Sample records for zno nr-sno2 np

  1. Negative differential resistance and resistive switching in SnO2/ZnO interface

    NASA Astrophysics Data System (ADS)

    Pant, Rohit; Patel, Nagabhushan; Nanda, K. K.; Krupanidhi, S. B.

    2017-09-01

    We report a very stable negative differential resistance (NDR) and resistive switching (RS) behavior of highly transparent thin films of the SnO2/ZnO bilayer, deposited by magnetron sputtering. When this bilayer of SnO2/ZnO was annealed at temperatures above 400 °C, ZnO diffuses into SnO2 at the threading dislocations and gaps between the grain boundaries, leading to the formation of a ZnO nanostructure surrounded by SnO2. Such a configuration forms a resonant tunneling type structure with SnO2/ZnO/SnO2…….ZnO/SnO2 interface formation. Interestingly, the heterostructure exhibits a Gunn diode-like behavior and shows NDR and RS irrespective of the voltage sweep direction, which is the characteristic of unipolar devices. A threshold voltage of ˜1.68 V and a peak-to-valley ratio of current ˜2.5 are observed for an electrode separation of 2 mm, when the bias is swept from -5 V to +5 V. It was also observed that the threshold voltage can be tuned with changing distance between the electrodes. The device shows a very stable RS with a uniform ratio of about 3.4 between the high resistive state and the low resistive state. Overall, the results demonstrate the application of SnO2/ZnO bilayer thin films in transparent electronics.

  2. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  3. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-10-01

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on.

  4. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules.

    PubMed

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-08

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (R air/R gas = 12.8) compared to that (R air/R gas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  5. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  6. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  7. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    2017-11-01

    SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.

  8. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.

    PubMed

    Min, Byung-Sam; Park, Young-Ho; Lee, Chang-Seop

    2014-11-01

    This study investigates the use of SnO2, ZnO, Ag, Au, Cu, In, Pd, Ru and carbon black to improve the sensitivity of a gas sensor for detecting toluene gas. Metal-SnO2/ZnO thick films were screen-printed onto Al2O3 substrates with platinum electrodes. The physico-chemical properties of the sensor materials were characterized using SEM/EDS, XRD, and BET analyses. Measuring the electrical resistance of each sensor as a function of the gas concentration determined the sensing characteristics. The sensors were tested using toluene, benzene, xylene, ethanol, methanol, ammonia and trimethylamine vapors with concentrations of 1-2000 ppm. The gas sensing properties of metal-SnO2/ZnO thick films depended on the content and variety of metals and the content of carbon black. The optimum condition of sensor material for toluene gas detection is operation temperature 300 degrees C and when metal catalyst Cu and carbon black were added. The best sensitivity and selectivity for toluene gas at 300 degrees C resulted from doping with 5 wt.% carbon black, 1 wt.% Cu and 20 wt.% ZnO to SnO2.

  9. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-01

    We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.

  10. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  11. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  12. In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xiao, Xuezhang; Zhang, Yiwen; Li, Junpeng; Zhong, Jiayi; Li, Meng; Fan, Xiulin; Wang, Chuntao; Chen, Lixin

    2018-03-01

    A unique SnO2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO2 NR adhering to the RGO exhibits a length of 250-400 nm and a diameter of 60-80 nm without any obvious aggregation. The initial discharge/charge capacities of the SnO2 NR/RGO composite are 1761.3 mAh g-1 and 1233.1 mAh g-1, with a coulombic efficiency (CE) of 70% under a current density of 200 mA g-1, and a final capacity of 1101 mAh g-1 after 50 cycles. The rate capability of the SnO2 NR/RGO is also improved compared to that of bare SnO2 NR. The superior electrochemical performance is ascribed to the special morphology of the SnO2 NRs—which plays a role in shorting the transmission path—and the sheet-like 2D graphene, which prevents the agglomeration of SnO2 and enhances conductivity during the electrochemical reaction of SnO2 NR/RGO.

  13. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-04-25

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  14. Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalysts under UV radiation as a decontamination procedure

    NASA Astrophysics Data System (ADS)

    Abo, Rudy; Kummer, Nicolai-Alexeji; Merkel, Broder J.

    2016-09-01

    Experiments on photodegradation of Bisphenol A (BPA) were carried out in water samples by means photocatalytic and photo-oxidation methods in the presence of ZnO, TiO2 and SnO2 catalysts. The objective of this study was to develop an improved technique that can be used as a remediation procedure for a BPA-contaminated surface water and groundwater based on the UV solar radiation. The photodegradation of BPA in water performed under a low-intensity UV source mimics the UVC and UVA spectrum of solar radiation between 254 and 365 nm. The archived results reveal higher degradation rates observed in the presence of ZnO than with TiO2 and SnO2 catalysts during 20 h of irradiation. The intervention of the advanced photocatalytic oxidation (PCO) reduces the time of degradation to less than 1 h to reach a degradation rate of 90 % for BPA in water. The study proposes the use of ZnO as a competitor catalyst to the traditional TiO2, providing the most effective treatment of contaminated water with phenolic products.

  15. Optimalization activity of ZnO NR/TiO2 NR-P3HT as an active layer based on hybrid bulk heterojunction on dye sensitized solar cell (DSSC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saputri, Liya Nikmatul Maula Zulfa; Ramelan, Ari Handono; Hanif, Qonita Awliya

    2016-04-19

    Dye sensitized solar cell (DSSC) with metal inorganic and conjugated organic polymer mixture, ZnO NR/TiO{sub 2} NR-P3HT as an active layer based on hybrid bulk heterojunction has been studied. The hybrid material was used to optimize DSSC performs for better efficiency than only TiO{sub 2} as an electrode. Synthesis of TiO{sub 2} nanorods (NR) was conducted by ball milling 1000 rpm for 4 hours and strong base reaction by hydrothermal process at 120 °C overnight. And the ZnO NR was synthesized from Zn(NO{sub 3}){sub 2}.4H{sub 2}O precusor by hydrotermal process at 90 °C for 5 hours and calcined on various temperaturemore » s of 400, 600, and 800 °C. ZnO NR was coated into an Tndium Tin Oxide (TTO) glass to collecting electron s effectively, where TiO{sup 2} NR were incorporated with poly(3 -hexylthiophene) (P3HT) on various concentration s of 5, 10, 15 mg/mL to obtain a larger surface area. Material characterization were performed by X -Ray Diffraction (XRD) and Uv-Vis spectrophotometer. For an application of DSSC were measured by T-V Keithley Multimeter and the efficiency of DSSC at various P3HT’s concentrations of 5, 10, 15 mg/mL were 7.44 × 10{sup −3}, 0.0114, 0.0104, respectively. The maximum efficiency of DSSC was showed when TiO{sup 2} NR-P3HT’s concentration was 10 mg/mL.« less

  16. Highly photoresponsive, ZnO nanorod-based photodetector for operation in the visible spectral range

    NASA Astrophysics Data System (ADS)

    Choi, Daniel S.; Hansen, Matthew; Van Keuren, Edward; Hahm, Jong-in

    2017-04-01

    While significant advances have been made for gold nanoparticle (AuNP)-coupled zinc oxide (ZnO) as visibly blind, ultraviolet photodetection devices, very few ZnO nanomaterial systems have been developed specifically for use in the visible wavelength regime. Further efforts to develop ZnO-based visible photodetectors (PDs) are still highly warranted in order to better understand the precise effect of AuNP load, operation wavelength, and beam position on the device output. In this study, we demonstrate significantly enhanced, photoresponse behaviors of AuNP-coupled ZnO nanorod (NR) network devices in the visible wavelength range with their photoresponse capacity comparable to, if not far exceeding, most commercial PDs as well as recently reported, visible, AuNP-coupled ZnO detectors. In addition, the nature and degree of the photoresponsivity enhancement are systematically elucidated by investigating their light-triggered electrical signals under varying incident wavelengths, AuNP amounts, and illumination positions. We discuss a possible photoconduction mechanism of our AuNP-coupled ZnO NR PDs and the origins of the high photoresponsivity. Specifically related to the AuNP amount-dependent photoresponse behaviors, the nanoparticle density yielding photoresponse maxima is explained as the interplay between localized surface plasmon resonance, plasmonic heating, and scattering in our photothermoelectric effect-driven device. We show that the AuNP-coupled ZnO NR PDs can be constructed via a straightforward method without the need for ultrahigh vacuum, sputtering procedures, or photo/electron-beam lithographic tools. Hence, the approach demonstrated in this study may serve as a convenient and viable means to advance the current state of ZnO-based PDs for operation in the visible spectral range with greatly increased photoresponsivity.

  17. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  18. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  19. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  20. Three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei

    2015-07-01

    In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.

  1. H2O2 sensing using HRP modified catalyst-free ZnO nanorods synthesized by RF sputtering

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit; Kumar, Naresh; Singh, Priti; Singh, Sunil Kumar

    2017-06-01

    Catalyst-free ( 00 l) oriented ZnO nanorods (NRs) -based biosensor for the H2O2 sensing has been reported. The (002) oriented ZnO NRs as confirmed by X-ray diffraction were successfully grown on indium tin oxide (ITO) coated glass substrate by radio frequency (RF) sputtering technique without using any catalyst. Horseradish peroxidase (HRP) enzyme was immobilized on ZnO NRs by physical adsorption technique to prepare the biosensor. In this HRP/ZnO NR/ITO bioelectrode, nafion solution was added to form a tight membrane on surface. The prepared bioelectrode has been used for biosensing measurements by electrochemical analyzer. The electrochemical studies reveal that the prepared HRP/ZnO NR/ITO biosensor is highly sensitive to the detection of H2O2 over a linear range of 0.250-10 μM. The ZnO NR-based biosensor showed lower value of detection limit (0.125 μM) and higher sensitivity (13.40 µA/µM cm2) towards H2O2. The observed value of higher sensitivity attributed to larger surface area of ZnO nanostructure for effective loading of HRP besides its high electron communication capability. In addition, the biosensor also shows lower value of enzyme's kinetic parameter (Michaelis-Menten constant, K m) of 0.262 μM which indicates enhanced enzyme affinity of HRP to H2O2. The reported biosensor may be useful for various applications in biosensing, clinical, food, and beverage industry.

  2. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells.

    PubMed

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1 -/- BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.

  3. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells

    PubMed Central

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313

  4. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.

    PubMed

    Bryant, Sheenah L; Eixenberger, Josh E; Rossland, Steven; Apsley, Holly; Hoffmann, Connor; Shrestha, Nisha; McHugh, Michael; Punnoose, Alex; Fologea, Daniel

    2017-12-16

    The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate. The macroscopic conductance of lysenin channels greatly diminished in the presence of cationic ZnO NPs. The inhibitory effects were asymmetrical relative to the direction of the electric field and addition site, suggesting electrostatic interactions between ZnO NPs and a binding site. Similar changes in the macroscopic conductance were observed when lysenin channels were reconstituted in neutral lipid membranes, implicating protein-NP interactions as the major contributor to the reduced transport capabilities. In contrast, no inhibitory effects were observed in the presence of anionic SnO 2 NPs. Additionally, we demonstrate that inhibition of ion transport is not due to the dissolution of ZnO NPs and subsequent interactions of zinc ions with lysenin channels. We conclude that electrostatic interactions between positively charged ZnO NPs and negative charges within the lysenin channels are responsible for the inhibitory effects on the transport of ions. These interactions point to a potential mechanism of cytotoxicity, which may not require NP internalization.

  5. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  6. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass

    NASA Astrophysics Data System (ADS)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-03-01

    photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates. Electronic supplementary information (ESI) available: (1) QCM measurement of SnO2 deposition on spermine functionalized silica-based sensors, (2) scheme of the surface functionalization procedure, (3) FTIR-ATR analysis of polyamine (spermine) functionalized glass surfaces, (4) FITC staining of amine groups on glass surfaces, (5) AFM height analysis of bare, spermine coated and SnO2 coated glass slides, (6) SEM micrograph of a spermine functionalized SnO2 coated glass slide, (7) XPS analysis of SnO2 coated surfaces, (8) kinetic profile of rhodamine B degradation with spermine/SnO2, (9) control experiments for the photodegradation of rhodamine B, (10) comparison with commercial SnO2 catalyst, (11) incubation of non-functionalized glass surfaces with E. coli, and (12) incubation of SnO2 coated glass surfaces with E. coli. See DOI: 10.1039/c3nr00007a

  7. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  8. Structural and physical properties of transparent conducting, amorphous Zn-doped SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2014-01-01

    The structural and physical properties of conducting amorphous Zn-doped SnO2 (a-ZTO) films, prepared by pulsed laser deposition, were investigated as functions of oxygen deposition pressure (pO2), composition, and thermal annealing. X-ray scattering and X-ray absorption spectroscopy measurements reveal that at higher pO2, the a-ZTO films are highly transparent and have a structural framework similar to that found in crystalline (c-), rutile SnO2 in which the Sn4+ ion is octahedrally coordinated by 6 O2- ions. The Sn4+ ion in these films however has a coordination number (CN) smaller by 2%-3% than that in c-SnO2, indicating the presence of oxygen vacancies, which are the likely source of charge carriers. At lower pO2, the a-ZTO films show a brownish tint and contain some 4-fold coordinated Sn2+ ions. Under no circumstances is the CN around the Zn2+ ion larger than 4, and the Zn-O bond is shorter than the Sn-O bond by 0.07 Å. The addition of Zn has no impact on the electroneutrality but improves significantly the thermal stability of the films. Structural changes due to pO2, composition, and thermal annealing account well for the changes in the physical properties of a-ZTO films.

  9. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  10. Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun

    2015-04-01

    . In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00202h

  11. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Pajor-Świerzy, Anna; Depciuch, Joanna; Socha, Robert; Kowal, Andrzej; Warszyński, Piotr; Parlinska-Wojtan, Magdalena

    2018-05-01

    In this study Pt, Re, and SnO2 nanoparticles (NPs) were combined in a controlled manner into binary and ternary combinations for a possible application for ethanol oxidation. For this purpose, zeta potentials as a function of the pH of the individual NPs solutions were measured. In order to successfully combine the NPs into Pt/SnO2 and Re/SnO2 NPs, the solutions were mixed together at a pH guaranteeing opposite zeta potentials of the metal and oxide NPs. The individually synthesized NPs and their binary/ternary combinations were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. FTIR and XPS spectroscopy showed that the individually synthesized Pt and Re NPs are metallic and the Sn component was oxidized to SnO2. STEM showed that all NPs are well crystallized and the sizes of the Pt, Re, and SnO2 NPs were 2.2, 1.0, and 3.4 nm, respectively. Moreover, EDS analysis confirmed the successful formation of binary Pt/SnO2 and Re/SnO2 NP, as well as ternary Pt/Re/SnO2 NP combinations. This study shows that by controlling the zeta potential of individual metal and oxide NPs, it is possible to assemble them into binary and ternary combinations. [Figure not available: see fulltext.

  12. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02571k

  13. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  14. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy; Tao, Tao; Chen, Ying

    2013-05-01

    A h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries. Electronic supplementary information (ESI) available: Electrochemical Impedance Spectroscopy (EIS). See DOI: 10.1039/c3nr00690e

  15. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions.

    PubMed

    Poynton, Helen C; Lazorchak, James M; Impellitteri, Christopher A; Smith, Mark E; Rogers, Kim; Patra, Manomita; Hammer, Katherine A; Allen, H Joel; Vulpe, Chris D

    2011-01-15

    Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment, and chemotherapy providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolution to Zn(2+), but the relative contribution of Zn(2+) to ZnO NP bioavailability and toxicity is not clear. We show that a fraction of the ZnO NPs in suspension dissolves, and this fraction cannot account for the toxicity of the ZnO NP suspensions to Daphnia magna. Gene expression profiling of D. magna exposed to ZnO NPs or ZnSO(4) at sublethal concentrations revealed distinct modes of toxicity. There was also little overlap in gene expression between ZnO NPs and SiO(x) NPs, suggesting specificity for the ZnO NP expression profile. ZnO NPs effected expression of genes involved in cytoskeletal transport, cellular respiration, and reproduction. A specific pattern of differential expression of three biomarker genes including a multicystatin, ferritin, and C1q containing gene were confirmed for ZnO NP exposure and provide a suite of biomarkers for identifying environmental exposure to ZnO NPs and differentiating between NP and ionic exposure.

  16. Effect of synthesized ZnO nanoparticles on thermal conductivity and mechanical properties of natural rubber

    NASA Astrophysics Data System (ADS)

    Suntako, R.

    2018-01-01

    Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.

  17. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells.

    PubMed

    Gu, Yuxiu; Cheng, Shanshan; Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Li, Juan; Cao, Yi

    2017-03-01

    It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO 2 NPs were used to compare the effects. Exposure to 32 μg/mL ZnO NPs (p < 0.05), but not TiO 2 NPs (p > 0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO 4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO 2 NP exposure (p > 0.05). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01). We concluded ER stress is probably not associated with ZnO NP exposure induced oxidative stress and inflammatory responses in HUVECs.

  18. Self-catalytic branch growth of SnO 2 nanowire junctions

    NASA Astrophysics Data System (ADS)

    Chen, Y. X.; Campbell, L. J.; Zhou, W. L.

    2004-10-01

    Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and [ 1 1 bar 0 ] . A self-catalytic vapor-liquid-solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.

  19. Characterization of planar pn heterojunction diodes constructed with Cu2O nanoparticle films and single ZnO nanowires.

    PubMed

    Kwak, Kiyeol; Cho, Kyoungah; Kim, Sangsig

    2013-05-01

    In this study, we fabricate planar pn heterojunction diodes composed of Cu2O nanoparticle (NP) films and single ZnO nanowires (NWs) on SiO2 (300 nm)/Si substrates and investigate their characteristics in the dark and under the illumination of white light and 325 nm wavelength light. The diode at bias voltages of +/- 1 V shows rectification ratios of 10 (in the dark) and 34 (under the illumination of white light). On the other hand, the diode exposed to the 325 nm wavelength light exhibits Ohmic characteristics which are associated with efficient photocurrent generation in both the Cu2O NP film and the single ZnO NW.

  20. Preparation of p-type GaN-doped SnO2 thin films by e-beam evaporation and their applications in p-n junction

    NASA Astrophysics Data System (ADS)

    Lv, Shuliang; Zhou, Yawei; Xu, Wenwu; Mao, Wenfeng; Wang, Lingtao; Liu, Yong; He, Chunqing

    2018-01-01

    Various transparent GaN-doped SnO2 thin films were deposited on glass substrates by e-beam evaporation using GaN:SnO2 targets of different GaN weight ratios. It is interesting to find that carrier polarity of the thin films was converted from n-type to p-type with increasing GaN ratio higher than 15 wt.%. The n-p transition in GaN-doped SnO2 thin films was explained for the formation of GaSn and NO with increasing GaN doping level in the films, which was identified by Hall measurement and XPS analysis. A transparent thin film p-n junction was successfully fabricated by depositing p-type GaN:SnO2 thin film on SnO2 thin film, and a low leakage current (6.2 × 10-5 A at -4 V) and a low turn-on voltage of 1.69 V were obtained for the p-n junction.

  1. ZnO Nanoparticles Protect RNA from Degradation Better than DNA.

    PubMed

    McCall, Jayden; Smith, Joshua J; Marquardt, Kelsey N; Knight, Katelin R; Bane, Hunter; Barber, Alice; DeLong, Robert K

    2017-11-08

    Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  2. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil.

    PubMed

    García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D

    2015-11-01

    This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

  4. Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors

    PubMed Central

    Wyllie, David J A; Béhé, Philippe; Colquhoun, David

    1998-01-01

    We have expressed recombinant NR1a/NR2A and NR1a/NR2D N-methyl-D-aspartate (NMDA) receptor channels in Xenopus oocytes and made recordings of single-channel and macroscopic currents in outside-out membrane patches. For each receptor type we measured (a) the individual single-channel activations evoked by low glutamate concentrations in steady-state recordings, and (b) the macroscopic responses elicited by brief concentration jumps with high agonist concentrations, and we explore the relationship between these two sorts of observation. Low concentration (5–100 nM) steady-state recordings of NR1a/NR2A and NR1a/NR2D single-channel activity generated shut-time distributions that were best fitted with a mixture of five and six exponential components, respectively. Individual activations of either receptor type were resolved as bursts of openings, which we refer to as ‘super-clusters’. During a single activation, NR1a/NR2A receptors were open for 36 % of the time, but NR1a/NR2D receptors were open for only 4 % of the time. For both, distributions of super-cluster durations were best fitted with a mixture of six exponential components. Their overall mean durations were 35.8 and 1602 ms, respectively. Steady-state super-clusters were aligned on their first openings and averaged. The average was well fitted by a sum of exponentials with time constants taken from fits to super-cluster length distributions. It is shown that this is what would be expected for a channel that shows simple Markovian behaviour. The current through NR1a/NR2A channels following a concentration jump from zero to 1 mM glutamate for 1 ms was well fitted by three exponential components with time constants of 13 ms (rising phase), 70 ms and 350 ms (decaying phase). Similar concentration jumps on NR1a/NR2D channels were well fitted by two exponentials with means of 45 ms (rising phase) and 4408 ms (decaying phase) components. During prolonged exposure to glutamate, NR1a/NR2A channels desensitized

  5. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    NASA Astrophysics Data System (ADS)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  6. CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Liu, Chung Chiun; Ward, Benjamin J.

    2008-01-01

    Nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been found to be useful as an electrical-resistance sensory material for measuring the concentration of carbon dioxide in air. SnO2 is an n-type semiconductor that has been widely used as a sensing material for detecting such reducing gases as carbon monoxide, some of the nitrogen oxides, and hydrocarbons. Without doping, SnO2 usually does not respond to carbon dioxide and other stable gases. The discovery that the electrical resistance of CuO-doped SnO2 varies significantly with the concentration of CO2 creates opportunities for the development of relatively inexpensive CO2 sensors for detecting fires and monitoring atmospheric conditions. This discovery could also lead to research that could alter fundamental knowledge of SnO2 as a sensing material, perhaps leading to the development of SnO2-based sensing materials for measuring concentrations of oxidizing gases. Prototype CO2 sensors based on CuO-doped SnO2 have been fabricated by means of semiconductor-microfabrication and sol-gel nanomaterial-synthesis batch processes that are amendable to inexpensive implementation in mass production.

  7. Heterogeneous nanocrystals assembled TiO2/SnO2/C composite for improved lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Mao, Yuning; Zhang, Xuzhen; Yang, Li

    2018-07-01

    Using stable TiO2 and flexible carbon as double-functional structure protector of nanostructural SnO2 to fabricate TiO2/SnO2/C composites is widely considered as a favorable strategy for improving the lithium storage performance of SnO2 anodes. But, it is still a challenge to obtain a satisfying TiO2/SnO2/C composite. Herein, an interesting porous nanostructure of TiO2/SnO2/C nanosphere composite assembled by TiO2 and SnO2 nanocrystals with an outer carbon coating has been fabricated by a well-designed approach. Thanks to the perfectly combined action of porous spherical nanostructure, TiO2 and SnO2 nanocrystals and carbon coating, the as-prepared composite obtains excellent structure stability and improved electrochemcial properties. When used as a promising anode for lithium-ion batteres, it exhibits outstanding lithium storage performance, delivering a high capacity of 687.2 mAh g-1 after even 400 cycles.

  8. Enhancement of visible light photocatalytic activity over bistructural SnO2 nanobelts

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Wang, Yongli; Su, Dezhi; Zhao, Yongjie

    2018-02-01

    SnO2 nanobelts were synthesized by hydrothermal method. The structure and morphology were investigated by XRD, Raman spectra, SEM and TEM. The results revealed that the synthesized SnO2 nanobelts were covered with amorphous surface. For the photocatalytic efficiency of methylene blue, the none-fully crystallized SnO2 nanobelts were over four times higher than bulk SnO2. Moreover, the photo-degradation rate constant with SnO2 nanobelts as photocatalysts was over six times higher than bulk SnO2. It was considered that the subtle structure of SnO2 nanobelts not only lowered the band gap but also improved the transfer of charge carriers and trapping effect of solar light. Furthermore, this strategy of enhancing photocatalytic performance could be extended to the other kinds of metal oxide photocatalyst.

  9. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles

    PubMed Central

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-01-01

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications. PMID:26300041

  10. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Reddy, M. Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A. M.

    2015-12-01

    followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes. Electronic supplementary information (ESI) available: XPS, FE-SEM, FE-TEM, TGA FT-IR, EIS, CV of and charge discharge profiles of RGO-SnO2 composites. See DOI: 10.1039/c5nr06680h

  11. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea.

    PubMed

    Yu, Ran; Fang, Xiaohua; Somasundaran, Ponisseril; Chandran, Kartik

    2015-06-01

    Nanosized TiO2 (n-TiO2), CeO2 (n-CeO2), and ZnO (n-ZnO) and bulk ZnO were chosen for a 4-h exposure study on a model ammonia oxidizing bacterium, Nitrosomonas europaea. n-ZnO displayed the most serious cytotoxicity while n-TiO2 was the least toxic one. The change of cell morphologies, the retardance of specific oxygen uptake rates and ammonia oxidation rates, and the depression of amoA gene expressions under NP stresses were generally observed when the cell densities and membrane integrities were not significantly impaired yet. The TEM imaging and the synchrotron X-ray fluorescence microscopy of the NPs impacted cells revealed the increase of the corresponding intracellular Ti, Ce or Zn contents and suggested the intracellular NP accumulation. The elevation of intracellular S contents accompanied with higher K contents implied the possible activation of thiol-containing glutathione and thioredoxin production for NP stress alleviation. The NP cytotoxicity was not always a function of NP concentration. The 200 mg L(-1) n-TiO2 or n-CeO2 impacted cells displayed the similar ammonia oxidation activities but higher amoA gene expression levels than the 20 mg L(-1) NPs impacted ones. Such phenomenon further indicated the possible establishment of an anti-toxicity mechanism in N. europaea at the genetic level to redeem the weakened AMO activities along with the NP aggregation effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Identification of NpO2+x in the binary Np-O system

    NASA Astrophysics Data System (ADS)

    Tayal, Akhil; Conradson, Steven D.; Baldinozzi, Gianguido; Namdeo, Sonu; Roberts, Kevin E.; Allen, Patrick G.; Shuh, David K.

    2017-07-01

    In contrast to UO2 and PuO2, there is no consensus on the existence of mixed valence NpO2+x, resulting in a gap between NpO2 and Np2O5 (the highest binary oxide of Np) in the Np-O phase diagram. We now show NpO2+x via Np LIII Extended X-ray Absorption Fine Structure (EXAFS) spectra of three samples of NpO2 that, analogous to U and Pu, exhibit multisite Np-O distributions with varying numbers of oxygen atoms at 1.87-1.91 Å. This is supported by the diffraction pattern of the sample with the largest amount of this oxo-type species that can be refined with both the simple fluorite structure and a trigonal one related to α-U4O9. The implied Np(V)-bridging oxo moieties as well as possible indications of OHbar found by detailed EXAFS analysis suggest that NpO2+x more closely resembles PuO2+x than UO2+x. An additional common characteristic suggested by the EXAFS and X-Ray Diffraction (XRD) is the phase separation into NpO2 and what would be previously unreported Np4O9(-δ), indicative of O clustering.

  13. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  14. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  15. Soft exfoliation of 2D SnO with size-dependent optical properties

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Della Gaspera, Enrico; Ahmed, Taimur; Walia, Sumeet; Ramanathan, Rajesh; van Embden, Joel; Mayes, Edwin; Bansal, Vipul

    2017-06-01

    Two-dimensional (2D) materials have recently gained unprecedented attention as potential candidates for next-generation (opto)electronic devices due to their fascinating optical and electrical properties. Tin monoxide, SnO, is an important p-type semiconductor with applications across photocatalysis (water splitting) and electronics (transistors). However, despite its potential in several important technological applications, SnO remains underexplored in its 2D form. Here we present a soft exfoliation strategy to produce 2D SnO nanosheets with tunable optical and electrical properties. Our approach involves the initial synthesis of layered SnO microspheres, which are readily exfoliated through a low-power sonication step to form high quality SnO nanosheets. We demonstrate that the properties of 2D SnO are strongly dependent on its dimensions. As verified through optical absorption and photoluminescence studies, a strong size-dependent quantum confinement effect in 2D SnO leads to substantial variation in its optical and electrical properties. This results in a remarkable (>1 eV) band gap widening in atomically thin SnO. Through photoconductivity measurements, we further validate a strong correlation between the quantum-confined properties of 2D SnO and the selective photoresponse of atomically thin sheets in the high energy UV light. Such tunable semiconducting properties of 2D SnO could be exploited for a variety of applications including photocatalysis, photovoltaics and optoelectronics in general.

  16. Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil.

    PubMed

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Straalen, Nico M; van Gestel, Cornelis A M

    2013-07-01

    To assess the effect of long-term dissolution on bioavailability and toxicity, triethoxyoctylsilane coated and uncoated zinc oxide nanoparticles (ZnO-NP), non-nano ZnO and ZnCl2 were equilibrated in natural soil for up to twelve months. Zn concentrations in pore water increased with time for all ZnO forms but peaked at intermediate concentrations of ZnO-NP and non-nano ZnO, while for coated ZnO-NP such a clear peak only was seen after 12 months. Dose-related increases in soil pH may explain decreased soluble Zn levels due to fixation of Zn released from ZnO at higher soil concentrations. At T = 0 uncoated ZnO-NP and non-nano ZnO were equally toxic to the springtail Folsomia candida, but not as toxic as coated ZnO-NP, and ZnCl2 being most toxic. After three months equilibration toxicity to F. candida was already reduced for all Zn forms, except for coated ZnO-NP which showed reduced toxicity only after 12 months equilibration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  18. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests.

    PubMed

    Gonçalves, Renata Amanda; de Oliveira Franco Rossetto, Ana Letícia; Nogueira, Diego José; Vicentini, Denice Schulz; Matias, William Gerson

    2018-04-01

    Zinc oxide nanomaterials (ZnO NM) have been used in a large number of applications due to their interesting physicochemical properties. However, the increasing use of ZnO NM has led to concerns regarding their environmental impacts. In this study, the acute and chronic toxicity of ZnO nanorods (NR) bare (ZnONR) and amine-functionalized (ZnONR@AF) toward the freshwater microcrustacean Daphnia magna was evaluated. The ZnO NR were characterized by transmission electron microscopy (TEM), X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the zeta potential and hydrodynamic diameter (HD). The acute EC50 (48h) values for D. magna revealed that the ZnONR@AF were more toxic than the ZnONR. The generation of reactive oxygen species (ROS) was observed in both NM. Regarding the chronic toxicity, the ZnONR@AF were again found to be more toxic than the ZnONR toward D. magna. An effect on longevity was observed for ZnONR, while ZnONR@AF affected the reproduction, growth and longevity. In the multigenerational recovery test, we observed that maternal exposure can affect the offspring even when these organisms are not directly exposed to the ZnO NR. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis of SnO2versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hongkang; Lu, Xuan; Li, Longchao; Li, Beibei; Cao, Daxian; Wu, Qizhen; Li, Zhihui; Yang, Guang; Guo, Baolin; Niu, Chunming

    2016-03-01

    characteristics. Herein, particulate SnO2 or Sn crystals coupled with porous N-doped carbon nanofibers (denoted as SnO2/PCNFs and Sn/PCNFs, respectively) are fabricated via the electrospinning method. The electrochemical behaviors of both SnO2/PCNFs and Sn/PCNFs are systematically investigated as anodes for LIBs. When coupled with porous carbon nanofibers, both SnO2 nanoparticles and Sn micro/nanoparticles display superior cycling and rate performances. SnO2/PCNFs and Sn/PCNFs deliver discharge capacities of 998 and 710 mA h g-1 after 140 cycles (at 100, 200, 500 and 1000 mA g-1 each for 10 cycles and then 100 cycles at 100 mA g-1), respectively. However, the Sn/PCNF electrodes show better cycling stability at higher current densities, delivering higher discharge capacities of 700 and 550 mA h g-1 than that of SnO2/PCNFs (685 and 424 mA h g-1) after 160 cycles at 200 and 500 mA g-1, respectively. The different superior electrochemical performance is attributed to the introduction of porous N-doped carbon nanofibers and their self-constructed networks, which, on the one hand, greatly decrease the charge-transfer resistance due to the high conductivity of N-doped carbon fibers; on the other hand, the porous carbon nanofibers with numerous voids and flexible one-dimensional (1D) structures efficiently alleviate the volume changes of SnO2 and Sn during the Li-Sn alloying-dealloying processes. Moreover, the discussion of the electrochemical behaviors of SnO2vs. Sn would provide new insights into the design of tin-based anode materials for practical applications, and the current strategy demonstrates great potential in the rational design of metallic tin-based anode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09305h

  20. NR2C in the thalamic reticular nucleus; effects of the NR2C knockout.

    PubMed

    Zhang, Yuchun; Buonanno, Andres; Vertes, Robert P; Hoover, Walter B; Lisman, John E

    2012-01-01

    NMDAR antagonists can evoke delta frequency bursting in the nucleus reticularis of the thalamus (nRT). The mechanism of this oscillation was determined; antagonist blocks an NR2C-like conductance that has low Mg block at resting potential and thus can contribute a resting inward current in response to ambient glutamate. Block of this current hyperpolarizes the cell, deinactivating T-type Ca channels and thus triggering delta frequency bursting. The basis for assuming a NR2C-like conductance was that (1) transcripts for NR2C are abundant in the thalamus and (2) the current-voltage curve of the synaptically evoked NMDAR current has the low rectification characteristic of NR2C. In the current study, we have sought to determine whether the channels that generate the NMDAR current are NR2C-like or are actually comprised of receptors containing NR2C. We studied the current-voltage curve of synaptically evoked NMDAR current in the nRT of NR2C knockout mice. In wild-type mice, the current was weakly voltage dependent, as previously observed in rats. This weak rectification was absent in NR2C KO mice. In contrast, NR2C KO had no effect on the strongly rectifying NMDAR current in pyramidal cells of the prefrontal cortex. These results demonstrate that the low rectification normally observed in the nRT is due to NR2C.

  1. Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes

    PubMed Central

    Saadaoui, Saif; Ben Youssef, Mohamed Aziz; Ben Karoui, Moufida; Smecca, Emanuele; Strano, Vincenzina; Mirabella, Salvo; Alberti, Alessandra; Puglisi, Rosaria A

    2017-01-01

    In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N2/H2 95:5) was found to enhance the conductivity by a factor of 103 compared to nitrogen (N2) or oxygen (O2) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current J sc by seven times from 2.45 × 10−3 mA/cm2 to 1.70 × 10−2 mA /cm2. PMID:28243567

  2. Performance of natural-dye-sensitized solar cells by ZnO nanorod and nanowall enhanced photoelectrodes.

    PubMed

    Saadaoui, Saif; Ben Youssef, Mohamed Aziz; Ben Karoui, Moufida; Gharbi, Rached; Smecca, Emanuele; Strano, Vincenzina; Mirabella, Salvo; Alberti, Alessandra; Puglisi, Rosaria A

    2017-01-01

    In this work, two natural dyes extracted from henna and mallow plants with a maximum absorbance at 665 nm were studied and used as sensitizers in the fabrication of dye-sensitized solar cells (DSSCs). Fourier transform infrared (FTIR) spectra of the extract revealed the presence of anchoring groups and coloring constituents. Two different structures were prepared by chemical bath deposition (CBD) using zinc oxide (ZnO) layers to obtain ZnO nanowall (NW) or nanorod (NR) layers employed as a thin film at the photoanode side of the DSSC. The ZnO layers were annealed at different temperatures under various gas sources. Indeed, the forming gas (FG) (N 2 /H 2 95:5) was found to enhance the conductivity by a factor of 10 3 compared to nitrogen (N 2 ) or oxygen (O 2 ) annealing gas. The NR width varied between 40 and 100 nm and the length from 500 to 1000 nm, depending on the growth time. The obtained NWs had a length of 850 nm. The properties of the developed ZnO NW and NR layers with different thicknesses and their effect on the photovoltaic parameters were studied. An internal coverage of the ZnO NWs was also applied by the deposition of a thin TiO 2 layer by reactive sputtering to improve the cell performance. The application of this layer increased the overall short circuit current J sc by seven times from 2.45 × 10 -3 mA/cm 2 to 1.70 × 10 -2 mA /cm 2 .

  3. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    PubMed

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  4. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.

    PubMed

    Johari, Anima; Bhatnagar, M C; Rana, Vikas

    2012-10-01

    We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.

  5. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  6. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE PAGES

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; ...

    2017-05-17

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  7. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  8. Highly sensitive NO2 sensor using brush-coated ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    This work reports the sensing properties of a ZnO nanoparticle (NP) based gas sensor. A sol-gel method was used for the synthesis of ZnO nanoparticles, and a brush coating technique for applying these in a thick film over the gold electrode. The structural properties of the ZnO film so developed have been studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), revealing a hexagonal wurtzite structure having particle size of ~25 to ~110 nm and roughness of ~136.303 nm. The sensitivity of the sensor to NO2, H2, CO, ethanol and propanol gases in the temperature range from 150 to 350 °C has been tested. Among all these gases, sensitivity to NO2 was found to be highest, at around fifty times greater than the next highest sensitivity, for ethanol gas. The sensor’s response to NO2 gas has been measured at ~945.12%/ppt (parts per thousand), with fast response time and recovery time at operating temperature 280 °C. The obtained result has been discussed with the help of surface and subsurface adsorption and desorption of NO2 molecules at the available trap sites (oxygen ions) on the ZnO nanoparticle surface. This sensor also exhibits excellent repeatability.

  9. Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Hui; Wang, Xinbing; Zuo, Duluo

    2016-09-01

    The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn II lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm-3 to 1.1×1017 cm-3, for delay times between 0.1 μs and 2.2 μs. We also investigated the effect of the laser pulse energy on SnO2 plasma. supported by National Natural Science Foundation of China (No. 11304235) and the Director Fund of WNLO

  10. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  11. Enhanced photovoltaic performance of dye sensitized solar cell using SnO2 nanoflowers

    NASA Astrophysics Data System (ADS)

    Arote, Sandeep A.; Tabhane, Vilas A.; Pathan, Habib M.

    2018-01-01

    The study highlighted enhanced performance of SnO2 based DSSC using photoanode with nanostructured morphology. The simple organic surfactant free hydrothermal synthesis method was used for preparation of SnO2 nanoflowers for dye sensitized solar cell (DSSC) application. The hydrothermal reaction time was varied to obtain different SnO2 nanostructures. The hydrothermal reaction time showed considerable effect on optical and structural properties of the prepared samples. The results indicated that the prepared samples were pure rutile SnO2. The band gap of prepared samples was greater than bulk SnO2 and varied from 3.64 to 3.81 eV with increase in hydrothermal reaction time. With increase in reaction time from 4 to 24 h, the microstructure of SnO2 changed from agglomerated nanoparticles to nanopetals and finally to self-assembled nanoflowers. Flower-like SnO2 nanostructures showed size around 300-700 nm, and composed of large numbers of 3 dimensional petals connected with each other forming 3D nanoflowers by self-assembly. Consequently, the DSSC with flower-like SnO2 nanostructures exhibited good photovoltaic performance with Voc, Jsc and η about 0.43 V, 4.36 mA/cm2 and 1.11%, respectively.

  12. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  13. Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane.

    PubMed

    Yang, Yong; Zhang, Zhi-Cheng; Wang, Peng-Peng; Zhang, Jing-Chao; Nosheen, Farhat; Zhuang, Jing; Wang, Xun

    2013-08-19

    We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.

  14. Experimental thermochemistry of neptunium oxides: Np2O5 and NpO2

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Dzik, Ewa A.; Sigmon, Ginger E.; Szymanowski, Jennifer E. S.; Navrotsky, Alexandra; Burns, Peter C.

    2018-04-01

    Neptunium (Np) compounds are important in the nuclear fuel cycle because of the buildup and long half-life (2.14 Ma) of Np-237 in nuclear waste, especially during long-term disposal in a geological repository. Neptunium in environmental conditions exists mainly in two oxidation states (+5 and + 4) and can substitute for uranium and/or rare earths in solid phases. Yet thermochemical data for solid neptunium compounds are scarce, despite being critical for evaluating the environmental transport of this radioactive and toxic element. Although high temperature oxide melt solution calorimetry has proven very useful in obtaining thermodynamic data for the formation of uranium and thorium oxide materials, it has not yet been applied to transuranium compounds. Continuing a program at Notre Dame to study the thermodynamics of transuranium compounds, we report the first determination of the enthalpies of drop solution of well-characterized neptunium oxides (Np2O5 and NpO2) using oxide melt solution calorimetry in molten sodium molybdate solvent at 973 K. The enthalpy of the decomposition reaction, Np2O5(cr) = 2NpO2(cr) + 1/2O2(g) at 298 K, is determined to be 7.70 ± 5.86 kJ/mol, and this direct measurement is consistent with existing thermodynamic data. The calorimetric methodology is straightforward and produces reliable data using milligram quantities of radioactive materials, and can be applied to many other transuranium compounds.

  15. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  16. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions

    NASA Astrophysics Data System (ADS)

    Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi

    2018-06-01

    We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.

  17. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  18. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  19. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2-Zn2SnO4 nanocomposites paste electrode

    NASA Astrophysics Data System (ADS)

    Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.

    2016-02-01

    The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.

  20. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    PubMed

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  1. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  2. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  3. 2D XANES-XEOL mapping: observation of enhanced band gap emission from ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Guo, Xiaoxuan; Sham, Tsun-Kong

    2014-05-01

    Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed.Using 2D XANES-XEOL spectroscopy, it is found that the band gap emission of ZnO nanowire arrays is substantially enhanced i.e. that the intensity ratio between the band gap and defect emissions increases by more than an order of magnitude when the excitation energy is scanned across the O K-edge. Possible mechanisms are discussed. Electronic supplementary information (ESI) available: XEOL spectra with different excitation energies. X-ray attenuation length vs. photon energy. Details of surface defects in ZnO NWs. The second O K-edge and Zn L-edge 2D XANES-XEOL maps. Comparison of the first and second TEY at O K-edge and Zn L-edge scans, respectively. Raman spectra of the ZnO NWs with different IBGE/IDE ratios. See DOI: 10.1039/c4nr01049c

  4. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-02-01

    unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%). Electronic supplementary information (ESI) available: Experimental details, XRD, SEM-EDS, UV-vis spectra and photovoltaic parameters of devices. See DOI: 10.1039/c3nr05705d

  5. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  6. Facile synthesis of SnO2/α-Fe2O3 nanocomposite for supercapacitor capacitor applications

    NASA Astrophysics Data System (ADS)

    Rani, B. Jansi; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    Facile and economically viable one step hydrothermal route was adapted to synthesis SnO2/α-Fe2O3 nanocomposite with and without hexamine (HMT) as surfactant successfully. The formation of SnO2/α-Fe2O3 nanocomposite was confirmed through XRD, Raman, PL and FTIR studies. The presence of well defined XRD diffraction peaks of both SnO2 and α-Fe2O3 revealed the formation SnO2/α-Fe2O3 nanocomposite. The obtained characteristic Raman active (Eg+Eg+Eu+A2u) mode of vibrations confirmed the formation of SnO2/α-Fe2O3 nanocomposite. Photoluminescence study revealed the emission behavior of the product. Metal oxygen vibrations of Fe-O in both octahedral, tetrahedral sites and Sn-O were confirmed by the bands located at 466, 580 and 673 cm-1 respectively through FTIR. The spherical morphology of the product synthesized with and without the surfactant HMT has been revealed by SEM images. The electrochemical behavior of the product was investigated through CV and EIS studies in 1M Na2SO4 electrolyte solution and obtained the highest specific capacitance of 211.25 F/g at 5 mV for the surfactant assisted product.

  7. Solution processed ZnO hybrid nanocomposite with tailored work function for improved electron transport layer in organic photovoltaic devices.

    PubMed

    Lee, Yun-Ju; Wang, Jian; Cheng, Samuel R; Hsu, Julia W P

    2013-09-25

    We demonstrate improved organic photovoltaic device performance using solution processed electron transport layers of ZnO nanoparticle (NP) films containing organic additives, poly(vinylpyrrolidone) (PVP), or diethanolamine (DEA), that do not require post processing after film deposition. Inclusion of PVP or DEA decreased the ZnO work function by 0.4 eV through interfacial dipole formation. While PVP did not change the ZnO NP shape or size, DEA modified the ZnO shape from 5 nm × 15 nm nanorods to 5 nm nanoparticles. At an optimized PVP concentration of 0.7 wt %, ZnO NP:PVP electron transport layers (ETLs) improved the efficiency of inverted P3HT:PCBM devices by 37%, primarily through higher fill factor. ZnO NP:PVP and ZnO NP:DEA ETLs increased the open circuit voltage of inverted P3HT:ICBA devices by 0.07 V due to decreasing ETL work function, leading to enhanced built-in field. The relationship between ZnO nanocomposite ETL work function, donor-acceptor energy offset, and device performance is discussed. The effects of the two additives are compared.

  8. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    PubMed

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  9. Evaluation of SnO2 for sunlight photocatalytic decontamination of water.

    PubMed

    Aslam, M; Qamar, M Tariq; Ali, Shahid; Rehman, Ateeq Ur; Soomro, M T; Ahmed, Ikram; Ismail, I M I; Hameed, A

    2018-07-01

    The broad bandgap tin (IV) oxide (SnO 2 ) is the least investigated semiconductor material for photocatalytic water decontamination in sunlight exposure. A detailed study covering the synthesis, characterization and the evaluation of photocatalytic activity of SnO 2 , in the natural sunlight exposure, is presented. The structural characterization by XRD revealed the formation of phase pure tetragonal SnO 2 with the average crystallite size of ∼41.5 nm whereas minor Sn 2+ states in the material were identified by XPS analysis. As explored by diffuse reflectance (DR) and photoluminescence (PL) spectroscopy, the material exhibited a distinct absorption edge at ∼3.4 eV. The morphological and microstructure analysis of the synthesized SnO 2 was carried out by FESEM and HRTEM. The electrochemical impedance spectroscopy (EIS) and chronopotentiometry (CP) predicted the better charge transport and retention ability of the material under illumination whereas the Mott-Schottky extrapolation prophesied the n-type behavior with the flat-band potential of -0.60 V. The photocatalytic activity of SnO 2 was assessed in the exposure of complete spectrum natural sunlight for the removal of 2,4,6-trichlorophenol. The HPLC and TOC analysis monitored the progress of degradation and mineralization whereas the released chloride ions were evaluated by ion chromatography. The effect of the transition metal ions (Fe 3+ , Cu 2+ , Ni 2+, and Zn 2+ ) as electron capture agents and H 2 O 2 as ROS generator was explored during the degradation process. The utility of the material for the simultaneous removal of chlorophenols in the mixture was also investigated. The SnO 2 exhibited sustained activity in the repeated use. Based on experimental evidence congregated, the mechanism of the removal process and the efficacy of SnO 2 for sunlight photocatalytic decontamination of water was established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. Electronic supplementary information (ESI) available: Representative SEM and TEM images of 700 °C annealed ZnO/MgO core/shell NWs, a TEM image of an individual MgO nanocrystal inside the MgO NTs and SEM images of SnO2 NP chains embedded in MgO NTs and comb-shaped MgO hollow nanostructures. See DOI: 10.1039/c1nr10352k

  11. Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts

    PubMed Central

    Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun

    2015-01-01

    Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed. PMID:26087374

  12. Oriented Attachment Is a Major Control Mechanism To Form Nail-like Mn-Doped ZnO Nanocrystals.

    PubMed

    Patterson, Samuel; Arora, Priyanka; Price, Paige; Dittmar, Jasper W; Das, Vijay Kumar; Pink, Maren; Stein, Barry; Morgan, David Gene; Losovyj, Yaroslav; Koczkur, Kallum M; Skrabalak, Sara E; Bronstein, Lyudmila M

    2017-12-26

    Here, we present a controlled synthesis of Mn-doped ZnO nanoparticles (NPs) with predominantly nail-like shapes, whose formation occurs via tip-to-base-oriented attachment of initially formed nanopyramids, followed by leveling of sharp edges that lead to smooth single-crystalline "nails". This shape is prevalent in noncoordinating solvents such as octadecene and octadecane. Yet, the double bond in the former promotes oriented attachment. By contrast, Mn-doped ZnO NP synthesis in a weakly coordinating solvent, benzyl ether, results in dendritic structures because of random attachment of initial NPs. Mn-doped ZnO NPs possess a hexagonal wurtzite structure, and in the majority of cases, the NP surface is enriched with Mn, indicating a migration of Mn 2+ ions to the NP surface during the NP formation. When the NP formation is carried out without the addition of octadecyl alcohol, which serves as a surfactant and a reaction initiator, large, concave pyramid dimers are formed whose attachment takes place via basal planes. UV-vis and photoluminescence spectra of these NPs confirm the utility of controlling the NP shape to tune electro-optical properties.

  13. Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Gao, Jun; Wang, Linlin; Kan, Kan; Xie, Yu; Shen, Peikang; Li, Li; Shi, Keying

    2015-08-01

    Establishing heterostructures, as a good strategy to improve gas sensing performance, has been studied extensively. In this research, In2O3-composite SnO2 nanorod (ICTOs) heterostructures have been prepared via electrospinning, followed by calcination. It is found that In2O3 can improve the carrier density and oxygen deficiency of SnO2. In particular, the 3ICTO (Sn : In atom ratio of 25 : 0.3) nanorods with special particle distributions show an excellent sensing response towards different concentrations of NOx at room temperature. The highest sensing response is up to 8.98 for 100 ppm NOx with a fast response time of 4.67 s, which is over 11 times higher than that of pristine SnO2 nanorods at room temperature and the lowest detection limit is down to 0.1 ppm. More significantly, it presents good stability after 30 days for NOx of low concentration (0.1 ppm and 0.5 ppm). In addition, the rational band structure model combined with the surface depletion model which describe the NOx gas sensing mechanism of 3ICTO are presented. The 3ICTO nanorods may be promising in the application of gas sensors.Establishing heterostructures, as a good strategy to improve gas sensing performance, has been studied extensively. In this research, In2O3-composite SnO2 nanorod (ICTOs) heterostructures have been prepared via electrospinning, followed by calcination. It is found that In2O3 can improve the carrier density and oxygen deficiency of SnO2. In particular, the 3ICTO (Sn : In atom ratio of 25 : 0.3) nanorods with special particle distributions show an excellent sensing response towards different concentrations of NOx at room temperature. The highest sensing response is up to 8.98 for 100 ppm NOx with a fast response time of 4.67 s, which is over 11 times higher than that of pristine SnO2 nanorods at room temperature and the lowest detection limit is down to 0.1 ppm. More significantly, it presents good stability after 30 days for NOx of low concentration (0.1 ppm and 0.5 ppm). In

  14. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol

    PubMed Central

    Wan, Wenjin; Li, Yuehua; Ren, Xingping; Zhao, Yinping; Gao, Fan; Zhao, Heyun

    2018-01-01

    Two dimensional (2D)SnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (FETEM) results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101), but not (110). The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101) surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets. PMID:29462938

  15. Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang

    2017-11-01

    This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R  =  1.0 cm), respectively.

  16. Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity

    PubMed Central

    Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen

    2017-01-01

    In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433

  17. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  18. Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Han, Hyun Soo; Shin, Sun; Noh, Jun Hong; Cho, In Sun; Hong, Kug Sun

    2014-04-01

    Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100-500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.

  19. SnO2 quantum dots with rapid butane detection at lower ppm-level

    NASA Astrophysics Data System (ADS)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  20. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    PubMed

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  1. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  2. Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Talinungsang; Dhar Purkayastha, Debarun; Krishna, M. Ghanashyam

    2018-07-01

    The influence of Fe and Ni (1 wt.%) doping on the wettability and photocatalytic activity of sol-gel derived SnO2 films is reported. X-ray diffraction studies revealed the presence of tetragonal phase for both pure and doped SnO2 thin films. The crystallite size was of the order of 8 nm indicating the nanocrystalline nature of the films. The pure SnO2 films which were hydrophilic with a contact angle of 11.8° showed increase in contact angle with doping (38.7° for Fe and 48.6° for Ni). This is accompanied by decrease in surface energy and root mean square roughness, with doping of SnO2 film. In order to further increase the water contact angle, the film surfaces were modified using a layer of stearic acid. As a consequence, the water contact angles increased to 108°, 110° and 111° for the pure, Fe and Ni doped SnO2 films respectively, rendering them hydrophobic. Significantly, the unmodified surfaces that did not exhibit any change under UV irradiation showed photoinduced hydrophilicity on modification with stearic acid. There was a red-shift in the optical band gap of SnO2 films from 3.8 to 3.5 eV with doping, indicating the possibility of dopant controlled photocatalytic activity. This was confirmed by observing the photocatalytic degradation of an aqueous solution of methylene blue under UV irradiation. There was, indeed, significant improvement in the photocatalytic efficiency of the metal doped SnO2 thin film in comparison to undoped film. The current work, thus, demonstrates a simple method to chemically engineer the wettability and photocatalytic activity of SnO2 thin film surfaces.

  3. Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers.

    PubMed

    Bakr, Zinab H; Wali, Qamar; Ismail, Jamil; Elumalai, Naveen Kumar; Uddin, Ashraf; Jose, Rajan

    2018-06-01

    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO 2 -TiO 2 ) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO 2 and TiO 2 in a single SnO 2 -TiO 2 composite nanowire for dye-sensitized solar cells" [1].

  4. The zebrafish orphan nuclear receptor genes nr2e1 and nr2e3 are expressed in developing eye and forebrain.

    PubMed

    Kitambi, Satish Srinivas; Hauptmann, Giselbert

    2007-02-01

    Mammalian Nr2e1 (Tailless, Mtll or Tlx) and Nr2e3 (photoreceptor-specific nuclear receptor, Pnr) are highly related orphan nuclear receptors, that are expressed in eye and forebrain-derived structures. In this study, we analyzed the developmental expression patterns of zebrafish nr2e1 and nr2e3. RT-PCR analysis showed that nr2e1 and nr2e3 are both expressed during embryonic and post-embryonic development. To examine the spatial distribution of nr2e1 and nr2e3 during development whole-mount in situ hybridization was performed. At tailbud stage, initial nr2e1 expression was localized to the rostral brain rudiment anterior to pax2.1 and eng2 expression at the prospective midbrain-hindbrain boundary. During subsequent stages, nr2e1 became widely expressed in fore- and midbrain primordia, eye and olfactory placodes. At 24hpf, strong nr2e1 expression was detected in telencephalon, hypothalamus, dorsal thalamus, pretectum, midbrain tectum, and retina. At 2dpf, the initially widespread nr2e1 expression became more restricted to distinct regions within the fore- and midbrain and to the retinal ciliary margin, the germinal zone which gives rise to retina and presumptive iris. Expression of nr2e3 was exclusively found in the developing retina and epiphysis. In both structures, nr2e3 expression was found in photoreceptor cells. The developmental expression profile of zebrafish nr2e1 and nr2e3 is consistent with evolutionary conserved functions in eye and rostral brain structures.

  5. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials.

    PubMed

    Punnoose, Alex; Dodge, Kelsey; Rasmussen, John W; Chess, Jordan; Wingett, Denise; Anders, Catherine

    2014-07-07

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP.

  6. Cytotoxicity of ZnO Nanoparticles Can Be Tailored by Modifying Their Surface Structure: A Green Chemistry Approach for Safer Nanomaterials

    PubMed Central

    2015-01-01

    ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor using a forced hydrolysis process, and their surface chemical structures were modified by using different reaction solvents. X-ray diffraction and optical studies showed that the lattice parameters, optical properties, and band gap (3.44 eV) of the two ZnO NP samples were similar. However, FTIR spectroscopy showed significant differences in the surface structures and surface-bound chemical groups. This led to major differences in the zeta potential, hydrodynamic size, photocatalytic rate constant, and more importantly, their cytotoxic effects on Hut-78 cancer cells. The ZnO NP sample with the higher zeta potential and catalytic activity displayed a 1.5-fold stronger cytotoxic effect on cancer cells. These results suggest that by modifying the synthesis parameters/conditions and the surface chemical structures of the nanocrystals, their surface charge density, catalytic activity, and cytotoxicity can be tailored. This provides a green chemistry approach to produce safer ZnO NP. PMID:25068096

  7. FIB-tomographic studies on chemical vapor deposition grown SnO2 nanowire arrays on TiO2 (001)

    NASA Astrophysics Data System (ADS)

    Chen, Haoyun; Liu, Yi; Wu, Hong; Xiong, Xiang; Pan, Jun

    2016-12-01

    Tin oxide nanowire arrays on titania (001) have been successfully fabricated by chemical vapor deposition of Sn(O t Bu)4 precursor. The morphologies and structures of ordered SnO2 nanowires (NWs) were analyzed by cross-sectional SEM, HR-TEM and AFM. An FIB-tomography technique was applied in order to reconstruct a 3D presentation of ordered SnO2 nanowires. The achieved 3D analysis showed the spatial orientation and angles of ordered SnO2 NWs can be obtained in a one-shot experiment, and the distribution of Au catalysts showed the competition between 1D and 2D growth. The SnO2 nanowire arrays can be potentially used as a diameter- and surface-dependent sensing unit for the detection of gas- and bio-molecules.

  8. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  9. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  10. Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation.

    PubMed

    Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H

    2008-03-01

    Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.

  11. Characterization and properties of TiO2-SnO2 nanocomposites, obtained by hydrolysis method

    NASA Astrophysics Data System (ADS)

    Kutuzova, Anastasiya S.; Dontsova, Tetiana A.

    2018-04-01

    The paper deals with the process of TiO2-SnO2 nanocomposites synthesis utilizing simple hydrolysis method with further calcination for photocatalytic applications. The obtained nanopowders contain 100, 90, 75, 65 and 25 wt% of TiO2. The synthesized nanocomposite samples were analyzed by X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption method. The correlation between structure and morphology of the obtained nanocrystalline composite powders and their sorption and photocatalytic activity towards methylene blue degradation was established. It was found that the presence of SnO2 in the nanocomposites stabilizes the anatase phase of TiO2. Furthermore, sorption and photocatalytic properties of the obtained composites are significantly influenced not only by specific surface area, but also by pore size distribution and mesopore volume of the samples. In our opinion, the results obtained in this study have shown that the TiO2-SnO2 composites with SnO2 content that does not exceed 10% are promising for photocatalytic applications.

  12. Synthesis of nanodimensional orthorhombic SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V.

    2018-04-01

    Amorphous thin films of SnO2 are irradiated by swift heavy ions at two different fluences. Unirradiated as well as irradiated films are characterized by glancing angle X-ray diffraction (GAXRD), UV-Vis spectroscopy and atomic force microscopy (AFM). GAXRD study reveals formation of orthorhombic nanophases of SnO2. Nanophase formation is also confirmed by the quantum size effect manifested by blue shift in terms of increase in band gap energy. The size and shape of the irradiation induced surface structures depend on ion fluence.

  13. Effets de l'interaction avec l'oxygène sur le comportement de couches semi-conductrices de ZnO, SnO{2} et CdSe

    NASA Astrophysics Data System (ADS)

    Ain-Souya, A.; Ghers, M.; Haddad, A.; Tebib, W.; Rehamnia, R.; Messsalhi, A.; Bounouala, M.; Djouama, M. C.

    2005-05-01

    Les propriétés superficielles des matériaux solides diffèrent de celles du volume. A la surface, des défauts de différentes natures peuvent être présents. Ils permettent à la surface d'être interactive avec le milieu ambiant. Les multiples interactions entre les états de surface et des éléments du milieu extérieur peuvent modifier les propriétés superficielles. Ce travail étudie la régénération de couches semi-conductrices après adsorption isotherme d'oxygène à différentes températures effectuées entre 20 ° C et 300 ° C. Les matériaux qui ont servi à l'étude sont des couches de ZnO, SnO{2} et CdSe. Celles de CdSe ont été obtenues par co-évaporation, sous vide, de cadmium et de sélénium. Les échantillons de ZnO et SnO{2} ont été élaborés par oxydation, à des températures respectives de 450 ° C et 200 ° , de Zn et Sn déposés par électrolyse et par évaporation sous vide. Les matériaux évaporés ont été déposés sur des plaquettes en verre, les autres ont été électrodéposés sur des substrats métalliques. Les variations des propriétés électriques des couches ont été suivies par mesure de leur résistance électrique superficielle R. Les courbes LogR = f (103 /T (K)), relevées sous vide à différentes températures, sont caractéristiques d'un comportement de semi-conducteur. Des essais d'adsorption d'O{2} à différentes températures montrent des variations considérables de R. En effet, la chimisorption forte d'un gaz par une surface semi-conductrice est telle que l'échange électronique entre adsorbant et adsorbat provoque la formation d'une zone de charge d'espace modifiant la conduction superficielle. Les résultats mettent en évidence des domaines de température de plus haute sensibilité à l'oxygène. Pour le CdSe, certaines désorptions isothermes ont été suffisantes pour une régénération totale des échantillons. Les couches de ZnO ont souvent nécessité des désorptions programm

  14. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Zhai, Haifa; Hu, Chunjie; Yang, Jien; Liu, Zhiyong

    2017-07-01

    In2O3 nanoparticles hybrid twins hexagonal disk (THD) ZnO with different ratios were fabricated by a hydrothermal method. The as-obtained ZnO/In2O3 composites are constituted by hexagonal disks ZnO with diameters of about 1 μm and In2O3 nanoparticles with sizes of about 20-50 nm. With the increase of In2O3 content in ZnO/In2O3 composites, the absorption band edges of samples shifted from UV to visible light region. Compared with pure ZnO, the ZnO/In2O3 composites show enhanced photocatalytic activities for degradation of methyl orange (MO) and 4-nitrophenol (4-NP) under solar light irradiation. Due to suitable alignment of their energy band-gap structure of the In2O3 and ZnO, the formation of type п heterostructure can enhance efficient separation of photo-generate electro-hole pairs and provides convenient carrier transfer paths.

  15. Synthesis and Characterization of Doped ZnO Nanomaterials: Potential Application in Third Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Adcock Smith, Echo D.

    ZnO nanomaterials are being incorporated into next-generation solar cell designs including dye-sensitized solar cells, multijunction solar cells, and quantum dot sensitized solar cells. ZnO nanorod (NR) arrays and nanoparticles (NP) used in these devices are typically fabricated using chemical vapor deposition and/or high-temperature reaction conditions. These methods are costly, require high energy, pressure or excessive time, but produce repeatable, defined growth that is capable of easily incorporating metal dopants. Less expensive methods of fabrication such as chemical bath deposition (CBD) eliminate the costly steps but can suffer from undefined growth, excessive waste and have a difficult time incorporating dopants into ZnO materials without additives or increased pH. This dissertation presents a novel method of growing cobalt and vanadium doped ZnO nanomaterials through microwave synthesis. The cobalt growth was compared to standard CBD and found to be faster, less wasteful, reproducible and better at incorporating cobalt ions into the ZnO lattice than typical oven CBD method. The vanadium doped ZnO microwave synthesis procedure was found to produce nanorods, nanorod arrays, and nanoparticles simultaneously. Neither the cobalt nor the vanadium growth required pH changes, catalysts or additives to assist in doping and therefore use less materials than traditional CBD. This research is important because it offers a simple, quick way to grow ZnO nanostructures and is the first to report on growing both cobalt and vanadium doped zinc oxide nanorod arrays using microwave synthesis. This synthesis method presented is a viable candidate for replacing conventional growth synthesis which will result in lowering the cost and time of production of photovoltaics while helping drive forward the development of next-generation solar cells.

  16. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.

    PubMed

    Mukherjee, Arnab; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Rico, Cyren M; Zhao, Lijuan; Gardea-Torresdey, Jorge L

    2014-01-01

    The toxicological effects of zinc oxide nanoparticles (ZnO NPs) in plants are still largely unknown. In the present study, green pea (Pisum sativum L.) plants were treated with 0, 125, 250, and 500 mg kg(-1) of either ZnO NPs or bulk ZnO in organic matter enriched soil. Corresponding toxicological effects were measured on the basis of plant growth, chlorophyll production, Zn bioaccumulation, H2O2 generation, stress enzyme activity, and lipid peroxidation using different cellular, molecular, and biochemical approaches. Compared to control, all ZnO NP concentrations significantly increased (p ≤ 0.05) root elongation but no effects were observed in the stem. Whereas all bulk ZnO treatments significantly increased both root and stem length. After 25 days, chlorophyll in leaves decreased, compared to control, by ~61%, 67%, and 77% in plants treated with 125, 250, and 500 mg kg(-1) ZnO NPs, respectively. Similar results were found in bulk ZnO treated plants. At all ZnO NP concentrations CAT was significantly reduced in leaves (p ≤ 0.05), while APOX was reduced in both roots and leaves. In the case of bulk ZnO, APOX activity was down-regulated in the root and leaf and CAT was unaffected. At 500 mg kg(-1) treatment, the H2O2 in leaves increased by 61% with a twofold lipid peroxidation, which would be a predictive biomarker of nanotoxicity. This study could be pioneering in evaluating the phytotoxicity of ZnO NPs to green peas and can serve as a good indicator for measuring the effects on ZnO NPs in plants grown in organic matter enriched soil.

  17. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.

    PubMed

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  18. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  19. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  20. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  1. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  2. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    NASA Astrophysics Data System (ADS)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  3. SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Guo, Wenbin; Wang, Yong; Li, Qingyuan; Wang, Dongxia; Zhang, Fanchao; Yang, Yiqing; Yu, Yang

    2018-05-02

    Porous SnO 2 @C@VO 2 composite hollow nanospheres were ingeniously constructed through the combination of layer-by-layer deposition and redox reaction. Moreover, to optimize the electrochemical properties, SnO 2 @C@VO 2 composite hollow nanospheres with different contents of the external VO 2 were also studied. On the one hand, the elastic and conductive carbon as interlayer in the SnO 2 @C@VO 2 composite can not only buffer the huge volume variation during repetitive cycling but also effectively improve electronic conductivity and enhance the utilizing rate of SnO 2 and VO 2 with high theoretical capacity. On the other hand, hollow nanostructures of the composite can be consolidated by the multilayered nanocomponents, resulting in outstanding cyclic stability. In virtue of the above synergetic contribution from individual components, SnO 2 @C@VO 2 composite hollow nanospheres exhibit a large initial discharge capacity (1305.6 mAhg -1 ) and outstanding cyclic stability (765.1 mAhg -1 after 100 cycles). This design of composite hollow nanospheres may be extended to the synthesis of other nanomaterials for electrochemical energy storage.

  4. Nanostructured ZnO films on stainless steel are highly safe and effective for antimicrobial applications.

    PubMed

    Shim, Kyudae; Abdellatif, Mohamed; Choi, Eunsoo; Kim, Dongkyun

    2017-04-01

    The safety and effectiveness of antimicrobial ZnO films must be established for general applications. In this study, the antimicrobial activity, skin irritation, elution behavior, and mechanical properties of nanostructured ZnO films on stainless steel were evaluated. ZnO nanoparticle (NP) and ZnO nanowall (NW) structures were prepared with different surface roughnesses, wettability, and concentrations using an RF magnetron sputtering system. The thicknesses of ZnO NP and ZnO NW were approximately 300 and 620 nm, respectively, and ZnO NW had two diffraction directions of [0002] and [01-10] based on high-resolution transmission electron microscopy. The ZnO NW structure demonstrated 99.9% antimicrobial inhibition against Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum, and no skin irritation was detected using experimental rabbits. Approximately 27.2 ± 3.0 μg L -1 Zn ions were eluted from the ZnO NW film at 100 °C for 24 h, which satisfies the WHO guidelines for drinking water quality. Furthermore, the Vickers hardness and fracture toughness of ZnO NW films on stainless steel were enhanced by 11 and 14% compared to those of the parent stainless steel. Based on these results, ZnO NW films on STS316L sheets are useful for household supplies, such as water pipes, faucets, and stainless steel containers.

  5. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  6. Insight into Factors Affecting the Presence, Degree, and Temporal Stability of Fluorescence Intensification on ZnO Nanorod Ends

    PubMed Central

    Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-in

    2014-01-01

    We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed as fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide an insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE from all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far

  7. Magnetically Separable Fe3O4/SnO2/Graphene Adsorbent for Waste Water Removal

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-05-01

    Our previous study conducted the SnO2 and SnO2/graphene adsorption efficiency in Methylene Blue removal from aqueous solution, however, the difficulty of adsorbent separation from the methylene blue solution limits its efficiency. Therefore, in this work, SnO2 and SnO2/graphene was combined with Fe3O4 to improve the separation process and adsorption performance for removing the organic dyes. Fe3O4/SnO2/grapheme were synthesized by using the co-precipitation method. The graphene content was varied from 1, 3, and 5 weight percent (wt%). The crystalline phase and thermal stability of the samples were characterized by using X- ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The adsorption ability of the samples was investigated by using significant adsorption degradation of MB observed when the graphene in Fe3O4/SnO2 nanocomposite was added. The other parameters such as pH and initial concentration have also been investigated. The reusability was also investigated to study the stability of the samples. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of Fe3O4/SnO2 nanocomposite with graphene tends to follow the Langmuir adsorption isotherm model.

  8. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-pressure phases transitions in SnO2 to 117 GPa: Implications for silica

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Kubo, A.; Duffy, T. S.; Prakapenka, V. B.; Shen, G.

    2005-12-01

    Cassiterite (SnO2) is regarded to be a good analog material for silica as both SnO2 and SiO2 are group IV-B metal dioxides. The high-pressure behavior of SnO2 has been the subject of many previous investigations extending up to 49 GPa and in addition to the rutile structure, three high-pressure phases, CaCl2-type, α-PbO2-type, and pyrite-type were observed. Better knowledge of high-pressure phases of SnO2 will be useful to understand the behavior of silica at deep mantle conditions. In addition, high-pressure metal dioxide phases may qualify as superhard solids. Our study will also provide insights into interpretation of shock compression data. Pure natural cassiterite (SnO2) powder was compressed in a diamond anvil cell using an argon medium. Pressure was determined from the equation of state of platinum. In situ monochromatic x-ray diffraction at high pressure was carried out at the GSECARS, Advanced Photon Source. High temperatures were achieved using double-sided laser heating . Three heating cycles were conducted with total heating times up to 30 minutes. Our diffraction results on SnO2 demonstrate the existence of four phase transitions to 117 GPa. The observed sequence of high-pressure phases for SnO2 is rutile-type, CaCl2-type, pyrite-type, ZrO2 orthorhombic phase I (Pbca), cotunnite-type. Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structures were observed in SnO2 for the first time. The Pbca phase is found at 50-74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was heated at 74 GPa and 1200 K. The cotunnite-type form was observed during compression between 54-117 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase. Rietveld profile refinements were

  10. Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules

    NASA Astrophysics Data System (ADS)

    Jang, Ji-Soo; Kim, Sang-Joon; Choi, Seon-Jin; Kim, Nam-Hoon; Hakim, Meggie; Rothschild, Avner; Kim, Il-Doo

    2015-10-01

    of electrospun SnO2 nanotubes (NTs) during controlled single-nozzle electrospinning followed by high temperature calcination with heating rate control. Fast crystallization of the exterior shell and outward diffusion of the interior Sn precursors and crystallites result in the continued growth of a tubular wall, which is related to rapid heating driven Ostwald-ripening behavior. Very importantly, the Pt and Au nanoparticles (NPs) were immobilized onto thin-walled SnO2 NTs with a diameter of ~350 nm and a shell thickness of ~40 nm without any aggregation of catalysts due to high dispersibility, which originated from repulsive electrostatic (Coulombic) forces acting on the surface charged protein shells, leading to an enhanced catalytic effect and outstanding gas sensing properties. Pt-loaded SnO2 NTs exhibited superior acetone response (Rair/Rgas = 92 at 5 ppm) compared to pure SnO2 NFs (Rair/Rgas = 4.8 at 5 ppm) and SnO2 NTs (Rair/Rgas = 11 at 5 ppm) while Au-loaded SnO2 NTs showed a high response when exposed to hydrogen sulfide (Rair/Rgas = 34 at 5 ppm), offering selective gas detection with minimal cross-sensitivity against other interfering gases such as NH3, CO, NO, C6H5CH3, and C5H12. Our results provide a new insight into facile, cost-effective, and highly dispersible catalyst loading on the interior and exterior walls of hollow metal oxide NTs via simple electrospinning as a potential breath analyzer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04487a

  11. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells.

    PubMed

    Banik, Avishek; Ansari, Mohammad Shaad; Sahu, Tushar Kanta; Qureshi, Mohammad

    2016-10-12

    The present study discusses the design and development of a dye sensitized solar cell (DSSC) using a hybrid composite of ZnO nanoparticles (ZnO NP) and silica nanospheres (SiO 2 NS). A ≈22% enhancement in the overall power conversion efficiency (PCE, η) was observed for the device fabricated with a binary hybrid composite of 1 wt% SiO 2 NS and ZnO NP compared to the pristine ZnO NP device. A systematic investigation revealed the dual function of the silica nanospheres in enhancing the device efficacy compared to the bare ZnO NP based device. Sub-micron sized SiO 2 NS can boost the light harvesting efficiency of the photoanode by optical confinement, resulting in increased propagation length of the incident light by multiple internal reflections, which was confirmed by UV-Vis diffused reflectance spectroscopy. Electrochemical impedance spectroscopic (EIS) analysis showed a reduced recombination of photo-generated electrons to the I - /I 3 - redox shuttle in the case of the composite photoanode. The higher recombination resistance (R ct ) in the case of a 1 wt% composite indicates that the SiO 2 NS serves as a partial energy barrier layer to retard the interfacial recombination (back transfer) of photo-generated electrons at the working electrode/electrolyte interface, increasing the device efficiency.

  12. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    NASA Astrophysics Data System (ADS)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  13. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    PubMed Central

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control. PMID:27118531

  14. Understanding and Interpreting Japanese NP1 "wa" NP2 "da" Sentences: Mechanism and Contextual Factors

    ERIC Educational Resources Information Center

    Yoshida, Megumi

    2013-01-01

    This dissertation investigates the contextual factors that affect the understanding and interpretation of one Japanese topicalized construction, NP[subscript 1] wa NP[subscript 2] da sentences, by native speakers of Japanese. The construction allows two possibilities in the relation between the NP[subscript 1] and the NP[subscript 2]. When the two…

  15. Facile fabrication of hollow mesosphere of crystalline SnO2 nanoparticles and synthesis of SnO2@SWCNTs@Reduced Graphene Oxide nanocomposite as efficient Pt-Free counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun

    2018-06-01

    In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.

  16. Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator.

    PubMed

    Gupta, Manoj Kumar; Lee, Ju-Hyuck; Lee, Keun Young; Kim, Sang-Woo

    2013-10-22

    Here, we report the synthesis of lead-free single-crystalline two-dimensional (2D) vanadium(V)-doped ZnO nanosheets (NSs) and their application for high-performance flexible direct current (DC) power piezoelectric nanogenerators (NGs). The vertically aligned ZnO nanorods (NRs) converted to NS networks by V doping. Piezoresponse force microscopy studies reveal that vertical V-doped ZnO NS exhibit typical ferroelectricity with clear phase loops, butterfly, and well-defined hysteresis loops with a piezoelectric charge coefficient of up to 4 pm/V, even in 2D nanostructures. From pristine ZnO NR-based NGs, alternating current (AC)-type output current was observed, while from V-doped ZnO NS-based NGs, a DC-type output current density of up to 1.0 μAcm(-2) was surprisingly obtained under the same vertical compressive force. The growth mechanism, ferroelectric behavior, charge inverted phenomena, and high piezoelectric output performance observed from the V-doped ZnO NS are discussed in terms of the formation of an ionic layer of [V(OH)4(-)], permanent electric dipole, and the doping-induced resistive behavior of ZnO NS.

  17. Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection.

    PubMed

    Zou, Yihui; Chen, Shuai; Sun, Jin; Liu, Jingquan; Che, Yanke; Liu, Xianghong; Zhang, Jun; Yang, Dongjiang

    2017-07-28

    Triethylamine (TEA) gas sensors having excellent response and selectivity are in great demand to monitor the real environment. In this work, we have successfully prepared a hollow SnO 2 microfiber by a unique sustainable biomass conversion strategy and shown that the microfiber can be used in a high-performance gas sensor. The sensor based on the hollow SnO 2 microfiber shows a quick response/recovery toward triethylamine. The response of the hollow SnO 2 microfiber is up to 49.5 when the concentration of TEA gas is 100 ppm. The limit of detection is as low as 2 ppm. Furthermore, the sensor has a relatively low optimal operation temperature of 270 °C, which is lower than those of many other reported sensors. The excellent sensing properties are largely attributed to the high sensitivity provided by SnO 2 and the good permeability and conductivity of the one-dimensional hollow structure. Thus, the hollow SnO 2 microfiber using sustainable biomass as a template is a significant strategy for a unique TEA gas sensor.

  18. RuO 2 nanoparticles supported on MnO 2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yue-Feng; Chen, Yuan; Xu, Gui-Liang

    RuO2 nanoparticles supported on MnO2 nanorods (denoted as np-RuO2/nr-MnO2) were synthesized via a two-step hydrothermal reaction. SEM and TEM images both illustrated that RuO2 nanoparticles are well dispersed on the surface of MnO2 nanorods in the as-prepared np-RuO2/nr-MnO2 material. Electrochemical results demonstrated that the np-RuO2/nr-MnO2 as oxygen cathode of Li-O-2 batteries could maintain a reversible capacity of 500 mA h g(-1) within 75 cycles at a rate of 50 mA g(-1), and a higher capacity of 4000 mA h g(-1) within 20 cycles at a rate as high as 200 mA g(-1). Moreover, the cell with the np-RuO2/nr-MnO2 catalyst presentedmore » much lower voltage polarization (about 0.58 V at a rate of 50 mA g(-1)) than that measured with only MnO2 nanorods during charge/discharge processes. The catalytic property of the np-RuO2/nr-MnO2 and MnO2 nanorods were further compared by conducting studies of using rotating disk electrode (RDE), chronoamperommetry and linear sweep voltammetry. The results illustrated that the np-RuO2/nr-MnO2 exhibited excellent bifunctional electrocatalytic activities towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, in-situ high-energy X-ray diffraction was employed to trace evolution of species on the np-RuO2/nr-MnO2 cathode during the discharge processes. In-situ XRD patterns demonstrated the formation process of the discharge products that consisted of mainly Li2O2. Ex-situ SEM images were recorded to investigate the morphology and decomposition of the sphere-like Li2O2, which could be observed clearly after discharge process, while are decomposed almost after charge process. The excellent electrochemical performances of the np-RuO2/nr-MnO2 as cathode of Li-O-2 battery could be contributed to the excellent bifunctional electrocatalytic activities for both the ORR and OER, and to the one-dimensional structure which would benefit the diffusion of oxygen and the storage of Li2O2 in the discharge

  19. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  20. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  1. Dichloro-Cycloazatriphosphane: The Missing Link between N2 P2 and P4 Ring Systems in the Systematic Development of NP Chemistry.

    PubMed

    Bresien, Jonas; Hinz, Alexander; Schulz, Axel; Suhrbier, Tim; Thomas, Max; Villinger, Alexander

    2017-10-20

    A dichloro-cycloazatriphosphane that incorporates a cyclic NP 3 backbone could be synthesized using knowledge gained from the chemistry of N 2 P 2 and P 4 ring systems. It fills the gap between the congeneric compounds [ClP(μ-NR)] 2 and [ClP(μ-PR)] 2 (R=sterically demanding substituent), and thus contributes to the systematic development of nitrogen-phosphorus chemistry in general. The title compound was studied with respect to its formation via a labile aminodiphosphene, which readily underwent different rearrangement reactions depending on the solvent. All compounds were fully characterized by experimental and computational methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    NASA Astrophysics Data System (ADS)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  3. Improved Li storage performance in SnO 2 nanocrystals by a synergetic doping

    DOE PAGES

    Wan, Ning; Lu, Xia; Wang, Yuesheng; ...

    2016-01-06

    Tin dioxide (SnO 2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO 2 (Co/SnO 2) and a cobalt and nitrogen co-doped SnO 2 (Co-N/SnO 2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO 2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO 2 electrode delivers a specific capacity as high as 716 mAh gmore » –1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li 3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO 2 electrodes. Furthermore, we find that the method of synergetic doping into SnO 2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  4. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    PubMed

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (<0.1 s). This performance makes the device stand out among previously reported oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  5. Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor

    PubMed Central

    Zeng, Wen; Liu, Tianmo; Wang, Zhongchang; Tsukimoto, Susumu; Saito, Mitsuhiro; Ikuhara, Yuichi

    2009-01-01

    We report the microstructure and gas-sensing properties of a nonequilibrium TiO2-SnO2 solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO2-SnO2 sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas. The key gas-sensing quantities, maximum sensitivity, optimal working temperature, and response and recovery time, are found to meet the basic industrial needs. This makes the Cd-doped TiO2-SnO2 composite a promising sensor material for detecting the formaldehyde gas. PMID:22291551

  6. Structure of the SnO2(110 ) -(4 ×1 ) Surface

    NASA Astrophysics Data System (ADS)

    Merte, Lindsay R.; Jørgensen, Mathias S.; Pussi, Katariina; Gustafson, Johan; Shipilin, Mikhail; Schaefer, Andreas; Zhang, Chu; Rawle, Jonathan; Nicklin, Chris; Thornton, Geoff; Lindsay, Robert; Hammer, Bjørk; Lundgren, Edvin

    2017-09-01

    Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4 ×1 ) reconstruction formed by sputtering and annealing of the SnO2(110 ) surface. We find that the reconstruction consists of an ordered arrangement of Sn3O3 clusters bound atop the bulk-terminated SnO2(110 ) surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements. The model proposed previously consisting of in-plane oxygen vacancies is thus shown to be incorrect, and our result suggests instead that Sn(II) species in interstitial positions are the more relevant features of reduced SnO2(110 ) surfaces.

  7. Laser induced forward transfer of SnO2 for sensing applications using different precursors systems

    NASA Astrophysics Data System (ADS)

    Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander

    2013-02-01

    This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.

  8. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-11-01

    In this study, SnO2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate-nozzle distance and solid/alcohol ratio were studied to optimize SnO2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO2/Lethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature.

  9. Thermoelectric Properties in the TiO2/SnO2 System

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  10. Immunolocalization of NR1, NR2A, and PSD-95 in rat hippocampal subregions during postnatal development.

    PubMed

    Ling, Wei; Chang, Lirong; Song, Yizhi; Lu, Tao; Jiang, Yuhua; Li, Youxiang; Wu, Yan

    2012-05-01

    Although the expression of NMDARs and synaptic-associated proteins has been widely studied, the temporospatial distribution of NMDAR subunits and synaptic proteins in different hippocampal subregions during postnatal development still lacks detailed information, and the relationship between NR1 or NR2 subunits and PSD-95 family proteins is controversial. In this study, we used immunofluorescent staining to assess NR1 or NR2A and PSD-95 expressions and the relationship between them in CA1, CA3, and DG of rat hippocampus on postnatal (P) days: P0, P4, P7, P10, P14, P21, P28, P56. The results showed that from P0 to P56, NR1, NR2A, and PSD-95 expressions increased gradually, and the time points of their expression peak differed in CA1, CA3, and DG during postnatal development. Interestingly, although the expression of PSD-95 was positively correlated to both NR1 and NR2A, the NR1 and PSD-95 coexpressed puncta were greatest in CA3, while NR2A and PSD-95 coexpressed puncta were greatest in CA1, compared to other subregions. Surprisingly, at P21, among different strata of CA1, the area of highest expression of NR2A was dramatically changed from stratum pyramidale to stratum polymorphum and stratum moleculare, and returned to stratum pyramidale gradually on the later observed days again, indicating that P21 may be one critical timepoint during postnatal development in CA1. The specific temporospatial distribution pattern of NR1, NR2A, and PSD-95 might be related to the different physiological functions during postnatal development. Discovering the alteration of the relationship between PSD-95 and NMDAR subunits expression may be helpful for understanding mechanisms and therapy of neurodegenerative diseases. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan

    2012-10-01

    The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  13. Significantly enhanced UV luminescence by plasmonic metal on ZnO nanorods patterned by screen-printing.

    PubMed

    Zhao, Jun; Cui, Shuyuan; Zhang, Xingang; Li, Wenqing

    2018-08-31

    A smart synthetic method is conceived to construct large batches of ZnO nanostructures to meet market demand for light-emitting diodes. Utilizing the localized surface plasmon resonance of metal nanoparticles (NPs) facilitates the recombination of electron-hole pairs and the release of photons. Compared to raw ZnO nanorods (NRs), ZnO NRs@HfO 2 @Al NPs show a ∼120× enhancement in ultraviolet (UV) photoluminescence (PL), while ZnO NRs@HfO 2 @Ag NPs show a six-fold enhancement. Because the surface plasmon energy of Al is nearer the ZnO band gap, the PL enhancement of ZnO NRs covered with Al is stronger than that of those covered with Ag. Based on this analysis, three-dimensional graphical ZnO NR arrays were manufactured by screen-printing, a mass production technique. After covering the arrays with layers of HfO 2 and Al NPs, the UV PL intensities of the corresponding substrates were increased by approximately 16×. This indicates the potential to mass-produce highly efficient optoelectronic devices.

  14. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

    PubMed

    Gurlo, Alexander

    2006-10-13

    Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

  15. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  16. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    PubMed

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  17. The N-methyl-D-aspartate receptor subunits NR2A and NR2B bind to the SH2 domains of phospholipase C-gamma.

    PubMed

    Gurd, J W; Bissoon, N

    1997-08-01

    The NMDA receptor has recently been found to be phosphorylated on tyrosine. To assess the possible connection between tyrosine phosphorylation of the NMDA receptor and signaling pathways in the postsynaptic cell, we have investigated the relationship between tyrosine phosphorylation and the binding of NMDA receptor subunits to the SH2 domains of phospholipase C-gamma (PLC-gamma). A glutathione S-transferase (GST) fusion protein containing both the N- and the C-proximal SH2 domains of PLC-gamma was bound to glutathione-agarose and reacted with synaptic junctional proteins and glycoproteins. Tyrosine-phosphorylated PSD-GP180, which has been identified as the NR2B subunit of the NMDA receptor, bound to the SH2-agarose beads in a phosphorylation-dependent fashion. Immunoblot analysis with antibodies specific for individual NMDA receptor subunits showed that both NR2A and NR2B subunits bound to the SH2-agarose. No binding occurred to GST-agarose lacking an associated SH2 domain, indicating that binding was specific for the SH2 domains. The binding of receptor subunits increased after the incubation of synaptic junctions with ATP and decreased after treatment of synaptic junctions with exogenous protein tyrosine phosphatase. Immunoprecipitation experiments confirmed that NR2A and NR2B were phosphorylated on tyrosine and further that tyrosine phosphorylation of each of the subunits was increased after incubation with ATP. The results demonstrate that NMDA receptor subunits NR2A and NR2B will bind to the SH2 domains of PLC-gamma and that isolated synaptic junctions contain endogenous protein tyrosine kinase(s) that can phosphorylate both NR2A and NR2B receptor subunits, and suggest that interaction of the tyrosine-phosphorylated NMDA receptor with proteins that contain SH2 domains may serve to link it to signaling pathways in the postsynaptic cell.

  18. An insight into the origin of room-temperature ferromagnetism in SnO2 and Mn-doped SnO2 quantum dots: an experimental and DFT approach.

    PubMed

    Manikandan, Dhamodaran; Boukhvalov, D W; Amirthapandian, S; Zhidkov, I S; Kukharenko, A I; Cholakh, S O; Kurmaev, E Z; Murugan, Ramaswamy

    2018-02-28

    SnO 2 and Mn-doped SnO 2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO 2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO 2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn 2+ ) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn 2+ and Mn 3+ ) in the stable surfaces of SnO 2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn 2+ and Mn 3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the

  19. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  20. Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Thamarai Selvi, E.; Meenakshi Sundar, S.

    2017-07-01

    Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.

  1. Optical calibration of SNO +

    NASA Astrophysics Data System (ADS)

    Leming, Edward; SNO+ Collaboration

    2015-04-01

    Situated 2 km underground in Sudbury, Northern Ontario, the SNO + detector consists of an acrylic sphere 12 m in diameter containing 780 tons of target mass, surrounded by approximately 9,500 PMTs. For SNO, this target mass was heavy water, however the change to SNO + is defined by the change of this target mass to a novel scintillator. With the lower energy threshold, low intrinsic radioactivity levels and the best shielding against muons and cosmogenic activation of all existing neutrino experiments, SNO + will be sensitive to exciting new physics. The experiment will be studying solar, reactor, super nova and geo-neutrinos, though the main purpose of SNO + is the search for neutrinoless double-beta decay of Te-130. To meet the requirements imposed by the physics on detector performance, a detailed optical calibration is needed. Source deployment must be kept to a minimum and eliminated if possible, in order to meet the stringent radiopurity requirements. This led to the development of the Embedded LED/laser Light Injection Entity (ELLIE) system. This talk provides a summary of the upgrades to from SNO to SNO +, discussing the requirements on and methods of optical calibration, focusing on the deployed laserball and ELLIE system.

  2. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Henry, J.; Mohanraj, K.; Sivakumar, G.; Umamaheswari, S.

    2015-05-01

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350 °C and 450 °C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichia coli and Bacillus.

  3. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  4. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  5. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.

    PubMed

    Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue

    2016-04-18

    Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  8. Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Kumar, Ravi

    2016-05-01

    We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  9. A Fast Humidity Sensor Based on Li+-Doped SnO2 One-Dimensional Porous Nanofibers

    PubMed Central

    Yin, Min; Yang, Fang; Wang, Zhaojie; Zhu, Miao; Liu, Ming; Xu, Xiuru; Li, Zhenyu

    2017-01-01

    One-dimensional SnO2- and Li+-doped SnO2 porous nanofibers were easily fabricated via electrospinning and a subsequent calcination procedure for ultrafast humidity sensing. Different Li dopant concentrations were introduced to investigate the dopant’s role in sensing performance. The response properties were studied under different relative humidity levels by both statistic and dynamic tests. The best response was obtained with respect to the optimal doping of Li+ into SnO2 porous nanofibers with a maximum 15 times higher response than that of pristine SnO2 porous nanofibers, at a relative humidity level of 85%. Most importantly, the ultrafast response and recovery time within 1 s was also obtained with the 1.0 wt % doping of Li+ into SnO2 porous nanofibers at 5 V and at room temperature, benefiting from the co-contributions of Li-doping and the one-dimensional porous structure. This work provides an effective method of developing ultrafast sensors for practical applications—especially fast breathing sensors. PMID:28772895

  10. Azadirachta indica (neem) leaves mediated synthesis of SnO2/NiO nanocomposite and assessment of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Varshney, Bhaskar; Shoeb, Mohd; Siddiqui, M. J.; Azam, Ameer; Mobin, Mohammad

    2018-05-01

    SnO2/NiO nanocomposite are prepared by using a simple cost effective and ecofriendly green soft template method followed by ultrasonication treatment further by calcination at 300 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), UV-Visible spectroscopy and transmission electron microscopy (TEM). The SnO2-NiO photocatalyst was made of a mesoporous network of aggregated NiO and cassiterite SnO2 nanocrystallites, the size of which was estimated to be 16.68 nm and 13.17 nm, respectively, after calcination. According to UV-visible spectroscopy, the evident energy band gap value of the SnO2-NiO photocatalyst was estimated to be 3.132 eV to be compared with those of pure SnO2, that is, 3.7 eV. Moreover, the heterostructure SnO2-NiO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO2 and NiO nanomaterials. This behaviour was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO2-NiO photocatalyst because of the energy difference between the conduction band edges of SnO2 and NiO as evidenced by the band alignment determination. Finally, this mesoporous SnO2-NiO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.

  11. SnO2/Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li-S Batteries.

    PubMed

    Hu, Nana; Lv, Xingshuai; Dai, Ying; Fan, Linlin; Xiong, Dongbin; Li, Xifei

    2018-06-06

    The short cycle life of lithium-sulfur batteries (LSBs) plagues its practical application. In this study, a uniform SnO 2 /reduced graphene oxide (denoted as SnO 2 /rGO) composite is successfully designed onto the commercial polypropylene separator for use of interlayer of LSBs to decrease the charge-transfer resistance and trap the soluble lithium polysulfides (LPSs). As a result, the assembled devices using the separator modified with the functional interlayer (SnO 2 /rGO) exhibit improved cycle performance; for instance, over 200 cycles at 1C, the discharge capacity of the cells reaches 734 mAh g -1 . The cells also display high rate capability, with the average discharge capacity of 541.9 mAh g -1 at 5C. Additionally, the mechanism of anchoring behavior of the SnO 2 /rGO interlayer was systematically investigated using density functional theory calculations. The results demonstrate that the improved performance is related to the ability of SnO 2 /rGO to effectively absorb S 8 cluster and LPS. The strong Li-O/Sn-S/O-S bonds and tight chemical adsorption between LPS and SnO 2 mitigate the shuttle effect of LSBs. This study demonstrates that engineering the functional interlayer of metal oxide and carbon materials in LSBs may be an easy way to improve their rate capacity and cycling life.

  12. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  13. Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: A comprehensive study

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Ali, T.; Naseem Siddique, M.; Ahmad, Abid; Tripathi, P.

    2017-08-01

    We emphasized on a detailed investigation of the structural, optical, and magnetic properties of pure and Ni-doped SnO2 nanoparticles (NPs) synthesized by a sol-gel process. An extensive structural study has been carried out using various characterization techniques. The X-ray Diffraction (XRD) spectra show the formation of the single phase tetragonal structure of pure and Ni-doped SnO2 NPs without any noticeable impurity phase such as NiO. XRD results indicate that the crystallite size of SnO2 is found to be decreased with Ni doping, which has also been confirmed by the Field Emission Scanning Electron Microscopy study. X-ray Photoelectron Spectroscopy (XPS) measurements displayed a clear sign for Ni2+ ions occupying the lattice sites of Sn4+ in the SnO2 host which also gives clear evidence for the formation of single phase Sn1-xNixO2 NPs. The optical analysis shows a significant decrease in the energy gap of SnO2, i.e., (from 3.71 eV to 3.28 eV) as Ni concentration increases which may be correlated with the core level valence band XPS analysis. Photoluminescence studies show that Ni doping creates oxygen vacancies due to dissimilar ionic radii of Ni2+ and Sn4+. Superconducting quantum interference device measurements revealed that the Ni doped SnO2 NPs exhibit strong ferromagnetic behavior at room temperature and this analysis has been well fitted with a simple relationship to find out magnetic parameters proposed by Stearns and Cheng et al. Hence, our results demonstrate that Ni-doping has strong impact on the structural, optical, and magnetic properties.

  14. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  15. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  16. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  17. Ethanol chemiresistor with enhanced discriminative ability from acetone based on Sr-doped SnO2 nanofibers.

    PubMed

    Jiang, Ziqiao; Jiang, Tingting; Wang, Jinfeng; Wang, Zhaojie; Xu, Xiuru; Wang, Zongxin; Zhao, Rui; Li, Zhenyu; Wang, Ce

    2015-01-01

    We demonstrated a new metal oxides based chemiresistor (MOC), which exhibits fast response/recovery behavior, large sensitivity, and good selectivity to ethanol, enabled by Sr-doped SnO2 nanofibers via simple electrospinning and followed by calcination. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) were carefully used to characterize their morphology, structure, and composition. The ethanol sensing performances based on Sr-doped SnO2 nanofibers were investigated. Comparing with the pristine SnO2 nanofibers, enhanced ethanol sensing performances (more rapid response/recovery behavior and larger response values) have been achieved owing to the basic SnO2 surface caused by Sr-doping, whereas the acetone sensing performances have been weakened. Thus, good discriminative ability to ethanol from acetone has been realized. Additionally, Sr-doped SnO2 nanofibers also exhibit good selectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Enhanced photo-, sono- and sonophotocatalysis of methylene blue via SnO2 nanoparticle supported on nanographene platelets (NGP)

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-07-01

    In our previous study, we have reported the catalytic (photo- and sono-) performance of SnO2 nanoparticles in methylene blue (MB) removal from aqueous solution. In this study, SnO2/nanographene platelets (NGP) composites were fabricated by depositing SnO2 nanoparticle onto nanographene platelets surface to develop photo-, sono-, and sonophotocatalysts, SnO2 nanoparticle, and SnO2/NGP composites were successfully synthesized using the sol-gel and coprecipitation method, respectively. The nanographene platelets (NGP) content was varied from 5, 10, and 15 weight percentages (wt.%). The optical properties and thermal stability of the samples were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Thermal Gravimetric Analysis (TGA). The catalytic ability of the samples was investigated using photo-, sono-, and sonophoto degradation of MB which was observed when nanographene platelets (NGP) were added into SnO2 nanocomposite. The photo-, sono- and sonophotocatalytic activities of SnO2/NGP composites on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in concentration of the dyes before and after irradiation of UV light, ultrasound, and both of them respectively. The influence of other parameters such as catalyst dosage, pH, and scavenger have also been investigated. The results showed that SnO2/NGP composite with 10 weight percent (wt.%) has better catalytic performance than pure SnO2 nanoparticle. The reusability tests have also been done to ensure the stability of the used catalysts.

  19. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  20. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    NASA Astrophysics Data System (ADS)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  1. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    NASA Astrophysics Data System (ADS)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  2. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    PubMed

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their

  3. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-07-01

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning

  4. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage.

    PubMed

    Chávez-Calderón, Adriana; Paraguay-Delgado, Francisco; Orrantia-Borunda, Erasmo; Luna-Velasco, Antonia

    2016-12-01

    Semiconductor SnO 2 nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO 2 NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO 2 NPs (2 and 40 nm) and one size of flower-like SnO 2 NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO 2 NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 9  CFU mL -1 ) exposed to up to 1000 mg L -1 of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC 50  > 500 mg L -1 ) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn 4+ was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO 2 NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  6. Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.

    2017-05-01

    A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.

  7. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yumei; Williams, Nolann G.; Tolic, Ana

    The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures tomore » airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI), and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 hours post exposure we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.« less

  8. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  9. Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc

    2015-01-01

    The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.

  10. Label-free SnO2 nanowire FET biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  11. Morphology-modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin

    2015-01-01

    The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively).

  12. Morphology-modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

    PubMed Central

    Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin

    2015-01-01

    The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively). PMID:25597269

  13. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    PubMed

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  14. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals

    PubMed Central

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-01

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941

  15. The nuclear receptor NR2E1/TLX controls senescence.

    PubMed

    O'Loghlen, Ana; Martin, Nadine; Krusche, Benjamin; Pemberton, Helen; Alonso, Marta M; Chandler, Hollie; Brookes, Sharon; Parrinello, Simona; Peters, Gordon; Gil, Jesús

    2015-07-30

    The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21(CIP1) or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16(INK4a) and direct repression of p21(CIP1). In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.

  16. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie

    2013-02-01

    SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.

  17. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  18. Trioctylphosphine-assisted morphology control of ZnO nanoparticles.

    PubMed

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  19. The selectivity of conantokin-G for ion channel inhibition of NR2B subunit-containing NMDA receptors is regulated by amino acid residues in the S2 region of NR2B

    PubMed Central

    Sheng, Zhenyu; Liang, Zhong; Geiger, James H.; Prorok, Mary; Castellino, Francis J.

    2009-01-01

    The conantokins are short, naturally-occurring peptides that inhibit ion flow through N-methyl-D-aspartate receptor (NMDAR) channels. One member of this peptide family, conantokin-G (con-G), specifically antagonizes NR2B-containing NMDAR channels, whereas other known conantokins are less selective inhibitors with regard to the nature of the NR2 subunit of the NMDAR complex. In order to define the molecular determinants of NR2B that govern con-G selectivity, we evaluated the ability of con-G to inhibit NMDAR ion channels expressed in human embryonic kidney (HEK)293 cells transfected with NR1, in combination with various NR2A/2B chimeras and point mutants, by electrophysiology using cells voltage-clamped in the whole cell configuration. We found that a variant of the con-G-insensitive subunit, NR2A, in which the 158 residues comprising the S2 peptide segment (E657-I814) were replaced by the corresponding S2 region of NR2B (E658-I815), results in receptors that are highly sensitive to inhibition by con-G. Of the 22 amino acids that are different between the NR2A-S2 and the NR2B-S2 regions, exchange of one of these, M739 of NR2B for the equivalent K738 of NR2A, was sufficient to completely import the inhibitory activity of con-G into NR1b/NR2A-containing NMDARs. Some reinforcement of this effect was found by substitution of a second amino acid, K755 of NR2B for Y754 of NR2A. The discovery of the molecular determinants of NR2B selectivity with con-G has implications for the design of subunit-selective neurobiological probes and drug therapies, in addition to advancing our understanding of NR2B- versus NR2A-mediated neurological processes. PMID:19427876

  20. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  1. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes

    PubMed Central

    Basu, Kaustubh; Benetti, Daniele; Zhao, Haiguang; Jin, Lei; Vetrone, Fiorenzo; Vomiero, Alberto; Rosei, Federico

    2016-01-01

    We report the fabrication and testing of dye sensitized solar cells (DSSC) based on tin oxide (SnO2) particles of average size ~20 nm. Fluorine-doped tin oxide (FTO) conducting glass substrates were treated with TiOx or TiCl4 precursor solutions to create a blocking layer before tape casting the SnO2 mesoporous anode. In addition, SnO2 photoelectrodes were treated with the same precursor solutions to deposit a TiO2 passivating layer covering the SnO2 particles. We found that the modification enhances the short circuit current, open-circuit voltage and fill factor, leading to nearly 2-fold increase in power conversion efficiency, from 1.48% without any treatment, to 2.85% achieved with TiCl4 treatment. The superior photovoltaic performance of the DSSCs assembled with modified photoanode is attributed to enhanced electron lifetime and suppression of electron recombination to the electrolyte, as confirmed by electrochemical impedance spectroscopy (EIS) carried out under dark condition. These results indicate that modification of the FTO and SnO2 anode by titania can play a major role in maximizing the photo conversion efficiency. PMID:26988622

  2. Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling.

    PubMed

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M

    2017-11-08

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2 -ESL < SnO 2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (V oc ). The improvement of the FF from the FTO to SnO 2 -ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.

  3. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yining; Wei, Qi; Song, Peng; Wang, Qi

    2016-01-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TG⿿DSC), transmission electron microscopy (TEM) and N2 adsorption⿿desorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short response⿿recovery times and good selectivity to ethanol gas.

  5. Formation of p-type ZnO thin film through co-implantation

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Teng; Liou, Jhe-Wei; Woon, Wei-Yen

    2017-01-01

    We present a study on the formation of p-type ZnO thin film through ion implantation. Group V dopants (N, P) with different ionic radii are implanted into chemical vapor deposition grown ZnO thin film on GaN/sapphire substrates prior to thermal activation. It is found that mono-doped ZnO by N+ implantation results in n-type conductivity under thermal activation. Dual-doped ZnO film with a N:P ion implantation dose ratio of 4:1 is found to be p-type under certain thermal activation conditions. Higher p-type activation levels (1019 cm-3) under a wider thermal activation range are found for the N/P dual-doped ZnO film co-implanted by additional oxygen ions. From high resolution x-ray diffraction and x-ray photoelectron spectroscopy it is concluded that the observed p-type conductivities are a result of the promoted formation of PZn-4NO complex defects via the concurrent substitution of nitrogen at oxygen sites and phosphorus at zinc sites. The enhanced solubility and stability of acceptor defects in oxygen co-implanted dual-doped ZnO film are related to the reduction of oxygen vacancy defects at the surface. Our study demonstrates the prospect of the formation of stable p-type ZnO film through co-implantation.

  6. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  7. A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride.

    PubMed

    Zhan, Shuang; Li, Dongmei; Liang, Shengfa; Chen, Xin; Li, Xia

    2013-04-02

    A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.

  8. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE PAGES

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; ...

    2017-10-13

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  9. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  10. Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures

    NASA Astrophysics Data System (ADS)

    Lian, Dandan; Shi, Bing; Dai, Rongrong; Jia, Xiaohua; Wu, Xiangyang

    2017-12-01

    A kind of novel ZnSnO3/SnO2 hollow urchin nanostructure was synthesized by a facile, eco-friendly two-step liquid-phase process. The structure, morphology, and composition of samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption techniques. The results revealed that many tiny needle-like SnO2 nanowires with the average diameter of 5 nm uniformly grew on the surface of the ZnSnO3 hollow microspheres and the ZnSnO3/SnO2 hollow urchin nanostructures with different SnO2 content also were successfully prepared. In order to comprehend the evolution process of the ZnSnO3/SnO2 hollow urchin nanostructures, the possible growth mechanism of samples was illustrated via several experiments in different reaction conditions. Moreover, the gas-sensing performance of as-prepared samples was investigated. The results showed that ZnSnO3/SnO2 hollow urchin nanostructures with high response to various concentration levels of acetone enhanced selectivity, satisfying repeatability, and good long-term stability for acetone detection. Specially, the 10 wt% ZnSnO3/SnO2 hollow urchin nanostructure exhibited the best gas sensitivity (17.03 for 50 ppm acetone) may be a reliable biomarker for the diabetes patients, which could be ascribed to its large specific surface area, complete pore permeability, and increase of chemisorbed oxygen due to the doping of SnO2.

  11. Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage

    PubMed Central

    Zhou, Linzong; Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-01-01

    A novel synthesis containing microwave-assisted HCl etching reaction and precipitating reaction is employed to prepare hierarchical hollow SnO2@TiO2 nanocapsules for anode materials of Li-ion batteries. The intrinsic hollow nanostructure can shorten the lengths for both ionic and electronic transport, enlarge the electrode surface areas, and improving accommodation of the anode volume change during Li insertion/extraction cycling. The hybrid multi-elements in this material allow the volume change to take place in a stepwise manner during electrochemical cycling. In particular, the coating of TiO2 onto SnO2 can enhance the electronic conductivity of hollow SnO2 electrode. As a result, the as-prepared SnO2@TiO2 nanocapsule electrode exhibits a stably reversible capacity of 770 mA hg−1 at 1 C, and the capacity retention can keep over 96.1% after 200 cycles even at high current rates. This approach may shed light on a new avenue for the fast synthesis of hierarchical hollow nanocapsule functional materials for energy storage, catalyst and other new applications. PMID:26482415

  12. Bio-green synthesis of Fe doped SnO2 nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.

    2017-05-01

    Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.

  13. Differential Roles for "Nr4a1" and "Nr4a2" in Object Location vs. Object Recognition Long-Term Memory

    ERIC Educational Resources Information Center

    McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.

    2012-01-01

    "Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…

  14. Comparison of Photocatalytic Performance of Different Types of Graphene in Fe3O4/SnO2 Composites

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Saleh, Rosari

    2017-03-01

    We have reported the role of annealing temperature Fe3O4/SnO2 nanocomposites as a photocatalyst for remove methylene blue (MB) dye from aqueous solution. However, how to enhanced the degradation performance of Fe3O4/SnO2 nanocomposites is important to its photocatalytic application. Therefore, in this work Fe3O4/SnO2 nanocomposites was combined with two different types of graphene materials (NGP and grahene) to improve the photocatalytic performance for remove methylene blue (MB) dye. Fe3O4/SnO2/NGP and Fe3O4/SnO2/graphene have been successfully synthesized by co-precipitation method. The influence of two types graphene on Fe3O4/SnO2 nanocomposites properties were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermal gravimetric analysis (TGA). Degradation of methylene Blue (MB) in aqueous solution was studied in detail under photocatalytic process. Effect of catalyst dosage (0.1-0.4 g/L) and scavengers on dye degradation were carried out to check the efficiency of photocatalyst. The results indicated Fe3O4/SnO2/graphene displayed higher photocatalytic activity than other catalyst. The reusability tests have also been done to ensure the stability of the used photocatalyst.

  15. Experimental Study of Acid Treatment Toward Characterization of Structural, Optical, and Morphological Properties of TiO2-SnO2 Composite Thin Film

    NASA Astrophysics Data System (ADS)

    Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko

    2018-04-01

    The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.

  16. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  17. Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Meng; Kushima, Akihiro; Shao, Yuyan

    2013-09-30

    Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, amore » displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.« less

  18. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  19. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    PubMed

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. NR2A- and NR2B-NMDA receptors and drebrin within postsynaptic spines of the hippocampus correlate with hunger-evoked exercise.

    PubMed

    Chen, Yi-Wen; Actor-Engel, Hannah; Sherpa, Ang Doma; Klingensmith, Lauren; Chowdhury, Tara G; Aoki, Chiye

    2017-07-01

    Hunger evokes foraging. This innate response can be quantified as voluntary wheel running following food restriction (FR). Paradoxically, imposing severe FR evokes voluntary FR, as some animals choose to run rather than eat, even during limited periods of food availability. This phenomenon, called activity-based anorexia (ABA), has been used to identify brain changes associated with FR and excessive exercise (EX), two core symptoms of anorexia nervosa (AN), and to explore neurobiological bases of AN vulnerability. Previously, we showed a strong positive correlation between suppression of FR-evoked hyperactivity, i.e., ABA resilience, and levels of extra-synaptic GABA receptors in stratum radiatum (SR) of hippocampal CA1. Here, we tested for the converse: whether animals with enhanced expression of NMDA receptors (NMDARs) exhibit greater levels of FR-evoked hyperactivity, i.e., ABA vulnerability. Four groups of animals were assessed for NMDAR levels at CA1 spines: (1) ABA, in which 4 days of FR was combined with wheel access to allow voluntary EX; (2) FR only; (3) EX only; and (4) control (CON) that experienced neither EX nor FR. Electron microscopy revealed that synaptic NR2A-NMDARs and NR2B-NMDARs levels are significantly elevated, relative to CONs'. Individuals' ABA severity, based on weight loss, correlated with synaptic NR2B-NMDAR levels. ABA resilience, quantified as suppression of hyperactivity, correlated strongly with reserve pools of NR2A-NMDARs in spine cytoplasm. NR2A- and NR2B-NMDAR measurements correlated with spinous prevalence of an F-actin binding protein, drebrin, suggesting that drebrin enables insertion of NR2B-NMDAR to and retention of NR2A-NMDARs away from synaptic membranes, together influencing ABA vulnerability.

  1. Unusual behaviour of (Np,Pu)B2C

    NASA Astrophysics Data System (ADS)

    Klimczuk, Tomasz; Boulet, Pascal; Griveau, Jean-Christophe; Colineau, Eric; Bauer, Ernst; Falmbigl, Matthias; Rogl, Peter; Wastin, Franck

    2015-02-01

    Two transuranium metal boron carbides, NpB2C and PuB2C have been synthesized by argon arc melting. The crystal structures of the {Np,Pu}B2C compounds were determined from single-crystal X-ray data to be isotypic with the ThB2C-type (space group ?, a = 0.6532(2) nm; c = 1.0769(3) nm for NpB2C and a = 0.6509(2) nm; c = 1.0818(3) nm for PuB2C; Z = 9). Physical properties have been derived from polycrystalline bulk material in the temperature range from 2 to 300 K and in magnetic fields up to 9 T. Magnetic susceptibility and heat capacity data indicate the occurrence of antiferromagnetic ordering for NpB2C with a Neel temperature TN = 68 K. PuB2C is a Pauli paramagnet most likely due to a strong hybridization of s(p,d) electrons with the Pu-5f states. A pseudo-gap, as concluded from the Sommerfeld value and the electronic transport, is thought to be a consequence of the hybridization. The magnetic behaviour of {Np,Pu}B2C is consistent with the criterion of Hill.

  2. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests.

    PubMed

    Branica, Gina; Mladinić, Marin; Omanović, Dario; Želježić, Davor

    2016-12-01

    Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.

  3. Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts

    NASA Astrophysics Data System (ADS)

    Huang, Siya; Matsubara, Kohei; Cheng, Jing; Li, Heping; Pan, Wei

    2013-09-01

    Precisely controlled Ni-doped SnO2 (NSO) nanobelt arrays are synthesized and assembled via electrospinning. In comparison to pristine SnO2 nanobelts, enhanced photosensitivity (˜103) as well as recovery speed (˜1 s) is obtained in NSO nanobelts. The mechanism is clarified by the compensation effect of acceptor impurity Ni, which not only promotes the oxygen-surface interaction but also introduces trapping centers in SnO2 matrix. The reduced grain size (˜4 nm) along with increased depletion layer thickness also benefits the photosensitivity of NSO nanobelts. These improved photoresponse properties make the NSO nanobelt a promising candidate for high-performance ultraviolet detectors.

  4. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  5. Composite multifunctional nanostructures based on ZnO tetrapods and superparamagnetic Fe3O4 nanoparticles.

    PubMed

    Villani, M; Rimoldi, T; Calestani, D; Lazzarini, L; Chiesi, V; Casoli, F; Albertini, F; Zappettini, A

    2013-04-05

    A nanocomposite material is obtained by coupling superparamagnetic magnetite nanoparticles (Fe3O4 NP) and vapor phase grown zinc oxide nanostructures with 'tetrapod' morphology (ZnO TP). The aim is the creation of a multifunctional material which retains the attractive features of ZnO (e.g. surface reactivity, strong UV emission, piezoelectricity) together with added magnetism. Structural, morphological, optical, magnetic and functional characterization are performed. In particular, the high saturation magnetization of Fe3O4 NP (above 50 A m(2) kg(-1)), the strong UV luminescence and the enhanced photocatalytic activity of coupled nanostructures are discussed. Thus the nanocomposite turns out to be suitable for applications in energy harvesting and conversion, gas- and bio-sensing, bio-medicine and filter-free photocatalysis.

  6. Expression and Functional Pathway Analysis of Nuclear Receptor NR2F2 in Ovarian Cancer

    PubMed Central

    Hawkins, Shannon M.; Loomans, Holli A.; Wan, Ying-Wooi; Ghosh-Choudhury, Triparna; Coffey, Donna; Xiao, Weimin; Liu, Zhandong; Sangi-Haghpeykar, Haleh

    2013-01-01

    Context: Recent evidence implicates the orphan nuclear receptor, nuclear receptor subfamily 2, group F, member 2 (NR2F2; chicken ovalbumin upstream promoter-transcription factor II) as both a master regulator of angiogenesis and an oncogene in prostate and other human cancers. Objective: The objective of the study was to determine whether NR2F2 plays a role in ovarian cancer and dissect its potential mechanisms of action. Design, Setting, and Patients: We examined NR2F2 expression in healthy ovary and ovarian cancers using quantitative PCR and immunohistochemistry. NR2F2 expression was targeted in established ovarian cancer cell lines to assess the impact of dysregulated NR2F2 expression in the epithelial compartment of ovarian cancers. Results: Our results indicate that NR2F2 is robustly expressed in the stroma of healthy ovary with little or no expression in epithelia lining the ovarian surface, clefts, or crypts. This pattern of NR2F2 expression was markedly disrupted in ovarian cancers, in which decreased levels of stromal expression and ectopic epithelial expression were frequently observed. Ovarian cancers with the most disrupted patterns of NR2F2 were associated with significantly shorter disease-free interval by Kaplan-Meier analysis. Targeting NR2F2 expression in established ovarian cancer cell lines enhanced apoptosis and increased proliferation. In addition, we found that NR2F2 regulates the expression of NEK2, RAI14, and multiple other genes involved in the cell cycle, suggesting potential pathways by which dysregulated expression of NR2F2 impacts ovarian cancer. Conclusions: These results uncover novel roles for NR2F2 in ovarian cancer and point to a unique scenario in which a single nuclear receptor plays potentially distinct roles in the stromal and epithelial compartments of the same tissue. PMID:23690307

  7. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  8. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation.

    PubMed

    Bhuvaneshwari, M; Sagar, Bhawana; Doshi, Siddharth; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    This study evaluated the toxicity potential of ZnO and TiO 2 nanoparticles under pre-UV-A irradiation and visible light condition on Artemia salina. The nanoparticle suspension was prepared in seawater medium and exposed under pre-UV-A (0.23 mW/cm 2 ) and visible light (0.18 mW/cm 2 ) conditions. The aggregation profiles of both nanoparticles (NPs) and dissolution of ZnO NPs under both irradiation conditions at various kinetic intervals (1, 24, 48 h) were studied. The 48-h LC 50 values were found to be 27.62 and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO 2 NPs under pre-UV-A and visible light conditions. ZnO NPs were found to be more toxic to A. salina as compared to TiO 2 NPs. The enhanced toxicity was observed under pre-UV-A-irradiated ZnO NPs, signifying its phototoxicity. Accumulation of ZnO and TiO 2 NPs into A. salina depends on the concentration of particles and type irradiations. Elimination of accumulated nanoparticles was also evident under both irradiation conditions. Other than ZnO NPs, the dissolved Zn 2+ also had a significant effect on toxicity and accumulation in A. salina. Increased catalase (CAT) activity in A. salina indicates the generation of oxidative stress due to NP interaction. Thus, this study provides an understanding of the toxicity of photoreactive ZnO and TiO 2 NPs as related to the effects of pre-UV-A and visible light irradiation.

  9. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    PubMed Central

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-01-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. PMID:24732294

  10. Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.

    PubMed

    Wang, Haibin; Liu, Shuxin; Huang, Yongmao

    2014-04-01

    The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.

  11. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Wojnarowicz, Jacek; Chudoba, Tadeusz; Koltsov, Iwona; Gierlotka, Stanislaw; Dworakowska, Sylwia; Lojkowski, Witold

    2018-02-01

    The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.

  12. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  13. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells.

    PubMed

    Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan

    2018-04-27

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  14. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan

    2018-04-01

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  15. One-Pot Green Synthesis of Ag-Decorated SnO2 Microsphere: an Efficient and Reusable Catalyst for Reduction of 4-Nitrophenol.

    PubMed

    Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing

    2017-12-01

    In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.

  16. Surface-enhanced Raman scattering from AgNP-graphene-AgNP sandwiched nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Xu, Yijun; Xu, Pengyu; Pan, Zhenghui; Chen, Sheng; Shen, Qishen; Zhan, Li; Zhang, Yuegang; Ni, Weihai

    2015-10-01

    We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials.We developed a facile approach toward hybrid AgNP-graphene-AgNP sandwiched structures using self-organized monolayered AgNPs from wet chemical synthesis for the optimized enhancement of the Raman response of monolayer graphene. We demonstrate that the Raman scattering of graphene can be enhanced 530 fold in the hybrid structure. The Raman enhancement is sensitively dependent on the hybrid structure, incident angle, and excitation wavelength. A systematic simulation is performed, which well explains the enhancement mechanism. Our study indicates that the enhancement resulted from the plasmonic coupling between the AgNPs on the opposite sides of graphene. Our approach towards ideal substrates offers great potential to produce a ``hot surface'' for enhancing the Raman response of two-dimensional materials. Electronic supplementary information (ESI) available: Additional SEM images, electric field enhancement profiles, Raman scattering spectra, and structure-dependent peak ratios. See DOI: 10.1039/c5nr04500b

  17. Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings.

    PubMed

    Song, Fang; Su, Huilan; Han, Jie; Zhang, Di; Chen, Zhixin

    2009-12-09

    Using super-hydrophobic butterfly wings as templates, we developed an aqueous sol-gel soakage process assisted by ethanol-wetting and followed by calcination to fabricate well-organized porous hierarchical SnO(2) with connective hollow interiors and thin mesoporous walls. The exquisite hierarchical architecture of SnO(2) is faithfully replicated from the lightweight skeleton of butterfly wings at the level from nano- to macro-scales. On the basis of the self-assembly of SnO(2) nanocrystallites with diameter around 7.0 nm, the interconnected tubes (lamellas), the fastigiated hollow tubers (pillars) and the double-layered substrates further construct the biomorphic hierarchical architecture. Benefiting from the small grain size and the unique hierarchical architecture, the biomorphic SnO(2) as an ethanol sensor exhibits high sensitivity (49.8 to 50 ppm ethanol), and fast response/recovery time (11/31 s to 50 ppm ethanol) even at relatively low working temperature (170 degrees C).

  18. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  19. The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction

    NASA Astrophysics Data System (ADS)

    Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.

    2017-02-01

    SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.

  20. Bouquet-Like Mn2SnO4 Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode.

    PubMed

    Rehman, Wasif Ur; Xu, Youlong; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Li, Long

    2018-05-30

    Volume expansion is a major challenge associated with tin oxide (SnO x ), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO 2 ), tin dioxide with graphene sheets (SnO 2 @GS), and bouquet-like nanocomposite structure (Mn 2 SnO 4 @GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO 2 ) particle during charge-discharge testing. As a consequence, ternary composite Mn 2 SnO 4 @GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g -1 at a current density of 400 mA g -1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g -1 at a high current density of 2500 mA g -1 . Ternary Mn 2 SnO 4 @GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

  1. Investigation of the structure and stability of SnO2 nanocrystal and its surface-bound water

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wesolowski, D. J.; Proffen, T. E.; Kolesnikov, A. I.; Vlcek, L.; Wang, W.; Feygenson, M.; Sofo, J. O.; Anovitz, L.

    2012-12-01

    Driven partly by a myriad use of engineered metal oxide nanoparticles, understanding their stabilities and interactions with environmental matrix during and after applications are desired. SnO2 (cassiterite) is one of the frequently used oxides in solid-state gas sensors and oxidation catalysts. A close relationship between the gas sensitivity and catalysis of oxides with their surface chemistry ensures continuous interests in the study of SnO2-water interfacial complexity (unavoidable "contamination" in which water can potentially participate in reactions and change SnO2 conductivity). Such information is important, as the existence of hydration layers on the surface of SnO2 nanoparticles not only play a critical role in stabilizing the nanoparticle but also affect its selectivity/sensitivity, as a nanosensor. SnO2 nanoparticles (2-5 nm) synthesized by a wet chemical route are dominated by {110} faces and are capped with H2O or D2O water molecules (after purification), depending on isotopic composition of water used for syntheses. When water is in direct contact with terminal Sn and O atoms, there is a controversial argument as to whether or not dissociative adsorption occurs (i.e., formation of hydroxyl groups). Although theoretical studies point toward a tendency for dissociative configuration in the direct contact layer, experimental studies have not unambiguously confirmed this conclusion. We present combined investigations using neutron total scattering (NPDF at the NOMAD beamline, SNS) and inelastic neutron scattering (INS at the SEQUOIA beamline, SNS) techniques as static and dynamic probes to reveal structure and dynamics of water and SnO2 nanocrystalline stability upon dehydration. The NPDF results (measured with deuterated samples) suggest layered water configurations with G(r) signals dominated by O-D bonds at 0.98 Å, and the second hydration layer that gives a broad peak at 2.5-4 Å. There is no evidence of a third hydration layer at 5-7 Å as shown

  2. Orientation-Controllable ZnO Nanorod Array Using Imprinting Method for Maximum Light Utilization in Dye-Sensitized Solar Cells.

    PubMed

    Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young

    2015-12-01

    We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.

  3. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  4. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  5. Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods.

    PubMed

    Bano, N; Hussain, I; Sawaf, S; Alshammari, Abeer; Saleemi, F

    2017-06-16

    The size of ZnO nanorods (NRs) plays an important role in tuning the external quantum efficiency (EQE) and quality of light generated by white light emitting diodes (LEDs). In this work, we report on the enhancement of EQE and the quality of ZnO NR-based hetrojunction white LEDs fabricated on a p-GaN substrate using a low temperature solution method. Cathodoluminescence spectra demonstrate that ultraviolet (UV) emission decreases and visible deep band emission increases with an increase in the length of the ZnO NRs. The UV emission could be internally reabsorbed by the ZnO NR excitation, thus enhancing the emission intensity of the visible deep band. Photocurrent measurements validated the fact that the EQE depends on the size of ZnO NRs, increasing by 87% with an increase in the length of the ZnO NRs. Furthermore, the quality of white light was measured and clearly indicated an increase in the color rendering indices of the LEDs with an increase in the length of the ZnO NRs, confirming that the quality of light generated by LEDs can be tuned by varying the length of the ZnO NRs. These results suggest that the EQE and visible deep band emission from n-ZnONRs/p-GaN heterojunction LEDs can be effectively controlled by adjusting the length of the ZnO NRs, which can be useful for realizing tunable white LEDs.

  6. Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Bano, N.; Hussain, I.; Sawaf, S.; Alshammari, Abeer; Saleemi, F.

    2017-06-01

    The size of ZnO nanorods (NRs) plays an important role in tuning the external quantum efficiency (EQE) and quality of light generated by white light emitting diodes (LEDs). In this work, we report on the enhancement of EQE and the quality of ZnO NR-based hetrojunction white LEDs fabricated on a p-GaN substrate using a low temperature solution method. Cathodoluminescence spectra demonstrate that ultraviolet (UV) emission decreases and visible deep band emission increases with an increase in the length of the ZnO NRs. The UV emission could be internally reabsorbed by the ZnO NR excitation, thus enhancing the emission intensity of the visible deep band. Photocurrent measurements validated the fact that the EQE depends on the size of ZnO NRs, increasing by 87% with an increase in the length of the ZnO NRs. Furthermore, the quality of white light was measured and clearly indicated an increase in the color rendering indices of the LEDs with an increase in the length of the ZnO NRs, confirming that the quality of light generated by LEDs can be tuned by varying the length of the ZnO NRs. These results suggest that the EQE and visible deep band emission from n-ZnONRs/p-GaN heterojunction LEDs can be effectively controlled by adjusting the length of the ZnO NRs, which can be useful for realizing tunable white LEDs.

  7. Memory Enhancement by Targeting Cdk5 Regulation of NR2B

    PubMed Central

    Plattner, Florian; Hernandéz, Adan; Kistler, Tara M.; Pozo, Karine; Zhong, Ping; Yuen, Eunice Y.; Tan, Chunfeng; Hawasli, Ammar H.; Cooke, Sam F.; Nishi, Akinori; Guo, Ailan; Wiederhold, Thorsten; Yan, Zhen; Bibb, James A.

    2014-01-01

    SUMMARY Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers due to its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when over-expressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor’s cell surface expression. Disrupting NR2B-Cdk5 interaction using a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a novel regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. PMID:24607229

  8. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil.

    PubMed

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M

    2012-10-01

    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (<12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.

  9. In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)

    NASA Astrophysics Data System (ADS)

    Xu, P.; Tang, M.; Nino, J. C.

    2009-06-01

    Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.

  10. Animal Bone Supported SnO2 as Recyclable Photocatalyst for Degradation of Rhodamine B Dye.

    PubMed

    Wu, Yun; Wang, Hui; Cao, Mengdie; Zhang, Yichi; Cao, Feifei; Zheng, Xinsheng; Hu, Jinfei; Dong, Jiangshan; Xiao, Zhidong

    2015-09-01

    SnO2 nanoparticles supported on an animal bone which serves as inexpensive and environment-friendly natural products were developed by a facile hydrothermal approach. As a promising photocatalyst, the novel SnO2/porcine bone material exhibited high photocatalytic activity towards the degradation of rhodamine B (RhB) dye under UV-Vis irradiation. About 97.3% of RhB can be effectively decomposed by the catalysis with the SnO2/porcine bone in 90 min, while only 51.5% of RhB can be degraded by pure SnO2 nanoparticles. Moreover, the photocatalytic activity was incremental with the increase of cycle times in previous five cycles. It is mainly because the photocatalyst which has been used for several times possesses a stronger ability of light absorption and utilization compared to the fresh catalyst according to the results of the characterization and relative experiments. It is noteworthy that the animal bone support can improve the activity for the photocatalyst, which would provide further impetus to alternate synthesis strategies for photocatalysts and make the photocatalysis process faster, less expensive, and more environmentally friendly.

  11. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui

    2018-06-01

    Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).

  12. 3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms

    PubMed Central

    Pimentel, Ana; Araújo, Andreia; Águas, Hugo; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5–30 min) and temperature (70–130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

  13. Inorganic Photocatalytic Enhancement: Activated RhB Photodegradation by Surface Modification of SnO2 Nanocrystals with V2O5-like species

    PubMed Central

    Epifani, Mauro; Kaciulis, Saulius; Mezzi, Alessio; Altamura, Davide; Giannini, Cinzia; Díaz, Raül; Force, Carmen; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Comini, Elisabetta; Concina, Isabella

    2017-01-01

    SnO2 nanocrystals were prepared by precipitation in dodecylamine at 100 °C, then they were reacted with vanadium chloromethoxide in oleic acid at 250 °C. The resulting materials were heat-treated at various temperatures up to 650 °C for thermal stabilization, chemical purification and for studying the overall structural transformations. From the crossed use of various characterization techniques, it emerged that the as-prepared materials were constituted by cassiterite SnO2 nanocrystals with a surface modified by isolated V(IV) oxide species. After heat-treatment at 400 °C, the SnO2 nanocrystals were wrapped by layers composed of vanadium oxide (IV-V mixed oxidation state) and carbon residuals. After heating at 500 °C, only SnO2 cassiterite nanocrystals were obtained, with a mean size of 2.8 nm and wrapped by only V2O5-like species. The samples heat-treated at 500 °C were tested as RhB photodegradation catalysts. At 10−7 M concentration, all RhB was degraded within 1 h of reaction, at a much faster rate than all pure SnO2 materials reported until now. PMID:28300185

  14. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  15. Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-08-01

    We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.

  16. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

    PubMed Central

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-01-01

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g−1 at the current densities of 100 and 1000 mA g−1, respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g−1 at a high current density of 1000 mA g−1 after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance. PMID:25776280

  17. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions

    EPA Science Inventory

    Zinc oxide nanoparticles (ZnO NPs) are being rapidly developed for use in consumer products, wastewater treatment and chemotherapy, providing several possible routes for ZnO NP exposure to humans and aquatic organisms. Recent studies have shown that ZnO NPs undergo rapid dissolut...

  18. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  19. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-01

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  20. Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    PubMed Central

    Mollema, Nissa J.; Yuan, Yang; Jelcick, Austin S.; Sachs, Andrew J.; von Alpen, Désirée; Schorderet, Daniel; Escher, Pascal; Haider, Neena B.

    2011-01-01

    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function. PMID:21408158

  1. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  2. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  3. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  4. Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Munisa, Lusitra; Saleh, Rosari

    2017-01-01

    The current research work focuses on the catalytic activity of SnO2 nanoparticles (NPs) against degradation of both cationic dye (methylene blue) and anionic dye (Congo-red). SnO2 NPs were synthesized under the sol-gel method and were characterized by performing X-ray diffraction, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) Brunauer-Emmet-Teller (BET) surface area analysis and UV-Vis spectroscopy. The results demonstrate that SnO2 NPs has well crystalline structure with the crystallite size of 44 nm. The degradation of dyes was studied under ambient temperature using ultrasonicator and UV light, respectively. The sono- and photocatalytic activities of SnO2 NPs on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in the concentration of the dyes before and after irradiation of ultrasonic and light, respectively. The influence of other parameters such as catalyst dosage, pH and scavenger have also been investigated. The catalytic activity is enhanced in the presence of ultrasonic irradiation. The degradation of both dyes follows pseudo-first order kinetics. The reusability tests have also been done to ensure the stability of the used catalysts. A reasonable mechanism of sono- and photocatalysis with SnO2 NPs has been proposed by correlating the active radical species involved with the physical properties of the as-synthesized samples.

  5. Understanding the SNO+ Detector

    DOE PAGES

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  6. Effect of annealing temperature on optical and electrical properties of ZrO2-SnO2 based nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Anitha, V. S.; Lekshmy, S. Sujatha; Berlin, I. John; Joy, K.

    2014-01-01

    Transparent nanocomposite ZrO2-SnO2 thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO2-SnO2 films can be used in many applications and in optoelectronic devices.

  7. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-08-01

    Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV--Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (SBET) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H2O2) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  8. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  9. The effect of noble metal additives on the optimum operating temperature of SnO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Mohammad-Yousefi, S.; Rahbarpour, S.; Ghafoorifard, H.

    2017-12-01

    The effect of Pd and Au additives on gas sensing properties of SnO2 was investigated. SnO2 pallets were fabricated and sintered at 900 °C for 90 minutes. Several nanometer layers of Pd and Au were deposited on separate SnO2 pallets and were intentionally dispersed into the SnO2 pallets by long heat treatment (400 °C for 1 Day). All metal loaded samples showed significant enhancement in response level and optimum operating temperature compare to pure SnO2 gas sensors. The amount of enhancement was strongly dependent on the material and the thickness of deposited metal layer. Studying butanol response showed that increasing the thickness of metal causes the response level to increase. Further thickness increase caused contrary effect and decreased the performance of sensors. Best results were achieved at 10 nm-thick Au and 7 nm-thick Pd. Generally, Pd-SnO2 samples demonstrated better performance than Au-SnO2 ones, however, Au-SnO2 samples were proved to be good candidate to sense reducing gases with lower hydrogen atoms in their formula. Given experimental results were also good evidence of chemical activity of gold and simply confirms the relation between chemical activity and gold particle size. Results were qualitatively described by gas diffusion theory and surface reactions take place on metal particles.The first section in your paper

  10. Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    Inelastic neutron scattering (INS) data for SnO2 nanoparticles of three different sizes and varying hydration levels are presented. Data were recorded on five nanoparticle samples that had the following compositions: 2 nm SnO2*0.82H2O, 6 nm SnO2*0.055H2O, 6 nm SnO2*0.095H2O, 20 nm SnO2*0.072H2O, and 20 nm SnO2*0.092H2O. The isochoric heat capacity and vibrational entropy values at 298 K for the water confined on the surface of these nanoparticles were calculated from the vibrational density of states that were extracted from the INS data. This study has shown that the hydration level of the SnO2 nanoparticles influences the thermodynamic properties of themore » water layers and, most importantly, that there appears to be a critical size limit for SnO2 between 2 and 6 nm below which the particle size also affects these properties and above which it does not. These results have been compared with those for isostructural rutile-TiO2 nanoparticles [TiO2*0.22H2O and TiO2*0.37H2O], which indicated that water on the surface of TiO2 nanoparticles is more tightly bound and experiences a greater degree of restricted motion with respect to water on the surface of SnO2 nanoparticles. This is believed to be a consequence of the difference in chemical composition, and hence surface properties, of these metal oxide nanoparticles.« less

  11. Structure of (Ga2O3)2(ZnO)13 and a unified description of the homologous series (Ga2O3)2(ZnO)(2n + 1).

    PubMed

    Michiue, Yuichi; Kimizuka, Noboru; Kanke, Yasushi; Mori, Takao

    2012-06-01

    The structure of (Ga(2)O(3))(2)(ZnO)(13) has been determined by a single-crystal X-ray diffraction technique. In the monoclinic structure of the space group C2/m with cell parameters a = 19.66 (4), b = 3.2487 (5), c = 27.31 (2) Å, and β = 105.9 (1)°, a unit cell is constructed by combining the halves of the unit cell of Ga(2)O(3)(ZnO)(6) and Ga(2)O(3)(ZnO)(7) in the homologous series Ga(2)O(3)(ZnO)(m). The homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) is derived and a unified description for structures in the series is presented using the (3+1)-dimensional superspace formalism. The phases are treated as compositely modulated structures consisting of two subsystems. One is constructed by metal ions and another is by O ions. In the (3 + 1)-dimensional model, displacive modulations of ions are described by the asymmetric zigzag function with large amplitudes, which was replaced by a combination of the sawtooth function in refinements. Similarities and differences between the two homologous series (Ga(2)O(3))(2)(ZnO)(2n + 1) and Ga(2)O(3)(ZnO)(m) are clarified in (3 + 1)-dimensional superspace. The validity of the (3 + 1)-dimensional model is confirmed by the refinements of (Ga(2)O(3))(2)(ZnO)(13), while a few complex phenomena in the real structure are taken into account by modifying the model.

  12. [Ski and SnoN: antagonistic proteins of TGFbeta signaling].

    PubMed

    Vignais, M L

    2000-02-01

    Ski and SnoN are two proto-oncogenes that, at high cellular concentrations, are associated with tumors. Up to now, apart the fact that SnoN and Ski were known to bind to DNA indirectly, very little was known about the mechanism which enables these factors to induce tumorigenesis. We know now that SnoN and Ski interact with the SMAD proteins which are mediators of TGFbeta signaling. These SMADs enable recruitment to target gene promoters of SnoN and Ski as well as the histone deacetylase activity which is associated with them. Whereas physiologic concentrations of SnoN and Ski allow a feedback regulation of TGFbeta signaling, deregulation of SnoN or Ski expression leads to total inhibition of TGFbeta signaling and of the tumor suppressors Smad2 and Smad4, which can explain the role of SnoN and Ski as oncogenes.

  13. NMR studies of the dynamics of high-spin nitrophorins: comparative studies of NP4 and NP2 at close to physiological pH.

    PubMed

    Berry, Robert E; Muthu, Dhanasekaran; Yang, Fei; Walker, F Ann

    2015-01-20

    The β-barrel nitrophorin (NP) heme proteins are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands. NO is bound to iron of the NPs and is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1-NP4, which have sequence similarities in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical). The available crystal structures of NP4 have been used to propose that pH-dependent changes in the conformation of two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this work, the aqua complexes of NP4 and NP2 have been investigated by nuclear magnetic resonance (NMR) relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics at pH 6.5; at pH 7.3, much more dynamics of the loops and most of the β-strands are observed while the α-helices remain fairly rigid. In comparison, NP2-OH2 shows much less dynamics, albeit somewhat more than that of the previously reported NP2-NO complex [Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910-7925]. The reasons for this major difference between NP4 and NP2 are discussed.

  14. NMR Studies of the Dynamics of High-Spin Nitrophorins: Comparative Studies of NP4 and NP2 at Close to Physiological pH

    PubMed Central

    2015-01-01

    The β-barrel nitrophorin (NP) heme proteins are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands. NO is bound to iron of the NPs and is released by dilution and an increase in pH when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect, there are four nitrophorins, NP1–NP4, which have sequence similarities in two pairs, NP1 and NP4 (90% identical) and NP2 and NP3 (80% identical). The available crystal structures of NP4 have been used to propose that pH-dependent changes in the conformation of two loops between adjacent β-strands at the front opening of the protein, the A–B and G–H loops, determine the rate of NO release. At pH 7.3, NP4 releases NO 17 times faster than NP2 does. In this work, the aqua complexes of NP4 and NP2 have been investigated by nuclear magnetic resonance (NMR) relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at two pH values, 6.5 and 7.3. It is found that NP4-OH2 is fairly rigid and only residues in the loop regions show dynamics at pH 6.5; at pH 7.3, much more dynamics of the loops and most of the β-strands are observed while the α-helices remain fairly rigid. In comparison, NP2-OH2 shows much less dynamics, albeit somewhat more than that of the previously reported NP2-NO complex [Muthu, D., Berry, R. E., Zhang, H., and Walker, F. A. (2013) Biochemistry 52, 7910–7925]. The reasons for this major difference between NP4 and NP2 are discussed. PMID:25486224

  15. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes.

    PubMed

    Bandara, J; Tennakone, K; Jayatilaka, P P B

    2002-10-01

    Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.

  16. Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells

    NASA Astrophysics Data System (ADS)

    Reddy, N. Nanda Kumar; Akkera, Harish Sharma; Sekhar, M. Chandra; Park, Si-Hyun

    2017-12-01

    In the present work, we investigated the effect of Zr doping (0-6 at%) on the structural, electrical, and optical properties of tin oxide (SnO2) thin films deposited onto glass substrates using a spray pyrolysis technique. The room-temperature X-ray diffraction pattern shows that all deposited films exhibit polycrystalline tetragonal structure. The pure SnO2 film is grown along a preferred (200) direction, whereas Zr-doped SnO2 (Zr:SnO2) films started growing along the (220) orientation along with a high intensity peak of (200). Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the grains of the films are spherical in structure, and the grain size decreased with increasing of Zr concentration. The optical transmission spectra of deposited films as a function of wavelength confirm that the average optical transmittance is > 85% for Zr:SnO2 films. The value of the optical bandgap is significantly decreased from 3.94 to 3.68 eV with increasing Zr concentration. Furthermore, the electrical measurements found that the sheet resistance ( R sh) and resistivity ( ρ) values are decreased with increasing of Zr doping. The lowest values of R sh = 6.82 Ω and ρ = 0.4 × 10- 3 Ω cm are found in 6-at% Zr-doped SnO2 film. In addition, a good efficiency value of the figure of merit ( ɸ = 3.35 × 10- 3 Ω-1) is observed in 6-at% Zr-doped SnO2 film. These outstanding properties of Zr-doped SnO2 films make them useful for several optoelectronic device applications.

  17. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  18. Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.

    2018-03-01

    Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.

  19. Enhanced thermoelectric property of oxygen deficient nickel doped SnO2 for high temperature application

    NASA Astrophysics Data System (ADS)

    Paulson, Anju; Sabeer, N. A. Muhammad; Pradyumnan, P. P.

    2018-04-01

    Motivated by the detailed investigation on the thermoelectric performance of oxide materials our work concentrated on the influence of acceptor dopants and defect density in the lattice plane for the enhancement of thermoelectric power. The series of Sn1‑x Nix O2 (0.01 ≤ x ≤ 0.05) compositions were prepared by solid state reaction mechanism and found that 3 atomic percentage Ni doped SnO2 can be considered as a good candidate due to its promising electrical and transport properties. Defect lattices were introduced in the sample and the deviation from oxygen stochiometry was ensured using photoluminescence measurement. High power factor was obtained for the 3 atomic percentage nickel doped SnO2 due to the effective number of charge carrier concentration and the depletion of oxygen rich layers. Defect centered and acceptor doped SnO2 lattice opens a new door for energy harvesting at higher temperatures.

  20. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.

    PubMed

    Wu, Jyh Ming

    2010-06-11

    A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement revealed that as-synthesized nanowires exhibit p-type behavior. A comprehensive investigation of the p-type sensing mechanism is reported.

  1. Phylogenetic distribution of plant snoRNA families.

    PubMed

    Patra Bhattacharya, Deblina; Canzler, Sebastian; Kehr, Stephanie; Hertel, Jana; Grosse, Ivo; Stadler, Peter F

    2016-11-24

    Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation.

  2. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-03-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  3. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells.

  4. Improved conversion efficiency of amorphous Si solar cells using a mesoporous ZnO pattern

    PubMed Central

    2014-01-01

    To provide a front transparent electrode for use in highly efficient hydrogenated amorphous silicon (a-Si:H) thin-film solar cells, porous flat layer and micro-patterns of zinc oxide (ZnO) nanoparticle (NP) layers were prepared through ultraviolet nanoimprint lithography (UV-NIL) and deposited on Al-doped ZnO (AZO) layers. Through this, it was found that a porous micro-pattern of ZnO NPs dispersed in resin can optimize the light-trapping pattern, with the efficiency of solar cells based on patterned or flat mesoporous ZnO layers increased by 27% and 12%, respectively. PMID:25276101

  5. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    PubMed

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).

  6. Vegetable Peel Waste for the Production of ZnO Nanoparticles and its Toxicological Efficiency, Antifungal, Hemolytic, and Antibacterial Activities

    NASA Astrophysics Data System (ADS)

    Surendra, T. V.; Roopan, Selvaraj Mohana; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Sarkar, Gargi; Suthindhiran, K.

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) are important materials when making different products like sun screens, textiles, and paints. In the current study, the photocatalytic effect of prepared ZnO NPs from Moringa oleifera ( M. oleifera) was evaluated on degradation of crystal violet (CV) dye, which is largely released from textile industries and is harmful to the environment. Preliminarily, ZnO NP formation was confirmed using a double beam ultraviolet visible (UV-Vis) spectrophotometer; further, the NP size was estimated using XRD analysis and the functional group analysis was determined using Fourier transform infrared (FT-IR) spectroscopy. The morphology of the synthesized NPs was found to be a hexagonal shape using SEM and TEM analysis and elemental screening was analyzed using EDX. ZnO NPs were shown sized 40-45 nm and spherical in shape. The degradation percentage of ZnO NPs was calculated as 94% at 70 min and the rate of the reaction -k = 0.0282. The synthesized ZnO NPs were determined for effectiveness on biological activities such as antifungal, hemolytic, and antibacterial activity. ZnO NPs showed good antifungal activity against Alternaria saloni and Sclerrotium rolfii strains. Further, we have determined the hemolytic and antibacterial activity of ZnO NPs and we got successive results in antibacterial and hemolytic activities.

  7. Metal-to-insulator transition induced by UV illumination in a single SnO2 nanobelt

    NASA Astrophysics Data System (ADS)

    Viana, E. R.; Ribeiro, G. M.; de Oliveira, A. G.; González, J. C.

    2017-11-01

    An individual tin oxide (SnO2) nanobelt was connected in a back-gate field-effect transistor configuration and the conductivity of the nanobelt was measured at different temperatures from 400 K to 4 K, in darkness and under UV illumination. In darkness, the SnO2 nanobelts showed semiconductor behavior for the whole temperature range measured. However, when subjected to UV illumination the photoinduced carriers were high enough to lead to a metal-to-insulator transition (MIT), near room temperature, at T MIT = 240 K. By measuring the current versus gate voltage curves, and considering the electrostatic properties of a non-ideal conductor, for the SnO2 nanobelt on top of a gate-oxide substrate, we estimated the capacitance per unit length, the mobility and the density of carriers. In darkness, the density was estimated to be 5-10 × 1018 cm-3, in agreement with our previously reported result (Phys. Status Solid. RRL 6, 262-4 (2012)). However, under UV illumination the density of carriers was estimated to be 0.2-3.8 × 1019 cm-3 near T MIT, which exceeded the critical Mott density estimated to be 2.8 × 1019 cm-3 above 240 K. These results showed that the electrical properties of the SnO2 nanobelts can be drastically modified and easily tuned from semiconducting to metallic states as a function of temperature and light.

  8. Responses and recovery assessment of continuously cultured Nitrosomonas europaea under chronic ZnO nanoparticle stress: Effects of dissolved oxygen.

    PubMed

    Wu, Junkang; Chang, Yan; Gao, Huan; Liang, Geyu; Yu, Ran; Ding, Zhen

    2018-03-01

    Although the antibacterial performances of emerging nanoparticles (NPs) have been extensively explored in the nitrifying systems, the impacts of dissolved oxygen (DO) levels on their bio-toxicities to the nitrifiers and the impaired cells' recovery potentials have seldom been addressed yet. In this study, the physiological and transcriptional responses of the typical ammonia oxidizers - Nitrosomonas europaea in a chemostat to the chronic ZnO NP exposure under different DO conditions were investigated. The results indicated that the cells in steady-growth state in the chemostat were more persevering than batch cultured ones to resist ZnO NP stress despite the dose-dependent NP inhibitory effects were observed. In addition, the occurred striking over-expressions of amoA and hao genes at the initial NP exposure stage suggested the cells' self-regulation potentials at the transcriptional level. The low DO (0.5 mg/L) cultured cells displayed higher sensitivity to NP stress than the high DO (2.0 mg/L) cultured ones, probably owning to the inefficient oxygen-dependent electron transfer from ammonia oxidation for energy conversion/production. The following 12-h NP-free batch recovery assays revealed that both high and low DO cultured cells possessed the physiological and metabolic activity recovery potentials, which were in negative correlation with the NP exposure time. The duration of NP stress and the resulting NP dissolution were critical for the cells' damage levels and their performance recoverability. The membrane preservation processes and the associated metabolism regulations were expected to actively participate in the cells' self-adaption to NP stress and thus be responsible for their metabolic activities recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Investigation of Hydrogen-Like Muonium States in Nb-Doped SnO2 Films

    NASA Astrophysics Data System (ADS)

    Rabis, Annett; Prokscha, Thomas; Fabbri, Emiliana; Salman, Zaher; Schmidt, Thomas; Suter, Andreas

    Little is known about the characteristics of hydrogen states in thin films of SnO2 and Nb doped SnO2 (NTO) and its influence on the electrical properties in these materials, which are promising candidates for metal-oxide supports in polymer electrolyte fuel cells. Here, we used low-energy muon spin rotation/relaxation (LE-μSR) to study hydrogen-like muonium (Mu) states between 5 and 300 K in undoped and Nb doped SnO2 films with Nb doping levels of 0.1 and 2%, respectively. The films were prepared by reactive DC magnetron sputtering on undoped Si substrates. Film thicknesses varied between 75 and 200 nm, and muons were implanted close to the surface at a mean depth of 10 nm, in the center of the films, and in some cases close to the NTO/Si interface. Our results of transverse-field and longitudinal-field μSR show striking similarities to recent bulk μSR measurements on various zirconia systems [Vieira et al., Phys. Rev. B 94, 115207 (2016)]. This suggests that in the NTO systems the same Mu configurations exist which are the interstitial site with a deep, isotropic atomic Mu state, and, as the dominant fraction, the oxygen bound configuration with polaronic character.

  10. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn

  11. Exciton polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Tsukazaki, A.; Onuma, T.; Zamfirescu, M.; Ohtomo, A.; Kavokin, A.; Cantwell, G.; Litton, C. W.; Sota, T.; Kawasaki, M.

    2005-04-01

    Static and dynamic responses of excitons in state-of-the-art bulk and epitaxial ZnO are reviewed to support the possible realization of polariton lasers, which are coherent and monochromatic light sources due to Bose condensation of exciton-polaritons in semiconductor microcavities (MCs). To grasp the current problems and to pave the way for obtaining ZnO epilayers of improved quality, the following four principal subjects are treated: (i) polarized optical reflectance (OR), photoreflectance (PR) and photoluminescence (PL) spectra of the bulk and epitaxial ZnO were recorded at 8 K. Energies of PR resonances corresponded to those of upper and lower exciton-polariton branches, where A-, B- and C-excitons couple simultaneously to an electromagnetic wave. PL peaks due to the corresponding polariton branches were observed. Longitudinal-transverse splittings (ωLT) of the corresponding excitons were 1.5, 11.1 and 13.1 meV, respectively. The latter two values are more than two orders of magnitude greater than that of GaAs being 0.08 meV. (ii) Using these values and material parameters, corresponding vacuum-field Rabi splitting of exciton-polaritons coupled to a model MC mode was calculated to be 191 meV, which is the highest value ever reported for semiconductor MCs and satisfies the requirements to observe the strong exciton-light coupling regime necessary for polariton lasing above room temperature. (iii) Polarized OR and PR spectra of an out-plane nonpolar (1\\,1\\,\\bar{2}\\,0) ZnO epilayer grown by laser-assisted molecular beam epitaxy (L-MBE) were measured, since ZnO quantum wells (QWs) grown in nonpolar orientations are expected to show higher emission efficiencies due to the elimination of spontaneous and piezoelectric polarization fields normal to the QW plane. They exhibited in-plane anisotropic exciton resonances according to the polarization selection rules for anisotropically-strained wurzite material. (iv) Impacts of point defects on the nonradiative

  12. Promotional effect of surface hydroxyls on electrochemical reduction of CO 2 over SnO x/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnO x) formation on tin-based electrode surfaces during CO 2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnO x in CO 2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnO x. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H 2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface.more » CO 2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO 3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H 2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H 2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO 2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnO x monolayer on the electrode under the operating conditions promotes CO 2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  13. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong

    2015-07-01

    SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.

  14. Investigation on Synthesis, Stability, and Thermal Conductivity Properties of Water-Based SnO2/Reduced Graphene Oxide Nanofluids

    PubMed Central

    Yu, Xiaofen; Wu, Qibai; Zhang, Haiyan; Zeng, Guoxun; Li, Wenwu; Qian, Yannan; Li, Yang; Yang, Guoqiang; Chen, Muyu

    2017-01-01

    With the rapid development of industry, heat removal and management is a major concern for any technology. Heat transfer plays a critically important role in many sectors of engineering; nowadays utilizing nanofluids is one of the relatively optimized techniques to enhance heat transfer. In the present work, a facile low-temperature solvothermal method was employed to fabricate the SnO2/reduced graphene oxide (rGO) nanocomposite. X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscope (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) have been performed to characterize the SnO2/rGO nanocomposite. Numerous ultrasmall SnO2 nanoparticles with average diameters of 3–5 nm were anchored on the surface of rGO, which contain partial hydrophilic functional groups. Water-based SnO2/rGO nanofluids were prepared with various weight concentrations by using an ultrasonic probe without adding any surfactants. The zeta potential was measured to investigate the stability of the as-prepared nanofluid which exhibited great dispersion stability after quiescence for 60 days. A thermal properties analyzer was employed to measure thermal conductivity of water-based SnO2/rGO nanofluids, and the results showed that the enhancement of thermal conductivity could reach up to 31% at 60 °C under the mass fraction of 0.1 wt %, compared to deionized water. PMID:29280972

  15. Hydrothermal self-assembly of novel porous flower-like SnO2 architecture and its application in ethanol sensor

    NASA Astrophysics Data System (ADS)

    Jiang, X. H.; Ma, S. Y.; Sun, A. M.; Zhang, Z. M.; Jin, W. X.; Wang, T. T.; Li, W. Q.; Xu, X. L.; Luo, J.; Cheng, L.; Mao, Y. Z.; Zhang, M.

    2015-11-01

    Different morphologies of tin dioxide (SnO2) architectures were prepared by increasing reaction time (12, 18, 24 and 48 h) under a facile hydrothermal process and followed by calcination. The crystal structures and morphologies of the hierarchical architecture were characterized in detail by means of powder X-ray diffraction (XRD), energy dispersive X-ray detector (EDX), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the porous flower-like SnO2 architecture was obtained by 24 h hydrotherm treatment. Most importantly, the sensors based on porous flower-like SnO2 architecture exhibited perfect sensing performance toward ethanol with excellent selectivity, high response and fast response-recovery capability compared with other SnO2 nanoflowers for the same ethanol concentration at 300 °C. The response value was about 208 and the response-recovery time was around 8 and 7 s for 500 ppm ethanol, respectively. The enhancement in gas sensing properties was attributed to the unique structures, including the flower-like structure and porous feature, which provided more gas active center and diffusion pathways. The results indicated that porous flower-like SnO2 architecture was a potential candidate for fabricating effective ethanol sensor. Furthermore, the possible growth mechanism and the ethanol sensing mechanism of the architecture were discussed, too.

  16. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

    PubMed

    Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M

    2016-01-07

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.

  17. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

    PubMed

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.

  18. Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application

    PubMed Central

    Cao, Jianliang; Qin, Cong; Wang, Yan; Zhang, Bo; Gong, Yuxiao; Zhang, Huoli; Sun, Guang; Bala, Hari; Zhang, Zhanying

    2017-01-01

    The SnO2/g-C3N4 composites were synthesized via a facile calcination method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), thermal gravity and differential thermal analysis (TG-DTA), and N2-sorption. The analysis results indicated that the as-synthesized samples possess the two dimensional structure. Additionally, the SnO2 nanoparticles were highly dispersed on the surface of the g-C3N4nanosheets. The gas-sensing performance of the as-synthesized composites for different gases was tested. Moreover, the composite with 7 wt % g-C3N4 content (SnO2/g-C3N4-7) SnO2/g-C3N4-7 exhibits an admirable gas-sensing property to ethanol, which possesses a higher response and better selectivity than that of the pure SnO2-based sensor. The high surface area of the SnO2/g-C3N4 composite and the good electronic characteristics of the two dimensional graphitic carbon nitride are in favor of the elevated gas-sensing property. PMID:28468245

  19. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries.

    PubMed

    Wu, Naiteng; Du, Wuzhou; Gao, Xu; Zhao, Liang; Liu, Guilong; Liu, Xianming; Wu, Hao; He, Yan-Bing

    2018-06-21

    The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (∼912 mA h g-1 after 500 cycles at 0.5 A g-1 and 652 mA h g-1 after 200 cycles at 1 A g-1) and superior rate capability (309 mA h g-1 at 10 A g-1). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.

  20. A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Kwon, Yang Hyeog; Lee, Min Hyung; Jung, Joo-Yun; Seol, Jae Hun; Nah, Junghyo

    2016-01-01

    We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ~32 V and ~6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07185b

  1. Enhanced Structural and Luminescent Properties of Carbon-Assisted ZnO Nanorod Arrays on (100) Si Substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Im Taek; Cho, Hak Dong; Lee, Sejoon; Roshchupkin, Dmitry V.

    2018-02-01

    We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.

  2. Sandwich-like MoS2 @SnO2 @C with High Capacity and Stability for Sodium/Potassium Ion Batteries.

    PubMed

    Chen, Zhi; Yin, Dangui; Zhang, Ming

    2018-04-01

    Sandwich-like MoS 2 @SnO 2 @C nanosheets are prepared by facile hydrothermal reactions. SnO 2 nanosheets can attach to exfoliated MoS 2 nanosheets to prevent restacking of adjacent MoS 2 nanosheets, and carbon transformed from polyvinylpyrrolidone is coated on MoS 2 @SnO 2 , forming a sandwich structure to maintain cycling stability. As an anode for sodium-ion batteries, the electrode greatly deliverers a high initial discharge specific capacity of 530 mA h g -1 and maintains at 396 mA h g -1 after 150 cycles at 0.1 A g -1 . Even at a large current density of 1 A g -1 , it can hold 230 mA h g -1 after 450 cycles. Besides, as an anode for K + storage, the electrode also shows a discharge capacity of 312 mA h g -1 after 25 cycles at 0.05 A g -1 . This work may provide a new strategy to prepare other composites which can be applied to new kind of rechargeable batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ultrafast Recombination Dynamics in Dye-Sensitized SnO2/TiO2 Core/Shell Films.

    PubMed

    Gish, Melissa K; Lapides, Alexander M; Brennaman, M Kyle; Templeton, Joseph L; Meyer, Thomas J; Papanikolas, John M

    2016-12-15

    Interfacial dynamics are investigated in SnO 2 /TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([Ru II (bpy) 2 (4,4'-(PO 3 H 2 ) 2 bpy)] 2+ , RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).

  4. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    NASA Astrophysics Data System (ADS)

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-04-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  5. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    PubMed

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  6. Tetramethylene glycol mediated hydrothermal synthesis of defect-rich SnO2 nanoparticles for fast adsorption and degradation of MB dye

    NASA Astrophysics Data System (ADS)

    Rani, Barkha; Jadhao, Charushila Vasant; Sahu, Niroj Kumar

    2018-04-01

    Defect-rich pristine tin oxide nanoparticles (SnO2 NPs) with high colloidal stability have been synthesized by tetramethylene glycol (TMG) mediated hydrothermal process and characterized by XRD, TEM, Zeta Potential, PL spectroscopy and porosity measurement techniques. XRD result suggests the formation of rutile phase of SnO2 with average crystallite size of 2.65 nm. TMG act as a structure directing agent assist in the formation of network like structure of SnO2 NPs as confirmed from TEM. Significant blue shifts in the UV absorption spectrum as that of the bulk and defect bands in the PL spectrum are observed. The nanomaterial possesses very high surface area of 263.102 m2/g and large pore volume. The above properties strongly influence the photocatalytic degradation of methylene blue dye. Very fast adsorption and 96% degradation (under UV irradiation) has been achieved when 10 ppm methylene blue solutions is catalysed by 20 mg SnO2 NPs which pave the way for potential environmental application.

  7. Ferromagnetism in two-dimensional hole-doped SnO

    NASA Astrophysics Data System (ADS)

    Houssa, M.; Iordanidou, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.

    2018-05-01

    Hole-doped monolayer SnO has been recently predicted to be a ferromagnetic material, for a hole density typically above 5x1013/cm2. The possibility to induce a hole-doped stable ferromagnetic order in this two-dimensional material, either by intrinsic or extrinsic defects, is theoretically studied, using first-principles simulations. Sn vacancies and Sn vacancy-hydrogen complexes are predicted to be shallow acceptors, with relatively low formation energies in SnO monolayers grown under O-rich conditions. These defects produce spin-polarized gap states near the valence band-edge, potentially stabilizing the ferromagnetic order in 2D SnO. Hole-doping resulting from substitutional doping is also investigated. Among the considered possible dopants, As, substituting O, is predicted to produce shallow spin-polarized gap states near the valence band edge, also potentially resulting in a stable ferromagnetic order in SnO monolayers.

  8. Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles.

    PubMed

    Lavanya, N; Radhakrishnan, S; Sekar, C

    2012-01-01

    Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Promotion effect of Pt on a SnO2-WO3 material for NOx sensing

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Yang; Hong, Zih-Siou; Wu, Ren-Jang

    2015-05-01

    Metal-oxide nanocomposites were prepared over screen-printed gold electrodes to be used as room-temperature NOx (nitric-oxide (NO) and nitrogen dioxide (NO2)) sensors. Various weight ratios of SnO2-WO3 and Pt loadings were used for NO sensing. The sensing materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface analysis. The NO-sensing results indicated that SnO2-WO3 (1:2) was more effective than other materials were. The sensor response (S=resistance of N2/resistance of NO=RN2/RNO) for detecting 1000 ppm of NO at room temperature was 2.6. The response time (T90) and recovery time (TR90) was 40 s and 86 s, respectively. By further loading with 0.5% Pt, the sensor response increased to 3.3. The response and recovery times of 0.5% Pt/SnO2-WO3 (1:2) were 40 s and 206 s, respectively. The linearity of the sensor response for a NO concentration range of 10-1000 ppm was 0.9729. A mechanism involving Pt promotion of the SnO2-WO3 heterojunction was proposed for NO adsorption, surface reaction, and adsorbed NO2 desorption.

  10. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  11. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions

    PubMed Central

    Xie, Ting; Hasan, Md Rezaul; Qiu, Botong; Arinze, Ebuka S.; Nguyen, Nhan V.; Motayed, Abhishek; Thon, Susanna M.; Debnath, Ratan

    2017-01-01

    We report on the significant performance enhancement of SnO2 thin film ultraviolet (UV) photodetectors (PDs) through incorporation of CuO/SnO2 p-n nanoscale heterojunctions. The nanoheterojunctions are self-assembled by sputtering Cu clusters that oxidize in ambient to form CuO. We attribute the performance improvements to enhanced UV absorption, demonstrated both experimentally and using optical simulations, and electron transfer facilitated by the nanoheterojunctions. The peak responsivity of the PDs at a bias of 0.2 V improved from 1.9 A/W in a SnO2-only device to 10.3 A/W after CuO deposition. The wavelength-dependent photocurrent-to-dark current ratio was estimated to be ~ 592 for the CuO/SnO2 PD at 290 nm. The morphology, distribution of nanoparticles, and optical properties of the CuO/SnO2 heterostructured thin films are also investigated. PMID:28729741

  12. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting

    NASA Astrophysics Data System (ADS)

    Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. Asgari; Forouzandeh, M.; Amin, M. H.

    2018-05-01

    Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large amounts of OH groups formed on the surfaces of SnO2 nanoparticles during the polycondensation reactions of tin derivatives which could facilitate the pyrolysis of urea to carbon nitride. The porous nanocomposite prepared with initial tin amount of 0.175 g had high specific surface area of 195 m2 g-1 which showed high efficiency photoelectrochemical water-splitting ability. A maximum photocurrent density of 33 μA cm-2 was achieved at an applied potential of 0.5 V when testing this nanocomposite as photo-anode in water-splitting reactions under simulated visible light irradiation, introducing it as a promising visible light photoactive material.

  13. Expression profiling of snoRNAs in normal hematopoiesis and AML

    PubMed Central

    Warner, Wayne A.; Spencer, David H.; Trissal, Maria; White, Brian S.; Helton, Nichole; Ley, Timothy J.

    2018-01-01

    Small nucleolar RNAs (snoRNAs) are noncoding RNAs that contribute to ribosome biogenesis and RNA splicing by modifying ribosomal RNA and spliceosome RNAs, respectively. We optimized a next-generation sequencing approach and a custom analysis pipeline to identify and quantify expression of snoRNAs in acute myeloid leukemia (AML) and normal hematopoietic cell populations. We show that snoRNAs are expressed in a lineage- and development-specific fashion during hematopoiesis. The most striking examples involve snoRNAs located in 2 imprinted loci, which are highly expressed in hematopoietic progenitors and downregulated during myeloid differentiation. Although most snoRNAs are expressed at similar levels in AML cells compared with CD34+, a subset of snoRNAs showed consistent differential expression, with the great majority of these being decreased in the AML samples. Analysis of host gene expression, splicing patterns, and whole-genome sequence data for mutational events did not identify transcriptional patterns or genetic alterations that account for these expression differences. These data provide a comprehensive analysis of the snoRNA transcriptome in normal and leukemic cells and should be helpful in the design of studies to define the contribution of snoRNAs to normal and malignant hematopoiesis. PMID:29365324

  14. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  15. A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy

    NASA Astrophysics Data System (ADS)

    Yue, Lu; Ge, Jingjing; Luo, Gaixia; Bian, Kaiting; Yin, Chao; Guan, Rongfeng; Zhang, Wenhui; Zhou, Zheng; Wang, Kaixin; Guo, Xiufeng

    2018-03-01

    A facile approach to prepare porous SnO2 and SnO2/C composite with Cu-Sn alloy as raw material by wet chemical reaction strategy has been developed. The prepared porous SnO2 and its carbon composite showed homogeneous mesoporous structure and high surface area, displayed superior rate performance and high reversible capacity of 625 mAh g-1 and 1185 mAh g-1 over 800 cycles at 0.4 A g-1, respectively. Compared with commercial SnO2, porous SnO2 sensor presented higher response, faster response/recovery capability, good selectivity and repeatability to ethanol at 180°C.

  16. The Effect of Eu Doping on Microstructure, Morphology and Methanal-Sensing Performance of Highly Ordered SnO2 Nanorods Array

    PubMed Central

    Zhao, Yanping; Li, Yuehua; Ren, Xingping; Gao, Fan; Zhao, Heyun

    2017-01-01

    Layered Eu-doped SnO2 ordered nanoarrays constructed by nanorods with 10 nm diameters and several hundred nanometers length were synthesized by a substrate-free hydrothermal route using alcohol and water mixed solvent of sodium stannate and sodium hydroxide at 200 °C. The Eu dopant acted as a crystal growth inhibitor to prevent the SnO2 nanorods growth up, resulting in tenuous SnO2 nanorods ordered arrays. The X-ray diffraction (XRD) revealed the tetragonal rutile-type structure with a systematic average size reduction and unit cell volume tumescence, while enhancing the residual strain as the Eu-doped content increases. The surface defects that were caused by the incorporation of Eu ions within the surface oxide matrix were observed by high-resolution transmission electron microscope (HRTEM). The results of the response properties of sensors based on the different levels of Eu-doped SnO2 layered nanoarrays demonstrated that the 0.5 at % Eu-doped SnO2 layered nanorods arrays exhibited an excellent sensing response to methanal at 278 °C. The reasons of the enhanced sensing performance were discussed from the complicated defect surface structure, the large specific surface area, and the excellent catalytic properties of Eu dopant. PMID:29168796

  17. High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode

    PubMed Central

    Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai

    2010-01-01

    High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470

  18. Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method

    NASA Astrophysics Data System (ADS)

    Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling

    2015-12-01

    In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.

  19. NR2A- and NR2B-Containing NMDA Receptors in the Prelimbic Medial Prefrontal Cortex Differentially Mediate Trace, Delay, and Contextual Fear Conditioning

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Kwapis, Janine L.; Helmstetter, Fred J.

    2013-01-01

    Activation of "N"-methyl-D-aspartate receptors (NMDAR) in the prelimbic medial prefrontal cortex (PL mPFC) is necessary for the acquisition of both trace and contextual fear memories, but it is not known how specific NR2 subunits support each association. The NR2B subunit confers unique properties to the NMDAR and may differentially…

  20. Crystallographic and Mössbauer investigations on Np1- xPuxB2

    NASA Astrophysics Data System (ADS)

    Chipaux, R.; Bonnisseau, D.; Bogé, M.; Larroque, J.

    1988-08-01

    The diborides of neptunium and plutonium and their solid solutions Np 1- xPu xB 2 have been synthesized by direct reaction with a good purity. The lattice parameters follow Vegard's law. The magnetic properties of the samples containing neptunium have been investigated by Mössbauer spectrometry. The isomer shift is almost constant in all compounds (-14.5 (0.2) mm/s resp. to NpAl 2), suggesting tetravalent Np ions. At high temperatures, a large quadrupolar interaction, clearly connected to the crystal structure, is observed in all compounds, decreasing slowly with the neptunium concentration. At low temperature, magnetic patterns appear for x ⩽ 0.5. The magnetic moments are ordered perpendicular to the c-axis and equal to 0.57μ B for x = 0. In Np 0.5Pu 0.5B 2 and, in less degree in Np 0.7Pu 0.3B 2 and Np 0.33Pu 0.67B 2, magnetic fluctuations are detec ted.

  1. Combinatorial study of zinc tin oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  2. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    PubMed

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    NASA Astrophysics Data System (ADS)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  4. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    PubMed

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  5. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  6. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  7. Overexpression of SnoN/SkiL, amplified at the 3q26.2 locus, in ovarian cancers: A role in ovarian pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanjundan, Meera; Cheng, Kwai Wa; Zhang, Fan

    2008-07-18

    High-resolution array comparative genomic hybridization of 235 serous epithelial ovarian cancers demonstrated a regional increase at 3q26.2 encompassing SnoN/SkiL, a coregulator of SMAD/TGF{beta} signaling. SnoN RNA transcripts were elevated in {approx}80% of advanced stage serous epithelial ovarian cancers. In both immortalized normal (TIOSE) and ovarian carcinoma cell lines (OVCA), SnoN RNA levels were increased by TGF{beta} stimulation and altered by LY294002 and JNK II inhibitor treatment suggesting that the PI3K and JNK signaling pathways may regulate TGF{beta}-induced increases in SnoN RNA. In TIOSE, SnoN protein levels were reduced 15min post TGF{beta}-stimulation, likely by proteosome-mediated degradation. In contrast, in OVCA, SnoNmore » levels were elevated 3h post-stimulation potentially as a result of inhibition of the proteosome. To elucidate the role of SnoN in ovarian tumorigenesis, we explored the effects of both increasing and decreasing SnoN levels. In both TIOSE and OVCA, SnoN siRNA decreased cell growth between 20 and 50% concurrent with increased p21 levels. In TIOSE, transient expression of SnoN repressed TGF{beta} induction of PAI-1 promoters with little effect on the p21 promoter or resultant cell growth. In contrast to the effects of transient expression, stable expression of SnoN in TIOSE led to growth arrest through induction of senescence. Collectively, these results implicate SnoN levels in multiple roles during ovarian carcinogenesis: promoting cellular proliferation in ovarian cancer cells and as a positive mediator of cell cycle arrest and senescence in non-transformed ovarian epithelial cells.« less

  8. Twin Crystal Induced near Zero Thermal Expansion in SnO2 Nanowires.

    PubMed

    Zhu, He; Li, Qiang; Yang, Chao; Zhang, Qinghua; Ren, Yang; Gao, Qilong; Wang, Na; Lin, Kun; Deng, Jinxia; Chen, Jun; Gu, Lin; Hong, Jiawang; Xing, Xianran

    2018-06-20

    Knowledge of controllable thermal expansion is a fundamental issue in the field of materials science and engineering. Direct blocking of the thermal expansions in positive thermal expansion materials is a challenging but fascinating task. Here we report a near zero thermal expansion (ZTE) of SnO 2 achieved from twin crystal nanowires, which is highly correlated to the twin boundaries. Local structural evolutions followed by pair distribution function revealed a remarkable thermal local distortion along the twin boundary. Lattice dynamics investigated by Raman scattering evidenced the hardening of phonon frequency induced by the twin crystal compressing, giving rise to the ZTE of SnO 2 nanowires. Further DFT calculation of Grüneisen parameters confirms the key role of compressive stress on ZTE. Our results provide an insight into the thermal expansion behavior regarding to twin crystal boundaries, which could be beneficial to the applications.

  9. Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yankun; Liu, Yushan; Zhang, Jianmin

    2015-10-01

    In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO2/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption experiments. The morphology analyses showed that the SnO2 nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g-1 at a scan rate of 5 mV s-1 in 1 M Na2SO4 electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.

  10. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    NASA Astrophysics Data System (ADS)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  11. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE PAGES

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R; ...

    2016-12-02

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  12. Complexation of NpO2+ with (2-Hydroxyethyl)ethylenediaminetriacetic Acid (HEDTA) in Aqueous Solutions: Thermodynamic Studies and Structural Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xingliang; Zhang, Zhicheng; Martin, Leigh R

    Complexation of Np(V) with N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) was studied in aqueous solution (I = 1.0 mol L -1 NaClO 4, t = 25 °C) by spectrophotometry, microcalorimetry and Extended X-ray absorption fine structure (EXAFS) spectroscopy. Equilibrium constants for the formation of three complexes, NpO 2L 2-, NpO 2(HL) -, and (NpO 2)2(OH)2L26 -, were determined to be (6.91 ± 0.06), (4.28 ± 0.03) and -(4.93 ± 0.03), respectively. The enthalpies of complexation were determined to be -(8.0 ± 2.0) kJ mol -1 for NpO 2L 2 - and -(2.2 ± 2.0) kJ mol-1 for NpO 2(HL) -. Thermodynamic data ofmore » the complexation of Np(V) with HEDTA were compared to those of Np(V) with other aminopolycarboxylic acids, gaining insight into the possible coordination modes of the complexes. The EXAFS studies provided further structural information on those modes. In both NpO 2L 2 - and NpO 2(HL) - complexes, HEDTA coordinates to Np(V) in a tridentate mode through two oxygens of two carboxylic groups and one nitrogen of the amine group. In the (NpO 2) 2(OH) 2L 2 6- complex, two Np(V) atoms are bridged by two hydroxides and each HEDTA maintains the tridentate coordination mode.« less

  13. Influence of Water Vapors and Hydrogen on the Energy Band Bending in the SnO2 Microcrystals of Polycrystalline Tin Dioxide Films

    NASA Astrophysics Data System (ADS)

    Gaman, V. I.; Almaev, A. V.; Sevast'yanov, E. Yu.; Maksimova, N. K.

    2015-06-01

    The results of studying the dependence of the energy band bending at the interface of contacting SnO2 microcrystals in the polycrystalline tin dioxide film on the humidity level of clean air and hydrogen concentration in the gas mixture of clean air + H2 are presented. The experimental results showed that the bending of energy bands in SnO2 is decreased under exposure to the water vapors and molecular hydrogen. The presence of two types of the adsorption centers for water molecules on the surface of SnO2 is found. It is shown that at the absolute humidity of the gas mixture above 12 g/m3, the H2O and H2 molecules are adsorbed on the same centers, whose surface density is of 1012 сm-2 at a concentration of donor impurity in SnO2 equal to 1018 сm-3.

  14. Downregulation of the spinal NMDA receptor NR2B subunit during electro-acupuncture relief of chronic visceral hyperalgesia.

    PubMed

    Liu, Hongping; Zhang, Yuhua; Qi, Debo; Li, Weimin

    2017-01-01

    The involvement of spinal NR2B, a N-methyl-D-aspartate (NMDA) receptor subunit, in the therapeutic effect of electro-acupuncture (EA) on chronic visceral hyperalgesia was investigated. Chronic visceral hyperalgesia was induced using an irritable bowel syndrome (IBS) model in rats. Graded colorectal distention (CRD) stimuli at strengths of 20, 40, 60 and 80 mmHg were applied, and behavioral tests were performed to measure the abdominal withdrawal reflex (AWR) in response to the CRD stimuli and assess the severity of the visceral hyperalgesia. Rats were randomly divided into four groups: normal intact (control) group, IBS model (model) group, EA-treated IBS rats (EA) group and sham EA-treated IBS rats (sham EA) group. For the EA treatment, electric stimuli were applied through needles inserted into two acupoints [Zu-san-li (ST-36) and Shang-ju-xu (ST-37)] in both hind limbs, while the sham EA treatment consisted of only the insertion of needles into these same acupoints without an application of electric stimuli. Our results showed that AWR scores of the model group responding to CRD stimuli of 20, 40, 60 and 80 mmHg were significantly increased. These increased scores subsequently decreased following EA treatment (P < 0.05) compared with those for the other groups. The expression of NR2B in the superficial laminae (SDH, laminae I and II), nucleus proprius (NP, laminae III and IV), neck of the dorsal horn (NECK, laminae V and VI) and central canal region (lamina X) at thoracolumbar (T13-L2) and lumbosacral (L6-S2) segmental level significantly increased in the model group versus the control group (P < 0.05) and significantly decreased after EA treatment (P < 0.05). There were no significant changes in neither AWR scores nor expression of the NR2B subunit in these spinal regions after the sham EA treatment. These results confirm that EA can relieve chronic visceral hyperalgesia in IBS model rats and suggest that such an effect is possibly mediated through the

  15. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  16. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds.

    PubMed

    Bhattacharjee, Archita; Ahmaruzzaman, M; Sinha, Tanur

    2015-02-05

    Tin oxide (SnO2) nanoparticles of sizes ∼4.5, ∼10 and ∼30 nm were successfully synthesized by a simple chemical precipitation method using amino acid, glycine which acts as a complexing agent and surfactant, namely sodium dodecyl sulfate (SDS) as a stabilizing agent, at various calcination temperatures of 200, 400 and 600°C. This method resulted in the formation of spherical SnO2 nanoparticles and the size of the nanoparticles was found to be a factor of calcination temperature. The spherical SnO2 nanoparticles show a tetragonal rutile crystalline structure. A dramatic increase in band gap energy (3.8-4.21 eV) was observed with a decrease in grain size (30-4.5 nm) due to three dimensional quantum confinement effect shown by the synthesized SnO2 nanoparticles. SnO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transformed infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. These SnO2 nanoparticles were employed as catalyst for the reduction of p-nitro phenol to p-amino phenol in aqueous medium for the first time. The synthesized SnO2 nanoparticles act as an efficient photocatalyst in the degradation of methyl violet 6B dye under direct sunlight. For the first time, methyl violet 6B dye was degraded by SnO2 nanoparticles under direct sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. In-Depth View of the Structure and Growth of SnO2 Nanowires and Nanobrushes.

    PubMed

    Stuckert, Erin P; Geiss, Roy H; Miller, Christopher J; Fisher, Ellen R

    2016-08-31

    Strategic application of an array of complementary imaging and diffraction techniques is critical to determine accurate structural information on nanomaterials, especially when also seeking to elucidate structure-property relationships and their effects on gas sensors. In this work, SnO2 nanowires and nanobrushes grown via chemical vapor deposition (CVD) displayed the same tetragonal SnO2 structure as revealed via powder X-ray diffraction bulk crystallinity data. Additional characterization using a range of electron microscopy imaging and diffraction techniques, however, revealed important structure and morphology distinctions between the nanomaterials. Tailoring scanning transmission electron microscopy (STEM) modes combined with transmission electron backscatter diffraction (t-EBSD) techniques afforded a more detailed view of the SnO2 nanostructures. Indeed, upon deeper analysis of individual wires and brushes, we discovered that, despite a similar bulk structure, wires and brushes grew with different crystal faces and lattice spacings. Had we not utilized multiple STEM diffraction modes in conjunction with t-EBSD, differences in orientation related to bristle density would have been overlooked. Thus, it is only through a methodical combination of several structural analysis techniques that precise structural information can be reliably obtained.

  18. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x /g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Zeng, Xiaoqiao; Gao, Shanmin

    Novel SnO 2–x/g-C 3N 4 heterojunction nanocomposites composed of reduced SnO 2–x nanoparticles and exfoliated g-C 3N 4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C 3N 4 nanosheets was prevented by small, well-dispersed SnO 2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO 2 or g-C 3N 4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetrymore » and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO 2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO 2 and g-C 3N 4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO 2–x, which is 32.28 and 5.79 times higher than that of pure SnO 2 and g-C 3N 4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO 2–x content and the compact structure of the junction between the SnO 2–x nanoparticles and the g-C 3N 4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.« less

  19. Design of WO3-SnO2 core-shell nanofibers and their enhanced gas sensing performance based on different work function

    NASA Astrophysics Data System (ADS)

    Li, Feng; Gao, Xing; Wang, Rui; Zhang, Tong

    2018-06-01

    In this work, core-shell WO3-SnO2 (CS-WS) nanofibers (NFs) have been successfully synthesized via a coaxial electrospinning approach. The structure and morphology characteristics of the resultant products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS). To investigate the sensing mechanism of the CS-WS NFs, sensors based on SnO2 NFs, WO3 NFs, and SnO2-WO3 composite NFs were fabricated respectively, and their gas sensing properties were investigated by using CO, ethanol, toluene, acetone, and ammonia as the test gas. The results indicated that the CS-WS NFs exhibited a good response to ethanol (5.09 at 10 ppm) and short response/recovery time (18.5 s and 282 s) compared with the other test gases. The enhanced ethanol sensing properties of CS-WS NFs compared with those of SnO2 NFs were closely associated with the CS structure and its derivative effect due to the different work function of SnO2 and WO3. The approach proposed in this study may contribute to the realization of more sensitive metal oxide semiconductor (MOS) core-shell heterostructure sensors.

  20. The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Kanako; Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501; Kanno, Takeshi

    2008-03-07

    The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression ofmore » the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.« less

  1. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.

    PubMed

    Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E

    2010-05-15

    A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroschein, Shannon L.; Bonni, Shirin; Wrana, Jeffrey L.

    2001-09-11

    Smad proteins mediate transforming growth factor-b signaling to regulate cell growth and differentiation. SnoN is an important negative regulator of TGFb signaling that functions to maintain the repressed state of TGFb target genes in the absence of ligand. Upon TGFb stimulation, Smad3 and Smad2 translocate into the nucleus and induce a rapid degradation of SnoN, allowing activation of TGFb target genes. Here we show that Smad2- or Smad3-induced degradation of SnoN requires the ubiquitin-dependent proteasome and can be mediated by the anaphase promoting complex (APC) and the UbcH5 family of ubiquitin conjugating enzymes. Smad3 and to a lesser extent, Smad2,more » interact with both the APC and SnoN, resulting in the recruitment of the APC to SnoN and subsequent ubiquitination of SnoN in a destruction box-dependent manner. In addition to the destruction box, efficient degradation of SnoN also requires the Smad3 binding site in SnoN as well as key lysine residues necessary for ubiquitin attachment. Mutation of either the Smad3 binding site or lysine residues results in stabilization of SnoN and in enhanced antagonism of TGFb signaling. Our studies elucidate an important pathway for the degradation of SnoN and reveal a novel role of the APC in regulation of TGFb signaling.« less

  3. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  4. Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.

    2018-04-01

    We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.

  5. Effect of both deposition temperature and indium doping on the properties of sol-gel dip-coated SnO2 films

    NASA Astrophysics Data System (ADS)

    Caglar, Mujdat; Atar, Kadir Cemil

    2012-10-01

    Using indium chloride as an In source, In-doped SnO2 films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO2 films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO2 films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO2 films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content.

  6. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.

    PubMed

    Zhu, Yun Guang; Wang, Ye; Han, Zhao Jun; Shi, Yumeng; Wong, Jen It; Huang, Zhi Xiang; Ostrikov, Kostya Ken; Yang, Hui Ying

    2014-12-21

    The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.

  7. N2O and N2 production during heterotrophic nitrification by Alcaligenes faecalis strain NR.

    PubMed

    Zhao, Bin; An, Qiang; He, Yi Liang; Guo, Jin Song

    2012-07-01

    A heterotrophic nitrifier, strain NR, was isolated from a membrane bioreactor. Strain NR was identified as Alcaligenes faecalis by Auto-Microbic system and 16S rRNA gene sequence analysis. A. faecalis strain NR shows a capability of heterotrophic nitrification and N(2)O and N(2) production as well under the aerobic condition. Further tests demonstrated that neither nitrite nor nitrate could be denitrified aerobically by strain NR. However, when hydroxylamine was used as the sole nitrogen source, nitrogenous gases were detected. With an enzyme assay, a 0.063 U activity of hydroxylamine oxidase was observed, while nitrate reductase and nitrite reductase were undetectable. Thus, nitrogenous gas was speculated to be produced via hydroxylamine. Therefore, two different metabolic pathways might exist in A. faecalis NR. One is heterotrophic nitrification by oxidizing ammonium to nitrite and nitrate. The other is oxidizing ammonium to nitrogenous gas directly via hydroxylamine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Hybrid TiO2/ZnO and TiO2/Al plasmon impregnated ZnO nanocomposite photoanodes for DSSCs: synthesis and characterisation

    NASA Astrophysics Data System (ADS)

    Pugazhendhi, K.; D’Almeida, Steven; Naveen Kumar, P.; Sahaya Selva Mary, J.; Tenkyong, Tenzin; Sharmila, D. J.; J, Madhavan; Merline Shyla, J.

    2018-04-01

    The proposed work reports the synthesis and characterisation of novel and hybrid nanocomposites TiO2/ZnO and TiO2/Al plasmon impregnated ZnO, prepared using sol-gel method. X-Ray Diffraction analysis confirmed the crystalline nature of the nanocomposites with high degree of purity and the crystallite size was found to be 22 nm (TiO2/ZnO) and 21 nm (TiO2/Al-ZnO) using Scherrer’s formula. The surface chemistry, elemental compositions and purity were investigated and established using Energy Dispersive X-ray Analysis. The specific surface area of TiO2/ZnO was observed to be 23 m2 g‑1 whereas on comparison, a slight decrease was observed in the case of TiO2/Al-ZnO to 19 m2 g‑1 from Brunauer–Emmett–Teller analysis and in addition, both the samples were identified to be mesoporous in nature. The vibrational assignments were observed using Fourier Transform Infra-Red spectroscopy and results confirmed the existence of TiO2, ZnO and Al groups. The electrical response of the nanocomposites to the incident radiation with applied electric field was examined using Field Dependent Dark and Photo conductivity studies. The observed measurements revealed that the photocurrent values are greater than the dark currents which confirmed the photoconductive nature of the nanocomposites. While both the prepared nanocomposites qualify as good candidates for usage as efficient photoanodes for DSSCs, TiO2/Al-ZnO indicates a slight edge over the other.

  9. Multi-yolk-shell SnO2/Co3Sn2@C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage.

    PubMed

    Su, Liwei; Xu, Yawei; Xie, Jian; Wang, Lianbang; Wang, Yuanhao

    2016-12-28

    The challenging problems of SnO 2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li 2 O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO 2 by introducing Co 3 Sn 2 nanoalloys which can release Co atoms to reversibly react with Li 2 O instead. According to this protocol, multi-yolk-shell SnO 2 /Co 3 Sn 2 @C nanocubes are designed and successfully prepared using hollow CoSn(OH) 6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li 2 O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g -1 after 200 cycles at 100 mA g -1 . Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO 2 for higher reversibility.

  10. Dependence of the magnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods on their Mn doping levels

    NASA Astrophysics Data System (ADS)

    Thongjamroon, S.; Ding, J.; Herng, T. S.; Tang, I. M.; Thongmee, S.

    2017-10-01

    The effects of Mn doping on the ferromagnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods (NR's) having the nominal composit-ions x = 0, 0.01, 0.03, 0.04 and 0.05 grown by a low temperature hydrothermal method are studied. Energy dispersive X-ray (EDX) is used to determine the actual amounts of the elements in each NR's. X-ray diffraction, scanning electron microscopy, photoluminescence and vibrating sample magnetometer measurements are used to observe the effects of the Mn substitution on the properties of the doped ZnO and to relate the changes in the properties to changes in the defect content. It is observed that the saturation magnetization of the Mn ions in the wurtzite structure varies from 0.0210 μB/Mn2+ to 0.0234 μB/Mn2+ reaching a high of 0.0251 μB/Mn2+ as the Mn concentrations is varied from 0.9 to 7.36 atomic%. It is argued that the changes in the saturation magnetization are due to the competition between the direct Mn-Mn exchange interaction and the indirect Mn-O-Mn exchange interaction in the doped Mn ZnO NP's.

  11. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    NASA Astrophysics Data System (ADS)

    Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun

    2015-04-01

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100-200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800-3200 mg/kg). Both Zn concentration in shoots and roots correlated positively ( P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO4) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO4. Although significantly lower compared to bulk ZnO and ZnSO4, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

  12. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells

    PubMed Central

    2010-01-01

    Background Surface charge and oxidative stress are often hypothesized to be important factors in cytotoxicity of nanoparticles. However, the role of these factors is not well understood. Hence, the aim of this study was to systematically investigate the role of surface charge, oxidative stress and possible involvement of mitochondria in the production of intracellular reactive oxygen species (ROS) upon exposure of rat macrophage NR8383 cells to silicon nanoparticles. For this aim highly monodisperse (size 1.6 ± 0.2 nm) and well-characterized Si core nanoparticles (Si NP) were used with a surface charge that depends on the specific covalently bound organic monolayers: positively charged Si NP-NH2, neutral Si NP-N3 and negatively charged Si NP-COOH. Results Positively charged Si NP-NH2 proved to be more cytotoxic in terms of reducing mitochondrial metabolic activity and effects on phagocytosis than neutral Si NP-N3, while negatively charged Si NP-COOH showed very little or no cytotoxicity. Si NP-NH2 produced the highest level of intracellular ROS, followed by Si NP-N3 and Si NP-COOH; the latter did not induce any intracellular ROS production. A similar trend in ROS production was observed in incubations with an isolated mitochondrial fraction from rat liver tissue in the presence of Si NP. Finally, vitamin E and vitamin C induced protection against the cytotoxicity of the Si NP-NH2 and Si NP-N3, corroborating the role of oxidative stress in the mechanism underlying the cytotoxicity of these Si NP. Conclusion Surface charge of Si-core nanoparticles plays an important role in determining their cytotoxicity. Production of intracellular ROS, with probable involvement of mitochondria, is an important mechanism for this cytotoxicity. PMID:20831820

  13. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  14. Solvent-Free Synthesis of Uniform MOF Shell-Derived Carbon Confined SnO2 /Co Nanocubes for Highly Reversible Lithium Storage.

    PubMed

    He, Qiu; Liu, Jinshuai; Li, Zhaohuai; Li, Qi; Xu, Lin; Zhang, Baoxuan; Meng, Jiashen; Wu, Yuzhu; Mai, Liqiang

    2017-10-01

    Tin dioxide (SnO 2 ) has attracted much attention in lithium-ion batteries (LIBs) due to its abundant source, low cost, and high theoretical capacity. However, the large volume variation, irreversible conversion reaction limit its further practical application in next-generation LIBs. Here, a novel solvent-free approach to construct uniform metal-organic framework (MOF) shell-derived carbon confined SnO 2 /Co (SnO 2 /Co@C) nanocubes via a two-step heat treatment is developed. In particular, MOF-coated CoSnO 3 hollow nanocubes are for the first time synthesized as the intermediate product by an extremely simple thermal solid-phase reaction, which is further developed as a general strategy to successfully obtain other uniform MOF-coated metal oxides. The as-synthesized SnO 2 /Co@C nanocubes, when tested as LIB anodes, exhibit a highly reversible discharge capacity of 800 mAh g -1 after 100 cycles at 200 mA g -1 and excellent cycling stability with a retained capacity of 400 mAh g -1 after 1800 cycles at 5 A g -1 . The experimental analyses demonstrate that these excellent performances are mainly ascribed to the delicate structure and a synergistic effect between Co and SnO 2 . This facile synthetic approach will greatly contribute to the development of functional metal oxide-based and MOF-assisted nanostructures in many frontier applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Calibration of the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  16. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com; Ozcan, Yusuf; Orujalipoor, Ilghar

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactivemore » growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.« less

  17. High capacity and stable all-solid-state Li ion battery using SnO2-embedded nanoporous carbon.

    PubMed

    Notohara, Hiroo; Urita, Koki; Yamamura, Hideyuki; Moriguchi, Isamu

    2018-06-08

    Extensive research efforts are devoted to development of high performance all-solid-state lithium ion batteries owing to their potential in not only improving safety but also achieving high stability and high capacity. However, conventional approaches based on a fabrication of highly dense electrode and solid electrolyte layers and their close contact interface is not always applicable to high capacity alloy- and/or conversion-based active materials such as SnO 2 accompanied with large volume change in charging-discharging. The present work demonstrates that SnO 2 -embedded nanoporous carbons without solid electrolyte inside the nanopores are a promising candidate for high capacity and stable anode material of all-solid-state battery, in which the volume change reactions are restricted in the nanopores to keep the constant electrode volume. A prototype all-solid-state full cell consisting of the SnO 2 -based anode and a LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 -based cathode shows a good performance of 2040 Wh/kg at 268.6 W/kg based on the anode material weight.

  18. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  19. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  1. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g-1, respectively, at a current density of 2 A g-1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  2. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-03-01

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g-1 are 2213 and 1402 mA h g-1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g-1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g-1, respectively. Even at a high current density of 1000 mA g-1, the first discharge and charge capacities are 1502 and 876 mA h g-1, and the discharge specific capacities remains 1057 and 677 mA h g-1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.

  3. Status and prospects of the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Maneira, J.

    2016-05-01

    The SNO+ experiment is located at the SNOLAB underground laboratory and will employ 780 tons of liquid scintillator loaded, in its initial phase, with 800 kg of 130Te (0.3% by mass) for a low-background and high-isotope-mass search for neutrino-less double beta decay. SNO+ reuses the acrylic vessel and PMT array of the SNO detector, but several experimental upgrades and adaptations were necessary to allow for the use of liquid scintillator. The SNO+ technique allows a staged approach, and extensive R&D is ongoing to increase the loadings and improve the purification of Tellurium. The very good conditions of background and low energy threshold allow SNO+ to also have other physics topics in its program, including geo- and reactor neutrinos, Supernova and solar neutrinos. This talk will describe the main advantages and challenges of the SNO+ approach for the double-beta decay program, the current status of the experiment and its sensitivity prospects.

  4. Novel Chemoresistive CH4 Sensor with 10 ppm Sensitivity Based on Multi-Walled Carbon Nanotubes (MWCNTs) Functionalized with SnO2nanocrystals

    EPA Science Inventory

    Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...

  5. Disposable urea biosensor based on nanoporous ZnO film fabricated from omissible polymeric substrate.

    PubMed

    Rahmanian, Reza; Mozaffari, Sayed Ahmad; Abedi, Mohammad

    2015-12-01

    In the present study, a facile and simple fabrication method of a semiconductor based urea biosensor was reported via three steps: (i) producing a ZnO-PVA composite film by means of a polymer assisted electrodeposition of zinc oxide (ZnO) on the F-doped SnO2 conducting glass (FTO) using water soluble polyvinyl alcohol (PVA), (ii) obtaining a nanoporous ZnO film by PVA omission via a subsequent post-treatment by annealing of the ZnO-PVA film, and (iii) preparation of a FTO/ZnO/Urs biosensor by exploiting a nanoporous ZnO film as an efficient and excellent platform area for electrostatic immobilization of urease enzyme (Urs) which was forced by the difference in their isoelectric point (IEP). The characterization techniques focused on the analysis of the ZnO-PVA film surfaces before and after annealing, which had a prominent effect on the porosity of the prepared ZnO film. The surface characterization of the nanostructured ZnO film by a field emission-scanning electron microscopy (FE-SEM), exhibited a film surface area as an effective bio-sensing matrix for enzyme immobilization. The structural characterization and monitoring of the biosensor fabrication was performed using UV-Vis, Fourier Transform Infrared (FT-IR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS) techniques. The impedimetric results of the FTO/ZnO/Urs biosensor showed a high sensitivity for urea detection within 8.0-110.0mg dL(-1) with the limit of detection as 5.0mg dL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila.

    PubMed

    Barrio, Rosa; López-Varea, Ana; Casado, Mar; de Celis, Jose F

    2007-06-01

    Vertebrate members of the ski/snoN family of proto-oncogenes antagonize TGFbeta and BMP signaling in a variety of experimental situations. This activity of Ski/SnoN proteins is related to their ability to interact with Smads, the proteins acting as key mediators of the transcriptional response to the TGFbeta superfamily members. However, despite extensive efforts to identify the physiological roles of the Ski/SnoN proteins, it is not yet clear whether they participate in regulating Activin and/or BMP signaling during normal development. It is therefore crucial to examine their roles in vivo mostly because of the large number of known Ski/SnoN-interacting proteins and the association between the up-regulation of these genes and cancer progression. Here we characterize the Drosophila homolog to vertebrate ski and snoN genes. The Drosophila dSnoN protein retains the ability of its vertebrate counterparts to antagonize BMP signaling in vivo and in cultured cells. dSnoN does not interfere with Mad phosphorylation but it interacts genetically with Mad, Medea and dSmad2. Mutations in either the Smad2-3 or Smad4 putative binding sites of dSnoN prevent the antagonism of dSnoN towards Dpp signaling, although homozygous flies for these mutations or for a genetic deficiency of the locus are viable and have wings of normal size and pattern.

  7. Shadowgraphic investigations into the laser-induced forward transfer of different SnO2 precursor films

    NASA Astrophysics Data System (ADS)

    Mattle, Thomas; Shaw-Stewart, James; Hintennach, Andreas; Schneider, Christof W.; Lippert, Thomas; Wokaun, Alexander

    2013-08-01

    Laser-induced forward transfer of different SnO2 precursor films for sensor applications were investigated using time resolved imaging, from 0 to 2 μs after the onset of the ablation process. Transfers of SnCl2(acac)2 and SnO2 nano-particles, both with and without a triazene polymer dynamic release layer (DRL), were investigated and compared to transfers of aluminum films with a triazene polymer DRL. Shockwave speed and flyer speeds at high laser fluences of Φ = 650 mJ/cm2 and at the lower fluences, suitable for the transfer of functional and well defined pixels were analyzed. No influence of the use of a triazene polymer DRL on shockwave and flyer speed was observed. Material ejected under transfer condition showed a velocity of around 200 m/s with a weak shockwave.

  8. Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2 -into-HCOOH Conversion.

    PubMed

    Kumar, Bijandra; Atla, Veerendra; Brian, J Patrick; Kumari, Sudesh; Nguyen, Tu Quang; Sunkara, Mahendra; Spurgeon, Joshua M

    2017-03-20

    Electrochemical conversion of CO 2 into energy-dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnO x is one of the few catalysts that reduce CO 2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO 2 porous nanowire catalyst (Sn-pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO 2 -into-HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only -0.8 V vs. RHE. A comparison with commercial SnO 2 nanoparticles confirms that the improved CO 2 reduction performance of Sn-pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO 2 conversion industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia

    2014-08-01

    Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.

  10. Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2.

    PubMed

    Bai, Naling; Abuduaini, Rexiding; Wang, Sheng; Zhang, Meinan; Zhu, Xufen; Zhao, Yuhua

    2017-01-01

    Nonylphenol (NP), ubiquitously detected as the degradation product of nonionic surfactants nonylphenol polyethoxylates, has been reported as an endocrine disrupter. However, most pure microorganisms can degrade only limited species of NP with low degradation efficiencies. To establish a microbial consortium that can effectively degrade different forms of NP, in this study, we isolated a facultative microbial consortium NP-M2 and characterized the biodegradation of NP by it. NP-M2 could degrade 75.61% and 89.75% of 1000 mg/L NP within 48 h and 8 days, respectively; an efficiency higher than that of any other consortium or pure microorganism reported so far. The addition of yeast extract promoted the biodegradation more significantly than that of glucose. Moreover, surface-active compounds secreted into the extracellular environment were hypothesized to promote high-efficiency metabolism of NP. The detoxification of NP by this consortium was determined. The degradation pathway was hypothesized to be initiated by oxidization of the benzene ring, followed by step-wise side-chain biodegradation. The bacterial composition of NP-M2 was determined using 16S rDNA library, and the consortium was found to mainly comprise members of the Sphingomonas, Pseudomonas, Alicycliphilus, and Acidovorax genera, with the former two accounting for 86.86% of the consortium. The high degradation efficiency of NP-M2 indicated that it could be a promising candidate for NP bioremediation in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterization of SnO2/Ni/SiO2-MCP anode in three-dimensional lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lou, Xuefeng; Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Chu, Paul K.

    2013-12-01

    By combining a SnO2 thin film with silicon dioxide microchannel plate (SiO2-MCP), a three-dimensional (3D) structure with enough space to accommodate the volume change of SnO2 during charging-discharging is produced by MEMS and electroless deposition. Owing to the special structure of the MCP, the battery is able to deliver a reversible Li storage capacity of 408 mAhg-1 after 100 cycles. If the current density is reduced to 200 mAg-1 at a constant current during charging and discharging, the battery exhibits reversible capacities of 1575 and 996 mAhg-1 in the first discharging and charging cycle, respectively. However, a reversible Li-storage capacity of only 298 mAhg-1 is obtained after 50 cycles of deep charging at a current of 200 mAg-1. It is found that silicon is involved in the charging-discharging process at a low current.

  12. Effect of both deposition temperature and indium doping on the properties of sol-gel dip-coated SnO2 films.

    PubMed

    Caglar, Mujdat; Atar, Kadir Cemil

    2012-10-01

    Using indium chloride as an In source, In-doped SnO(2) films were fabricated by sol-gel method through dip-coating on borofloat glass substrates. The undoped SnO(2) films were deposited in air between 400 and 600 °C to get optimum deposition temperature in terms of crystal quality and hence In-doped SnO(2) films were deposited in air at 600 °C. The effect of both deposition temperature and In content on structural, morphological, optical and electrical properties was investigated. The crystalline structure and orientation of the films were investigated by X-ray diffraction (XRD) and surface morphology was studied by a field emission scanning electron microscope (FESEM). The compositional analysis of the films was confirmed by energy dispersive X-ray spectrometer (EDS). The absorption band edge of the SnO(2) films shifted from 3.88 to 3.66 eV with In content. The van der Pauw method was used to measure the sheet resistance of the films. The sheet resistance was affected significantly by deposition temperature and In content. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Heptavalent Neptunium in a Gas-Phase Complex: (Np VIIO 3 +)(NO 3 –) 2

    DOE PAGES

    Dau, Phuong D.; Maurice, Remi; Renault, Eric; ...

    2016-09-15

    A central goal of chemistry is to achieve ultimate oxidation states, including in gas-phase complexes with no condensed phase perturbations. In the case of the actinide elements, the highest established oxidation states are labile Pu(VII) and somewhat more stable Np(VII). We have synthesized and characterized gas-phase AnO 3(NO 3) 2- complexes for An = U, Np, and Pu by endothermic NO 2 elimination from AnO 2(NO 3) 3-. It was previously demonstrated that the PuO 3+ core of PuO 3(NO 3) 2- has a Pu—O• radical bond such that the oxidation state is Pu(VI); it follows that in UO 3(NOmore » 3) 2- it is the stable U(VI) oxidation state. On the basis of the relatively more facile synthesis of NpO 3(NO 3) 2-, a Np(VII) oxidation state is inferred. This interpretation is substantiated by reactivity of the three complexes: NO 2 spontaneously adds to UO 3(NO 3) 2- and PuO 3(NO 3) 2- but not to NpO 3(NO 3) 2-. This unreactive character is attributed to a Np(VII)O 3+ core with three stable Np=O bonds, this in contrast to reactive U—O• and Pu—O• radical bonds. The computed structures and reaction energies for the three AnO 3(NO 3) 2- support the conclusion that the oxidation states are U(VI), Np(VII), and Pu(VI). These results establish the extreme Np(VII) oxidation state in a gas-phase complex, and demonstrate the inherently greater stability of Np(VII) versus Pu(VII).« less

  14. [Expression of NR2A in rat auditory cortex after sound insulation and auditory plasticity].

    PubMed

    Xia, Yin; Long, Haishan; Han, Demin; Gong, Shusheng; Lei, Li; Shi, Jinfeng; Fan, Erzhong; Li, Ying; Zhao, Qing

    2009-06-01

    To study the changes of N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A) expression at local synapses in auditory cortices after early postnatal sound insulation and tone exposure. We prepared highly purified synaptosomes from primary auditory cortex by Optiprep flotation gradient centrifugations, and compared the differences of NR2A expression in sound insulation PND14, PND28, PND42 and Tone exposure after sound insulation for 7 days by Western blotting. The results showed that the NR2A protein expression of PND14 and PND28 decreased significantly (P<0.05). Tone exposure after sound insulation for 7 days, mSIe NR2A protein level increased significantly (P<0.05). It showed bidirectional regulation of NR2A protein. No significant effects of sound insulation and lone exposure were found on the relative expression level of NR2A of PND42 (P>0.05). The results indicate that sound insulation and experience can modify the protein expression level of NR2A during the critical period of rat postnatal development. These findings provide important data for the study on the mechanisms of the developmental plasticity of sensory functions.

  15. Catalyst-free growth of Al-doped SnO2 zigzag-nanobelts for low ppm detection of organic vapours

    NASA Astrophysics Data System (ADS)

    Sinha, Sudip Kumar; Ghosh, Saptarshi

    2016-10-01

    In this effort, we report on development of specific sensors dedicated for detection of two of these volatiles, namely ethanol and acetone, below the prescribed statutory limits. Single crystalline Al-doped SnO2 zigzag nanobelt structures were deposited on Si substrate by a catalyst-free thermal evaporation method. The Al-doped SnO2 zigzag nanostructures exhibit high sensitivity and repeatability together with coveted features like fast response and excellent stability. Structural attributes involving the crystal quality and morphology of Al-doped SnO2 zigzag nanobelts were analyzed using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy and transmission electron microscopy. The microscopic images revealed formation of randomly oriented 'zigzag-like' nanobelts with characteristic width between 60 nm and 200 nm and length of 50-300 μm. The Al-doping was observed to have a discerning effect in enhancing the sensitivity in comparison to the pristine nanowires by creating excess oxygen vacancies in the crystal lattice, confirmed through XPS and PL spectra.

  16. NR2A contributes to genesis and propagation of cortical spreading depression in rats.

    PubMed

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-03-22

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile.

  17. NR2A contributes to genesis and propagation of cortical spreading depression in rats

    PubMed Central

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-01-01

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile. PMID:27001011

  18. Ti/IrO2/SnO2 anode for electrochemical degradation of chlorpyrifos in water: optimization and degradation performances

    NASA Astrophysics Data System (ADS)

    Pathiraja, G. C.; Wijesingha, M. S.; Nanayakkara, N.

    2017-05-01

    Chlorpyrifos, a widely used organophosphate pesticide which can be found in surface water bodies, is harmful for human body. Thus, treating water contaminated with chlorpyrifos is important. In our previous studies, novel Ti/IrO2-SnO2 anode was successfully developed for electrochemical degradation of chlorpyrifos in chloride free water. In this study, optimization of previously developed Ti/IrO2-SnO2 anode for mineralization of chlorpyrifos was successfully performed through response surface methodology. During the optimization study, two-level factorial design was used to determine the optimal coating solutions concentration for developing the Ti/IrO2-SnO2 anode. Cyclic voltammetry and open circuit potential were performed to investigate the electrochemically active surface area and stability of these anodes. The response surface and contour plots show that 0.3 M of [Ir] and 7.5 mM of [Sn] coated electrode has both highest anodic charge and stability. Scanning Electron Microscopic (SEM) images show the evidence of having both compact and porous regions in the surface of the thin film, resulting larger surface area. Within 6 h, the best result for mineralization (55.56%) of chlorpyrifos was obtained with 0.3 M of [Ir] and 7.5 mM of [Sn] coated anode using Total organic Carbon (TOC) analyzer. Therefore, the optimum coating concentration was found as 0.3 M of [Ir] and 7.5 mM of [Sn]. It would require an energy consumption of 6 kWhm-3.

  19. Toxicity of nanotitanium dioxide (TiO2-NP) on human monocytes and their mitochondria.

    PubMed

    Ghanbary, Fatemeh; Seydi, Enaytollah; Naserzadeh, Parvaneh; Salimi, Ahmad

    2018-03-01

    The effect of nanotitanium dioxide (TiO 2 -NP) in human monocytes is still unknown. Therefore, an understanding of probable cytotoxicity of TiO 2 -NP on human monocytes and underlining the mechanisms involved is of significant interest. The aim of this study was to assess the cytotoxicity of TiO 2 -NP on human monocytes. Using biochemical and flow cytometry assessments, we demonstrated that addition of TiO 2 -NP at 10 μg/ml concentration to monocytes induced cytotoxicity following 12 h. The TiO 2 -NP-induced cytotoxicity on monocytes was associated with intracellular reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) collapse, lysosomal membrane injury, lipid peroxidation, and depletion of glutathione. According to our results, TiO 2 -NP triggers oxidative stress and organelles damages in monocytes which are important cells in defense against foreign agents. Finally, our findings suggest that use of antioxidants and mitochondrial/lysosomal protective agents could be of benefit for the people in the exposure with TiO 2 -NP.

  20. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development.

    PubMed

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C; Hedgepeth, John W; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E; Amacher, Sharon L; Goessling, Wolfram

    2016-10-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. Copyright © 2016

  1. Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development

    PubMed Central

    Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram

    2016-01-01

    The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396

  2. Effect of various SnO2 pH on ZnO/SnO2-composite film via immersion technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mohamed, R.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Rusop, M.

    2018-05-01

    ZnO/SnO2-composite film has been synthesized via immersion technique with various pH of SnO2. The pH of SnO2 were varied between 4.5 and 6.5. The optical measurements of the samples were carried out using Varian Cary 5000 UV-Vis spectrophotometer within the range from 350 nm to 800 nm at room temperature in air with a data interval of 1 nm. On the other hand, the optical photoluminescence properties were measured by a photoluminescence spectrometer (PL, model: Horiba Jobin Yvon - 79 DU420A-OE-325) using a He-Cd laser as the excitation source at 325 nm. These highly oriented ZnO/SnO2-composite film are potential for the creation of functional materials, such as the sensors, solar cells and etc.

  3. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties.

    PubMed

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-22

    A novel ZnO nanorod array (NR)/CuAlO(2) nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO(2) laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of -2 to +2 V were observed in this heterojunction with the increase of Zn(2+) ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm(-2) was obtained under AM 1.5 illumination with 100 mW cm(-2) light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  4. ZnO nanorod array/CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Ding, Juan; Sui, Yongming; Fu, Wuyou; Yang, Haibin; Zhao, Bo; Li, Minghui

    2011-07-01

    A novel ZnO nanorod array (NR)/CuAlO2 nanofiber (NF) heterojunction nanostructure was grown on a substrate of Ni plates using sol-gel synthesis for the NFs and hydrothermal reaction for the NRs. Compared with a traditional ZnO/CuAlO2 laminar film nanostructure, the photocurrent of this fibrous network heterojunction is significantly increased. A significant blue-shift of the absorption edge and a favorable forward current to reverse current ratio at applied voltages of - 2 to + 2 V were observed in this heterojunction with the increase of Zn2 + ion concentration in the hydrothermal reaction. Furthermore, the photoelectrochemical properties were investigated and the highest photocurrent of 3.1 mA cm - 2 was obtained under AM 1.5 illumination with 100 mW cm - 2 light intensity at 0.71 V (versus Ag/AgCl). This novel 3D fibrous network nanostructure plays an important role in the optoelectronic field and can be extended to other binary or ternary oxide compositions for various applications.

  5. High-Potential Porphyrins Supported on SnO 2 and TiO 2 Surfaces for Photoelectrochemical Applications

    DOE PAGES

    Jiang, Jianbing; Swierk, John R.; Materna, Kelly L.; ...

    2016-12-03

    Here, we report CF 3-substituted porphyrins and evaluate their use as photosensitizers in water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) by characterizing interfacial electron transfer on metal oxide surfaces. Furthermore, by using (CF 3) 2C 6H 3 instead of C 6F 5 substituents at the meso positions, we obtain the desired high potentials while avoiding the sensitivity of C 6F 5 substituents to nucleophilic substitution, a process that limits the types of synthetic reactions that can be used. Both the number of CF 3 groups and the central metal tune the ground and excited-state potentials. A pair of porphyrins bearing carboxylic acidsmore » as anchoring groups were deposited on SnO 2 and TiO 2 surfaces and the interfacial charge-injection and charge-recombination kinetics were characterized by using a combination of computational modeling, terahertz measurements, and transient absorption spectroscopy. We also found that both free-base and metallated porphyrins inject into SnO 2, and that recombination is slower for the latter case. Our findings demonstrate that (CF 3) 2C 6H 3-substituted porphyrins are promising photosensitizers for use in WS-DSPECs.« less

  6. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries

    PubMed Central

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-01-01

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g−1 are 2213 and 1402 mA h g−1 with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g−1 after 100 cycles at current densities of 100, 300, 500 and 700 mA g−1, respectively. Even at a high current density of 1000 mA g−1, the first discharge and charge capacities are 1502 and 876 mA h g−1, and the discharge specific capacities remains 1057 and 677 mA h g−1 after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage. PMID:25761938

  7. Effect of pH on the electrical properties and conducting mechanism of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Periathai, R. Sudha; Abarna, S.; Hirankumar, G.; Jeyakumaran, N.; Prithivikumaran, N.

    2017-03-01

    Semiconductor nanoparticles have attracted more interests because of their size-dependent optical and electrical properties.SnO2 is an oxygen-deficient n-type semiconductor with a wide band gap of 3.6 eV (300 K). It has many remarkable applications as sensors, catalysts, transparent conducting electrodes, anode material for rechargeable Li- ion batteries and optoelectronic devices. In the present work, the role of pH in determining the electrical and dielectric properties of SnO2 nanoparticles has been studied as a function of temperature ranging from Room temperature (RT) to 114 °C in the frequency range of 7 MHz to 50 mHz using impedance spectroscopic technique. The non linear behavior observed in the thermal dependence of the conductance of SnO2 nanoparticles is explained by means of the surface property of SnO2 nanoparticles where proton hopping mechanism is dealt with. Jonscher's power law has been fitted for the conductance spectra and the frequency exponent ("s" value) gives an insight about the ac conducting mechanism. The temperature dependence of electrical relaxation phenomenon in the material has been observed. The complex electric modulus analysis indicates the possibility of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation.

  8. Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, E. A.; Shaaban, Kh S.

    2018-02-01

    B2O3-SiO2-Na2O-Al2O3-TiO2 glasses modified by SnO2 have prepared and characterized by UV-spectroscopy before and after plasma treatment and by ultrasonic techniques. Makishima-Mackenzie Model has been applied to determine the elastic moduli of glasses. The density and the elastic moduli either determined from the ultrasonic or that computed according to the Makishima-Mackenzie model increase as the SnO2 concentration increases. The values of the optical band gap E g before and after plasma treatment, and refractive index have been determined. It was found that these parameters are sensitive to the increase of SnO2 content. The vibration temperature of nitrogen glow discharge has been calculated using Boltzmann plots of second positive system N2 (C3Πu) → (B3 Πg). The obtained results of vibration temperature decrease with increasing of gas pressure at different discharge currents.

  9. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  10. The properties of ZnO nanofluids and the role of H2O2 in the disinfection activity against Escherichia coli.

    PubMed

    Zhang, Lingling; Li, Yu; Liu, Xiaoming; Zhao, Lihua; Ding, Yulong; Povey, Malcolm; Cang, Daqiang

    2013-08-01

    This work investigates the disinfection property of ZnO nanofluids, focusing on H2O2 production and the disinfection activities of ZnO suspensions with different particles/aggregates. The possible disinfection mechanisms of ZnO suspensions are analysed. In this work, a medium mill was used to produce ZnO suspensions with different sizes of particles/aggregates. During the milling process, five ZnO suspension samples (A-E) were produced. X-ray Diffraction (XRD) and Dynamic Light Scattering (DLS) analyses revealed that after milling, the size of ZnO particles/aggregates in the suspensions decreased. Disinfection tests, H2O2 detection assays and fluorescent analyses were used to explore the disinfection activities and mechanism of ZnO suspensions. Disinfection tests results showed that all the produced ZnO suspension exhibited disinfection activity against Escherichia coli. ZnO suspensions with smaller particles/aggregates showed better disinfection activities. The presence of H2O2 in ZnO suspension was analysed. The H2O2 detection assay suggested that there is 1 μM H2O2 in 0.2 g/l ZnO Sample A, while there was no H2O2 present in ZnO Sample E. Though results showed that there was no H2O2 present in ZnO Sample E, Sample E with a size of 93 nm showed the best disinfection activities. Fluorescence tests detected that the interaction between E. coli lipid vesicles and ZnO Sample E was much faster and more efficient. This study firstly demonstrated that ZnO suspensions with different particles/aggregates produced different amount of H2O2. Results suggested that H2O2 is responsible for the disinfection activity of larger ZnO particles/aggregates while the interaction between smaller ZnO particles/aggregates and vesicle lipids is responsible for the disinfection activity of smaller ZnO particles/aggregates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Roles of cobalt doping on ethanol-sensing mechanisms of flame-spray-made SnO2 nanoparticles-electrolytically exfoliated graphene interfaces

    NASA Astrophysics Data System (ADS)

    Punginsang, Matawee; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2017-12-01

    In this work, the roles of cobalt (Co) and electrolytically exfoliated graphene additives on ethanol gas-sensing properties of flame-spray-made SnO2 nanoparticles were systematically studied. Structural characterizations indicated that Co dopants formed solid solution with SnO2 nanoparticles while multilayer graphene sheets were well dispersed within the Co-doped SnO2 matrix at low graphene loading contents. The sensing films were fabricated by a spin coating process and tested towards 50-1000 ppm ethanol at 150-400 °C. It was found that the response to 1000 ppm ethanol at the optimal working temperature of 350 °C was enhanced from 91 to 292 and to 803 by 0.5 wt% graphene loading and 0.5 wt% Co-doping, respectively. The combination of Co-doping and graphene loading with the same concentration of 0.5 wt% led to a synergistic enhancement of ethanol response to 2147 at 1000 ppm with a short response time of ∼0.9 s and fast recovery stabilization at 350 °C, proving the significance of dopant on the gas-sensing performances of graphene/SnO2 composites. Furthermore, the optimal sensor exhibited high ethanol selectivity against C3H6O, NO2, H2S, H2, CH4 and humidity. The mechanisms for the ethanol response enhancement were proposed on the basis of combinative effects of catalytic substitutional p-type Co dopants and active graphene-Co-doped SnO2 M-S junctions with highly accessible surface area of micropores and mesopores in the composites. Therefore, the graphene loaded Co-doped SnO2 sensor is highly potential for responsive and selective detection of ethanol vapor at ppm levels and may be practically useful for drunken driving applications.

  12. Real structure of (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series ARO3(ZnO)m with ordered site occupation

    NASA Astrophysics Data System (ADS)

    Garling, Jennifer; Assenmacher, Wilfried; Schmid, Herbert; Longo, Paolo; Mader, Werner

    2018-02-01

    The hitherto unknown compound (Sb1/3Zn2/3)GaO3(ZnO)3, a member of the homologous series with general formula ARO3(ZnO)m (A,R = trivalent metal cation), was prepared by solid state methods from the binary oxides in sealed Pt-tubes. The structure of (Sb1/3Zn2/3)GaO3(ZnO)3 has been determined by X-ray diffraction from flux-grown single crystals (R 3 ̅ m , Z = 3, aR = 3.2387(7) Å, cR = 41.78(1) Å. The analysis revealed that (Sb1/3Zn2/3)GaO3(ZnO)m is isostructural with InGaO3(ZnO)m, where In3+ on octahedral sites is replaced by Sb5+ and Zn2+ in a ratio of 1:2, preserving an average charge of 3+. (Sb1/3Zn2/3)GaO3(ZnO)3 was furthermore analyzed by electron diffraction, High Angle Annular Dark Field (HAADF) scanning TEM, and high precision EELS spectroscopic imaging, where a periodic ordering of SbO6 octahedra connected via edge sharing to six ZnO6 octahedra in the octahedral layers in a honeycomb motif is found. Due to the large lateral distance of ca. 1.4 nm between adjacent octahedral layers, electrostatic interaction might hardly dictate Sb and Zn positions in neighbouring layers, and hence is a characteristic of the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. A structure model of the compound in space group P3112 (Nr. 151) with strictly ordered and discrete Sb and Zn positions is derived by crystallographic transformations as closest approximant for the real structure of (Sb1/3Zn2/3)GaO3(ZnO)3. UV-vis measurements confirm this compound to be a transparent oxide with an optical band gap in the UV region with Eg = 3.15 eV.

  13. Effect of neutral red incorporation on Al-doped ZnO thin films and its bio-electrochemical interaction with NAD+/NADP+ dependent enzymes.

    PubMed

    V T, Fidal; T S, Chandra

    2018-09-01

    A new approach to deposition of electroactive ZnO thin films have been carried out, by one-pot chemical bath deposition with Al dopant and incorporation of neutral red as organic mediator. The morphological, structural and functional characterization of the neutral red incorporated, Al-doped ZnO (NR-AZO) film was carried out using electron microscopy, FTIR, XRD and EIS respectively. The incorporated neutral red was found to induce strain in the crystal of AZO proportional to the concentration used in depositing solution which further affected the charge transfer resistance of the films in solution. One mM neutral red was found to be the optimum concentration for both conductivity and response to NADH/NADPH. The response of the films was further validated by immobilizing NAD + dependent alcohol dehydrogenase (ADH) and NADP + dependent glucose dehydrogenase (GDH) independently. The ADH/NR-AZO showed a sensitivity of 3.2 μA cm -2  mM -1 with a LoD of 1.7 μM of ethanol in the range 5.6 μM-7 mM, whereas GDH/NR-AZO showed a sensitivity of 4.33 μA cm -2  mM -1 with a LoD of 27 μM of glucose in the range 90 μM-4 mM. This method serves as a simple alternative to immobilize the organic redox dyes into the inorganic thin films in a single step making it electroactive towards specific biomolecules. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  15. Perturbing NR2B-PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling.

    PubMed

    Xu, Fangxia; Zhao, Xin; Liu, Lin; Song, Jia; Zhu, Yingjun; Chu, Shuaishuai; Shao, Xueming; Li, Xiuxiu; Ma, Zhengliang; Gu, Xiaoping

    2017-09-06

    Neuropathic pain is characterized by central sensitization. The interaction between N-methyl-D-aspartate receptors (NMDARs) and postsynaptic density protein-95 (PSD-95) plays a major role in central sensitization. Here, we aimed to investigate the analgesic effect of disruption of the interaction between NMDAR and PSD-95. Chronic dorsal root ganglia compression model rats were used to mimic sciatica. Thermal hyperalgesia and mechanical allodynia were evaluated. The expression of spinal phospho-NR2B, PSD-95, calcium/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element binding protein (CREB) was measured using western blotting. A mimetic peptide Myr-NR2B9c was injected intrathecally to disrupt the interaction between PSD-95 and NR2B and detected by coimmunoprecipitation. Chronic dorsal root ganglia compression surgery induced thermal hyperalgesia and mechanical allodynia, and upregulated pain-related proteins such as phospho-NR2B, PSD-95, CaMKII, and CREB expressions in the spinal cord. Myr-NR2B9c disrupted the interaction between NR2B-containing NMDARs and PSD-95 in the spinal cord. Intrathecal administration of Myr-NR2B9c attenuated neuropathic pain behaviors and downregulated the expressions of phospho-NR2B, PSD-95, CaMKII, and CREB in the spinal cord. The present study indicates that dissociation of NR2B-containing NMDARs from PSD-95 inactivates CaMKII and CREB signaling and relieves pain.

  16. Comparisons of multilayer H2O adsorption onto the (110) surfaces of alpha-TiO2 and SnO2 as calculated with density functional theory.

    PubMed

    Bandura, Andrei V; Kubicki, James D; Sofo, Jorge O

    2008-09-18

    Mono- and bilayer adsorption of H2O molecules on TiO2 and SnO 2 (110) surfaces has been investigated using static planewave density functional theory (PW DFT) simulations. Potential energies and structures were calculated for the associative, mixed, and dissociative adsorption states. The DOS of the bare and hydrated surfaces has been used for the analysis of the difference between the H2O interaction with TiO2 and SnO 2 surfaces. The important role of the bridging oxygen in the H2O dissociation process is discussed. The influence of the second layer of H2O molecules on relaxation of the surface atoms was estimated.

  17. Self induced gratings in ternary SiO2:SnO2:Na2O bulk glasses by UV light seeding.

    PubMed

    Lancry, M; Douay, M; Niay, P; Beclin, F; Menke, Y; Milanese, D; Ferraris, M; Poumellec, B

    2005-09-05

    The diffraction efficiency of gratings written in ternary SnO2:SiO2:Na2O bulk glasses rises dramatically with time after the occultation of the cw 244nm light used to write the thick hologram. This self-induced behavior lasts for several hours and ultimately leads to refractive index changes as high as 3 10-3.

  18. Effect of indium on photovoltaic property of n-ZnO/p-Si heterojunction device prepared using solution-synthesized ZnO nanowire film

    NASA Astrophysics Data System (ADS)

    Kathalingam, Adaikalam; Kim, Hyun-Seok; Park, Hyung-Moo; Valanarasu, Santiyagu; Mahalingam, Thaiyan

    2015-01-01

    Preparation of n-ZnO/p-Si heterostructures using solution-synthesized ZnO nanowire films and their photovoltaic characterization is reported. The solution-grown ZnO nanowire film is characterized using scanning electron microscope, electron dispersive x-ray, and optical absorption studies. Electrical and photovoltaic properties of the fabricated heterostructures are studied using e-beam-evaporated aluminum as metal contacts. In order to use transparent contact and to simultaneously collect the photogenerated carriers, sandwich-type solar cells were fabricated using ZnO nanorod films grown on p-silicon and indium tin oxide (ITO) coated glass as ITO/n-ZnO NR/p-Si. The electrical properties of these structures are analyzed from current-voltage (I-V) characteristics. ZnO nanowire film thickness-dependent photovoltaic properties are also studied. Indium metal was also deposited over the ZnO nanowires and its effects on the photovoltaic response of the devices were studied. The results demonstrated that all the samples exhibit a strong rectifying behavior indicating the diode nature of the devices. The sandwich-type ITO/n-ZnO NR/p-Si solar cells exhibit improved photovoltaic performance over the Al-metal-coated n-ZnO/p-Si structures. The indium deposition is found to show enhancement in photovoltaic behavior with a maximum open-circuit voltage (Voc) of 0.3 V and short-circuit current (Isc) of 70×10-6 A under ultraviolet light excitation.

  19. Electrochemical growth of controlled tip shapes of ZnO nanorod arrays on silicon substrate and enhanced photoluminescence emission from nanopyramid arrays compared with flat-head nanorods

    NASA Astrophysics Data System (ADS)

    Alimanesh, Mahmoud; Hassan, Z.; Zainal, Norzaini

    2017-10-01

    Zinc oxide (ZnO) nanorod arrays (NRAs) with different morphologies such as; perfect hexagon flat-head, pyramidal, compact pencil, nail-shaped, and high-compact ZnO nanorod thin films, were successfully grown on silicon substrates. These NRAs were formed on substrates using a simple low-temperature electrochemical method without adding any catalyst or template via the precursors of zinc nitrate hexahydrate [Zn(NO3)2·6H2O] and hexamethylenetetramine [HMT; C6H12N4] with an equal molar concentration of 0.025 mol/l. The morphologies of the ZnO nanorods (NRs) could be controlled and transformed successfully in to other morphologies by changing the growth conditions, such as; growth temperature and applied current density. Detailed structural investigations reveal that the synthesized various NRs are single crystalline with wurtzite hexagonal phase and preferentially grow along the c-axis direction. The room temperature photoluminescence spectra show that each spectrum consists of an ultraviolet (UV) band and a relative broad visible light emission and infrared emission peak. The enhanced light emission intensity at UV peak (∼375 nm) is observed significantly from ZnO nanopyramid (NP) arrays because of the conical shape of NP. The photoluminescence intensity of the UV peak from the NPs is found to be 1.5-17 times larger than those from the other various NRs.

  20. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  1. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible

  2. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins

    NASA Astrophysics Data System (ADS)

    Keleştemur, Seda; Altunbek, Mine; Culha, Mustafa

    2017-05-01

    The toxicity of ZnO nanoparticles (NPs) is a growing concern due to its increasing use in several products including sunscreens, paints, pigments and ceramics for its antibacterial, antifungal, anti-corrosive and UV filtering properties. The toxicity of ZnO NPs is mostly attributed to the Zn2+ release causing an increase in the intracellular reactive oxygen species (ROS) level. The surface modification with a biocompatible ligand or a polymer can be a good strategy to reduce dissolution based toxicity. In two previous studies, the conflicting results with EDC/NHS coupling chemistry for ZnO NPs were reported. In this study, the same surface modification strategy with an emphasis on the stability of ZnO NPs is clarified. First, the density of -OH groups on the ZnO NPs is increased with hydrogen peroxide (H2O2) treatment, and then a silica coating on the ZnO NPs (Si-ZnO) surface is performed. Finally, a covalent attachment of bovine serum albumin (BSA) on three different concentrations of ZnO-Si is carried out by EDC/NHS coupling chemistry. ZnO NPs have a very high dissolution rate under acidic conditions of EDC/NHS coupling chemistry as determined from the ICP-MS analysis. In addition, the amount of ZnO NPs in coupling reaction has an important effect on the dissolution rate of Zn2+ and dependently BSA attached on the ZnO NP surfaces. Finally, the cytotoxicity of the BSA modified Si-ZnO NPs on human lung cancer (A549) and human skin fibroblast (HSF) is evaluated. Although an increased association of BSA modified ZnO NPs with cells was observed, the modification significantly decreased their cytotoxicity. This can be explained with the decreased active surface area of ZnO NPs with the surface modification. However, an increase in the mitochondrial depolarization and ROS production was observed depending on the amount of BSA coverage.

  3. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  4. A study of structural, electrical, and optical properties of p-type Zn-doped SnO2 films versus deposition and annealing temperature

    NASA Astrophysics Data System (ADS)

    Le, Tran; Phuc Dang, Huu; Luc, Quang Ho; Hieu Le, Van

    2017-04-01

    This study presents a detailed investigation of the structural, electrical, and optical properties of p-type Zn-doped SnO2 versus the deposition and annealing temperature. Using a direct-current (DC) magnetron sputtering method, p-type transparent conductive Zn-doped SnO2 (ZTO) films were deposited on quartz glass substrates. Zn dopants incorporated into the SnO2 host lattice formed the preferred dominant SnO2 (1 0 1) and (2 1 1) planes. X-ray photoelectron spectroscopy (XPS) was used for identifying the valence state of Zn in the ZTO film. The electrical property of ZTO films changed from n-type to p-type at the threshold temperature of 400 °C, and the films achieved extremely high conductivity at the optimum annealing temperature of 600 °C after annealing for 2 h. The best conductive property of the film was obtained on a 10 wt% ZnO-doped SnO2 target with a resistivity, hole concentration, and hole mobility of 0.22 Ω · cm, 7.19  ×  1018 cm-3, and 3.95 cm2 V-1 s-1, respectively. Besides, the average transmission of films was  >84%. The surface morphology of films was examined using scanning electron microscopy (SEM). Moreover, the acceptor level of Zn2+ was identified using photoluminescence spectra at room temperature. Current-voltage (I-V) characteristics revealed the behavior of a p-ZTO/n-Si heterojunction diode.

  5. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    PubMed

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films

    NASA Astrophysics Data System (ADS)

    Lin, Chin-An; Tsai, Dung-Sheng; Chen, Cheng-Ying; He-Hau, Jr.

    2011-03-01

    Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO.Surface plasmon (SP) mediated emission from ZnO nanorod arrays (NRAs)/Ag/Si structures has been investigated. The ratio of visible emission to UV emission can be increased by over 30 times via coupling with SP without deterioration of the crystal quality. The fact that the effect of SP crucially depends on the size of Ag island films provides the feasibility to significantly enhance the yellow-green emission of the ZnO nanostructures without sacrificing the crystallinity of ZnO. Electronic supplementary information (ESI) available. See DOI: 10.1039/c0nr00732c

  7. Down-top nanofabrication of binary (CdO)x (ZnO)1-x nanoparticles and their antibacterial activity.

    PubMed

    Al-Hada, Naif Mohammed; Mohamed Kamari, Halimah; Abdullah, Che Azurahanim Che; Saion, Elias; Shaari, Abdul H; Talib, Zainal Abidin; Matori, Khamirul Amin

    2017-01-01

    In the present study, binary oxide (cadmium oxide [CdO]) x (zinc oxide [ZnO]) 1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO) x (ZnO) 1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO) x (ZnO) 1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO) x (ZnO) 1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.

  8. Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application

    PubMed Central

    Sub Kim, Sang; Gil Na, Han; Woo Kim, Hyoun; Kulish, Vadym; Wu, Ping

    2015-01-01

    We have realized a p-type-like conduction in initially n-type SnO2 nanowires grown using a vapor-liquid-solid method. The transition was achieved by irradiating n-type SnO2 nanowires with a high-energy electron beam, without intentional chemical doping. The nanowires were irradiated at doses of 50 and 150 kGy, and were then used to fabricate NO2 gas sensors, which exhibited n-type and p-type conductivities, respectively. The tuneability of the conduction behavior is assumed to be governed by the formation of tin vacancies (under high-energy electron beam irradiation), because it is the only possible acceptor, excluding all possible defects via density functional theory (DFT) calculations. The effect of external electric fields on the defect stability was studied using DFT calculations. The measured NO2 sensing dynamics, including response and recovery times, were well represented by the electron-hole compensation mechanism from standard electron-hole gas equilibrium statistics. This study elucidates the charge-transport characteristics of bipolar semiconductors that underlie surface chemical reactions. The principles derived will guide the development of future SnO2-based electronic and electrochemical devices. PMID:26030815

  9. Gas-Phase Coordination Complexes of UVIO{2/2+}, NpVIO{2/2+}, and PuVIO{2/2+} with Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Rutkowski, Philip X.; Rios, Daniel; Gibson, John K.; van Stipdonk, Michael J.

    2011-11-01

    Electrospray ionization of actinyl perchlorate solutions in H2O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [AnVIO2(DMF)3(H2O)]2+ and [AnVIO2(DMF)4]2+, where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced doubly- and singly-charged fragment ions. The fragmentation products reveal differences in underlying chemistries of uranyl, neptunyl, and plutonyl, including the lower stability of Np(VI) and Pu(VI) compared with U(VI).

  10. Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats

    PubMed Central

    Liang, Xiping; Wang, Sha; Qin, Guangcheng; Xie, Jingmei; Tan, Ge; Zhou, Jiying; McBride, Devin W.

    2017-01-01

    Tyrosine phosphorylation of NR2B (NR2B-pTyr), a subunit of the N-methyl-D-aspartate (NMDA) receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM) through calcitonin gene-related peptide (CGRP) in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO) was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM. PMID:28393079

  11. Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats.

    PubMed

    Liang, Xiping; Wang, Sha; Qin, Guangcheng; Xie, Jingmei; Tan, Ge; Zhou, Jiying; McBride, Devin W; Chen, Lixue

    2017-01-01

    Tyrosine phosphorylation of NR2B (NR2B-pTyr), a subunit of the N-methyl-D-aspartate (NMDA) receptor, has been reported to develop central sensitization and persistent pain in the spine, but its effect in chronic migraines has not been examined. We hypothesized that tyrosine phosphorylation of NR2B contributes to chronic migraines (CM) through calcitonin gene-related peptide (CGRP) in rats. Ninety-four male Sprague-Dawley rats were subjected to seven inflammatory soup (IS) injections. In a subset of animals, the time course and location of NR2B tyrosine phosphorylation were detected by western blot and immunofluorescence double staining. Another set of animals were given either genistein, vehicle, or genistein and recombinant CGRP. The mechanical threshold was measured, the expressions of NR2B-pTyr, NR2B, and CGRP were quantified using western blot, and nitric oxide (NO) was measured with the nitric acid reductase method. NR2B-pTyr expression, in neurons, peaked at 24 hours after CM. Genistein improved the mechanical threshold and reduced migraine attacks 24 and 72 hours after CM. Tyrosine phosphorylation of NR2B decreased the mechanical threshold and increased migraine attacks via upregulated CGRP expression in the rat model of CM. Thus, tyrosine phosphorylation of NR2B may be a potential therapeutic target for treatment of CM.

  12. NR2B-containing NMDA receptors promote neural progenitor cell proliferation through CaMKIV/CREB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mei, E-mail: limeihit@163.com; Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing; Zhang, Dong-Qing

    2011-08-12

    Highlights: {yields} The NR2B component of the NMDARs is important for the NSPC proliferation. {yields} pCaMKIV and pCREB exist in NSPCs. {yields} The CaMKIV/CREB pathway mediates NSPC proliferation. -- Abstract: Accumulating evidence indicates the involvement of N-methyl-D-aspartate receptors (NMDARs) in regulating neural stem/progenitor cell (NSPC) proliferation. Functional properties of NMDARs can be markedly influenced by incorporating the regulatory subunit NR2B. Here, we aim to analyze the effect of NR2B-containing NMDARs on the proliferation of hippocampal NSPCs and to explore the mechanism responsible for this effect. NSPCs were shown to express NMDAR subunits NR1 and NR2B. The NR2B selective antagonist, Romore » 25-6981, prevented the NMDA-induced increase in cell proliferation. Moreover, we demonstrated that the phosphorylation levels of calcium/calmodulin-dependent protein kinase IV (CaMKIV) and cAMP response element binding protein (CREB) were increased by NMDA treatment, whereas Ro 25-6981 decreased them. The role that NR2B-containing NMDARs plays in NSPC proliferation was abolished when CREB phosphorylation was attenuated by CaMKIV silencing. These results suggest that NR2B-containing NMDARs have a positive role in regulating NSPC proliferation, which may be mediated through CaMKIV phosphorylation and subsequent induction of CREB activation.« less

  13. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  14. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    PubMed

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  15. TiO2 nanorods thin-films embedded with gold nanoparticles for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Raval, Dhyey; Jani, Margi; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This article reports on the gold nanoparticle (Au-NP) induced absorption enhancement in the hydrothermally grown titanium dioxide nanorods (TiO2-NRs). The localized surface plasmon resonance (LSPR) and transfer of electron from Au-NPs attached to the TiO2-NR have been related to their photocatalytic response. The photocurrent enhancement observed in the studies of IPCE has been explained on the basis of electrons in the conduction band of TiO2-NR. The electrons from the Au-NP to the conduction band of TiO2-NR with respect to the wavelength of the incident spectrum shows an increase in efficiency over pristine TiO2-NRs sample. Further, to investigate the role of Au-NP, an absorption spectra with its incident wavelength shows an increase in the visible spectrum in the present study. This provides an explanation for the response to the absorption of the wide bandgap semiconductor oxide which gives an opportunity to develop a hybrid structure on the transparent substrates. The better response of Au-NPs/TiO2-NRs system can be used in photocatalytic processes.

  16. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis.

    PubMed

    Chen, Pengguo; Li, Jie; Huo, Yan; Lu, Jin; Wan, Lili; Li, Bin; Gan, Run; Guo, Cheng

    2015-01-01

    Hepatic stellate cells (HSCs) play a crucial role in liver fibrosis, which is a pathological process characterized by extracellular matrix accumulation. NR4A2 is a nuclear receptor belonging to the NR4A subfamily and vital in regulating cell growth, metabolism, inflammation and other biological functions. However, its role in HSCs is unclear. We analyzed NR4A2 expression in fibrotic liver and stimulated HSCs compared with control group and studied the influence on cell proliferation, cell cycle, cell apoptosis and MAPK pathway after NR4A2 knockdown. NR4A2 expression was examined by real-time polymerase chain reaction, Western blotting, immunohistochemistry and immunofluorescence analyses. NR4A2 expression was significantly lower in fibrotic liver tissues and PDGF BB or TGF-β stimulated HSCs compared with control group. After NR4A2 knockdown α-smooth muscle actin and Col1 expression increased. In addition, NR4A2 silencing led to the promotion of cell proliferation, increase of cell percentage in S phase and reduced phosphorylation of ERK1/2, P38 and JNK in HSCs. These results indicate that NR4A2 can inhibit HSC proliferation through MAPK pathway and decrease extracellular matrix in liver fibrogenesis. NR4A2 may be a promising therapeutic target for liver fibrosis.

  17. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  18. Surfactant modified SnO2 nanostructured thin film for improved sensing performance of LPG and ammonia

    NASA Astrophysics Data System (ADS)

    Kumari, K. Prasanna; Thomas, Boben

    2017-05-01

    SnO2 nanostructured thin films have been successfully synthesized by way of spray pyrolysis from surfactant added solution. The X-ray diffraction pattern discloses the tetragonal rutile phase of the deposited SnO2 films, which experience a grain size reduction from 35 nm to 19 nm, on the addition of PVP surfactant in precursor. Gas sensing investigations on the surfactant modified film show considerable LPG and NH3 response at a lower operating temperature of 150°C. Quick response (˜20s) and fast recovery (˜30s) are the main features of these sensors. The measurement of AC conductivity of the sample allows understanding the conduction mechanism and sensing action for to enhance the detection sensitivity greatly.

  19. Enhanced gas sensing correlated with structural and optical properties of Cs-loaded SnO2 nanofilms

    NASA Astrophysics Data System (ADS)

    Elia Raine, P. J.; Arun George, P.; Balasundaram, O. N.; Varghese, T.

    2016-09-01

    The Cs-loaded SnO2 thin films were prepared by the spray pyrolysis technique and were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, impedance spectroscopy and conductometric method. Investigations based on the structural, optical and electrical properties confirm an enhanced gas sensing potential of cesium-loaded tin oxide films. It is found that the tin oxide thin film doped with 4% Cs with a mean grain size of 20 nm at a deposition temperature of 350 ° C show a maximum sensor response of 97.5% for LPG consistently. It is also observed that the sensor response of Cs-doped SnO2 thin films depends on the dopant concentration and the deposition temperature of the film.

  20. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    PubMed Central

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  1. Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries

    NASA Astrophysics Data System (ADS)

    Liang, Jiaojiao; Yuan, Chaochun; Li, Huanhuan; Fan, Kai; Wei, Zengxi; Sun, Hanqi; Ma, Jianmin

    2018-06-01

    It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fibers@SnO2 nanoflowers (NC@SnO2) to overcome it in this work. The hybrid NC@SnO2 is synthesized through the hydrothermal growth of SnO2 nanoflowers on the surface of N-doped carbon fibers obtained by electrospinning. The NC is introduced not only to provide a support framework in guiding the growth of the SnO2 nanoflowers and prevent the flower-like structures from agglomeration, but also serve as a conductive network to accelerate electronic transmission along one-dimensional structure effectively. When the hybrid NC@SnO2 was served as anode, it exhibits a high discharge capacity of 750 mAh g-1 at 1 A g-1 after 100 cycles in Li-ion battery and 270 mAh g-1 at 100 mA g-1 for 100 cycles in Na-ion battery, respectively.[Figure not available: see fulltext.

  2. The gas-sensing potential of nanocrystalline SnO2 produced by a mechanochemical milling via centrifugal action

    NASA Astrophysics Data System (ADS)

    Kersen, Ü.

    In this work, the synthesis of undoped nanocrystalline tin dioxide powders and the subsequent preparation of SnO2 thick-films were studied. An initial mixture of SnCl2 and Ca(OH)2 was sealed in a vial for milling in an air atmosphere. Heat treatment of the milled powder resulted in the formation of tetragonal and orthorhombic SnO2 phases, which was confirmed by X-ray diffraction (XRD) analysis. It was found that crystallite size could be controlled by varying the milling time, the rotation speed and the temperature used for the heat treatment. Crystallite sizes in the range 20 to 30 nm (determined by XRD measurements) were obtained. The total pore volume was 0.22 ml/g for a measured particle size of 37 m2/g. No contamination of the powder during milling was found. The response of the prepared thick-films to H2S gas in the concentration range 0.5 to 10 ppm in air was investigated as a function of the preparation conditions. The advantage of mechanochemical synthesis of powder is its relative simplicity, low cost and possibility of obtaining isolated, unagglomerated nanosized grains. It is shown that chemical reactions, which usually occur in the vibratory mill to produce the SnO phase, can also be initiated during a short processing time in the centrifugal mill.

  3. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells.

    PubMed

    Mohankumar, Kumaravel; Lee, Jehoon; Wu, Chia Shan; Sun, Yuxiang; Safe, Stephen

    2018-05-01

    Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.

  4. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    PubMed

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Down-top nanofabrication of binary (CdO)x (ZnO)1–x nanoparticles and their antibacterial activity

    PubMed Central

    Al-Hada, Naif Mohammed; Mohamed Kamari, Halimah; Abdullah, Che Azurahanim Che; Saion, Elias; Shaari, Abdul H; Talib, Zainal Abidin; Matori, Khamirul Amin

    2017-01-01

    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1–x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1–x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1–x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1–x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV–visible reflectance spectra were used to determine the optical band gap through the Kubelka–Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (−ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175. PMID:29200844

  6. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  7. 237Np analytical method using 239Np tracers and application to a contaminated nuclear disposal facility

    DOE PAGES

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; ...

    2017-03-21

    In this study, environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on themore » order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 m of this site, with maximum 237Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels.« less

  8. 237 Np analytical method using 239 Np tracers and application to a contaminated nuclear disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.

    2017-06-01

    Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106more » and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.« less

  9. 237Np analytical method using 239Np tracers and application to a contaminated nuclear disposal facility.

    PubMed

    Snow, Mathew S; Morrison, Samuel S; Clark, Sue B; Olson, John E; Watrous, Matthew G

    2017-06-01

    Environmental 237 Np analyses are challenged by low 237 Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237 Np analytical approach employing the short lived 239 Np (t 1/2  = 2.3 days) as a chemical yield tracer followed by 237 Np quantification using inductively coupled plasma-mass spectrometry. 239 Np tracer is obtained via separation from a 243 Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237 Np contamination within 600 m of this site, with maximum 237 Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Physics capabilities of the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Arushanova, E.; Back, A. R.; SNO+ Collaboration

    2017-09-01

    SNO+ will soon enter its first phase of physics data-taking. The Canadian-based detector forms part of the SNOLAB underground facility, in a Sudbury nickel mine; its location providing more than two kilometres of rock overburden. We present an overview of the SNO+ experiment and its physics capabilities. Our primary goal is the search for neutrinoless double-beta decay, where our expected sensitivity would place an upper limit of 1.9 × 1026 y, at 90% CL, on the half-life of neutrinoless double-beta decay in 130Te. We also intend to build on the success of SNO by studying the solar neutrino spectrum. In the unloaded scintillator phase SNO+ has the ability to make precision measurements of the fluxes of low-energy pep neutrinos and neutrinos from the CNO cycle. Other physics goals include: determining the spectrum of reactor antineutrinos, to further constrain Δ {m}122; detecting neutrinos produced by a galactic supernova and investigating certain modes of nucleon decay.

  11. Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites

    NASA Astrophysics Data System (ADS)

    Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru

    2018-05-01

    A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.

  12. Low-debris, efficient laser-produced plasma extreme ultraviolet source by use of a regenerative liquid microjet target containing tin dioxide (SnO2) nanoparticles

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi

    2006-05-01

    We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.

  13. Ultrafast recombination dynamics in dye-sensitized SnO 2/TiO 2 core/shell films

    DOE PAGES

    Gish, Melissa K.; Lapides, Alexander M.; Brennaman, M. Kyle; ...

    2016-12-02

    In dye-sensitized photoelectrosynthesis cells (DSPECs), molecular chromophores and catalysts are integrated on a semiconductor surface to perform water oxidation or CO 2 reduction after a series of light-induced electron transfer events. Unfortunately, recombination of the charge separated state (CSS) is competitive with productive catalysis. To overcome this major obstacle, implementation of photoanodic core/shell films within these devices improve electrochemical behavior and slow recombination through the introduction of an energetic barrier between the semiconductor core and oxidized species on the surface. In this study, interfacial dynamics are investigated in SnO 2/TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO 3Hmore » 2) 2bpy)] 2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived CSS depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of DSPECs.« less

  14. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  15. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in

  16. Formation of quasi-single crystalline porous ZnO nanostructures with a single large cavity

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Kim, Semi; Jung, Dae-Won; Lee, Kun-Hong

    2011-09-01

    We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space.We report a method for synthesizing quasi-single crystalline porous ZnO nanostructures containing a single large cavity. The microwave-assisted route consists of a short (about 2 min) temperature ramping stage (from room temperature to 120 °C) and a stage in which the temperature is maintained at 120 °C for 2 h. The structures produced by this route were 200-480 nm in diameter. The morphological yields of this method were very high. The temperature- and time-dependent evolution of the synthesized powders and the effects of an additive, vitamin C, were studied. Spherical amorphous/polycrystalline structures (70-170 nm in diameter), which appeared transitorily, may play a key role in the formation of the single crystalline porous hollow ZnO nanostructures. Studies and characterization of the nanostructures suggested a possible mechanism for formation of the quasi-single crystalline porous ZnO nanostructures with an interior space. Electronic supplementary information (ESI) available: TEM images and the corresponding SAED image of a ZnO

  17. The SNO+ Scintillator Purification Plant and Projected Sensitivity to Solar Neutrinos in the Pure Scintillator Phase

    NASA Astrophysics Data System (ADS)

    Pershing, Teal; SNO+ Collaboration

    2016-03-01

    The SNO+ detector is a neutrino and neutrinoless double-beta decay experiment utilizing the renovated SNO detector. In the second phase of operation, the SNO+ detector will contain 780 tons of organic liquid scintillator composed of 2 g/L 2,5-diphenyloxazole (PPO) in linear alkylbenzene (LAB). In this phase, SNO+ will strive to detect solar neutrinos in the sub-MeV range, including CNO production neutrinos and pp production neutrinos. To achieve the necessary detector sensitivity, a four-part scintillator purification plant has been constructed in SNOLAB for the removal of ionic and radioactive impurities. We present an overview of the SNO+ scintillator purification plant stages, including distillation, water extraction, gas stripping, and metal scavenger columns. We also give the projected SNO+ sensitivities to various solar-produced neutrinos based on the scintillator plant's projected purification efficiency.

  18. Human eosinophils are direct targets to nanoparticles: Zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1β and IL-8.

    PubMed

    Silva, Luis Rafael; Girard, Denis

    2016-09-30

    Zinc oxide NPs (ZnO) have been recently proposed as novel candidates for the treatment of allergic inflammatory diseases. Paradoxically, recent data suggested that ZnO could cause eosinophilic airway inflammation in rodents. Despite the above observations, there are currently no studies reporting direct interaction between a given NP and human eosinophils themselves. In this study, freshly isolated human eosinophils were incubated with ZnO and several cellular functions were studied. We found that ZnO delay human eosinophil apoptosis, partially by inhibiting caspases and by preventing caspase-4 and Bcl-xL degradation. ZnO do not induce production of reactive oxygen species but increase de novo protein synthesis. In addition, ZnO were found to increase the production of the proinflammatory IL-1β and IL-8 cytokines. Using a pharmacological approach, we demonstrated that inhibition of caspase-1 reversed the ability of ZnO to induce IL-1β and IL-8 production, whereas inhibition of caspase-4 only reversed that of IL-8. Our results indicate the necessity of conducting studies to determine the potential of using NP as nanotherapies, particularly in diseases in which eosinophils may be involved. We conclude that, indeed, human eosinophils represent potential new direct targets to NPs, ZnO in the present case. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    NASA Astrophysics Data System (ADS)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  20. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization

    PubMed Central

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira e

    2018-01-01

    Abstract Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 – 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties. PMID:29742262

  1. Model resin composites incorporating ZnO-NP: activity against S. mutans and physicochemical properties characterization.

    PubMed

    Brandão, Natasha Lamego; Portela, Maristela Barbosa; Maia, Luciane Cople; Antônio, Andréa; Silva, Vanessa Loureiro Moreira E; Silva, Eduardo Moreira da

    2018-01-01

    Although resin composites are widely used in the clinical practice, the development of recurrent caries at composite-tooth interface still remains as one of the principal shortcomings to be overcome in this field. Objectives To evaluate the activity against S. mutans biofilm of model resin composites incorporating different concentrations of ZnO-nanoparticles (ZnO-NP) and characterize their physicochemical properties. Materials and Methods Different concentrations of ZnO-NP (wt.%): E1=0, E2=0.5, E3=1, E4=2, E5=5 and E6=10 were incorporated into a model resin composite consisting of Bis-GMA-TEGDMA and barium borosilicate particles. The activity against S. mutans biofilm was evaluated by metabolic activity and lactic acid production. The following physicochemical properties were characterized: degree of conversion (DC%), flexural strength (FS), elastic modulus (EM), hardness (KHN), water sorption (Wsp), water solubility (Wsl) and translucency (TP). Results E3, E4, E5 and E6 decreased the biofilm metabolic activity and E5 and E6 decreased the lactic acid production (p<0.05). E6 presented the lowest DC% (p<0.05). No significant difference in FS and EM was found for all resin composites (p>0.05). E5 and E6 presented the lowest values of KHN (p<0.05). E6 presented a higher Wsp than E1 (p<0.05) and the highest Wsl (p<0.05). The translucency significantly decreased as the ZnO- NP concentration increased (p<0.05). Conclusions The incorporation of 2 - 5 wt.% of ZnO-NP could endow antibacterial activity to resin composites, without jeopardizing their physicochemical properties.

  2. Radon assay for SNO+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumleskie, Janet

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  3. Radon assay for SNO+

    NASA Astrophysics Data System (ADS)

    Rumleskie, Janet

    2015-12-01

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  4. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.

    PubMed

    Jeun, Jeong-Hoon; Park, Kyu-Young; Kim, Dai-Hong; Kim, Won-Sik; Kim, Hong-Chan; Lee, Byoung-Sun; Kim, Honggu; Yu, Woong-Ryeol; Kang, Kisuk; Hong, Seong-Hyeon

    2013-09-21

    SnO2@TiO2 double-shell nanotubes have been facilely synthesized by atomic layer deposition (ALD) using electrospun PAN nanofibers as templates. The double-shell nanotubes exhibited excellent high rate cyclability for lithium ion batteries. The retention of hollow structures during cycling was demonstrated.

  5. 1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Zhang, Jianan; Chen, Zhimin; Xu, Qun

    2018-05-01

    A facile in-situ growth strategy is employ to achieving the two-dimensional SnO2 nanosheets/one-dimensional Cu(OH)2 nanorods nanoarchitecture on Cu foil current collector (SnO2/Cu(OH)2/Cu foil), follow by modification of a uniform layer of graphene (G). Confine with the graphene layer and unique one-dimensional/two-dimensional the nanoarchitecture, the remarkably enhance electrical conductivity and structural stability of G/SnO2/Cu(OH)2/Cu foil leads to a high reversible capacity of 1080.6 mAh g-1 at a current density of 200 mA g-1, much better than the samples without graphene (512.6 mAh g-1) and Cu(OH)2 nanorod (117.4 mAh g-1). Furthermore, G/SnO2/Cu(OH)2/Cu foil electrode shows high rate capacity (600.8 mAh g-1 at 1 A g-1) and excellent cycling stability (1057.1 mAh g-1 at 200 mA g-1 even after 500 cycles). This work highlights that increasing surface and interface effects with desirable three-dimensional nanoarchitecture can open a new avenue to electrochemical performance improvement in lithium-ion battery for SnO2-base anode.

  6. Modulation-Doped In2 O3 /ZnO Heterojunction Transistors Processed from Solution.

    PubMed

    Khim, Dongyoon; Lin, Yen-Hung; Nam, Sungho; Faber, Hendrik; Tetzner, Kornelius; Li, Ruipeng; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Anthopoulos, Thomas D

    2017-05-01

    This paper reports the controlled growth of atomically sharp In 2 O 3 /ZnO and In 2 O 3 /Li-doped ZnO (In 2 O 3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In 2 O 3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In 2 O 3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In 2 O 3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In 2 O 3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Winner of the society for biomaterials young investigator award for the annual meeting of the society for biomaterials, April 11-14, 2018, Atlanta, GA: S-nitrosated poly(propylene sulfide) nanoparticles for enhanced nitric oxide delivery to lymphatic tissues.

    PubMed

    Schudel, Alex; Sestito, Lauren F; Thomas, Susan N

    2018-06-01

    Nitric oxide (NO) is a therapeutic implicated for the treatment of diseases afflicting lymphatic tissues, which range from infectious and cardiovascular diseases to cancer. Existing technologies available for NO therapy, however, provide poor bioactivity within lymphatic tissues. In this work, we address this technology gap with a NO encapsulation and delivery strategy leveraging the formation of S-nitrosothiols on lymphatic-targeting pluronic-stabilized, poly(propylene sulfide)-core nanoparticles (SNO-NP). We evaluated in vivo the lymphatic versus systemic delivery of NO resulting from intradermal administration of SNO-NP benchmarked against a commonly used, commercially available small molecule S-nitrosothiol NO donor, examined signs of toxicity systemically as well as localized to the site of injection, and investigated SNO effects on lymphatic transport and NP uptake by lymph node (LN)-resident cells. Donation of NO from SNO-NP, which scaled in proportion to the total administered dose, enhanced LN accumulation by two orders of magnitude without substantially reducing lymphatic transport of NP or the viability and extent of NP uptake by LN-resident cells. Additionally, NO delivery by SNO-NP was accompanied by low-to-negligible NO accumulation in systemic tissues with no apparent inflammation. These results suggest the utility and selectivity of SNO-NP for the targeted treatment of NO-regulated diseases that afflict lymphatic tissues. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1463-1475, 2018. © 2018 Wiley Periodicals, Inc.

  8. NP-184[2-(5-methyl-2-furyl) benzimidazole], a novel orally active antithrombotic agent with dual antiplatelet and anticoagulant activities.

    PubMed

    Kuo, Heng-Lan; Lien, Jin-Cherng; Chung, Ching-Hu; Chang, Chien-Hsin; Lo, Shyh-Chyi; Tsai, I-Chun; Peng, Hui-Chin; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-06-01

    The established antiplatelet and anticoagulant agents show beneficial effects in the treatment of thromboembolic diseases; however, these drugs still have considerable limitations. The effects of NP-184, a synthetic compound, on platelet functions, plasma coagulant activity, and mesenteric venule thrombosis in mice were investigated. NP-184 concentration-dependently inhibited the human platelet aggregation induced by collagen, arachidonic acid (AA), and U46619, a thromboxane (TX)A(2) mimic, with IC(50) values of 4.5 +/- 0.2, 3.9 +/- 0.1, and 9.3 +/- 0.5 microM, respectively. Moreover, NP-184 concentration-dependently suppressed TXA(2) formations caused by collagen and AA. In exploring effects of NP-184 on enzymes involved in TXA(2) synthesis, we found that NP-184 selectively inhibited TXA(2) synthase activity with an IC(50) value of 4.3 +/- 0.2 microM. Furthermore, NP-184 produced a right shift of the concentration-response curve of U46619, indicating a competitive antagonism on TXA(2)/prostaglandin H(2) receptor. Intriguingly, NP-184 also caused a concentration-dependent prolongation of the activated partial thromboplastin time (aPTT) with no changes in the prothrombin and thrombin time, indicating that it selectively impairs the intrinsic coagulation pathway. Oral administration of NP-184 significantly inhibited thrombus formation of the irradiated mesenteric venules in fluorescein sodium-treated mice without affecting the bleeding time induced by tail transection. However, after oral administration, NP-184 inhibited the ex vivo mouse platelet aggregation triggered by collagen and U46619 and also prolonged aPTT. Taken together, the dual antiplatelet and anticoagulant activities of NP-184 may have therapeutic potential as an oral antithrombotic agent in the treatment of thromboembolic disorders.

  9. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa

    NASA Astrophysics Data System (ADS)

    Li, Junli; Sang, Hyunkyu; Guo, Huiyuan; Popko, James T.; He, Lili; White, Jason C.; Parkash Dhankher, Om; Jung, Geunhwa; Xing, Baoshan

    2017-04-01

    Fungicides have extensively been used to effectively combat fungal diseases on a range of plant species, but resistance to multiple active ingredients has developed in pathogens such as Sclerotinia homoeocarpa, the causal agent of dollar spot on cool-season turfgrasses. Recently, ZnO and Ag nanoparticles (NPs) have received increased attention due to their antimicrobial activities. In this study, the NPs’ toxicity and mechanisms of action were investigated as alternative antifungal agents against S. homoeocarpa isolates that varied in their resistance to demethylation inhibitor (DMI) fungicides. S. homoeocarpa isolates were treated with ZnO NPs and ZnCl2 (25-400 μg ml-1) and Ag NPs and AgNO3 (5-100 μg ml-1) to test antifungal activity of the NPs and ions. The mycelial growth of S. homoeocarpa isolates regardless of their DMI sensitivity was significantly inhibited on ZnO NPs (≥200 μg ml-1), Ag NPs (≥25 μg ml-1), Zn2+ ions (≥200 μg ml-1), and Ag+ ions (≥10 μg ml-1) amended media. Expression of stress response genes, glutathione S-transferase (Shgst1) and superoxide dismutase 2 (ShSOD2), was significantly induced in the isolates by exposure to the NPs and ions. In addition, a significant increase in the nucleic acid contents of fungal hyphae, which may be due to stress response, was observed upon treatment with Ag NPs using Raman spectroscopy. We further observed that a zinc transporter (Shzrt1) might play an important role in accumulating ZnO and Ag NPs into the cells of S. homoeocarpa due to overexpression of Shzrt1 significantly induced by ZnO or Ag NPs within 3 h of exposure. Yeast mutants complemented with Shzrt1 became more sensitive to ZnO and Ag NPs as well as Zn2+ and Ag+ ions than the control strain and resulted in increased Zn or Ag content after exposure. This is the first report of involvement of the zinc transporter in the accumulation of Zn and Ag from NP exposure in filamentous plant pathogenic fungi. Understanding the molecular

  10. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Kinoshita, Masae; Kanamatsu, Tomoyuki; Sakagami, Hiroyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2015-01-01

    Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition. © 2014 International Society for Neurochemistry.

  11. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex

    PubMed Central

    Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin

    2017-01-01

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834

  12. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.

    PubMed

    Walldén, Karin; Nyman, Tomas; Hällberg, B Martin

    2017-04-11

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.

  13. Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.

    PubMed

    Deng, Qi; Hui, Dafeng; Luo, Yiqi; Elser, James; Wang, Ying-ping; Loladze, Irakli; Zhang, Quanfa; Dennis, Sam

    2015-12-01

    Increasing atmospheric CO2 concentrations generally alter element stoichiometry in plants. However, a comprehensive evaluation of the elevated CO2 impact on plant nitrogen: phosphorus (N:P) ratios and the underlying mechanism has not been conducted. We synthesized the results from 112 previously published studies using meta-analysis to evaluate the effects of elevated CO2 on the N:P ratio of terrestrial plants and to explore the underlying mechanism based on plant growth and soil P dynamics. Our results show that terrestrial plants grown under elevated CO2 had lower N:P ratios in both above- and belowground biomass across different ecosystem types. The response ratio for plant N:P was negatively correlated with the response ratio for plant growth in croplands and grasslands, and showed a stronger relationship for P than for N. In addition, the CO2-induced down-regulation of plant N:P was accompanied by 19.3% and 4.2% increases in soil phosphatase activity and labile P, respectively, and a 10.1% decrease in total soil P. Our results show that down-regulation of plant N:P under elevated CO2 corresponds with accelerated soil P cycling. These findings should be useful for better understanding of terrestrial plant stoichiometry in response to elevated CO2 and of the underlying mechanisms affecting nutrient dynamics under climate change.

  14. Dye-sensitized solar cells employing a SnO2-TiO2 core-shell structure made by atomic layer deposition.

    PubMed

    Karlsson, Martin; Jõgi, Indrek; Eriksson, Susanna K; Rensmo, Håkan; Boman, Mats; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    This paper describes the synthesis and characterization of core-shell structures, based on SnO2 and TiO2, for use in dye-sensitized solar cells (DSC). Atomic layer deposition is employed to control and vary the thickness of the TiO2 shell. Increasing the TiO2 shell thickness to 2 nm improved the device performance of liquid electrolyte-based DSC from 0.7% to 3.5%. The increase in efficiency originates from a higher open-circuit potential and a higher short-circuit current, as well as from an improvement in the electron lifetime. SnO2-TiO2 core-shell DSC devices retain their photovoltage in darkness for longer than 500 seconds, demonstrating that the electrons are contained in the core material. Finally core-shell structures were used for solid-state DSC applications using the hole transporting material 2,2',7,7',-tetrakis(N, N-di-p-methoxyphenyl-amine)-9,9',-spirofluorene. Similar improvements in device performance were obtained for solid-state DSC devices.

  15. Investigation of the system ThO 2-NpO 2-P 2O 5. Solid solutions of thorium-neptunium (IV) phosphate-diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    1998-11-01

    Considering that phosphate matrices could be potential candidates for the immobilization of actinides or for the final disposal of the excess plutonium from dismantled nuclear weapons, the chemistry of thorium phosphates has been re-examined. In the ThO 2-P 2O 5 system, the thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 (TPD) can be synthesized by wet and dry chemical processes. The substitution of thorium by other tetravalent actinides like uranium or plutonium can be obtained for 0 < x < 3.0 and 0 < x < 1.63, respectively. In this work, we report the chemical conditions of synthesis of thorium-neptunium (IV) phosphate-diphosphate solid solutions Th 4- xNp x(PO 4) 4P 2O 7 (TNPD) with 0 < x < 1.6 from a mixture of thorium and neptunium (IV) nitrates and concentrated phosphoric acid. From the variation of the cell parameters and volume, the maximum substitution of Th 4+ by Np 4+ in the TPD structure is evaluated to 2.08 (which corresponds to about 52 mol% of thorium replaced by neptunium (IV)). The field of existence of solid solutions Th 4- xU- xNp- xPuU xUNp xNpPu xPu(PO 4)4P 2O 7 has been calculated. These solid solutions should be synthesized for 5 xU+7 xNp+9 xPu⩽15. In the NpO 2-P 2O 5 system, the unit cell parameters of Np 2O(PO 4) 2 were refined by analogy with U 2O(PO 4) 2 which crystallographic data have been published recently. For Np 2O(PO 4) 2 the unit cell is orthorhombic with the following cell parameters: a=7.033(2) Å, b=9.024(3) Å, c=12.587(6) Å and V=799(1) Å 3. The unit cell parameter obtained for α-NpP 2O 7 ( a=8.586(1) Å) is in good agreement with those already reported in literature.

  16. Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis

    NASA Astrophysics Data System (ADS)

    Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor

    2011-09-01

    acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival. Electronic supplementary information (ESI) available: FTIR data, MTT assay and zinc ion release. See DOI: 10.1039/c1nr10272a

  17. Structural and electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles synthesized by hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.

    TiO{sub 2}/ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO{sub 2}. The obtained ZnO, TiO{sub 2} and TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO{sub 2} and ZnO phases in TiO{sub 2}/ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO{sub 2} nanoparticles have a spherical shape, and TiO{sub 2}/ZnO core–shellmore » nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2}/ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles were investigated. • The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about E{sub a} = 101 meV.« less

  18. Emission Properties from ZnO Quantum Dots Dispersed in SiO2 Matrix

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-07-01

    Dispersion of ZnO quantum dots in SiO2 matrix has been achieved in two techniques based on StÖber method to form ZnO QDs-SiO2 nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO2 composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  19. Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods.

    PubMed

    Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho

    2017-02-03

    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In 3+ ) and smaller (Ga 3+ ) than the host Zn 2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.

  20. Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho

    2017-02-01

    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications.

  1. Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods

    PubMed Central

    Lim, Jun Hyung; Lee, Seung Muk; Kim, Hyun-Suk; Kim, Hyun You; Park, Jozeph; Jung, Seung-Boo; Park, Geun Chul; Kim, Jungho; Joo, Jinho

    2017-01-01

    We synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In3+) and smaller (Ga3+) than the host Zn2+ cations. Red shifts in the ultraviolet emission peaks were observed in all doped NRs, owing to the combined effects of NR size, band gap renormalization, and the presence of stacking faults created by the dopant-induced lattice distortions. In addition, the NR/p-GaN diodes using co-doped NRs exhibited superior electrical conductivity compared to the other specimens due to the increase in the charge carrier density of NRs and the relatively large effective contact area of (001) planes. The simultaneous doping of In and Ga is therefore anticipated to provide a broader range of optical, physical, and electrical properties of ZnO NRs for a variety of opto-electronic applications. PMID:28155879

  2. Properties of SnO2 thin films deposited by chemical spray pyrolysis using different precursor solutions

    NASA Astrophysics Data System (ADS)

    Abdul-Hamead, Alaa A.

    2018-05-01

    In this article single and double nozzle (SN, DN) chemical spray pyrolysis techniques(CSP) proved that tin dioxide SnO2 thin film can be fabricated with different structures. SnO2 prepared from three different salts of tin with a concentration of 0.05 M, with thicknesses were about 0.2 ±0.02 µm. Microstructures inspections were achieved on films, beside optical transparency addition to the contact angle CA. The results show that films have tetragonal crystalline with different micro-structures, from sheet to rod and flower-like aggregates, by the variation of the used salts by DN more than SN, also the value of the CA of the prepared films varies with different structures, reaching its highest value for flower-like aggregates of about 130°. Finally, the optical transparency was different corresponding to the disparity in surfaces roughness and topography.

  3. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.

    PubMed

    Ganapathy, Veerappan; Kong, Eui-Hyun; Park, Yoon-Cheol; Jang, Hyun Myung; Rhee, Shi-Woo

    2014-03-21

    Cauliflower-like tin oxide (SnO2) hollow microspheres (HMS) sensitized with multilayer quantum dots (QDs) as photoanode and alternative stable, low-cost counter electrode are employed for the first time in QD-sensitized solar cells (QDSCs). Cauliflower-like SnO2 hollow spheres mainly consist of 50 nm-sized agglomerated nanoparticles; they possess a high internal surface area and light scattering in between the microspheres and shell layers. This makes them promising photoanode material for both QDSCs and dye-sensitized solar cells (DSCs). Successive ionic layer adsorption and reaction (SILAR) method and chemical bath deposition (CBD) are used for QD-sensitizing the SnO2 microspheres. Additionally, carbon-nanofiber (CNF) with a unique structure is used as an alternative counter electrode (CE) and compared with the standard platinum (Pt) CE. Their electrocatalytic properties are measured using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Tafel-polarization. Under 1 sun illumination, solar cells made with hollow SnO2 photoanode sandwiched with the stable CNF CE showed a power conversion efficiency of 2.5% in QDSCs and 3.0% for DSCs, which is quite promising with the standard Pt CE (QDSCs: 2.1%, and DSCs: 3.6%).

  4. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2 nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    PubMed

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Commissioning the SNO+ Detector

    NASA Astrophysics Data System (ADS)

    Caden, E.; Coulter, I.; SNO+ Collaboration

    2017-09-01

    SNO+ is a multipurpose liquid scintillator neutrino experiment based at SNOLAB in Sudbury, Ontario, Canada. The experiment’s main physics goal is a search for neutrinoless double beta decay in Tellurium-130, but SNO+ will also study low energy solar neutrinos, geo- and reactor-antineutrinos, among other topics. We are reusing much of the hardware from the original SNO experiment, but significant work has taken place to transform the heavy water detector into a liquid scintillator detector. We present upgrades and improvements to the read-out electronics and trigger system to handle the higher data rates expected by a scintillator experiment. We show the successful installation and testing of a hold-down rope net for the acrylic vessel to counter-act the buoyancy of organic liquid scintillator. We also describe the new scintillator process plant and cover gas systems that have been constructed to achieve the purification necessary to meet our physics goals. We are currently commissioning the experiment with ultra-pure water in preparation for filling with scintillator in early 2017 and present the current status of this work.

  6. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  7. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V.; Pillai, Vijayamohanan K.

    2014-07-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar

  8. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO2 Modified Layers

    PubMed Central

    Xue, Niuzi; Zhang, Qinyi; Zhang, Shunping; Zong, Pan; Yang, Feng

    2017-01-01

    It is important to improve the sensitivities and selectivities of metal oxide semiconductor (MOS) gas sensors when they are used to monitor the state of hydrogen in aerospace industry and electronic field. In this paper, the ordered mesoporous SnO2 (m-SnO2) powders were prepared by sol-gel method, and the morphology and structure were characterized by X-ray diffraction analysis (XRD), transmission electron microscope (TEM) and Brunauer–Emmett–Teller (BET). The gas sensors were fabricated using m-SnO2 as the modified layers on the surface of commercial SnO2 (c-SnO2) by screen printing technology, and tested for gas sensing towards ethanol, benzene and hydrogen with operating temperatures ranging from 200 °C to 400 °C. Higher sensitivity was achieved by using the modified m-SnO2 layers on the c-SnO2 gas sensor, and it was found that the S(c/m2) sensor exhibited the highest response (Ra/Rg = 22.2) to 1000 ppm hydrogen at 400 °C. In this paper, the mechanism of the sensitivity and selectivity improvement of the gas sensors is also discussed. PMID:29036898

  9. Chimeric Peptide Tat-HA-NR2B9c Improves Regenerative Repair after Transient Global Ischemia.

    PubMed

    Zhou, Hai-Hui; Zhang, Li; Zhang, Hai-Xia; Zhang, Jin-Ping; Ge, Wei-Hong

    2017-01-01

    Transient global ischemia (TGI) is a major public health problem, and it heightens the need of effective treatments. The present study was undertaken to investigate whether recombinant polypeptide Tat-HA-NR2B9c improves spatial learning and memory deficits in rats after TGI. Rats were subjected to 20-min ischemia induced by four-vessel occlusion (4-VO) method and daily injected with Tat-HA-NR2B9c (1.12 mg/kg) for 1 week. Tat-HA-NR2B9c increased CREB activity, upregulated B-cell lymphoma-2 (Bcl-2) expression after treated for 24 h. There was a significant increase in dendrite spine density in hippocampal CA1 region and BrdU-positive cells and BrdU/NeuN-positive cells in the dentate gyrus after Tat-HA-NR2B9c treatment, compared with ischemia group at postischemic day 28. Inhibition of the CREB activation by recombinant lentivirus, LV-CREB133-GFP, abolished the upregulation effects of Tat-HA-NR2B9c on Bcl-2 expression. Moreover, Tat-HA-NR2B9c improved the impaired spatial learning and memory ability in Morris water maze. These results suggest that Tat-HA-NR2B9c substantially ameliorated the TGI-induced loss of dendrite spine in hippocampal CA1, increased neurogenesis in dentate gyrus, and significantly improved cognitive abilities by the CREB pathway in rats after transient global cerebral ischemia. It may be served as a treatment for TGI.

  10. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    NASA Astrophysics Data System (ADS)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  11. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Weiwei; Liu, Tiangui, E-mail: tianguiliu@gmail.com; Cao, Shiyi

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancementmore » for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.« less

  12. NR2F2 inhibits Smad7 expression and promotes TGF-β-dependent epithelial-mesenchymal transition of CRC via transactivation of miR-21.

    PubMed

    Wang, Hao; Nie, Lei; Wu, Lei; Liu, Qiufang; Guo, Xueyan

    2017-03-25

    Metastasis is one of the most decisive factors influencing CRC patient prognosis and current studies suggest that a molecular mechanism known as EMT broadly regulates cancer metastasis. NR2F2 is a key molecule in the development of CRC, but the roles and underlying mechanisms of NR2F2 in TGF-β induced EMT in CRC remain largely unknown. In the current study, we were interested to examine the role of NR2F2 in the TGF-β-induced EMT in CRC. Here, we found NR2F2 was upregulated in CRC cells and promotes TGF-β-induced EMT in CRC. Using comparative miRNA profiling TGF-β pre-treated CRC cells in which NR2F2 had been knocked down with that of control cells, we identified miR-21 as a commonly downregulated miRNA in HT29 cells treated with TGF-β and NR2F2 siRNA, and its downregulation inhibiting migration and invasion of CRC cells. Moreover, we found NR2F2 could transcriptional activated miR-21 expression by binding to miR-21 promoter in HT29 by ChIP and luciferase assay. In the last, our data demonstrated that Smad7 was the direct target of miR-21 in CRC cells. Thus, NR2F2 could promote TGF-β-induced EMT and inhibit Smad7 expression via transactivation of miR-21, and NR2F2 may be a new common therapeutic target for CRC. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation.

    PubMed

    Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Retroposed SNOfall--a mammalian-wide comparison of platypus snoRNAs.

    PubMed

    Schmitz, Jürgen; Zemann, Anja; Churakov, Gennady; Kuhl, Heiner; Grützner, Frank; Reinhardt, Richard; Brosius, Jürgen

    2008-06-01

    Diversification of mammalian species began more than 160 million years ago when the egg-laying monotremes diverged from live bearing mammals. The duck-billed platypus (Ornithorhynchus anatinus) and echidnas are the only potential contemporary witnesses of this period and, thereby, provide a unique insight into mammalian genome evolution. It has become clear that small RNAs are major regulatory agents in eukaryotic cells, and the significant role of non-protein-coding (npc) RNAs in transcription, processing, and translation is now well accepted. Here we show that the platypus genome contains more than 200 small nucleolar (sno) RNAs among hundreds of other diverse npcRNAs. Their comparison among key mammalian groups and other vertebrates enabled us to reconstruct a complete temporal pathway of acquisition and loss of these snoRNAs. In platypus we found cis- and trans-duplication distribution patterns for snoRNAs, which have not been described in any other vertebrates but are known to occur in nematodes. An exciting novelty in platypus is a snoRNA-derived retroposon (termed snoRTE) that facilitates a very effective dispersal of an H/ACA snoRNA via RTE-mediated retroposition. From more than 40,000 detected full-length and truncated genomic copies of this snoRTE, at least 21 are processed into mature snoRNAs. High-copy retroposition via multiple host gene-promoted transcription units is a novel pathway for combining housekeeping function and SINE-like dispersal and reveals a new dimension in the evolution of novel snoRNA function.

  15. Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires

    NASA Astrophysics Data System (ADS)

    Nguyet, Quan Thi Minh; Van Duy, Nguyen; Manh Hung, Chu; Hoa, Nguyen Duc; Van Hieu, Nguyen

    2018-04-01

    Hybrid heterojunction devices are designed for ultrahigh response to NO2 toxic gas. The devices were constructed by assembling multi-walled carbon nanotubes (MWCNTs) on a microelectrode chip bridged bare Pt-electrode and a Pt-electrode with pre-grown SnO2 nanowires (NWs). All heterojunction devices were realized using different types of MWCNTs, which exhibit ultrahigh response to sub-ppm NO2 gas at 50 °C operated in the reverse bias mode. The response to 1 ppm NO2 gas reaches 11300, which is about 100 times higher than that of a back-to-back heterojunction device fabricated from SnO2 NWs and MWCNTs. In addition, the present device exhibits an ultralow detection limit of about 0.68 ppt. The modulation of trap-assisted tunneling current under reverse bias is the main gas-sensing mechanism. This principle device presents a concept for developing gas sensors made of a hybrid between semiconductor metal oxide NWs and CNTs.

  16. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    PubMed

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  17. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells.

    PubMed

    Soni, Deepika; Gandhi, Deepa; Tarale, Prashant; Bafana, Amit; Pandey, R A; Sivanesan, Saravanadevi

    2017-08-01

    In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).

  18. Large and stable reversible lithium-ion storages from mesoporous SnO2 nanosheets with ultralong lifespan over 1000 cycles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Jiang, Bin; Guo, Jinxue; Xie, Yaping; Tang, Lin

    2014-12-01

    The major challenge to promote the commercialization of SnO2 anode materials is to construct unique structures and/or composites that could alleviate the volume effect and extend the lifespan. This study develops an efficient synthetic solution for the preparation of mesoporous SnO2 nanosheets, which involves an evaporation-induced selfassembly process and the following thermal treatment. Surfactant F127 is used as the soft template to form abundant cores. The as-prepared sample intrinsically inherits flexible sheet-like structure and porous features, as characterized with XRD, SEM, TEM and BET techniques. Based on these combining structural benefits, the sample is utilized as anode materials for lithium-ion batteries and exhibits excellent Li+ storage performance such as large and stable reversible capacity, good rate capability, and especially the outstanding durable cycling life of over 1000 cycles, which meets the demands of practical applications. The structural changes of SnO2 nanosheets are observed from the decomposed electrodes after different electrochemical cycles. Moreover, this synthesis strategy may offer an alternative and universal approach for synthesis of other transitional metal oxides or their binary composites as high-performance anode materials for lithium-ion batteries.

  19. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO 2 nanocrystals as the robust electron-transporting layer

    DOE PAGES

    Zhu, Zonglong; Bai, Yang; Liu, Xiao; ...

    2016-05-11

    Here highly crystalline SnO 2 is demonstrated to serve as a stable and robust electron-transporting layer for high-performance perovskite solar cells. Benefiting from its high crystallinity, the relatively thick SnO 2 electron-transporting layer (≈120 nm) provides a respectable electron-transporting property to yield a promising power conversion efficiency (PCE)(18.8%) Over 90% of the initial PCE can be retained after 30 d storage in ambient with ≈70% relative humidity.

  20. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  1. Spinal SIRPα1-SHP2 interaction regulates spinal nerve ligation-induced neuropathic pain via PSD-95-dependent NR2B activation in rats.

    PubMed

    Peng, Hsien-Yu; Chen, Gin-Den; Lai, Cheng-Yuang; Hsieh, Ming-Chun; Lin, Tzer-Bin

    2012-05-01

    The fact that neuropathic pain mechanisms are not well understood is a major impediment in the development of effective clinical treatments. We examined whether the interaction between signal regulatory protein alpha 1 (SIRPα1) and Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2), and the downstream spinal SHP2/postsynaptic density 95 (PSD-95)/N-methyl-d-aspartate receptor NR2B subunit signaling cascade play a role in neuropathic pain. Following spinal nerve ligation (L5), we assessed tactile allodynia using the von Frey filament test and analyzed dorsal horn samples (L4-5) by Western blotting, reverse transcription polymerase chain reaction, coimmunoprecipitation, and immunofluorescence. Nerve ligation induced allodynia, SIRPα1, SHP2, phosphorylated SHP2 (pSHP2), and phosphorylated NR2B (pNR2B) expression, and SHP2-PSD-95, pSHP2-PSD-95, PSD-95-NR2B, and PSD-95-pNR2B coimmunoprecipitation in the ipsilateral dorsal horn. In allodynic rats, injury-induced SHP2 immunoreactivity was localized in the ipsilateral dorsal horn neurons and coincident with PSD-95 and NR2B immunoreactivity. SIRPα1 silencing using small interfering RNA (siRNA; 1, 3, or 5μg/rat for 7days) prevented injury-induced allodynia and the associated changes in protein expression, phosphorylation, and coimmunoprecipitation. Intrathecal administration of NSC-87877 (an SHP2 antagonist; 1, 10, or 100μM/rat) and SIRPα1-neutralizing antibodies (1, 10, or 30μg/rat) suppressed spinal nerve ligation-induced allodynia, spinal SHP2 and NR2B phosphorylation, and SHP2/phosphorylated SHP2-PSD-95 and PSD-95-NR2B/phosphorylated NR2B coprecipitation. SHP2 siRNA led to similar effects as the NSC-87877 and SIRPα1 antibody treatments, except it prevented the allodynia-associated spinal SHP2 expression. In conclusion, our results suggest that a spinal SIRPα1-SHP2 interaction exists that subsequently triggers SHP2/PSD-95/NR2B signaling, thereby playing a role in neuropathic pain development

  2. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO 2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Talebian, Nasrin; Nilforoushan, Mohammad Reza; Zargar, Elahe Badri

    2011-10-01

    The nano-sized coupled oxides ZnO/SnO 2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli ( E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO 2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO 2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  3. Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    García-Tecedor, M.; Karazhanov, S. Zh; Vásquez, G. C.; Haug, H.; Maestre, D.; Cremades, A.; Taeño, M.; Ramírez-Castellanos, J.; González-Calbet, J. M.; Piqueras, J.; You, C. C.; Marstein, E. S.

    2018-01-01

    In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO2 and SnO2). The hybrid compound was deposited at room temperature by spin coating—a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.

  4. Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles.

    PubMed

    García-Tecedor, M; Karazhanov, S Zh; Vásquez, G C; Haug, H; Maestre, D; Cremades, A; Taeño, M; Ramírez-Castellanos, J; González-Calbet, J M; Piqueras, J; You, C C; Marstein, E S

    2018-01-19

    In this paper, we present a study of silicon surface passivation based on the use of spin-coated hybrid composite layers. We investigate both undoped poly(3,4-ethylenedioxythiophene)/poly-(styrenesulfonate) (PEDOT:PSS), as well as PEDOT:PSS functionalized with semiconducting oxide nanomaterials (TiO 2 and SnO 2 ). The hybrid compound was deposited at room temperature by spin coating-a potentially lower cost, lower processing time and higher throughput alternative compared with the commonly used vacuum-based techniques. Photoluminescence imaging was used to characterize the electronic properties of the Si/PEDOT:PSS interface. Good surface passivation was achieved by PEDOT:PSS functionalized by semiconducting oxides. We show that control of the concentration of semiconducting oxide nanoparticles in the polymer is crucial in determining the passivation performance. A charge carrier lifetime of about 275 μs has been achieved when using SnO 2 nanoparticles at a concentration of 0.5 wt.% as a filler in the composite film. X-ray diffraction (XRD), scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), energy dispersive x-ray in an SEM, and μ-Raman spectroscopy have been used for the morphological, chemical and structural characterization. Finally, a simple model of a photovoltaic device based on PEDOT:PSS functionalized with semiconducting oxide nanoparticles has been fabricated and electrically characterized.

  5. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less

  6. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  7. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion

    PubMed Central

    Dang, Tuyen T.; Westcott, Jill M.; Maine, Erin A.; Kanchwala, Mohammed; Xing, Chao; Pearson, Gray W.

    2016-01-01

    Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome. PMID:27081041

  8. Retroposed SNOfall—A mammalian-wide comparison of platypus snoRNAs

    PubMed Central

    Schmitz, Jürgen; Zemann, Anja; Churakov, Gennady; Kuhl, Heiner; Grützner, Frank; Reinhardt, Richard; Brosius, Jürgen

    2008-01-01

    Diversification of mammalian species began more than 160 million years ago when the egg-laying monotremes diverged from live bearing mammals. The duck-billed platypus (Ornithorhynchus anatinus) and echidnas are the only potential contemporary witnesses of this period and, thereby, provide a unique insight into mammalian genome evolution. It has become clear that small RNAs are major regulatory agents in eukaryotic cells, and the significant role of non-protein-coding (npc) RNAs in transcription, processing, and translation is now well accepted. Here we show that the platypus genome contains more than 200 small nucleolar (sno) RNAs among hundreds of other diverse npcRNAs. Their comparison among key mammalian groups and other vertebrates enabled us to reconstruct a complete temporal pathway of acquisition and loss of these snoRNAs. In platypus we found cis- and trans-duplication distribution patterns for snoRNAs, which have not been described in any other vertebrates but are known to occur in nematodes. An exciting novelty in platypus is a snoRNA-derived retroposon (termed snoRTE) that facilitates a very effective dispersal of an H/ACA snoRNA via RTE-mediated retroposition. From more than 40,000 detected full-length and truncated genomic copies of this snoRTE, at least 21 are processed into mature snoRNAs. High-copy retroposition via multiple host gene-promoted transcription units is a novel pathway for combining housekeeping function and SINE-like dispersal and reveals a new dimension in the evolution of novel snoRNA function. PMID:18463303

  9. Structural, electrical and magnetic properties of (Fe, Co) co-doped SnO2 diluted magnetic semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Mehraj, Sumaira; Ansari, M. Shahnawaze; Alimuddin

    2015-01-01

    Nanostructures (NSs) of basic composition Sn1-xFex/2Cox/2O2 with x=0.00, 0.04, 0.06, 0.08 and 0.1 were synthesized by citrate-gel route and characterized to understand their structural, electrical and magnetic properties. X-ray diffraction and Raman spectroscopy were used to confirm the formation of single phase rutile type tetragonal structure. The crystallite sizes calculated by using Williamson Hall were found to decrease with increasing doping level. In addition to the fundamental Raman peaks of rutile SnO2, the other three weak Raman peaks at about 505, 537 and 688 cm-1 were also observed. Field emission scanning electron microscopy studies showed the emergence of structural transformation. Electric properties such as dc electrical resistivity as a function of temperature and ac conductivity as a function of frequency were also studied. The variation of dielectric properties with frequency reveals that the dispersion is due to Maxwell-Wagner type of interfacial polarization in general. Hysteresis loops were clearly observed in M-H curves of Fe and Co co-doped SnO2 NSs. However, pure SnO2 nanoparticles (NPs) showed paramagnetic behaviour which vanished at higher values of magnetic field. The grain and grain boundary contribution in the conduction process is estimated through complex impedance plot fitted with non-linear least square (NLLS) approach which shows that the role of grain boundaries increases rapidly as compared to the grain volume with the increase of Fe and Co ions in to system.

  10. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  11. The role of Tin Oxide Concentration on The X-ray Diffraction, Morphology and Optical Properties of In2O3:SnO2 Thin Films

    NASA Astrophysics Data System (ADS)

    Hasan, Bushra A.; Abdallah, Rusul M.

    2018-05-01

    Alloys were performed from In2O3 doped SnO2 with different doping ratio by quenching from the melt technique. Pulsed Laser Deposition PLD was used to deposit thin films of different doping ratio In2O3 : SnO2 (0, 1, 3, 5, 7 and 9 % wt.) on glass substrate at ambient temperature under vacuum of 10-3 bar thickness of ∼100nm. The structural type,grain size and morphology of the prepared alloys compounds and thin films were examined using X-ray diffraction and atomic force microscopy. The results showed that all alloys have polycrystalline structures and the peaks belonged to the preferred plane for crystal growth were identical with the ITO (Indium – Tin –Oxide) standard cards also another peaks were observed belonged to SnO2 phase. The structures of thin films was also polycrystalline, and the predominate peaks are identical with standard cards ITO. On the other side the prepared thin films declared decrease a reduction of degree of crystallinity with the increase of doping ratio. Atomic Force Microscopy AFM measurements showed the average grain size and average surface roughness exhibit to change in systematic manner with the increase of doping ratio with tin oxide. The optical measurements show that the In2O3:SnO2 thin films have a direct energy gap Eg opt in the first stage decreases with the increase of doping ratio and then get to increase with further increase of doping ration, whereas reverse to that the optical constants such as refractive index (n), extinction coefficient (k) and dielectric constant (εr, εi) have a regular increase with the doping ratio by tin oxide and then decreases.

  12. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO

    PubMed Central

    2014-01-01

    In this work we investigate the mechanism of Zn oxidation with CO2 and/or H2O to produce solar derived fuels (CO and/or H2) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO2 and H2O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al2O3 at 350–400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al2O3 diluent. PMID:26692637

  13. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO.

    PubMed

    Weibel, David; Jovanovic, Zoran R; Gálvez, Elena; Steinfeld, Aldo

    2014-11-25

    In this work we investigate the mechanism of Zn oxidation with CO 2 and/or H 2 O to produce solar derived fuels (CO and/or H 2 ) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO 2 and H 2 O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al 2 O 3 at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al 2 O 3 diluent.

  14. Studying Structural, Optical, Electrical, and Sensing Properties of Nanocrystalline SnO2:Cu Films Prepared by Sol-Gel Method for CO Gas Sensor Application at Low Temperature

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl22H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.

  15. Cr2O3-modified ZnO thick film resistors as LPG sensors.

    PubMed

    Patil, D R; Patil, L A

    2009-02-15

    Thick films of pure ZnO were obtained by screen-printing technique. Surface functionalized ZnO thick films by Cr(2)O(3) were obtained by dipping pure ZnO thick films into 0.01M aqueous solution of chromium trioxide (CrO(3)). The dipped films were fired at 500 degrees C for 30 min. Upon firing, the CrO(3) would reduce to Cr(2)O(3). Cr(2)O(3)-activated (0.47 mass%) ZnO thick films resulted in LPG sensor. Upon exposure to 100 ppm LPG, the barrier height between Cr(2)O(3) and ZnO grains decreases markedly, leading to a drastic decrease in resistance. The sensor was found to sense LPG at 350 degrees C and no cross sensitivity was observed to other hazardous, polluting and inflammable gases. The quick response ( approximately 18s) and fast recovery ( approximately 42s) are the main features of this sensor. The effects of microstructures and dopant concentrations on the gas sensing performance of the sensor were studied and discussed.

  16. Development of a detection sensor for lethal H2S gas.

    PubMed

    Park, Young-Ho; Kim, Yong-Jae; Lee, Chang-Seop

    2012-07-01

    The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.

  17. Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah

    2018-04-01

    The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.

  18. Electromechanical engineering in SnO2 nanoparticle tethered hybrid ionic liquid

    NASA Astrophysics Data System (ADS)

    Deb, Debalina; Bhattacharya, Subhratanu

    2017-05-01

    Challenge of developing electrolytes comprising synergic properties of high mechanical strength with superior electrical and electrochemical properties has so far been unmet towards the application of secondary storage devices. In this research, we have engineered the electromechanical properties of 2-(trimethylamino) ethyl methacrylate bis(trifluoromethylsulfonyl) imide [TMEM]TFSI ionic liquid by tethering silane modified SnO2 nanoparticles within it. Different percentages of tethering are employed to achieve improved ionic conductivity, better discharge/ charging ratio (40%) along with gel like mechanical properties. Our findings appear to provide an optimal solution towards the future prospects in application in a number of areas, notably in energy-related technologies.

  19. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl 2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Eu 3+-doped wide band gap Zn 2SnO 4 semiconductor nanoparticles: Structure and luminescence

    DOE PAGES

    Dimitrievska, Mirjana; Ivetić, Tamara B.; Litvinchuk, Alexander P.; ...

    2016-08-03

    Nanocrystalline Zn 2SnO 4 powders doped with Eu 3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 °C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu 3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu 3+. Formation of a nanocrystalline Eu 2Sn 2O 7 secondary phase is also observed. Luminescence spectra of Eu 3+-doped samples show several emissions, including narrow-bandmore » magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu 3+ ions. Excitation spectra and lifetime measurements suggest that Eu 3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu 3+ ions participate at octahedral sites of Zn 2+ or Sn 4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu 3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn 2SnO 4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn 2SnO 4 shows effectiveness in hosting Eu 3+ ions, which could be used as a prospective green/red emitter. As a result, this work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.« less