed under zinc pressure in a vacuum-sealed ampoule, at temperature ranging from 500 to 800 °C. The originality and the main motivation to provide a zinc-rich atmosphere were to prevent the out-diffusion of zinc from the nanowires. In doing so, the perfect structural properties and the morphology of the nanowires are kept. Interestingly, photoluminescence experiments performed on nanowires annealed in a narrow window of temperature [580-620 °C] show a spectacular improvement of the optical quality, as transitions commonly observable in high quality bulk samples are found. In addition, the intensity of the so-called "surface excitons" (SX) is strongly decreased. To accurately investigate the chemical modifications of the surface, XPS experiments were carried out and show that zinc hydroxide species and/or Zn(OH)2 sublayer were partially removed from the surface. These results suggest that the annealing process in zinc vapor helps to properly reconstruct the surface of ZnO nanowires, and improves the optical quality of their core. Such a thermal treatment at moderate temperature should be beneficial to nanodevices involving surface reaction, e.g. gas sensors.

  15. An optimal thermal evaporation synthesis of c-axis oriented ZnO nanowires with excellent UV sensing and emission characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Tridib, E-mail: tridib.saha@monash.edu; Achath Mohanan, Ajay, E-mail: ajay.mohanan@monash.edu; Swamy, Varghese, E-mail: varghese.swamy@monash.edu

    Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axismore » oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.« less

  16. Synthesis of ZnO nanowires for thin film network transistors

    NASA Astrophysics Data System (ADS)

    Dalal, S. H.; Unalan, H. E.; Zhang, Y.; Hiralal, Pritesh; Gangloff, L.; Flewitt, Andrew J.; Amaratunga, Gehan A. J.; Milne, William I.

    2008-08-01

    Zinc oxide nanowire networks are attractive as alternatives to organic and amorphous semiconductors due to their wide bandgap, flexibility and transparency. We demonstrate the fabrication of thin film transistors (TFT)s which utilize ZnO nanowires as the semiconducting channel. These thin film transistors can be transparent and flexible and processed at low temperatures on to a variety of substrates. The nanowire networks are created using a simple contact transfer method that is easily scalable. Apparent nanowire network mobility values can be as high as 3.8 cm2/Vs (effective thin film mobility: 0.03 cm2/Vs) in devices with 20μm channel lengths and ON/OFF ratios of up to 104.

  17. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Yicong; Song, Xiaomeng; Zhang, Zhipeng; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-05-01

    Doping is an effective method for tuning electrical properties of zinc oxide nanowires, which are used in nanoelectronic devices. Here, ZnO nanowires were prepared by a thermal oxidation method. Fluorine doping was achieved by a biased plasma treatment, with bias voltages of 100, 200, and 300 V. Transmission electron microscopy indicated that the nanowires treated at bias voltages of 100 and 200 V featured low crystallinity. When the bias voltage was 300 V, the nanowires showed single crystalline structures. Photoluminescence measurements revealed that concentrations of oxygen and surface defects decreased at high bias voltage. X-ray photoelectron spectroscopy suggested that the F content increased as the bias voltage was increased. The conductivity of the as-grown nanowires was less than 103 S/m; the conductivity of the treated nanowires ranged from 1 × 104-5 × 104, 1 × 104-1 × 105, and 1 × 103-2 × 104 S/m for bias voltage treatments at 100, 200, and 300 V, respectively. The conductivity improvements of nanowires formed at bias voltages of 100 and 200 V, were attributed to F-doping, defects and surface states. The conductivity of nanowires treated at 300 V was attributed to the presence of F ions. Thus, we provide a method of improving electrical properties of ZnO nanowires without altering their crystal structure.

  18. UV radiation and CH4 gas detection with a single ZnO:Pd nanowire

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Adelung, R.; Postica, V.; Ababii, N.; Chow, L.; Viana, B.; Pauporté, T.

    2017-02-01

    There is an increasing demand for sensors to monitor environmental levels of ultraviolet (UV) radiation and pollutant gases. In this work, an individual nanowire of Pd modified ZnO nanowire (ZnO:Pd NW) was integrated in a nanosensor device for efficient and fast detection of UV light and CH4 gas at room temperature. Crystalline ZnO:Pd nanowire/nanorod arrays were synthesized onto fluorine doped tin oxide (FTO) substrates by electrochemical deposition (ECD) at relative low-temperatures (90 °C) with different concentrations of PdCl2 in electrolyte solution and investigated by SEM and EDX. Nanodevices were fabricated using dual beam focused electron/ion beam (FIB/SEM) system and showed improved UV radiation response compared to pristine ZnO NW, reported previously by our group. The UV response was increased by one order in magnitude (≈ 11) for ZnO:Pd NW. Gas sensing measurements demonstrated a higher gas response and rapidity to methane (CH4 gas, 100 ppm) at room temperature, showing promising results for multifunctional applications. Also, due to miniature size and ultra-low power consumption of these sensors, it is possible to integrate them into portable devices easily, such as smartphones, digital clock, flame detection, missile lunching and other smart devices.

  19. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  20. Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering

    DOE PAGES

    Yan, Danhua; Zhang, Wenrui; Cen, Jiajie; ...

    2017-12-04

    Zinc oxide (ZnO) nanowire arrays have potential applications for various devices including ultra-violet light emitting diodes and lasers, where photoluminescence of intense near band edge emission without defect emissions is usually desired. Here, we demonstrate, counter-intuitively, that the near band edge emission may become dominant by introducing certain surface defects to ZnO nanowires via surface engineering. Specifically, near band edge emission (NBE) is effectively enhanced after a low pressure O 2 plasma treatment that sputters off surface oxygen species to produce a reduced and oxygen vacancy-rich surface. The effect is attributed to the lowered surface valence band maximum of themore » reduced ZnO surface that creates an accumulative band bending, which screens the photo-generated minority carriers (holes) from reaching or being trapped by the surface defects.« less

  1. Analysis of ultraviolet photo-response of ZnO nanostructures prepared by electrodeposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Makhlouf, Houssin; Karam, Chantal; Lamouchi, Amina; Tingry, Sophie; Miele, Philippe; Habchi, Roland; Chtourou, Radhouane; Bechelany, Mikhael

    2018-06-01

    In this work, ZnO nanowires (ZnO NWs) and urchin-like ZnO nanowires (U-ZnO NWs) based on self-assembled ordered polystyrene sphere (PS) were successfully prepared by combining atomic layer deposition (ALD) and electrochemical deposition (ECD) processes to build UV photosensors. The photo-response of the prepared samples was investigated and compared. The growth of the nanowires on self-assembled, ordered PS introduces a significant modification on the morphology, crystal orientation and grain size of U-ZnO NWs compared to randomly, vertically aligned ZnO NWs, and therefore improves the photo-response of U-ZnO NWs. The photocurrent may be produced by either a surface or bulk-related process. For ZnO NW-based photosensors, the photocurrent was monitored by a surface related process, whereas, it was mainly governed by a bulk related process for U-ZnO NWs, resulting in a higher and faster photo-response. The study of the rise and decay time constants for both materials showed that these parameters were strikingly sensitive to the optical properties.

  2. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at amore » range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.« less

  3. Doping-induced spin-orbit splitting in Bi-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2017-04-01

    Our predictions, based on density-functional calculations, reveal that surface doping of ZnO nanowires with Bi leads to a linear-in-k splitting of the conduction-band states, through spin-orbit interaction, due to the lowering of the symmetry in the presence of the dopant. This finding implies that spin polarization of the conduction electrons in Bi-doped ZnO nanowires could be controlled with applied electric (as opposed to magnetic) fields, making them candidate materials for spin-orbitronic applications. Our findings also show that the degree of spin splitting could be tuned by adjusting the dopant concentration. Defect calculations and ab initio molecular dynamics simulations indicate that stable doping configurations exhibiting the foregoing linear-in-k splitting could be realized under reasonable thermodynamic conditions.

  4. Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Q. H.; Wan, Q.; Wang, Y. G.; Wang, T. H.

    2005-06-01

    Positive temperature coefficient of resistance is observed on single Cd-doped ZnO nanowires. The current along the nanowire increases linearly with the bias and saturates at large biases. The conductance is greatly enhanced either by ultraviolet illumination or infrared illumination. However, the conductance decreases with increasing temperature, in contrast to the reported temperature behavior either for ZnO nanostructures or for CdO nanoneedles. The increase of the conductance under illumination is related to surface effect and the decrease with increasing temperature to bulk effect. These results show that Cd doping does not change surface effect but affects bulk effect. Such a bulk effect could be used to realize on-chip temperature-independent varistors.

  5. Integration of ZnO and CuO nanowires into a thermoelectric module

    PubMed Central

    Dalola, Simone; Faglia, Guido; Comini, Elisabetta; Ferroni, Matteo; Soldano, Caterina; Ferrari, Vittorio; Sberveglieri, Giorgio

    2014-01-01

    Summary Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices. PMID:24991531

  6. Integration of ZnO and CuO nanowires into a thermoelectric module.

    PubMed

    Zappa, Dario; Dalola, Simone; Faglia, Guido; Comini, Elisabetta; Ferroni, Matteo; Soldano, Caterina; Ferrari, Vittorio; Sberveglieri, Giorgio

    2014-01-01

    Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices.

  7. Efficient photocatalytic performance enhancement in Co-doped ZnO nanowires coupled with CuS nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Guojing; Feng, Yimeng; Li, Zhengcao

    2018-01-01

    In this research, a kind of highly efficient semiconductor photocatalyst was fabricated by depositing CuS nanoparticles uniformly on the surface of Co-doped ZnO nanowires. ZnO nanowires were synthesized by hydrothermal method and CuS nanoparticles were modified by successive ionic layer adsorption and reaction (SILAR). By conducting methyl orange (MO) degradation experiments under the illumination of visible light, the photocatalytic activity of Co-doped ZnO nanowires modified with CuS nanoparticles was found to be nearly three times active when compared to bare ZnO nanowires. Its superior photocatalytic performance has two main reasons. The doped Co2+ ions can inhibit the recombination of photo-generated electron-hole pairs and decrease the optical bandgap, while the p-n heterostructure can enhance the visible light absorption ability and promote the separation of photo-excited charge carriers. Furthermore, the effect of the amount of deposited CuS nanoparticles on the photocatalysis was also investigated. The photocatalytic efficiency firstly raised along with the increment of SILAR cycle times and reached a maximum at 10 cycles but then decreased as the cycle times continue to increase. This originates from that an excessive amount of CuS would not only cover the active reacting sites, but also serve as recombination centers. Overall, this new nanostructure is expected to work as an efficient photocatalyst.

  8. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  9. Lattice diffusion and vapor solid growths forming nanoarchitectures on ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sombrio, Guilherme; Rivaldo-Gómez, C. M.; Pomar, Cesar A. D.; Souza, Jose A.

    2017-12-01

    We report hierarchical nanoarchitectures formed on the tips and sidewalls of ZnO nanowires which is formed on the top of microtubes. The whole growth process of these micro/nanostructures during thermal oxidation combines lattice/grain/surface ionic diffusion along with vapor solid mechanism. All the process takes place along with the presence of an electric current, which plays an important role forming the ZnO molecules due to Zn metal evaporation and attracting them to condense into nanostructures of several morphologies. The observation of a very long needle-like nanowire reveals the stack nature of the growth. These nanoarchitectures are rarely observed experimentally. Raman scattering confirms phonon confinement in the nanostructures. Photoluminescence measurements indicate a route for engineering defects on the surface of ZnO microtubes after the complete coalescence of the nanostructures through heat treatment. This experiment would be useful for improving nanostructure organization which could provide an impact in the manufacturability of nanostructure-based systems.

  10. Veritable electronic characteristics in ZnO nanowire circuits uncovered by the four-terminal method at a low temperature

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhang, Qi

    2017-04-01

    Understanding the natural electrical properties in semiconductor channels and the carrier transport across the metal-semiconductor contact is essential to improve the performance of nanowire devices. This work presents the true electronic characteristics of ZnO nanowire devices measured by a four-electrode method at a low-temperature environment. The temperature rise leads to the decrease in near-band-gap emission, which is attributed to two non-radiative recombination processes. For ZnO circuits, thermionic emission carrier transport mechanism plays a dominant role at Ti-Au/ZnO interface and the transport mechanism in ZnO nanowires is governed by two competitive thermal activation conduction processes: optical or acoustic phonons assisting hopping.

  11. A ZnO nanowire bio-hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Houman; Schaefer, Michael; Yaghoubi, Shayan; Jun, Daniel; Schlaf, Rudy; Beatty, J. Thomas; Takshi, Arash

    2017-02-01

    Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 μA cm-2 and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 μA cm-2 was obtained, which stabilized at 6.4 μA cm-2 after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.

  12. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition.

    PubMed

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent

    2017-03-03

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10 7 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  13. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    NASA Astrophysics Data System (ADS)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  14. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscaleengineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on themore » macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscaleengineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.« less

  15. Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

    PubMed Central

    Jiang, Chaoran; Moniz, Savio J A; Khraisheh, Majeda; Tang, Junwang

    2014-01-01

    ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis. PMID:25156820

  16. Origin of luminescence from ZnO/CdS core/shell nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Wang, Jian; Sham, Tsun-Kong; Yang, Shaoguang

    2014-07-01

    Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the BGE of CdS and defect emission (DE, zinc vacancies) of ZnO; the IR luminescence is attributed to the DE (bulk defect related to the S site) of CdS; ZnS contributes little to the luminescence of the ZnO/CdS NW arrays. Interestingly, the BGE and DE from oxygen vacancies of ZnO in the ZnO/CdS nano-composites are almost entirely quenched, while DE from zinc vacancies changes little.Chemical imaging, electronic structure and optical properties of ZnO/CdS nano-composites have been investigated using scanning transmission X-ray microscopy (STXM), X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) spectroscopy. STXM and XANES results confirm that the as-prepared product is ZnO/CdS core/shell nanowires (NWs), and further indicate that ZnS was formed on the surface of ZnO NWs as the interface between ZnO and CdS. The XEOL from ZnO/CdS NW arrays exhibits one weak ultraviolet (UV) emission at 375 nm, one strong green emission at 512 nm, and two broad infrared (IR) emissions at 750 and 900 nm. Combining XANES and XEOL, it is concluded that the UV luminescence is the near band gap emission (BGE) of ZnO; the green luminescence comes from both the

  17. Synthesis and photonic property study of ZnO nanowires for a real time photodynamic therapy monitoring probe

    NASA Astrophysics Data System (ADS)

    Sridhar, D.; Xie, Jining; Abraham, Jose K.; Varadan, Vijay K.

    2007-04-01

    In this paper, we present how the photonic properties of zinc oxide (ZnO) nanowires can be used to potentially advance the effectiveness of Photodynamic therapy (PDT), one of the most recent and promising approaches among cancer therapies. Presently, PDT employs laser light to activate intravenously or topically administered photosensitizers to give rise to highly reactive singlet oxygen which has a very short lifetime and is capable of biochemical damage to cell membranes of the tumor. A probe that can monitor in real time the penetration depth of the laser in the tumor and also the evolution of the singlet oxygen, which is critical for tumor eradication, is capable of improving the efficacy of PDT quite significantly. Such a probe, by providing real time feedback, can help us determine whether to increase or decrease the light exposure dose and also if further local administration of photosensitizers is required or not. ZnO nanowires are known to be photoconductive and recent research also demonstrated the temperature dependence of the photocurrent in the nanowires. They are also sensitive to blue and other near UV spectra which is same range of activation wavelengths of most photosensitizers, and hence making them a good candidate for a potential PDT monitoring probe. ZnO nanowires were fabricated on silicon substrates by vapor phase deposition using e-beam evaporated gold as a catalyst. Control of the dimensions of the nanowires could be achieved by varying the dimensions of the catalyst by means of e-beam evaporation process. Photoluminescence properties of ZnO nanowires were investigated at UV and near UV wavelengths. Further, ZnO is also known for its antimicrobial properties, thereby ruling out any possibility of bacterial infection because of the implanted probe. This study was done to compliment the existing expertise of our research group in the design and fabrication of several nanowire based probes and microsensors specifically for neuroelectronic and

  18. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.

    PubMed

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-21

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a 'core-shell-like structure' in individual IZO NWs, where an outer shell of thickness t (~15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (ZnO NWs. This work also strongly

  19. Synthesis, structural and optical properties of silver nanoparticles uniformly decorated ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Ke-Xin; Wen, Xing; Yao, Cheng-Bao; Li, Jin; Zhang, Meng; Li, Qiang-Hua; Sun, Wen-Jun; Wu, Jia-Da

    2018-04-01

    Silver (Ag) nanoparticles decorated Zinc oxide (A-ZnO) nanowires have been successfully synthesized by two-step chemical vapour deposition and magnetron sputtering method. The X-ray diffraction patterns revealed their hexagonal wurtzite structure. SEM images indicated the Ag nanoparticles are distributed uniformly on the surface of A-ZnO nanowires. By extending the sputtering time, the atomic percent of Ag increased gradually. Moreover, the photoluminescence results demonstrated two major emission peaks for the A-ZnO nanowires. Where, the visible emission peaks were stronger than those of unmodified ZnO nanowires. These studies promise their potential applications in multifunctional optical devices.

  20. Water- and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate.

    PubMed

    Hsu, Cheng-Liang; Li, Hsieh-Heng; Hsueh, Ting-Jen

    2013-11-13

    High-density La-doped ZnO nanowires (NWs) were grown hydrothermally on flexible polyimide substrate. The length and diameter of the NWs were around 860 nm and 80-160 nm, respectively. All XRD peaks of the La-doped sample shift to a larger angle. The strong PL peak of the La-doped sample is 380 nm, which is close to the 3.3 eV ZnO bandgap. That PL dominated indicates that the La-doped sample has a great amount of oxygen vacancies. The lattice constants ~0.514 nm of the ZnO:La NW were smaller when measured by HR-TEM. The EDX spectrum determined that the La-doped sample contains approximately 1.27 at % La. The La-doped sample was found to be p-type by Hall Effect measurement. The dark current of the p-ZnO:La NWs decreased with increased relative humidity (RH), while the photocurrent of the p-ZnO:La nanowires increased with increased RH. The higher RH environment was improved that UV response performance. Based on the highest 98% RH, the photocurrent/dark current ratio was around 47.73. The UV response of water drops on the p-ZnO:La NWs was around 2 orders compared to 40% RH. In a water environment, the photocurrent/dark current ratio of p-ZnO:La NWs was 212.1, which is the maximum UV response.

  1. ZnO nanowires for tunable near-UV/blue LED

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno

    2012-02-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. Markedly improved performances are expected from nanostructured active layers for light emission. Nanowires can act as direct waveguides and favor light extraction without the use of lenses and reflectors. Moreover, the use of wires avoids the presence of grain boundaries and then the emission efficiency should be boosted by the absence of non-radiative recombinations at the joint defects. Electrochemical deposition technique was used for the preparation of ZnO-NWs based light emitters. Nanowires of high structural and optical quality have been epitaxially grown on p-GaN single crystalline films substrates. We have shown that the emission is directional with a wavelength that was tuned and red-shifted toward the visible region by doping with Cu in ZnO NWs.

  2. Size-dependent Young’s modulus in ZnO nanowires with strong surface atomic bonds

    NASA Astrophysics Data System (ADS)

    Fan, Shiwen; Bi, Sheng; Li, Qikun; Guo, Qinglei; Liu, Junshan; Ouyang, Zhongliang; Jiang, Chengming; Song, Jinhui

    2018-03-01

    The mechanical properties of size-dependent nanowires are important in nano-electro-mechanical systems (NEMSs), and have attracted much research interest. Characterization of the size effect of nanowires in atmosphere directly to broaden their practical application instead of just in high vacuum situations, as reported previously, is desperately needed. In this study, we systematically studied the Young’s modulus of vertical ZnO nanowires in atmosphere. The diameters ranged from 48 nm to 239 nm with a resonance method using non-contact atomic force microscopy. The values of Young’s modulus in atmosphere present extremely strong increasing tendency with decreasing diameter of nanowire due to stronger surface atomic bonds compared with that in vacuum. A core-shell model for nanowires is proposed to explore the Young’s modulus enhancement in atmosphere, which is correlated with atoms of oxygen occurring near the nanowire surface. The modified model is more accurate for analyzing the mechanical behavior of nanowires in atmosphere compared with the model in vacuum. Furthermore, it is possible to use this characterization method to measure the size-related elastic properties of similar wire-sharp nanomaterials in atmosphere and estimate the corresponding mechanical behavior. The study of the size-dependent Young’s modulus in ZnO nanowires in atmosphere will improve the understanding of the mechanical properties of nanomaterials as well as providing guidance for applications in NEMSs, nanogenerators, biosensors and other related areas.

  3. On the difficulties in characterizing ZnO nanowires.

    PubMed

    Schlenker, E; Bakin, A; Weimann, T; Hinze, P; Weber, D H; Gölzhäuser, A; Wehmann, H-H; Waag, A

    2008-09-10

    The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10(3) Ωcm. Additionally, the resistivities of nanowires from multiple publications were brought together and compared to the values obtained from our measurements. The overview of all data shows enormous differences (10(-3)-10(5) Ωcm) in the measured resistivities. In order to reveal the origin of the discrepancies, the influence of growth parameters, measuring methods, contact resistances, crystal structures and ambient conditions are investigated and discussed in detail.

  4. Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires.

    PubMed

    Donatini, F; de Luna Bugallo, Andres; Tchoulfian, Pierre; Chicot, Gauthier; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2016-05-11

    Whereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.5 to 175 nm. The dominant impact of the surface on the NW properties is revealed through the comparison of three different physical quantities recorded on the same NW: electron-beam induced current, cathodoluminescence, and secondary electron signal. Indeed, the space charge region near the Schottky contact exhibits an unusual linear variation with reverse bias whatever the NW radius. On the contrary, the exciton diffusion length is shown to be controlled by the NW radius through surface recombination. This systematic comparison performed on a single ZnO NW demonstrates the power of these complementary techniques in understanding NW properties.

  5. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  6. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  7. ZnO nanowire-based light-emitting diodes with tunable emission from near-UV to blue

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno; le Bahers, T.

    2013-03-01

    Nanowires (NWs)-based light emitting diodes (LEDs) have drawn large interest due to many advantages compared to thin film based devices. We have successfully prepared epitaxial n-ZnO(NW)/p-GaN heterojunctions using low temperature soft electrochemical techniques. The structures have been used in LED devices and exhibited highly interesting performances. Moreover, the bandgap of ZnO has been tuned by Cu or Cd doping at controlled atomic concentration. A result was the controlled shift of the LED emission in the visible spectral wavelength region. Using DFT computing calculations, we have also shown that the bandgap narrowing has two different origins for Zn1-xCdxO (ZnO:Cd) and ZnO:Cu. In the first case, it is due to the crystal lattice expansion, whereas in the second case Cu-3d donor and Cu-3d combined to O-2p acceptor bands appear in the bandgap which broadnesses increase with the dopant concentration. This leads to the bandgap reduction.

  8. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  9. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  10. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir; Saramad, Shahyar; Setayeshi, Saeed

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodepositionmore » setup with an acceptable quality.« less

  11. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    PubMed

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  12. On-chip surface modified nanostructured ZnO as functional pH sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Liu, Wenpeng; Sun, Chongling; Zhang, Hao; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2015-09-01

    Zinc oxide (ZnO) nanostructures are promising candidates as electronic components for biological and chemical applications. In this study, ZnO ultra-fine nanowire (NW) and nanoflake (NF) hybrid structures have been prepared by Au-assisted chemical vapor deposition (CVD) under ambient pressure. Their surface morphology, lattice structures, and crystal orientation were investigated by scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Two types of ZnO nanostructures were successfully integrated as gate electrodes in extended-gate field-effect transistors (EGFETs). Due to the amphoteric properties of ZnO, such devices function as pH sensors. We found that the ultra-fine NWs, which were more than 50 μm in length and less than 100 nm in diameter, performed better in the pH sensing process than NW-NF hybrid structures because of their higher surface-to-volume ratio, considering the Nernst equation and the Gouy-Chapman-Stern model. Furthermore, the surface coating of (3-Aminopropyl)triethoxysilane (APTES) protects ZnO nanostructures in both acidic and alkaline environments, thus enhancing the device stability and extending its pH sensing dynamic range.

  13. Harvesting Mechanical and Thermal Energy by Combining ZnO Nanowires and NiTi Shape Memory Alloy

    DOE PAGES

    Radousky, Harry; Qian, Fang; An, Yonghao; ...

    2017-02-19

    In the expanding world of small scale energy harvesting, the ability to combine thermal and mechanical harvesting is growing ever more important. Here, we demonstrate the feasibility of using ZnO nanowires to harvest both mechanical and low-quality thermal energy in simple, scalable devices. These devices were fabricated on kapton films and used ZnO nanowires with the same growth direction to assure alignment of the piezoelectric potentials of all of the wires. Mechanical harvesting from these devices was demonstrated using a periodic application of force, modeling the motion of the human body. Tapping the device from the top of the devicemore » with a wood stick, for example yielded an Open Circuit Voltage (OCV) of 0.2 - 4 V, which is in an ideal range for device applications. In order to demonstrate thermal harvesting from low quality heat sources, a commercially available Nitinol (Ni-Ti alloy) foil was attached to the nanowire piezoelectric device to create a compound thermoelectric. When bent at room temperature and then heated to 50°C, the Nitinol foil was restored to its original flat shape, which yielded an output voltage of nearly 1 V from the ZnO nanowire device.« less

  14. Harvesting Mechanical and Thermal Energy by Combining ZnO Nanowires and NiTi Shape Memory Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radousky, Harry; Qian, Fang; An, Yonghao

    In the expanding world of small scale energy harvesting, the ability to combine thermal and mechanical harvesting is growing ever more important. Here, we demonstrate the feasibility of using ZnO nanowires to harvest both mechanical and low-quality thermal energy in simple, scalable devices. These devices were fabricated on kapton films and used ZnO nanowires with the same growth direction to assure alignment of the piezoelectric potentials of all of the wires. Mechanical harvesting from these devices was demonstrated using a periodic application of force, modeling the motion of the human body. Tapping the device from the top of the devicemore » with a wood stick, for example yielded an Open Circuit Voltage (OCV) of 0.2 - 4 V, which is in an ideal range for device applications. In order to demonstrate thermal harvesting from low quality heat sources, a commercially available Nitinol (Ni-Ti alloy) foil was attached to the nanowire piezoelectric device to create a compound thermoelectric. When bent at room temperature and then heated to 50°C, the Nitinol foil was restored to its original flat shape, which yielded an output voltage of nearly 1 V from the ZnO nanowire device.« less

  15. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  16. Impedance analysis of PbS colloidal quantum dot solar cells with different ZnO nanowire lengths

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Takahashi, Akihiro; Wang, Haibin; Takahira, Kazuya; Kubo, Takaya; Segawa, Hiroshi

    2018-03-01

    The photoconversion efficiency of colloidal quantum dot (QD) solar cells has been markedly improved by optimizing the surface passivation and device structure, and details of device physics are now under investigation. In this study, we investigated the resistance and capacitance components at the ZnO/PbS-QD interface and inside a PbS-QD layer by measuring the impedance spectrum while the interface area was controlled by changing the ZnO nanowire length. By evaluating the dependence of optical intensity and DC bias voltage on the ZnO nanowire length, only the capacitance was observed to be influenced by the interface area, and this indicates that photoinduced carriers are generated at the surface of PbS-QD. In addition, since the capacitance is proportional to the surface area of the QD, the interface area can be evaluated from the capacitance. Finally, photovoltaic performance was observed to increase with increasing ZnO nanowire length owing to the large interface area, and this result is in good agreement with the capacitance measurement.

  17. Growth of ZnO nanowires on polypropylene membrane surface-Characterization and reactivity

    NASA Astrophysics Data System (ADS)

    Bojarska, Marta; Nowak, Bartosz; Skowroński, Jarosław; Piątkiewicz, Wojciech; Gradoń, Leon

    2017-01-01

    Need for a new membrane is clearly visible in recent studies, mostly due to the fouling phenomenon. Authors, focused on problem of biofouling caused by microorganisms that are present in water environment. An attempt to form a new membrane with zinc oxide (ZnO) nanowires was made; where plasma treatment was used as a first step of modification followed by chemical bath deposition. Such membrane will exhibit additional reactive properties. ZnO, because of its antibacterial and photocatalytic properties, is more and more often used in commercial applications. The authors used SEM imaging, measurement of the contact angle, XRD and the FT-IR analysis for membrane characterization. Amount of ZnO deposited on membrane surface was also investigated by dithizone method. Photocatalytic properties of such membranes were examined through methylene blue and humic acid degradation in laboratory scale modules with LEDs as either: wide range white or UV light source. Antibacterial and antifouling properties of polypropylene membranes modified with ZnO nanowires were examined through a series of tests involving microorganisms: model gram-positive and -negative bacteria. The obtained results showed that it is possible to modify the membrane surface in such a way, that additional reactive properties will be given. Thus, not only did the membrane become a physical barrier, but also turned out to be a reactive one.

  18. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk; Neeves, Matthew

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  19. Characterizations of low-temperature electroluminescence from ZnO nanowire light-emitting arrays on the p-GaN layer.

    PubMed

    Lu, Tzu-Chun; Ke, Min-Yung; Yang, Sheng-Chieh; Cheng, Yun-Wei; Chen, Liang-Yi; Lin, Guan-Jhong; Lu, Yu-Hsin; He, Jr-Hau; Kuo, Hao-Chung; Huang, JianJang

    2010-12-15

    Low-temperature electroluminescence from ZnO nanowire light-emitting arrays is reported. By inserting a thin MgO current blocking layer in between ZnO nanowire and p-GaN, high-purity UV light emission at wavelength 398 nm was obtained. As the temperature is decreased, contrary to the typical GaN-based light emitting diodes, our device shows a decrease of optical output intensity. The results are associated with various carrier tunneling processes and frozen MgO defects.

  20. Quantum-interference transport through surface layers of indium-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-01

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (ZnO NWs. This work also strongly

  1. Structural, optical and electrical properties of well-ordered ZnO nanowires grown on (1 1 1) oriented Si, GaAs and InP substrates by electrochemical deposition method

    NASA Astrophysics Data System (ADS)

    Pham, Huyen T.; Nguyen, Tam D.; Tran, Dat Q.; Akabori, Masashi

    2017-05-01

    ZnO semiconductors, especially in form of nanomaterials, possess many excellent properties and have been employed in many applications. In this article, we reported the selective area growth of ZnO nanowires on different (1 1 1) oriented Si, GaAs, and first time on InP substrates by electrochemical deposition method without any seed layers, using zinc nitrate hexahydrate precursor in the presence of hexamethylenetetramine. The position, density and orientation of such ZnO nanowires were controlled by the substrate patterning technique using electron-beam lithography. As-synthesized ZnO nanowires grown on patterned substrates show smaller diameter, higher density and better orientation, compared to the one grown on unpatterned substrates. In particular, the ZnO nanowires grown on GaAs patterned substrate indicate the best morphological property, with the average diameter, length and density of about 100 nm, 2.4 µm and 35 µm-2, respectively. The x-ray diffraction and Raman scattering also demonstrate high crystalline quality of our ZnO nanowires. Moreover, as-reported ZnO nanowires are also conductive, which would allow their use in field-effect transistor and other potential nanoscale device applications.

  2. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    PubMed

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  3. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  4. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage.

    PubMed

    Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei

    2016-12-01

    Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.

  5. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-04-25

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  6. Mitigation of Electrical Failure of Silver Nanowires under Current Flow and the Application for Long Lifetime Organic Light-Emitting Diodes

    DOE PAGES

    Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...

    2016-07-08

    Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less

  7. The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates

    NASA Astrophysics Data System (ADS)

    Roy, Aditi; Xie, Hongtao; Wang, Shiliang; Huang, Han

    2016-12-01

    ZnO nanowires were bent on amorphous SiO2 and SiN substrates in an ambient atmosphere using optical nanomanipulation. The kinetic friction between the nanowires and substrate was determined from the bent shape of the nanowires. The kinetic friction force per unit area, i.e. frictional shear stress, for the ZnO/SiO2 and ZnO/SiN nanowire/substrate systems being measured were 1.05 ± 0.28 and 2.08 ± 0.33 MPa, respectively. The surface roughness and the Hamaker constant of SiO2 and SiN substrates had significant effect on the frictional stresses.

  8. Modeling and estimation of process-induced stress in the nanowire field-effect-transistors (NW-FETs) on Insulator-on-Silicon substrates with high-k gate-dielectrics

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sulagna; Chattopadhyay, Sanatan

    2016-10-01

    An analytical model including the simultaneous impact of lattice and thermo-elastic constant mismatch-induced stress in nanowires on Insulator-on-Silicon substrate is developed. It is used to calibrate the finite-element based software, ANSYS, which is subsequently employed to estimate process-induced stress in the sequential steps of NW-FET fabrication. The model considers crystal structures and orientations for both the nanowires and substrates. In-plane stress components along nanowire-axis are estimated for different radii and fractions of insertion. Nature of longitudinal stress is observed to change when inserted fraction of nanowires is changed. Effect of various high-k gate-dielectrics is also investigated. A longitudinal tensile stress of 2.4 GPa and compressive stress of 1.89 GPa have been obtained for NW-FETs with 1/4th and 3/4th insertions with La2O3 and TiO2 as the gate-dielectrics, respectively. Therefore, it is possible to achieve comparable values of electron and hole mobility in NW-FETs by judiciously choosing gate-dielectrics and fractional insertion of the nanowires.

  9. Adsorbed Molecules and Surface Treatment Effect on Optical Properties of ZnO Nanowires Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Souissi, H.; Sallet, V.; Lusson, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2017-07-01

    We have investigated the optical properties of ZnO nanowires grown by metalorganic chemical vapor deposition (MOCVD) with nitrous oxide (N2O) as oxygen precursor. Photoluminescence (PL) and Raman measurements showed the influence of adsorbed molecules on the optical properties. Low-temperature (4 K) PL studies on the surface exciton (SX) at 3.3660 eV elucidated the nature and origin of this emission. In particular, surface treatment by annealing at high temperature under inert gas reduced the emission intensity of SX. Raman vibrational spectra proved that presence of a considerable amount of adsorbed molecules on the surface of ZnO nanowires plays a key role in the occurrence of surface excitons.

  10. Fabrication of interdigitated high-performance zinc oxide nanowire modified electrodes for glucose sensing.

    PubMed

    Haarindraprasad, R; Hashim, Uda; Gopinath, Subash C B; Perumal, Veeradasan; Liu, Wei-Wen; Balakrishnan, S R

    2016-06-21

    Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol-gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  12. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  13. Investigation of the temperature dependent field emission from individual ZnO nanowires for evidence of field-induced hot electrons emission.

    PubMed

    Chen, Yicong; Zhang, Zhipeng; Li, Zhi-Bing; She, Juncong; Deng, Shaozhi; Xu, Ning-Sheng; Chen, Jun

    2018-06-27

    ZnO nanowires as field emitters have important applications in flat panel display and X-ray source. Understanding the intrinsic field emission mechanism is crucial for further improving the performance of ZnO nanowire field emitters. In this article, the temperature dependent field emission from individual ZnO nanowires was investigated by an in-situ measurement in ultra-high vacuum. The divergent temperature-dependent Fowler-Nordheim plots is found in the low field region. A field-induced hot electrons emission model that takes into account penetration length is proposed to explain the results. The carrier density and temperature dependence of the field-induced hot electrons emission current are derived theoretically. The obtained results are consistent with the experimental results, which could be attributed to the variation of effective electron temperature. All of these are important for a better understanding on the field emission process of semiconductor nanostructures. © 2018 IOP Publishing Ltd.

  14. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  15. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    NASA Astrophysics Data System (ADS)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  16. Highly stable piezo-immunoglobulin-biosensing of a SiO2/ZnO nanogenerator as a self-powered/active biosensor arising from the field effect influenced piezoelectric screening effect.

    PubMed

    Zhao, Yayu; Fu, Yongming; Wang, Penglei; Xing, Lili; Xue, Xinyu

    2015-02-07

    Highly stable piezo-immunoglobulin-biosensing has been realized from a SiO2/ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active biosensor. The piezoelectric output generated by the SiO2/ZnO NW NG can act not only as a power source for driving the device, but also as a sensing signal for detecting immunoglobulin G (IgG). The stability of the device is very high, and the relative standard deviation (RSD) ranges from 1.20% to 4.20%. The limit of detection (LOD) of IgG on the device can reach 5.7 ng mL(-1). The response of the device is in a linear relationship with IgG concentration. The biosensing performance of SiO2/ZnO NWs is much higher than that of bare ZnO NWs. A SiO2 layer uniformly coated on the surface of the ZnO NW acts as the gate insulation layer, which increases mechanical robustness and protects it from the electrical leakages and short circuits. The IgG biomolecules modified on the surface of the SiO2/ZnO NW act as a gate potential, and the field effect can influence the surface electron density of ZnO NWs, which varies the screening effect of free-carriers on the piezoelectric output. The present results demonstrate a feasible approach for a highly stable self-powered/active biosensor.

  17. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.

    PubMed

    Zheng, Xin; Sun, Yihui; Yan, Xiaoqin; Sun, Xu; Zhang, Guangjie; Zhang, Qian; Jiang, Yaru; Gao, Wenchao; Zhang, Yue

    2016-12-15

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. Here, we prepared in situ Al-doped ZnO nanowire arrays by using continuous flow injection (CFI) hydrothermal method to promote the conductivity. This reasonable method offers highly stable precursor concentration for doping that effectively avoid the appearance of the low conductivity ZnO nanosheets. Benefit from this, three orders of magnitude rise of the carrier concentration from 10 16 cm -3 to 10 19 cm -3 can be achieved compared with the common hydrothermal (CH) mothed in Mott-Schottky measurement. Possible effect of Al-doping was discussed by first-principle theory. On this basis, Al-doped ZnO nanowire arrays was developed as a binder-free conductive support for supercapacitor electrodes and high capacitance was triggered. It is owing to the dramatically decreased transfer resistance induced by the growing free-moving electrons and holes. Our results have a profound significance not merely in the controlled synthesis of other doping nanomaterials by co-precipitation method but also in the application of binder-free energy materials or other materials. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly.

    PubMed

    Lee, Tae Il; Lee, Sangmin; Lee, Eungkyu; Sohn, Sungwoo; Lee, Yean; Lee, Sujeong; Moon, Geondae; Kim, Dohyang; Kim, Youn Sang; Myoung, Jae Min; Wang, Zhong Lin

    2013-06-04

    A high-yield solution-processed ultrathin (<10 nm) trigonal tellurium (t-Te) nanowire (NW) is introduced as a new class of piezoelectric nanomaterial with a six-fold higher piezoelectric constant compared to conventional ZnO NWs for a high-volume power-density nanogenerator (NG). While determining the energy-harvesting principle in a NG consisting of t-Te NW, it is theoretically and experimentally found that t-Te NW is piezoelectrically activated only by creating strain in its radial direction, along which it has an asymmetric crystal structure. Based upon this mechanism, a NG with a monolayer consisting of well-aligned t-Te NWs and a power density of 9 mW/cm(3) is fabricated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of annealing on the ferromagnetism and photoluminescence of Cu-doped ZnO nanowires.

    PubMed

    Xu, H J; Zhu, H C; Shan, X D; Liu, Y X; Gao, J Y; Zhang, X Z; Zhang, J M; Wang, P W; Hou, Y M; Yu, D P

    2010-01-13

    Room temperature ferromagnetic Cu-doped ZnO nanowires have been synthesized using the chemical vapor deposition method. By combining structural characterizations and comparative annealing experiments, it has been found that both extrinsic (CuO nanoparticles) and intrinsic (Zn(1-x)Cu(x)O nanowires) sources are responsible for the observed ferromagnetic ordering of the as-grown samples. As regards the former, annealing in Zn vapor led to a dramatic decrease of the ferromagnetism. For the latter, a reversible switching of the ferromagnetism was observed with sequential annealings in Zn vapor and oxygen ambience respectively, which agreed well with previous reports for Cu-doped ZnO films. In addition, we have for the first time observed low temperature photoluminescence changed with magnetic properties upon annealing in different conditions, which revealed the crucial role played by interstitial zinc in directly mediating high T(c) ferromagnetism and indirectly modulating the Cu-related structured green emission via different charge transfer transitions.

  20. ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire capacitor structure fabricated solely by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fujisawa, Hironori; Kuwamoto, Kei; Nakashima, Seiji; Shimizu, Masaru

    2016-02-01

    HfO2-based thin films are one of the key dielectric and ferroelectric materials in Si-CMOS LSIs as well as in oxide electronic nanodevices. In this study, we demonstrated the fabrication of a ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire (NW) capacitor structure solely by metalorganic chemical vapor deposition (MOCVD). 15-nm-thick dielectric (Hf,Zr)O2 and 40-nm-thick top ZnO electrode layers were uniformly grown by MOCVD on a ZnO NW template with average diameter, length, and aspect ratio of 110 nm, 10 µm, and ˜90, respectively. The diameter and aspect ratio of the resultant trilayerd NWs are 200-300 nm and above 30, respectively. The crystalline phase of HfO2 and stacked the structure are also discussed.

  1. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  2. Effect of Ag/Al co-doping method on optically p-type ZnO nanowires synthesized by hot-walled pulsed laser deposition

    PubMed Central

    2012-01-01

    Silver and aluminum-co-doped zinc oxide (SAZO) nanowires (NWs) of 1, 3, and 5 at.% were grown on sapphire substrates. Low-temperature photoluminescence (PL) was studied experimentally to investigate the p-type behavior observed by the exciton bound to a neutral acceptor (A0X). The A0X was not observed in the 1 at.% SAZO NWs by low-temperature PL because 1 at.% SAZO NWs do not have a Ag-O chemical bonding as confirmed by XPS measurement. The activation energies (Ea) of the A0X were calculated to be about 18.14 and 19.77 meV for 3 and 5 at.% SAZO NWs, respectively, which are lower than the activation energy of single Ag-doped NW which is about 25 meV. These results indicate that Ag/Al co-doping method is a good candidate to make optically p-type ZnO NWs. PMID:22647319

  3. A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires

    PubMed Central

    Yadav, Kavita; Mehta, B. R.; Bhattacharya, Saswata; Singh, J. P.

    2016-01-01

    Here, we demonstrate a facile approach for the preparation of ZnO nanowires (NWs) with tunable surface wettability that can be manipulated reversibly in a controlled manner from a superhydrophilic state to a superhydrophobic state. The as-synthesized ZnO NWs obtained by a chemical vapor deposition method are superhydrophilic with a contact angle (CA) value of ~0°. After H2 gas annealing at 300 °C for 90 minutes, ZnO NWs display superhydrophobic behavior with a roll-off angle less than 5°. However, O2 gas annealing converts these superhydrophobic ZnO NWs into a superhydrophilic state. For switching from superhydrophobic to superhydrophilic state and vice versa in cyclic manner, H2 and O2 gas annealing treatment was used, respectively. A model based on density functional theory indicates that the oxygen-related defects are responsible for CA switching. The water resistant properties of the ZnO NWs coating is found to be durable and can be applied to a variety of substrates including glass, metals, semiconductors, paper and even flexible polymers. PMID:27713536

  4. Zinc oxide nanowire networks for macroelectronic devices

    NASA Astrophysics Data System (ADS)

    Unalan, Husnu Emrah; Zhang, Yan; Hiralal, Pritesh; Dalal, Sharvari; Chu, Daping; Eda, Goki; Teo, K. B. K.; Chhowalla, Manish; Milne, William I.; Amaratunga, Gehan A. J.

    2009-04-01

    Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.

  5. Investigations into the impact of various substrates and ZnO ultra thin seed layers prepared by atomic layer deposition on growth of ZnO nanowire array

    PubMed Central

    2012-01-01

    The impact of various substrates and zinc oxide (ZnO) ultra thin seed layers prepared by atomic layer deposition on the geometric morphology of subsequent ZnO nanowire arrays (NWs) fabricated by the hydrothermal method was investigated. The investigated substrates included B-doped ZnO films, indium tin oxide films, single crystal silicon (111), and glass sheets. Scanning electron microscopy and X-ray diffraction measurements revealed that the geometry and aligment of the NWs were controlled by surface topography of the substrates and thickness of the ZnO seed layers, respectively. According to atomic force microscopy data, we suggest that the substrate, fluctuate amplitude and fluctuate frequency of roughness on ZnO seed layers have a great impact on the alignment of the resulting NWs, whereas the influence of the seed layers' texture was negligible. PMID:22759838

  6. Structural and optical characterization of ZnO nanowires grown on alumina by thermal evaporation method.

    PubMed

    Mute, A; Peres, M; Peiris, T C; Lourenço, A C; Jensen, Lars R; Monteiro, T

    2010-04-01

    Zinc oxide nanowires have been grown on alumina substrate by thermal evaporation of zinc nanopowder in the presence of oxygen flow. The growth was performed under ambient pressure and without the use of foreign catalyst. Scanning electron microscopy (SEM) observation showed that the as-grown sample consists of bulk ZnO crystal on the substrate surface with nanowires growing from this base. Growth mechanism of the observed morphology is suggested to be governed by the change of zinc vapour supersaturation during the growth process. X-ray diffraction (XRD) measurement was used to identify the crystalline phase of the nanowires. Optical properties of the nanowires were investigated using Raman scattering and photoluminescence (PL). The appearance of dominant, Raman active E2 (high) phonon mode in the Raman spectrum has confirmed the wurtzite hexagonal phase of the nanowires. With above bandgap excitation the low temperature PL recombination is dominated by donor bound exciton luminescence at -3.37 eV with a narrow full width at half maximum. Free exciton emission is also seen at low temperature and can be observed up to room temperature. The optical data indicates that the grown nanowires have high optical quality.

  7. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material.

  8. Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate

    NASA Astrophysics Data System (ADS)

    Lifson, Max L.; Levey, Christopher G.; Gibson, Ursula J.

    2013-10-01

    We report single-step growth of spatially localized ZnO nanowires of controlled diameter to enable improved performance of piezoelectric devices such as nanogenerators. This study is the first to demonstrate the combination of electrodeposition with zinc nitrate and sodium citrate in the growth solution. Electrodeposition through a thermally-grown silicon oxide mask results in localization, while the growth voltage and solution chemistry are tuned to control the nanowire geometry. We observe a competition between lateral (relative to the (0001) axis) citrate-related morphology and voltage-driven vertical growth which enables this control. High aspect ratios result with either pure nitrate or nitrate-citrate mixtures if large voltages are used, but low growth voltages permit the growth of large diameter nanowires in solution with citrate. Measurements of the current density suggest a two-step growth process. An oxide mask blocks the electrodeposition, and suppresses nucleation of thermally driven growth, permitting single-step lithography on low cost p-type silicon substrates.

  9. Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires.

    PubMed

    Pradel, Ken C; Uzuhashi, Jun; Takei, Toshiaki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukata, Naoki

    2018-08-17

    While it has multiple advantageous optoelectronic and piezoelectric properties, the application of zinc oxide has been limited by the lack of a stable p-type dopant. Recently, it was discovered that antimony doping can lead to stable p-type doping in ZnO, but one curious side effect of the doping process is the formation of voids inside the nanowire. While previously used as a signifier of successful doping, up until now, little research has been performed on these structures themselves. In this work, the effect of annealing on the size and microstructure of the voids was investigated using TEM and XRD, finding that the voids form around a region of Zn 7 Sb 2 O 12 . Furthermore, using Raman spectroscopy, a new peak associated with successful doping was identified. The most surprising finding, however, was the presence of water trapped inside the nanowire, showing that this is actually a composite structure. Water was initially discovered in the nanowires using atom probe tomography, and verified using Raman spectroscopy.

  10. Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures

    NASA Astrophysics Data System (ADS)

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    Using vertically grown hydrothermal ZnO nanowires, we demonstrate the assembly of fully functional piezoelectric energy harvesters on plastics substrates. A seedless hydrothermal process is employed for the growth of single crystalline vertically orientated ZnO NWs at around 100oC. Flexible NG are assembled using ∼7 μm thick PDMS polymer matrix on a 3x3cm substrate. A representative device with an active area of 4cm2 is characterised revealing average output voltage generation of ∼22mV (±1.2) and -32mV (±0.16) in the positive and negative cycles after 3-4mm periodic deflection at 20Hz. A power density of ∼288nW/cm3 is estimated for the device. It is envisaged that such energy scavengers may find potential applications targeting self-powered systems, sensors and on-body charging of electronics.

  11. Effect of morphology evolution on the thermoelectric properties of oxidized ZnO thin films

    NASA Astrophysics Data System (ADS)

    Liu, Shiying; Li, Guojian; Xiao, Lin; Jia, Baohai; Gao, Yang; Wang, Qiang

    2018-04-01

    The effects of nanowire content on the thermoelectric properties of ZnO films were investigated. The nanowire content of ZnO films was tuned by thermal oxidation of evaporated Zn films. The results showed that hexagonal and polyhedral morphologies on the surface of Zn films can be used to tune the nanowire content of ZnO films. Hexagonal nanoplates with a diameter of 100-350 nm readily grew ZnO nanowires with c-axis preferential orientation. Conversely, it was difficult to grow nanowires on polyhedral nanoparticles with diameters of 500-750 nm because the meeting of ZnO (101) and (001) facets suppressed nanowire growth. Thermoelectric parameters were strongly affected by nanowire content. In particular, carrier concentration increased with nanowire content. Carrier mobility also increased with nanowire content because the nanowires behaved as channels for electronic migration. The band gap of the films narrowed with increasing nanowire content because the binding energy of O 1s electrons with oxygen vacancies decreased. The maximum power factor of the film with high nanowire content (8.80 μW/m K2 at 530 K) was approximately 300% higher than that of the film with low nanowire content.

  12. Facile preparation of branched hierarchical ZnO nanowire arrays with enhanced photocatalytic activity: A photodegradation kinetic model

    NASA Astrophysics Data System (ADS)

    Ebrahimi, M.; Yousefzadeh, S.; Samadi, M.; Dong, Chunyang; Zhang, Jinlong; Moshfegh, A. Z.

    2018-03-01

    Branched hierarchical zinc oxide nanowires (BH-ZnO NWs) were fabricated successfully by a facile and rapid synthesis using two-step growth process. Initially, ZnO NWs have been prepared by anodizing zinc foil at room temperature and followed by annealing treatment. Then, the BH- ZnO NWs were grown on the ZnO NWs by a solution based method at very low temperature (31 oC). The BH- ZnO NWs with different aspect ratio were obtained by varying reaction time (0.5, 2, 5, 10 h). Photocatalytic activity of the samples was studied under both UV and visible light. The results indicated that the optimized BH-ZnO NWs (5 h) as a photocatalyst exhibited the highest photoactivity with about 3 times higher than the ZnO NWs under UV light. In addition, it was also determined that photodegradation rate constant (k) for the BH- ZnO NWs surface obeys a linear function with the branch length (l) and their correlation was described by using a proposed kinetic model.

  13. Piezotronic nanowire-based resistive switches as programmable electromechanical memories.

    PubMed

    Wu, Wenzhuo; Wang, Zhong Lin

    2011-07-13

    We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.

  14. Near-Field Imaging of Free Carriers in ZnO Nanowires with a Scanning Probe Tip Made of Heavily Doped Germanium

    NASA Astrophysics Data System (ADS)

    Sakat, Emilie; Giliberti, Valeria; Bollani, Monica; Notargiacomo, Andrea; Pea, Marialilia; Finazzi, Marco; Pellegrini, Giovanni; Hugonin, Jean-Paul; Weber-Bargioni, Alexander; Melli, Mauro; Sassolini, Simone; Cabrini, Stefano; Biagioni, Paolo; Ortolani, Michele; Baldassarre, Leonetta

    2017-11-01

    A novel scanning probe tip made of heavily doped semiconductor is fabricated and used instead of standard gold-coated tips in infrared scattering-type near-field microscopy. Midinfrared near-field microscopy experiments are conducted on ZnO nanowires with a lateral resolution better than 100 nm, using tips made of heavily electron-doped germanium with a plasma frequency in the midinfrared (plasma wavelength of 9.5 μ m ). Nanowires embedded in a dielectric matrix are imaged at two wavelengths, 11.3 and 8.0 μ m , above and below the plasma wavelength of the tips. An opposite sign of the imaging contrasts between the nanowire and the dielectric matrix is observed at the two infrared wavelengths, indicating a clear role of the free-electron plasma in the heavily doped germanium tip in building the imaging contrast. Electromagnetic simulations with a multispherical dipole model accounting for the finite size of the tip are well consistent with the experiments. By comparison of the simulated and measured imaging contrasts, an estimate for the local free-carrier density in the investigated ZnO nanowires in the low 1019 cm-3 range is retrieved. The results are benchmarked against the scattering intensity and phase maps obtained on the same sample with a gold-coated probe tip in pseudoheterodyne detection mode.

  15. The impact of nanocontact on nanowire based nanoelectronics.

    PubMed

    Lin, Yen-Fu; Jian, Wen-Bin

    2008-10-01

    Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been considered yet. High quality ZnO nanowires with a small deviation and an average diameter of 38 nm were synthesized to fabricate more than thirty nanowire devices. According to temperature behaviors of current-voltage curves and resistances, the devices could be grouped into three types. Type I devices expose thermally activated transport in ZnO nanowires and they could be considered as two Ohmic nanocontacts of the Ti electrode contacting directly on the nanowire. For those nanowire devices having a high resistance at room temperatures, they can be fitted accurately with the thermionic-emission theory and classified into type II and III devices according to their rectifying and symmetrical current-voltage behaviors. The type II device has only one deteriorated nanocontact and the other one Ohmic contact on single ZnO nanowire. An insulating oxide layer with thickness less than 20 nm should be introduced to describe electron hopping in the nanocontacts, so as to signalize one- and high-dimensional hopping conduction in type II and III devices.

  16. Template-Assisted Hydrothermal Growth of One-Dimensional Zinc Oxide Nanowires for Photocatalytic Application.

    PubMed

    Ma, Shuai-Shuai; Xu, Peng; Cai, Zhi-Lan; Li, Qing; Ye, Zhao-Lian; Zhou, Yu-Ming

    2018-07-01

    One-dimensional (1D) semiconductor ZnO nanowires have been successfully synthesized by a novel soft-chemical hydrothermal method with allylpolyethoxy amino carboxylate (AA-APEA) at low temperature. Their structure and properties have been characterized by a series of techniques, including X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). It was found that ZnO nanowires with diameters around 50 nm and lengths up to about several micrometers are well-distributed. The photocatalytic activity toward degradation of methylene blue (MB) aqueous solution under ultraviolet (UV) was investigated and the results showed that the ZnO nanowires exhibit a markedly higher photoactivity compared to the ZnO nanoparticles which were obtained without AA-APEA polymer assistant, and it can be ascribed to the special 1D morphology of the ZnO nanowires. In particular, the rate of degradation of the ZnO nanowires was 11 times faster than that of ZnO nanoparticles. In addition, the ZnO nanowires could be easily recycled in UV photocatalytic activity. These observations could promote new applications of photocatalyst for wastewater treatment utilizing oxide semiconductor nanostructures.

  17. Production of zinc oxide nanowires power with precisely defined morphology

    NASA Astrophysics Data System (ADS)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  18. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  19. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.

  20. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    NASA Astrophysics Data System (ADS)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  1. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  2. Zinc oxide inverse opal enzymatic biosensor

    NASA Astrophysics Data System (ADS)

    You, Xueqiu; Pikul, James H.; King, William P.; Pak, James J.

    2013-06-01

    We report ZnO inverse opal- and nanowire (NW)-based enzymatic glucose biosensors with extended linear detection ranges. The ZnO inverse opal sensors have 0.01-18 mM linear detection range, which is 2.5 times greater than that of ZnO NW sensors and 1.5 times greater than that of other reported ZnO sensors. This larger range is because of reduced glucose diffusivity through the inverse opal geometry. The ZnO inverse opal sensors have an average sensitivity of 22.5 μA/(mM cm2), which diminished by 10% after 35 days, are more stable than ZnO NW sensors whose sensitivity decreased by 10% after 7 days.

  3. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  4. Modelling of electron beam induced nanowire attraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, Lucas A.; Benson, Niels, E-mail: niels.benson@uni-due.de; Schmechel, Roland

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical,more » and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.« less

  5. Formation of Ordered and Disordered Dielectric/metal Nanowire Arrays and their Plasmonic Behavior

    DTIC Science & Technology

    2007-01-01

    sheath geometry. 2. EXPERIMENTAL PROCEDURES Several different nanowire systems have been grown, including random Ga2O3 nanowires, InAs...nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved by the controlled oxidation...CLOSELY-SPACED PARALLEL ZnO NANOWIRES AND CROSSED Ga2O3 NANOWIRES. As discussed above, due to the far separation of the gold colloid catalyst in the

  6. Enhanced H2 sensitivity at room temperature of ZnO nanowires functionalized by Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Fan, Guanghua; Qu, Shiliang; Wang, Qiang

    2011-10-01

    For sensitive detection of H2, ZnO nanowires networks decorated with photo-decomposed Pd nanoparticles were fabricated between femtosecond laser-writing interdigitated electrodes by chemical vapor deposition method. When H2 concentration is increased from 20 to 4000 ppm at room temperature, sensitivity of the sample is increased from 3.7% to 1017.9%. The high sensitivity can be explained by considering the reaction between the adsorbed O2- and the disassociated H atoms facilitated by Pd nanoparticles. This mechanism is further supported by the H2 response results under UV light illumination, which can reduce the amount of O2- on the ZnO surface, leading to depressed sensitivity. The sensor also shows high selectivity, long-term stability, and ultra-low power consumption of nanowatt level, due to the novel fabrication process.

  7. Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires.

    PubMed

    Li, Xiao; Wang, Yu-Hsuan; Zhao, Chen; Liu, Xinyu

    2014-12-24

    This paper describes a new type of paper-based piezoelectric touch pad integrating zinc oxide nanowires (ZnO NWs), which can serve as user interfaces in paper-based electronics. The sensing functionality of these touch pads is enabled by the piezoelectric property of ZnO NWs grown on paper using a simple, cost-efficient hydrothermal method. A piece of ZnO-NW paper with two screen-printed silver electrodes forms a touch button, and touch-induced electric charges from the button are converted into a voltage output using a charge amplifier circuit. A touch pad consisting of an array of buttons can be readily integrated into paper-based electronic devices, allowing user input of information for various purposes such as programming, identification checking, and gaming. This novel design features ease of fabrication, low cost, ultrathin structure, and good compatibility with techniques in printed electronics, and further enriches the available technologies of paper-based electronics.

  8. Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays.

    PubMed

    Ku, Nai-Jen; Liu, Guocheng; Wang, Chao-Hung; Gupta, Kapil; Liao, Wei-Shun; Ban, Dayan; Liu, Chuan-Pu

    2017-09-28

    Piezoelectric nanogenerators have been investigated to generate electricity from environmental vibrations due to their energy conversion capabilities. In this study, we demonstrate an optimal geometrical design of inertial vibration direct-current piezoelectric nanogenerators based on obliquely aligned InN nanowire (NW) arrays with an optimized oblique angle of ∼58°, and driven by the inertial force of their own weight, using a mechanical shaker without any AC/DC converters. The nanogenerator device manifests potential applications not only as a unique energy harvesting device capable of scavenging energy from weak mechanical vibrations, but also as a sensitive strain sensor. The maximum output power density of the nanogenerator is estimated to be 2.9 nW cm -2 , leading to an improvement of about 3-12 times that of vertically aligned ZnO NW DC nanogenerators. Integration of two nanogenerators also exhibits a linear increase in the output power, offering an enormous potential for the creation of self-powered sustainable nanosystems utilizing incessantly natural ambient energy sources.

  9. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly.

  10. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  11. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi

    2017-12-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.

  12. TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating

    PubMed Central

    Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan

    2017-01-01

    Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265

  13. Low thermal emissivity surfaces using AgNW thin films

    NASA Astrophysics Data System (ADS)

    Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.

    2017-12-01

    The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.

  14. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong; Stein, Aaron

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  15. Extreme Carrier Depletion and Superlinear Photoconductivity in Ultrathin Parallel-Aligned ZnO Nanowire Array Photodetectors Fabricated by Infiltration Synthesis

    DOE PAGES

    Nam, Chang-Yong; Stein, Aaron

    2017-11-15

    Ultrathin semiconductor nanowires enable high-performance chemical sensors and photodetectors, but their synthesis and device integration by standard complementary metal-oxide-semiconductor (CMOS)-compatible processes remain persistent challenges. This work demonstrates fully CMOS-compatible synthesis and integration of parallel-aligned polycrystalline ZnO nanowire arrays into ultraviolet photodetectors via infiltration synthesis, material hybridization technique derived from atomic layer deposition. The nanowire photodetector features unique, high device performances originating from extreme charge carrier depletion, achieving photoconductive on–off ratios of >6 decades, blindness to visible light, and ultralow dark currents as low as 1 fA, the lowest reported for nanostructure-based photoconductive photodetectors. Surprisingly, the low dark current is invariantmore » with increasing number of nanowires and the photodetector shows unusual superlinear photoconductivity, observed for the first time in nanowires, leading to increasing detector responsivity and other parameters for higher incident light powers. Temperature-dependent carrier concentration and mobility reveal the photoelectrochemical-thermionic emission process at grain boundaries, responsible for the observed unique photodetector performances and superlinear photoconductivity. Here, the results elucidate fundamental processes responsible for photogain in polycrystalline nanostructures, providing useful guidelines for developing nanostructure-based detectors and sensors. Lastly, the developed fully CMOS-compatible nanowire synthesis and device fabrication methods also have potentials for scalable integration of nanowire sensor devices and circuitries.« less

  16. Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires

    PubMed Central

    2011-01-01

    1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620

  17. Catalyst-free growth of ZnO nanowires on ITO seed/glass by thermal evaporation method: Effects of ITO seed layer thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsultany, Forat H., E-mail: foratusm@gmail.com; Ahmed, Naser M.; Hassan, Z.

    A seed/catalyst-free growth of ZnO nanowires (ZnO-NWs) on a glass substrate were successfully fabricated using thermal evaporation technique. These nanowires were grown on ITO seed layers of different thicknesses of 25 and 75 nm, which were deposited on glass substrates by radio frequency (RF) magnetron sputtering. Prior to synthesized ITO nanowires, the sputtered ITO seeds were annealed using the continuous wave (CW) CO2 laser at 450 °C in air for 15 min. The effect of seed layer thickness on the morphological, structural, and optical properties of ZnO-NWs were systematically investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM),more » and UV-Vis spectrophotometer.« less

  18. Upconversion luminescence from Er-N codoped of ZnO nanowires prepared by ion implantation method

    NASA Astrophysics Data System (ADS)

    Zhong, Kun; Xu, Jie; Su, Jing; Chen, Yu lin

    2011-02-01

    Nitrogen and erbium co-doped of ZnO nanowires (NWs) are fabricated by ion implantation and subsequent annealing in air. The incorporation of Er3+ and N+ ions is verified by energy dispersive X-ray spectroscopy (EDS) and Raman spectra. The samples exhibit upconversion photoluminescence around ∼550 nm and ∼660 nm under an excitation at 980 nm. It is discovered that the N-doped can drastically increase the upconversion photoluminescence intensity by modifying the local structure around Er3+ in ZnO matrix. The enhancement of the PL intensity by the N-doped is caused by the formation of ErO6-xNx octahedron complexes. With the increase of the annealing temperature (Ta), the Er3+ ions diffuse towards the surface of the NWs, which benefits the red emission and evokes the variation of intensity ratio owing to the existence of some organic groups.

  19. Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Rahm, Andreas; Nobis, Thomas; Lorenz, Michael; Zimmermann, Gregor; Boukos, Nikos; Travlos, Anastasios; Grundmann, Marius

    ZnO and Zn0.98Mg0.02O nanowires have been grown by high-pressure pulsed laser deposition on sapphire substrates covered with gold colloidal particles as nucleation sites. We present a detailed study of the nanowire size and length distribution and of the growth evolution. We find that the aspect ratio varies linearly with deposition time. The linearity coefficient is independent of the catalytic gold particle size and lateral nanowire density. The superior structural quality of the whiskers is proven by X-ray diffraction and transmission electron microscopy. The defect-free ZnO nanowires exhibit a FWHM(2θ-ω) of the ZnO(0002) reflection of 22 arcsec. We show (0-11) step habit planes on the side faces of the nanowires that are a few atomic steps in height. The microscopic homogeneity of the optical properties is confirmed by temperature-dependent cathodoluminescence.

  20. Epitaxial-Growth-Induced Junction Welding of Silver Nanowire Network Electrodes.

    PubMed

    Kang, Hyungseok; Song, Sol-Ji; Sul, Young Eun; An, Byeong-Seon; Yin, Zhenxing; Choi, Yongsuk; Pu, Lyongsun; Yang, Cheol-Woong; Kim, Youn Sang; Cho, Sung Min; Kim, Jung-Gu; Cho, Jeong Ho

    2018-05-22

    In this study, we developed a roll-to-roll Ag electroplating process for metallic nanowire electrodes using a galvanostatic mode. Electroplating is a low-cost and facile method for deposition of metal onto a target surface with precise control of both the composition and the thickness. Metallic nanowire networks [silver nanowires (AgNWs) and copper nanowires (CuNWs)] coated onto a polyethylene terephthalate (PET) film were immersed directly in an electroplating bath containing AgNO 3 . Solvated silver ions (Ag + ions) were deposited onto the nanowire surface through application of a constant current via an external circuit between the nanowire networks (cathode) and a Ag plate (anode). The amount of electroplated Ag was systematically controlled by changing both the applied current density and the electroplating time, which enabled precise control of the sheet resistance and optical transmittance of the metallic nanowire networks. The optimized Ag-electroplated AgNW (Ag-AgNW) films exhibited a sheet resistance of ∼19 Ω/sq at an optical transmittance of 90% (550 nm). A transmission electron microscopy study confirmed that Ag grew epitaxially on the AgNW surface, but a polycrystalline Ag structure was formed on the CuNW surface. The Ag-electroplated metallic nanowire electrodes were successfully applied to various electronic devices such as organic light-emitting diodes, triboelectric nanogenerators, and a resistive touch panel. The proposed roll-to-roll Ag electroplating process provides a simple, low-cost, and scalable method for the fabrication of enhanced transparent conductive electrode materials for next-generation electronic devices.

  1. Fast Response and High Sensitivity of ZnO Nanowires-Cobalt Phthalocyanine Heterojunction Based H2S Sensor.

    PubMed

    Kumar, Ashwini; Samanta, Soumen; Singh, Ajay; Roy, Mainak; Singh, Surendra; Basu, Saibal; Chehimi, Mohmad M; Roy, Kallol; Ramgir, Niranjan; Navaneethan, M; Hayakawa, Y; Debnath, Anil K; Aswal, Dinesh K; Gupta, Shiv K

    2015-08-19

    The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.

  2. High-sensitivity silicon nanowire phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Dan, Yaping

    2014-08-01

    Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.

  3. Dislocation-induced nanoparticle decoration on a GaN nanowire.

    PubMed

    Yang, Bing; Yuan, Fang; Liu, Qingyun; Huang, Nan; Qiu, Jianhang; Staedler, Thorsten; Liu, Baodan; Jiang, Xin

    2015-02-04

    GaN nanowires with homoepitaxial decorated GaN nanoparticles on their surface along the radial direction have been synthesized by means of a chemical vapor deposition method. The growth of GaN nanowires is catalyzed by Au particles via the vapor-liquid-solid (VLS) mechanism. Screw dislocations are generated along the radial direction of the nanowires under slight Zn doping. In contrast to the metal-catalyst-assisted VLS growth, GaN nanoparticles are found to prefer to nucleate and grow at these dislocation sites. High-resolution transmission electron microscopy (HRTEM) analysis demonstrates that the GaN nanoparticles possess two types of epitaxial orientation with respect to the corresponding GaN nanowire: (I) [1̅21̅0]np//[1̅21̅0]nw, (0001)np//(0001)nw; (II) [1̅21̅3]np//[12̅10]nw, (101̅0)np//(101̅0)nw. An increased Ga signal in the energy-dispersive spectroscopy (EDS) profile lines of the nanowires suggests GaN nanoparticle growth at the edge surface of the wires. All the crystallographic results confirm the importance of the dislocations with respect to the homoepitaxial growth of the GaN nanoparticles. Here, screw dislocations situated on the (0001) plane provide the self-step source to enable nucleation of the GaN nanoparticles.

  4. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  5. a-Si:H/SiNW shell/core for SiNW solar cell applications

    PubMed Central

    2013-01-01

    Vertically aligned silicon nanowires have been synthesized by the chemical etching of silicon wafers. The influence of a hydrogenated amorphous silicon (a-Si:H) layer (shell) on top of a silicon nanowire (SiNW) solar cell has been investigated. The optical properties of a-Si:H/SiNWs and SiNWs are examined in terms of optical reflection and absorption properties. In the presence of the a-Si:H shell, 5.2% reflection ratio in the spectral range (250 to 1,000 nm) is achieved with a superior absorption property with an average over 87% of the incident light. In addition, the characteristics of the solar cell have been significantly improved, which exhibits higher open-circuit voltage, short-circuit current, and efficiency by more than 15%, 12%, and 37%, respectively, compared with planar SiNW solar cells. Based on the current–voltage measurements and morphology results, we show that the a-Si:H shell can passivate the defects generated by wet etching processes. PMID:24195734

  6. Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study.

    PubMed

    Lupan, Oleg; Schütt, Fabian; Postica, Vasile; Smazna, Daria; Mishra, Yogendra Kumar; Adelung, Rainer

    2017-11-07

    In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH 3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm,  with a response of about 4 to 10 ppm NH 3 vapor at room temperature.

  7. Fast-Response Single-Nanowire Photodetector Based on ZnO/WS2 Core/Shell Heterostructures.

    PubMed

    Butanovs, Edgars; Vlassov, Sergei; Kuzmin, Alexei; Piskunov, Sergei; Butikova, Jelena; Polyakov, Boris

    2018-04-25

    The surface plays an exceptionally important role in nanoscale materials, exerting a strong influence on their properties. Consequently, even a very thin coating can greatly improve the optoelectronic properties of nanostructures by modifying the light absorption and spatial distribution of charge carriers. To use these advantages, 1D/1D heterostructures of ZnO/WS 2 core/shell nanowires with a-few-layers-thick WS 2 shell were fabricated. These heterostructures were thoroughly characterized by scanning and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Then, a single-nanowire photoresistive device was assembled by mechanically positioning ZnO/WS 2 core/shell nanowires onto gold electrodes inside a scanning electron microscope. The results show that a few layers of WS 2 significantly enhance the photosensitivity in the short wavelength range and drastically (almost 2 orders of magnitude) improve the photoresponse time of pure ZnO nanowires. The fast response time of ZnO/WS 2 core/shell nanowire was explained by electrons and holes sinking from ZnO nanowire into WS 2 shell, which serves as a charge carrier channel in the ZnO/WS 2 heterostructure. First-principles calculations suggest that the interface layer i-WS 2 , bridging ZnO nanowire surface and WS 2 shell, might play a role of energy barrier, preventing the backward diffusion of charge carriers into ZnO nanowire.

  8. Increased short circuit current in organic photovoltaic using high-surface area electrode based on ZnO nanowires decorated with CdTe quantum dots.

    PubMed

    Aga, R S; Gunther, D; Ueda, A; Pan, Z; Collins, W E; Mu, R; Singer, K D

    2009-11-18

    A photosensitized high-surface area transparent electrode has been employed to increase the short circuit current of a photovoltaic device with a blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as the active layer. This is achieved by directly growing ZnO nanowires on indium tin oxide (ITO) film via a physical vapor method. The nanowire surface is then decorated with CdTe quantum dots by pulsed electron-beam deposition (PED). The nanowires alone provided a 20-fold increase in the short circuit current under visible light illumination. This was further increased by a factor of approximately 1.5 by the photosensitization effect of CdTe, which has an optical absorption of up to 820 nm.

  9. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    PubMed Central

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578

  10. Exogenous Gene Integration for Microalgal Cell Transformation Using a Nanowire-Incorporated Microdevice.

    PubMed

    Bae, Sunwoong; Park, Seunghye; Kim, Jung; Choi, Jong Seob; Kim, Kyung Hoon; Kwon, Donguk; Jin, EonSeon; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-16

    Superior green algal cells showing high lipid production and rapid growth rate are considered as an alternative for the next generation green energy resources. To achieve the biomass based energy generation, transformed microalgae with superlative properties should be developed through genetic engineering. Contrary to the normal cells, microalgae have rigid cell walls, so that target gene delivery into cells is challengeable. In this study, we report a ZnO nanowire-incorporated microdevice for a high throughput microalgal transformation. The proposed microdevice was equipped with not only a ZnO nanowire in the microchannel for gene delivery into cells but also a pneumatic polydimethylsiloxane (PDMS) microvalve to modulate the cellular attachment and detachment from the nanowire. As a model, hygromycin B resistance gene cassette (Hyg3) was functionalized on the hydrothermally grown ZnO nanowires through a disulfide bond and released into green algal cells, Chlamydomonas reinhardtii, by reductive cleavage. During Hyg3 gene delivery, a monolithic PDMS membrane was bent down, so that algal cells were pushed down toward ZnO nanowires. The supply of vacuum in the pneumatic line made the PDMS membrane bend up, enabling the gene delivered algal cells to be recovered from the outlet of the microchannel. We successfully confirmed Hyg3 gene integrated in microalgae by amplifying the inserted gene through polymerase chain reaction (PCR) and DNA sequencing. The efficiency of the gene delivery to algal cells using the ZnO nanowire-incorporated microdevice was 6.52 × 10(4)- and 9.66 × 10(4)-fold higher than that of a traditional glass bead beating and electroporation.

  11. High-gain subnanowatt power consumption hybrid complementary logic inverter with WSe2 nanosheet and ZnO nanowire transistors on glass.

    PubMed

    Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil

    2015-01-07

    A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  13. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors

    PubMed Central

    Stern, Eric; Wagner, Robin; Sigworth, Fred J.; Breaker, Ronald; Fahmy, Tarek M.; Reed, Mark A.

    2009-01-01

    Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors. PMID:17914853

  14. Importance of the Debye screening length on nanowire field effect transistor sensors.

    PubMed

    Stern, Eric; Wagner, Robin; Sigworth, Fred J; Breaker, Ronald; Fahmy, Tarek M; Reed, Mark A

    2007-11-01

    Nanowire field effect transistors (NW-FETs) can serve as ultrasensitive detectors for label-free reagents. The NW-FET sensing mechanism assumes a controlled modification in the local channel electric field created by the binding of charged molecules to the nanowire surface. Careful control of the solution Debye length is critical for unambiguous selective detection of macromolecules. Here we show the appropriate conditions under which the selective binding of macromolecules is accurately sensed with NW-FET sensors.

  15. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication and characterization of Ga-doped ZnO / Si heterojunction nanodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Akgul, Funda Aksoy

    2017-02-01

    In this study, temperature-dependent electrical properties of n-type Ga-doped ZnO thin film / p-type Si nanowire heterojunction diodes were reported. Metal-assisted chemical etching (MACE) process was performed to fabricate Si nanowires. Ga-doped ZnO films were then deposited onto nanowires through chemical bath deposition (CBD) technique to build three-dimensional nanowire-based heterojunction diodes. Fabricated devices revealed significant diode characteristics in the temperature range of 220 - 360 K. Electrical measurements shown that diodes had a well-defined rectifying behavior with a good rectification ratio of 103 ±3 V at room temperature. Ideality factor (n) were changed from 2.2 to 1.2 with increasing temperature.

  17. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  18. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  19. First-principles simulation on Seebeck coefficient in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Nakamura, Koichi

    2017-06-01

    The Seebeck coefficients of silicon nanowires (SiNWs) were simulated on the basis of first-principles calculation using various atomistic structure models. The electronic band structures of fully hydrogen-terminated SiNW models give the correct image of quantum mechanical confinement from bulk silicon to SiNW for each axial direction, and the change in the density of states by dimensional reduction to SiNW enhances the thermoelectric performance in terms of the Seebeck coefficient, compared with those of bulk silicon and silicon nanosheets. The uniaxial tensile strain for the SiNW models does not strongly affect the Seebeck coefficient even for the SiNW system with giant piezoresistivity. In contrast, dangling bonds on a wire wall sharply reduce the Seebeck coefficient of SiNW and totally degrade thermoelectric performance from the viewpoint of the power factor. The exclusion of dangling bonds is a key element for the design and application of high-performance thermoelectric nanowires of semiconducting materials.

  20. A generic approach for vertical integration of nanowires.

    PubMed

    Latu-Romain, E; Gilet, P; Noel, P; Garcia, J; Ferret, P; Rosina, M; Feuillet, G; Lévy, F; Chelnokov, A

    2008-08-27

    We report on the collective integration technology of vertically aligned nanowires (NWs). Si and ZnO NWs have been used in order to develop a generic technological process. Both mineral and organic planarizations of the as-grown nanowires have been achieved. Chemical vapour deposition (CVD) oxides, spin on glass (SOG), and polymer have been investigated as filling materials. Polishing and/or etching of the composite structures have been set up so as to obtain a suitable morphology for the top and bottom electrical contacts. Electrical and optical characterizations of the integrated NWs have been performed. Contacts ohmicity has been demonstrated and specific contact resistances have been reported. The photoconducting properties of polymer-integrated ZnO NWs have also been investigated in the UV-visible range through collective electrical contacts. A small increase of the resistivity in the ZnO NWs under sub-bandgap illumination has been observed and discussed. A comparison of the photoluminescence (PL) spectra at 300 K of the as-grown and SOG-integrated ZnO nanowires has shown no significant impact of the integration process on the crystal quality of the NWs.

  1. Spin wave filtering and guiding in Permalloy/iron nanowires

    NASA Astrophysics Data System (ADS)

    Silvani, R.; Kostylev, M.; Adeyeye, A. O.; Gubbiotti, G.

    2018-03-01

    We have investigated the spin wave filtering and guiding properties of periodic array of single (Permalloy and Fe) and bi-layer (Py/Fe) nanowires (NWs) by means of Brillouin light scattering measurements and micromagnetic simulations. For all the nanowire arrays, the thickness of the layers is 10 nm while all NWs have the same width of 340 nm and edge-to-edge separation of 100 nm. Spin wave dispersion has been measured in the Damon-Eshbach configuration for wave vector either parallel or perpendicular to the nanowire length. This study reveals the filtering property of the spin waves when the wave vector is perpendicular to the NW length, with frequency ranges where the spin wave propagation is permitted separated by frequency band gaps, and the guiding property of NW when the wave vector is oriented parallel to the NW, with spin wave modes propagating in parallel channels in the central and edge regions of the NW. The measured dispersions were well reproduced by micromagnetic simulations, which also deliver the spatial profiles for the modes at zero wave vector. To reproduce the dispersion of the modes localized close to the NW edges, uniaxial anisotropy has been introduced. In the case of Permalloy/iron NWs, the obtained results have been compared with those for a 20 nm thick effective NW having average magnetic properties of the two materials.

  2. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  3. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    NASA Astrophysics Data System (ADS)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  4. Fabrication and RF characterization of a single nickel silicide nanowire for an interconnect.

    PubMed

    Lee, Dongjin; Kang, Myunggil; Hong, Suheon; Hwang, Donghoon; Heo, Keun; Joo, Won-Jae; Kim, Sangsig; Whang, Dongmok; Hwang, Sung Woo

    2013-09-01

    We fabricated a nickel silicide nanowire (NiSi NW) device with a low thermal budget and characterized it by measuring the S-parameters in the radio-frequency (RF) regime. A single silicon nanowire (Si NW) was assembled on a substrate with a two-port coplanar waveguide structure using the dielectrophoresis method. Then, the Si NW on the device was perfectly transformed into a NiSi NW. The NiSi NW device was characterized by performing measurements in the DC and RF regimes. The transformation into the NiSi NW resulted in reducing about three-order more the resistance than before the transformation. Hence, the transmission of the NiSi NW device was 25 dB higher than that of the Si NW device up to gigahertz. We also discussed extracting the intrinsic properties of the NiSi NW by using de-embedding, circuit modeling, and simulation.

  5. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; ...

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  6. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    DOE PAGES

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; ...

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior wasmore » modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. Finally, this work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.« less

  7. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal ...177 mV and a short-circuit current of 19.2 nA. Schottky and ohmic contacts between a single GeNW and different metal electrodes were systematically...containing solution was spread out onto asymmetric metal electrodes to produce a rectifying current flow. Under one-sun illumination, the GeNW

  8. Study of quantum confinement effects in ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  9. Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor

    NASA Astrophysics Data System (ADS)

    Lee, Ryoongbin; Kwon, Dae Woong; Kim, Sihyun; Kim, Sangwan; Mo, Hyun-Sun; Kim, Dae Hwan; Park, Byung-Gook

    2017-12-01

    In this study, we investigated the effects of nanowire size on the current sensitivity of silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs). The changes in on-current (I on) and resistance according to pH were measured in fabricated SiNW ISFETs of various lengths and widths. As a result, it was revealed that the sensitivity expressed as relative I on change improves as the width decreases. Through technology computer-aided design (TCAD) simulation analysis, the width dependence on the relative I on change can be explained by the observation that the target molecules located at the edge region along the channel width have a stronger effect on the sensitivity as the SiNW width is reduced. Additionally, the length dependence on the sensitivity can be understood in terms of the resistance ratio of the fixed parasitic resistance, including source/drain resistance, to the varying channel resistance as a function of channel length.

  10. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    NASA Astrophysics Data System (ADS)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  11. GaAs quantum dots in a GaP nanowire photodetector

    NASA Astrophysics Data System (ADS)

    Kuyanov, P.; McNamee, S. A.; LaPierre, R. R.

    2018-03-01

    We report the structural, optical and electrical properties of GaAs quantum dots (QDs) embedded along GaP nanowires. The GaP nanowires contained p-i-n junctions with 15 consecutively grown GaAs QDs within the intrinsic region. The nanowires were grown by molecular beam epitaxy using the self-assisted vapor-liquid-solid process. The crystal structure of the NWs alternated between twinned ZB and WZ as the composition along the NW alternated between the GaP barriers and the GaAs QDs, respectively, leading to a polytypic structure with a periodic modulation of the NW sidewall facets. Photodetector devices containing QDs showed absorption beyond the bandgap of GaP in comparison to nanowires without QDs. Voltage-dependent measurements suggested a field emission process of carriers from the QDs.

  12. Contacts to Semiconductor Nanowires

    DTIC Science & Technology

    2009-10-03

    SiNW diameters and the amount of metal deposited, or alternatively, the atomic ratio between Pt and Si. The uniformity of the silicided NWs was...program. The Schottky contact is a metal silicide formed by rapid thermal annealing of the deposited contact metal . The θ- Ni2Si/n-Si NW Schottky...decision. unless so designated by other documentation. 14. ABSTRACT Metal contacts to semiconductor nanowires share similarities with their thin-film

  13. EDITORIAL: Nanowires for energy Nanowires for energy

    NASA Astrophysics Data System (ADS)

    LaPierre, Ray; Sunkara, Mahendra

    2012-05-01

    This special issue of Nanotechnology focuses on studies illustrating the application of nanowires for energy including solar cells, efficient lighting and water splitting. Over the next three decades, nanotechnology will make significant contributions towards meeting the increased energy needs of the planet, now known as the TeraWatt challenge. Nanowires in particular are poised to contribute significantly in this development as presented in the review by Hiralal et al [1]. Nanowires exhibit light trapping properties that can act as a broadband anti-reflection coating to enhance the efficiency of solar cells. In this issue, Li et al [2] and Wang et al [3] present the optical properties of silicon nanowire and nanocone arrays. In addition to enhanced optical properties, core-shell nanowires also have the potential for efficient charge carrier collection across the nanowire diameter as presented in the contribution by Yu et al [4] for radial junction a-Si solar cells. Hybrid approaches that combine organic and inorganic materials also have potential for high efficiency photovoltaics. A Si-based hybrid solar cell is presented by Zhang et al [5] with a photoconversion efficiency of over 7%. The quintessential example of hybrid solar cells is the dye-sensitized solar cell (DSSC) where an organic absorber (dye) coats an inorganic material (typically a ZnO nanostructure). Herman et al [6] present a method of enhancing the efficiency of a DSSC by increasing the hetero-interfacial area with a unique hierarchical weeping willow ZnO structure. The increased surface area allows for higher dye loading, light harvesting, and reduced charge recombination through direct conduction along the ZnO branches. Another unique ZnO growth method is presented by Calestani et al [7] using a solution-free and catalyst-free approach by pulsed electron deposition (PED). Nanowires can also make more efficient use of electrical power. Light emitting diodes, for example, will eventually become the

  14. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    DOEpatents

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  15. Semiconductor Nanowires and Nanotubes for Energy Conversion

    NASA Astrophysics Data System (ADS)

    Fardy, Melissa Anne

    Se nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at 300 K. In addition, using a field-effect gated device, the Seebeck coefficient of single PbSe nanowires could be tuned from 64 to 193 muV˙K-1. This direct electrical field control of the electrical conductivity and Seebeck coefficient suggests a powerful strategy for optimizing ZT in thermoelectric devices and these results represent the first demonstration of field-effect modulation of the thermoelectric figure of merit in a single semiconductor nanowire. This novel strategy for thermoelectric property modulation could prove especially important in optimizing the thermoelectric properties of semiconductors where reproducible doping is difficult to achieve. Recent theoretical work has shown large enhancements in ZT for single-crystal nanowires containing nanoscale interfaces along their lengths. M2O3(ZnO) n ( M = In, Ga, Fe) superlattice nanowires were synthesized via a novel solid-state diffusion approach to investigate this possible enhancement. Using atomic resolution Z-contrast STEM imaging a detailed structural analysis was performed on In2-xGaxO3(ZnO) n nanowires, leading to the discovery that octahedral inclusions within the superlattice structure are likely generated through a defect-assisted process. Single-nanowire thermal and electrical measurements on In2-x GaxO3(ZnO)n reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, giving an order of magnitude enhancement over similar bulk materials at room temperature. This is the first report of enhancement of all three thermoelectric parameters (Seebeck coefficient, electrical conductivity, and thermal resistivity) for a nanowire system. Photoelectrochemical water splitting is another exciting renewable energy application that can

  16. Review on the dynamics of semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Röder, Robert; Ronning, Carsten

    2018-03-01

    Semiconductor optoelectronic devices have contributed tremendously to the technological progress in the past 50-60 years. Today, they also play a key role in nanophotonics stimulated by the inherent limitations of electronic integrated circuits and the growing demand for faster communications on chip. In particular, the field of ‘nanowire photonics’ has emerged including the search for coherent light sources with a nano-scaled footprint. The past decade has been dedicated to find suitable semiconductor nanowire (NW) materials for such nanolasers. Nowadays, such NW lasers consistently work at room temperature covering a huge spectral range from the ultraviolet down to the mid-infrared depending on the band gap of the NW material. Furthermore, first approaches towards the modification and optimization of such NW laser devices have been demonstrated. The underlying dynamics of the electronic and photonic NW systems have also been studied very recently, as they need to be understood in order to push the technological relevance of nano-scaled coherent light sources. Therefore, this review will first present novel measurement approaches in order to study the ultrafast temporal and optical mode dynamics of individual NW laser devices. Furthermore, these fundamental new insights are reviewed and deeply discussed towards the efficient control and adjustment of the dynamics in semiconductor NW lasers.

  17. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielinski, Ashley R.; Boban, Mathew; He, Yang

    2017-01-24

    A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety ofmore » liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.« less

  18. Thermoelectric properties of semiconductor nanowire networks

    DOE PAGES

    Roslyak, Oleksiy; Piryatinski, Andrei

    2016-03-28

    To examine the thermoelectric (TE) properties of a semiconductor nanowire (NW) network, we propose a theoretical approach mapping the TE network on a two-port network. In contrast to a conventional single-port (i.e., resistor)network model, our model allows for large scale calculations showing convergence of TE figure of merit, ZT, with an increasing number of junctions. Using this model, numerical simulations are performed for the Bi 2Te 3 branched nanowire (BNW) and Cayley tree NW (CTNW) network. We find that the phonon scattering at the network junctions plays a dominant role in enhancing the network ZT. Specifically, disordered BNW and CTNWmore » demonstrate an order of magnitude higher ZT enhancement compared to their ordered counterparts. Formation of preferential TE pathways in CTNW makes the network effectively behave as its BNW counterpart. In conclusion, we provide formalism for simulating large scale nanowire networks hinged upon experimentally measurable TE parameters of a single T-junction.« less

  19. Facile synthesis of silicon nanowire-nanopillar superhydrophobic structures

    NASA Astrophysics Data System (ADS)

    Roy, Abhijit; Satpati, Biswarup

    2018-04-01

    We have used metal assisted chemical etching (MACE) method to produce silicon (Si) nanowire-nanopillar array. Nanowire-nanopillar combined structures show higher degree of hydrophobicity compared to its nanowire (Si-NW) counterparts. The rate of etching is depended on initial metal deposition. The structural analysis was carried out using scanning electron microscopy (SEM) in combination with transmission electron microscopy (TEM) to determine different parameters like etching direction, crystallinity etc.

  20. ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun

    2012-08-01

    ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.

  1. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  2. Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications.

    PubMed

    Wu, Yen-Ting; Huang, Chun-Wei; Chiu, Chung-Hua; Chang, Chia-Fu; Chen, Jui-Yuan; Lin, Ting-Yi; Huang, Yu-Ting; Lu, Kuo-Chang; Yeh, Ping-Hung; Wu, Wen-Wei

    2016-02-10

    Transition metal silicide nanowires (NWs) have attracted increasing attention as they possess advantages of both silicon NWs and transition metals. Over the past years, there have been reported with efforts on one silicide in a single silicon NW. However, the research on multicomponent silicides in a single silicon NW is still rare, leading to limited functionalities. In this work, we successfully fabricated β-Pt2Si/Si/θ-Ni2Si, β-Pt2Si/θ-Ni2Si, and Pt, Ni, and Si ternary phase axial NW heterostructures through solid state reactions at 650 °C. Using in situ transmission electron microscope (in situ TEM), the growth mechanism of silicide NW heterostructures and the diffusion behaviors of transition metals were systematically studied. Spherical aberration corrected scanning transmission electron microscope (Cs-corrected STEM) equipped with energy dispersive spectroscopy (EDS) was used to analyze the phase structure and composition of silicide NW heterostructures. Moreover, electrical and photon sensing properties for the silicide nanowire heterostructures demonstrated promising applications in nano-optoeletronic devices. We found that Ni, Pt, and Si ternary phase nanowire heterostructures have an excellent infrared light sensing property which is absent in bulk Ni2Si or Pt2Si. The above results would benefit the further understanding of heterostructured nano materials.

  3. Coupling of semiconductor nanowires with neurons and their interfacial structure.

    PubMed

    Lee, Ki-Young; Shim, Sojung; Kim, Il-Soo; Oh, Hwangyou; Kim, Sunoh; Ahn, Jae-Pyeong; Park, Seung-Han; Rhim, Hyewhon; Choi, Heon-Jin

    2009-12-04

    We report on the compatibility of various nanowires with hippocampal neurons and the structural study of the neuron-nanowire interface. Si, Ge, SiGe, and GaN nanowires are compatible with hippocampal neurons due to their native oxide, but ZnO nanowires are toxic to neuron due to a release of Zn ion. The interfaces of fixed Si nanowire and hippocampal neuron, cross-sectional samples, were prepared by focused ion beam and observed by transmission electron microscopy. The results showed that the processes of neuron were adhered well on the nanowire without cleft.

  4. Sponge-Templated Macroporous Graphene Network for Piezoelectric ZnO Nanogenerator.

    PubMed

    Li, Xinda; Chen, Yi; Kumar, Amit; Mahmoud, Ahmed; Nychka, John A; Chung, Hyun-Joong

    2015-09-23

    We report a simple approach to fabricate zinc oxide (ZnO) nanowire based electricity generators on three-dimensional (3D) graphene networks by utilizing a commercial polyurethane (PU) sponge as a structural template. Here, a 3D network of graphene oxide is deposited from solution on the template and then is chemically reduced. Following steps of ZnO nanowire growth, polydimethylsiloxane (PDMS) backfilling and electrode lamination completes the fabrication processes. When compared to conventional generators with 2D planar geometry, the sponge template provides a 3D structure that has a potential to increase power density per unit area. The modified one-pot ZnO synthesis method allows the whole process to be inexpensive and environmentally benign. The nanogenerator yields an open circuit voltage of ∼0.5 V and short circuit current density of ∼2 μA/cm(2), while the output was found to be consistent after ∼3000 cycles. Finite element analysis of stress distribution showed that external stress is concentrated to deform ZnO nanowires by orders of magnitude compared to surrounding PU and PDMS, in agreement with our experiment. It is shown that the backfilled PDMS plays a crucial role for the stress concentration, which leads to an efficient electricity generation.

  5. Nanowire Photonic Systems

    DTIC Science & Technology

    2009-12-22

    b) From top to bottom, (i) AFM topograph of the p-i-n SiNW, (ii) plot of EFM phase-shift vs . position recorded along the nanowire axis and (iii...c) Current vs . applied voltage curve for a typical SiNW p-i-n junction at room temperature. (d) Current vs . applied reverse voltage data of a p-i...incident laser power. Iph vs . laser power (Figure 3c) measured at 22, 20 and 18 V show linear dependences with slopes of 1.16, 0.94 and 0.72 nA/μW

  6. Absorption enhancement in non-coplanar silver nanowire networks

    NASA Astrophysics Data System (ADS)

    He, Zhihui; Zhou, Zhiping; Ren, Xincheng; Bai, Shaomin; Li, Hongjian; Cao, Dongmei; Li, Gang; Cao, Guangtao

    2018-07-01

    We propose non-coplanar silver nanowire (AgNW) networks placed on a SiO2 layer. A notable absorption peak is observed in our proposed structure, and compared with the absorption of coplanar periodic AgNW networks and periodic AgNW gratings, the absorption performance of the non-coplanar AgNW networks demonstrates obvious advantages. It could be determined that the absorption ratio in this non-coplanar AgNW networks can reach 95%. In addition, several parameters that have important effects on the absorption of the non-coplanar AgNW networks are discussed in detail. Our research may provide guidance for the fundamental exploration of plasmonic absorption device applications.

  7. Ultraviolet Electroluminescence from ZnS@ZnO Core-Shell Nanowires/p-GaN Introduced by Exciton Localization.

    PubMed

    Fang, Xuan; Wei, Zhipeng; Yang, Yahui; Chen, Rui; Li, Yongfeng; Tang, Jilong; Fang, Dan; Jia, Huimin; Wang, Dengkui; Fan, Jie; Ma, Xiaohui; Yao, Bin; Wang, Xiaohua

    2016-01-27

    We investigate the electroluminescence (EL) from light emitting diodes (LEDs) of ZnO nanowires/p-GaN structure and ZnS@ZnO core-shell nanowires/p-GaN structure. With the increase of forward bias, the emission peak of ZnO nanowires/p-GaN structure heterojunction shows a blue-shift, while the ZnS@ZnO core-shell nanowires/p-GaN structure demonstrates a changing EL emission; the ultraviolet (UV) emission at 378 nm can be observed. This discrepancy is related to the localized states introduced by ZnS particles, which results in a different carrier recombination process near the interfaces of the heterojunction. The localized states capture the carriers in ZnO nanowires and convert them to localized excitons under high forward bias. A strong UV emission due to localized excitons can be observed. Our results indicated that utilizing localized excitons should be a new route toward ZnO-based ultraviolet LEDs with high efficiency.

  8. Fabrication of flexible and vertical silicon nanowire electronics.

    PubMed

    Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2012-06-13

    Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.

  9. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such asmore » ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be

  10. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    PubMed

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  11. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

    PubMed

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-12-12

    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  12. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    PubMed

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  13. Glucose biosensor based on functionalized ZnO nanowire/graphite films dispersed on a Pt electrode

    NASA Astrophysics Data System (ADS)

    Gallay, P.; Tosi, E.; Madrid, R.; Tirado, M.; Comedi, D.

    2016-10-01

    We present a glucose biosensor based on ZnO nanowire self-sustained films grown on compacted graphite flakes by the vapor transport method. Nanowire/graphite films were fragmented in water, filtered to form a colloidal suspension, subsequently functionalized with glucose oxidase and finally transferred to a metal electrode (Pt). The obtained devices were evaluated using scanning electron microscopy, energy-dispersive x-ray spectroscopy, cyclic voltammetry and chronoamperometry. The electrochemical responses of the devices were determined in buffer solutions with successive glucose aggregates using a tripolar electrode system. The nanostructured biosensors showed excellent analytical performance, with linear response to glucose concentrations, high sensitivity of up to ≈17 μA cm-2 mM-1 in the 0.03-1.52 mM glucose concentration range, relatively low Michaelis-Menten constant, excellent reproducibility and a fast response. The detection limits are more than an order of magnitude lower than those achievable in commercial biosensors for glucose control, which is promising for the development of glucose monitoring methods that do not require blood extraction from potentially diabetic patients. The strong detection enhancements provided by the functionalized nanostructures are much larger than the electrode surface-area increase and are discussed in terms of the physical and chemical mechanisms involved in the detection and transduction processes.

  14. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  15. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.

    PubMed

    Qin, Qingquan; Xu, Feng; Cao, Yongqing; Ro, Paul I; Zhu, Yong

    2012-08-20

    The effect of clamping on resonance frequency and thus measured Young's modulus of nanowires (NWs) is systematically investigated via a combined experimental and simulation approach. ZnO NWs are used in this work as an example. The resonance tests are performed in situ inside a scanning electron microscope and the NWs are cantilevered on a tungsten probe by electron-beam-induced deposition (EBID) of hydrocarbon. EBID is repeated several times to deposit more hydrocarbons at the same location. The resonance frequency increases with the increasing clamp size until approaching that under the "fixed" boundary condition. The critical clamp size is identified as a function of NW diameter and NW Young's modulus. This work: 1) exemplifies the importance of considering the effect of clamping in measurements of Young's modulus using the resonance method, and 2) demonstrates that the true Young's modulus can be measured if the critical clamp size is reached. Design guidelines on the critical clamp size are provided. Such design guidelines can be extended to other one-dimensional nanostructures such as carbon nanotubes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  17. Taheri-Saramad x-ray detector (TSXD): a novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane.

    PubMed

    Taheri, A; Saramad, S; Ghalenoei, S; Setayeshi, S

    2014-01-01

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  18. Plasmonic Behavior of Ag/Dielectric Nanowires and the Effect of Geometry

    DTIC Science & Technology

    2009-07-01

    in- cluding random Ga2O3 nanowires, ZnO nanowires, as well as Au lines produced by e-beam lithography. The growth of the Ga2O3 nanowires was achieved...PLASMONIC PROPERTIES As discussed above, we have developed a SERS substrate, consisting of Ga2O3 nanowire core/Ag metal sheath nano- structures, which have...signal. As is evident, the nanowire composites are about two orders of magnitude more sensitive than the Mesophotonics substrate. Since these Ga2O3 /Ag

  19. Sulfur-Doped Zinc Oxide (ZnO) Nanostars: Synthesis and Simulation of Growth Mechanism

    DTIC Science & Technology

    2011-10-01

    Zinc Oxide ( ZnO ) Nanostars: Synthesis and Simulation of Growth Mechanism Jinhyun Cho1, Qiubao Lin2,3, Sungwoo...characterization, and ab initio simulations of star-shaped hexagonal zinc oxide ( ZnO ) nanowires. The ZnO nanostructures were synthesized by a low...Introduction Zinc oxide ( ZnO ) is a wide bandgap (3.37 eV), Ⅱ–Ⅵ semiconductor of great interest for optoelectronic applications [1–3]. Its

  20. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  1. Application of Chemical Doping and Architectural Design Principles To Fabricate Nanowire Co2Ni3ZnO8 Arrays for Aqueous Asymmetric Supercapacitors.

    PubMed

    Liu, Qi; Yang, Bin; Liu, Jingyuan; Yuan, Yi; Zhang, Hongsen; Liu, Lianhe; Wang, Jun; Li, Rumin

    2016-08-10

    Electrode materials derived from transition metal oxides have a serious problem of low electron transfer rate, which restricts their practical application. However, chemically doped graphene transforms the chemical bonding configuration to enhance electron transfer rate and, therefore, facilitates the successful fabrication of Co2Ni3ZnO8 nanowire arrays. In addition, the Co2Ni3ZnO8 electrode materials, considered as Ni and Zn ions doped into Co3O4, have a high electron transfer rate and electrochemical response capability, because the doping increases the degree of crystal defect and reaction of Co/Ni ions with the electrolyte. Hence, the Co2Ni3ZnO8 electrode exhibits a high rate property and excellent electrochemical cycle stability, as determined by electrochemical analysis of the relationship between specific capacitance, IR drop, Coulomb efficiency, and different current densities. From the results of a three-electrode system of electrochemical measurement, the Co2Ni3ZnO8 electrode demonstrates a specific capacitance of 1115 F g(-1) and retains 89.9% capacitance after 2000 cycles at a current density of 4 A g(-1). The energy density of the asymmetric supercapacitor (AC//Co2Ni3ZnO8) is 54.04 W h kg(-1) at the power density of 3200 W kg(-1).

  2. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    PubMed

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  3. Synthesis and properties of silicon nanowire devices

    NASA Astrophysics Data System (ADS)

    Byon, Kumhyo

    Silicon nanowire (SiNW) is a very attractive one-dimensional material for future nanoelectronic applications. Reliable control of key field effect transistor (FET) parameters such as conductance, mobility, threshold voltage and on/off ratio is crucial to the applications of SiNW to working logic devices and integrated circuits. In this thesis, we fabricated silicon nanowire field effect transistors (SiNW FETs) and studied the dependence of their electrical transport properties upon various parameters including SiNW growth conditions, post-growth doping, and contact annealing. From these studies, we found how different processes control important FET characteristics. Key accomplishments of this thesis include p-channel enhancement mode FETs, n-channel FETs by post-growth vapor doping and high performance ambipolar devices. In the first part of this work, single crystalline SiNWs were synthesized by thermal evaporation without gold catalysts. FETs were fabricated using both as-grown SiNWs and post-growth n-doped SiNWs. FET from p-type source materials behaves as a p-channel enhancement mode FET which is predominant in logic devices due to its fast operation and low power consumption. Using bismuth vapor, the as-grown SiNWs were doped into n-type materials. The majority carriers in SiNWs can therefore be controlled by proper choice of the vapor phase dopant species. Post-growth doping using vapor phase is applicable to other nanowire systems. In the second part, high performance ambipolar FETs were fabricated. A two step annealing process was used to control the Schottky barrier between SiNW and metal contacts in order to enhance device performance. Initial p-channel SiNW FETs were converted into ambipolar SiNW FETs after contact annealing. Furthermore, significant increases in both on/off ratio and channel mobilities were achieved after contact annealing. Promising device structures to implement ambipolar devices into large scale integrated circuits were proposed

  4. Exact comprehensive equations for the photon management properties of silicon nanowire

    PubMed Central

    Li, Yingfeng; Li, Meicheng; Li, Ruike; Fu, Pengfei; Wang, Tai; Luo, Younan; Mbengue, Joseph Michel; Trevor, Mwenya

    2016-01-01

    Unique photon management (PM) properties of silicon nanowire (SiNW) make it an attractive building block for a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, optical switches, solar cells, and lasers. However, the lack of efficient equations for the quantitative estimation of the SiNW’s PM properties limits the rational design of such devices. Herein, we establish comprehensive equations to evaluate several important performance features for the PM properties of SiNW, based on theoretical simulations. Firstly, the relationships between the resonant wavelengths (RW), where SiNW can harvest light most effectively, and the size of SiNW are formulized. Then, equations for the light-harvesting efficiency at RW, which determines the single-frequency performance limit of SiNW-based photonic devices, are established. Finally, equations for the light-harvesting efficiency of SiNW in full-spectrum, which are of great significance in photovoltaics, are established. Furthermore, using these equations, we have derived four extra formulas to estimate the optimal size of SiNW in light-harvesting. These equations can reproduce majority of the reported experimental and theoretical results with only ~5% error deviations. Our study fills up a gap in quantitatively predicting the SiNW’s PM properties, which will contribute significantly to its practical applications. PMID:27103087

  5. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode.

    PubMed

    Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching

    2016-06-30

    Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current-voltage (I-V) measurements. Nonlinear and rectifying I-V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  6. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    PubMed Central

    Chang, Wen-Chung; Su, Sheng-Chien; Wu, Chia-Ching

    2016-01-01

    Vertically aligned p-type silicon nanowire (SiNW) arrays were fabricated through metal-assisted chemical etching (MACE) of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW) heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and current−voltage (I−V) measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions. PMID:28773656

  7. Segmented nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  8. Highly stretchable and conductive silver nanowire thin films formed by soldering nanomesh junctions.

    PubMed

    Chen, Shih-Pin; Liao, Ying-Chih

    2014-10-07

    Silver nanowires (AgNWs) have been widely used for stretchable and foldable conductors due to their percolating network nanostructure. To enhance the mechanical strength of AgNW thin films under extreme stretching conditions, in this study, we utilize a simple chemical reaction to join AgNW network connections. Upon applying a reactive ink over AgNW thin films, silver nanoparticles are preferentially generated over the nanowire junctions and solder the nanomesh structures. The soldered nanostructure reinforces the conducting network and exhibits no obvious change in electrical conductivity in the stretching or rolling process with elongation strains up to 120%. Several examples are also demonstrated to show potential applications of this material in stretchable electronic devices.

  9. Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.

    PubMed

    Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio

    2016-01-13

    We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.

  10. Welded-Ag-nanowires/FTO conducting film with high transmittance and its application in transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Qiao, Zhensong; Yang, Xiaopeng; Liu, Feng; Duan, Guangbin; Cao, Bingqiang

    2017-03-01

    Silver nanowires (AgNW) with a small diameter were synthesized by a facile and novel polyol reduction method. Ag nanowires ink was then spun on the surface of F-doped SnO2 (FTO) to form the AgNW/FTO conducting film. Welding treatment of the AgNW/FTO conducting film not only increased the optical transmittance from 71.9 % to 79.3 % at 550 nm and decreased the sheet resistance from 11.4 ohm sq-1 to 9.8 ohm sq-1, but also improved the adhesivity of AgNW network on FTO substrate. Furthermore, MnO2 nanosheets were directly deposited on welded-AgNW/FTO (wAF) substrate to prepare a transparent MnO2/weled-AgNW/FTO (MwAF) composite electrode. The MwAF electrode displayed excellent electrochemical performance, including high specific capacitance (375 F g-1 at 5 mV s-1) and superior cycle stability (173.3 % of the initial capacitance after 20000 GCD cycles).

  11. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids.

    PubMed

    Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep

    2007-10-01

    Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.

  12. Layer-by-layer-assembled quantum dot multilayer sensitizers: how the number of layers affects the photovoltaic properties of one-dimensional ZnO nanowire electrodes.

    PubMed

    Jin, Ho; Choi, Sukyung; Lim, Sang-Hoon; Rhee, Shi-Woo; Lee, Hyo Joong; Kim, Sungjee

    2014-01-13

    Layer cake: Multilayered CdSe quantum dot (QD) sensitizers are layer-by-layer assembled onto ZnO nanowires by making use of electrostatic interactions to study the effect of the layer number on the photovoltaic properties. The photovoltaic performance of QD-sensitized solar cells critically depends on this number as a result of the balance between light-harvesting efficiency and carrier-recombination probability. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An investigation into the role of polyethyleneimine in chemical bath deposition of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Eskandari, Alireza; Abdizadeh, Hossein; Pourshaban, Erfan; Golobostanfard, Mohammad Reza

    2018-01-01

    Zinc oxide nanowires are considered as promising materials for wide range of optoelectrical and chemical devices, thanks to their desirable structural and optoelectrical properties. Over the past decade, chemical bath deposition (CBD) has been widely used to synthesize these nanostructures due to its low cost and controllability. Since improving the aspect ratio and length of nanowires is a vital issue in growing one-dimensional nanostructures, the influence of polyethyleneimine (PEI) as a complexing and chelating agent on the structural, morphological, and optoelectrical properties of ZnO nanowires has been studied in this report. As-grown ZnO nanowires synthesized by mixing deionized water, zinc acetate dihydrate, hexamethylenetetramine, and PEI were characterized with field emission scanning electron microscope (FESEM), X-ray diffractometer (XRD), and photoluminescence spectroscopy (PL). FESEM results unambiguously show that increasing PEI concentration (from 0 to 0.2 g in 50 ml DI water) reduces the diameter and density of nanowires from ˜120 to 56 nm and from ˜85% to 65%, respectively. Interestingly, although adding more PEI decreases nanowires diameter, over-increasing of PEI brings about an inappropriate nanostructures growth. Moreover, XRD patterns demonstrate that all the samples have wurtzite structure with a preferred orientation along c-axis which may be improved or deteriorated by adding PEI into the chemical bath. Accordingly, it is crucial to optimize the amount of PEI in CBD method. Near-band edge (NBE) region in PL spectrum also confirms wide bandgap of ZnO (˜3.3 eV). In addition, comparing the appearance of PEI free with PEI assisted solutions show a considerable difference in their colors, which may be attributed to the formation of new chemical compounds. Considering these results, PEI plays a couple of determining roles in synthesizing ZnO nanowires; making nanowires thinner, with selectively absorption to the non-polar, lateral facets of

  14. Band gap enhancement of glancing angle deposited TiO2 nanowire array

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Mondal, A.; Singh, N. K.; Dhar, J. C.; Chattopadhyay, K. K.; Bhattacharya, Sekhar

    2012-09-01

    Vertically oriented TiO2 nanowire (NW) arrays were fabricated by glancing angle deposition technique. Field emission-scanning electron microscopy shows the formation of two different diameters ˜80 nm and ˜40 nm TiO2 NW for 120 and 460 rpm azimuthal rotation of the substrate. The x-ray diffraction and Raman scattering depicted the presence of rutile and anatase phase TiO2. The overall Raman scattering intensity decreased with nanowire diameter. The role of phonon confinement in anatase and rutile peaks has been discussed. The red (7.9 cm-1 of anatase Eg) and blue (7.4 cm-1 of rutile Eg, 7.8 cm-1 of rutile A1g) shifts of Raman frequencies were observed. UV-vis absorption measurements show the main band absorption at 3.42 eV, 3.48 eV, and ˜3.51 eV for thin film and NW prepared at 120 and 460 rpm, respectively. Three fold enhance photon absorption and intense light emission were observed for NW assembly. The photoluminescence emission from the NW assembly revealed blue shift in main band transition due to quantum confinement in NW structures.

  15. Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam.

    PubMed

    Masghouni, N; Burton, J; Philen, M K; Al-Haik, M

    2015-03-06

    Hybrid piezoelectric composite structures that are able to convert mechanical energy into electricity have gained growing attention in the past few years. In this work, an energy harvesting composite beam is developed by growing piezoelectric zinc oxide nanowires on the surface of carbon fiber prior to forming structural composites. The piezoelectric behavior of the composite beam was demonstrated under different vibration sources such as water bath sonicator and permanent magnet vibration shaker. The beam was excited at its fundamental natural frequency (43.2 Hz) and the open circuit voltage and the short circuit current were measured to be 3.1 mV and 23 nA, respectively. Upon connecting an optimal resistor (1.2 kΩ) in series with the beam a maximum power output 2.5 nW was achieved.

  16. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  17. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  18. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  19. Optimization of dielectric matrix for ZnO nanowire based nanogenerators

    NASA Astrophysics Data System (ADS)

    Kannan, Santhosh; Parmar, Mitesh; Tao, Ran; Ardila, Gustavo; Mouis, Mireille

    2016-11-01

    This paper reports the role of selection of suitable dielectric layer in nanogenerator (NG) structure and its influence on the output performance. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix. To accomplish this study, three materials - poly methyl methacrylate (PMMA), silicon nitride (Si3N4) and aluminium oxide (Al2O3) are selected, processed and used as matrix dielectric in NGs. Scanning electron microscopy (SEM) analysis shows the well-aligned NWs with a diameter of 200±50 nm and length of 3.5±0.3 μm. This was followed by dielectric material deposition as a matrix material. After fabricating NG devices, the output generated voltage under manual and automatic bending were recorded, observed and analyzed for the selection of the best dielectric material to obtain an optimum output. The maximum peak-to-peak open-circuit voltage output for PMMA, Si3N4 and Al2O3 under manual bending was recorded as approximately 880 mV, 1.2 V and 2.1 V respectively. These preliminary results confirm the predicted effect of using more rigid dielectrics as matrix material for the NGs. The generated voltage is increased by about 70% using Si3N4 or Al2O3, instead of a less rigid material as PMMA.

  20. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  1. All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries

    PubMed Central

    Hwang, Chihyun; Kim, Tae-Hee; Cho, Yoon-Gyo; Kim, Jieun; Song, Hyun-Kon

    2015-01-01

    All-in-one assemblies of separator, electrode and current collector (SECA) for lithium ion batteries are presented by using 1D nanowires of Si and Cu (nwSi and nwCu). Even without binders, integrity of SECA is secured via structural joints based on ductility of Cu as well as entanglement of nwSi and nwCu. By controlling the ratio of the nanowires, the number of contact points and voids accommodating volume expansion of Si active material are tunable. Zero volume expansion and high energy density are simultaneously achievable by the architecture. PMID:25720334

  2. Recyclable patterning of silver nanowire percolated network for fabrication of flexible transparent electrode

    NASA Astrophysics Data System (ADS)

    Yoo, Byungwook; Kim, Youngmin; Han, Chul Jong; Oh, Min Suk; Kim, Jong-Woong

    2018-01-01

    Recent studies have revealed that silver nanowires (AgNWs) are a promising material for highly flexible transparent electrodes. Here we introduce a novel photoinduced recyclable approach to AgNW patterning to overcome the issue of loss of material during fabrication of AgNW patterns, which is a leading factor in the high fabrication costs of AgNW-based electrodes. Our patterning scheme involves the selective irradiation of an AgNW/polymer composite with high-intensity pulsed light, followed by immersion of the sample in a liquid and an ultrasonication treatment. The nanowires that detach during sonication could be recycled, and the recycled AgNWs achieved comparable performance to that of pristine AgNWs. The recycled AgNWs were also superior to commercial indium tin oxide films and other competing materials. We successfully demonstrated a high performance transparent heater by employing the recyclable patterning method and recycled AgNWs.

  3. Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia

    PubMed Central

    Bertuna, Angela; Faglia, Guido; Ferroni, Matteo; Kaur, Navpreet; Munasinghe Arachchige, Hashitha M. M.; Sberveglieri, Giorgio; Comini, Elisabetta

    2017-01-01

    Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO), vapor liquid solid (n-type SnO2 and p-type NiO) and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO) methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone. PMID:28468310

  4. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  5. Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua

    2018-03-01

    Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.

  6. CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells.

    PubMed

    Zhang, Ran; Luo, Qiu-Ping; Chen, Hong-Yan; Yu, Xiao-Yun; Kuang, Dai-Bin; Su, Cheng-Yong

    2012-04-23

    A CdS/CdSe composite shell is assembled onto the surface of ZnO nanowire arrays with a simple spin-coating-based successive ionic layer adsorption and reaction method. The as-prepared photoelectrode exhibit a high photocurrent density in photoelectrochemical cells and also generates good power conversion efficiency in quantum-dot-sensitized solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    PubMed

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  8. Nanowire lasers as intracellular probes.

    PubMed

    Wu, Xiaoqin; Chen, Qiushu; Xu, Peizhen; Chen, Yu-Cheng; Wu, Biming; Coleman, Rhima M; Tong, Limin; Fan, Xudong

    2018-05-24

    We investigate a cadmium sulfide (CdS) nanowire (NW) laser that is spontaneously internalized into a single cell to serve as a stand-alone intracellular probe. By pumping with nano-joule light pulses, green laser emission (500-520 nm) can be observed inside cells with a peak linewidth as narrow as 0.5 nm. Due to the sub-micron diameter (∼200 nm), the NW has an appreciable fraction of the evanescent field outside, facilitating a sensitive detection of cellular environmental changes. By monitoring the lasing peak wavelength shift in response to the intracellular refractive index change, our NW laser probe shows a sensitivity of 55 nm per RIU (refractive index units) and a figure of merit of approximately 98.

  9. Spontaneous polarization induced electric field in zinc oxide nanowires and nanostars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, S., E-mail: sfarid3@uic.edu; Choi, M.; Datta, D.

    We report on the detection mechanism of spontaneous polarization using electrostatic force microscopy in zinc oxide nanowires and nanostars grown by vapor-liquid-solid technique. Optical and structural properties are investigated in detail to understand the complex ZnO nanostructures comprehensively. Calculations are carried out to estimate the electric field from the change in interleave amplitude induced by the electrostatic force due to the spontaneous polarization effects. Attraction of the probe between the tip and the sample varies for different structures with a stronger attraction for nanostars as compared to nanowires. Strength of electric field is dependent on the orientation of nanowires andmore » nanostars c-axis with measured magnitude of electric field to be ∼10{sup 7 }V/m and 10{sup 8 }V/m respectively. This technique presents a unique detection mechanism of built-in spontaneous polarization and electric field from polar ZnO nanowires with applications in voltage gated ion channels, nano-bio interfaces, optoelectronic and photonic devices.« less

  10. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    PubMed

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  11. A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes.

    PubMed

    Lee, Jinhwan; An, Kunsik; Won, Phillip; Ka, Yoonseok; Hwang, Hyejin; Moon, Hyunjin; Kwon, Yongwon; Hong, Sukjoon; Kim, Changsoon; Lee, Changhee; Ko, Seung Hwan

    2017-02-02

    Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs. Moreover, we report that mechanical and oxidative robustness, which are critical for flexible OLEDs, are greatly increased by embedding the dual-scale AgNW network in a resin layer.

  12. Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Maurice, Jean-Luc; Chen, Wanghua; Misra, Soumyadeep; Foldyna, Martin; Johnson, Erik V.; Roca i Cabarrocas, Pere

    2016-10-01

    A comprehensive study of the silicon nanowire growth process has been carried out. Silicon nanowires were grown by plasma-assisted-vapor-solid method using tin as a catalyst. We have focused on the evolution of the silicon nanowire density, morphology, and crystallinity. For the first time, the initial growth stage, which determines the nanowire (NW) density and growth direction, has been observed step by step. We provide direct evidence of the merging of Sn catalyst droplets and the formation of Si nanowires during the first 10 s of growth. We found that the density of Sn droplets decreases from 9000 Sn droplets/μm2 to 2000 droplets/μm2 after just 10 s of growth. Moreover, the long and straight nanowire density decreases from 170/μm2 after 2 min of growth to less than 10/μm2 after 90 min. This strong reduction in nanowire density is accompanied by an evolution of their morphology from cylindrical to conical, then to bend conical, and finally, to a bend inverted conical shape. Moreover, the changes in the crystalline structure of nanowires are from (i) monocrystalline to (ii) monocrystalline core/defective crystalline shell and then to (iii) monocrystalline core/defective crystalline shell/amorphous shell. The evolutions of NW properties have been explained in detail.

  13. SAW Humidity Sensor Sensitivity Enhancement via Electrospraying of Silver Nanowires

    PubMed Central

    Sayar Irani, Farid; Tunaboylu, Bahadir

    2016-01-01

    In this research, we investigated the influence of the surface coatings of silver nanowires on the sensitivity of surface acoustic wave (SAW) humidity sensors. Silver nanowires, with poly(vinylpyrrolidone) (PVP), which is a hydrophilic capping agent, were chemically synthesized, with an average length of 15 µm and an average diameter of 60 nm. Humidity sensors, with 433 MHz frequency dual-port resonator Rayleigh-SAW devices, were coated by silver nanowires (AgNWs) using the electrospray coating method. It was demonstrated that increasing thickness of coated AgNW on the surfaces of SAW devices results in increased sensitivity. The highest frequency shift (262 kHz) in these SAW devices was obtained with an injection of 0.5 mL of the AgNW solution with a concentration of 0.5 mg/mL at an injection rate of 1 mL/h. It also showed the highest humidity sensitivity among the other prepared SAW devices. PMID:27916870

  14. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics.

    PubMed

    Han, Seungyong; Hong, Sukjoon; Ham, Jooyeun; Yeo, Junyeob; Lee, Jinhwan; Kang, Bongchul; Lee, Phillip; Kwon, Jinhyeong; Lee, Seung S; Yang, Min-Yang; Ko, Seung Hwan

    2014-09-03

    A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form Cu-nanowire networks on heat-sensitive, flexible or even stretchable substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization

    PubMed Central

    Wolfrum, Bernhard; Thierry, Benjamin

    2018-01-01

    Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs’ promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology. PMID:29751688

  16. CMOS-Compatible Silicon Nanowire Field-Effect Transistor Biosensor: Technology Development toward Commercialization.

    PubMed

    Tran, Duy Phu; Pham, Thuy Thi Thanh; Wolfrum, Bernhard; Offenhäusser, Andreas; Thierry, Benjamin

    2018-05-11

    Owing to their two-dimensional confinements, silicon nanowires display remarkable optical, magnetic, and electronic properties. Of special interest has been the development of advanced biosensing approaches based on the field effect associated with silicon nanowires (SiNWs). Recent advancements in top-down fabrication technologies have paved the way to large scale production of high density and quality arrays of SiNW field effect transistor (FETs), a critical step towards their integration in real-life biosensing applications. A key requirement toward the fulfilment of SiNW FETs' promises in the bioanalytical field is their efficient integration within functional devices. Aiming to provide a comprehensive roadmap for the development of SiNW FET based sensing platforms, we critically review and discuss the key design and fabrication aspects relevant to their development and integration within complementary metal-oxide-semiconductor (CMOS) technology.

  17. The clash of mechanical and electrical size-effects in ZnO nanowires and a double power law approach to elastic strain engineering of piezoelectric and piezotronic devices.

    PubMed

    Rinaldi, Antonio; Araneo, Rodolfo; Celozzi, Salvatore; Pea, Marialilia; Notargiacomo, Andrea

    2014-09-10

    The piezoelectric performance of ultra-strength ZnO nanowires (NWs) depends on the subtle interplay between electrical and mechanical size-effects. "Size-dependent" modeling of compressed NWs illustrates why experimentally observed mechanical stiffening can indeed collide with electrical size-effects when the size shrinks, thereby lowering the actual piezoelectric function from bulk estimates. "Smaller" is not necessarily "better" in nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  19. The Assessment for Sensitivity of a NO2 Gas Sensor with ZnGa2O4/ZnO Core-Shell Nanowires—a Novel Approach

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Hsu, Cheng-Liang; Hsueh, Ting Jen; Shieh, Tien-Yu

    2010-01-01

    The application of novel core-shell nanowires composed of ZnGa2O4/ZnO to improve the sensitivity of NO2 gas sensors is demonstrated in this study. The growth of ZnGa2O4/ZnO core-shell nanowires is performed by reactive evaporation on patterned ZnO:Ga/SiO2/Si templates at 600 °C. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of NO2 detection. These novel NO2 gas sensors were evaluated at working temperatures of 25 °C and at 250 °C, respectively. The result reveals the ZnGa2O4/ZnO core-shell nanowires present a good linear relationship (R2 > 0.99) between sensitivity and NO2 concentration at both working temperatures. These core-shell nanowire sensors also possess the highest response (<90 s) and recovery (<120 s) values with greater repeatability seen for NO2 sensors at room temperature, unlike traditional sensors that only work effectively at much higher temperatures. The data in this study indicates the newly-developed ZnGa2O4/ZnO core-shell nanowire based sensors are highly promising for industrial applications. PMID:22319286

  20. Vertically Emitting Indium Phosphide Nanowire Lasers.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Jevtics, Dimitars; Hurtado, Antonio; Li, Li; Gao, Qian; Ye, Jiandong; Wang, Fan; Guilhabert, Benoit; Fu, Lan; Lu, Hai; Zhang, Rong; Tan, Hark Hoe; Dawson, Martin D; Jagadish, Chennupati

    2018-06-13

    Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

  1. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  2. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  3. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    PubMed

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  4. Stable and metastable nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2014-11-18

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dustin; Zhao, Fangchao; Tong, Kwing

    Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less

  6. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  7. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  8. Lateral heat flow distribution and defect-dependent thermal resistance in an individual silicon nanowire.

    PubMed

    Lee, Seung-Yong; Lee, Won-Yong; Thong, John T L; Kim, Gil-Sung; Lee, Sang-Kwon

    2016-03-18

    Studies aiming to significantly improve thermal properties, such as figure-of-merit, of silicon nanowires (SiNW) have focused on diameter reduction and surface or interface roughness control. However, the mechanism underlying thermal conductivity enhancement of roughness controlled NWs remains unclear. Here, we report a significant influence of stacking faults (SFs) on the lateral thermal conductivity of a single SiNW, using a combination of newly developed in situ spatially-resolved thermal resistance experiments and high-resolution transmission electron microscopy measurements. We used as-grown SiNWs tapered along the growth direction with progressively lower roughness and SFs density. The results clearly confirmed that both surface roughness and twins or SFs densities suppress the thermal conductivity of an individual SiNW. The results and measurement techniques presented here hold great potential for inspecting minute changes in thermal resistance along an individual SiNW, caused by induced SFs on the nanostructure, and for improving one-dimensional nanowire-based thermoelectric device performance.

  9. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    NASA Technical Reports Server (NTRS)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  10. Sr-doped nanowire modification of Ca-Si-based coatings for improved osteogenic activities and reduced inflammatory reactions

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Dandan; Xie, Youtao; Huang, Liping; Zheng, Xuebin

    2018-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. In our study, Ca-Si coatings with Sr-containing nanowire-like structures (NW-Sr-CS) were achieved via hydrothermal treatment. In order to identify the effect of nanowire-like topography and Sr dopant on the biological properties of Ca-Si-based coatings, the original Ca-Si coating, Ca-Si coatings modified with nanoplate (NP-CS) and similar nanowire-like structure (NW-CS) were fabricated as the control. Surface morphology, phase composition, surface area, zeta potential and ion release of these coatings were characterized. The in vitro osteogenic activities and immunomodulatory properties were evaluated with bone marrow stromal cells (BMSCs) and RAW 264.7 cells, a mouse macrophage cell line. Compared with the CS and NP-CS coatings, the NW-CS coating possessed a larger surface area and pore volume, beneficial protein adsorption, up-regulated the expression levels of integrin β1, Vinculin and focal adhesion kinase and promoted cell spreading. Furthermore, the NW-CS coating significantly enhanced the osteogenic differentiation and mineralization as indicated by the up-regulation of ALP activity, mineralized nodule formation and osteoblastogenesis-related gene expression. With the introduction of Sr, the NW-Sr-CS coatings exerted a greater effect on the BMSC proliferation rate, calcium sensitive receptor gene expression as well as PKC and ERK1/2 phosphorylation. In addition, the Sr-doped coatings significantly up-regulated the ratio of OPG/RANKL in the BMSCs. The NW-Sr-CS coatings could modulate the polarization of macrophages towards the wound-healing M2 phenotype, reduce the mRNA expression levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and enhance anti-inflammatory cytokines (IL-1ra, IL-10). The Sr-doped nanowire modification may be a valuable approach to enhance osteogenic activities and reduce inflammatory reactions.

  11. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  12. Recovery Based Nanowire Field-Effect Transistor Detection of Pathogenic Avian Influenza DNA

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Heng; Chu, Chia-Jung; Teng, Kang-Ning; Su, Yi-Jr; Chen, Chii-Dong; Tsai, Li-Chu; Yang, Yuh-Shyong

    2012-02-01

    Fast and accurate diagnosis is critical in infectious disease surveillance and management. We proposed a DNA recovery system that can easily be adapted to DNA chip or DNA biosensor for fast identification and confirmation of target DNA. This method was based on the re-hybridization of DNA target with a recovery DNA to free the DNA probe. Functionalized silicon nanowire field-effect transistor (SiNW FET) was demonstrated to monitor such specific DNA-DNA interaction using high pathogenic strain virus hemagglutinin 1 (H1) DNA of avian influenza (AI) as target. Specific electric changes were observed in real-time for AI virus DNA sensing and device recovery when nanowire surface of SiNW FET was modified with complementary captured DNA probe. The recovery based SiNW FET biosensor can be further developed for fast identification and further confirmation of a variety of influenza virus strains and other infectious diseases.

  13. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.

    PubMed

    Mohammad, S Noor

    2008-05-01

    The vapor-liquid-solid (VLS) mechanism is most widely employed to grow nanowires (NWs). The mechanism uses foreign element catalytic agent (FECA) to mediate the growth. Because of this, it is believed to be very stable with the FECA-mediated droplets not consumed even when reaction conditions change. Recent experiments however differ, which suggest that even under cleanest growth conditions, VLS mechanism may not produce long, thin, uniform, single-crystal nanowires of high purity. The present investigation has addressed various issues involving fundamentals of VLS growth. While addressing these issues, it has taken into consideration the influence of the electrical, hydrodynamic, thermodynamic, and surface tension effects on NW growth. It has found that parameters such as mesoscopic effects on nanoparticle seeds, charge distribution in FECA-induced droplets, electronegativity of the droplet with respect to those of reactive nanowire vapor species, growth temperature, and chamber pressure play important role in the VLS growth. On the basis of an in-depth analysis of various issues, a simple, novel, malleable (SNM) model has been presented for the VLS mechanism. The model appears to explain the formation and observed characteristics of a wide variety of nanowires, including elemental and compound semiconductor nanowires. Also it provides an understanding of the influence of the dynamic behavior of the droplets on the NW growth. This study finds that increase in diameter with time of the droplet of tapered nanowires results primarily from gradual incorporation of oversupplied nanowire species into the FECA-mediated droplet, which is supported by experiments. It finds also that optimum compositions of the droplet constituents are crucial for VLS nanowire growth. An approximate model presented to exemplify the parametric dependency of VLS growth provides good description of NW growth rate as a function of temperature.

  14. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.

    PubMed

    Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind

    2017-02-15

    Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm 2 ) with a detection limit of 0.00113UmL -1 concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL -1 -1kUmL -1 ), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route.

    PubMed

    Robak, Elżbieta; Coy, Emerson; Kotkowiak, Michał; Jurga, Stefan; Załęski, Karol; Drozdowski, Henryk

    2016-04-29

    Zinc oxide (ZnO) is a wide-bandgap semiconductor material with applications in a variety of fields such as electronics, optoelectronic and solar cells. However, much of these applications demand a reproducible, reliable and controllable synthesis method that takes special care of their functional properties. In this work ZnO and Cu-doped ZnO nanowires are obtained by an optimized hydrothermal method, following the promising results which ZnO nanostructures have shown in the past few years. The morphology of as-prepared and copper-doped ZnO nanostructures is investigated by means of scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction is used to study the impact of doping on the crystalline structure of the wires. Furthermore, the mechanical properties (nanoindentation) and the functional properties (absorption and photoluminescence measurements) of ZnO nanostructures are examined in order to assess their applicability in photovoltaics, piezoelectric and hybrids nanodevices. This work shows a strong correlation between growing conditions, morphology, doping and mechanical as well as optical properties of ZnO nanowires.

  16. Single nanowire green InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Guogang; Li, Ziyuan; Yuan, Xiaoming; Wang, Fan; Fu, Lan; Zhuang, Zhe; Ren, Fang-Fang; Liu, Bin; Zhang, Rong; Tan, Hark Hoe; Jagadish, Chennupati

    2016-10-01

    Single nanowire (NW) green InGaN/GaN light-emitting diodes (LEDs) were fabricated by top-down etching technology. The electroluminescence (EL) peak wavelength remains approximately constant with an increasing injection current in contrast to a standard planar LED, which suggests that the quantum-confined Stark effect is significantly reduced in the single NW device. The strain relaxation mechanism is studied in the single NW LED using Raman scattering analysis. As compared to its planar counterpart, the EL peak of the NW LED shows a redshift, due to electric field redistribution as a result of changes in the cavity mode pattern after metallization. Our method has important implication for single NW optoelectronic device applications.

  17. High performance NO2 sensor using MoS2 nanowires network

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Goel, Neeraj; Kumar, Mahesh

    2018-01-01

    We report on a high-performance NO2 sensor based on a one dimensional MoS2 nanowire (NW) network. The MoS2 NW network was synthesized using chemical transport reaction through controlled turbulent vapor flow. The crystal structure and surface morphology of MoS2 NWs were confirmed by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Further, the sensing behavior of the nanowires was investigated at different temperatures for various concentrations of NO2 and the sensor exhibited about 2-fold enhanced sensitivity with a low detection limit of 4.6 ppb for NO2 at 60 °C compared to sensitivity at room temperature. Moreover, it showed a fast response (16 s) with complete recovery (172 s) at 60 °C, while sensitivity of the device was decreased at 120 °C. The efficient sensing with reliable selectivity toward NO2 of the nanowires is attributed to a combination of abundant active edge sites along with a large surface area and tuning of the potential barrier at the intersections of nanowires during adsorption/desorption of gas molecules.

  18. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.

    PubMed

    Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing

    2011-04-01

    Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society

  19. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  20. Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zhifeng; Zhang, Yuantao, E-mail: zhangyt@jlu.edu.cn; Cui, Xijun

    2014-03-31

    Heterojunction light-emitting diodes based on n-ZnO nanowires/ZnO single-crystalline films/p-GaN structure have been demonstrated for an improved electroluminescence performance. A highly efficient ultraviolet emission was observed under forward bias. Compared with conventional n-ZnO/p-GaN structure, high internal quantum efficiency and light extraction efficiency were simultaneously considered in the proposed diode. In addition, the diode can work continuously for ∼10 h with only a slight degradation in harsh environments, indicating its good reliability and application prospect in the future. This route opens possibilities for the development of advanced nanoscale devices in which the advantages of ZnO single-crystalline films and nanostructures can be integrated together.

  1. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  2. Composition and Band Gap Tailoring of Crystalline (GaN)1- x(ZnO) x Solid Solution Nanowires for Enhanced Photoelectrochemical Performance.

    PubMed

    Li, Jing; Liu, Baodan; Wu, Aimin; Yang, Bing; Yang, Wenjin; Liu, Fei; Zhang, Xinglai; An, Vladimir; Jiang, Xin

    2018-05-07

    Photoelectrochemical water splitting has emerged as an effective artificial photosynthesis technology to generate clean energy of H 2 from sunlight. The core issue in this reaction system is to develop a highly efficient photoanode with a large fraction of solar light absorption and greater active surface area. In this work, we take advantage of energy band engineering to synthesize (GaN) 1- x (ZnO) x solid solution nanowires with ZnO contents ranging from 10.3% to 47.6% and corresponding band gap tailoring from 3.08 to 2.77 eV on the basis of the Au-assisted VLS mechanism. The morphology of nanowires directly grown on the conductive substrate facilitates the charge transfer and simultaneously improves the surface reaction sites. As a result, a photocurrent approximately 10 times larger than that for a conventional powder-based photoanode is obtained, which indicates the potential of (GaN) 1- x (ZnO) x nanowires in the preparation of superior photoanodes for enhanced water splitting. It is anticipated that the water-splitting capability of (GaN) 1- x (ZnO) x nanowire can be further increased through alignment control for enhanced visible light absorption and reduction of charge transfer resistance.

  3. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.

    PubMed

    Cui, Zheng; Han, Yiwei; Huang, Qijin; Dong, Jingyan; Zhu, Yong

    2018-04-19

    A silver nanowire (AgNW) based conductor is a promising component for flexible and stretchable electronics. A wide range of flexible/stretchable devices using AgNW conductors has been demonstrated recently. High-resolution, high-throughput printing of AgNWs remains a critical challenge. Electrohydrodynamic (EHD) printing has been developed as a promising technique to print different materials on a variety of substrates with high resolution. Here, AgNW ink was developed for EHD printing. The printed features can be controlled by several parameters including AgNW concentration, ink viscosity, printing speed, stand-off distance, etc. With this method, AgNW patterns can be printed on a range of substrates, e.g. paper, polyethylene terephthalate (PET), glass, polydimethylsiloxane (PDMS), etc. First, AgNW samples on PDMS were characterized under bending and stretching. Then AgNW heaters and electrocardiogram (ECG) electrodes were fabricated to demonstrate the potential of this printing technique for AgNW-based flexible and stretchable devices.

  4. Photon-triggered nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  5. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  6. Semiconductor nanowire devices: Novel morphologies and applications to electrogenic biological systems

    NASA Astrophysics Data System (ADS)

    Timko, Brian Paul

    The interface between nanoscale semiconductors and biological systems represents a powerful means for molecular-scale, two-way communication between these two diverse yet complementary systems. In this thesis, I present a general methodology for the synthesis of semiconductor nanowires with rationally-defined material composition and geometry. Specifically, I demonstrate that this technique can be used to fabricate silicon nanowires, hollow nanostructures (e.g. nanotubes, nanocones and branched tubular networks), and Ge/Si heterostructures that exhibit 1D hole gasses. Using bottom-up assembly techniques, nanostructures are subsequently built into arrays containing up to tens of nanowire field-effect transistors (NW-FETs) that exhibit exquisite sensitivity to local charges. Significantly, this robust assembly technique enables integration of disparate materials (e.g. n- and p-type silicon nanowires) on virtually any type of substrate. These arrays are particularly useful for integration with biological systems. I will demonstrate that at the single-cell level, silicon nanowire device arrays can be integrated with mammalian neurons. Discrete hybrid structures enable neuronal stimulation and recording at the axon, dendrite, or soma with high sensitivity and spatial resolution, while aligned arrays containing up to 50 devices can be used to measure the speed and temporal evolution of signals or to interact with a single cell as multiple inputs and outputs. I analyze the shape and magnitude of reported signals, and place within the context of previously reported results. Hybrid interfaces can also be extended to entire organs such as embryonic chicken hearts. NW-FET signals are synchronized with the beating heart, and the signal amplitude is directly related to the device sensitivity. Multiplexed measurements made from NW-FET arrays further show that signal propagation across the myocardium can be mapped, with a potential resolution significantly better than

  7. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  8. Three-dimensional vertical Si nanowire MOS capacitor model structure for the study of electrical versus geometrical Si nanowire characteristics

    NASA Astrophysics Data System (ADS)

    Hourdakis, E.; Casanova, A.; Larrieu, G.; Nassiopoulou, A. G.

    2018-05-01

    Three-dimensional (3D) Si surface nanostructuring is interesting towards increasing the capacitance density of a metal-oxidesemiconductor (MOS) capacitor, while keeping reduced footprint for miniaturization. Si nanowires (SiNWs) can be used in this respect. With the aim of understanding the electrical versus geometrical characteristics of such capacitors, we fabricated and studied a MOS capacitor with highly ordered arrays of vertical Si nanowires of different lengths and thermal silicon oxide dielectric, in comparison to similar flat MOS capacitors. The high homogeneity and ordering of the SiNWs allowed the determination of the single SiNW capacitance and intrinsic series resistance, as well as other electrical characteristics (density of interface states, flat-band voltage and leakage current) in relation to the geometrical characteristics of the SiNWs. The SiNW capacitors demonstrated increased capacitance density compared to the flat case, while maintaining a cutoff frequency above 1 MHz, much higher than in other reports in the literature. Finally, our model system has been shown to constitute an excellent platform for the study of SiNW capacitors with either grown or deposited dielectrics, as for example high-k dielectrics for further increasing the capacitance density. This will be the subject of future work.

  9. Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization

    NASA Astrophysics Data System (ADS)

    He, J. H.; Lin, Yen H.; McConney, Michael E.; Tsukruk, Vladimir V.; Wang, Zhong L.; Bao, Gang

    2007-10-01

    UV photodetector fabricated using a single ZnO nanobelt (NB) has shown a photoresponse enhancement up to 750 times higher than that of a bare ZnO NB after coating with ˜20nm plasma polymerized acrylonitrile (PP-AN) nanoscale film. The mechanism for this colossal photoconductivity is suggested as a consequence of the efficient exciton dissociation under UV illumination due to enhanced electron transfer from valence band of ZnO NB to the PP-AN and then back to the conduction band of ZnO. This process has demonstrated an easy and effective method for improving the performance of the nanowire/NB-based devices, possibly leading to supersensitive UV detector for applications in imaging, photosensing, and intrachip optical interconnects.

  10. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction canmore » be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.« less

  11. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires.

    PubMed

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Unalan, Husnu Emrah

    2011-04-15

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  12. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Ozdemir, Baris; Kulakci, Mustafa; Turan, Rasit; Emrah Unalan, Husnu

    2011-04-01

    Vertically aligned silicon nanowire (Si NW) arrays have been fabricated over large areas using an electroless etching (EE) method, which involves etching of silicon wafers in a silver nitrate and hydrofluoric acid based solution. A detailed parametric study determining the relationship between nanowire morphology and time, temperature, solution concentration and starting wafer characteristics (doping type, resistivity, crystallographic orientation) is presented. The as-fabricated Si NW arrays were analyzed by field emission scanning electron microscope (FE-SEM) and a linear dependency of nanowire length to both temperature and time was obtained and the change in the growth rate of Si NWs at increased etching durations was shown. Furthermore, the effects of EE parameters on the optical reflectivity of the Si NWs were investigated in this study. Reflectivity measurements show that the 42.8% reflectivity of the starting silicon wafer drops to 1.3%, recorded for 10 µm long Si NW arrays. The remarkable decrease in optical reflectivity indicates that Si NWs have a great potential to be utilized in radial or coaxial p-n heterojunction solar cells that could provide orthogonal photon absorption and enhanced carrier collection.

  13. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.

    PubMed

    Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh; Hiruma, Kenji; Fukui, Takashi

    2010-05-12

    We report on integration of GaAs nanowire-based light-emitting-diodes (NW-LEDs) on Si substrate by selective-area metalorganic vapor phase epitaxy. The vertically aligned GaAs/AlGaAs core-multishell nanowires with radial p-n junction and NW-LED array were directly fabricated on Si. The threshold current for electroluminescence (EL) was 0.5 mA (current density was approximately 0.4 A/cm(2)), and the EL intensity superlinearly increased with increasing current injections indicating superluminescence behavior. The technology described in this letter could help open new possibilities for monolithic- and on-chip integration of III-V NWs on Si.

  14. Fabrication of lateral electrodes on semiconductor nanowires through structurally matched insulation for functional optoelectronics.

    PubMed

    Sheng, Yun; Sun, Huabin; Wang, Jianyu; Gao, Fan; Wang, Junzhuan; Pan, Lijia; Pu, Lin; Zheng, Youdou; Shi, Yi

    2013-01-18

    A strategy of using structurally matched alumina insulation to produce lateral electrodes on semiconductor nanowires is presented. Nanowires in the architecture are structurally matched with alumina insulation using selective anodic oxidation. Lateral electrodes are fabricated by directly evaporating metallic atoms onto the opposite sides of the nanowires. The integrated architecture with lateral electrodes propels carriers to transport them across nanowires and is crucially beneficial to the injection/extraction in optoelectronics. The matched architecture and the insulating properties of the alumina layer are investigated experimentally. ZnO nanowires are functionalized into an ultraviolet photodiode as an example. The present strategy successfully implements an advantageous architecture and is significant in developing diverse semiconductor nanowires in optoelectronic applications.

  15. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  16. Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5 Nanowires.

    PubMed

    Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk

    2016-10-12

    A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.

  17. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  18. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    NASA Astrophysics Data System (ADS)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  19. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  20. In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries

    DOE PAGES

    Xu, Feng; Li, Zhengrui; Wu, Lijun; ...

    2016-09-13

    Development of sodium-ion battery (SIB) electrode materials currently lags behind electrodes in commercial lithium-ion batteries (LIBs). However, in the long term, development of SIB components is a valuable goal. Their similar, but not identical, chemistries require careful identification of the underlying sodiation mechanism in SIBs. Here in this study, we utilize in situ transmission electron microscopy to explore quite different sodiation behaviors even in similar electrode materials through real-time visualization of microstructure and phase evolution. Upon electrochemical sodiation, single-crystalline ZnO nanowires (sc-ZNWs) are found to undergo a step-by-step electrochemical displacement reaction, forming crystalline NaZn 13 nanograins dispersed in a Namore » 2O matrix. This process is characterized by a slowly propagating reaction front and the formation of heterogeneous interfaces inside the ZNWs due to non-uniform sodiation amorphization. In contrast, poly-crystalline ZNWs (pc-ZNWs) exhibited an ultrafast sodiation process, which can partly be ascribed to the availability of unobstructed ionic transport pathways among ZnO nanograins. Thus the reaction front and heterogeneous interfaces disappear. The in situ TEM results, supported by calculation of the ion diffusion coefficient, provide breakthrough insights into the dependence of ion diffusion kinetics on crystallization form. This points toward a goal of optimizing the microstructure of electrode materials in order to develop high performance SIBs.« less

  1. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.

    PubMed

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-02

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3  V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  2. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors

    PubMed Central

    Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan

    2015-01-01

    Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827

  3. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  4. Optical design of GaN nanowire arrays for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Winnerl, Julia; Hudeczek, Richard; Stutzmann, Martin

    2018-05-01

    GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

  5. Strain-Gated Field Effect Transistor of a MoS2-ZnO 2D-1D Hybrid Structure.

    PubMed

    Chen, Libo; Xue, Fei; Li, Xiaohui; Huang, Xin; Wang, Longfei; Kou, Jinzong; Wang, Zhong Lin

    2016-01-26

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an exciting material due to its unique electrical, optical, and piezoelectric properties. Owing to an intrinsic band gap of 1.2-1.9 eV, monolayer or a-few-layer MoS2 is used for fabricating field effect transistors (FETs) with high electron mobility and on/off ratio. However, the traditional FETs are controlled by an externally supplied gate voltage, which may not be sensitive enough to directly interface with a mechanical stimulus for applications in electronic skin. Here we report a type of top-pressure/force-gated field effect transistors (PGFETs) based on a hybrid structure of a 2D MoS2 flake and 1D ZnO nanowire (NW) array. Once an external pressure is applied, the piezoelectric polarization charges created at the tips of ZnO NWs grown on MoS2 act as a gate voltage to tune/control the source-drain transport property in MoS2. At a 6.25 MPa applied stimulus on a packaged device, the source-drain current can be tuned for ∼25%, equivalent to the results of applying an extra -5 V back gate voltage. Another type of PGFET with a dielectric layer (Al2O3) sandwiched between MoS2 and ZnO also shows consistent results. A theoretical model is proposed to interpret the received data. This study sets the foundation for applying the 2D material-based FETs in the field of artificial intelligence.

  6. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview

    PubMed Central

    Woo, Hyung-Sik; Na, Chan Woong; Lee, Jong-Heun

    2016-01-01

    Strategies for the enhancement of gas sensing properties, and specifically the improvement of gas selectivity of metal oxide semiconductor nanowire (NW) networks grown by chemical vapor deposition and thermal evaporation, are reviewed. Highly crystalline NWs grown by vapor-phase routes have various advantages, and thus have been applied in the field of gas sensors over the years. In particular, n-type NWs such as SnO2, ZnO, and In2O3 are widely studied because of their simple synthetic preparation and high gas response. However, due to their usually high responses to C2H5OH and NO2, the selective detection of other harmful and toxic gases using oxide NWs remains a challenging issue. Various strategies—such as doping/loading of noble metals, decorating/doping of catalytic metal oxides, and the formation of core–shell structures—have been explored to enhance gas selectivity and sensitivity, and are discussed herein. Additional methods such as the transformation of n-type into p-type NWs and the formation of catalyst-doped hierarchical structures by branch growth have also proven to be promising for the enhancement of gas selectivity. Accordingly, the physicochemical modification of oxide NWs via various methods provides new strategies to achieve the selective detection of a specific gas, and after further investigations, this approach could pave a new way in the field of NW-based semiconductor-type gas sensors. PMID:27657076

  7. Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2015-10-01

    Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant

  8. Substrate-mediated diffusion-induced growth of single-crystal nanowires.

    PubMed

    Mohammad, S Noor

    2009-11-28

    Theoretical investigations of the growth and growth rates of single-crystal nanowires (NWs) by vapor phase mechanisms have been carried out. Substrate-induced processes are assumed to dominate this growth. The modeling for growth takes adsorption, desorption, surface scattering, and diffusion into account. It takes into consideration also the retarding electric field arising from the scattering of the NW vapor species by both the substrate and the NW sidewalls. Growth characteristics under the influence of the retarding electric field have been studied. Competitive roles of adatom diffusivity and the electric field in the NW growth are elucidated. Influence of the growing NW length and the adatom impingement rate on the NW growth rate has been described. The effect of adatom collection area around each NW has been examined. The NW tapering and kinking have been explained. The fundamentals of the substrate induction and details of the growth parameters have been analyzed. The influence of foreign element catalytic agents in the vapor-liquid-solid mechanism has been presented. All these have led to the understanding and resolution of problems, controversies, and contradictions involving substrate-induced NW growths.

  9. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-07

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.

  10. A Multipurpose CMOS Platform for Nanosensing.

    PubMed

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-11-30

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.

  11. Formation and possible growth mechanism of bismuth nanowires on various substrates

    NASA Astrophysics Data System (ADS)

    Volkov, V. T.; Kasumov, A. Yu.; Kasumov, Yu. A.; Khodos, I. I.

    2017-08-01

    In this work, we report results of a study of bismuth nanowires growth on various substrates, including Fe, Ni, Co, W, Pt, Au thin films on oxidized Si, Si (111), oxidized Si (100), and fused quartz. The nanowires (NW) were prepared by RF diode sputtering of Bi onto a substrate heated to about 200 °C. The structure of the wires was studied by a scanning and transmission electron microscopy. The NWs are monocrystalline up to a length of several micrometers and possess a very thin (less than 2 nm) oxide layer. A major influence of the substrate type on the quantity and the length of the obtained nanowires is observed. Based on the above studies, we propose a possible mechanism of a bismuth nanowire growth.

  12. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor

    PubMed Central

    Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali

    2018-01-01

    Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed. PMID:29673203

  13. A Novel Nanowire Assembly Process for the Fabrication of CO Sensor.

    PubMed

    Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali

    2018-04-17

    Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed.

  14. Bringing order to the world of nanowire devices by phase shift lithography.

    PubMed

    Subannajui, Kittitat; Güder, Firat; Zacharias, Margit

    2011-09-14

    Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.

  15. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires

    PubMed Central

    2011-01-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement. PMID:21711709

  16. Surface/Interface Carrier-Transport Modulation for Constructing Photon-Alternative Ultraviolet Detectors Based on Self-Bending-Assembled ZnO Nanowires.

    PubMed

    Guo, Zhen; Zhou, Lianqun; Tang, Yuguo; Li, Lin; Zhang, Zhiqi; Yang, Hongbo; Ma, Hanbin; Nathan, Arokia; Zhao, Dongxu

    2017-09-13

    Surface/interface charge-carrier generation, diffusion, and recombination/transport modulation are especially important in the construction of photodetectors with high efficiency in the field of nanoscience. In the paper, a kind of ultraviolet (UV) detector is designed based on ZnO nanostructures considering photon-trapping, surface plasmonic resonance (SPR), piezophototronic effects, interface carrier-trapping/transport control, and collection. Through carefully optimized surface/interface carrier-transport modulation, a designed device with detectivity as high as 1.69 × 10 16 /1.71 × 10 16 cm·Hz 1/2 /W irradiating with 380 nm photons under ultralow bias of 0.2 V is realized by alternating nanoparticle/nanowire active layers, respectively, and the designed UV photodetectors show fast and slow recovery processes of 0.27 and 4.52 ms, respectively, which well-satisfy practical needs. Further, it is observed that UV photodetection could be performed within an alternative response by varying correlated key parameters, through efficient surface/interface carrier-transport modulation, spectrally resolved photoresponse of the detector revealing controlled detection in the UV region based on the ZnO nanomaterial, photodetection allowed or limited by varying the active layers, irradiation distance from one of the electrodes, standing states, or electric field. The detailed carrier generation, diffusion, and recombination/transport processes are well illustrated to explain charge-carrier dynamics contributing to the photoresponse behavior.

  17. Zinc oxide nanowire gamma ray detector with high spatiotemporal resolution

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Nolen, J. Ryan; Cook, Andrew; Mu, Richard R.; Haglund, Richard F.

    2016-03-01

    Conventional scintillation detectors are typically single crystals of heavy-metal oxides or halides doped with rare-earth ions that record the recombination of electron-hole pairs by photon emission in the visible to ultraviolet. However, the light yields are typically low enough to require photomultiplier detection with the attendant instrumental complications. Here we report initial studies of gamma ray detection by zinc oxide (ZnO) nanowires, grown by vapor-solid deposition. The nanowires grow along the c-axis in a wurtzite structure; they are typically 80 nm in diameter and have lengths of 1- 2 μm. The nanowires are single crystals of high quality, with a photoluminescence (PL) yield from band-edge exciton emission in the ultraviolet that is typically one hundred times larger than the PL yield from defect centers in the visible. Nanowire ensembles were irradiated by 662 keV gamma rays from a Cs-137 source for periods of up to ten hours; gamma rays in this energy range interact by Compton scattering, which in ZnO creates F+ centers that relax to form singly-charged positive oxygen vacancies. Following irradiation, we fit the PL spectra of the visible emission with a sum of Gaussians at the energies of the known defects. We find highly efficient PL from the irradiated area, with a figure of merit approaching 106 photons/s/MeV of deposited energy. Over a period of days, the singly charged O+ vacancies relax to the more stable doubly charged O++ vacancies. However, the overall defect PL returns to pre-irradiation values after about a week, as the vacancies diffuse to the surface of these very thin nanowires, indicating that a self-healing process restores the nanowires to their original state.

  18. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  19. Electro-triggering and electrochemical monitoring of dopamine exocytosis from a single cell by using ultrathin electrodes based on Au nanowires

    NASA Astrophysics Data System (ADS)

    Kang, Mijeong; Yoo, Seung Min; Gwak, Raekeun; Eom, Gayoung; Kim, Jihwan; Lee, Sang Yup; Kim, Bongsoo

    2015-12-01

    A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism.A sophisticated set of an Au nanowire (NW) stimulator-Au NW detector system is developed for electrical cell stimulation and electrochemical analysis of subsequent exocytosis with very high spatial resolution. Dopamine release from a rat pheochromocytoma cell is more stimulated by a more negative voltage pulse. This system could help to improve the therapeutic efficacy of electrotherapies by providing valuable information on their healing mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06021d

  20. Ultrasensitive biomolecular assays with amplifying nanowire FET biosensors

    NASA Astrophysics Data System (ADS)

    Chui, Chi On; Shin, Kyeong-Sik; Mao, Yufei

    2013-09-01

    In this paper, we review our recent development and validation of the ultrasensitive electronic biomolecular assays enabled by our novel amplifying nanowire field-effect transistor (nwFET) biosensors. Our semiconductor nwFET biosensor platform technology performs extreme proximity signal amplification in the electrical domain that requires neither labeling nor enzymes nor optics. We have designed and fabricated the biomolecular assay prototypes and developed the corresponding analytical procedures. We have also confirmed their analytical performance in quantitating key protein biomarker in human serum, demonstrating an ultralow limit of detection and concurrently high output current level for the first time.

  1. A Two-Dimensional Ruddlesden-Popper Perovskite Nanowire Laser Array based on Ultrafast Light-Harvesting Quantum Wells.

    PubMed

    Zhang, Haihua; Wu, Yishi; Liao, Qing; Zhang, Zhaoyi; Liu, Yanping; Gao, Qinggang; Liu, Peng; Li, Meili; Yao, Jiannian; Fu, Hongbing

    2018-06-25

    Miniaturized nanowire nanolasers of 3D perovskites feature a high gain coefficient; however, room-temperature optical gain and nanowire lasers from 2D layered perovskites have not been reported to date. A biomimetic approach is presented to construct an artificial ligh-harvesting system in mixed multiple quantum wells (QWs) of 2D-RPPs of (BA) 2 (FA) n-1 Pb n Br 3n+1 , achieving room-temperature ASE and nanowire (NW) lasing. Owing to the improvement of flexible and deformable characteristics provided by organic BA cation layers, high-density large-area NW laser arrays were fabricated with high photostability. Well-controlled dimensions and uniform geometries enabled 2D-RPPs NWs functioning as high-quality Fabry-Perot (FP) lasers with almost identical optical modes, high quality (Q) factor (ca. 1800), and similarly low lasing thresholds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    PubMed Central

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  3. Nanowire dopant measurement using secondary ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be frommore » the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.« less

  4. Helical coil buckling mechanism for a stiff nanowire on an elastomeric substrate

    NASA Astrophysics Data System (ADS)

    Chen, Youlong; Liu, Yilun; Yan, Yuan; Zhu, Yong; Chen, Xi

    2016-10-01

    When a stiff nanowire is deposited on a compliant soft substrate, it may buckle into a helical coil form when the system is compressed. Using theoretical and finite element method (FEM) analyses, the detailed three-dimensional coil buckling mechanism for a silicon nanowire (SiNW) on a polydimethylsiloxane (PDMS) substrate is studied. A continuum mechanics approach based on the minimization of the strain energy in the SiNW and elastomeric substrate is developed. Due to the helical buckling, the bending strain in SiNW is significantly reduced and the maximum local strain is almost uniformly distributed along SiNW. Based on the theoretical model, the energy landscape for different buckling modes of SiNW on PDMS substrate is given, which shows that both the in-plane and out-of-plane buckling modes have the local minimum potential energy, whereas the helical buckling model has the global minimum potential energy. Furthermore, the helical buckling spacing and amplitudes are deduced, taking into account the influences of the elastic properties and dimensions of SiNWs. These features are verified by systematic FEM simulations and parallel experiments. As the effective compressive strain in elastomeric substrate increases, the buckling profile evolves from a vertical ellipse to a lateral ellipse, and then approaches to a circle when the effective compressive strain is larger than 30%. The study may shed useful insights on the design and optimization of high-performance stretchable electronics and 3D complex nano-structures.

  5. Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future.

    PubMed

    Fennell, John F; Liu, Sophie F; Azzarelli, Joseph M; Weis, Jonathan G; Rochat, Sébastien; Mirica, Katherine A; Ravnsbæk, Jens B; Swager, Timothy M

    2016-01-22

    Chemiresistive sensors are becoming increasingly important as they offer an inexpensive option to conventional analytical instrumentation, they can be readily integrated into electronic devices, and they have low power requirements. Nanowires (NWs) are a major theme in chemosensor development. High surface area, interwire junctions, and restricted conduction pathways give intrinsically high sensitivity and new mechanisms to transduce the binding or action of analytes. This Review details the status of NW chemosensors with selected examples from the literature. We begin by proposing a principle for understanding electrical transport and transduction mechanisms in NW sensors. Next, we offer the reader a review of device performance parameters. Then, we consider the different NW types followed by a summary of NW assembly and different device platform architectures. Subsequently, we discuss NW functionalization strategies. Finally, we propose future developments in NW sensing to address selectivity, sensor drift, sensitivity, response analysis, and emerging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires

    PubMed Central

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-01

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices. PMID:26751282

  7. Spatial potential ripples of azimuthal surface modes in topological insulator Bi2Te3 nanowires.

    PubMed

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V; Alvaro, Raquel; Gooth, Johannes; Salmeron, Miquel; Martin-Gonzalez, Marisol

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi2Te3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density of states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.

  8. Spatial potential ripples of azimuthal surface modes in topological insulator Bi 2Te 3 nanowires

    DOE PAGES

    Muñoz Rojo, Miguel; Zhang, Yingjie; Manzano, Cristina V.; ...

    2016-01-11

    Topological insulators (TI) nanowires (NW) are an emerging class of structures, promising both novel quantum effects and potential applications in low-power electronics, thermoelectrics and spintronics. However, investigating the electronic states of TI NWs is complicated, due to their small lateral size, especially at room temperature. Here, we perform scanning probe based nanoscale imaging to resolve the local surface potential landscapes of Bi 2Te 3 nanowires (NWs) at 300 K. We found equipotential rings around the NWs perimeter that we attribute to azimuthal 1D modes. Along the NW axis, these modes are altered, forming potential ripples in the local density ofmore » states, due to intrinsic disturbances. Potential mapping of electrically biased NWs enabled us to accurately determine their conductivity which was found to increase with the decrease of NW diameter, consistent with surface dominated transport. Finally, our results demonstrate that TI NWs can pave the way to both exotic quantum states and novel electronic devices.« less

  9. Growth strategies to control tapering in Ge nanowires

    NASA Astrophysics Data System (ADS)

    Periwal, P.; Baron, T.; Gentile, P.; Salem, B.; Bassani, F.

    2014-04-01

    We report the effect of PH3 on the morphology of Au catalyzed Ge nanowires (NWs). Ge NWs were grown on Si (111) substrate at 400 °C in the presence of PH3, using vapor-liquid-solid method by chemical vapor deposition. We show that high PH3/GeH4 ratio causes passivation at NW surface. At high PH3 concentration phosphorous atoms attach itself on NW surface and form a self-protection coating that prevents conformal growth and leads to taper free nanostructures. However, in case of low PH3 flux the combination of axial and radial growth mechanism occurs resulting in conical structure. We have also investigated axial PH3-intrinsic junctions in Ge NWs. The unusual NW shape is attributed to a combination of catalyzed, uncatalyzed and diffusion induced growth.

  10. Studies of Silicon Nanowires with Different Parameters — By PECVD

    NASA Astrophysics Data System (ADS)

    Leela, S.; Abirami, T.; Bhattacharya, Sekhar; Ahmed, Nafis; Monika, S.; Priya, R. Nivedha

    2016-10-01

    One-dimensional nanostructures such as nanowires have a wide range of applications. Silicon is the best competitive material for the carbon nanotubes (CNTs). Carbon and silicon have some similar and peculiar properties. Silicon nanowires (SiNWs) were synthesized using plasma enhanced chemical vapor deposition (PECVD) on p-Si (111) wafer. Gold is used as a catalyst for the growth of the SiNWs. Based on our fundamental understanding of vapor-liquid-solid (VLS) nanowire growth mechanism, different levels of growth controls have been achieved. Gold catalyst deposited and annealed at different temperatures with different thicknesses (450∘C, 500∘C and 550∘C, 600∘C, 650∘C for 4min and 8min and 3nm, 5nm, 30nm Au thickness). SiNW grown by PECVD with different carrier gases varies with flow rate. We observed the different dimensions of Si nanowires by FESEM and optimized the growth parameters to get the vertical aligned and singular Si nanowires. Optical phonon of the Si nanowires and crystallinity nature were identified by Raman spectral studies.

  11. Magnetization reversal and coercivity of Fe3Se4 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Li, D.; Li, S. J.; Zhou, Y. T.; Bai, Y.; Zhu, Y. L.; Ren, W. J.; Long, G.; Zeng, H.; Zhang, Z. D.

    2015-05-01

    The microstructure and magnetic properties of Fe3Se4 nanowire (NW) arrays in anodic aluminum oxide (AAO) porous membrane are studied. Cross-sectional SEM and plane-view TEM images show that the mean wire diameter (dw) and the center-to-center spacing (D) of Fe3Se4 nanowires are about 220 nm and 330 nm, respectively. The field-cooled magnetization dependent on the temperature indicates a Curie temperature around 334 K for the Fe3Se4 nanowires. The coercivities of Fe3Se4 nanowires at 10 K, obtained from the in-plane and out-of-plane hysteresis loops, are as high as 22.4 kOe and 23.3 kOe, which can be understood from the magnetocrystalline anisotropy and the magnetization reversal process.

  12. Mechanical response of CH3NH3PbI3 nanowires

    NASA Astrophysics Data System (ADS)

    Ćirić, L.; Ashby, K.; Abadie, T.; Spina, M.; Duchamp, M.; Náfrádi, B.; Kollár, M.; Forró, L.; Horváth, E.

    2018-03-01

    We report a systematic study of the mechanical response of methylammonium lead triiodide CH3NH3PbI3 nanowires by employing bending measurements using atomic force microscope on suspended wires over photo-lithographically patterned channels. Force-deflection curves measured at room temperature give a Young's modulus between 2 and 14 GPa. This broad range of values is attributed to the variations in the microcrystalline texture of halide perovskite nanowires. The mechanical response of a highly crystalline nanowire is linear with force and has a brittle character. The braking modulus of 48 ± 20 MPa corresponds to 100 μm of radius of curvature of the nanowires, rendering them much better structures for flexible devices than spin coated films. The measured moduli decrease rapidly if the NW is exposed to water vapor.

  13. Epitaxial regrowth of silicon for the fabrication of radial junction nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Kendrick, Chito E.; Eichfeld, Sarah M.; Ke, Yue; Weng, Xiaojun; Wang, Xin; Mayer, Theresa S.; Redwing, Joan M.

    2010-08-01

    Radial p-n silicon nanowire (SiNW) solar cells are of interest as a potential pathway to increase the efficiency of crystalline silicon photovoltaics by reducing the junction length and surface reflectivity. Our studies have focused on the use of vapor-liquid-solid (VLS) growth in combination with chemical vapor deposition (CVD) processing for the fabrication of radial p-n junction SiNW array solar cells. High aspect ratio p-type SiNW arrays were initially grown on gold-coated (111) Si substrates by CVD using SiCl4 as the source gas and B2H6 as the p-type dopant source. The epitaxial re-growth of n-type Si shell layers on the Si nanowires was then investigated using SiH4 as the source gas and PH3 as the dopant. Highly conformal coatings were achieved on nanowires up to 25 μm in length. The microstructure of the Si shell layer changed from polycrystalline to single crystal as the deposition temperature was raised from 650oC to 950oC. Electrical test structures were fabricated by aligning released SiNWs onto pre-patterned substrates via fieldassisted assembly followed by selective removal of the n-type shell layer and contact deposition. Current-voltage measurements of the radial p-n SiNWs diodes fabricated with re-grown Si shell layers at 950°C demonstrate rectifying behavior with an ideality factor of 1.93. Under illumination from an AM1.5g spectrum and efficiency for this single SiNW radial p-n junction was determined to be 1.8%, total wire diameter was 985 nm.

  14. Transparent Electrodes Based on Silver Nanowire Networks: From Physical Considerations towards Device Integration

    PubMed Central

    Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P.; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy

    2017-01-01

    The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks. PMID:28772931

  15. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel

    NASA Astrophysics Data System (ADS)

    Moon, Hyunjin; Won, Phillip; Lee, Jinhwan; Ko, Seung Hwan

    2016-07-01

    Since transparent conducting films based on silver nanowires (AgNWs) have shown higher transmittance and electrical conductivity compared to those of indium tin oxide (ITO) films, the electronics industry has recognized them as promising substitutes. However, due to the higher haze value of AgNW transparent conducting films compared to ITO films, the clarity is decreased when AgNW films are applied to optoelectronic devices. In this study, we develop a highly transparent, low-haze, very long AgNW percolation network. Moreover, we confirm that analyzed chemical roles can easily be applied to different AgNW synthesis methods, and that they have a direct impact on the nanowire shape. Consequently, the lengths of the wires are increased up to 200 μm and the diameters of the wires are decreased up to 45 nm. Using these results, we fabricate highly transparent (96%) conductors (100 Ω/sq) with low-haze (2%) without any annealing process. This electrode shows enhanced clarity compared to previous results due to the decreased diffusive transmittance and scattering. In addition, a flexible touchscreen using a AgNW network is demonstrated to show the performance of modified AgNWs.

  16. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    PubMed

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used.

  17. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties.

    PubMed

    Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn

    2017-09-22

    Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO 2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.

  18. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  19. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  20. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  1. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  2. Photovoltaic devices based on quantum dot functionalized nanowire arrays embedded in an organic matrix

    NASA Astrophysics Data System (ADS)

    Kung, Patrick; Harris, Nicholas; Shen, Gang; Wilbert, David S.; Baughman, William; Balci, Soner; Dawahre, Nabil; Butler, Lee; Rivera, Elmer; Nikles, David; Kim, Seongsin M.

    2012-01-01

    Quantum dot (QD) functionalized nanowire arrays are attractive structures for low cost high efficiency solar cells. QDs have the potential for higher quantum efficiency, increased stability and lifetime compared to traditional dyes, as well as the potential for multiple electron generation per photon. Nanowire array scaffolds constitute efficient, low resistance electron transport pathways which minimize the hopping mechanism in the charge transport process of quantum dot solar cells. However, the use of liquid electrolytes as a hole transport medium within such scaffold device structures have led to significant degradation of the QDs. In this work, we first present the synthesis uniform single crystalline ZnO nanowire arrays and their functionalization with InP/ZnS core-shell quantum dots. The structures are characterized using electron microscopy, optical absorption, photoluminescence and Raman spectroscopy. Complementing photoluminescence, transmission electron microanalysis is used to reveal the successful QD attachment process and the atomistic interface between the ZnO and the QD. Energy dispersive spectroscopy reveals the co-localized presence of indium, phosphorus, and sulphur, suggestive of the core-shell nature of the QDs. The functionalized nanowire arrays are subsequently embedded in a poly-3(hexylthiophene) hole transport matrix with a high degree of polymer infiltration to complete the device structure prior to measurement.

  3. Droop-Free, Reliable, and High-Power InGaN/GaN Nanowire Light-Emitting Diodes for Monolithic Metal-Optoelectronics.

    PubMed

    Zhao, Chao; Ng, Tien Khee; ElAfandy, Rami T; Prabaswara, Aditya; Consiglio, Giuseppe Bernardo; Ajia, Idris A; Roqan, Iman S; Janjua, Bilal; Shen, Chao; Eid, Jessica; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-07-13

    A droop-free nitride light-emitting diode (LED) with the capacity to operate beyond the "green gap" has been a subject of intense scientific and engineering interest. While several properties of nanowires on silicon make them promising for use in LED development, the high aspect ratio of individual nanowires and their laterally discontinuous features limit phonon transport and device performance. Here, we report on the monolithic integration of metal heat-sink and droop-free InGaN/GaN quantum-disks-in-nanowire LEDs emitting at ∼710 nm. The reliable operation of our uncooled nanowire-LEDs (NW-LEDs) epitaxially grown on molybdenum was evident in the constant-current soft burn-in performed on a 380 μm × 380 μm LED. The square LED sustained 600 mA electrical stress over an 8 h period, providing stable light output at maturity without catastrophic failure. The absence of carrier and phonon transport barriers in NW-LEDs was further inferred from current-dependent Raman measurements (up to 700 mA), which revealed the low self-heating. The radiative recombination rates of NW-LEDs between room temperature and 40 °C was not limited by Shockley-Read-Hall recombination, Auger recombination, or carrier leakage mechanisms, thus realizing droop-free operation. The discovery of reliable, droop-free devices constitutes significant progress toward the development of nanowires for practical applications. Our monolithic approach realized a high-performance device that will revolutionize the way high power, low-junction-temperature LED lamps are manufactured for solid-state lighting and for applications in high-temperature harsh environment.

  4. Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.

    2012-04-01

    The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.

  5. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Donghwa; Lee, Youngu

    2015-03-24

    A copper nanowire-graphene (CuNW-G) core-shell nanostructure was successfully synthesized using a low-temperature plasma-enhanced chemical vapor deposition process at temperatures as low as 400 °C for the first time. The CuNW-G core-shell nanostructure was systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy measurements. A transparent conducting electrode (TCE) based on the CuNW-G core-shell nanostructure exhibited excellent optical and electrical properties compared to a conventional indium tin oxide TCE. Moreover, it showed remarkable thermal oxidation and chemical stability because of the tight encapsulation of the CuNW with gas-impermeable graphene shells. The potential suitability of CuNW-G TCE was demonstrated by fabricating bulk heterojunction polymer solar cells. We anticipate that the CuNW-G core-shell nanostructure can be used as an alternative to conventional TCE materials for emerging optoelectronic devices such as flexible solar cells, displays, and touch panels.

  6. A Multipurpose CMOS Platform for Nanosensing

    PubMed Central

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-01-01

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911

  7. Ice-Templated Bimodal-Porous Silver Nanowire/PDMS Nanocomposites for Stretchable Conductor.

    PubMed

    Oh, Jae Young; Lee, Dongju; Hong, Soon Hyung

    2018-06-27

    A three-dimensional (3D) bimodal-porous silver nanowire (AgNW) nanostructure with superior electrical properties is fabricated by freeze drying of AgNW aqueous dispersion with macrosized ice spheres for bimodal-porous structure. The ice sphere dispersed AgNW solution yields a 3D AgNW network at the surface of ice sphere and formation of macropores by removal of ice sphere during freeze-drying process. The resulting nanostructures exhibit excellent electrical properties due to their low electrical percolation threshold by the formation of macropores, which results in an efficient and dense 3D AgNW network with a small amount of AgNWs. The highly conductive and stretchable AgNW/poly(dimethylsiloxane) (PDMS) nanocomposites are made by impregnating the 3D porous conductive network with highly stretchable poly(dimethylsiloxane) (PDMS) matrix. The AgNW/PDMS nanocomposites exhibit a high conductivity of 42 S/cm with addition of relatively small amount of 2 wt %. The high conductivity is retained when stretched up to 120% elongation even after 100 stretching-releasing cycles. Due to high electrical conductivity and superior stretchability of AgNW/PDMS nanocomposites, these are expected to be used in stretchable electronic devices.

  8. Scenarios of stable Vapor→Liquid Droplet→Solid Nanowire growth

    NASA Astrophysics Data System (ADS)

    Nebol`sin, Valery A.; Dunaev, Alexander I.; Tatarenkov, Alexander F.; Shmakova, Svetlana S.

    2016-09-01

    In the process of Nanowire (NW) growth under the Vapor→Liquid Droplet→Solid (VLS) scheme, the stages that reach the boundary of the crystallization front (the triple phase line (TPL)) under the droplet of the catalyst are either absorbed by the TPL, or accumulate ahead of it. It has been shown that, in the first case, TPL can release stages, which leads to a decrease in supersaturation necessary for NW growth. An equation has been derived, which defines the change in free surface energy of the three-phase system in the absorption (release) of a stage, being a function of the contact angle of the droplet, and the ratio between the phase conjugation angles interface at equilibrium shift in the boundary line. A thermodynamic model has been developed and three possible scenarios for sustainable NW growth: Non-Wetting, Wetting and Fully Wetting have been considered in accordance with the processes occurring at the interface of three phases. The results obtained for each scenario were used to analyze the polytypism of GaAs and InAs NW, the radial periodic instability of Si NW and the formation of "negative" NW.

  9. Uninterrupted and reusable source for the controlled growth of nanowires

    PubMed Central

    Sugavaneshwar, R. P.; Nanda, Karuna Kar

    2013-01-01

    Generally, the length of the oxide nanowires grown by vapor phase transport is limited by the degradation of the source materials. Furthermore, the source material is used once for the nanowires growth. By exploiting the Si-Zn phase diagram, we have developed a simple methodology for the non-catalytic growth of ultralong ZnO nanowires in large area with controllable aspect ratio and branched structures. The insolubility of Zn in Si and the use of a Si cap on the Zn source to prevent local source oxidation of Zn (i. e. prevents the degradation of the source) are the keys to grow longer nanowires without limitations. It has been shown that the aspect ratio can be controlled by thermodynamically (temperature) and more importantly by kinetically (vapor flux). One of the interesting findings is that the same source material can be used for several depositions of oxide nanostructured materials. PMID:23412010

  10. Electromagnetic field enhancement effects in group IV semiconductor nanowires. A Raman spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Pura, J. L.; Anaya, J.; Souto, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Periwal, P.; Baron, T.; Jiménez, J.

    2018-03-01

    Semiconductor nanowires (NWs) are the building blocks of future nanoelectronic devices. Furthermore, their large refractive index and reduced dimension make them suitable for nanophotonics. The study of the interaction between nanowires and visible light reveals resonances that promise light absorption/scattering engineering for photonic applications. Micro-Raman spectroscopy has been used as a characterization tool for semiconductor nanowires. The light/nanowire interaction can be experimentally assessed through the micro-Raman spectra of individual nanowires. As compared to both metallic and dielectric nanowires, semiconductor nanowires add additional tools for photon engineering. In particular, one can grow heterostructured nanowires, both axial and radial, and also one could modulate the doping level and the surface condition among other factors than can affect the light/NW interaction. We present herein a study of the optical response of group IV semiconductor nanowires to visible photons. The study is experimentally carried out through micro-Raman spectroscopy of different group IV nanowires, both homogeneous and axially heterostructured (SiGe/Si). The results are analyzed in terms of the electromagnetic modelling of the light/nanowire interaction using finite element methods. The presence of axial heterostructures is shown to produce electromagnetic resonances promising new photon engineering capabilities of semiconductor nanowires.

  11. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    PubMed Central

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-01-01

    Abstract This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 ~ 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors. PMID:28740560

  12. Flexible cellulose and ZnO hybrid nanocomposite and its UV sensing characteristics

    NASA Astrophysics Data System (ADS)

    Mun, Seongcheol; Kim, Hyun Chan; Ko, Hyun-U.; Zhai, Lindong; Kim, Jung Woong; Kim, Jaehwan

    2017-12-01

    This paper reports the synthesis and UV sensing characteristics of a cellulose and ZnO hybrid nanocomposite (CEZOHN) prepared by exploiting the synergetic effects of ZnO functionality and the renewability of cellulose. Vertically aligned ZnO nanorods were grown well on a flexible cellulose film by direct ZnO seeding and hydrothermal growing processes. The ZnO nanorods have the wurtzite structure and an aspect ratio of 9 11. Photoresponse of the prepared CEZOHN was evaluated by measuring photocurrent under UV illumination. CEZOHN shows bi-directional, linear and fast photoresponse as a function of UV intensity. Electrode materials, light sources, repeatability, durability and flexibility of the prepared CEZOHN were tested and the photocurrent generation mechanism is discussed. The silver nanowire coating used for electrodes on CEZOHN is compatible with a transparent UV sensor. The prepared CEZOHN is flexible, transparent and biocompatible, and hence can be used for flexible and wearable UV sensors.

  13. M13 Bacteriophage/Silver Nanowire Surface-Enhanced Raman Scattering Sensor for Sensitive and Selective Pesticide Detection.

    PubMed

    Koh, Eun Hye; Mun, ChaeWon; Kim, ChunTae; Park, Sung-Gyu; Choi, Eun Jung; Kim, Sun Ho; Dang, Jaejeung; Choo, Jaebum; Oh, Jin-Woo; Kim, Dong-Ho; Jung, Ho Sang

    2018-03-28

    A surface-enhanced Raman scattering (SERS) sensor comprising silver nanowires (AgNWs) and genetically engineered M13 bacteriophages expressing a tryptophan-histidine-tryptophan (WHW) peptide sequence (BPWHW) was fabricated by simple mixing of BPWHW and AgNW solutions, followed by vacuum filtration onto a glass-fiber filter paper (GFFP) membrane. The AgNWs stacked on the GFFP formed a high density of SERS-active hot spots at the points of nanowire intersections, and the surface-coated BPWHW functioned as a bioreceptor for selective pesticide detection. The BPWHW-functionalized AgNW (BPWHW/AgNW) sensor was characterized by scanning electron microscopy, confocal scanning fluorescence microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy. The Raman signal enhancement and the selective pesticide SERS detection properties of the BPWHW/AgNW sensor were investigated in the presence of control substrates such as wild-type M13 bacteriophage-decorated AgNWs (BPWT/AgNW) and undecorated AgNWs (AgNW). The BPWHW/AgNW sensor exhibited a significantly higher capture capability for pesticides, especially paraquat (PQ), than the control SERS substrates, and it also showed a relatively higher selectivity for PQ than for other bipyridylium pesticides such as diquat and difenzoquat. Furthermore, as a field application test, PQ was detected on the surface of PQ-pretreated apple peels, and the results demonstrated the feasibility of using a paper-based SERS substrate for on-site residual pesticide detection. The developed M13 bacteriophage-functionalized AgNW SERS sensor might be applicable for the detection of various pesticides and chemicals through modification of the M13 bacteriophage surface peptide sequence.

  14. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide.

    PubMed

    Kaleva, Aaretti; Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-07-11

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  15. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    PubMed Central

    Saarimaa, Ville; Heinonen, Saara; Nikkanen, Juha-Pekka; Markkula, Antti; Väisänen, Pasi; Levänen, Erkki

    2017-01-01

    In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications. PMID:28696374

  16. Effective light absorption and its enhancement factor for silicon nanowire-based solar cell.

    PubMed

    Duan, Zhiqiang; Li, Meicheng; Mwenya, Trevor; Fu, Pengfei; Li, Yingfeng; Song, Dandan

    2016-01-01

    Although nanowire (NW) antireflection coating can enhance light trapping capability, which is generally used in crystal silicon (CS) based solar cells, whether it can improve light absorption in the CS body depends on the NW geometrical shape and their geometrical parameters. In order to conveniently compare with the bare silicon, two enhancement factors E(T) and E(A) are defined and introduced to quantitatively evaluate the efficient light trapping capability of NW antireflective layer and the effective light absorption capability of CS body. Five different shapes (cylindrical, truncated conical, convex conical, conical, and concave conical) of silicon NW arrays arranged in a square are studied, and the theoretical results indicate that excellent light trapping does not mean more light can be absorbed in the CS body. The convex conical NW has the best light trapping, but the concave conical NW has the best effective light absorption. Furthermore, if the cross section of silicon NW is changed into a square, both light trapping and effective light absorption are enhanced, and the Eiffel Tower shaped NW arrays have optimal effective light absorption.

  17. Ab-initio study of thermodynamic properties of boron nanowire at atomic scale

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.

    2018-04-01

    In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.

  18. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  19. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor.

    PubMed

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-11

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  20. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  1. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.

    PubMed

    Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S

    2015-10-28

    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.

  2. Composition-Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual-Color Lasing Performance.

    PubMed

    Huang, Ling; Gao, Qinggang; Sun, Ling-Dong; Dong, Hao; Shi, Shuo; Cai, Tong; Liao, Qing; Yan, Chun-Hua

    2018-05-21

    Cesium lead halide (CsPbX 3 ) perovskite has emerged as a promising low-threshold multicolor laser material; however, realizing wavelength-tunable lasing output from a single CsPbX 3 nanostructure is still constrained by integrating different composition. Here, the direct synthesis of composition-graded CsPbBr x I 3- x nanowires (NWs) is reported through vapor-phase epitaxial growth on mica. The graded composition along the NW, with an increased Br/I from the center to the ends, comes from desynchronized deposition of cesium lead halides and temperature-controlled anion-exchange reaction. The graded composition results in varied bandgaps along the NW, which induce a blueshifted emission from the center to the ends. As an efficient gain media, the nanowire exerts position-dependent lasing performance, with a different color at the ends and center respectively above the threshold. Meanwhile, dual-color lasing with a wavelength separation of 35 nm is activated simultaneously at a site with an intermediate composition. This position-dependent dual-color lasing from a single nanowire makes these metal halide perovskites promising for applications in nanoscale optical devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.

    2016-12-01

    In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.

  4. Catalyst-free fabrication of novel ZnO/CuO core-Shell nanowires heterojunction: Controlled growth, structural and optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Arif; Wahab, Yussof; Muhammad, Rosnita; Tahir, Muhammad; Sakrani, Samsudi

    2018-03-01

    Development of controlled growth and vertically aligned ZnO/CuO core-shell heterojunction nanowires (NWs) with large area by a catalyst free vapor deposition and oxidation approach has been investigated. Structural characterization reveals successful fabrication of a core ZnO nanowire having single crystalline hexagonal wurtzite structure along [002] direction and CuO nanostructure shell with thickness (8-10 nm) having polycrystalline monoclinic structure. The optical property analysis suggests that the reflectance spectrum of ZnO/CuO heterostructure nanowires is decreased by 18% in the visible range, which correspondingly shows high absorption in this region as compared to pristine ZnO nanowires. The current-voltage (I-V) characteristics of core-shell heterojunction nanowires measured by conductive atomic force microscopy (C-AFM) shows excellent rectifying behavior, which indicates the characteristics of a good p-n junction. The high-resolution transmission electron microscopy (HRTEM) has confirmed the sharp junction interface between the core-shell heterojunction nanowire arrays. The valence band offset and conduction band offset at ZnO/CuO heterointerfaces are measured to be 2.4 ± 0.05 and 0.23 ± 0.005 eV respectively, using X-ray photoelectron spectroscopy (XPS) and a type-II band alignment structure is found. The results of this study contribute to the development of new advanced device heterostructures for solar energy conversion and optoelectronics applications.

  5. Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode

    NASA Astrophysics Data System (ADS)

    Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon

    2015-09-01

    Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.

  6. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.

    PubMed

    Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli

    2015-03-14

    A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.

  7. Piezoelectric properties of zinc oxide nanowires: an ab initio study.

    PubMed

    Korir, K K; Cicero, G; Catellani, A

    2013-11-29

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material.

  8. Electronic States and Persistent Currents in Nanowire Quantum Ring

    NASA Astrophysics Data System (ADS)

    Kokurin, I. A.

    2018-04-01

    The new model of a quantum ring (QR) defined inside a nanowire (NW) is proposed. The one-particle Hamiltonian for electron in [111]-oriented NW QR is constructed taking into account both Rashba and Dresselhaus spin-orbit coupling (SOC). The energy levels as a function of magnetic field are found using the exact numerical diagonalization. The persistent currents (both charge and spin) are calculated. The specificity of SOC and arising anticrossings in energy spectrum lead to unusual features in persistent current behavior. The variation of magnetic field or carrier concentration by means of gate can lead to pure spin persistent current with the charge current being zero.

  9. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  10. Tuning the morphology of self-assisted GaP nanowires

    NASA Astrophysics Data System (ADS)

    Leshchenko, E. D.; Kuyanov, P.; LaPierre, R. R.; Dubrovskii, V. G.

    2018-06-01

    Patterned arrays of self-assisted GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using various V/III flux ratios from 1–6, and various pitches from 360–1000 nm. As the V/III flux ratio was increased from 1–6, the NWs showed a change in morphology from outward tapering to straight, and eventually to inward tapering. The morphologies of the self-assisted GaP NWs are well described by a simple kinetic equation for the NW radius versus the position along the NW axis. The most important growth parameter that governs the NW morphology is the V/III flux ratio. Sharpened NWs with a stable radius equal to only 12 nm at a V/III flux of 6 were achieved, demonstrating their suitability for the insertion of quantum dots.

  11. Tuning the morphology of self-assisted GaP nanowires.

    PubMed

    Leshchenko, E D; Kuyanov, P; LaPierre, R R; Dubrovskii, V G

    2018-06-01

    Patterned arrays of self-assisted GaP nanowires (NWs) were grown on a Si substrate by gas source molecular beam epitaxy using various V/III flux ratios from 1-6, and various pitches from 360-1000 nm. As the V/III flux ratio was increased from 1-6, the NWs showed a change in morphology from outward tapering to straight, and eventually to inward tapering. The morphologies of the self-assisted GaP NWs are well described by a simple kinetic equation for the NW radius versus the position along the NW axis. The most important growth parameter that governs the NW morphology is the V/III flux ratio. Sharpened NWs with a stable radius equal to only 12 nm at a V/III flux of 6 were achieved, demonstrating their suitability for the insertion of quantum dots.

  12. Enhanced photovoltaic performance utilizing effective charge transfers and light scattering effects by the combination of mesoporous, hollow 3D-ZnO along with 1D-ZnO in CdS quantum dot sensitized solar cells.

    PubMed

    Chetia, Tridip Ranjan; Barpuzary, Dipankar; Qureshi, Mohammad

    2014-05-28

    A combination of 3-dimensional (3D) hollow mesoporous ZnO microspheres (ZnO HMSP) and vertically grown one-dimensional ZnO nanowires (1D ZnO NWs) on a fluorine doped tin oxide (FTO) coated glass substrate has been investigated as a photoanode for a CdS quantum dot-sensitized solar cell (QSSC). A comparative study of the photovoltaic performance of the solar cell with devices fabricated with pristine ZnO HMSPs and ZnO NWs was carried out. The proposed photovoltaic device exhibits an enhancement in power conversion efficiency (PCE) upto ∼74% and ∼35%, as compared to the 1D ZnO NW and ZnO HMSP based solar cells. The maximum incident photon-to-current conversion efficiency (IPCE) for the solar cell was observed to be ∼40%, whereas for the devices fabricated with bare ZnO HMSP and ZnO NW the IPCE were only ∼32% and ∼19%, respectively. The enhanced photovoltaic performance of the solar cell is attributed to the high Brunauer-Emmett-Teller (BET) surface area, efficient light-scattering effects and facilitated diffusion of the electrolyte for better functioning of the redox couple (S(2-)/Sn(2-)) in the hybrid photoanode. Moreover, a faster electron transport through 1D ZnO NWs provides better charge collection from the photoactive layer, which leads to an increase in the short circuit current density of the device. The present study highlights the design and development of a new hybrid photoanode for solar harvesting.

  13. Strain analysis of nanowire interfaces in multiscale composites

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  14. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors.

    PubMed

    Liang, Jiajie; Tong, Kwing; Pei, Qibing

    2016-07-01

    A water-based silver-nanowire (AgNW) ink is formulated for screen printing. Screen-printed AgNW patterns have uniform sharp edges, ≈50 μm resolution, and electrical conductivity as high as 4.67 × 10(4) S cm(-1) . The screen-printed AgNW patterns are used to fabricate a stretchable composite conductor, and a fully printed and intrinsically stretchable thin-film transistor array is also realized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabricating nanowire devices on diverse substrates by simple transfer-printing methods.

    PubMed

    Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2010-06-01

    The fabrication of nanowire (NW) devices on diverse substrates is necessary for applications such as flexible electronics, conformable sensors, and transparent solar cells. Although NWs have been fabricated on plastic and glass by lithographic methods, the choice of device substrates is severely limited by the lithographic process temperature and substrate properties. Here we report three new transfer-printing methods for fabricating NW devices on diverse substrates including polydimethylsiloxane, Petri dishes, Kapton tapes, thermal release tapes, and many types of adhesive tapes. These transfer-printing methods rely on the differences in adhesion to transfer NWs, metal films, and devices from weakly adhesive donor substrates to more strongly adhesive receiver substrates. Electrical characterization of fabricated NW devices shows that reliable ohmic contacts are formed between NWs and electrodes. Moreover, we demonstrated that Si NW devices fabricated by the transfer-printing methods are robust piezoresistive stress sensors and temperature sensors with reliable performance.

  16. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  17. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  18. Comparing Hall Effect and Field Effect Measurements on the Same Single Nanowire.

    PubMed

    Hultin, Olof; Otnes, Gaute; Borgström, Magnus T; Björk, Mikael; Samuelson, Lars; Storm, Kristian

    2016-01-13

    We compare and discuss the two most commonly used electrical characterization techniques for nanowires (NWs). In a novel single-NW device, we combine Hall effect and back-gated and top-gated field effect measurements and quantify the carrier concentrations in a series of sulfur-doped InP NWs. The carrier concentrations from Hall effect and field effect measurements are found to correlate well when using the analysis methods described in this work. This shows that NWs can be accurately characterized with available electrical methods, an important result toward better understanding of semiconductor NW doping.

  19. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.

    PubMed

    Cho, In Sun; Logar, Manca; Lee, Chi Hwan; Cai, Lili; Prinz, Fritz B; Zheng, Xiaolin

    2014-01-08

    We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.

  20. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.

  1. Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens.

    PubMed

    Cho, Seungse; Kang, Saewon; Pandya, Ashish; Shanker, Ravi; Khan, Ziyauddin; Lee, Youngsu; Park, Jonghwa; Craig, Stephen L; Ko, Hyunhyub

    2017-04-25

    Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm 2 ), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq -1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq -1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

  2. High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye.

    PubMed

    Hong, Deyi; Zang, Weili; Guo, Xiao; Fu, Yongming; He, Haoxuan; Sun, Jing; Xing, Lili; Liu, Baodan; Xue, Xinyu

    2016-08-24

    High piezo-photocatalytic efficiency of degrading organic pollutants has been realized from CuS/ZnO nanowires using both solar and mechanical energy. CuS/ZnO heterostructured nanowire arrays are compactly/vertically aligned on stainless steel mesh by a simple two-step wet-chemical method. The mesh-supported nanocomposites can facilitate an efficient light harvesting due to the large surface area and can also be easily removed from the treated solution. Under both solar and ultrasonic irradiation, CuS/ZnO nanowires can rapidly degrade methylene blue (MB) in aqueous solution, and the recyclability is investigated. In this process, the ultrasonic assistance can greatly enhance the photocatalytic activity. Such a performance can be attributed to the coupling of the built-in electric field of heterostructures and the piezoelectric field of ZnO nanowires. The built-in electric field of the heterostructure can effectively separate the photogenerated electrons/holes and facilitate the carrier transportation. The CuS component can improve the visible light utilization. The piezoelectric field created by ZnO nanowires can further separate the photogenerated electrons/holes through driving them to migrate along opposite directions. The present results demonstrate a new water-pollution solution in green technologies for the environmental remediation at the industrial level.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhiqiang; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706; Geng, Dalong

    A simple and effective decoupled finite element analysis method was developed for simulating both the piezoelectric and flexoelectric effects of zinc oxide (ZnO) and barium titanate (BTO) nanowires (NWs). The piezoelectric potential distribution on a ZnO NW was calculated under three deformation conditions (cantilever, three-point, and four-point bending) and compared to the conventional fully coupled method. The discrepancies of the electric potential maximums from these two methods were found very small, validating the accuracy and effectiveness of the decoupled method. Both ZnO and BTO NWs yielded very similar potential distributions. Comparing the potential distributions induced by the piezoelectric and flexoelectricmore » effects, we identified that the middle segment of a four-point bending NW beam is the ideal place for measuring the flexoelectric coefficient, because the uniform parallel plate capacitor-like potential distribution in this region is exclusively induced by the flexoelectric effect. This decoupled method could provide a valuable guideline for experimental measurements of the piezoelectric effects and flexoelectric effects in the nanometer scale.« less

  4. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    PubMed Central

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  5. Negative thermal quenching of photoluminescence in zinc oxide nanowire-core/graphene-shell complexes.

    PubMed

    Lin, S S; Chen, B G; Xiong, W; Yang, Y; He, H P; Luo, J

    2012-09-10

    Graphene is an atomic thin two-dimensional semimetal whereas ZnO is a direct wide band gap semiconductor with a strong light-emitting ability. In this paper, we report on photoluminescence (PL) of ZnO-nanowires (NWs)-core/Graphene-shell heterostructures, which shows a negative thermal quenching (NTQ) behavior both for the near band-edge and deep level emission. The abnormal PL behavior was understood through the charging and discharging processes between ZnO NWs and graphene. The NTQ properties are most possibly induced by the unique rapidly increasing density of states of graphene as a function of Fermi level, which promises a higher quantum tunneling probability between graphene and ZnO at a raised temperature.

  6. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  7. Emission and Dynamics of Charge Carriers in Uncoated and Organic/Metal Coated Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Kaveh Baghbadorani, Masoud

    In this dissertation, the dynamics of excitons in hybrid metal/organic/nanowire structures possessing nanometer thick deposited molecular and metal films on top of InP and GaAs nanowire (NW) surfaces were investigated. Optical characterizations were carried out as a function of the semiconductor NW material, design, NW size and the type and thickness of the organic material and metal used. Hybrid organic and plasmonic semiconductor nanowire heterostructures were fabricated using organic molecular beam deposition technique. I investigated the photon emission of excitons in 150 nm diameter polytype wurtzite/zincblende InP NWs and the influence of a few ten nanometer thick organic and metal films on the emission using intensity- and temperature-dependent time-integrated and time resolved (TR) photoluminescence (PL). The plasmonic NWs were coated with an Aluminum quinoline (Alq3) interlayer and magnesium-silver (Mg0.9:Ag0.1) top layer. In addition, the nonlinear optical technique of heterodyne four-wave mixing was used (in collaboration with Prof. Wolfgang Langbein, University of Cardiff) to study incoherent and coherent carrier relaxation processes on bare nanowires on a 100 femtosecond time-scale. Alq3 covered NWs reveal a stronger emission and a longer decay time of exciton transitions indicating surface state passivation at the Alq3/NW interface. Alq3/Mg:Ag NWs reveal a strong quenching of the exciton emission which is predominantly attributed to Forster energy-transfer from excitons to plasmon oscillations in the metal cluster film. Changing the Mg:Ag to gold and the organic Alq3 spacer layer to PTCDA leads to a similar behavior, but the PL quenching is strongly increased. The observed behavior is attributed to a more continuous gold deposition leading to an increased Forster energy transfer and to a metal induced band-bending. I also investigated ensembles of bare and gold/Alq3 coated GaAs-AlGaAs-GaAs core shell NWs of 130 nm diameter. Plasmonic NWs with Au

  8. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  9. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE PAGES

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; ...

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  10. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes.

    PubMed

    Maijenburg, A W; Maas, M G; Rodijk, E J B; Ahmed, W; Kooij, E S; Carlen, E T; Blank, D H A; ten Elshof, J E

    2011-03-15

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 μm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm). Copyright © 2010 Elsevier Inc. All rights reserved.

  11. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  12. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  13. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    PubMed Central

    Stapleton, Andrew J; Yambem, Soniya D; Johns, Ashley H; Afre, Rakesh A; Ellis, Amanda V; Shapter, Joe G; Andersson, Gunther G; Quinton, Jamie S; Burn, Paul L; Meredith, Paul

    2015-01-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems. PMID:27877771

  14. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays.

    PubMed

    Oehler, Fabrice; Cattoni, Andrea; Scaccabarozzi, Andrea; Patriarche, Gilles; Glas, Frank; Harmand, Jean-Christophe

    2018-02-14

    The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.

  15. Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

    PubMed Central

    Saadaoui, Saif; Ben Youssef, Mohamed Aziz; Ben Karoui, Moufida; Smecca, Emanuele; Strano, Vincenzina; Mirabella, Salvo; Alberti, Alessandra; Puglisi, Rosaria A

    2017-01-01

    In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N2/H2 95:5) was found to enhance the conductivity by a factor of 103 compared to nitrogen (N2) or oxygen (O2) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current J sc by seven times from 2.45 × 10−3 mA/cm2 to 1.70 × 10−2 mA /cm2. PMID:28243567

  16. Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes.

    PubMed

    Saadaoui, Saif; Ben Youssef, Mohamed Aziz; Ben Karoui, Moufida; Gharbi, Rached; Smecca, Emanuele; Strano, Vincenzina; Mirabella, Salvo; Alberti, Alessandra; Puglisi, Rosaria A

    2017-01-01

    In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N 2 /H 2 95:5) was found to enhance the conductivity by a factor of 10 3 compared to nitrogen (N 2 ) or oxygen (O 2 ) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO 2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current J sc by seven times from 2.45 × 10 -3 mA/cm 2 to 1.70 × 10 -2 mA /cm 2 .

  17. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.

    PubMed

    Nambo, Apolo; He, Juan; Nguyen, Tu Quang; Atla, Veerendra; Druffel, Thad; Sunkara, Mahendra

    2017-06-14

    In this paper, the Li 4 SiO 4 nanowires (NWs) were shown to be promising for CO 2 capture with ultrafast kinetics. Specifically, the nanowire powders exhibited an uptake of 0.35 g g -1 of CO 2 at an ultrafast adsorption rate of 0.22 g g -1 min -1 at 650-700 °C. Lithium silicate (Li 4 SiO 4 ) nanowires and nanopowders were synthesized using a "solvo-plasma" technique involving plasma oxidation of silicon precursors mixed with lithium hydroxide. The kinetic parameter values (k) extracted from sorption kinetics obtained using NW powders are 1 order of magnitude higher than those previously reported for the Li 4 SiO 4 -CO 2 reaction system. The time scales for CO 2 sorption using nanowires are approximately 3 min and two orders magnitude faster compared to those obtained using lithium silicate powders with spherical morphologies and aggregates. Furthermore, Li 4 SiO 4 nanowire powders showed reversibility through sorption-desorption cycles indicating their suitability for CO 2 capture applications. All of the morphologies of Li 4 SiO 4 powders exhibited a double exponential behavior in the adsorption kinetics indicating two distinct time constants for kinetic and the mass transfer limited regimes.

  18. Gate-Tunable Electron Transport Phenomena in Al-Ge⟨111⟩-Al Nanowire Heterostructures.

    PubMed

    Brunbauer, Florian M; Bertagnolli, Emmerich; Lugstein, Alois

    2015-11-11

    Electrostatically tunable negative differential resistance (NDR) is demonstrated in monolithic metal-semiconductor-metal (Al-Ge-Al) nanowire (NW) heterostructures integrated in back-gated field-effect transistors (FETs). Unambiguous signatures of NDR even at room temperature are attributed to intervalley electron transfer. At yet higher electric fields, impact ionization leads to an exponential increase of the current in the ⟨111⟩ oriented Ge NW segments. Modulation of the transfer rates, manifested as a large tunability of the peak-to-valley ratio (PVR) and the onset of impact ionization is achieved by the combined influences of electrostatic gating, geometric confinement, and heterojunction shape on hot electron transfer and by electron-electron scattering rates that can be altered by varying the charge carrier concentration in the NW FETs.

  19. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong, E-mail: cynam@bnl.gov; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate themore » potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  20. Nanowire Aptasensors for Electrochemical Detection of Cell-Secreted Cytokines.

    PubMed

    Liu, Ying; Rahimian, Ali; Krylyuk, Sergiy; Vu, Tam; Crulhas, Bruno; Stybayeva, Gulnaz; Imanbekova, Meruyert; Shin, Dong-Sik; Davydov, Albert; Revzin, Alexander

    2017-11-22

    Cytokines are small proteins secreted by immune cells in response to pathogens/infections; therefore, these proteins can be used in diagnosing infectious diseases. For example, release of a cytokine interferon (IFN)-γ from T-cells is used for blood-based diagnosis of tuberculosis (TB). Our lab has previously developed an atpamer-based electrochemical biosensor for rapid and sensitive detection of IFN-γ. In this study, we explored the use of silicon nanowires (NWs) as a way to create nanostructured electrodes with enhanced sensitivity for IFN-γ. Si NWs were covered with gold and were further functionalized with thiolated aptamers specific for IFN-γ. Aptamer molecules were designed to form a hairpin and in addition to terminal thiol groups contained redox reporter molecules methylene blue. Binding of analyte to aptamer-modified NWs (termed here nanowire aptasensors) inhibited electron transfer from redox reporters to the electrode and caused electrochemical redox signal to decrease. In a series of experiments we demonstrate that NW aptasensors responded 3× faster and were 2× more sensitive to IFN-γ compared to standard flat electrodes. Most significantly, NW aptasensors allowed detection of IFN-γ from as few as 150 T-cells/mL while ELISA did not pick up signal from the same number of cells. One of the challenges faced by ELISA-based TB diagnostics is poor performance in patients whose T-cell numbers are low, typically HIV patients. Therefore, NW aptasensors developed here may be used in the future for more sensitive monitoring of IFN-γ responses in patients coinfected with HIV/TB.

  1. Enhanced optical properties due to indium incorporation in zinc oxide nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, S.; Mukherjee, S.; Sarkar, K.

    Indium-doped zinc oxide nanowires grown by vapor-liquid-solid technique with 1.6 at. % indium content show intense room temperature photoluminescence (PL) that is red shifted to 20 meV from band edge. We report on a combination of nanowires and nanobelts-like structures with enhanced optical properties after indium doping. The near band edge emission shift gives an estimate for the carrier density as high as 5.5 × 10{sup 19 }cm{sup −3} for doped nanowires according to Mott's critical density theory. Quenching of the visible green peak is seen for doped nanostructures indicating lesser oxygen vacancies and improved quality. PL and transmission electron microscopy measurementsmore » confirm indium doping into the ZnO lattice, whereas temperature dependent PL data give an estimation of the donor and acceptor binding energies that agrees well with indium doped nanowires. This provides a non-destructive technique to estimate doping for 1D structures as compared to the traditional FET approach. Furthermore, these indium doped nanowires can be a potential candidate for transparent conducting oxides applications and spintronic devices with controlled growth mechanism.« less

  2. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  3. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  4. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding.

    PubMed

    Wang, Yan; Gu, Fu-Qiang; Ni, Li-Juan; Liang, Kun; Marcus, Kyle; Liu, Shu-Li; Yang, Fan; Chen, Jin-Ju; Feng, Zhe-Sheng

    2017-11-30

    Conductive polymer composites (CPCs) containing nanoscale conductive fillers have been widely studied for their potential use in various applications. In this paper, polypyrrole (PPy)/polydopamine (PDA)/silver nanowire (AgNW) composites with high electromagnetic interference (EMI) shielding performance, good adhesion ability and light weight are successfully fabricated via a simple in situ polymerization method followed by a mixture process. Benefiting from the intrinsic adhesion properties of PDA, the adhesion ability and mechanical properties of the PPy/PDA/AgNW composites are significantly improved. The incorporation of AgNWs endows the functionalized PPy with tunable electrical conductivity and enhanced EMI shielding effectiveness (SE). By adjusting the AgNW loading degree in the PPy/PDA/AgNW composites from 0 to 50 wt%, the electrical conductivity of the composites greatly increases from 0.01 to 1206.72 S cm -1 , and the EMI SE of the composites changes from 6.5 to 48.4 dB accordingly (8.0-12.0 GHz, X-band). Moreover, due to the extremely low density of PPy, the PPy/PDA/AgNW (20 wt%) composites show a superior light weight of 0.28 g cm -3 . In general, it can be concluded that the PPy/PDA/AgNW composites with tunable electrical conductivity, good adhesion properties and light weight can be used as excellent EMI shielding materials.

  5. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  6. Room-temperature photodetection dynamics of single GaN nanowires.

    PubMed

    González-Posada, F; Songmuang, R; Den Hertog, M; Monroy, E

    2012-01-11

    We report on the photocurrent behavior of single GaN n-i-n nanowires (NWs) grown by plasma-assisted molecular-beam epitaxy on Si(111). These structures present a photoconductive gain in the range of 10(5)-10(8) and an ultraviolet (350 nm) to visible (450 nm) responsivity ratio larger than 6 orders of magnitude. Polarized light couples with the NW geometry with a maximum photoresponse for polarization along the NW axis. The photocurrent scales sublinearly with optical power, following a I ~ P(β) law (β < 1) in the measured range with β increasing with the measuring frequency. The photocurrent time response remains in the millisecond range, which is in contrast to the persistent (hours) photoconductivity effects observed in two-dimensional photoconductors. The photocurrent is independent of the measuring atmosphere, either in the air or in vacuum. Results are interpreted taking into account the effect of surface states and the total depletion of the NW intrinsic region. © 2011 American Chemical Society

  7. Electrical characteristics of silicon nanowire CMOS inverters under illumination.

    PubMed

    Yoo, Jeuk; Kim, Yoonjoong; Lim, Doohyeok; Kim, Sangsig

    2018-02-05

    In this study, we examine the electrical characteristics of complementary metal-oxide-semiconductor (CMOS) inverters with silicon nanowire (SiNW) channels on transparent substrates under illumination. The electrical characteristics vary with the wavelength and power of light due to the variation in the generation rates of the electric-hole pairs. Compared to conventional optoelectronic devices that sense the on/off states by the variation in the current, our device achieves the sensing of the on/off states with more precision by using the voltage variation induced by the wavelength or intensity of light. The device was fabricated on transparent substrates to maximize the light absorption using conventional CMOS technologies. The key difference between our SiNW CMOS inverters and conventional optoelectronic devices is the ability to control the flow of charge carriers more effectively. The improved sensitivity accomplished with the use of SiNW CMOS inverters allows better control of the on/off states.

  8. Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass.

    PubMed

    Paniagua-Domínguez, R; Abujetas, D R; Froufe-Pérez, L S; Sáenz, J J; Sánchez-Gil, J A

    2013-09-23

    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility.

  9. Real-Time Probing of Nanowire Assembly Kinetics at the Air-Water Interface by In Situ Synchrotron X-Ray Scattering.

    PubMed

    He, Zhen; Jiang, Hui-Jun; Wu, Long-Long; Liu, Jian-Wei; Wang, Geng; Wang, Xiao; Wang, Jin-Long; Hou, Zhong-Huai; Chen, Gang; Yu, Shu-Hong

    2018-07-02

    Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors.

    PubMed

    Ge, Yongjie; Duan, Xidong; Zhang, Meng; Mei, Lin; Hu, Jiawen; Hu, Wei; Duan, Xiangfeng

    2018-01-10

    Silver nanowire (Ag-NW) thin films have emerged as a promising next-generation transparent electrode. However, the current Ag-NW thin films are often plagued by high NW-NW contact resistance and poor long-term stability, which can be largely attributed to the ill-defined polyvinylpyrrolidone (PVP) surface ligands and nonideal Ag-PVP-Ag contact at NW-NW junctions. Herein, we report a room temperature direct welding and chemical protection strategy to greatly improve the conductivity and stability of the Ag-NW thin films. Specifically, we use a sodium borohydride (NaBH 4 ) treatment process to thoroughly remove the PVP ligands and produce a clean Ag-Ag interface that allows direct welding of NW-NW junctions at room temperature, thus greatly improving the conductivity of the Ag-NW films, outperforming those obtained by thermal or plasmonic thermal treatment. We further show that, by decorating the as-formed Ag-NW thin film with a dense, hydrophobic dodecanethiol layer, the stability of the Ag-NW film can be greatly improved by 150-times compared with that of PVP-wrapped ones. Our studies demonstrate that a proper surface ligand design can effectively improve the conductivity and stability of Ag-NW thin films, marking an important step toward their applications in electronic and optoelectronic devices.

  11. Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices.

    PubMed

    Kang, Saewon; Kim, Taehyo; Cho, Seungse; Lee, Youngoh; Choe, Ayoung; Walker, Bright; Ko, Seo-Jin; Kim, Jin Young; Ko, Hyunhyub

    2015-12-09

    Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.

  12. Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Thazhe Veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah

    2016-12-01

    Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance.

  13. Boron doped graphene wrapped silver nanowires as an efficient electrocatalyst for molecular oxygen reduction

    PubMed Central

    Nair, Anju K.; Thazhe veettil, Vineesh; Kalarikkal, Nandakumar; Thomas, Sabu; Kala, M. S.; Sahajwalla, Veena; Joshi, Rakesh K.; Alwarappan, Subbiah

    2016-01-01

    Metal nanowires exhibit unusually high catalytic activity towards oxygen reduction reaction (ORR) due to their inherent electronic structures. However, controllable synthesis of stable nanowires still remains as a daunting challenge. Herein, we report the in situ synthesis of silver nanowires (AgNWs) over boron doped graphene sheets (BG) and demonstrated its efficient electrocatalytic activity towards ORR for the first time. The electrocatalytic ORR efficacy of BG-AgNW is studied using various voltammetric techniques. The BG wrapped AgNWs shows excellent ORR activity, with very high onset potential and current density and it followed four electron transfer mechanism with high methanol tolerance and stability towards ORR. The results are comparable to the commercially available 20% Pt/C in terms of performance. PMID:27941954

  14. Contact inspection of Si nanowire with SEM voltage contrast

    NASA Astrophysics Data System (ADS)

    Ohashi, Takeyoshi; Yamaguchi, Atsuko; Hasumi, Kazuhisa; Ikota, Masami; Lorusso, Gian; Horiguchi, Naoto

    2018-03-01

    A methodology to evaluate the electrical contact between nanowire (NW) and source/drain (SD) in NW FETs was investigated with SEM voltage contrast (VC). The electrical defects were robustly detected by VC. The validity of the inspection result was verified by TEM physical observations. Moreover, estimation of the parasitic resistance and capacitance was achieved from the quantitative analysis of VC images which were acquired with different scan conditions of electron beam (EB). A model considering the dynamics of EB-induce charging was proposed to calculate the VC. The resistance and capacitance can be determined by comparing the model-based VC with experimentally obtained VC. Quantitative estimation of resistance and capacitance would be valuable not only for more accurate inspection, but also for identification of the defect point.

  15. Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol.

    PubMed

    Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin

    2014-09-01

    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Rapid, High-Throughput, and Direct Molecular Beacon Delivery to Human Cancer Cells Using a Nanowire-Incorporated and Pneumatic Pressure-Driven Microdevice.

    PubMed

    Kim, Kyung Hoon; Kim, Jung; Choi, Jong Seob; Bae, Sunwoong; Kwon, Donguk; Park, Inkyu; Kim, Do Hyun; Seo, Tae Seok

    2015-12-01

    Tracking and monitoring the intracellular behavior of mRNA is of paramount importance for understanding real-time gene expression in cell biology. To detect specific mRNA sequences, molecular beacons (MBs) have been widely employed as sensing probes. Although numerous strategies for MB delivery into the target cells have been reported, many issues such as the cytotoxicity of the carriers, dependence on the random probability of MB transfer, and critical cellular damage still need to be overcome. Herein, we have developed a nanowire-incorporated and pneumatic pressure-driven microdevice for rapid, high-throughput, and direct MB delivery to human breast cancer MCF-7 cells to monitor survivin mRNA expression. The proposed microdevice is composed of three layers: a pump-associated glass manifold layer, a monolithic polydimethylsiloxane (PDMS) membrane, and a ZnO nanowire-patterned microchannel layer. The MB is immobilized on the ZnO nanowires by disulfide bonding, and the glass manifold and PDMS membrane serve as a microvalve, so that the cellular attachment and detachment on the MB-coated nanowire array can be manipulated. The combination of the nanowire-mediated MB delivery and the microvalve function enable the transfer of MB into the cells in a controllable way with high cell viability and to detect survivin mRNA expression quantitatively after docetaxel treatment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  18. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.

    PubMed

    Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich

    2011-09-30

    The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.

  19. Structural and photoluminescence studies on catalytic growth of silicon/zinc oxide heterostructure nanowires

    PubMed Central

    2013-01-01

    Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying the ZnO growth time from 0.5 to 2 h, different morphologies of ZnO nanostructures, such as ZnO nanoparticles, ZnO shell layer, and ZnO nanorods were grown on the In/Si NWs. The In seeds were believed to act as centers to attract the ZnO molecule vapors, further inducing the lateral growth of ZnO nanorods from the Si/ZnO core-shell NWs via a vapor-liquid-solid mechanism. The ZnO nanorods had a tendency to grow in the direction of [0001] as indicated by X-ray diffraction and high resolution transmission electron microscopy analyses. We showed that the Si/ZnO core-shell NWs exhibit a broad visible emission ranging from 400 to 750 nm due to the combination of emissions from oxygen vacancies in ZnO and In2O3 structures and nanocrystallite Si on the Si NWs. The hierarchical growth of straight ZnO nanorods on the core-shell NWs eventually reduced the defect (green) emission and enhanced the near band edge (ultraviolet) emission of the ZnO. PMID:23590803

  20. Functionalization of silicon nanowires by conductive and non-conductive polymers

    NASA Astrophysics Data System (ADS)

    Belhousse, S.; Tighilt, F.-Z.; Sam, S.; Lasmi, K.; Hamdani, K.; Tahanout, L.; Megherbi, F.; Gabouze, N.

    2017-11-01

    The work reports on the development of hybrid devices based on silicon nanowires (SiNW) with polymers and the difference obtained when using conductive and non-conductive polymers. SiNW have attracted much attention due to their importance in understanding the fundamental properties at low dimensionality as well as their potential application in nanoscale devices as in field effect transistors, chemical or biological sensors, battery electrodes and photovoltaics. SiNW arrays were formed using metal assisted chemical etching method. This process is simple, fast and allows obtaining a wide range of silicon nanostructures. Hydrogen-passivated SiNW surfaces show relatively poor stability. Surface modification with organic species confers the desired stability and enhances the surface properties. For this reason, this work proposes a covalent grafting of organic material onto SiNW surface. We have chosen a non-conductive polymer polyvinylpyrrolidone (PVP) and conductive polymers polythiophene (PTh) and polypyrrole (PPy), in order to evaluate the electric effect of the polymers on the obtained materials. The hybrid structures were elaborated by the polymerization of the corresponding conjugated monomers by electrochemical route; this electropolymerization offers several advantages such as simplicity and rapidity. SiNW functionalization by conductive polymers has shown to have a huge effect on the electrical mobility. Hybrid surface morphologies were characterized by scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR) and contact angle measurements.

  1. Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template.

    PubMed

    Yang, Xia; Hu, Xiaotian; Wang, Qingxia; Xiong, Jian; Yang, Hanjun; Meng, Xiangchuan; Tan, Licheng; Chen, Lie; Chen, Yiwang

    2017-08-09

    With recent emergence of wearable electronic devices, flexible and stretchable transparent electrodes are the core components to realize innovative devices. The copper nanowire (CuNW) network is commonly chosen because of its high conductivity and transparency. However, the junction resistances and low aspect ratios still limit its further stretchable performance. Herein, a large-scale stretchable semiembedded CuNW transparent conductive film (TCF) was fabricated by electrolessly depositing Cu on the electrospun poly(4-vinylpyridine) polymer template semiembedded in polydimethylsiloxane. Compared with traditional CuNWs, which are as-coated on the flexible substrate, the semiembedded CuNW TCFs showed low sheet resistance (15.6 Ω·sq -1 at ∼82% transmittance) as well as outstanding stretchability and mechanical stability. The light-emitting diode connected the stretchable semiembedded CuNW TCFs in the electric circuit still lighted up even after stretching with 25% strain. Moreover, this semiembedded CuNW TCF was successfully applied in polymer solar cells as a stretchable conductive electrode, which yielded a power conversion efficiency of 4.6% with 0.1 cm 2 effective area. The large-scale stretchable CuNW TCFs show potential for the development of wearable electronic devices.

  2. Lasing in a single nanowire with quantum dots

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Arakawa, Yasuhiko

    2017-02-01

    Nanowire (NW) lasers have recently attracted increasing attention as ultra-small, highly-efficient coherent light emitters in the fields of nanophotonics, nano-optics and nanobiotechnology. Although there have been several demonstrations of single NW lasers utilizing bulk materials, it is crucial to incorporate lower-dimensional quantum nanostructures into the NW in order to achieve superior device performance with respect to threshold current, differential gain, modulation bandwidth and temperature sensitivity. The quantum dot (QD) is a useful and essential nanostructure that can meet these requirements. In this presentation, we will talk about our recent research activity regarding room temperature lasing of a single GaAs NW containing 50-stacked In0.2Ga0.8As/GaAs QDs. The NW cavities consist of multiple In0.2Ga0.8As/GaAs heterostructures acting as a QD active material, which are grown on shallow (<45 nm) GaAs core NWs and followed by GaAs/Al0.1Ga0.9As/GaAs core/shell/cap structures. Lasing oscillation is achieved at the emission wavelength of 900 nm by properly designing the NW cavity and tailoring the emission energy of each QD to enhance the optical gain. Obtained threshold pump pulse fluence is 179 μJ/cm2 at room temperature and the characteristics temperature is 133K which is higher than that of conventional bulk NW lasers. Our demonstration paves the way toward ultra-small lasers with extremely low-power consumption for integrated photonic systems. Furthermore, we will discuss our recent results on the demonstration of several types of NWQD lasers in order to improve the device performance of the NWQD lasers.

  3. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    PubMed Central

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-01-01

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm. PMID:29295573

  4. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas.

    PubMed

    Kuo, Chin-Guo; Chen, Jung-Hsuan; Chao, Yi-Chieh; Chen, Po-Lin

    2017-12-25

    In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 10 19 cm -3 and 24.7 cm²∙V -1 ∙s -1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  5. Monolithic barrier-all-around high electron mobility transistor with planar GaAs nanowire channel.

    PubMed

    Miao, Xin; Zhang, Chen; Li, Xiuling

    2013-06-12

    High-quality growth of planar GaAs nanowires (NWs) with widths as small as 35 nm is realized by comprehensively mapping the parameter space of group III flow, V/III ratio, and temperature as the size of the NWs scales down. Using a growth mode modulation scheme for the NW and thin film barrier layers, monolithically integrated AlGaAs barrier-all-around planar GaAs NW high electron mobility transistors (NW-HEMTs) are achieved. The peak extrinsic transconductance, drive current, and effective electron velocity are 550 μS/μm, 435 μA/μm, and ~2.9 × 10(7) cm/s, respectively, at 2 V supply voltage with a gate length of 120 nm. The excellent DC performance demonstrated here shows the potential of this bottom-up planar NW technology for low-power high-speed very-large-scale-integration (VLSI) circuits.

  6. Ambient-Stable and Durable Conductive Ag-Nanowire-Network 2-D Films Decorated with a Ti Layer.

    PubMed

    Kim, Yoon-Mi; Hwang, Bu-Yeon; Lee, Ki-Wook; Kim, Jin-Yeol

    2018-05-11

    Highly stable and durable conductive silver nanowire (Ag NW) network electrode films were prepared through decoration with a 5-nm-thick Ti layer. The Ag NW network 2-D films showed sheet resistance values as low as 32 ohm/sq at 88% transparency when decorated with Ti. These 2-D films exhibited a 30% increase in electrical conductivity while maintaining good stability of the films through enhanced resistance to moisture and oxygen penetration as a result of the protective effect of the Ti layer.

  7. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    NASA Astrophysics Data System (ADS)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  8. Fullerene C60 coated silicon nanowires as anode materials for lithium secondary batteries.

    PubMed

    Arie, Arenst Andreas; Lee, Joong Kee

    2012-04-01

    A Fullerene C60 film was introduced as a coating layer for silicon nanowires (Si NWs) by a plasma assisted thermal evaporation technique. The morphology and structural characteristics of the materials were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM observations showed that the shape of the nanowire structure was maintained after the C60 coating and the XPS analysis confirmed the presence of the carbon coating layer. The electrochemical characteristics of C60 coated Si NWs as anode materials were examined by charge-discharge tests and electrochemical impedance measurements. With the C60 film coating, Si NW electrodes exhibited a higher initial coulombic efficiency of 77% and a higher specific capacity of 2020 mA h g(-1) after the 30th cycle at a current density of 100 microA cm(-2) with cut-off voltage between 0-1.5 V. These improved electrochemical characteristics are attributed to the presence of the C60 coating layer which suppresses side reaction with the electrolyte and maintains the structural integrity of the Si NW electrodes during cycle tests.

  9. Heteroepitaxial Writing of Silicon-on-Sapphire Nanowires.

    PubMed

    Xu, Mingkun; Xue, Zhaoguo; Wang, Jimmy; Zhao, Yaolong; Duan, Yao; Zhu, Guangyao; Yu, Linwei; Xu, Jun; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-12-14

    The heteroepitaxial growth of crystal silicon thin films on sapphire, usually referred to as SoS, has been a key technology for high-speed mixed-signal integrated circuits and processors. Here, we report a novel nanoscale SoS heteroepitaxial growth that resembles the in-plane writing of self-aligned silicon nanowires (SiNWs) on R-plane sapphire. During a low-temperature growth at <350 °C, compared to that required for conventional SoS fabrication at >900 °C, the bottom heterointerface cultivates crystalline Si pyramid seeds within the catalyst droplet, while the vertical SiNW/catalyst interface subsequently threads the seeds into continuous nanowires, producing self-oriented in-plane SiNWs that follow a set of crystallographic directions of the sapphire substrate. Despite the low-temperature fabrication process, the field effect transistors built on the SoS-SiNWs demonstrate a high on/off ratio of >5 × 10 4 and a peak hole mobility of >50 cm 2 /V·s. These results indicate the novel potential of deploying in-plane SoS nanowire channels in places that require high-performance nanoelectronics and optoelectronics with a drastically reduced thermal budget and a simplified manufacturing procedure.

  10. Atypical self-activation of Ga dopant for Ge nanowire devices.

    PubMed

    Zeiner, Clemens; Lugstein, Alois; Burchhart, Thomas; Pongratz, Peter; Connell, Justin G; Lauhon, Lincoln J; Bertagnolli, Emmerich

    2011-08-10

    In this Letter we report the atypical self-activation of gallium (Ga) implanted by focused ion beam (FIB) into germanium nanowires (Ge-NWs). By FIB implantation of 30 keV Ga(+) ions at room temperature, the Ge-NW conductivity increases up to 3 orders of magnitude with increasing ion fluence. Cu(3)Ge heterostructures were formed by diffusion to ensure well-defined contacts to the NW and enable two point I/V measurements. Additional four point measurements prove that the conductivity enhancement emerges from the modification of the wires themselves and not from contact property modifications. The Ga distribution in the implanted Ge-NWs was measured using atom probe tomography. For high ion fluences, and beginning amorphization of the NWs, the conductivity decreases exponentially. Temperature dependent conductivity measurements show strong evidence for an in situ doping of the Ge-NWs without any further annealing. Finally the feasibility of improving the device performance of top-gated Ge-NW MOSFETs by FIB implantation was shown.

  11. High capacitance density MIS capacitor using Si nanowires by MACE and ALD alumina dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leontis, I.; Nassiopoulou, A. G., E-mail: A.Nassiopoulou@inn.demokritos.gr; Botzakaki, M. A.

    2016-06-28

    High capacitance density three-dimensional (3D) metal-insulator-semiconductor (MIS) capacitors using Si nanowires (SiNWs) by metal-assisted chemical etching and atomic-layer-deposited alumina dielectric film were fabricated and electrically characterized. A chemical treatment was used to remove structural defects from the nanowire surface, in order to reduce the density of interface traps at the Al{sub 2}O{sub 3}/SiNW interface. SiNWs with two different lengths, namely, 1.3 μm and 2.4 μm, were studied. A four-fold capacitance density increase compared to a planar reference capacitor was achieved with the 1.3 μm SiNWs. In the case of the 2.4 μm SiNWs this increase was ×7, reaching a value of 4.1 μF/cm{sup 2}. Capacitance-voltagemore » (C-V) measurements revealed that, following a two-cycle chemical treatment, frequency dispersion at accumulation regime and flat-band voltage shift disappeared in the case of the 1.3 μm SiNWs, which is indicative of effective removal of structural defects at the SiNW surface. In the case of the 2.4 μm SiNWs, frequency dispersion at accumulation persisted even after the two-step chemical treatment. This is attributed to a porous Si layer at the SiNW tops, which is not effectively removed by the chemical treatment. The electrical losses of MIS capacitors in both cases of SiNW lengths were studied and will be discussed.« less

  12. GaAs buffer layer technique for vertical nanowire growth on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaoqing, E-mail: steelxu@stanford.edu; Parizi, Kokab B.; Huo, Yijie

    2014-02-24

    Gold catalyzed vapor-liquid-solid method is widely applied to III–V nanowire (NW) growth on Si substrate. However, the easy oxidation of Si, possible Si contamination in the NWs, high defect density in the NWs, and high sensitivity of the NW morphology to growth conditions largely limit its controllability. In this work, we developed a buffer layer technique by introducing a GaAs thin film with predefined polarity as a template. It is found that samples grown on these buffer layers all have high vertical NW yields in general, due to the single-orientation of the buffer layers. Low temperature buffer with smoother surfacemore » leads to highest yield of vertical NWs, while high temperature (HT) buffer with better crystallinity results in perfect NW quality. The defect-free property we observed here is very promising for optoelectronic device applications based on GaAs NW. Moreover, the buffer layers can eliminate Si contamination by preventing Si-Au alloy formation and by increasing the thickness of the Si diffusion barrier, thus providing more flexibility to vertical NW growth. The buffer layer technique we demonstrated here could be easily extended to other III-V on Si system for electronic and photonic applications.« less

  13. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy

    NASA Astrophysics Data System (ADS)

    Halder, Nripendra N.; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan

    2017-11-01

    We report on the growth of single phase wurtzite (WZ) GaP nanowires (NWs) on GaP (111) B substrates by metal organic molecular beam epitaxy following the selective area vapor-liquid-solid (SA-VLS) approach. During the SA-VLS process, precursors are supplied directly to the NW sidewalls, and the short diffusion length of gallium (or its precursors) does not significantly limit axial growth. Transmission electron microscopy (TEM) images reveal that no stacking faults are present along a 600 nm long NW. The lattice constants of the pure WZ GaP obtained from the TEM images agree with values determined previously by x-ray diffraction from non-pure NW ensembles.

  14. Pure wurtzite GaP nanowires grown on zincblende GaP substrates by selective area vapor liquid solid epitaxy.

    PubMed

    Halder, Nripendra N; Kelrich, Alexander; Cohen, Shimon; Ritter, Dan

    2017-11-17

    We report on the growth of single phase wurtzite (WZ) GaP nanowires (NWs) on GaP (111) B substrates by metal organic molecular beam epitaxy following the selective area vapor-liquid-solid (SA-VLS) approach. During the SA-VLS process, precursors are supplied directly to the NW sidewalls, and the short diffusion length of gallium (or its precursors) does not significantly limit axial growth. Transmission electron microscopy (TEM) images reveal that no stacking faults are present along a 600 nm long NW. The lattice constants of the pure WZ GaP obtained from the TEM images agree with values determined previously by x-ray diffraction from non-pure NW ensembles.

  15. Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell.

    PubMed

    Wang, Y; Zhang, Y; Zhang, D; He, S; Li, X

    2015-12-01

    In this paper, we report the electrical simulation results of a proposed GaInP nanowire (NW)/Si two-junction solar cell. The NW physical dimensions are determined for optimized solar energy absorption and current matching between each subcell. Two key factors (minority carrier lifetime, surface recombination velocity) affecting power conversion efficiency (PCE) of the solar cell are highlighted, and a practical guideline to design high-efficiency two-junction solar cell is thus provided. Considering the practical surface and bulk defects in GaInP semiconductor, a promising PCE of 27.5 % can be obtained. The results depict the usefulness of integrating NWs to construct high-efficiency multi-junction III-V solar cells.

  16. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  17. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices.

    PubMed

    Zhou, Yu Sheng; Wang, Kai; Han, Weihua; Rai, Satish Chandra; Zhang, Yan; Ding, Yong; Pan, Caofeng; Zhang, Fang; Zhou, Weilie; Wang, Zhong Lin

    2012-07-24

    We demonstrated the energy harvesting potential and piezotronic effect in vertically aligned CdSe nanowire (NW) arrays for the first time. The CdSe NW arrays were grown on a mica substrate by the vapor-liquid-solid process using a CdSe thin film as seed layer and platinum as catalyst. High-resolution transmission electron microscopy image and selected area electron diffraction pattern indicate that the CdSe NWs have a wurtzite structure and growth direction along (0001). Using conductive atomic force microscopy (AFM), an average output voltage of 30.7 mV and maximum of 137 mV were obtained. To investigate the effect of strain on electron transport, the current-voltage characteristics of the NWs were studied by positioning an AFM tip on top of an individual NW. By applying normal force/stress on the NW, the Schottky barrier between the Pt and CdSe was found to be elevated due to the piezotronic effect. With the change of strain of 0.12%, a current decreased from 84 to 17 pA at 2 V bias. This paper shows that the vertical CdSe NW array is a potential candidate for future piezo-phototronic devices.

  18. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aseev, P., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Gačević, Ž., E-mail: pavel.aseev@isom.upm.es, E-mail: gacevic@isom.upm.es; Calleja, E.

    2016-06-20

    Series of GaN nanowires (NW) with controlled diameters (160–500 nm) and heights (420–1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagationmore » of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.« less

  19. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    PubMed

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-01

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm2. At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  1. Nanowelding and patterning of silver nanowires via mask-free atmospheric cold plasma-jet scanning

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Li, Han-Yu; Ye, Dong; Yu, Yao; Liu, Lin; Wu, Yue

    2017-06-01

    Silver nanowire (AgNW) thin film is a promising candidate to replace traditional indium tin oxide in optoelectronics applications. To date however, the widespread application of AgNW thin film is limited by the weak point contacts between individual AgNWs and the lack of facile patterning techniques. Here, we demonstrate a novel and facile method to not only nanoweld AgNW junctions but also pattern AgNW thin films via mask-free cold plasma-jet scanning in ambient conditions. After the plasma-jet nanowelding treatment, the morphology of AgNWs change substantially and the junctions are welded together. The nanowelded AgNWs-based thin film shows enhanced electrical and mechanical properties. On the other hand, after the plasma-jet patterning treatment, the AgNWs are etched and transformed into separated large particles. Different kinds of patterns are produced via this patterning technique. At last, a simple light emitting diode circuit is fabricated to demonstrate the suitability of the nanowelded and patterned AgNW electrodes for flexible electronic devices.

  2. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.

    PubMed

    Dionízio Moreira, M; Venezuela, P; Miwa, R H

    2010-07-16

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic <--> swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  3. Nitrogen doped graphene - Silver nanowire hybrids: An excellent anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Elizabeth, Indu; S, Gopukumar; Thomas, Sabu; M. S, Kala; Kalarikkal, Nandakumar

    2018-01-01

    We present an in-situ polyol assisted synthesis approach for the preparation of silver nanowires (AgNW) over the nitrogen doped graphene (NG) sheets and has been tested as a viable LIBs anode material for the first time. The use of NG serves as nucleation sites, thereby facilitating the growth of AgNWs. The specific material design of the as-prepared NG-AgNW hybrids involves some advantages, including a continuous AgNW-graphene conducting network. Since AgNWs are electrically conductive, it provides an electrical contact with NG sheets which can effectively help the charge transport process and limit the variations in volume during the lithiation/de-lithiation processes. Apart from this, the insertion of metallic Ag nanowires into a percolated NG network increases the interlayer distance of NG sheets and prevent its restacking. Moreover, the more porous nature of the hybrid structure accommodating the large volume changes of AgNWs. As an anode material for LIBs, the NG-AgNW hybrid displays a remarkable initial discharge capacity of 1215 mAh g-1 and attains a stable capacity of 724 mAh g-1 at a current density of 100 mA g-1 after 50 cycles. The electrode exhibits a stable reversible capacity of 714, 634, 550 and 464 mA h g-1 at 0.1, 0.2, 0.5, 1 Ag-1 respectively. The reversible capacity (710 mAh g-1) at 0.1 Ag-1 is recovered after the cycling at various current densities confirming outstanding rate performance of the material. In addition, the coulombic efficiency, the NG-AgNW anode retains nearly 99% after the second cycle, further indicating its excellent reversibility. The hybrid material exhibits better cycling stability, greater rate capability, capacity retention and superior reversible capacity than that of bare AgNW and NG sheets. Our smart design will pave way for the development of efficient electrode materials for high capacity and long cycle life LIBs.

  4. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    NASA Astrophysics Data System (ADS)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  5. Silicon nanowires as field-effect transducers for biosensor development: a review.

    PubMed

    Noor, M Omair; Krull, Ulrich J

    2014-05-12

    The unique electronic properties and miniaturized dimensions of silicon nanowires (SiNWs) are attractive for label-free, real-time and sensitive detection of biomolecules. Sensors based on SiNWs operate as field effect transistors (FETs) and can be fabricated either by top-down or bottom-up approaches. Advances in fabrication methods have allowed for the control of physicochemical and electronic properties of SiNWs, providing opportunity for interfacing of SiNW-FET probes with intracellular environments. The Debye screening length is an important consideration that determines the performance and detection limits of SiNW-FET sensors, especially at physiologically relevant conditions of ionic strength (>100mM). In this review, we discuss the construction and application of SiNW-FET sensors for detection of ions, nucleic acids and protein markers. Advantages and disadvantages of the top-down and bottom-up approaches for synthesis of SiNWs are discussed. An overview of various methods for surface functionalization of SiNWs for immobilization of selective chemistry is provided in the context of impact on the analytical performance of SiNW-FET sensors. In addition to in vitro examples, an overview of the progress of use of SiNW-FET sensors for ex vivo studies is also presented. This review concludes with a discussion of the future prospects of SiNW-FET sensors. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Room-temperature InP/InAsP Quantum Discs-in-Nanowire Infrared Photodetectors.

    PubMed

    Karimi, Mohammad; Jain, Vishal; Heurlin, Magnus; Nowzari, Ali; Hussain, Laiq; Lindgren, David; Stehr, Jan Eric; Buyanova, Irina A; Gustafsson, Anders; Samuelson, Lars; Borgström, Magnus T; Pettersson, Håkan

    2017-06-14

    The possibility to engineer nanowire heterostructures with large bandgap variations is particularly interesting for technologically important broadband photodetector applications. Here we report on a combined study of design, fabrication, and optoelectronic properties of infrared photodetectors comprising four million n + -i-n + InP nanowires periodically ordered in arrays. The nanowires were grown by metal-organic vapor phase epitaxy on InP substrates, with either a single or 20 InAsP quantum discs embedded in the i-segment. By Zn compensation of the residual n-dopants in the i-segment, the room-temperature dark current is strongly suppressed to a level of pA/NW at 1 V bias. The low dark current is manifested in the spectrally resolved photocurrent measurements, which reveal strong photocurrent contributions from the InAsP quantum discs at room temperature with a threshold wavelength of about 2.0 μm and a bias-tunable responsivity reaching 7 A/W@1.38 μm at 2 V bias. Two different processing schemes were implemented to study the effects of radial self-gating in the nanowires induced by the nanowire/SiO x /ITO wrap-gate geometry. Summarized, our results show that properly designed axial InP/InAsP nanowire heterostructures are promising candidates for broadband photodetectors.

  7. Performance analysis of nanodisk and core/shell/shell-nanowire type III-Nitride heterojunction solar cell for efficient energy harvesting

    NASA Astrophysics Data System (ADS)

    Routray, S. R.; Lenka, T. R.

    2017-11-01

    Now-a-days III-Nitride nanowires with axial (nanodisk) and radial (core/shell/shell-nanowire) junctions are two unique and potential methods for solar energy harvesting adopted by worldwide researchers. In this paper, polarization behavior of GaN/InGaN/GaN junction and its effect on carrier dynamics of nanodisk and CSS-nanowire type solar cells are intensively studied and compared with its planar counterpart by numerical simulations using commercially available Victory TCAD. It is observed that CSS-NW with hexagonal geometrical shapes are robust to detrimental impact of polarization charges and could be good enough to accelerate carrier collection efficiency as compared to nanodisk and planar solar cells. This numerical study provides an innovative aspect of fundamental device physics with respect to polarization charges in CSS-NW and nanodisk type junction towards photovoltaic applications. The internal quantum efficiencies (IQE) are also discussed to evaluate carrier collection mechanisms and recombination losses in each type of junctions of solar cell. Finally, it is interesting to observe a maximum conversion efficiency of 6.46% with 91.6% fill factor from n-GaN/i-In0.1Ga0.9N/p-GaN CSS-nanowire solar cell with an optimized thickness of 180 nm InGaN layer under one Sun AM1.5 illumination.

  8. Metallic Nanowire Interconnections for Integrated Circuit Fabrication

    NASA Technical Reports Server (NTRS)

    Ng, Hou Tee (Inventor); Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for fabricating an electrical interconnect between two or more electrical components. A conductive layer is provided on a substarte and a thin, patterned catalyst array is deposited on an exposed surface of the conductive layer. A gas or vapor of a metallic precursor of a metal nanowire (MeNW) is provided around the catalyst array, and MeNWs grow between the conductive layer and the catalyst array. The catalyst array and a portion of each of the MeNWs are removed to provide exposed ends of the MeNWs.

  9. Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers.

    PubMed

    Lee, Tae-Won; Lee, Sang-Eui; Jeong, Young Gyu

    2016-05-25

    We fabricated silver nanowire (AgNW)-coated cellulose papers with a hierarchical structure by an efficient and facile dip-coating process, and investigated their microstructures, electrical conductivity and electromagnetic interference (EMI) shielding effectiveness. SEM images confirm that AgNWs are coated dominantly on the paper surfaces, although they exist partially in the inner parts of the cellulose papers, which demonstrates that the AgNW density gradually decreases in thickness direction of the AgNW/cellulose papers. This result is supported by the anisotropic apparent electrical conductivity of the AgNW/cellulose papers depending on in-plane or thickness direction. Even for a AgNW/cellulose paper obtained by a single dip-coating cycle, the apparent electrical conductivity in the in-plane direction of 0.34 S/cm is achieved, which is far higher than the neat cellulose paper with ∼10(-11) S/cm. In addition, the apparent electrical conductivity of the papers in the in-plane direction increases significantly from 0.34 to 67.51 S/cm with increasing the number of dip-coating cycle. Moreover, although the AgNW/cellulose paper with 67.51 S/cm possesses 0.53 vol % AgNW only, it exhibits high EMI shielding performance of ∼48.6 dB at 1 GHz. This indicates that the cellulose paper structure is highly effective to form a conductive AgNW network. Overall, it can be concluded that the AgNW/cellulose papers with high flexibility and low density can be used as electrically conductive components and EMI shielding elements in advanced application areas.

  10. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching

    PubMed Central

    2013-01-01

    We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution. PMID:23557325

  11. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates.

    PubMed

    Birowosuto, M D; Zhang, G; Yokoo, A; Takiguchi, M; Notomi, M

    2014-05-19

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO(2)), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive-index materials of Si. Experimentally, the inhibition factor ζ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO(2) and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  12. Ag@Ni core-shell nanowire network for robust transparent electrodes against oxidation and sulfurization.

    PubMed

    Eom, Hyeonjin; Lee, Jaemin; Pichitpajongkit, Aekachan; Amjadi, Morteza; Jeong, Jun-Ho; Lee, Eungsug; Lee, Jung-Yong; Park, Inkyu

    2014-10-29

    Silver nanowire (Ag NW) based transparent electrodes are inherently unstable to moist and chemically reactive environment. A remarkable stability improvement of the Ag NW network film against oxidizing and sulfurizing environment by local electrodeposition of Ni along Ag NWs is reported. The optical transmittance and electrical resistance of the Ni deposited Ag NW network film can be easily controlled by adjusting the morphology and thickness of the Ni shell layer. The electrical conductivity of the Ag NW network film is increased by the Ni coating via welding between Ag NWs as well as additional conductive area for the electron transport by electrodeposited Ni layer. Moreover, the chemical resistance of Ag NWs against oxidation and sulfurization can be dramatically enhanced by the Ni shell layer electrodeposited along the Ag NWs, which provides the physical barrier against chemical reaction and diffusion as well as the cathodic protection from galvanic corrosion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A pH sensor with a double-gate silicon nanowire field-effect transistor

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Kim, Jee-Yeon; Seol, Myeong-Lok; Baek, David J.; Guo, Zheng; Kim, Chang-Hoon; Choi, Sung-Jin; Choi, Yang-Kyu

    2013-02-01

    A pH sensor composed of a double-gate silicon nanowire field-effect transistor (DG Si-NW FET) is demonstrated. The proposed DG Si-NW FET allows the independent addressing of the gate voltage and hence improves the sensing capability through an application of asymmetric gate voltage between the two gates. One gate is a driving gate which controls the current flow, and the other is a supporting gate which amplifies the shift of the threshold voltage, which is a sensing metric, and which arises from changes in the pH. The pH signal is also amplified through modulation of the gate oxide thickness.

  14. Artificial sensing intelligence with silicon nanowires for ultraselective detection in the gas phase.

    PubMed

    Wang, Bin; Cancilla, John C; Torrecilla, Jose S; Haick, Hossam

    2014-02-12

    The use of molecularly modified Si nanowire field effect transistors (SiNW FETs) for selective detection in the liquid phase has been successfully demonstrated. In contrast, selective detection of chemical species in the gas phase has been rather limited. In this paper, we show that the application of artificial intelligence on deliberately controlled SiNW FET device parameters can provide high selectivity toward specific volatile organic compounds (VOCs). The obtained selectivity allows identifying VOCs in both single-component and multicomponent environments as well as estimating the constituent VOC concentrations. The effect of the structural properties (functional group and/or chain length) of the molecular modifications on the accuracy of VOC detection is presented and discussed. The reported results have the potential to serve as a launching pad for the use of SiNW FET sensors in real-world counteracting conditions and/or applications.

  15. In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models

    PubMed Central

    Grichine, Alexei; Rachidi, Walid; Charlet, Laurent

    2018-01-01

    Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag+ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products. PMID:29641466

  16. In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models.

    PubMed

    Lehmann, Sylvia G; Gilbert, Benjamin; Maffeis, Thierry Gg; Grichine, Alexei; Pignot-Paintrand, Isabelle; Clavaguera, Simon; Rachidi, Walid; Seve, Michel; Charlet, Laurent

    2018-04-11

    Silver nanowires (AgNW) are attractive materials that are anticipated to be incorporated into numerous consumer products such as textiles, touchscreen display, and medical devices that could be in direct contact with skin. There are very few studies on the cellular toxicity of AgNW and no studies that have specifically evaluated the potential toxicity from dermal exposure. To address this question, we investigated the dermal toxicity after acute exposure of polymer-coated AgNW with two sizes using two models, human primary keratinocytes and human reconstructed epidermis. In keratinocytes, AgNW are rapidly and massively internalized inside cells leading to dose-dependent cytotoxicity that was not due to Ag⁺ release. Analysing our data with different dose metrics, we propose that the number of NW is the most appropriate dose-metric for studies of AgNW toxicity. In reconstructed epidermis, the results of a standard in vitro skin irritation assay classified AgNW as non-irritant to skin and we found no evidence of penetration into the deeper layer of the epidermis. The findings show that healthy and intact epidermis provides an effective barrier for AgNW, although the study does not address potential transport through follicles or injured skin. The combined cell and tissue model approach used here is likely to provide an important methodology for assessing the risks for skin exposure to AgNW from consumer products.

  17. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  18. Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan

    2017-12-01

    The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.

  19. Piezo-Phototronic Matrix via a Nanowire Array.

    PubMed

    Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2017-12-01

    Piezoelectric semiconductors, such as ZnO and GaN, demonstrate multiproperty coupling effects toward various aspects of mechanical, electrical, and optical excitation. In particular, the three-way coupling among semiconducting, photoexcitation, and piezoelectric characteristics in wurtzite-structured semiconductors is established as a new field, which was first coined as piezo-phototronics by Wang in 2010. The piezo-phototronic effect can controllably modulate the charge-carrier generation, separation, transport, and/or recombination in optical-electronic processes by modifying the band structure at the metal-semiconductor or semiconductor-semiconductor heterojunction/interface. Here, the progress made in using the piezo-phototronic effect for enhancing photodetectors, pressure sensors, light-emitting diodes, and solar cells is reviewed. In comparison with previous works on a single piezoelectric semiconducting nanowire, piezo-phototronic nanodevices built using nanowire arrays provide a promising platform for fabricating integrated optoelectronics with the realization of high-spatial-resolution imaging and fast responsivity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transferable self-welding silver nanowire network as high performance transparent flexible electrode.

    PubMed

    Zhu, Siwei; Gao, Yuan; Hu, Bin; Li, Jia; Su, Jun; Fan, Zhiyong; Zhou, Jun

    2013-08-23

    High performance transparent electrodes (TEs) with figures-of-merit as high as 471 were assembled using ultralong silver nanowires (Ag NWs). A room-temperature plasma was employed to enhance the conductivity of the Ag NW TEs by simultaneously removing the insulating PVP layer coating on the NWs and welding the junctions tightly. Furthermore, we developed a general way to fabricate TEs regardless of substrate limitations by transferring the as-fabricated Ag NW network onto various substrates directly, and the transmittance can remain as high as 91% with a sheet resistivity of 13 Ω/sq. The highly robust and stable flexible TEs will have broad applications in flexible optoelectronic and electronic devices.