Sample records for zns nanocrystalline thin

  1. Synthesis and characterization of spin-coated ZnS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.

    2018-05-01

    In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.

  2. [Preparation and transmissivity of ZnS nanocolumn thin films with glancing angle deposition technology].

    PubMed

    Lu, Li-Fang; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Song, Dan-Dan; Li, Jun-Ming; Wang, Yong-Sheng; Xu, Xu-Rong

    2010-02-01

    Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3 x 10(-4) Pa, and the deposition rate was fixed at 0.2 nm x s(-1). ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0 degrees, 80 degrees and 85 degrees off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystalline films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of alpha = 80 degrees and 85 degrees. The dynamics during the deposition process of the ZnS films at alpha = 0 degrees, 80 degrees and 85 degrees was analyzed. The transmitted spectra of ZnS thin films deposited on ITO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.

  3. Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.

    PubMed

    Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng

    2010-03-01

    ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.

  4. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.

    2014-10-01

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  5. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Benyahia, K.; Benhaya, A.; Aida, M. S.

    2015-10-01

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

  6. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  7. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  8. Application of Chlorophyll as Sensitizer for ZnS Photoanode in a Dye-Sensitized Solar Cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Panda, B. B.; Mahapatra, P. K.; Ghosh, M. K.

    2018-03-01

    Zinc sulphide thin films have been synthesized by the electrodeposition method onto stainless steel substrate followed by dipping in acetone solution of chlorophyll in different time intervals to form photosensitised thin films. The photoelectrochemical parameters of the films have been studied using the photoelectrochemical cell having the cell configuration as follows {{photoelectrode/NaOH}}({1{{M}}} ) + {{S}}({1{{M}}} ) + {{N}}{{{a}}_2}{{S}}({1{{M}}} ){{/C}} ({{{graphite}}} ) . The photoelectrochemical characterization of the semiconductor film and dye-sensitised films has been carried out by measuring current-voltage (I-V) in the dark, power output and photoresponse. The study proves that the conductivity of both ZnS film and dye-sensitised ZnS films are n-type. The power output curves illustrate that open circuit voltage (V oc) and short circuit current (I sc) increase from 0.210 V to 0.312 V and from 0.297 mA to 0.533 mA, respectively. The fill factor initially decreases from 0.299 to 0.213 and then increases to 0.297 irregularly whereas efficiency increases from 0.047% to 0.123%. The UV-Vis absorbance spectrum of chlorophyll in acetone shows the presence of chlorophyll. The structural morphology of the ZnS thin films has also been analysed by using x-ray diffraction technique (XRD) and a scanning electron microscope (SEM). The XRD pattern shows the formation of nanocrystalline ZnS thin films of size 65 nm and the SEM images confirm the formation of fibrous film of ZnS. The energy diffraction analysis of x-ray confirms the formation of ZnS thin films.

  9. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  10. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  11. Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Evstropiev, S. K.; Nikonorov, N. V.; Vasilyev, V. N.; Evstropyev, K. S.

    2017-11-01

    Thin and uniform ZnO and ZnO:Al coatings were prepared on glass surfaces by using film-forming colloidal solutions containing small ZnS nanoparticles and polyvinylpyrrolidone as a polymer stabilizer. Film-forming ZnS sols were synthesized in the mixed water-propanol-2 solutions by chemical reaction between zinc nitrate and sodium sulfide. The addition of modifying component such as Al(NO3)3 into the film-forming solutions allows one to obtain thin and uniform ZnO:Al coatings. An increase in the sodium sulfide content in film-forming solutions leads to the growth of light absorption in the UV. The evolution of a coating material at all technological stages from the ZnS sols up to the transparent ZnO and ZnO:Al2O3 coatings (the latter kind being denoted further, in accord with a common practice, by ZnO:Al) was studied using the optical spectroscopy, XRD analysis, DSC-TGA, and SEM methods. The chemical processes of decomposing salts and the polymer occur by heating the intermediate composite ZnS/polyvinylpyrrolidone coatings in the 280-500 °C temperature range. Experimental data show that the ZnO and ZnO:Al coatings prepared consist of the slightly elongated oxide nanoparticles. These coatings fully cover the glass surface and demonstrate a high transparency in the UV and visible.

  12. Chemical bath deposited ZnS buffer layer for Cu(In,Ga)Se2 thin film solar cell

    NASA Astrophysics Data System (ADS)

    Hong, Jiyeon; Lim, Donghwan; Eo, Young-Joo; Choi, Changhwan

    2018-02-01

    The dependence of Zn precursors using zinc sulfate (ZnSO4), zinc acetate (Zn(CH3COO)2), and zinc chloride (ZnCl2) on the characteristics of the chemical bath deposited ZnS thin film used as a buffer layer of Cu(In,Ga)Se2 (CIGS) thin film solar cell was studied. It is found that the ZnS film deposition rate increases with higher stability constant during decomplexation reaction of zinc ligands, which affects the crack formation and the amount of sulfur and oxygen contents within the film. The band gap energies of all deposited films are in the range of 3.40-3.49 eV, which is lower than that of the bulk ZnS film due to oxygen contents within the films. Among the CIGS solar cells having ZnS buffer layers prepared by different Zn precursors, the best cell efficiency with 9.4% was attained using Zn(CH3COO)2 precursor due to increased Voc mainly. This result suggests that [Zn(NH3)4]2+ complex formation should be well controlled to attain the high quality ZnS thin films.

  13. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  14. Effects of Various Parameters on Structural and Optical Properties of CBD-Grown ZnS Thin Films: A Review

    NASA Astrophysics Data System (ADS)

    Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush

    2018-02-01

    Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.

  15. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  16. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-01-01

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. PMID:28348350

  17. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  18. Study of the morphology of ZnS thin films deposited on different substrates via chemical bath deposition.

    PubMed

    Gómez-Gutiérrez, Claudia M; Luque, P A; Castro-Beltran, A; Vilchis-Nestor, A R; Lugo-Medina, Eder; Carrillo-Castillo, A; Quevedo-Lopez, M A; Olivas, A

    2015-01-01

    In this work, the influence of substrate on the morphology of ZnS thin films by chemical bath deposition is studied. The materials used were zinc acetate, tri-sodium citrate, thiourea, and ammonium hydroxide/ammonium chloride solution. The growth of ZnS thin films on different substrates showed a large variation on the surface, presenting a poor growth on SiO2 and HfO2 substrates. The thin films on ITO substrate presented a uniform and compact growth without pinholes. The optical properties showed a transmittance of about 85% in the visible range of 300-800 nm with band gap of 3.7 eV. © Wiley Periodicals, Inc.

  19. Luminescence characteristics of impurities-activated ZnS nanocrystals prepared in microemulsion with hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Xu, S. J.; Chua, S. J.; Liu, B.; Gan, L. M.; Chew, C. H.; Xu, G. Q.

    1998-07-01

    Cu-, Eu-, or Mn-doped ZnS nanocrystalline phosphors were prepared at room temperature using a chemical synthesis method. Transmission electron microscopy observation shows that the size of the ZnS clusters is in the 3-18 nm range. New luminescence characteristics such as strong and stable visible-light emissions with different colors were observed from the doped ZnS nanocrystals at room temperature. These results strongly suggest that impurities, especially transition metals and rare-earth metals-activated ZnS nanoclusters form a new class of luminescent materials.

  20. The influence of doping element on structural and luminescent characteristics of ZnS thin films

    NASA Astrophysics Data System (ADS)

    Kryshtab, T.; Khomchenko, V. S.; Andraca-Adame, J. A.; Rodionov, V. E.; Khachatryan, V. B.; Tzyrkunov, Yu. A.

    2006-10-01

    For the fabrication of green and blue emitting ZnS structures the elements of I, III, and VII groups (Cu, Al, Ga, Cl) are used as dopants. The influence of type of impurity, doping technique, and type of substrate on crystalline structure and surface morphology together with luminescent properties was investigated. The doping of thin films was realized during the growth process and/or post-deposition thermal treatment. ZnS thin films were deposited by physical (EBE) and chemical (MOCVD) methods onto glass or ceramic (BaTiO 3) substrates. Closed spaced evaporation and thermodiffusion methods were used for the post-deposition doping of ZnS films. X-ray diffraction (XRD) techniques, atomic force microscopy (AFM), and measurements of photoluminescent (PL) spectra were used for the investigations. It was shown that the doping by the elements of I (Cu) and III (Al, Ga) groups does not change the crystal structure during the thermal treatment up to 1000 ∘C, whereas simultaneous use of the elements of I (Cu) and VII (Cl) groups leads to decrease of the phase transition temperature to 800 ∘C. The presence of impurities in the growth process leads to a grain size increase. At post-deposition treatment Ga and Cl act as activators of recrystallization process. The transition of ZnS sphalerite lattice to wurtzite one leads to the displacement of the blue emission band position towards the short-wavelength range by 10 nm.

  1. Subtractive Plasma-Assisted-Etch Process for Developing High Performance Nanocrystalline Zinc-Oxide Thin-Film-Transistors

    DTIC Science & Technology

    2015-03-26

    THIN - FILM - TRANSISTORS THESIS Thomas M. Donigan, First Lieutenant, USAF AFIT-ENG-MS-15-M-027 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS THESIS Presented to the Faculty Department of Electrical and...15-M-027 SUBTRACTIVE PLASMA-ASSISTED-ETCH PROCESS FOR DEVELOPING HIGH PERFORMANCE NANOCRYSTALLINE ZINC-OXIDE THIN - FILM - TRANSISTORS

  2. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Ong, H. C.; Chang, R. P. H.

    2001-11-01

    The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.

  3. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films

    NASA Astrophysics Data System (ADS)

    Hurma, T.

    2018-06-01

    ZnS and ZnS:Al films have been deposited by ultrasonic spray pyrolysis (USP) method. Three different atomic ratios of aluminium were used as the dopant element. The effects of aluminum incorporation on structural and optical properties of the ZnS films have been investigated. The XRD analysis showed that the cubic structure of the ZnS was not much affected by Al doping. The crystal size of the films decreased, as the Al ratio increased. Al incorporation caused an increase in the intensity of ZnS films' peaks observed in Raman spectra and nearly symmetrical peaks were observed. Al doping caused a small decrease in optical band gap of the ZnS film. The coating of ZnS:Al films on the surface was quite good and there were not any deformation in their crystallization levels. Reflectance values of films are about 5% in the visible region but a little decrease is seen with aluminum doping. We can say that Al doping tends to improve the optical properties of the ZnS:Al films when compared with the undoped ZnS.

  4. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-05-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection.

  5. Ultrasensitive, Real-time and Discriminative Detection of Improvised Explosives by Chemiresistive Thin-film Sensory Array of Mn2+ Tailored Hierarchical ZnS

    PubMed Central

    Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun

    2016-01-01

    A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection. PMID:27161193

  6. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  7. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  8. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  9. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  10. Nanocrystalline silicon thin films and grating structures for solar cells

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil

    2016-03-01

    Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.

  11. Study of electrostatically self-assembled thin films of CdS and ZnS nanoparticle semiconductors

    NASA Astrophysics Data System (ADS)

    Suryajaya

    In this work, CdS and ZnS semiconducting colloid nanoparticles coated with organic shell, containing either SO[3-] or NH[2+] groups, were deposited as thin films using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic force microscopy (AFM) - for morphology study; mercury probe - for electrical characterisation; and photon counter - for electroluminescence study. UV-vis spectra show a substantial blue shift of the main absorption band of both CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and ZnS.The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle layers of around 5 nm for both CdS and ZnS which corresponds well to the size of particles evaluated from UV-vis spectral data if an additional thickness of the organic shell is taken into account. The values of refractive index (n) and extinction coefficient (k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.Using total internal reflection (TIRE), the process of alternative deposition of poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in-situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gavethicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the suggestion of the formation of three-dimensional aggregates of semiconductor nanoparticles intercalated with polyelectrolyte.AFM images show the formation of large aggregates of nanoparticles, about 40-50 nm, for the films deposited from original colloid solutions, while smaller aggregates, about 12-20 nm, were obtained if the colloid solutions were diluted.Current-voltage (I-V) and capacitance

  12. Some physical investigations on ZnS 1- xSe x films obtained by selenization of ZnS sprayed films using the Boubaker polynomials expansion scheme

    NASA Astrophysics Data System (ADS)

    Fridjine, S.; Touihri, S.; Boubaker, K.; Amlouk, M.

    2010-01-01

    ZnS 1- xSe x thin films have been grown by selenization process, applied to ZnS sprayed thin films deposited on Pyrex glass substrates at 550 °C. The crystal structure and surface morphology were investigated by the XRD technique and by the atomic force microscopy. This structural study shows that selenium-free ( x=0) ZnS thin films, prepared at substrate temperature TS=450 °C, were well crystallized in cubic structure and oriented preferentially along (1 1 1) direction. The thermal and mechanical properties were also investigated using a photothermal protocol along with Vickers hardness measurements. On the other hand, the analyze of the transmittance T( λ) and the reflectance R( λ), optical measurements of these films depicts a decrease in the band gap energy value Eg with an increase in Se content ( x). Indeed, Eg values vary from 3.6 to 3.1 eV.

  13. Coexistence of colossal stress and texture gradients in sputter deposited nanocrystalline ultra-thin metal films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuru, Yener; Welzel, Udo; Mittemeijer, Eric J.

    2014-12-01

    This paper demonstrates experimentally that ultra-thin, nanocrystalline films can exhibit coexisting colossal stress and texture depth gradients. Their quantitative determination is possible by X-ray diffraction experiments. Whereas a uniform texture by itself is known to generally cause curvature in so-called sin{sup 2}ψ plots, it is shown that the combined action of texture and stress gradients provides a separate source of curvature in sin{sup 2}ψ plots (i.e., even in cases where a uniform texture does not induce such curvature). On this basis, the texture and stress depth profiles of a nanocrystalline, ultra-thin (50 nm) tungsten film could be determined.

  14. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current

  15. Growth of MPS-capped ZnS quantum dots in self-assembled thin films: Influence of heat treatment

    NASA Astrophysics Data System (ADS)

    Koç, Kenan; Tepehan, Fatma Zehra; Tepehan, Galip Gültekin

    2015-12-01

    The colloidal ZnS quantum dots (QDs) were prepared using 3-mercaptopropyltrimethoxysilane (MPS) molecules. Sol-gel spin coating method was used to deposit the colloidal nanoparticles on a glass substrate. Several features of the MPS were made use to produce self assembled thin films of ZnS quantum dots in a SiO2 network. Produced films were heat treated in between 225 °C and 325 °C to investigate their growth kinetics. The result showed that their size changed approximately from 3 nm to 4 nm and the first excitation peak position changed from 4.6 eV to 4.1 eV in this temperature interval. The activation energy of the nanoparticles for the Ostwald ripening process was found to be 59 kJ/mol.

  16. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Wienkes, Lee Raymond

    Interest in mixed-phase silicon thin film materials, composed of an amorphous semiconductor matrix in which nanocrystalline inclusions are embedded, stems in part from potential technological applications, including photovoltaic and thin film transistor technologies. Conventional mixed-phase silicon films are produced in a single plasma reactor, where the conditions of the plasma must be precisely tuned, limiting the ability to adjust the film and nanoparticle parameters independently. The films presented in this thesis are deposited using a novel dual-plasma co-deposition approach in which the nanoparticles are produced separately in an upstream reactor and then injected into a secondary reactor where an amorphous silicon film is being grown. The degree of crystallinity and grain sizes of the films are evaluated using Raman spectroscopy and X-ray diffraction respectively. I describe detailed electronic measurements which reveal three distinct conduction mechanisms in n-type doped mixed-phase amorphous/nanocrystalline silicon thin films over a range of nanocrystallite concentrations and temperatures, covering the transition from fully amorphous to ~30% nanocrystalline. As the temperature is varied from 470 to 10 K, we observe activated conduction, multiphonon hopping (MPH) and Mott variable range hopping (VRH) as the nanocrystal content is increased. The transition from MPH to Mott-VRH hopping around 100K is ascribed to the freeze out of the phonon modes. A conduction model involving the parallel contributions of these three distinct conduction mechanisms is shown to describe both the conductivity and the reduced activation energy data to a high accuracy. Additional support is provided by measurements of thermal equilibration effects and noise spectroscopy, both done above room temperature (>300 K). This thesis provides a clear link between measurement and theory in these complex materials.

  17. Optical and electrical properties of copper-incorporated ZnS films applicable as solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Mehrabian, M.; Esteki, Z.; Shokrvash, H.; Kavei, G.

    2016-10-01

    Un-doped and Cu-doped ZnS (ZnS:Cu) thin films were synthesized by Successive Ion Layer Absorption and Reaction (SILAR) method. The UV-visible absorption studies have been used to calculate the band gap values of the fabricated ZnS:Cu thin films. It was observed that by increasing the concentration of Cu2+ ions, the Fermi level moves toward the edge of the valence band of ZnS. Photoluminescence spectra of un-doped and Cu-doped ZnS thin films was recorded under 355 nm. The emission spectrum of samples has a blue emission band at 436 nm. The peak positions of the luminescence showed a red shift as the Cu2+ ion concentration was increased, which indicates that the acceptor level (of Cu2+) is getting close to the valence band of ZnS.

  18. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K.; Sharma, Mahesh C.

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5more » eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.« less

  19. Stacking fault-mediated ultrastrong nanocrystalline Ti thin films

    NASA Astrophysics Data System (ADS)

    Wu, K.; Zhang, J. Y.; Li, G.; Wang, Y. Q.; Cui, J. C.; Liu, G.; Sun, J.

    2017-11-01

    In this work, we prepared nanocrystalline (NC) Ti thin films with abundant stacking faults (SFs), which were created via partial dislocations emitted from grain boundaries and which were insensitive to grain sizes. By employing the nanoindentation test, we investigated the effects of SFs and grain sizes on the strength of NC Ti films at room temperature. The high density of SFs significantly strengthens NC Ti films, via dislocation-SF interactions associated with the reported highest Hall-Petch slope of ˜20 GPa nm1/2, to an ultrahigh strength of ˜4.4 GPa, approaching ˜50% of its ideal strength.

  20. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.

    PubMed

    Shu, Xinyu; Kong, Deli; Lu, Yan; Long, Haibo; Sun, Shiduo; Sha, Xuechao; Zhou, Hao; Chen, Yanhui; Mao, Shengcheng; Liu, Yinong

    2017-10-16

    This paper reports a study of time-resolved deformation process at the atomic scale of a nanocrystalline Pt thin film captured in situ under a transmission electron microscope. The main mechanism of plastic deformation was found to evolve from full dislocation activity-enabled plasticity in large grains (with grain size d > 10 nm), to partial dislocation plasticity in smaller grains (with grain size 10 nm < d < 6 nm), and grain boundary-mediated plasticity in the matrix with grain sizes d < 6 nm. The critical grain size for the transition from full dislocation activity to partial dislocation activity was estimated based on consideration of stacking fault energy. For grain boundary-mediated plasticity, the possible contributions to strain rate of grain creep, grain sliding and grain rotation to plastic deformation were estimated using established models. The contribution of grain creep is found to be negligible, the contribution of grain rotation is effective but limited in magnitude, and grain sliding is suggested to be the dominant deformation mechanism in nanocrystalline Pt thin films. This study provided the direct evidence of these deformation processes at the atomic scale.

  1. Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    El Zawawi, I. K.; Mahdy, Manal A.

    2017-11-01

    Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.

  2. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    NASA Technical Reports Server (NTRS)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-01-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  3. Non-toxic novel route synthesis and characterization of nanocrystalline ZnS{sub x}Se{sub 1−x} thin films with tunable band gap characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agawane, G.L., E-mail: agawaneganesh@gmail.com; Shin, Seung Wook; Vanalakar, S.A.

    2014-07-01

    Highlights: • A simple, inexpensive, and non-toxic CBD route is used to deposit ZnS thin films. • The ZnS{sub x}Se{sub 1−x} thin films formation takes place via annealing of ZnS thin films in Se atmosphere. • S/(S + Se) ratio found to be temperature dependent and easy tuning of band gap has been done by Se atom deposition. - Abstract: An environmentally benign chemical bath deposition (CBD) route was employed to deposit zinc sulfide (ZnS) thin films. The CBD-ZnS thin films were further selenized in a furnace at various temperatures viz. 200, 300, 400, and 500 °C and the S/(Smore » + Se) ratio was found to be dependent on the annealing temperature. The effects of S/(S + Se) ratio on the structural, compositional and optical properties of the ZnS{sub x}Se{sub 1−x} (ZnSSe) thin films were investigated. EDS analysis showed that the S/(S + Se) ratio decreased from 0.8 to 0.6 when the film annealing temperature increased from 200 to 500 °C. The field emission scanning electron microscopy and atomic force microscopy studies showed that all the films were uniform, pin hole free, smooth, and adhered well to the glass substrate. The X-ray diffraction study on the ZnSSe thin films showed the formation of the cubic phase, except for the unannealed ZnSSe thin film, which showed an amorphous phase. The X-ray photoelectron spectroscopy revealed Zn-S, Zn-Se, and insignificant Zn-OH bonds formation from the Zn 2p{sub 3/2}, S 2p, Se 3d{sub 5/2}, and O 1s atomic states, respectively. The ultraviolet–visible spectroscopy study showed ∼80% transmittance in the visible region for all the ZnSSe thin films having various absorption edges. The tuning of the band gap energy of the ZnSSe thin films was carried out by selenizing CBD-ZnS thin films, and as the S/(S + Se) ratio decreased from 0.8 to 0.6, the band gap energy decreased from 3.20 to 3.12 eV.« less

  4. Ultra-thin nanocrystalline diamond membranes as pressure sensors for harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, S. D., E-mail: stoffel.d.janssens@gmail.com; Haenen, K., E-mail: ken.haenen@uhasselt.be; IMOMEC, IMEC vzw, Wetenschapspark 1, B-3590 Diepenbeek

    2014-02-17

    Glass and diamond are suitable materials for harsh environments. Here, a procedure for fabricating ultra-thin nanocrystalline diamond membranes on glass, acting as an electrically insulating substrate, is presented. In order to investigate the pressure sensing properties of such membranes, a circular, highly conductive boron-doped nanocrystalline diamond membrane with a resistivity of 38 mΩ cm, a thickness of 150 nm, and a diameter of 555 μm is fabricated in the middle of a Hall bar structure. During the application of a positive differential pressure under the membrane (0–0.7 bar), four point piezoresistive effect measurements are performed. From these measurements, it can be concluded that the resistancemore » response of the membrane, as a function of differential pressure, is highly linear and sensitive.« less

  5. Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores

    NASA Astrophysics Data System (ADS)

    Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.

    2008-08-01

    Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.

  6. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less

  7. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  8. Influence of processing conditions on the optical properties of chemically deposited zinc sulphide (ZnS) thin film

    NASA Astrophysics Data System (ADS)

    Igweoko, A. E.; Augustine, C.; Idenyi, N. E.; Okorie, B. A.; Anyaegbunam, F. N. C.

    2018-03-01

    In this paper, we present the influence of post deposition annealing and varying concentration on the optical properties of ZnS thin films fabricated by chemical bath deposition (CBD) at 65 °C from chemical baths comprising NH3/SC(NH2)2/ZnSO4 solutions at pH of about 10. The film samples were annealed at temperatures ranging from 373 K–473 K and the concentration of the film samples vary from 0.1 M–0.7 M. Post deposition annealing and concentration played an important role on the optical parameters investigated which includes absorbance, transmittance, reflectance, absorption coefficient, band gap, refractive index and extinction coefficient. The optical parameters were found to vary with post deposition annealing in one direction and concentration of Zn2+ in the reverse direction. For instance, post deposition annealing increases the band gap from 3.65 eV for as-deposited to 3.70 eV, 3.75 eV and 3.85 eV for annealed at 373 K, 423 K and 473 K respectively whereas concentration of Zn2+ decreases the band gap from 3.95 eV at 0.1 M to 3.90 eV, 3.85 eV and 3.80 eV at 0.3 M, 0.5 M and 0.7 M respectively. The fundamental absorption edge of ZnS thin films shifted toward the highest photon energies (blue shift) after annealing and shifted toward the lowest photon energies (red shift) with increasing Zn ions concentration. A linear relation between band gap energy and Urbach energy was found. After annealing, the Urbach energy increases form 3.10 eV to 3.50 eV and decreases from 3.40 eV to 3.10 eV at varying Zn2+ concentration. The property of wide band gap makes ZnS suitable for buffer layer of film solar cells, permitting more light especially the short wavelength light into absorber layer.

  9. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    PubMed

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  10. Growth and characterization of high quality ZnS thin films by RF sputtering

    NASA Astrophysics Data System (ADS)

    Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.

    2012-06-01

    High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).

  11. Grain Growth in Nanocrystalline Mg-Al Thin Films

    DOE PAGES

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; ...

    2017-10-05

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  12. Grain Growth in Nanocrystalline Mg-Al Thin Films

    NASA Astrophysics Data System (ADS)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-12-01

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  13. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  14. Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroshi; Aoki, Masaharu

    1981-01-01

    Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.

  15. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  16. Study of structural and optical properties of ZnS zigzag nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein

    2015-11-01

    Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.

  17. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  18. Optical transmission larger than 1 (T>1) through ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films

    NASA Astrophysics Data System (ADS)

    Wei, Jingsong; Xiao, Mufei

    2006-09-01

    Optical transmission through flat media should be smaller than 1. However, we have observed optical transmission up to T =1.18. The samples were ZnS -SiO2/AgOx/ZnS-SiO2 sandwiched thin films on glass substrate. The supertransmission could only be observed in the near field. We attribute the supertransmission to the lateral propagation relayed by the laser activated and decomposed Ag nanoparticles.

  19. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.

    PubMed

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  20. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  1. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  2. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  3. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  4. Effect of aging heat time and annealing temperature on the properties of nanocrystalline tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kadhim, Imad H.; Abu Hassan, H.

    2017-04-01

    Nanocrystalline tin dioxide (SnO2) thin films have been successfully prepared by sol-gel spin-coating technique on p-type Si (100) substrates. A stable solution was prepared by mixing tin(II) chloride dihydrate, pure ethanol, and glycerin. Temperature affects the properties of SnO2 thin films, particularly the crystallite size where the crystallization of SnO2 with tetragonal rutile structure is achieved when thin films that prepared under different aging heat times are annealed at 400∘C. By increasing aging heat time in the presence of annealing temperatures the FESEM images indicated that the thickness of the fabricated film was directly proportional to solution viscosity, increasing from approximately 380 nm to 744 nm, as well as the crystallization of the thin films improved and reduced defects.

  5. Depth profiling of nitrogen within 15N-incorporated nano-crystalline diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Cassidy, D. P.; Dissanayake, A.; Mancini, D. C.; Ghantasala, M. K.; Kayani, A.

    2013-09-01

    Nano-Crystalline Diamond (NCD) thin films are a topic of recent interest due to their excellent mechanical and electrical properties. The inclusion of nitrogen is a specific interest as its presence within NCD modifies its conductive properties. The methodology adopted for the characterization of nitrogen incorporated NCD films grown on a chromium underlayer determined a correlation between the chromium and nitrogen concentrations as well as a variation in the concentration profile of elements. Additionally, the concentration of nitrogen was found to be more than three times greater for these films versus those grown on a silicon substrate.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, C.A.; Sandoval-Paz, M.G.; Cabello, G.

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however,more » precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.« less

  7. Structural and magnetic properties of nanocrystalline NiFe2O4 thin film prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.

    2018-05-01

    The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.

  8. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  9. Size-controlled synthesis of nanocrystalline CdSe thin films by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Sharma, Jeewan; Singh, Randhir; Kumar, Akshay; Singh, Tejbir; Agrawal, Paras; Thakur, Anup

    2018-02-01

    Size, shape and structure are considered to have significant influence on various properties of semiconducting nanomaterials. Different properties of these materials can be tailored by controlling the size. Size-controlled CdSe crystallites ranging from ˜ 04 to 95 nm were deposited by inert gas-condensation technique (IGC). In IGC method, by controlling the inert gas pressure in the condensation chamber and the substrate temperature or both, it was possible to produce nanoparticles with desired size. Structure and crystallite size of CdSe thin films were determined from Hall-Williamson method using X-ray diffraction data. The composition of CdSe samples was estimated by X-ray microanalysis. It was confirmed that CdSe thin film with different nanometer range crystallite sizes were synthesized with this technique, depending upon the synthesis conditions. The phase of deposited CdSe thin films also depend upon deposition conditions and cubic to hexagonal phase transition was observed with increase in substrate temperature. The effect of crystallite size on optical and electrical properties of these films was also studied. The crystallite size affects the optical band gap, electrical conductivity and mobility activation of nanocrystalline CdSe thin films. Mobility activation study suggested that there is a quasi-continuous linear distribution of three different trap levels below the conduction band.

  10. Surface transmission enhancement of ZnS via continuous-wave laser microstructuring

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-03-01

    Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.

  11. Electrical properties of a novel 1,3-bis-(p-iminobenzoic acid) indane Langmuir-Blodgett films containing ZnS nanoparticles.

    PubMed

    Sari, H; Uzunoglu, T; Capan, R; Serin, N; Serin, T; Tarimci, C; Hassan, A K; Namli, H; Turhan, O

    2007-08-01

    ZnS nanoparticles have been formed in a newly synthesized 1,3-bis-(p-iminobenzoic acid) indane (IBI) by exposing Zn2+ doped multilayered Langmuir-Blodgett (LB) film to H2S gas after the growth. The formation of ZnS nanoparticles in the LB film structure was verified by measuring UV-Visible absorption spectra. DC electrical measurements were carried out for thin films of IBI prepared in a metal/LB films/metal sandwich structure with and without ZnS nanoparticles. It was observed that ZnS nanoparticles in the LB films cause a blue-shift in the absorption spectra as well as a decrease in both capacitance and conductivity values. By analysing I-V curves and assuming a Schottky conduction mechanism the barrier height was found to be about 1.13 eV and 1.21 eV for IBI LB films without and with ZnS nanoparticles, respectively. It is thought that the presence of ZnS nanoparticles influences the barrier height at the metal-organic film interface and causes a change in electrical conduction properties of LB films.

  12. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  13. Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S.

    PubMed

    Balichard, Kevin; Nyikeine, Camille; Bezverkhyy, Igor

    2014-01-15

    The reactivity of a nanocrystalline ZnCO3 toward H2S (0.2vol% in N2/H2 mixture) at 140-180°C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO-ZnS transformation the molar volume increases (from 14.5 to 23.8cm(3)/mol), a continuous protective ZnS layer is formed hampering the access of H2S to the non reacted ZnO core. By contrast, in ZnCO3-ZnS transformation the molar volume decreases (from 27.9 to 23.8cm(3)/mol), which produces a discontinuous non-protective ZnS layer enabling a complete transformation of ZnCO3 even at 140°C. The higher reactivity of ZnCO3 results in a considerable increase of the breakthrough sulfur capacity of the carbonate in comparison with oxide. The material has therefore a good potential for being used as a disposable sorbent for H2S capture at low temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Evidence of extended cation solubility in atomic layer deposited nanocrystalline BaTiO3 thin films and its strong impact on the electrical properties.

    PubMed

    Falmbigl, Matthias; Karateev, Igor A; Golovina, Iryna S; Plokhikh, Aleksandr V; Parker, Thomas C; Vasiliev, Alexander L; Spanier, Jonathan E

    2018-06-22

    Thin films of ≈50 nm thickness with Ba/Ti-ratios ranging from 0.8 to 1.06 were prepared by depositing alternating layers of Ba(OH)2 and TiO2. Annealing at 750 °C promoted the solid-solid transformation into polycrystalline BaTiO3 films containing a mixture of the perovskite and the hexagonal polymorphs with average crystallite sizes smaller than 14 nm and without impurity phases. This, together with an increase of the cubic lattice parameters for Ba-rich films, suggests an extended metastable solubility range for the perovskite-phase in these nanocrystalline thin films on both sides of the stoichiometric composition. Mapping of the cation distribution utilizing energy-filtered transmission electron microscopy corroborates defect accommodation within the BaTiO3 grains. While the cation off-stoichiometry in thermodynamic equilibrium is negligible for BaTiO3, the metastable extended solubility range in the thin films can be directly correlated to the low annealing temperature and nanocrystalline nature. The leakage current behavior can be explained by the formation of Schottky defects for nonstoichiometric films, and the cation ratio has a distinct impact on the dielectric properties: while excess-BaO has a marginal detrimental effect on the permittivity, the dielectric constant declines rapidly by more than 50% towards the Ti-rich side. The present findings highlight the importance of compositional control for the synthesis of nanocrystalline BaTiO3 thin films, in particular for low annealing and/or deposition temperatures. Our synthesis approach using alternating layers of Ba(OH)2 and TiO2 provides a route to precisely control the cation stoichiometry.

  15. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  16. Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Mane, A. A.; Moholkar, A. V.

    2017-09-01

    The nanocrystalline V2O5 thin films with different thicknesses have been grown onto the glass substrates using chemical spray pyrolysis (CSP) deposition method. The XRD study shows that the films exhibit an orthorhombic crystal structure. The narrow scan X-ray photoelectron spectrum of V-2p core level doublet gives the binding energy difference of 7.3 eV, indicating that the V5+ oxidation state of vanadium. The FE-SEM micrographs show the formation of nanorods-like morphology. The AFM micrographs show the high surface area to volume ratio of nanocrystalline V2O5 thin films. The optical study gives the band gap energy values of 2.41 eV, 2.44 eV, 2.47 eV and 2.38 eV for V2O5 thin films deposited with the thicknesses of 423 nm, 559 nm, 694 nm and 730 nm, respectively. The V2O5 film of thickness 559 nm shows the NO2 gas response of 41% for 100 ppm concentration at operating temperature of 200 °C with response and recovery times of 20 s and 150 s, respectively. Further, it shows the rapid response and reproducibility towards 10 ppm NO2 gas concentration at 200 °C. Finally, NO2 gas sensing mechanism based on chemisorption process is discussed.

  17. P-Type Transparent Cu-Alloyed ZnS Deposited at Room Temperature

    DOE PAGES

    Woods-Robinson, Rachel; Cooper, Jason K.; Xu, Xiaojie; ...

    2016-03-16

    All transparent conducting materials (TCMs) of technological practicality are n-type; the inferior conductivity of p-type TCMs has limited their adoption. Additionally, many relatively high-performing p-type TCMs require synthesis temperatures > 400 °C. Here, room-temperature pulsed laser deposition of copper-alloyed zinc sulfide (Cu x Zn 1- x S) thin films (0 ≤ x ≤ 0.75) is reported. For 0.09 ≤ x ≤ 0.35, Cu x Zn 1- x S has high p-type conductivity, up to 42 S cm -1 at x = 0.30, with an optical band gap tunable from ≈3.0–3.3 eV and transparency, averaged over the visible, of 50%–71% formore » 200–250 nm thick films. In this range, synchrotron X-ray and electron diffraction reveal a nanocrystalline ZnS structure. Secondary crystalline Cu y S phases are not observed, and at higher Cu concentrations, x > 0.45, films are amorphous and poorly conducting. Furthermore, within the TCM regime, the conductivity is temperature independent, indicating degenerate hole conduction. A decrease in lattice parameter with Cu content suggests that the hole conduction is due to substitutional incorporation of Cu onto Zn sites. This hole-conducting phase is embedded in a less conducting amorphous Cu y S, which dominates at higher Cu concentrations. Finally, the combination of high hole conductivity and optical transparency for the peak conductivity Cu x Zn 1- x S films is among the best reported to date for a room temperature deposited p-type TCM.« less

  18. Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.

    2012-06-15

    Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less

  19. Effects of Starting Precursor Ratio on Optoelectrical Properties and Blue Emission of Nanostructured C-ZnS Thin Films Prepared by Spin Coating

    NASA Astrophysics Data System (ADS)

    Rahimzadeh, N.; Ghodsi, F. E.; Mazloom, J.

    2018-02-01

    Nanocrystalline cubic zinc sulfide (C-ZnS) thin films have been elaborated by sol-gel spin-coating of Zn(Ac)/thiourea starting precursors at different molar ratios, and their structural, morphological, compositional, optical, electrical, and photoluminescence properties comprehensively investigated. x-ray diffraction results showed that the samples had dominant cubic structure and their crystallinity improved with increasing S content. Morphological characterization of the C-ZnS thin films was carried out by field-emission scanning electron microscopy (FESEM), revealing that the films were smooth with spherical grains included in clusters. Energy-dispersive x-ray and Fourier-transform infrared spectra of ZnS compounds did not show any evidence of impurities. Optical characterization revealed increases of the average optical transmittance and bandgap (from 3.2 eV to 3.56 eV) with increasing S content. The refractive index in the visible region increased with the S content, while the extinction coefficient decreased. The compositional dependence of the optical dispersion parameters (oscillator and dispersion energy), dielectric constant, and surface energy loss function of the films was evaluated. Electrical characterization of the films was carried out using Hall-effect measurements. The ZnS thin films exhibited n-type conductivity, and the electrical resistivity decreased with increasing carrier concentration and mobility due to enhanced crystallite size and reduced structural disorder. Photoluminescence (PL) measurements indicated a blue-shift of the near-band-edge emission. The blue emission peaks centered at about 438 nm and 487 nm were enhanced due to transitions involving interstitial S atoms, surface states, and zinc vacancies.

  20. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size.

    PubMed

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-16

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb 2 Te 3 ) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb 2 Te 3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb 2 Te 3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb 2 Te 3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  1. Thermoelectric properties of nanocrystalline Sb2Te3 thin films: experimental evaluation and first-principles calculation, addressing effect of crystal grain size

    NASA Astrophysics Data System (ADS)

    Morikawa, Satoshi; Inamoto, Takuya; Takashiri, Masayuki

    2018-02-01

    The effect of crystal grain size on the thermoelectric properties of nanocrystalline antimony telluride (Sb2Te3) thin films was investigated by experiments and first-principles studies using a developed relaxation time approximation. The Sb2Te3 thin films were deposited on glass substrates using radio-frequency magnetron sputtering. To change the crystal grain size of the Sb2Te3 thin films, thermal annealing was performed at different temperatures. The crystal grain size, lattice parameter, and crystal orientation of the thin films were estimated using XRD patterns. The carrier concentration and in-plane thermoelectric properties of the thin films were measured at room temperature. A theoretical analysis was performed using a first-principles study based on density functional theory. The electronic band structures of Sb2Te3 were calculated using different lattice parameters, and the thermoelectric properties were predicted based on the semi-classical Boltzmann transport equation in the relaxation time approximation. In particular, we introduced the effect of carrier scattering at the grain boundaries into the relaxation time approximation by estimating the group velocities from the electronic band structures. Finally, the experimentally measured thermoelectric properties were compared with those obtained by calculation. As a result, the calculated thermoelectric properties were found to be in good agreement with the experimental results. Therefore, we can conclude that introducing the effect of carrier scattering at the grain boundaries into the relaxation time approximation contributes to enhance the accuracy of a first-principles calculation relating to nanocrystalline materials.

  2. Observation of ZnS nanoparticles sputtered from ZnS films under 2 MeV Au irradiation

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Joseph, B.; Ghatak, J.; Lenka, H. P.; Sahu, G.; Acharya, B. S.; Mahapatra, D. P.

    2006-07-01

    ZnS nanoparticles have been observed on catcher foils due to 2 MeV Au ion irradiation of ZnS films thermally evaporated on Si(1 0 0) substrates. The structure and size distribution of nanoclusters collected were studied using transmission electron microscopy for irradiation fluences in the range of 1 × 10 11-1 × 10 15 ions cm -2. The nanoclusters were found to have a hexagonal wurtzite structure. Optical absorption measurements on similarly deposited ZnS on silica glass indicate the film to be also composed of hexagonal wurtzite ZnS. Based on this and available data we argue that the observed nanoparticles on the catcher foils are the results of shock waves induced emission of material chunks with the same atomic coordination as in the target.

  3. Effect of annealing on structure, morphology and optoelectronic properties of nanocrystalline CuO thin films

    NASA Astrophysics Data System (ADS)

    Jundale, D. M.; Pawar, S. G.; Patil, S. L.; Chougule, M. A.; Godse, P. R.; Patil, V. B.

    2011-10-01

    The nanocrystalline CuO thin films were prepared on glass substrates by the sol-gel method. The structural, morphological, electrical and optical properties of CuO thin films, submitted to an annealing treatment in the 400-700 °C ranges are studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Four Probe Technique and UV-visible spectroscopic. XRD measurements show that all the films are crystallized in the monoclinic phase and present a random orientation. Four prominent peaks, corresponding to the (110) phase (2θ≈32.70°), (002) phase (2θ≈35.70°), (111) phase (2θ≈38.76°) and (202) phase (2θ≈49.06°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the microstructure, electrical and optical properties. The optical band gap energy decreases with increasing annealing temperature. These mean that the optical quality of CuO films is improved by annealing.

  4. Investigation of the growth and in situ heating transmission electron microscopy analysis of Ag2S-catalyzed ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jung Han; Kim, Jong Gu; Song, Junghyun; Bae, Tae-Sung; Kim, Kyou-Hyun; Lee, Young-Seak; Pang, Yoonsoo; Oh, Kyu Hwan; Chung, Hee-Suk

    2018-04-01

    We investigated the semiconductor-catalyzed formation of semiconductor nanowires (NWs) - silver sulfide (Ag2S)-catalyzed zinc sulfide (ZnS) NWs - based on a vapor-liquid-solid (VLS) growth mechanism through metal-organic chemical vapor deposition (MOCVD) with a Ag thin film. The Ag2S-catalyzed ZnS NWs were confirmed to have a wurtzite structure with a width and length in the range of ∼30 nm to ∼80 nm and ∼1 μm, respectively. Using extensive transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS) analyses from plane and cross-sectional viewpoints, the ZnS NWs were determined to have a c-axis, [0001] growth direction. In addition, the catalyst at the top of the ZnS NWs was determined to consist of a Ag2S phase. To support the Ag2S-catalyzed growth of the ZnS NWs by a VLS reaction, an in situ heating TEM experiment was conducted from room temperature to 840 °C. During the experiment, the melting of the Ag2S catalyst in the direction of the ZnS NWs was first observed at approximately 480 °C along with the formation of a carbon (C) shell. Subsequently, the Ag2S catalyst melted completely into the ZnS NWs at approximately 825 °C. As the temperature further increased, the Ag2S and ZnS NWs continuously melted and vaporized up to 840 °C, leaving only the C shell behind. Finally, a possible growth mechanism was proposed based on the structural and chemical investigations.

  5. High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Maurya, Sandeep Kumar; Liu, Ya; Xu, Xiaojie; Woods-Robinson, Rachel; Das, Chandan; Ager, Joel W., III; Balasubramaniam, K. R.

    2017-12-01

    p-type transparent conducting Cu alloyed ZnS thin films from Cu{x} Zn{1-x} S targets (x = 0.1 , 0.2, 0.3, 0.4, and 0.5) were deposited on glass substrates via radio frequency sputtering. x-ray diffraction and TEM-SAED analysis show that all the films have sphalerite ZnS as the majority crystalline phase. In addition, films with 30% and 40% Cu show the presence of increasing amounts of crystalline Cu2S phase. Conductivity values  ⩾400 S cm-1 were obtained for the films having 30% and 40% Cu, with the maximum conductivity of 752 S cm-1 obtained for the film with 40% Cu. Temperature dependent electrical transport measurements indicate metallic as well as degenerate hole conductivity in the deposited films. The reflection-corrected transmittance of this Cu alloyed ZnS (40% Cu) film was determined to be  ⩾75% at 550 nm. The transparent conductor figure of merit (ΦTC ) of the Cu alloyed ZnS (40% Cu), calculated with the average value of transmittance between 1.5 to 2.5 eV, was  ≈276 μS .

  6. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis)more » spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.« less

  7. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    NASA Astrophysics Data System (ADS)

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  8. Solar cells based on electrodeposited thin films of ZnS, CdS, CdSSe and CdTe

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Ajith R.

    The motivations of this research were to produce increased efficiency and low-cost solar cells. The production efficiency of Si solar cells has almost reached their theoretical limit, and reducing the manufacturing cost of Si solar cells is difficult to achieve due to the high-energy usage in material purifying and processing stages. Due to the low usage of materials and input energy, thin film solar cells have the potential to reduce the costs. CdS/CdTe thin film solar cells are already the cheapest on $/W basis. The cost of CdTe solar cells can be further reduced if all the semiconducting layers are fabricated using the electrodeposition (ED) method. ED method is scalable, low in the usage of energy and raw materials. These benefits lead to the cost effective production of semiconductors. The conventional method of fabricating CdS layers produces Cd containing waste solutions routinely, which adds to the cost of solar cells.ZnS, CdS and CdS(i-X)Sex buffer and window layers and CdTe absorber layers have been successfully electrodeposited and explored under this research investigation. These layers were fully characterised using complementary techniques to evaluate the material properties. Photoelectrochemical (PEC) studies, optical absorption, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and Raman spectroscopy were utilised to evaluate the material properties of these solid thin film layers. ZnS and CdS thin film layers were electrodeposited from Na-free chemical precursors to avoid the group I element (Na) to reduce deterioration of CdTe devices. Deposition parameters such as, growth substrates, temperature, pH, growth cathodic voltage, stirring rate, time and chemical concentrations were identified to fabricate the above semiconductors. To further optimise these layers, a heat treatment process specific to the material was developed. In addition

  9. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE PAGES

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid; ...

    2017-07-15

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  10. Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulavarthy, Raghu; Wang, Baoming; Hattar, Khalid

    Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr + beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 × 10 10 to 3.26 × 10 14 ions/cm 2, corresponding to displacement per atom (dpa) of 2.1 × 10 –4 to 2.28. Transmission electron microscopy showed significant grainmore » growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. As a result, up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 × 10 14 ions/cm 2).« less

  11. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  12. High durability antireflection coatings for silicon and multispectral ZnS

    NASA Astrophysics Data System (ADS)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed

  13. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    NASA Astrophysics Data System (ADS)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  14. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  15. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-03-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  16. ZnS Buffer Layers Grown by Modified Chemical Bath Deposition for CIGS Solar Cells

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Ahn, Heejin; Shin, Hyundo; Um, Youngho

    2018-07-01

    ZnS thin films were prepared by the chemical bath deposition method using disodium ethylene-diaminetetraacetic acid and hexamethylenetetramine as complexing agents in acidic conditions. The film prepared using a preheated S-ion source showed full surface coverage, but some clusters were found that were generated by the cluster-by-cluster reaction mechanism. On the other hand, the film prepared without this source had a uniform, dense, and smooth surface and showed fewer clusters than the film prepared using a preheated S-ion source. The x-ray photoelectron spectroscopy spectra showed the energy core levels of Zn, O, and S components, and Zn-OH bonding decreased on the film using the preheated S-ion source. Especially, various binding energy peaks were found in the Zn 2 p 3/2 spectrum by Gaussian function fitting, and no peak corresponding to Zn-OH bonding was found for the film prepared using a preheated S-ion source. Moreover, the x-ray diffraction spectrum of the ZnS thin film using a non-preheated S-ion source showed amorphous or nanoscale crystallinity, but the emission peaks indicated that the structure of the film using preheated S-ion source was zincblende.

  17. Effect of substrate temperature on implantation doping of Co in CdS nanocrystalline thin films.

    PubMed

    Chandramohan, S; Kanjilal, A; Sarangi, S N; Majumder, S; Sathyamoorthy, R; Hong, C-H; Som, T

    2010-07-01

    We demonstrate doping of nanocrystalline CdS thin films with Co ions by ion implantation at an elevated temperature of 573 K. The modifications caused in structural and optical properties of these films are investigated. Co-doping does not lead to amorphization or formation of any secondary phase precipitate for dopant concentrations in the range of 0.34-10.8 at.% used in the present study. However, we observe a systematic reduction in the d-spacing with increasing cobalt concentration. Optical band gap of CdS does not show any obvious change upon Co-doping. In addition, implantation gives rise to grain growth and increase in the surface roughness. The results are discussed in the light of ion-matter interaction in the keV regime.

  18. FAST TRACK COMMUNICATION: Nanocrystalline silicon film growth morphology control through RF waveform tailoring

    NASA Astrophysics Data System (ADS)

    Johnson, Erik V.; Verbeke, Thomas; Vanel, Jean-Charles; Booth, Jean-Paul

    2010-10-01

    We demonstrate the application of RF waveform tailoring to generate an electrical asymmetry in a capacitively coupled plasma-enhanced chemical vapour deposition system, and its use to control the growth mode of hydrogenated amorphous and nanocrystalline silicon thin films deposited at low temperature (150 °C). A dramatic shift in the dc bias potential at the powered electrode is observed when simply inverting the voltage waveform from 'peaks' to 'troughs', indicating an asymmetric distribution of the sheath voltage. By enhancing or suppressing the ion bombardment energy at the substrate (situated on the grounded electrode), the growth of thin silicon films can be switched between amorphous and nanocrystalline modes, as observed using in situ spectroscopic ellipsometry. The effect is observed at pressures sufficiently low that the collisional reduction in average ion bombardment energy is not sufficient to allow nanocrystalline growth (<100 mTorr).

  19. Nanocrystalline mesoporous SMO thin films prepared by sol gel process for MEMS-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Gong, Jianwei; Fei, Weifeng; Seal, Sudipta; Chen, Quanfang

    2004-01-01

    MEMS based SnO2 gas sensor with sol gel synthesized mesoporous nanocrystalline (<10 nm) semiconductor thin (100~150 nm) film has been recently developed. The SnO2 nano film is fabricated with the combination of polymeric sol gel chemistry with block copolymers used for structure directing agents. The novel hydrogen sensor has a fast response time (1s) and quick recovery time (3s), as well as good sensitivity (about 90%), comparing to other hydrogen sensors developed. The improved capabilities are credited to the large surface to volume ratio of gas sensing thin film with nano sized porous surface topology, which can greatly increase the sensitivity even at relatively low working temperature. The gas sensing film is deposited onto a thin dielectric membrane of low thermal conductivity, which provides good thermal isolation between substrate and the gas-sensitive heated area on the membrane. In this way the power consumption can be kept very low. Since the fabrication process is completely compatible with IC industry, it makes mass production possible and greatly reduces the cost. The working temperature of the new sensor can be reduced as low as 100°C. The low working temperature posse advantages such as lower power consumption, lower thermal induced signal shift as well as safe detection in certain environments where temperature is strictly limited.

  20. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  1. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    PubMed Central

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  2. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  3. Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.

    PubMed

    Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  4. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery.

    PubMed

    Mohanta, Vaishakhi; Madras, Giridhar; Patil, Satish

    2014-11-26

    A layer-by-layer (LbL) approach has been employed for the fabrication of multilayer thin films and microcapsules having nanofibrous morphology using nanocrystalline cellulose (NCC) as one of the components of the assembly. The applicability of these nanoassemblies as drug delivery carriers has been explored by the loading of an anticancer drug, doxorubicin hydrochloride, and a water-insoluble drug, curcumin. Doxorubicin hydrochloride, having a good water solubility, is postloaded in the assembly. In the case of curcumin, which is very hydrophobic and has limited solubility in water, a stable dispersion is prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analyzed theoretically by molecular docking in consideration of NCC as a general carrier for hydrophobic drugs.

  5. The pure rotational spectrum of ZnS (X 1Σ +)

    NASA Astrophysics Data System (ADS)

    Zack, L. N.; Ziurys, L. M.

    2009-10-01

    The pure rotational spectrum of ZnS (X 1Σ +) has been measured using direct-absorption millimeter/sub-millimeter techniques in the frequency range 372-471 GHz. This study is the first spectroscopic investigation of this molecule. Spectra originating in four zinc isotopologues ( 64ZnS, 66ZnS, 68ZnS, and 67ZnS) were recorded in natural abundance in the ground vibrational state, and data from the v = 1 state were also measured for the two most abundant zinc species. Spectroscopic constants have been subsequently determined, and equilibrium parameters have been estimated. The equilibrium bond length was calculated to be re ˜ 2.0464 Å, which agrees well with theoretical predictions. In contrast, the dissociation energy of DE ˜ 3.12 eV calculated for ZnS, assuming a Morse potential, was significantly higher than past experimental and theoretical estimates, suggesting diabatic interaction with other potentials that lower the effective dissociation energy. Although ZnS is isovalent with ZnO, there appear to be subtle differences in bonding between the two species, as suggested by their respective force constants and bond length trends in the 3d series.

  6. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  7. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less

  8. Synthesis and humidity sensing analysis of ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Okur, Salih; Üzar, Neslihan; Tekgüzel, Nesli; Erol, Ayşe; Çetin Arıkan, M.

    2012-03-01

    ZnS nanowires synthesized by the vapor-liquid-solid (VLS) method and humidity sensing properties of obtained ZnS nanowires were investigated by quartz crystal microbalance (QCM) method and electrical measurements. The synthesized nanowires were exposed to relative humidity (RH) between 22% and 97% under controlled environment. Our experimental results show that ZnS nanowires have a great potential for humidity sensing applications in room temperature operations.

  9. Single crystalline wurtzite ZnO/zinc blende ZnS coaxial heterojunctions and hollow zinc blende ZnS nanotubes: synthesis, structural characterization and optical properties.

    PubMed

    Huang, Xing; Willinger, Marc-Georg; Fan, Hua; Xie, Zai-lai; Wang, Lei; Klein-Hoffmann, Achim; Girgsdies, Frank; Lee, Chun-Sing; Meng, Xiang-Min

    2014-08-07

    Synthesis of ZnO/ZnS heterostructures under thermodynamic conditions generally results in the wurtzite (WZ) structure of the ZnS component because its WZ phase is thermodynamically more stable than its zinc blende (ZB) phase. In this report, we demonstrate for the first time the preparation of ZnO/ZnS coaxial nanocables composed of single crystalline ZB structured ZnS epitaxially grown on WZ ZnO via a two-step thermal evaporation method. The deposition temperature is believed to play a crucial role in determining the crystalline phase of ZnS. Through a systematic structural analysis, the ZnO core and the ZnS shell are found to have an orientation relationship of (0002)ZnO(WZ)//(002)ZnS(ZB) and [01-10]ZnO(WZ)//[2-20]ZnS(ZB). Observation of the coaxial nanocables in cross-section reveals the formation of voids between the ZnO core and the ZnS shell during the coating process, which is probably associated with the nanoscale Kirkendall effect known to result in porosity. Furthermore, by immersing the ZnO/ZnS nanocable heterojunctions in an acetic acid solution to etch away the inner ZnO cores, single crystalline ZnS nanotubes orientated along the [001] direction of the ZB structure were also achieved for the first time. Finally, optical properties of the hollow ZnS tubes were investigated and discussed in detail. We believe that our study could provide some insights into the controlled fabrication of one dimensional (1D) semiconductors with desired morphology, structure and composition at the nanoscale, and the synthesized WZ ZnO/ZB ZnS nanocables as well as ZB ZnS nanotubes could be ideal candidates for the study of optoelectronics based on II-VI semiconductors.

  10. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition.

    DOE PAGES

    Craciun, D.; Socol, G.; Lambers, E.; ...

    2015-01-17

    Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH 4 pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH 4 pressures exhibited slightly higher nanohardness and Young modulus values than filmsmore » deposited under higher pressures. As a result, tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.« less

  11. Deposition of zinc sulfide thin films by chemical bath process

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah O.; Chow, Lee

    1996-11-01

    Deposition of high quality zinc sulfide (ZnS) thin film over a large area is required if it is to be effectively used in electroluminescent devices, solar cells, and other optoelectronic devices. Of all deposition techniques, chemical bath deposition (CBD) is the least costly technique that meets the above requirements. Recently it is found that the growth of ZnS film, of thickness less than 100 nm in a single dip, by CBD is facilitated by the use of ammonia and hydrazine as complexing agents. Here we report that the thickness of the deposited ZnS film can be increased if ammonium salt is used as a buffer. We also present an analytical study to explain our results and to further understand the ZnS growth process in CBD.

  12. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  13. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures.

    PubMed

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-05

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  14. ZnO nanorods decorated with ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less

  15. Low-Temperature Surface Preparation and Epitaxial Growth of ZnS and Cu 2ZnSnS 4 on ZnS(110) and GaP(100)

    DOE PAGES

    Harvey, Steven P; Wilson, Samual; Moutinho, Helio R; ...

    2017-08-12

    Here we give a summary of the low-temperature preparation methods of ZnS(110) and GaP(100) crystals for epitaxial growth of ZnS and Cu 2ZnSnS 4 (CZTS) via molecular beam epitaxy. Substrates were prepared for epitaxial growth by means of room-temperature aqueous surface treatments and subsequent ultra-high vacuum transfer to the deposition system. Epitaxial growth of ZnS was successful at 500 K on both ZnS(110) and GaP(100) as only single domains were observed with electron backscatter diffraction; furthermore, transmission electron microscopy measurements confirmed an epitaxial interface. Epitaxial growth of CZTS was successful on ZnS at 700 K. However, epitaxial growth was notmore » possible on GaP at 700 K due to Ga xS y formation, which significantly degraded the quality of the GaP crystal surface. Although CZTS was grown epitaxially on ZnS, growth of multiple crystallographic domains remains a problem that could inherently limit the viability of epitaxial CZTS for model system studies.« less

  16. Low-Temperature Surface Preparation and Epitaxial Growth of ZnS and Cu 2ZnSnS 4 on ZnS(110) and GaP(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Steven P; Wilson, Samual; Moutinho, Helio R

    Here we give a summary of the low-temperature preparation methods of ZnS(110) and GaP(100) crystals for epitaxial growth of ZnS and Cu 2ZnSnS 4 (CZTS) via molecular beam epitaxy. Substrates were prepared for epitaxial growth by means of room-temperature aqueous surface treatments and subsequent ultra-high vacuum transfer to the deposition system. Epitaxial growth of ZnS was successful at 500 K on both ZnS(110) and GaP(100) as only single domains were observed with electron backscatter diffraction; furthermore, transmission electron microscopy measurements confirmed an epitaxial interface. Epitaxial growth of CZTS was successful on ZnS at 700 K. However, epitaxial growth was notmore » possible on GaP at 700 K due to Ga xS y formation, which significantly degraded the quality of the GaP crystal surface. Although CZTS was grown epitaxially on ZnS, growth of multiple crystallographic domains remains a problem that could inherently limit the viability of epitaxial CZTS for model system studies.« less

  17. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    PubMed Central

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-01-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency. PMID:27194181

  18. Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Loisel, Loïc; Florea, Ileana; Cojocaru, Costel-Sorin; Tay, Beng Kang; Lebental, Bérengère

    2016-05-01

    Nano and femtosecond laser writing are becoming very popular techniques for patterning carbon-based materials, as they are single-step processes enabling the drawing of complex shapes without photoresist. However, pulsed laser writing requires costly laser sources and is known to cause damages to the surrounding material. By comparison, continuous-wave lasers are cheap, stable and provide energy at a more moderate rate. Here, we show that a continuous-wave laser may be used to pattern vertical nano-crystalline graphite thin films with very few macroscale defects. Moreover, a spatially resolved study of the impact of the annealing to the crystalline structure and to the oxygen ingress in the film is provided: amorphization, matter removal and high oxygen content at the center of the beam; sp2 clustering and low oxygen content at its periphery. These data strongly suggest that amorphization and matter removal are controlled by carbon oxidation. The simultaneous occurrence of oxidation and amorphization results in a unique evolution of the Raman spectra as a function of annealing time, with a decrease of the I(D)/I(G) values but an upshift of the G peak frequency.

  19. Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. Sampath; Rubio, E. J.; Noor-A-Alam, M.

    Ga2O3 thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 oC). The structural characteristics and optical properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films atmore » Ts=300-700 oC. The spectral transmission of the films increased with increasing temperature. The band gap of the films varied from 4.96 eV to 5.17 eV for a variation in Ts in the range 25-800 oC. A relationship between microstructure and optical property is discussed.« less

  20. Microwave mediated synthesis of ZnS spherical nanoparticles for IR optical ceramics

    NASA Astrophysics Data System (ADS)

    Ravichandran, D.; Wharton, T.; Devan, B.; Korenstein, R.; Tustison, R.; Komarneni, S.

    2011-06-01

    The existing material choice for long-wave infrared (LWIR) and semi-active laser domes is multispectral zinc sulfide (ZnS), made by chemical vapor deposition. An alternative route to make more erosion-resistant ZnS could be through hot pressing ZnS nanoparticles into small-grain material. We have attempted to produce ZnS nanoparticles both by microwave and microwave-hydrothermal methods. Microwave route produced ultrahigh purity, homogeneous, well dispersed, and uniformly spherical ZnS nanoparticles. Microwave-hydrothermal route produced equiaxed cubic-faceted nanoparticles. The powder X-ray diffraction patterns of ZnS shows the presence of broad reflections corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes of the cubic crystalline ZnS material. The domain size of the particles estimated from the Debye-Scherrer formula for the main reflection (111) gives a value of 2.9 and 2.5 for the microwave and microwave-hydrothermal methods respectively.

  1. Effect of Cr doping on structural and magnetic properties of ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,; Singh, Jasvir; Sharma, Sandeep

    2016-05-23

    The structural, optical and magnetic properties of pure and Cr doped ZnS nanoparticles were studied at room temperature. X-ray diffraction analysis confirmed the absence of any mixed phase and the cubic structure of ZnS in pure and Cr doped ZnS nanoparticles. Fourier transfer infrared spectra confirmed the Zn-S stretching bond at 664 cm{sup −1} of ZnS in all prepared nanoparticles. The UV-Visible absorption spectra showed blue shift which became even more pronounced in Cr doped ZnS nanoparticles. However, at relatively higher Cr concentrations a slower red shift was shown by the doped nanoparticles. This phenomenon is attributed to sp-d exchange interactionmore » that becomes prevalent at higher doping concentrations. Further, magnetic hysteresis measurements showed that Cr doped ZnS nanoparticles exhibited ferromagnetic behavior at room temperature.« less

  2. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  3. Chemical bath deposition of II-VI compound thin films

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film

  4. Rapid growth and photoluminescence properties of doped ZnS one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhuo, R. F.; Feng, H. T.; Yan, D.; Chen, J. T.; Feng, J. J.; Liu, J. Z.; Yan, P. X.

    2008-06-01

    In this paper we report the synthesis of doped ZnS one-dimensional (1D) nanostructures by well-established technique of chemical vapor deposition using Zn and S powder as precursors. The ZnS 1D nanostructures were grown on the surface of Au particle-filled anodic aluminum oxide templates, catalyst-free graphite sheets and silicon substrates. ZnS 1D nanostructures with Mn, Cu and Fe as dopants were prepared via a rapid process of 15-20 min. The morphologies of ZnS nanostructures synthesized on different substrates and at different growth temperatures have distinct dissimilarities. The size of ZnS nanowires originated from the Au catalysts could be varied by altering the size of membrane nanopores as well as the embedded Au particles. Room-temperature photoluminescence measurements reveal strong blue, green and yellow-orange light emissions from the doped ZnS 1D nanostructures.

  5. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals.

    PubMed

    Quan, Zewei; Yang, Dongmei; Li, Chunxia; Kong, Deyan; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2009-09-01

    In this paper, we report a facile route which is based on tuning doping concentration of Mn(2+) ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn(2+) dopant (orange-yellow) are sensitive to the Mn(2+) doping concentration, due to the energy transfer from ZnS host to Mn(2+) dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn(2+)-doped ZnS nanocrystals. Furthermore, the as-synthesized doped nanocrystals possess extremely narrow size distribution and can be readily transferred into aqueous solution for the next potential applications.

  6. Thermal annealing evolution to physical properties of ZnS thin films as buffer layer for solar cell applications

    NASA Astrophysics Data System (ADS)

    Kaushalya; Patel, S. L.; Purohit, A.; Chander, S.; Dhaka, M. S.

    2018-07-01

    The conventional CdS window layer in solar cells is found to be hazardous for the environment due to toxic nature of the cadmium. Therefore, in order to seek an alternative, a study on effect of post-annealing treatment on physical properties of e-beam evaporated ZnS thin films has been carried out where films of thickness 150 nm were deposited on glass and indium tin oxide (ITO) substrates. The post annealing treatment was performed in air atmosphere within the temperature range from 100 °C to 500 °C. X-ray diffraction analysis reveals that the films on glass substrate are found to be amorphous at low temperature annealing (≤300 °C) while have α-ZnS hexagonal phase (wurtzite structure) at higher annealing. The patterns also show that the possibility of oxidation is increased significantly at temperature 500 °C which leads to decrease in direct band gap from 3.28 eV to 3.18 eV except films annealed at 300 °C (i.e. 3.39 eV). The maximum transmittance is found about 95% as a result of Doppler blue shift while electrical analysis indicated almost ohmic behavior between current and voltage and surface roughness is increased with post-annealing treatment.

  7. Substrate dependent hierarchical structures of RF sputtered ZnS films

    NASA Astrophysics Data System (ADS)

    Chalana, S. R.; Mahadevan Pillai, V. P.

    2018-05-01

    RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.

  8. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  9. Optical Properties of Ar Ions Irradiated Nanocrystalline ZrC and ZrN Thin Films

    NASA Technical Reports Server (NTRS)

    Martin, C.; Miller, K. H.; Makino, H.; Craciun, D.; Simeone, D.; Craciun, V.

    2017-01-01

    Thin nanocrystalline ZrC and ZrN films (less than 400 nanometers), grown on (100) Si substrates at a substrate temperature of 500 degrees Centigrade by the pulsed laser deposition (PLD) technique, were irradiated by 800 kiloelectronvolts Ar ion irradiation with fluences from 1 times 10(sup 14) atoms per square centimeter up to 2 times 10(sup 15) atoms per square centimeter. Optical reflectance data, acquired from as-deposited and irradiated films, in the range of 500-50000 per centimeter (0.06–6 electronvolts), was used to assess the effect of irradiation on the optical and electronic properties. Both in ZrC and ZrN films we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate, i.e. possible increase in mobility, at higher irradiation flux. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major structural changes.

  10. Final Report: Hot Carrier Collection in Thin Film Silicon with Tailored Nanocrystalline/Amorphous Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Reuben T.

    This project developed, characterized, and perfected a new type of highly tunable nanocrystalline silicon (nc-Si:H) incorporating quantum confined silicon nanoparticles (SiNPs). A dual zone deposition process and system were developed and demonstrated. The depositions of SiNPs, the amorphous phase, and co-deposited material were characterized and optimized. Material design and interpretation of results were guided by new theoretical tools that examined both the electronic structure and carrier dynamics of this hybrid material. Heterojunction and p-i-n solar cells were demonstrated and characterized. Photo-thin-film-transistors allowed mobility to be studied as a function SiNP density in the films. Rapid (hot) transfer of carriers frommore » the amorphous matrix to the quantum confined SiNPs was observed and connected to reduced photo-degradation. The results carry quantum confined Si dots from a novelty to materials that can be harnessed for PV and optoelectronic applications. The growth process is broadly extendable with alternative amorphous matrices, novel layered structures, and alternative NPs easily accessible. The hot carrier effects hold the potential for third generation photovoltaics.« less

  11. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  12. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    ERIC Educational Resources Information Center

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  13. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  14. Enhancement of efficiency by embedding ZnS and Mn-doped ZnS nanoparticles in P3HT:PCBM hybrid solid state solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Nunzi, Jean-Michel; Badshah, Amin; Ahmad, Iqbal

    2017-06-01

    Zinc sulphide (ZnS) and Mn-doped ZnS nanoparticles were synthesized by wet chemical method. The synthesized nanoparticles were characterized by UV-visible, fluorescence, X-ray diffraction (XRD), fourier transform infra-red (FTIR) spectrometer, field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). Scanning electron microscope (SEM) was used to find particle size while chemical composition of the synthesized materials was investigated by EDAX. UV-visible absorption spectrum of Mn-doped ZnS was slightly shifted to lower wavelength with respect to the un-doped zinc sulphide with decrease in the size of nanoparticles. Consequently, the band gap was tuned from 3.04 to 3.13 eV. The photoluminescence (PL) emission positioned at 597 nm was ascribed to 4T1 → 6A1 transition within the 3d shell of Mn2+. X-ray diffraction (XRD) analysis revealed that the synthesized nanomaterials existed in cubic crystalline state. The effect of embedding un-doped and doped ZnS nanoparticles in the active layer and changing the ratio of PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester) to nanoparticles on the performance of hybrid solar cell was studied. The device with active layer consisting of poly(3-hexylthiophene) (P3HT), [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM), and un-doped ZnS nanoparticles combined in the ratio of (1:0.5:0.5) attained an efficiency of 2.42% which was found 71% higher than the reference device under the same conditions but not containing nanoparticles. Replacing ZnS nanoparticles with Mn-doped ZnS had a little effect on the enhancement of efficiency. The packing behavior and morphology of blend of nanoparticles with P3HT:PCBM were examined using atomic force microscope (AFM) and XRD. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  15. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com; Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical andmore » morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.« less

  16. Optical properties of PVA capped nanocrystalline Cd1-xZnxS thin film synthesized by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Gogoi, Lipika; Chaliha, Sumbit; Saikia, Prasanta Kumar

    2018-04-01

    A simple cost effective Chemical Bath Deposition (CBD) technique has been employed for the preparation of nanocrystalline Cd1-xZnxS thin films in an alkaline medium at 333K for 120 minutes in polymer matrix. Optical parameters such as transmittance, optical band gap, reflectance, refractive index and extinction coefficient of the films was made using UV-Visible spectrophotometer. UV-spectroscopy study shows a good transmittance of 80-88% in visible wavelength region for the deposited films. The direct band gap energy (Eg) for the deposited films ranged from 3.5 to 3.7 eV depending on attribution of Zn into CdS. It shows a blue shift with respect to bulk value. A increase in transmittance and band gap is found with the increase of volume of Zn content. Cd1-xZnxS thin films exhibit the least reflectance for all the wavelengths in the visible region. The refractive indices (n) of the Cd1-xZnxS films were found in the range 1.38 to 2.94 in the visible region.

  17. Eu2+ -induced enhancement of defect luminescence of ZnS.

    PubMed

    Xiao-Bo, Zhang; Fu-Xiang, Wei

    2016-12-01

    The Eu 2 + -induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λ ex  > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu 2 + intra-ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu 2 + acceptor-bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non-radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu 2 + -doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  19. Structure and photoluminescence properties of ZnS films grown on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Cai-feng; Hu, Bo; Yi, Hou-hui; Li, Wei-bing

    2011-11-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities. With the increase of PS substrate porosity, the XRD diffraction peak intensity decreases and the surface morphology of the ZnS films becomes rougher. Voids appear in the films, due to the increased roughness of PS structure. The photoluminescence (PL) spectra of the samples before and after deposition of ZnS were measured to study the effect of substrate porosity on the luminescence properties of ZnS/PS composites. As-prepared PS substrates emit strong red light. The red PL peak of PS after deposition of ZnS shows an obvious blueshift. As PS substrate porosity increases, the trend of blueshift increases. A green emission at about 550 nm was also observed when the porosity of PS increased, which is ascribed to the defect-center luminescence of ZnS. The effect of annealing time on the structural and luminescence properties of ZnS/PS composites were also studied. With the increase of annealing time, the XRD diffraction peak intensity and the self-activated luminescence intensity of ZnS increase, and, the surface morphology of the ZnS films becomes smooth and compact. However, the red emission intensity of PS decreases, which was associated with a redshift. White light emission was obtained by combining the luminescence of ZnS with the luminescence of PS.

  20. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3

    PubMed Central

    Filonovich, Sergej Alexandrovich; Águas, Hugo; Busani, Tito; Vicente, António; Araújo, Andreia; Gaspar, Diana; Vilarigues, Marcia; Leitão, Joaquim; Fortunato, Elvira; Martins, Rodrigo

    2012-01-01

    We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. PMID:27877504

  1. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yao; He Xiaoyan; Cao Minhua

    2008-11-03

    ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.

  2. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Formation of ZnS nanostructures by a simple way of thermal evaporation

    NASA Astrophysics Data System (ADS)

    Yuan, H. J.; Xie, S. S.; Liu, D. F.; Yan, X. Q.; Zhou, Z. P.; Ci, L. J.; Wang, J. X.; Gao, Y.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.

    2003-11-01

    The mass synthesis of ZnS nanobelts, nanowires, and nanoparticles has been achieved by a simple method of thermal evaporation of ZnS powders onto silicon substrates in the presence of Au catalyst. The temperature of the substrates and the concentration of ZnS vapor were the critical experimental parameters for the formation of different morphologies of ZnS nanostructures. Scanning electron microscopy and transmission electron microscopy show that the diameters of as-prepared nanowires were 30-70 nm. The UV emission at 374 nm is probably related to the exciton emission, while the mechanism of blue emission at 443 nm is probably mainly due to the presence of various surface states.

  4. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  5. Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres

    PubMed Central

    2014-01-01

    We successfully prepared Au-nanoparticle-decorated ZnS (ZnS-Au) spheres by sputtering Au ultrathin films on surfaces of hydrothermally synthesized ZnS spheres and subsequently postannealed the samples in a high-vacuum atmosphere. The Au nanoparticles were distributed on ZnS surfaces without substantial aggregation. The Au nanoparticle diameter range was 5 to 10 nm. Structural information showed that the surface of the annealed ZnS-Au spheres became more irregular and rough. A humidity sensor constructed using the Au-nanoparticle-decorated ZnS spheres demonstrated a substantially improved response to the cyclic change in humidity from 11% relative humidity (RH) to 33% to 95% RH at room temperature. The improved response was associated with the enhanced efficiency of water molecule adsorption onto the surfaces of the ZnS because of the surface modification of the ZnS spheres through noble-metal nanoparticle decoration. PMID:25520595

  6. Effect Of Chromium Underlayer On The Properties Of Nano-Crystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garratt, Elias; AlFaify, Salem; Yoshitake, T.

    2013-01-11

    This paper investigated the effect of chromium underlayer on the structure, microstructure and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on silicon substrate with a thin film of chromium as an underlayer. The composition, structure and microstructure of the deposited layers were analyzed using non-Rutherford Backscattering Spectrometry, Raman Spectroscopy, Near-Edge X-Ray Absorption Fine Structure, X-ray Diffraction and Atomic Force Microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphiticmore » phases of the films evaluated by x-ray and optical spectroscopic analysis determined consistency between sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.« less

  7. Effect of chromium underlayer on the properties of nano-crystalline diamond films

    NASA Astrophysics Data System (ADS)

    Garratt, E.; AlFaify, S.; Yoshitake, T.; Katamune, Y.; Bowden, M.; Nandasiri, M.; Ghantasala, M.; Mancini, D. C.; Thevuthasan, S.; Kayani, A.

    2013-01-01

    This paper investigated the effect of chromium underlayer on the structure, microstructure, and composition of the nano-crystalline diamond films. Nano-crystalline diamond thin films were deposited at high temperature in microwave-induced plasma diluted with nitrogen, on single crystal silicon substrate with a thin film of chromium as an underlayer. Characterization of the film was implemented using non-Rutherford backscattering spectrometry, Raman spectroscopy, near-edge x-ray absorption fine structure, x-ray diffraction, and atomic force microscopy. Nanoindentation studies showed that the films deposited on chromium underlayer have higher hardness values compared to those deposited on silicon without an underlayer. Diamond and graphitic phases of the films evaluated by x-ray and optical spectroscopic analyses determined consistency between the sp2 and sp3 phases of carbon in chromium sample to that of diamond grown on silicon. Diffusion of chromium was observed using ion beam analysis which was correlated with the formation of chromium complexes by x-ray diffraction.

  8. Soft magnetic properties of nanocrystalline FeRuGaSi-Hf alloy films and head characteristics for the embedded thin film tape head

    NASA Astrophysics Data System (ADS)

    Ohmori, H.; Shoji, M.; Kobayashi, T.; Yamamoto, T.; Sugiyama, Y.; Hayashi, K.; Hono, K.

    1996-04-01

    The Hf-added FeRuGaSi alloy film has an amorphous structure in the as-deposited state and becomes nanocrystalline after annealing. Due to this structure change from crystalline to amorphous by the addition of Hf, soft magnetic degradation of the film deposited on the slant grooved substrate, which is necessary for the sophisticated embedded thin film (ETF) head structure, is greatly suppressed and the undesirable film stress is relieved. The FeRuGaSi-Hf alloy film has higher resistivity and permeability at high frequencies than those of sendust film, and the read/write characteristics of this alloy film show better performance than sendust film.

  9. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Chang, Yongqin; Wang, Mingwei; Chen, Xihong; Ni, Saili; Qiang, Weijing

    2007-05-01

    Large-area ZnS nanowires were synthesized through a vapor phase deposition method. X-ray diffraction and electron microscopy results show that the products are composed of single crystalline ZnS nanowires with a cubic structure. The nanowires have sharp tips and are distributed uniformly on silicon substrates. The diameter of the bases is in the range of 320-530 nm and that of the tips is around 20-30 nm. The strong ultraviolet emission in the photoluminescence spectra also demonstrates that the ZnS nanowires are of high crystalline perfection. Field emission measurements reveal that the ZnS nanowires have a fairly low threshold field, which may be ascribed to their very sharp tips, rough surfaces and high crystal quality. The perfect field emission ability of the ZnS nanowires makes them a promising candidate for the fabrication of flexible cold cathodes.

  10. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  11. Near-Infrared-Emitting CuInS2/ZnS Dot-in-Rod Colloidal Heteronanorods by Seeded Growth

    PubMed Central

    2018-01-01

    Synthesis protocols for anisotropic CuInX2 (X = S, Se, Te)-based heteronanocrystals (HNCs) are scarce due to the difficulty in balancing the reactivities of multiple precursors and the high solid-state diffusion rates of the cations involved in the CuInX2 lattice. In this work, we report a multistep seeded growth synthesis protocol that yields colloidal wurtzite CuInS2/ZnS dot core/rod shell HNCs with photoluminescence in the NIR (∼800 nm). The wurtzite CuInS2 NCs used as seeds are obtained by topotactic partial Cu+ for In3+ cation exchange in template Cu2–xS NCs. The seed NCs are injected in a hot solution of zinc oleate and hexadecylamine in octadecene, 20 s after the injection of sulfur in octadecene. This results in heteroepitaxial growth of wurtzite ZnS primarily on the Sulfur-terminated polar facet of the CuInS2 seed NCs, the other facets being overcoated only by a thin (∼1 monolayer) shell. The fast (∼21 nm/min) asymmetric axial growth of the nanorod proceeds by addition of [ZnS] monomer units, so that the polarity of the terminal (002) facet is preserved throughout the growth. The delayed injection of the CuInS2 seed NCs is crucial to allow the concentration of [ZnS] monomers to build up, thereby maximizing the anisotropic heteroepitaxial growth rates while minimizing the rates of competing processes (etching, cation exchange, alloying). Nevertheless, a mild etching still occurred, likely prior to the onset of heteroepitaxial overgrowth, shrinking the core size from 5.5 to ∼4 nm. The insights provided by this work open up new possibilities in designing multifunctional Cu-chalcogenide based colloidal heteronanocrystals. PMID:29569443

  12. Effect of Various Catalysts on the Stability of Characteristics of Acetone Sensors Based on Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevastyanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Khludkova, L. S.; Chernikov, E. V.; Davydova, T. A.

    2018-02-01

    The results of studies of electrical and gas sensitive characteristics of acetone sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the volume (Au, Ni, Co) are presented. Films containing impurities of gold and 3d-metals were obtained by the method of magnetron sputtering of mosaic targets. Particular attention was paid to the influence of the longterm tests and humidity level on the properties of sensors. It is shown that the sensors with the deposited dispersed gold layers with Au+Ni and, especially, Au+Co additives introduced into the volume are characterized by the increased stability in the process of testing under prolonged exposure to acetone and also under conditions of varying humidity.

  13. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  14. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  15. Synthesis and Characteristics of ZnS Nanospheres for Heterojunction Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Chou, Sheng-Hung; Hsiao, Yu-Jen; Fang, Te-Hua; Chou, Po-Hsun

    2015-06-01

    The synthesis of ZnS nanospheres produced using the microwave hydrothermal method was studied. The microstructure and surface and optical properties of ZnS nanospheres on glass were characterized using scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. The influence of deposition time on the transmission and photovoltaic performance was determined. The power conversion efficiency of an Al-doped ZnO/ZnS nanosphere/textured p-Si device improved from 0.93 to 1.77% when the thickness of the ZnS nanostructured film was changed from 75 to 150 nm.

  16. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications.

    PubMed

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-12-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  17. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    NASA Astrophysics Data System (ADS)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  18. The influence of interfacial defects on fast charge trapping in nanocrystalline oxide-semiconductor thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Jihyun; Jeon, Sanghun

    2016-05-01

    Defects in oxide semiconductors not only influence the initial device performance but also affect device reliability. The front channel is the major carrier transport region during the transistor turn-on stage, therefore an understanding of defects located in the vicinity of the interface is very important. In this study, we investigated the dynamics of charge transport in a nanocrystalline hafnium-indium-zinc-oxide thin-film transistor (TFT) by short pulse I-V, transient current and 1/f noise measurement methods. We found that the fast charging behavior of the tested device stems from defects located in both the front channel and the interface, following a multi-trapping mechanism. We found that a silicon-nitride stacked hafnium-indium-zinc-oxide TFT is vulnerable to interfacial charge trapping compared with silicon-oxide counterpart, causing significant mobility degradation and threshold voltage instability. The 1/f noise measurement data indicate that the carrier transport in a silicon-nitride stacked TFT device is governed by trapping/de-trapping processes via defects in the interface, while the silicon-oxide device follows the mobility fluctuation model.

  19. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Patel, Kamakshi; Gujarati, Vivek P.; Chaki, S. H.

    2016-05-01

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn2+ an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  20. Investigation of thioglycerol stabilized ZnS quantum dots in electroluminescent device performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethiraj, Anita Sagadevan, E-mail: anita.ethiraj@vit.ac.in; Center for Nanotechnology Research, VIT University, Vellore, TamilNadu-632014; Rhen, Dani

    2016-05-06

    The present work is focused on the investigation of thioglycerol (TG) stabilized Zinc Sulfide Quantum dots (ZnS QDs) in the hybrid electroluminescence (EL) device. Optical absorption spectroscopy clearly indicates the formation of narrow size distributed ZnS in the quantum confinement regime. X-ray Diffraction (XRD), Photoluminescence (PL), Energy Dispersive X-ray Spectroscopy (EDS) data supports the same. The hybrid EL device with structure of ITO (indium tin oxide)//PEDOT:PSS ((poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)//HTL (α NPD- N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-phenyl)-4,4′-diamine// PVK:ZnS QDs//ETL(PBD- 2-tert-butylphenyl- 5-biphenyl-1,3,4-oxadiazole)//LiF:Al (Device 1) was fabricated. Reference device without the ZnS QDs were also prepared (Device 2). The results show that the ZnS QDs based device exhibitedmore » bright electroluminescence emission of 24 cd/m{sup 2} at a driving voltage of 16 Volts under the forward bias conditions as compared to the reference device without the ZnS QDs, which showed 6 cd/m{sup 2} at ∼22 Volts.« less

  1. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  2. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Nillohit; Sinha, Arijit; Khan, Gobinda Gopal

    2011-01-15

    We report a chemical route for the deposition of nanocrystalline thin films of CuS, using aqueous solutions of Cu(CH{sub 3}COO){sub 2}, SC(NH{sub 2}){sub 2} and N(CH{sub 2}CH{sub 2}OH){sub 3} [triethanolamine, i.e. TEA] in proper concentrations and ratios. The films were structurally characterized using X-ray diffraction technique (XRD), field emission scanning electron microscopy (FESEM) and optical analysis [both photo luminescence (PL) and ultraviolet-visible (UV-vis)]. Optical studies showed a large blue shift in the band gap energy of the films due to quantum confinement effect exerted by the nanocrystals. From both XRD and FESEM analyses, formation of CuS nanocrystals with sizes withinmore » 10-15 nm was evident. A study on the mechanical properties was carried out using nanoindentation and nanoscratch techniques, which showed good mechanical stability and high adherence of the films with the bottom substrate. Such study on the mechanical properties of the CuS thin films is being reported here for the first time. Current-voltage (I-V) measurements were also carried out for the films, which showed p-type conductivity.« less

  3. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline siliconmore » is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.« less

  4. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  5. ZnS/diamond composite coatings for infrared transmission applications formed by the aerosol deposition method

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Kub, Fritz J.; Eddy, Charles R.

    2013-06-01

    The deposition of nano-crystalline ZnS/diamond composite protective coatings on silicon, sapphire, and ZnS substrates, as a preliminary step to coating infrared transparent ZnS substrates from powder mixtures by the aerosol deposition method is presented. Advantages of the aerosol deposition method include the ability to form dense, nanocrystalline lms up to hundreds of microns thick at room temperature and at a high deposition rate on a variety of substrates. Deposition is achieved by creating a pressure gradient that accelerates micrometer- scale particles in an aerosol to high velocity. Upon impact with the target substrate the particles fracture and embed. Continued deposition forms the thick compacted lm. Deposition from an aerosolized mixture of ZnS and diamond powders onto all targets results in linear trend from apparent sputter erosion of the substrate at 100% diamond to formation of a lm with increasing fractions of ZnS. The crossover from abrasion to lm formation on sapphire occurs above about 50% ZnS and a mixture of 90% ZnS and 10% diamond forms a well-adhered lm of about 0.7 μm thickness at a rate of 0.14 μm/min. Resulting lms are characterized by scanning electron microscopy, pro lometry, infrared transmission spectroscopy, and x-ray photoemission spectroscopy. These initial lms mark progress toward the future goal of coating ZnS substrates for abrasion resistance.

  6. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918.

    PubMed

    Sandana Mala, John Geraldine; Rose, Chellan

    2014-01-20

    Microbial synthesis of nanoparticles is a green route towards ecofriendly measures to overcome the toxicity and non-applicability of nanomaterials in clinical uses obtained by conventional physical and chemical approaches. Nanoparticles in the quantum regime have remarkable characteristics with excellent applicability in bioimaging. Yeasts have been commercially exploited for several industrial applications. ZnS nanoparticles as semiconductor quantum dots have mostly been synthesized by bacterial species. Here in, we have attempted to produce ZnS nanoparticles in quantum regime by Saccharomyces cerevisiae MTCC 2918 fungus and characterize its size and spectroscopic properties. Intracellular ZnS nanoparticles were produced by a facile procedure and freeze thaw extraction using 1mM zinc sulfate. The ZnS nanoparticles showed surface plasmon resonance band at 302.57nm. The ZnS nanoparticles were in low yield and in the size range of 30-40nm. Powder XRD analysis revealed that the nanoparticles were in the sphalerite phase. Photoluminescence spectra excited at 280nm and 325nm revealed quantum confinement effects. This suggests that yeasts have inherent sulfate metabolizing systems and are capable fungal sources to assimilate sulfate. Further insights are required to identify the transport/reducing processes that may have caused the synthesis of ZnS nanoparticles such as an oxidoreductase enzyme-mediated mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Investigations into the formation of nanocrystalline quantum dot thin films by mist deposition process

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Aditya

    Semiconductor nanocrystalline quantum dots (NQDs) have material properties remarkably different compared to bulk semiconductors with the same material composition. These NQDs have various novel applications in the electronic and photonic industry, such as light emitting diodes (LEDs) and flat-panel displays. In these applications, ultra-thin films of NQDs in the monolayer regime are needed to ensure optimal current transport properties and device efficiency. There is ongoing search to find a suitable method to deposit and pattern such ultra-thin films of quantum dots with few monolayer thicknesses. Several competing approaches are available, each with its pros and cons. This study explores mist deposition as the technique to fill this void. In this study, ultra-thin films of quantum dots are deposited on diverse substrates and are characterized to understand the mechanics of mist deposition. Various applications of blanket deposited and patterned quantum dot films are studied. The results discussed here include atomic force microscopy analysis of the films to study surface morphology, fluorescence microscopy to study light emission and optical microscope images to study patterning techniques. These results demonstrate the ability of mist deposition to form 1-4 monolayers thick, uniform, defect-free patterned films with root mean square (RMS) surface roughness less than 2 nm. LEDs fabricated using mist deposition show a peak luminescence greater than 500 cd/m2 for matched red, yellow and green devices using Alq3 as the electron transport layer, and over 9000 cd/m2 for red devices using ZnO as the electron transport layer, respectively. In addition to the experimental approach to study the process and explore potential applications, simulation and modeling are carried out to understand the various aspects of mist deposition. A mathematical model is presented which discusses the atomization process of the precursor solution, the physics involved during the deposition

  8. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  9. Properties of Nanocrystalline Cubic Silicon Carbide Thin Films Prepared by Hot-Wire Chemical Vapor Deposition Using SiH4/CH4/H2 at Various Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Tabata, Akimori; Komura, Yusuke; Hoshide, Yoshiki; Narita, Tomoki; Kondo, Akihiro

    2008-01-01

    Silicon carbide (SiC) thin films were prepared by hot-wire chemical vapor deposition from SiH4/CH4/H2 gases, and the influence of substrate temperature, Ts (104 < Ts < 434 °C), on the properties of the SiC thin films was investigated. X-ray diffraction patterns and Raman scattering spectra revealed that nanocrystalline cubic SiC (nc-3C-SiC) films grew at Ts above 187 °C, while completely amorphous films grew at Ts = 104 °C. Fourier transform infrared absorption spectra revealed that the crystallinity of the nc-3C-SiC was improved with increasing Ts up to 282 °C and remained almost unchanged with a further increase in Ts from 282 to 434 °C. The spin density was reduced monotonically with increasing Ts.

  10. Structural, magnetic and optical properties of ZnO nanostructures converted from ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Prayas Chandra; Ghosh, Surajit; Srivastava, P.C., E-mail: pcsrivastava50@gmail.com

    Graphical abstract: The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. - Highlights: • Phase change of cubic ZnS to hexagonal ZnO via heat treatment. • Band gap was found to decrease with increasing calcinations temperature. • ZnO samples have higher magnetic moment than ZnS. • Blocking Temperature of the samples is well above room temperature. • Maximum negative%MR with saturation value ∼38% was found for sample calcined at 600° C. - Abstract: The present work concentrates on the synthesis of cubic ZnS and hexagonal ZnO semiconducting nanoparticle from same precursor via co-precipitation method.more » The phase conversion of ZnS to highly crystalline hexagonal ZnO was done by heat treatment. From the analysis of influence of calcination temperature on the structural, optical and vibrational properties of the samples, an optimum temperature was found for the total conversion of ZnS nanoparticles to ZnO. Role of quantum confinement due to finite size is evident from the blue shift of the fundamental absorption in UV–vis spectra only in the ZnS nanoparticles. The semiconducting nature of the prepared samples is confirmed from the UV–vis, PL study and transport study. From the magnetic and transport studies, pure ZnO phase was found to be more prone to magnetic field.« less

  11. Formation of nanocrystalline SiGe in Polycrystalline-Ge/Si thin film without any metal induced crystallization

    NASA Astrophysics Data System (ADS)

    Tah, Twisha; Singh, Ch. Kishan; Madapu, K. K.; Polaki, S. R.; Ilango, S.; David, C.; Dash, S.; Panigrahi, B. K.

    2017-05-01

    The formation of nanocrystalline SiGe without the aid of metal induced crystallization is reported. Re-crystallization of the as-deposited poly-Ge film (deposited at 450 °C) leads to development of regions with depleted Ge concentration upon annealing at 500 °C. Clusters with crystalline facet containing both nanocrystalline SiGe and crystalline Ge phase starts appearing at 600 °C. The structural phase characteristics were investigated by X-ray diffraction (XRD) and Raman spectroscopy. The stoichiometry of the SiGe phase was estimated from the positions of the Raman spectral peaks.

  12. Preparation and bioactive properties of nanocrystalline hydroxyapatite thin films obtained by conversion of atomic layer deposited calcium carbonate.

    PubMed

    Holopainen, Jani; Kauppinen, Kyösti; Mizohata, Kenichiro; Santala, Eero; Mikkola, Esa; Heikkilä, Mikko; Kokkonen, Hanna; Leskelä, Markku; Lehenkari, Petri; Tuukkanen, Juha; Ritala, Mikko

    2014-09-01

    Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.

  13. Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Y. J.; Meen, T. H.; Ji, L. W.; Tsai, J. K.; Wu, Y. S.; Huang, C. J.

    2013-10-01

    The synthesis and heterojunction solar cell properties of ZnS microdisks prepared by the chemical bath deposition method were investigated. The ZnS deposited on the p-Si blanket substrate exhibits good coverage. The lower reflectance spectra were found as the thickness of the ZnS film increased. The optical absorption spectra of the 80 °C ZnS microdisk exhibited a band-gap energy of 3.4 eV and the power conversion efficiency (PCE) of the AZO/ZnS/p-Si heterojunction solar cell with a 300 nm thick ZnS film was η=2.72%.

  14. One-Pot Process in Scalable Bath for Water-Dispersed ZnS Nanocrystals with the Tailored Size

    DOE PAGES

    Jung, Hyunsung; Phelps, Tommy J.; Rondinone, Adam J.; ...

    2017-05-01

    Well-dispersed ZnS nanocrystals with tailored size in aqueous solutions were synthesized by employing cysteine-sulfur (Cys-S) complexes with low molecular weight in a scalable anoxic vessel. High yield production of water-dispersed ZnS nanocrystals on a 10-L scale was demonstrated in an aqueous solution process. The average crystallite size of ZnS was controlled by changing the ratio of the cysteine to sulfide in the applied Cys-S complexes. A decrease in the crystallite size of ZnS likely resulted in both the blue shift of peak positions and the relative variation of peak intensities in the photoluminescence properties. In addition, the pH-dependent stability againstmore » aggregation of ZnS nanocrystals was investigated to reduce agglomeration.« less

  15. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An In-Situ Electron Microscopy Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eskelsen, Jeremy R.; Xu, Jie; Chiu, Michelle Y.

    The dissolution of metal sulfides, such as ZnS, plays an important role in the fate of metal contaminants in the environment. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, the biogenic ZnS nanoparticles were produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium, whereas the abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H 2S-rich gas or Na 2S solution. For biogenic synthesis, we prepared two types of samples, in the presence or absence of trace silver (Ag). Themore » size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were primarily examined using high-resolution transmission electron microscopy coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ~10 nm) than the abiogenic ones (i.e., ~3–5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ~3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell coupled to a transmission electron microscope (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles (γ = 0.799 J/m 2) have a significantly

  16. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.

    PubMed

    Eskelsen, Jeremy R; Xu, Jie; Chiu, Michelle; Moon, Ji-Won; Wilkins, Branford; Graham, David E; Gu, Baohua; Pierce, Eric M

    2018-02-06

    The dissolution of metal sulfides, such as ZnS, is an important biogeochemical process affecting fate and transport of trace metals in the environment. However, current studies of in situ dissolution of metal sulfides and the effects of structural defects on dissolution are lacking. Here we have examined the dissolution behavior of ZnS nanoparticles synthesized via several abiotic and biological pathways. Specifically, we have examined biogenic ZnS nanoparticles produced by an anaerobic, metal-reducing bacterium Thermoanaerobacter sp. X513 in a Zn-amended, thiosulfate-containing growth medium in the presence or absence of silver (Ag), and abiogenic ZnS nanoparticles were produced by mixing an aqueous Zn solution with either H 2 S-rich gas or Na 2 S solution. The size distribution, crystal structure, aggregation behavior, and internal defects of the synthesized ZnS nanoparticles were examined using high-resolution transmission electron microscopy (TEM) coupled with X-ray energy dispersive spectroscopy. The characterization results show that both the biogenic and abiogenic samples were dominantly composed of sphalerite. In the absence of Ag, the biogenic ZnS nanoparticles were significantly larger (i.e., ∼10 nm) than the abiogenic ones (i.e., ∼3-5 nm) and contained structural defects (e.g., twins and stacking faults). The presence of trace Ag showed a restraining effect on the particle size of the biogenic ZnS, resulting in quantum-dot-sized nanoparticles (i.e., ∼3 nm). In situ dissolution experiments for the synthesized ZnS were conducted with a liquid-cell TEM (LCTEM), and the primary factors (i.e., the presence or absence structural defects) were evaluated for their effects on the dissolution behavior using the biogenic and abiogenic ZnS nanoparticle samples with the largest average particle size. Analysis of the dissolution results (i.e., change in particle radius with time) using the Kelvin equation shows that the defect-bearing biogenic ZnS nanoparticles

  17. SEMICONDUCTOR MATERIALS: White light photoluminescence from ZnS films on porous Si substrates

    NASA Astrophysics Data System (ADS)

    Caifeng, Wang; Qingshan, Li; Bo, Hu; Weibing, Li

    2010-03-01

    ZnS films were deposited on porous Si (PS) substrates using a pulsed laser deposition (PLD) technique. White light emission is observed in photoluminescence (PL) spectra, and the white light is the combination of blue and green emission from ZnS and red emission from PS. The white PL spectra are broad, intense in a visible band ranging from 450 to 700 nm. The effects of the excitation wavelength, growth temperature of ZnS films, PS porosity and annealing temperature on the PL spectra of ZnS/PS were also investigated.

  18. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  19. Polymerizable-group capped ZnS nanoparticle for high refractive index inorganic-organic hydrogel contact lens.

    PubMed

    Zhao, Peili; Xu, Jinku; Zhang, Yongchun; Zhu, Weiyue; Cui, Yuezhi

    2018-09-01

    Refractive index (RI) is an important parameter for contact lens biomaterials. In this paper, a novel polymerizable-group capped ZnS nanoparticle (NP) was synthesized by chemical link between hydroxyl group on the surface of ZnS (ME-capped) and isocyanate group of polymerizable molecule of 2-isocyanatoethyl methacrylate. Then the ZnS NP copolymerized with monomer of 2-hydroxyethyl methacrylate (HEMA) and N,N-dimethylacrylamide (DMA) to prepare high refractive index hydrogel contact lens with high content of inorganic ZnS NP. Increasing polymerizable-group capped ZnS content in the hydrogels improved its RI value and mechanical properties, however decreased slightly its transmittance, equilibrium (ESR) and lysozyme deposition on the hydrogel surface. The ZnS-containing hydrogels possessed good cytocompatibility and in vivo biocompatibility in rabbit eyes, demonstrating a potential application as high RI ocular refractive correction biomaterial. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong

    2018-02-01

    Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.

  1. Ultrasonic Emission from Nanocrystalline Porous Silicon

    NASA Astrophysics Data System (ADS)

    Shinoda, Hiroyuki; Koshida, Nobuyoshi

    A simple layer structure composed of a metal thin film and a porous silicon layer on a silicon substrate generates intense and wide-band airborne ultrasounds. The large-bandwidth and the fidelity of the sound reproduction are leveraged in applications varying from sound-based measurement to a scientific study of animal ecology. This chapter describes the basic principle of the ultrasound generation. The macroscopic properties of the low thermal conductivity and the small heat capacity of nanocrystalline porous silicon thermally induce ultrasonic emission. The state-of-the-art of the achievable sound pressure and sound signal properties is introduced, with the technological and scientific applications of the devices.

  2. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    NASA Astrophysics Data System (ADS)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  3. Structural transformation and photoluminescence modification of AgInS2 nanoparticles induced by ZnS shell formation

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Yukitoki, Daichi; Kuzuya, Toshihiro

    2015-09-01

    AgInS2 nanoparticles were capped by ZnS via a widely used procedure to fabricate core/shell nanoparticles with highly efficient luminescence. The nanoparticle structures were investigated by ultrahigh-resolution analytical electron microscopy. We found that Zn-Ag-In-S nanoparticles were created by ZnS capping at ˜480 K, which suggests that the luminescence enhancement reported for such core/shell nanoparticles is not caused by the passivation of surface defects by ZnS shells but by Zn doping. Quasi-core/shell nanoparticles could be obtained by ZnS capping without heating. However, their luminescence efficiency remained unchanged, indicating that surface passivation was ineffective when ZnS shells were formed at room temperature.

  4. Fabrication of single Ga-doped ZnS nanowires as high-gain photosensors by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Yen, Shih-Hsiang; Hung, Yu-Chen; Yeh, Ping-Hung; Su, Ya-Wen; Wang, Chiu-Yen

    2017-09-01

    ZnS nanowires were synthesized via a vapor-liquid-solid mechanism and then fabricated into a single-nanowire field-effect transistor by focused ion beam (FIB) deposition. The field-effect electrical properties of the FIB-fabricated ZnS nanowire device, namely conductivity, mobility and hole concentration, were 9.13 Ω-1 cm-1, 13.14 cm2 V-1 s-1and 4.27 × 1018 cm-3, respectively. The photoresponse properties of the ZnS nanowires were studied and the current responsivity, current gain, response time and recovery time were 4.97 × 106 A W-1, 2.43 × 107, 9 s and 24 s, respectively. Temperature-dependent I-V measurements were used to analyze the interfacial barrier height between ZnS and the FIB-deposited Pt electrode. The results show that the interfacial barrier height is as low as 40 meV. The energy-dispersive spectrometer elemental line scan shows the influence of Ga ions on the ZnS nanowire surface on the FIB-deposited Pt contact electrodes. The results of temperature-dependent I-V measurements and the elemental line scan indicate that Ga ions were doped into the ZnS nanowire, reducing the barrier height between the FIB-deposited Pt electrodes and the single ZnS nanowire. The small barrier height results in the FIB-fabricated ZnS nanowire device acting as a high-gain photosensor.

  5. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  6. Solution-processed nanocrystalline PbS on paper substrate with pencil traced electrodes as visible photodetector

    NASA Astrophysics Data System (ADS)

    Vankhade, Dhaval; Chaudhuri, Tapas K.

    2018-04-01

    Paper-based PbS photodetector sensitive in the visible spectrum is reported. Nanocrystalline PbS-on-paper devices are fabricated by a spin coating method on white paper (300 GSM) from a methanolic precursor solution. Photodetector cells of gap 0.2 cm and length 0.5 cm are prepared by drawing contacts by monolithic cretacolor 8B pencil. X-ray diffractometer confirmed the deposition of nanocrystalline PbS films with 14 nm crystallites. The SEM illustrated the uniform coating of nanocrystalline PbS thin films on cellulose fibres of papers having an average thickness of fibres are 10 µm. The linear J-V characteristics in dark and under illumination of light using graphite trace on nanocrystalline PbS-on-paper shows good ohmic contact. The resistivity of pencil trace is 30 Ω.cm. Spectral response measurements of photodetector reveal the excellent sensitivity from 400 to 700 nm with a peak at 550 nm. The best responsivity anddetectivity are 0.7 A/W and 1.4 × 1012 Jones respectively. These paper-based low-cost photodetectors devices have fast photoresponse and recovery without baseline deviation.

  7. Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach

    NASA Astrophysics Data System (ADS)

    Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan

    2012-05-01

    A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.

  8. Probing nanocrystalline grain dynamics in nanodevices

    PubMed Central

    Yeh, Sheng-Shiuan; Chang, Wen-Yao; Lin, Juhn-Jong

    2017-01-01

    Dynamical structural defects exist naturally in a wide variety of solids. They fluctuate temporally and hence can deteriorate the performance of many electronic devices. Thus far, the entities of these dynamic objects have been identified to be individual atoms. On the other hand, it is a long-standing question whether a nanocrystalline grain constituted of a large number of atoms can switch, as a whole, reversibly like a dynamical atomic defect (that is, a two-level system). This is an emergent issue considering the current development of nanodevices with ultralow electrical noise, qubits with long quantum coherence time, and nanoelectromechanical system sensors with ultrahigh resolution. We demonstrate experimental observations of dynamic nanocrystalline grains that repeatedly switch between two or more metastable coordinate states. We study temporal resistance fluctuations in thin ruthenium dioxide (RuO2) metal nanowires and extract microscopic parameters, including relaxation time scales, mobile grain sizes, and the bonding strengths of nanograin boundaries. These material parameters are not obtainable by other experimental approaches. When combined with previous in situ high-resolution transmission electron microscopy, our electrical method can be used to infer rich information about the structural dynamics of a wide variety of nanodevices and new two-dimensional materials. PMID:28691094

  9. A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes.

    PubMed

    Faria, Henrique Antonio Mendonça; de Queiroz, Alvaro Antonio Alencar

    2015-11-01

    The structural and electronic properties of titanium oxide nanotubes (TiO2) have attracted considerable attention for the development of therapeutic devices and imaging probes for nanomedicine. However, the fluorescence response of TiO2 has typically been within ultraviolet spectrum. In this study, the surface modification of TiO2 nanotubes with ZnS quantum dots was found to produce a red shift in the ultra violet emission band. The TiO2 nanotubes used in this work were obtained by sol-gel template synthesis. The ZnS quantum dots were deposited onto TiO2 nanotube surface by a micelle-template inducing reaction. The structure and morphology of the resulting hybrid TiO2/ZnS nanotubes were investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. According to the results of fluorescence spectroscopy, pure TiO2 nanotubes exhibited a high emission at 380nm (3.26eV), whereas TiO2/ZnS exhibited an emission at 410nm (3.02eV). The TiO2/ZnS nanotubes demonstrated good bio-imaging ability on sycamore cultured plant cells. The biocompatibility against mammalian cells (Chinese Hamster Ovarian Cells-CHO) suggesting that TiO2/ZnS may also have suitable optical properties for use as biological markers in diagnostic medicine. The drug release characteristic of TiO2/ZnS nanotubes was explored using 5-fluorouracil (5-FU), an anticancer drug used in photodynamic therapy. The results show that the TiO2/ZnS nanotubes are a promising candidate for anticancer drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis of Mn doped ZnS nanocrystals: Crystallographic and morphological study

    NASA Astrophysics Data System (ADS)

    Shaikh, Azharuddin Z.; Shirsath, Narendra B.; Sonawane, Prabhakar S.

    2018-05-01

    The influence of doping concentration on the physical properties of ZnS nanocrystals synthesized using coprecipitation method at room temperature is reported in this paper. In particular, we have studied the structural properties of Zn1-xMnxS where (x=0.01, 0.03, 0.05) by X-ray diffraction. X-ray peak broadening analysis used to calculate the crystalline sizes, lattice parameters, number of unit cell per particle and volume of unit cell. Crystalline ZnS with a cubic structure is confirmed by XRD results. The grain size of pure and Mn doped samples were found in the range of 7nm to 9nm. All the physical parameters of cubic ZnS nanocrystals were calculated are similar with standard values. The scanning electron microscope (SEM) which revealed that the synthesized nanocrystals are well-crystalline and possessing cubic phase.

  11. Effect of Au irradiation energy on ejection of ZnS nanoparticles from ZnS film

    NASA Astrophysics Data System (ADS)

    Kuiri, P. K.; Ghatak, J.; Joseph, B.; Lenka, H. P.; Sahu, G.; Mahapatra, D. P.; Tripathi, A.; Kanjilal, D.; Mishra, N. C.

    2007-01-01

    ZnS films deposited on Si have been irradiated with Au ions at 35 keV, 2, and 100 MeV. Sputtered particles, collected on catcher foils during irradiation, were analyzed using transmission electron microscopy. For the case of 35 keV Au irradiation, no nanoparticle (NP) could be observed on the catcher foil. However, NPs 2-7 nm in size, have been observed on the catcher foils for MeV irradiations at room temperature. For particle sizes ≥3 nm, the distributions could be fitted to power law decays with decay exponents varying between 2 and 3.5. At 2 MeV, after correction for cluster breakup effects, the decay exponent has been found to be close to 2, indicating shock waves induced ejection to be the dominant mechanism. The corrected decay exponent for the 100 MeV Au irradiation case has been found to be about 2.6. Coulomb explosion followed by thermal spike induced vaporization of ZnS seems to be the dominant mechanism regarding material removal at such high energy. In such a case the evaporated material can cool down going into the fragmentation region forming clusters.

  12. Fabrication of ZnS nanoparticle chains on a protein template

    PubMed Central

    Hulleman, J.; Kim, S. M.; Tumkur, T.; Rochet, J.-C.; Stach, E.; Stanciu, L.

    2011-01-01

    In the present study, we have exploited the properties of a fibrillar protein for the template synthesis of zinc sulfide (ZnS) nanoparticle chains. The diameter of the ZnS nanoparticle chains was tuned in range of ~30 to ~165 nm by varying the process variables. The nanoparticle chains were characterized by field emission scanning electron microscopy, UV–Visible spectroscopy, transmission electron microscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The effect of incubation temperature on the morphology of the nanoparticle chains was also studied. PMID:21804765

  13. The Cathodoluminescence of Cleartran: A Novel Form of Polycrystalline ZnS.

    DTIC Science & Technology

    1986-12-01

    Temperature TO Transverse Optical UV Ultraviolet Vm= Micrometer 4_I xiI VS_ZI AFIT/DS/ENP/86-2 . - - Abstract Cathodolumine4cence studies were carried out...The results of these studies were compared to and contrasted with the cathodoluminescence of cvd ZnS samples grown by Raytheon and CVD Inc., with...luminogen impurity" (2:406). Since that time and until 1957, most II-VI compound research consisted of luminescence studies of ZnS (mostly phosphors) and

  14. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  15. Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study

    DOE PAGES

    Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok

    2016-12-31

    Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å 2 and 11.6×11.6 Å 2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 ofmore » the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. In conclusion, the calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).« less

  16. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    NASA Astrophysics Data System (ADS)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  17. Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Moholkar, A. V.; Pawar, S. M.; Rajpure, K. Y.; Bhosale, C. H.; Kim, J. H.

    2009-09-01

    The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO 2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO 2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10 -4 Ω cm, carrier density of 24.9 × 10 20 cm -3 and mobility of 6.59 cm 2 V -1 s -1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm 2, highest figure of merit of 6.18 × 10 -2 Ω -1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.

  18. Study of electronic characteristics of heterojunction with intrinsic thin-layer devices and defect density profile of nanocrystalline silicon germanium devices

    NASA Astrophysics Data System (ADS)

    Mulder, Watson

    Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.

  19. Thermally Stable Nanocrystalline Steel

    NASA Astrophysics Data System (ADS)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  20. An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    La Porta, F. A.; Nogueira, A. E.; Gracia, Lourdes; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andrés, Juan; Longo, E.

    2017-04-01

    From the viewpoints of materials chemistry and physical chemistry, crystal structure directly determines the electronic structure and furthermore their optical and photocatalytic properties. Zinc sulfide (ZnS) nanoparticles (NPs) with tunable photoluminescence (PL) emission and high photocatalytic activity have been obtained by means of a microwave-assisted solvothermal (MAS) method using different precursors (i.e., zinc nitrate (ZN), zinc chloride (ZC), or zinc acetate (ZA)). The morphologies, optical properties, and electronic structures of the as-synthesized ZnS NPs were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) isotherms for N2 adsorption/desorption processes, diffuse reflectance spectroscopy (DRS), PL measurements and theoretical calculations. Density functional theory calculations were used to determine the geometries and electronic properties of bulk wurtzite (WZ) ZnS NPs and their (0001), (101 ̅0), (112 ̅0), (101 ̅1), and (101 ̅2) surfaces. The dependence of the PL emission behavior of ZnS NPs on the precursor was elucidated by examining the energy band structure and density of states. The method for degradation of Rhodamine B (RhB) was used as a probe reaction to investigate the photocatalytic activity of the as-Synthesised ZnS NPs under UV light irradiation. The PL behavior as well as photocatalytic activities of ZnS NPs were attributed to specific features of the structural and electronic structures. Increased photocatalytic degradation was observed for samples synthesized using different precursors in the following order: ZAZnS NPs were also briefly discussed.

  1. Optical, thermal and morphological study of ZnS doped PVA polymer nano composites

    NASA Astrophysics Data System (ADS)

    Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta

    2018-05-01

    The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.

  2. Effect of RF power density on micro- and macro-structural properties of PECVD grown hydrogenated nanocrystalline silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr

    2016-03-25

    This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less

  3. Growth of nanocrystalline Cu2ZnSnS4 thin films using the spray pyrolysis technique and their characterization

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla

    2018-05-01

    Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.

  4. Synthesis and influence of ultrasonic treatment on luminescence of Mn incorporated ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Cadis, A.-I.; Muresan, L. E.; Perhaita, I.; Munteanu, V.; Karabulut, Y.; Garcia Guinea, J.; Canimoglu, A.; Ayvacikli, M.; Can, N.

    2017-10-01

    Manganese (Mn) doping of ZnS phosphors was achieved by precipitation method using different ultrasound (US) maturation times. The structural and luminescence properties of the samples were carried out by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), photoluminescence (PL), and cathodoluminescence (CL). The real amount of manganese incorporated in ZnS lattice was calculated based on ICP-OES results. According with XRD patterns, the phase structure of ZnS:Mn samples is cubic. EDS spectra reveal deviations of the Mn dopant concentration from the target composition. Both 300 K PL and CL emission spectra of the Mn doped ZnS phosphors display intense orange emission at 590 and 600 nm, respectively, which is characteristic emission of Mn ion corresponding to a 4T1→6A1 transition. Both PL and CL spectra confirmed manganese is substitutionally incorporated into the ZnS host as Mn2+. However, it is suggested that the origin of broad blue emission around 400 nm appeared in CL is due to the radiative recombination at deep level defect states in the ZnS. The ultrasound treatment at first enhances the luminescent intensity by ∼3 times in comparison with samples prepared by classical way. This study gives rise to an optimization guideline, which is extremely demanded for the development of new luminescent materials.

  5. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light

    PubMed Central

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan

    2015-01-01

    Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901

  6. Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films

    NASA Astrophysics Data System (ADS)

    Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.

    2018-07-01

    Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.

  7. Variability in Chemical Vapor Deposited Zinc Sulfide: Assessment of Legacy and International CVD ZnS Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCloy, John S.; Korenstein, Ralph

    2009-10-06

    Samples of CVD ZnS from the United States, Germany, Israel, and China were evaluated using transmission spectroscopy, x-ray diffraction, photoluminescence, and biaxial flexure testing. Visible and near-infrared scattering, 6 μm absorption, and ultraviolet cut-on edge varied substantially in tested materials. Crystallographic hexagonality and texture was determined and correlated with optical scattering. Transmission cut-on (ultraviolet edge) blue-shifts with annealing and corresponds to visible color but not the 6 μm absorption. Photoluminescence results suggest that CVD ZnS exhibits a complex suite of electronic bandgap defects. All CVD ZnS tested with biaxial flexure exhibit similar fracture strength values and Weibull moduli. This surveymore » suggests that technical understanding of the structure and optical properties CVD ZnS is still in its infancy.« less

  8. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs.

    PubMed

    Xu, Chaoying; Zhou, Ronghui; He, Wenwei; Wu, Lan; Wu, Peng; Hou, Xiandeng

    2014-04-01

    Fingerprints are unique characteristics of an individual, and their imaging and recognition is a top-priority task in forensic science. Fast LFP (latent fingerprint) acquirement can greatly help policemen in screening the potential criminal scenes and capturing fingerprint clues. Of the two major latent fingerprints (LFP), eccrine is expected to be more representative than sebaceous in LFP identification. Here we explored the heavy metal-free Mn-doped ZnS quantum dots (QDs) as a new imaging moiety for eccrine LFPs. To study the effects of different ligands on the LFP image quality, we prepared Mn-doped ZnS QDs with various surface-capping ligands using QDs synthesized in high-temperature organic media as starting material. The orange fluorescence emission from Mn-doped ZnS QDs clearly revealed the optical images of eccrine LFPs. Interestingly, N-acetyl-cysteine-capped Mn-doped ZnS QDs could stain the eccrine LFPs in as fast as 5 s. Meanwhile, the levels 2 and 3 substructures of the fingerprints could also be simultaneously and clearly identified. While in the absence of QDs or without rubbing and stamping the finger onto foil, no fluorescent fingerprint images could be visualized. Besides fresh fingerprint, aged (5, 10, and 50 days), incomplete eccrine LFPs could also be successfully stained with N-acetyl-cysteine-capped Mn-doped ZnS QDs, demonstrating the analytical potential of this method in real world applications. The method was also robust for imaging of eccrine LFPs on a series of nonporous surfaces, such as aluminum foil, compact discs, glass, and black plastic bags.

  9. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE PAGES

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.; ...

    2017-05-12

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  10. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Atwani, Osman; Nathaniel, James; Leff, Asher C.

    Crystal defects generated during irradiation can result in severe changes in morphology and an overall degradation of mechanical properties in a given material. Nanomaterials have been proposed as radiation damage tolerant materials, due to the hypothesis that defect density decreases with grain size refinement due to the increase in grain boundary surface area. The lower defect density should arise from grain boundary-point defect absorption and enhancement of interstitial-vacancy annihilation. In this study, low energy helium ion irradiation on free-standing iron thin films were performed at 573 K. Interstitial loops of a 0 /2 [111] Burgers vector were directly observed asmore » a result of the displacement damage. Loop density trends with grain size demonstrated an increase in the nanocrystalline (<100 nm) regime, but scattered behavior in the transition from the nanocrystalline to the ultra-fine regime (100–500 nm). To examine the validity of such trends, loop density and area for different grains at various irradiation doses were compared and revealed efficient defect absorption in the nanocrystalline grain size regime, but loop coalescence in the ultra-fine grain size regime. Lastly, a relationship between the denuded zone formation, a measure of grain boundary absorption efficiency, grain size, grain boundary type and misorientation angle is determined.« less

  11. Band gap states in nanocrystalline WO3 thin films studied by soft x-ray spectroscopy and optical spectrophotometry.

    PubMed

    Johansson, M B; Kristiansen, P T; Duda, L; Niklasson, G A; Österlund, L

    2016-11-30

    Nanocrystalline tungsten trioxide (WO3) thin films prepared by DC magnetron sputtering have been studied using soft x-ray spectroscopy and optical spectrophotometry. Resonant inelastic x-ray scattering (RIXS) measurements reveal band gap states in sub-stoichiometric γ-WO3-x with x  =  0.001-0.005. The energy positions of these states are in good agreement with recently reported density functional calculations. The results were compared with optical absorption measurements in the near infrared spectral region. An optical absorption peak at 0.74 eV is assigned to intervalence transfer of polarons between W sites. A less prominent peak at energies between 0.96 and 1.16 eV is assigned to electron excitation of oxygen vacancies. The latter results are supported by RIXS measurements, where an energy loss in this energy range was observed, and this suggests that electron transfer processes involving transitions from oxygen vacancy states can be observed in RIXS. Our results have implications for the interpretation of optical properties of WO3, and the optical transitions close to the band gap, which are important in photocatalytic and photoelectrochemical applications.

  12. Selective Sulfidation of Lead Smelter Slag with Pyrite and Flotation Behavior of Synthetic ZnS

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Zhang, Tianfu; Qin, Wenqing

    2016-08-01

    The selective sulfidation of lead smelter slag with pyrite in the presence of carbon and Na salts, and the flotation behavior of synthetic ZnS were studied. The effects of temperature, time, pyrite dosage, Na salts, and carbon additions were investigated based on thermodynamic calculation, and correspondingly, the growth mechanism of ZnS particles was studied at high temperatures. The results indicated that the zinc in lead smelter slag was selectively converted into zinc sulfides by sulfidation roasting. The sulfidation degree of zinc was increased until the temperature, time, pyrite, and carbon dosages reached their optimum values, under which it was more than 95 pct. The growth of ZnS particles largely depended upon roasting temperature, and the ZnS grains were significantly increased above 1373 K (1100 °C) due to the formation of a liquid phase. After the roasting, the zinc sulfides generated had a good floatability, and 88.34 pct of zinc was recovered by conventional flotation.

  13. Optical Properties of ZnCdS:I Orange and ZnSTe:I White Thin Film Phosphor for High Ra White LED

    NASA Astrophysics Data System (ADS)

    Fujii, Satoshi; Tasaki, Norio; Shinomura, Naohiko; Kurai, Satoshi; Yamada, Yoichi; Taguchi, Tsunemasa

    In order to develop visible thin film phosphors, we have for the first time prepared ZnCdS and ZnSTe doped with Iodine (I) using low-pressure MOCVD method. ZnCdS:I, of which Cd composition was calibrated to match the lattice constant to that of substrate and the band gap to absorption peak, showed a orange broad emission consist of yellow near band edge emission and red SA emission. Isoelectronic Te in ZnS indicates strong blue-green emissions, whilst I donor impurity in ZnS shows strong red SA emissions. A typical ZnSTe:I thin film shows two broad emission bands locating at around 500 and 680 nm, respectively, indicating Ra˜90. It was shown that high Ra thin film phosphor can be realized by single material (ZnSTe:I), and that MOCVD method is capable for controlling the thickness and doping profile to obtain uniform white emission pattern.

  14. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-23

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  15. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Singh, Janpreet; Kaur, Jagdish; Moudgil, R. K.; Tripathi, S. K.

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  16. The effect of varied pH on the luminescence characteristics of antibody-mercaptoacetic acid conjugated ZnS nanowires

    NASA Astrophysics Data System (ADS)

    Chaudhry, Madeeha; Rehman, Malik Abdul; Gul, Asghari; Qamar, Raheel; Bhatti, Arshad Saleem

    2017-11-01

    We demonstrate here that the effect of varied pH of the media on the photoluminescence (PL) properties of mercaptoacetic acid (MAA) and digoxin antibody (Ab) conjugated zinc sulphide (ZnS) nanowires. The charge-transfer kinetics from MAA to ZnS and vice versa showed a profound effect on the luminescence of ZnS defect states. The PL intensity of the ZnS defect states showed strong dependence on the value of pH with respect to the pKa of MAA. The carboxyl and thiol group of MAA in the protonated (pH < pKa) and deprotonated (pH > pKa) states resulted in the quenched PL intensity. While for pH ∼ pKa, the PL intensity was regained as there was equal probability of both protonated and deprotonated carboxyl and thiol groups. These findings indicated that pH of the environment is a key parameter for the use of MAA-Ab conjugated ZnS nanowires as an optical biomarker.

  17. Low-temperature growth and photoluminescence property of ZnS nanoribbons.

    PubMed

    Zhang, Zengxing; Wang, Jianxiong; Yuan, Huajun; Gao, Yan; Liu, Dongfang; Song, Li; Xiang, Yanjuan; Zhao, Xiaowei; Liu, Lifeng; Luo, Shudong; Dou, Xinyuan; Mou, Shicheng; Zhou, Weiya; Xie, Sishen

    2005-10-06

    At a low temperature of 450 degrees C, ZnS nanoribbons have been synthesized on Si and KCl substrates by a simple chemical vapor deposition (CVD) method with a two-temperature-zone furnace. Zinc and sulfur powders are used as sources in the different temperature zones. X-ray diffraction (XRD), selected area electron diffraction (SEAD), and transmission electron microscopy (TEM) analysis show that the ZnS nanoribbons are the wurtzite structure, and there are two types-single-crystal and bicrystal nanoribbons. Photoluminescence (PL) spectrum shows that the spectrum mainly includes two parts: a purple emission band centering at about 390 nm and a blue emission band centering at about 445 nm with a weak green shoulder around 510 nm.

  18. Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Weiner, B. R.; Morell, G.

    2002-06-01

    Results are reported on the electron field emission properties of sulfur (S)-incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum (Mo) substrates by hot-filament chemical vapor deposition (HFCVD) technique. In addition to the conventionally used methane (CH4) as carbon precursor with high hydrogen (H2) dilution, hydrogen sulfide-hydrogen (H2)S/H2 premix gas was used for sulfur incorporation. The field emission properties for the S-incorporated films were investigated systematically as a function of substrate temperature (TS) and sulfur concentration. Lowest turn-on field achieved was observed at around 4.0 V/mum for the n-C:S sample grown at TS of 900 degC with 500 ppm of H2S. These results are compared with those films grown without sulfur (n-C) at a particular TS. The turn-on field was found to be almost half for the S-assisted film thus demonstrating the effect of sulfur addition to the chemical vapor deposition process. An inverse relation between turn-on field (EC), growth temperature and sulfur concentration was found. The S incorporation also causes significant microstructural changes, as characterized with non-destructive complementary ex situ techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy (RS). S-assisted films show relatively smoother and finer-grained surfaces than those grown without it. These findings are discussed in terms of the dual role of sulfur in enhancing the field emission properties by controlling the sp2 C cluster size and introducing substantial structural defects through its incorporation. The in-plane correlation length (La) of sp2 C cluster was determined from the intensity ratio of the D- and G-bands I(D)/I(G) in the visible RS as a function of deposition temperature and sulfur concentration using a phenomenological model. The turn-on field was found to decrease with increasing sp2 C cluster size in general ranging from 0.8 to 1.4 nm. The films having sp2 C

  19. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    NASA Astrophysics Data System (ADS)

    Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.

    2014-10-01

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.

  20. Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentini, L., E-mail: luca.valentini@unipg.it; Cardinali, M.; Fortunati, E.

    2014-10-13

    With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electricmore » field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.« less

  1. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Advancements in the Quantification of the Crystal Structure of ZNS Materials Produced in Variable Gravity

    NASA Astrophysics Data System (ADS)

    Castillo, Martin

    2016-07-01

    Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  3. Outstanding features of Cu-doped ZnS nanoclusters

    NASA Astrophysics Data System (ADS)

    Tawfik, Wael Z.; Farghali, A. A.; Moneim, Ahmed; Imam, N. G.; El-Dek, S. I.

    2018-05-01

    ZnS and their Cu-doped nanoclusters (NCs) were synthesized successfully using the wet chemical route with different Cu content. The crystalline structure was investigated using x-ray powder diffraction which assured the single-phase formation in cubic symmetry. High-resolution transmission electron microscope indicated the microstructure of NCs with a size ranging from 2–4 nm. A butterfly hysteresis (M-H) loop was observed at room temperature with large values of coercivity for the Cu content of x = 0.05. Photoluminescence emission spectra were recorded from 500–615 nm for pure and Cu-doped ZnS NCs at a 350 nm excitation wavelength. The sample exhibited green fluorescence bands peaking at 535, 544, 552.5, 558.2, and 560.6 nm, which confirmed the characteristic feature of Zn2+ as luminescent centers in the lattice. The additional yellow and orange emissions are due to defect levels or/and impurity centers. The dielectric constant as well as the conductivity values increased with increasing Cu content.

  4. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiO{sub x} layers for application in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingsporn, M.; Costina, I.; Kirner, S.

    2016-06-14

    Nanocrystalline silicon suboxides (nc-SiO{sub x}) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO{sub 0.8}:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressuremore » from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.« less

  5. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    PubMed

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (<10 nm) near the edge. By means of a modified focused ion beam lift-out technique generating holes in the lamella interior large micrometer-sized electron-transparent regions were obtained. However, this lamella displayed a higher thickness at the rim of ≥30 nm. Limiting factors for the observed thicknesses are discussed including ion damage depths, backscattering, and surface roughness, which depend on ion type, energy, current density, and specimen motion. Finally, sections cut by ultramicrotomy at low stroke rate and low set thickness offered vast, several tens of square micrometers uniformly thin regions of ∼10-nm minimum thickness. As major drawbacks, we have detected a thin coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  6. Ultra-thin, light-trapping silicon solar cells

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1989-01-01

    Design concepts for ultra-thin (2 to 10 microns) high efficiency single-crystal silicon cells are discussed. Light trapping allows more light to be absorbed at a given thickness, or allows thinner cells of a given Jsc. Extremely thin cells require low surface recombination velocity at both surfaces, including the ohmic contacts. Reduction of surface recombination by growth of heterojunctions of ZnS and GaP on Si has been demonstrated. The effects of these improvements on AM0 efficiency is shown. The peak efficiency increases, and the optimum thickness decreases. Cells under 10 microns thickness can retain almost optimum power. The increase of absorptance due to light trapping is considered. This is not a problem if the light-trapping cells are sufficiently thin. Ultra-thin cells have high radiation tolerance. A 2 microns thick light-trapping cell remains over 18 percent efficient after the equivalent of 20 years in geosynchronous orbit. Including a 50 microns thick coverglass, the thin cells had specific power after irradiation over ten times higher than the baseline design.

  7. Carrier mobility enhancement of nano-crystalline semiconductor films: Incorporation of redox -relay species into the grain boundary interface

    NASA Astrophysics Data System (ADS)

    Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.

    Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.

  8. Synthesis of ZnS films on Si(100) wafers by using chemical bath deposition assisted by the complexing agent ethylenediamine

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Wang, Xue-Mei; Gao, Xiao-Yong

    2015-07-01

    Low-cost synthesis of high-quality ZnS films on silicon wafers is of much importance to the ZnSbased heterojunction blue light-emitting device integrated with silicon. Thus, a series of ZnS films were chemically synthesized at low cost on Si(100) wafers at 353 K under a mixed acidic solution with a pH of 4 with zinc acetate and thioacetamide as precursors and with ethylenediamine and hydrochloric acid as the complexing agent and the pH value modifier, respectively. The effects of the ethylenediamine concentration on the crystallization, surface morphology, and optical properties of the ZnS films were investigated by using X-ray diffractometry, scanning electron microscopy, spectrophotometry, and fluorescence spectroscopy. A mechanism for the formation of ZnS film under an acidic condition was also proposed. All of the ZnS films were polycrystalline in nature, with a dominant cubic phase and a small amounts of hexagonal phases. The crystallization and the surface pattern of the films were clearly improved with increasing ethylenediamine concentration due to its enhanced complexing role. The absorption edge of the films almost underwent a blue shift with increasing ethylenediamine concentration, which was largely attributed to the quantum confinement effects caused by the small particle size of the polycrystalline ZnS films. Defect species and the corresponding strengths of the ZnS films were strongly affected by the ethylenediamine concentration.

  9. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanostructured PdO Thin Film from Langmuir-Blodgett Precursor for Room-Temperature H2 Gas Sensing.

    PubMed

    Choudhury, Sipra; Betty, C A; Bhattacharyya, Kaustava; Saxena, Vibha; Bhattacharya, Debarati

    2016-07-06

    Nanoparticulate thin films of PdO were prepared using the Langmuir-Blodgett (LB) technique by thermal decomposition of a multilayer film of octadecylamine (ODA)-chloropalladate complex. The stable complex formation of ODA with chloropalladate ions (present in subphase) at the air-water interface was confirmed by the surface pressure-area isotherm and Brewster angle microscopy. The formation of nanocrystalline PdO thin film after thermal decomposition of as-deposited LB film was confirmed by X-ray diffraction and Raman spectroscopy. Nanocrystalline PdO thin films were further characterized by using UV-vis and X-ray photoelectron spectroscopic (XPS) measurements. The XPS study revealed the presence of prominent Pd(2+) with a small quantity (18%) of reduced PdO (Pd(0)) in nanocrystalline PdO thin film. From the absorption spectroscopic measurement, the band gap energy of PdO was estimated to be 2 eV, which was very close to that obtained from specular reflectance measurements. Surface morphology studies of these films using atomic force microscopy and field-emission scanning electron microscopy indicated formation of nanoparticles of size 20-30 nm. These PdO film when employed as a chemiresistive sensor showed H2 sensitivity in the range of 30-4000 ppm at room temperature. In addition, PdO films showed photosensitivity with increase in current upon shining of visible light.

  11. Properties of thin silver films with different thickness

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan

    2009-01-01

    In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.

  12. Nanocrystalline SnO2 formation using energetic ion beam.

    PubMed

    Mohanty, T; Batra, Y; Tripathi, A; Kanjilal, D

    2007-06-01

    Nanocrystalline tin oxide (SnO2) thin films grown by RF magnetron sputtering technique were characterized by UV-Visible absorption spectroscopy and Photoluminescence spectroscopy. From atomic force microscopic (AFM) and Glancing angle X-ray diffraction (GAXRD) measurements, the radius of grains was found to be approximately 6+/-2 nm. The thin films were bombarded with 250 keV Xe2+ ion beam to observe the stability of nanophases against radiation. For ion bombarded films, optical absorption band edge is shifted towards red region. Atomic force microscopy studies show that the radius of the grains was increased to approximately 8 +/- 1 nm and the grains were nearly uniform in size. The size of the grains has been reduced after ion bombardment in the case of films grown on Si. During this process, defects such as vacancies, voids were generated in the films as well as in the substrates. Ion bombardment induces local temperature increase of thin films causing melting of films. Ion beam induced defects enhances the diffusion of atoms leading to uniformity in size of grains. The role of matrix on ion beam induced grain growth is discussed.

  13. Heterocrystal and bicrystal structures of ZnS nanowires synthesized by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Jie, J. S.; Zhang, W. J.; Jiang, Y.; Meng, X. M.; Zapien, J. A.; Shao, M. W.; Lee, S. T.

    2006-06-01

    ZnS nanowires with heterocrystal and bicrystal structures were successfully synthesized using the DC-plasma chemical vapour deposition (CVD) method. The heterocrystalline ZnS nanowires have the zinc blende (ZB) and wurtzite (WZ) zones aligned alternately in the transverse direction but without an obvious period. The bicrystal ZnS nanowires are composed of two ZB fractions separated by a clear grain boundary along the length. Significantly, the grain boundaries in both the heterocrystal and bicrystal structures are atomically sharp without any visible lattice distortion. The effects of plasma species, ion bombardment, and silicon impurities in the formation of these distinctive structures are discussed. A defect-induced red-shift and broadening of the band-gap emission are revealed in photoluminescence (PL) and cathodoluminescence (CL) measurements.

  14. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  15. Photoluminescence of ZnS-SiO2:Ce Thin Films Deposited by Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Mizuno, Masao

    2011-12-01

    Photoluminescent emissions of zinc sulfide-silica-cerium thin films deposited by magnetron sputtering were observed. The films consisted of ZnS nanocrystals embedded in amorphous SiO2 matrices. ZnS-SiO2:Ce films exhibited photoluminescence even without postannealing. Their emission spectra showed broad patterns in the visible range; the emitted colors depended on film composition.

  16. Chemical routes to nanocrystalline and thin-film III-VI and I-III-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer Ann

    1999-11-01

    The work encompasses: (1) catalyzed low-temperature, solution-based routes to nano- and microcrystalline III-VI semiconductor powders and (2) spray chemical vapor deposition (spray CVD) of I-III-VI semiconductor thin films. Prior to this work, few, if any, examples existed of chemical catalysis applied to the synthesis of nonmolecular, covalent solids. New crystallization strategies employing catalysts were developed for the regioselective syntheses of orthorhombic InS (beta-InS), the thermodynamic phase, and rhombohedral InS (R-InS), a new, metastable structural isomer. Growth of beta-InS was facilitated by a solvent-suspended, molten-metal flux in a process similar to the SolutionLiquid-Solid (SLS) growth of InP and GaAs fibers and single-crystal whiskers. In contrast, metastable R-InS, having a pseudo-graphitic layered structure, was prepared selectively when the molecular catalyst, benzenethiol, was present in solution and the inorganic "catalyst" (metal flux) was not present. In the absence of any crystal-growth facilitator, metal flux or benzenethiol, amorphous product was obtained under the mild reaction conditions employed (T ≤ 203°C). The inorganic and organic catalysts permitted the regio-selective syntheses of InS and were also successfully applied to the growth of network and layered InxSey compounds, respectively, as well as nanocrystalline In2S3. Extensive microstructural characterization demonstrated that the layered compounds grew as fullerene-like nanostructures and large, colloidal single crystals. Films of the I-III-VI compounds, CuInS2, CuGaS2, and Cu(In,Ga)S 2, were deposited by spray CVD using the known single-source metalorganic precursor, (Ph3P)2CuIn(SEt)4, a new precursor, (Ph3P)2CuGa(SEt)3, and a mixture of the two precursors, respectively. The CulnS2 films exhibited a variety of microstructures from dense and faceted or platelet-like to porous and dendritic. Crystallographic orientations ranged from strongly [112] to strongly [220

  17. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    PubMed

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  19. Effect of substrate porosity on photoluminescence properties of ZnS films prepared on porous Si substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Li, Qing-Shan; Zhang, Li-Chun; Lv, Lei; Qi, Hong-Xia

    2007-05-01

    ZnS films were deposited on porous Si (PS) substrates with different porosities by pulsed laser deposition. The photoluminescence spectra of the samples were measured to study the effect of substrate porosity on luminescence properties of ZnS/porous Si composites. After deposition of ZnS films, the red photoluminescence peak of porous Si shows a slight blueshift compared with as-prepared porous Si samples. With an increase of the porosity, a green emission at about 550 nm was observed which may be ascribed to the defect-center luminescence of ZnS films, and the photoluminescence of ZnS/porous Si composites is very close to white light. Good crystal structures of the samples were observed by x-ray diffraction, showing that ZnS films were grown in preferred orientation. Due to the roughness of porous Si surface, some cracks appear in ZnS films, which could be seen from scanning electron microscope images.

  20. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    PubMed

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  1. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaparde, Rohini; Acharya, Smita

    2016-06-01

    Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.

  2. Frequency-dependent failure mechanisms of nanocrystalline gold interconnect lines under general alternating current

    NASA Astrophysics Data System (ADS)

    Luo, X. M.; Zhang, B.; Zhang, G. P.

    2014-09-01

    Thermal fatigue failure of metallization interconnect lines subjected to alternating currents (AC) is becoming a severe threat to the long-term reliability of micro/nanodevices with increasing electrical current density/power. Here, thermal fatigue failure behaviors and damage mechanisms of nanocrystalline Au interconnect lines on the silicon glass substrate have been investigated by applying general alternating currents (the pure alternating current coupled with a direct current (DC) component) with different frequencies ranging from 0.05 Hz to 5 kHz. We observed both thermal fatigue damages caused by Joule heating-induced cyclic strain/stress and electromigration (EM) damages caused by the DC component. Besides, the damage formation showed a strong electrically-thermally-mechanically coupled effect and frequency dependence. At lower frequencies, thermal fatigue damages were dominant and the main damage forms were grain coarsening with grain boundary (GB) cracking/voiding and grain thinning. At higher frequencies, EM damages took over and the main damage forms were GB cracking/voiding of smaller grains and hillocks. Furthermore, the healing effect of the reversing current was considered to elucidate damage mechanisms of the nanocrystalline Au lines generated by the general AC. Lastly, a modified model was proposed to predict the lifetime of the nanocrystalline metal interconnect lines, i.e., that was a competing drift velocity-based approach based on the threshold time required for reverse diffusion/healing to occur.

  3. Investigations on structural and optical properties of starch capped ZnS nanoparticles synthesized by microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Lalithadevi, B.; Mohan Rao, K.; Ramananda, D.

    2018-05-01

    Following a green synthesis method, zinc sulfide (ZnS) nanoparticles were prepared by chemical co-precipitation technique using starch as capping agent. Microwave irradiation was used as heating source. X-ray diffraction studies indicated that nanopowders obtained were polycrystalline possessing ZnS simple cubic structure. Transmission electron microscopic studies indicated that starch limits the agglomeration by steric stabilization. Interaction between ZnS and starch was confirmed by Fourier transform infrared spectroscopy as well as Raman scattering studies. Quantum size effects were observed in optical absorption studies while quenching of defect states on nanoparticles was improved with increase in starch addition as indicated by photoluminescence spectra.

  4. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  5. Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films

    DOE PAGES

    Wang, Baoming; Haque, M. A.; Tomar, Vikas; ...

    2017-07-13

    Zirconium thin films were irradiated at room temperature with an 800 keV Zr + beam using a 6 MV HVE Tandem accelerator to 1.36 displacement per atom damage. Freestanding tensile specimens, 100 nm thick and 10 nm grain size, were tested in-situ inside a transmission electron microscope. Significant grain growth (>300%), texture evolution, and displacement damage defects were observed. Here, stress-strain profiles were mostly linear elastic below 20 nm grain size, but above this limit the samples demonstrated yielding and strain hardening. Experimental results support the hypothesis that grain boundaries in nanocrystalline metals act as very effective defect sinks.

  6. Synthesis of Nanocrystalline SnOx (x = 1–2) Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    PubMed Central

    Ebrahimiasl, Saeideh; Yunus, Wan Md. Zin Wan; Kassim, Anuar; Zainal, Zulkarnain

    2011-01-01

    Nanocrystalline SnOx (x = 1–2) thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light. PMID:22163690

  7. Determination of the five parameter grain boundary character distribution of nanocrystalline alpha-zirconium thin films using transmission electron microscopy

    DOE PAGES

    Ghamarian, I.; Samani, P.; Rohrer, G. S.; ...

    2017-03-24

    Grain boundary engineering and other fundamental materials science problems (e.g., phase transformations and physical properties) require an improvement in the understanding of the type and population of grain boundaries in a given system – yet, databases are limited in number and spare in detail, including for hcp crystals such as zirconium. One way to rapidly obtain databases to analyze is to use small-grained materials and high spatial resolution orientation microscopy techniques, such as ASTAR™/precession electron diffraction. To demonstrate this, a study of grain boundary character distributions was conducted for α-zirconium deposited at room temperature on fused silica substrates using physicalmore » vapor deposition. The orientation maps of the nanocrystalline thin films were acquired by the ASTARα/precession electron diffraction technique, a new transmission electron microscope based orientation microscopy method. The reconstructed grain boundaries were classified as pure tilt, pure twist, 180°-twist and 180°-tilt grain boundaries based on the distribution of grain boundary planes with respect to the angle/axis of misorientation associated with grain boundaries. The results of the current study were compared to the results of a similar study on α-titanium and the molecular dynamics results of grain boundary energy for α-titanium.« less

  8. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    NASA Astrophysics Data System (ADS)

    Wang, Xinjuan; Zhang, Qinglin; Zou, Bingsuo; Lei, Aihua; Ren, Pinyun

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  9. One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.

    2013-12-01

    Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

  10. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  11. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  12. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  13. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  14. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose.

    PubMed

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol-gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  16. Electronic and optical properties of nanocrystalline WO3 thin films studied by optical spectroscopy and density functional calculations

    NASA Astrophysics Data System (ADS)

    Johansson, Malin B.; Baldissera, Gustavo; Valyukh, Iryna; Persson, Clas; Arwin, Hans; Niklasson, Gunnar A.; Österlund, Lars

    2013-05-01

    The optical and electronic properties of nanocrystalline WO3 thin films prepared by reactive dc magnetron sputtering at different total pressures (Ptot) were studied by optical spectroscopy and density functional theory (DFT) calculations. Monoclinic films prepared at low Ptot show absorption in the near infrared due to polarons, which is attributed to a strained film structure. Analysis of the optical data yields band-gap energies Eg ≈ 3.1 eV, which increase with increasing Ptot by 0.1 eV, and correlate with the structural modifications of the films. The electronic structures of triclinic δ-WO3, and monoclinic γ- and ε-WO3 were calculated using the Green function with screened Coulomb interaction (GW approach), and the local density approximation. The δ-WO3 and γ-WO3 phases are found to have very similar electronic properties, with weak dispersion of the valence and conduction bands, consistent with a direct band-gap. Analysis of the joint density of states shows that the optical absorption around the band edge is composed of contributions from forbidden transitions (>3 eV) and allowed transitions (>3.8 eV). The calculations show that Eg in ε-WO3 is higher than in the δ-WO3 and γ-WO3 phases, which provides an explanation for the Ptot dependence of the optical data.

  17. Potential effect of CuInS2/ZnS core-shell quantum dots on P3HT/PEDOT:PSS heterostructure based solar cell

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, S. M.

    2018-07-01

    Nanostructured quantum dots (QDs) are quite promising in the solar cell application due to quantum confinement effect. QDs possess multiple exciton generation and large surface area. The environment friendly CuInS2/ZnS core-shell QDs were prepared by solvothermal method. Thus, the 3 nm average sized CuInS2/ZnS QDs were employed in the bulk heterojunction device and the active blend layer consisting of the P3HT and CuInS2/ZnS QDs was investigated. The energy level information of CuInS2/ZnS QDs as an electron acceptor was explored by ultra violet photoelectron spectroscopy. Bulk heterojunction hybrid device of ITO/PEDOT:PSS/P3HT: (CuInS2/ZnS QDs)/ZnO/Ag was designed by spin coating approach and its electrical characterization was investigated by solar simulator. Current density - voltage characteristics shows the enhancement in power conversion efficiency with increasing concentration of CuInS2/ZnS QDs in bulk heterojunction device.

  18. Optical and AFM study of electrostatically assembled films of CdS and ZnS colloid nanoparticles

    NASA Astrophysics Data System (ADS)

    Suryajaya; Nabok, A.; Davis, F.; Hassan, A.; Higson, S. P. J.; Evans-Freeman, J.

    2008-05-01

    CdS and ZnS semiconducting colloid nanoparticles coated with the organic shell, containing either SO 3- or NH 2+ groups, were prepared using the aqueous phase synthesis. The multilayer films of CdS (or ZnS) were deposited onto glass, quartz and silicon substrates using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy, spectroscopic ellipsometry and atomic force microscopy. A substantial blue shift of the main absorption band with respect to the bulk materials was found for both CdS and ZnS films. The Efros equation in the effective mass approximation (EMA) theoretical model allowed the evaluation of the nanoparticle radius of 1.8 nm, which corresponds well to the ellipsometry results. AFM shows the formation of larger aggregates of nanoparticles on solid surfaces.

  19. Green synthesis of CuInS2/ZnS core-shell quantum dots by facile solvothermal route with enhanced optical properties

    NASA Astrophysics Data System (ADS)

    Jindal, Shikha; Giripunje, Sushama M.; Kondawar, Subhash B.; Koinkar, Pankaj

    2018-03-01

    We report an eco-friendly green synthesis of highly luminescent CuInS2/ZnS core-shell quantum dots (QDs) with average particle size ∼ 3.9 nm via solvothermal process. The present study embodies the intensification of CuInS2/ZnS QDs properties by the shell growth on the CuInS2 QDs. The as-prepared CuInS2 core and CuInS2/ZnS core-shell QDs have been characterized using a range of optical and structural techniques. By adopting a low temperature growth of CuInS2 core and high temperature growth of CuInS2/ZnS core-shell growth, the tuning of absorption and photoluminescence emission spectra were observed. Optical absorption and photoluminescence spectroscopy probe the effect of ZnS passivation on the electronic structure of the CuInS2 dots. In addition, QDs have been scrutinized using ultra violet photoelectron spectroscopy (UPS) to explore their electronic band structure. The band level positions of CuInS2 and CuInS2/ZnS QDs suffices the demand of non-toxic acceptor material for electronic devices. The variation in electronic energy levels of CuInS2 core with the coating of wide band gap ZnS shell influence the removal of trap assisted recombination on the surface of the core. QDs exhibited tunable emission from red to orange region. These studies reveal the feasibility of QDs in photovoltaic and light emitting diodes.

  20. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  1. Preparation and properties of ZnS superhydrophobic surface with hierarchical structure

    NASA Astrophysics Data System (ADS)

    Yao, Lujun; Zheng, Maojun; He, Shuanghu; Ma, Li; Li, Mei; Shen, Wenzhong

    2011-01-01

    A novel ZnS hierarchical structure composed of nanorod arrays with branched nanosheets and nanowires grown on their upside walls, was synthesized over Au-coated silicon substrate via chemical vapor deposition technique. Contact angle and sliding angle of this hierarchical film with no surface modification were measured to be about 153.8° and 9.1° for 5 μl water droplets. Self-cleaning behavior and dynamic water-repelling performance were clearly demonstrated. In addition, electrowetting transition phenomenon from superhydrophobic to hydrophilic state happened when a critical bias ∼7.0 V was applied. Below this threshold voltage, the contact angle change is little. This work for the first time reports the creation of ZnS superhydrophobic surface and could enrich its research field as surface functional materials.

  2. High-purity nano particles ZnS production by a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA.

    PubMed

    Xin, Baoping; Huang, Qun; Chen, Shi; Tang, Xuemei

    2008-01-01

    High-purity nanoparticles ZnS has been successfully synthesized using a simple coupling reaction process of biological reduction and chemical precipitation mediated with EDTA referred to as the CRBRCP-EDTA process. This research investigated the optimum conditions of the transformation of SO(4) (2-) into S(2-) by SRB, and the production of ZnS in the CRBRCP-EDTA process. The results showed that the molar ratio of Zn(2+) to EDTA = 1:1 was crucial for SRB growth and ZnS synthesis. At the ratio(n) (Zn2+)/n) (EDTA) = 1:1, lower Zn(2+) concentration enhanced both the growth of SRB and the reduction of SO(4) (2-), leading to higher ZnS production. Although increase in Na(2)SO(4) concentration resulted in decrease in both SRB growth and SO(4) (2-) reduction, it improved the S(2-) and ZnS production. Under the optimum conditions (0.05 mol L(-1) ZnCl(2), 0.05 mol L(-1) EDTA, and 0.1 mol L(-1) Na(2)SO(4)), the synthesized ZnS was characterized by X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The analysis showed that the obtained ZnS were high-purity and well-distributed solid spheres with diameters of about 15 nm for primary particles and around 400 nm for secondary particles. When polyacrylamide (PAM) was incorporated in the CRBRCP-EDTA process, the secondary particle's diameters were reduced to less than 100 nm. The photoluminescence (PL) spectra of produced ZnS centered at 396 nm, the spectrum with PAM added showed the gradual increase in absorption and stronger intensity in PL property. The present simple, low-cost, and safe method may be extended to prepare other metal-sulfide nanocomposites.

  3. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  4. Tailoring the index of refraction of nanocrystalline hafnium oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Mirella; Murphy, N. R.; Ramana, C. V., E-mail: rvchintalapalle@utep.edu

    2014-03-10

    Hafnium oxide (HfO{sub 2}) films were grown by sputter-deposition by varying the growth temperature (T{sub s} = 25–700 °C). HfO{sub 2} films grown at T{sub s} < 200 °C were amorphous, while those grown at T{sub s} ≥ 200 °C were monoclinic, nanocrystalline with (1{sup ¯}11) texturing. X-ray reflectivity (XRR) analyses indicate that the film-density (ρ) increases with increasing T{sub s}. The index of refraction (n) profiles derived from spectroscopic ellipsometry analyses follow the Cauchy dispersion relation. Lorentz-Lorenz analysis (n{sub (λ)} = 550 nm) and optical-model adopted agree well with the XRR data/analyses. A direct T{sub s}-ρ-n relationship suggests that tailoring the optical quality is possible by tuning T{sub s} and themore » microstructure of HfO{sub 2} films.« less

  5. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  6. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  7. Structural characteristics of a non-polar ZnS layer on a ZnO buffer layer formed on a sapphire substrate by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui

    2018-06-01

    ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.

  8. Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films

    NASA Astrophysics Data System (ADS)

    Garratt, Elias James

    Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.

  9. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay; Gupta, Shubhra; Miura, Norio

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo 2O 4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo 2O 4 spinel thin film exhibited a high specific capacitance value of 580 F g -1 and an energy density of 32 Wh kg -1 at the power density of 4 kW kg -1, accompanying with good cyclic stability.

  10. Morphogenesis and crystallization of ZnS microspheres by a soft template-assisted hydrothermal route: synthesis, growth mechanism, and oxygen sensitivity.

    PubMed

    Yang, Liangbao; Han, Jun; Luo, Tao; Li, Minqiang; Huang, Jiarui; Meng, Fanli; Liu, Jinhuai

    2009-01-05

    Almost monodisperse ZnS microspheres have been synthesized on a large scale by a hydrothermal route, in which tungstosilicate acid (TSA) was used as a soft template. By controlling the reaction conditions, such as reaction temperature, pH value of the solutions, and the reaction medium, almost monodisperse microspheres can be synthesized. The structure of these microspheres is sensitive to the reaction conditions. The growth mechanism of these nearly monodisperse microspheres was examined. Oxygen sensing is realized from ZnS microspheres. The current through the ZnS microspheres under UV illumination increases as the oxygen concentration decreases.

  11. Reduction of the allotropic transition temperature in nanocrystalline zirconium: Predicted by modified equation of state (MEOS) method and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Salati, Amin; Mokhtari, Esmail; Panjepour, Masoud; Aryanpour, Gholamreza

    2013-04-01

    The temperature at which polymorphic phase transformation occurs in nanocrystalline (NC) materials is different from that of coarse-grained specimens. This anomaly has been related to the role of grain boundary component in these materials and can be predicted by a dilated crystal model. In this study, based on this model, a modified equation of state (MEOS) method (instead of equation of state, EOS, method) is used to calculate the total Gibbs free energy of each phase (β-Zr or α-Zr) in NC Zr. Thereupon, the change in the total Gibbs free energy for β-Zr to α-Zr phase transformation (ΔGβ→α) via the grain size is calculated by this method. Similar to polymorphic transformation in other NC materials (Fe, Nb, Co, TiO2, Al2O3 and ZnS), it is found that the estimated transformation temperature in NC Zr (β→α) is reduced with decreasing grain size. Finally, a molecular dynamics (MD) simulation is employed to confirm the theoretical results.

  12. Thermal conductivity of ultrathin nano-crystalline diamond films determined by Raman thermography assisted by silicon nanowires

    NASA Astrophysics Data System (ADS)

    Anaya, Julian; Rossi, Stefano; Alomari, Mohammed; Kohn, Erhard; Tóth, Lajos; Pécz, Béla; Kuball, Martin

    2015-06-01

    The thermal transport in polycrystalline diamond films near its nucleation region is still not well understood. Here, a steady-state technique to determine the thermal transport within the nano-crystalline diamond present at their nucleation site has been demonstrated. Taking advantage of silicon nanowires as surface temperature nano-sensors, and using Raman Thermography, the in-plane and cross-plane components of the thermal conductivity of ultra-thin diamond layers and their thermal barrier to the Si substrate were determined. Both components of the thermal conductivity of the nano-crystalline diamond were found to be well below the values of polycrystalline bulk diamond, with a cross-plane thermal conductivity larger than the in-plane thermal conductivity. Also a depth dependence of the lateral thermal conductivity through the diamond layer was determined. The results impact the design and integration of diamond for thermal management of AlGaN/GaN high power transistors and also show the usefulness of the nanowires as accurate nano-thermometers.

  13. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, C. J.; Barr, C. M.; Price, P. M.

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  14. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE PAGES

    O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...

    2017-10-31

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  15. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Fundamental Department, Aviation University, Changchun 130022; Li Ming

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  16. Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats.

    PubMed

    Kozhinova, Irina A; Romanofsky, Henry J; Maltsev, Alexander; Jacobs, Stephen D; Kordonski, William I; Gorodkin, Sergei R

    2005-08-01

    The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 microm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.

  17. Synthesis and photoluminescence properties of ZnS nanobowl arrays via colloidal monolayer template

    PubMed Central

    2014-01-01

    Two-dimensional Zinc sulfide (ZnS) nanobowl arrays were synthesized via self-assembled monolayer polystyrene sphere template floating on precursor solution surface. A facile approach was proposed to investigate the morphology evolution of nanobowl arrays by post-annealing procedure. Photoluminescence (PL) measurement of as-grown nanoarrays shows that the spectrum mainly includes two parts: a purple emission peak at 382 nm and a broad blue emission band centering at 410 nm with a shoulder around 459 nm, and a blue emission band at 440 nm was obtained after the annealing procedure. ZnS nanoarrays with special morphologies and PL emission are benefits to their promising application in novel photoluminescence nanodevice. PMID:25246857

  18. Mesoporous nanocrystalline film architecture for capacitive storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoesmore » a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).« less

  19. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Naz, Hina; Ali, Rai Nauman; Zhu, Xingqun; Xiang, Bin

    2018-06-01

    In this paper, we report the effect of single phase Mo and Ti doping concentration on the structural and optical properties of the ZnS nanoparticles. The structural and optical properties of the as-synthesized samples have been examined by x-ray diffraction, transmission electron microscopy (TEM), UV-visible near infrared absorption spectroscopy and x-ray photoelectron spectroscopy. TEM characterizations reveal a variation in the doped ZnS nanoparticle size distribution by utilizing different dopants of Mo and Ti. In absorption spectra, a clear red shift of 14 nm is observed with increasing Mo concentration as compared to pure ZnS nanoparticles, while by increasing Ti doping concentration, blue shift of 14 nm is obtained. Moreover, it demonstrates that the value of energy band gap decreases from 4.03 eV to 3.89 eV in case of Mo doping. However, the value of energy band gap have shown a remarkable increase from 4.11 eV to 4.27 eV with increasing Ti doping concentration. Our results provide a new pathway to understand the effect of Mo and Ti doping concentrations on the structural and optical properties of ZnS nanoparticles as it could be the key to tune the properties for future optoelectronic devices.

  20. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  1. Controlled synthesis of Eu 2+ and Eu 3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    DOE PAGES

    Horoz, Sabit; Yakami, Baichhabi; Poudyal, Uma; ...

    2016-04-27

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu 2+ and Eu 3+ doped ZnS can be controllably synthesized. The Eu 2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f 6d1 – 4f 7, while the Eu 3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu 3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu 2+ dopedmore » samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.« less

  2. Photoexcited Carrier Dynamics of Cu 2S Thin Films

    DOE PAGES

    Riha, Shannon C.; Schaller, Richard D.; Gosztola, David J.; ...

    2014-11-11

    Copper sulfide is a simple binary material with promising attributes for low-cost thin film photovoltaics. However, stable Cu 2S-based device efficiencies approaching 10% free from cadmium have yet to be realized. In this paper, transient absorption spectroscopy is used to investigate the dynamics of the photoexcited state of isolated Cu 2S thin films prepared by atomic layer deposition or vapor-based cation exchange of ZnS. While a number of variables including film thickness, carrier concentration, surface oxidation, and grain boundary passivation were examined, grain structure alone was found to correlate with longer lifetimes. A map of excited state dynamics is deducedmore » from the spectral evolution from 300 fs to 300 μs. Finally, revealing the effects of grain morphology on the photophysical properties of Cu 2S is a crucial step toward reaching high efficiencies in operationally stable Cu 2S thin film photovoltaics.« less

  3. Aqueous synthesis of L-cysteine and mercaptopropionic acid co-capped ZnS quantum dots with dual emissions

    NASA Astrophysics Data System (ADS)

    Ren, Yingkun; Wang, Yongbo; Yang, Min; Liu, Enzhou; Hu, Xiaoyun; Zhang, Xu; Fan, Jun

    2018-07-01

    In this paper, L-cysteine (L-cys) and mercaptopropionic acid (MPA) co-capped ZnS quantum dots (QDs) with dual emissions have been successfully synthesized by a one-pot aqueous-phase synthesis method. The intensities of the dual emissions could be controlled by regulating the molar ratio of L-cys to MPA, and the fluorescence color also turned from blue to yellow accordingly. The relationship between the ligands and fluorescence was investigated and the results indicated that L-cys could cause two emissions and MPA improved the emission intensity. In addition, the L-cys-MPA co-capped ZnS QDs showed high photostability under UV irradiation. Therefore, the L-cys-MPA co-capped ZnS QDs, which show the dual emissions and tunable emission intensities, have great potentials for use in ratiometric fluorescence sensors and multicolor bioimaging.

  4. Computational study of the absorption spectrum of defected ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Michos, F. I.; Sigalas, M. M.

    2018-04-01

    Energy levels and absorption spectra of defected ZnS nanoparticles (NPs) were calculated with Density Functional Theory (DFT) and Time Dependent DFT. Several types of defects were examined such as vacancies and substitutions. NPs with S vacancies were found to have their absorption spectra moved to lower energies well inside the visible spectrum with significantly high oscillator strength. Also, NPs with substitution of S atoms with Cl, Br, or I showed significant absorption. In general, this type of defect moves the absorption spectra in lower energies, thus bringing the absorption edge into the visible spectrum, while the unperturbed NPs have absorption edges in the UV region. In addition, ZnS NPs are made from more abundant and less toxic elements than the more commonly used CdSe NPs. For that reason, they may find significant applications in solar cells and other photonic applications, as well as in biosensing applications as biomarkers.

  5. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  6. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawrocki, Grzegorz; Cieplak, Marek

    2014-03-07

    The growing usage of nanoparticles of zinc sulfide as quantum dots and biosensors calls for a theoretical assessment of interactions of ZnS with biomolecules. We employ the molecular-dynamics-based umbrella sampling method to determine potentials of mean force for 20 single amino acids near the ZnS (110) surface in aqueous solutions. We find that five amino acids do not bind at all and the binding energy of the remaining amino acids does not exceed 4.3 kJ/mol. Such energies are comparable to those found for ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is different. Cysteine canmore » bind with ZnS in a covalent way, e.g., by forming the disulfide bond with S in the solid. If this effect is included within a model incorporating the Morse potential, then the potential well becomes much deeper—the binding energy is close to 98 kJ/mol. We then consider tryptophan cage, a protein of 20 residues, and characterize its events of adsorption to ZnS. We demonstrate the relevance of interactions between the amino acids in the selection of optimal adsorbed conformations and recognize the key role of cysteine in generation of lasting adsorption. We show that ZnS is more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnO—it has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile.« less

  7. Optical Properties of Synthesized Nanoparticles ZnS Using Methacrylic Acid as the Capping Agent

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar Iranizad, Esmaiel; Molaei, Mehdi

    Optical analysis (UV-vis spectroscopy) of solution of ZnS nanoparticles prepared at room temperature by a chemical capping method using methacrylic acid (MAA) capping agent at concentration of 0.05, 0.2, 0.5 and 1.17 molar is investigated. The spectroscopy results indicate increasing of band gap of ZnS through increasing concentration of the methacrylic acid as capping agent in the solution. According to the relation of Effective Mass Approximation, it is concluded that the size of nanoparticles decreased with the increasing concentration of the capping agent in the tested solutions. The size of the particles is found to be in 1.77-2.05 nm range.

  8. Optical properties and toxicity of undoped and Mn-doped ZnS semiconductor nanoparticles synthesized through the aqueous route

    NASA Astrophysics Data System (ADS)

    Labiadh, Houcine; Sellami, Badreddine; Khazri, Abdelhafidh; Saidani, Wiem; Khemais, Said

    2017-02-01

    Undoped and Mn-doped ZnS nanoparticles were synthesized at 95 °C in basic aqueous solution using the nucleation-doping strategy. Various samples of the Mn:ZnS NPs with 5, 10 and 20% of Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive X-ray analysis, high resolution electron microscopy and photoluminescence (PL) measurements. When increasing the concentration of manganese Mn, the photoluminescence intensity gradually decreases. The PL spectra of the Mn-doped ZnS nanoparticles at room temperature exhibit both, the 450 nm blue defect-related emission and the 592 nm orange Mn2+ emission. It is vital to obtain NPs that meet the application requirements, however their environmental toxicity needs to be investigated. In this study, the induction of oxidative stress within the digestive gland of the Ruditapes decussatus organism (clam) is described. Antioxidant enzyme activities (superoxide dismutase (SOD) and catalase (CAT)) as well as malondialdehyde (MDA) levels have been determined in the digestive gland after exposure to 100 μg/L of ZnS, ZnS:Mn (5%), ZnS:Mn (10%) and ZnS:Mn (20%). The nanomaterials studied exhibit different responses in the digestive gland. Undoped Mn-ZnS has no effect on the markers considered, showing the limited interaction between this nanoparticle and the cells of the test organisms. In contrast, Mn-doped ZnS increases the activities of SOD and CAT and the level of MDA species, although this toxicity is highly dependent on the chemical properties of the material. These findings provide ideas for future considerations of ZnS nanoparticles, as well as information on the interaction between these materials and an aquatic environment. These data are the first evidence available of the formation of ZnS NPs using aqueous method and are an indication of the importance of knowing the biological target of the NPs when testing their potential impact on environmental model organisms.

  9. Nano-crystalline porous tin oxide film for carbon monoxide sensing

    NASA Technical Reports Server (NTRS)

    Liu, Chung-Chiun (Inventor); Savinell, Robert F. (Inventor); Jin, Zhihong (Inventor)

    2000-01-01

    A tin oxide sol is deposited on platinum electrodes (12) of a sensor (10). The sol is calcined at a temperature of 500 to 800.degree. C. to produce a thin film of tin oxide with a thickness of about 150 nm to 2 .mu. and having a nano-crystalline structure with good stability. The sensor rapidly detects reducing gases, such as carbon monoxide, or hydrocarbons and organic vapors. Sensors using films calcined at around 700.degree. C. have high carbon monoxide selectivity with a response time of around 4 minutes and a recovery time of 1 minute, and therefore provide good detection systems for detection of trace amounts of pollutants such as toxic and flammable gases in homes, industrial settings, and hospitals.

  10. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure.

    PubMed

    Yang, Jie; Li, Ming; Zhang, Honglin; Gao, Chunxiao

    2011-04-01

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases. © 2011 American Institute of Physics

  11. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    PubMed

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-03

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Protein-directed synthesis of Mn-doped ZnS quantum dots: a dual-channel biosensor for two proteins.

    PubMed

    Wu, Peng; Zhao, Ting; Tian, Yunfei; Wu, Lan; Hou, Xiandeng

    2013-06-03

    Proteins typically have nanoscale dimensions and multiple binding sites with inorganic ions, which facilitates the templated synthesis of nanoparticles to yield nanoparticle-protein hybrids with tailored functionality, water solubility, and tunable frameworks with well-defined structure. In this work, we report a protein-templated synthesis of Mn-doped ZnS quantum dots (QDs) by exploring bovine serum albumin (BSA) as the template. The obtained Mn-doped ZnS QDs give phosphorescence emission centered at 590 nm, with a decay time of about 1.9 ms. A dual-channel sensing system for two different proteins was developed through integration of the optical responses (phosphorescence emission and resonant light scattering (RLS)) of Mn-doped ZnS QDs and recognition of them by surface BSA phosphorescent sensing of trypsin and RLS sensing of lysozyme. Trypsin can digest BSA and remove BSA from the surface of Mn-doped ZnS QDs, thus quenching the phosphorescence of QDs, whereas lysozyme can assemble with BSA to lead to aggregation of QDs and enhanced RLS intensity. The detection limits for trypsin and lysozyme were 40 and 3 nM, respectively. The selectivity of the respective channel for trypsin and lysozyme was evaluated with a series of other proteins. Unlike other protein sensors based on nanobioconjugates, the proposed dual-channel sensor employs only one type of QDs but can detect two different proteins. Further, we found the RLS of QDs can also be useful for studying the BSA-lysozyme binding stoichiometry, which has not been reported in the literature. These successful biosensor applications clearly demonstrate that BSA not only serves as a template for growth of Mn-doped ZnS QDs, but also impacts the QDs for selective recognition of analyte proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterization of Softmagnetic Thin Layers Using Barkhausen Noise Microscopy

    DTIC Science & Technology

    2001-04-01

    magnetoresistive (MR) sensors softmagnetic thin layer systems are used. Optimal performance of these layers requires homogeneous magnetic properties , especially a...Sendust, used in inductive sensors and nanocrystalline NiFe , used in MR-sensors. In quality correlations to Barkhausen noise parameters were found...Brillouin scattering are frequently used. An important issue is the influence of mechanical properties , e.g. residual stress on the magnetic performance

  14. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  15. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  16. Nanocrystalline heterojunction materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  17. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  18. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-03-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  19. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc.

    NASA Astrophysics Data System (ADS)

    Obidi, O. F.; Nejo, A. O.; Ayeni, R. A.; Revaprasadu, N.

    2018-06-01

    The differences among the antimicrobial activities of synthetic nanoparticles (NPs), organic agents and conventional antibiotics against human pathogens are little known. We compared the antimicrobial activities of aqueous, ethanol and ethyl acetate extracts of Zingiber officinale rhizomes with ZnS NPs and tetracycline/nystatin using agar-diffusion techniques. Transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and ultraviolet spectroscopy were used to characterize ZnS NPs. At 100 mg/ml, ethanol and ethyl acetate extract inhibited Acinetobacter baumannii, Salmonella typhimurium, Enterococcus faecium, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus epidermidis and Candida albicans with zones of inhibition (ZOI) ranging between 0-42 mm and 0-39 mm, respectively. Candida albicans had a remarkable ZOI of 42 mm and 22 mm from ethanol and ZnS NPs compared with 20 mm from conventional nystatin. TEM and FTIR revealed spherically shaped polydispersed NPs with particle size of 12.5 nm and the role of banana peel extracts in ZnS NPs synthesis. Organic and synthetic NPs proved potential alternatives to conventional antimicrobial agents.

  20. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  1. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

    PubMed Central

    Soltani, Nayereh; Saion, Elias; Hussein, Mohd Zobir; Erfani, Maryam; Abedini, Alam; Bahmanrokh, Ghazaleh; Navasery, Manizheh; Vaziri, Parisa

    2012-01-01

    ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution. PMID:23202896

  2. TiO2-ZnS Cascade Electron Transport Layer for Efficient Formamidinium Tin Iodide Perovskite Solar Cells.

    PubMed

    Ke, Weijun; Stoumpos, Constantinos C; Logsdon, Jenna Leigh; Wasielewski, Michael R; Yan, Yanfa; Fang, Guojia; Kanatzidis, Mercouri G

    2016-11-16

    Achieving high open-circuit voltage (V oc ) for tin-based perovskite solar cells is challenging. Here, we demonstrate that a ZnS interfacial layer can improve the V oc and photovoltaic performance of formamidinium tin iodide (FASnI 3 ) perovskite solar cells. The TiO 2 -ZnS electron transporting layer (ETL) with cascade conduction band structure can effectively reduce the interfacial charge recombination and facilitate electron transfer. Our best-performing FASnI 3 perovskite solar cell using the cascaded TiO 2 -ZnS ETL has achieved a power conversion efficiency of 5.27%, with a higher V oc of 0.380 V, a short-circuit current density of 23.09 mA cm -2 , and a fill factor of 60.01%. The cascade structure is further validated with a TiO 2 -CdS ETL. Our results suggest a new approach for further improving the performance of tin-based perovskite solar cells with a higher V oc .

  3. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy.

    PubMed

    Gupta, Vinod Kumar; Fakhri, Ali; Azad, Mona; Agarwal, Shilpi

    2018-01-15

    In this study, the photocatalytic degradation of Strychnine was investigated by ZnS quantum dots and doped with silver in UV systems. ZnS and Ag-ZnS quantum dots were synthesized by chemical method and characterized by powder X-ray diffraction, transmission electron microscopy, UV-vis spectra and photoluminescence. The charge transfer process on the semicon-ductor/electrolyte interface was investigated via electrochemical impedance spectroscopy (EIS) and time-resolved photoluminescence. The average diameters of ZnS and Ag doped ZnS QDs were 3.0-5.0nm and 3.0-5.3nm, respectively. The band gap of ZnS and Ag-ZnS QDs was computed as 3.47 and 3.1eV, respectively. The surface area values of ZnS and Ag-ZnS QDs have been found as 78.25 and 89.54m 2 /g, respectively. The influences of key operating parameters such as initial pH, catalyst dosage, UV radiation intensity, reaction time as well as the effect of initial Strychnine concentration on mineralization extents were studied. The results of the study showed that the maximum removal efficiency of Strychnine had been achieved by un-doped and Ag-doped ZnS QDs at radiation intensity of 100W/m 2 , at time of 60min, pH of 3 and initial Strychnine concentration of 20mg/ml. Also the observations clearly showed that the photocatalysis process with Ag doped ZnS QDs are more effective than un-doped ZnS QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Pulsed photonic fabrication of nanostructured metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Bourgeois, Briley B.; Luo, Sijun; Riggs, Brian C.; Adireddy, Shiva; Chrisey, Douglas B.

    2017-09-01

    Nanostructured metal oxide thin films with a large specific surface area are preferable for practical device applications in energy conversion and storage. Herein, we report instantaneous (milliseconds) photonic synthesis of three-dimensional (3-D) nanostructured metal oxide thin films through the pulsed photoinitiated pyrolysis of organometallic precursor films made by chemical solution deposition. High wall-plug efficiency-pulsed photonic irradiation (xenon flash lamp, pulse width of 1.93 ms, fluence of 7.7 J/cm2 and frequency of 1.2 Hz) is used for scalable photonic processing. The photothermal effect of subsequent pulses rapidly improves the crystalline quality of nanocrystalline metal oxide thin films in minutes. The following paper highlights pulsed photonic fabrication of 3-D nanostructured TiO2, Co3O4, and Fe2O3 thin films, exemplifying a promising new method for the low-cost and high-throughput manufacturing of nanostructured metal oxide thin films for energy applications.

  5. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  6. The activation energy for nanocrystalline diamond films deposited from an Ar/H2/CH4 hot-filament reactor.

    PubMed

    Barbosa, D C; Melo, L L; Trava-Airoldi, V J; Corat, E J

    2009-06-01

    In this work we have investigated the effect of substrate temperature on the growth rate and properties of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition (HFCVD). Mixtures of 0.5 vol% CH4 and 25 vol% H2 balanced with Ar at a pressure of 50 Torr and typical deposition time of 12 h. We present the measurement of the activation energy by accurately controlling the substrate temperature independently of other CVD parameters. Growth rates have been measured in the temperature range from 550 to 800 degrees C. Characterization techniques have involved Raman spectroscopy, high resolution X-ray difractometry and scanning electron microscopy. We also present a comparison with most activation energy for micro and nanocrystalline diamond determinations in the literature and propose that there is a common trend in most observations. The result obtained can be an evidence that the growth mechanism of NCD in HFCVD reactors is very similar to MCD growth.

  7. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  8. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  9. Degradation of the Crystalline Structure of ZnS Ceramics under Abrasive Damage

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel, A. E.

    2018-04-01

    Stability of optical elements based on ZnS ceramics to dust and rain erosion is usually estimated from the loss of material mass in a directional flow of solid particles or atmospheric precipitates. In this case, the mechanism of degradation and fracture of the surface layer of an optical element is not considered. The photoluminescence (PL) method was used for investigating the crystal lattice response to the abrasive action and the formation of cleavage in ZnS ceramics, which differ in manufacturing technology and, accordingly, in the grain size by two orders of magnitude. It is shown that during abrasive treatment of samples, their spectra exhibit changes typical of degradation of the crystal lattice of material grains. The PL spectra of cleavage surfaces reveal almost complete degradation of the structure of crystallite grains with a size from 1-2 to 100-200 μm.

  10. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  11. Nanocrystalline Heterojunction Materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  12. Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H₂ Evolution.

    PubMed

    Fang, Zhibin; Weng, Sunxian; Ye, Xinxin; Feng, Wenhui; Zheng, Zuyang; Lu, Meiliang; Lin, Sen; Fu, Xianzhi; Liu, Ping

    2015-07-01

    ZnS is among the superior photocatalysts for H2 evolution, whereas the wide bandgap restricts its performance to only UV region. Herein, defect engineering and phase junction architecture from a controllable phase transformation enable ZnS to achieve the conflicting visible-light-driven activities for H2 evolution. On the basis of first-principle density functional theory calculations, electron spin resonance and photoluminescence results, etc., it is initially proposed that the regulated sulfur vacancies in wurtzite phase of ZnS play the key role of photosensitization units for charge generation in visible light and active sites for effective electron utilization. The symbiotic sphalerite-wurtzite phase junctions that dominate the charge-transfer kinetics for photoexciton separation are the indispensable configuration in the present systems. Neither ZnS samples without phase junction nor those without enough sulfur vacancies conduct visible-light photocatalytic H2 evolution, while the one with optimized phase junctions and maximum sulfur vacancies shows considerable photocatalytic activity. This work will not only contribute to the realization of visible light photocatalysis for wide-bandgap semiconductors but also broaden the vision on the design of highly efficient transition metal sulfide photocatalysts.

  13. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  14. Metal sulfide thin films by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Krunks, Malle; Mellikov, Enn

    2001-04-01

    CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.

  15. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Chen, Zhuoying; Wilson, James D.; Banerjee, Sarbajit; Robinson, Richard D.; Herman, Irving P.; Laibowitz, Robert; O'Brien, Stephen

    2006-08-01

    Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. We report the synthesis, processing, and electrical characterization of thin (<100nm thick) nanostructured thin films of barium titanate (BaTiO3) built from uniform nanoparticles (<20nm in diameter). We introduce a form of processing as a step toward the ability to prepare textured films based on assembly of nanoparticles. Essential to this approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. Our method offers a versatile means of preparing BaTiO3 nanocrystals, which can be used as a basis for micropatterned or continuous BaTiO3 nanocrystal thin films. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. We investigated the preparation of well-isolated BaTiO3 nanocrystals smaller than 10nm with control over aggregation and crystal densities on various substrates such as Si, Si /SiO2, Si3N4/Si, and Pt-coated Si substrates. BaTiO3 nanocrystal thin films were then prepared, resulting in films with a uniform nanocrystalline grain texture. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO3 nanocrystalline films with grain sizes in the range of 10-30nm. Dielectric measurements of the films show dielectic constants in the range of 85-90 over the 1KHz -100KHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit highly uniform nanostructured texture and grain sizes.

  16. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  17. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.

    2017-01-01

    We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.

  18. Structural and optical properties of Mg doped ZnS quantum dots and biological applications

    NASA Astrophysics Data System (ADS)

    Ashokkumar, M.; Boopathyraja, A.

    2018-01-01

    Zn1-xMgxS (x = 0, 0.2 and 0.4) quantum dots (QDs) were prepared by co-precipitation method. The Mg dopant did not modify the cubic blende structure of ZnS QDs. The Mg related secondary phase was not detected even for 40% of Mg doping. The size mismatch between host Zn ion and dopant Mg ion created distortion around the dopant. The creation of distortion centres produced small changes in the lattice parameters and diffraction peak position. All the QDs showed small sulfur deficiency and the deficiency level were increased by Mg doping. Band gap of the QD was decreased due to the dominated quantum confinement effect over compositional effect at initial doping of Mg. But at higher doping the band gap was increased due to compositional effect, since there was no change in average crystallite size. The prepared QDs had three emission bands in the UV and Visible regions corresponding to near band edge emission and defect related emissions. The electron transport reaction chain which forms free radicals was broken by sulfur vacancy trap sites. Therefore, the ZnS QDs had better antioxidant activity and the antioxidant behaviour was enhanced by Mg doping. The enhanced UV absorption and emission of 20% of Mg doped ZnS QDs let to maximize the zone of inhibition against E. Coli bacterial strain.

  19. Optical properties of template synthesized nanowalled ZnS microtubules

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Chakarvarti, S. K.

    2007-12-01

    Electrodeposition is a versatile technique combining low processing cost with ambient conditions that can be used to prepare metallic, polymeric and semiconducting nano/micro structures. In the present work, track-etch membranes (TEMs) of makrofol (KG) have been used as templates for synthesis of ZnS nanowalled microtubules using electrodeposition technique. The morphology of the microtubules was characterized by scanning electron microscopy. Size effects on the band gap of tubules have also been studied by UV-visible spectrophotometer.

  20. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  1. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  2. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Roland Yingjie; Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore, Singapore 639798; Tsang, Siu Hon

    Atomically thin hexagonal-boron nitride (h-BN) films are primarily synthesized through chemical vapor deposition (CVD) on various catalytic transition metal substrates. In this work, a single-step metal-catalyst-free approach to obtain few- to multi-layer nanocrystalline h-BN (NCBN) directly on amorphous SiO{sub 2}/Si and quartz substrates is demonstrated. The as-grown thin films are continuous and smooth with no observable pinholes or wrinkles across the entire deposited substrate as inspected using optical and atomic force microscopy. The starting layers of NCBN orient itself parallel to the substrate, initiating the growth of the textured thin film. Formation of NCBN is due to the random andmore » uncontrolled nucleation of h-BN on the dielectric substrate surface with no epitaxial relation, unlike on metal surfaces. The crystallite size is ∼25 nm as determined by Raman spectroscopy. Transmission electron microscopy shows that the NCBN formed sheets of multi-stacked layers with controllable thickness from ∼2 to 25 nm. The absence of transfer process in this technique avoids any additional degradation, such as wrinkles, tears or folding and residues on the film which are detrimental to device performance. This work provides a wider perspective of CVD-grown h-BN and presents a viable route towards large-scale manufacturing of h-BN substrates and for coating applications.« less

  3. The role of ion exchange in the passivation of In(Zn)P nanocrystals with ZnS

    PubMed Central

    Cho, Deok-Yong; Xi, Lifei; Boothroyd, Chris; Kardynal, Beata; Lam, Yeng Ming

    2016-01-01

    We have investigated the chemical state of In(Zn)P/ZnS core/shell nanocrystals (NCs) for color conversion applications using hard X-ray absorption spectroscopy (XAS) and photoluminescence excitation (PLE). Analyses of the edge energies as well as the X-ray absorption fine structure (XAFS) reveal that the Zn2+ ions from ZnS remain in the shell while the S2− ions penetrate into the core at an early stage of the ZnS deposition. It is further demonstrated that for short growth times, the ZnS shell coverage on the core was incomplete, whereas the coverage improved gradually as the shell deposition time increased. Together with evidence from PLE spectra, where there is a strong indication of the presence of P vacancies, this suggests that the core-shell interface in the In(Zn)P/ZnS NCs are subject to substantial atomic exchanges and detailed models for the shell structure beyond simple layer coverage are needed. This substantial atomic exchange is very likely to be the reason for the improved photoluminescence behavior of the core-shell particles compare to In(Zn)P-only NCs as S can passivate the NCs surfaces. PMID:26972936

  4. Plasma-assisted quadruple-channel optosensing of proteins and cells with Mn-doped ZnS quantum dots.

    PubMed

    Li, Chenghui; Wu, Peng; Hou, Xiandeng

    2016-02-21

    Information extraction from nano-bio-systems is crucial for understanding their inner molecular level interactions and can help in the development of multidimensional/multimodal sensing devices to realize novel or expanded functionalities. The intrinsic fluorescence (IF) of proteins has long been considered as an effective tool for studying protein structures and dynamics, but not for protein recognition analysis partially because it generally contributes to the fluorescence background in bioanalysis. Here we explored the use of IF as the fourth channel optical input for a multidimensional optosensing device, together with the triple-channel optical output of Mn-doped ZnS QDs (fluorescence from ZnS host, phosphorescence from Mn(2+) dopant, and Rayleigh light scattering from the QDs), to dramatically improve the protein recognition and discrimination resolution. To further increase the cross-reactivity of the multidimensional optosensing device, plasma modification of proteins was explored to enhance the IF difference as well as their interactions with Mn-doped ZnS QDs. Such a sensor device was demonstrated for highly discriminative and precise identification of proteins in human serum and urine samples, and for cancer and normal cells as well.

  5. Thin film solar cells with Si nanocrystallites embedded in amorphous intrinsic layers by hot-wire chemical vapor deposition.

    PubMed

    Park, Seungil; Parida, Bhaskar; Kim, Keunjoo

    2013-05-01

    We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.

  6. Using fluorescence measurement of zinc ions liberated from ZnS nanoparticle labels in bioassay for Escherichia coli O157:H7

    NASA Astrophysics Data System (ADS)

    Cowles, Chad L.; Zhu, Xiaoshan; Pai, Chi-Yun

    2011-10-01

    In this study, an alternative approach using ZnS nanoparticle biolabels as fluorescence signal transducers is reported for the immunoassay of E. coli O157:H7 in tap water samples. Instead of measuring the fluorescence of ZnS nanoparticles in the assay, the fluorescence signal is generated through the binding of zinc ions released from nanoparticle labels with zinc-ion sensitive fluorescence indicator Fluozin-3. In the assay, ZnS nanoparticles around 50 nm in diameter were synthesized, bioconjugated, and applied for the detection of E. coli O157:H7. The assay shows a detection range over two orders of magnitude and a detection limit around 1000 colony-forming units (cfu) of E. coli O157:H7.

  7. Charge carrier dynamics investigation of CuInS2 quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    NASA Astrophysics Data System (ADS)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui; Liu, Qinghui; Tan, Mingrui; Zhou, Qiang; Zhang, Hanzhuang

    2016-12-01

    The role of ZnS shell on the photo-physical properties within CuInS2/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS2 and CuInS2/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  8. Controlled synthesis of Eu{sup 2+} and Eu{sup 3+} doped ZnS quantum dots and their photovoltaic and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horoz, Sabit; Poudyal, Uma; Wang, Wenyong

    2016-04-15

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu{sup 2+} and Eu{sup 3+} doped ZnS can be controllably synthesized. The Eu{sup 2+} doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu{sup 2+} intra-ion transition of 4f{sup 6}d{sup 1} – 4f{sup 7}, while the Eu{sup 3+} doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu{sup 3+} doped samples exhibit signs of ferromagnetism, on the other hand, Eu{supmore » 2+} doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.« less

  9. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.

    PubMed

    Wu, Peng; He, Yu; Wang, He-Fang; Yan, Xiu-Ping

    2010-02-15

    Integrating various enzymes with nanomaterials provides various nanohybrids with new possibilities in biosensor applications. Furthermore, the enzymatic activity and stability are also improved due to the large surface area of nanomaterials. Here we report the conjugation of glucose oxidase (GOD) onto phosphorescent Mn-doped ZnS quantum dots (QDs) using 1-ethyl-3-(3-dimethylaminopropy)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as coupling reagents for glucose biosensing based on the effective quenching of the room temperature phosphorescence (RTP) of Mn-doped ZnS QDs by the H(2)O(2) generated from GOD-catalyzed oxidation of glucose. The obtained bioconjugate not only provided improved enzymatic performance with Michaelis-Menten constant of 0.70 mM but also favored biological applications because the phosphorescent detection mode avoided the interference from autofluorescence and scattering light from the biological matrix. In addition, the GOD-conjugated Mn-doped ZnS QDs showed better thermal stability in the temperature range of 20-80 degrees C. The GOD-Mn-doped ZnS QDs based RTP sensor for glucose gave a detection limit of 3 microM and two linear ranges from 10 microM to 0.1 mM and from 0.1 to 1 mM. The developed biosensor was successfully applied to the determination of glucose in real serum samples without the need for any complicated sample pretreatments.

  10. Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter

    NASA Astrophysics Data System (ADS)

    Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi

    2006-01-01

    As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.

  11. Some aspects of pulsed laser deposition of Si nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Polyakov, B.; Petruhins, A.; Butikova, J.; Kuzmin, A.; Tale, I.

    2009-11-01

    Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed. in here

  12. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2009-09-02

    Electrodeposition  of Nanocrystalline Co‐P  Coatings as a Hard Chrome Alternative Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Electrodeposition of Nanocrystalline Co‐P Coatings as a Hard Chrome Alternative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Defense Conference – 2 September 2009 Conventional  Electrodeposits Polycrystalline (10‐100 µm) Electrodeposited Nanocrystalline Materials Pulsed

  13. Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita

    2018-02-01

    Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.

  14. Structural, optical and magnetic behaviour of nanocrystalline Volborthite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta

    2016-05-06

    Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less

  15. Metastable tantalum oxide formation during the devitrification of amorphous tantalum thin films

    DOE PAGES

    Donaldson, Olivia K.; Hattar, Khalid; Trelewicz, Jason R.

    2016-07-04

    Microstructural evolution during the devitrification of amorphous tantalum thin films synthesized via pulsed laser deposition was investigated using in situ transmission electron microscopy (TEM) combined with ex situ isothermal annealing, bright-field imaging, and electron-diffraction analysis. The phases formed during crystallization and their stability were characterized as a function of the chamber pressure during deposition, devitrification temperature, and annealing time. A range of metastable nanocrystalline tantalum oxides were identified following devitrification including multiple orthorhombic oxide phases, which often were present with, or evolved to, the tetragonal TaO 2 phase. While the appearance of these phases indicated the films were evolving tomore » the stable form of tantalum oxide—monoclinic tantalum pentoxide—it was likely not achieved for the conditions considered due to an insufficient amount of oxygen present in the films following deposition. Nevertheless, the collective in situ and ex situ TEM analysis applied to thin film samples enabled the isolation of a number of metastable tantalum oxides. As a result, new insights were gained into the transformation sequence and stability of these nanocrystalline phases, which presents opportunities for the development of advanced tantalum oxide-based dielectric materials for novel memristor designs.« less

  16. [Raman studies of nanocrystalline BaTiO3 ceramics].

    PubMed

    Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui

    2008-12-01

    High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.

  17. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Henry, J.; Mohanraj, K.; Sivakumar, G.; Umamaheswari, S.

    2015-05-01

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350 °C and 450 °C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichia coli and Bacillus.

  18. Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine

    2014-06-01

    Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.

  19. Effects of different wetting layers on the growth of smooth ultra-thin silver thin films

    NASA Astrophysics Data System (ADS)

    Ni, Chuan; Shah, Piyush; Sarangan, Andrew M.

    2014-09-01

    Ultrathin silver films (thickness below 10 nm) are of great interest as optical coatings on windows and plasmonic devices. However, producing these films has been a continuing challenge because of their tendency to form clusters or islands rather than smooth contiguous thin films. In this work we have studied the effect of Cu, Ge and ZnS as wetting layers (1.0 nm) to achieve ultrasmooth thin silver films. The silver films (5 nm) were grown by RF sputter deposition on silicon and glass substrates using a few monolayers of the different wetting materials. SEM imaging was used to characterize the surface properties such as island formation and roughness. Also the optical properties were measured to identify the optical impact of the different wetting layers. Finally, a multi-layer silver based structure is designed and fabricated, and its performance is evaluated. The comparison between the samples with different wetting layers show that the designs with wetting layers which have similar optical properties to silver produce the best overall performance. In the absence of a wetting layer, the measured optical spectra show a significant departure from the model predictions, which we attribute primarily to the formation of clusters.

  20. Preparation, properties and anticancer effects of mixed As4S4/ZnS nanoparticles capped by Poloxamer 407.

    PubMed

    Bujňáková, Z; Baláž, M; Zdurienčíková, M; Sedlák, J; Čaplovičová, M; Čaplovič, Ľ; Dutková, E; Zorkovská, A; Turianicová, E; Baláž, P; Shpotyuk, O; Andrejko, S

    2017-02-01

    Arsenic sulfide compounds have a long history of application in a traditional medicine. In recent years, realgar has been studied as a promising drug in cancer treatment. In this study, the arsenic sulfide (As 4 S 4 ) nanoparticles combined with zinc sulfide (ZnS) ones in different molar ratio have been prepared by a simple mechanochemical route in a planetary mill. The successful synthesis and structural properties were confirmed and followed via X-ray diffraction and high-resolution transmission electron microscopy measurements. The morphology of the particles was studied via scanning electron microscopy and transmission electron microscopy methods and the presence of nanocrystallites was verified. For biological tests, the prepared As 4 S 4 /ZnS nanoparticles were further milled in a circulation mill in a water solution of Poloxamer 407 (0.5wt%), in order to cover the particles with this biocompatible copolymer and to obtain stable nanosuspensions with unimodal distribution. The average size of the particles in the nanosuspensions (~120nm) was determined by photon cross-correlation spectroscopy method. Stability of the nanosuspensions was determined via particle size distribution and zeta potential measurements, confirming no physico-chemical changes for several months. Interestingly, with the increasing amount of ZnS in the sample, the stability was improved. The anti-cancer effects were tested on two melanoma cell lines, A375 and Bowes, with promising results, confirming increased efficiency of the samples containing both As 4 S 4 and ZnS nanocrystals. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fluorescence resonance energy transfer between ZnSe ZnS quantum dots and bovine serum albumin in bioaffinity assays of anticancer drugs

    NASA Astrophysics Data System (ADS)

    Shu, Chang; Ding, Li; Zhong, Wenying

    2014-10-01

    In the current work, using ZnSe ZnS quantum dots (QDs) as representative nanoparticles, the affinities of seven anticancer drugs for bovine serum albumin (BSA) were studied using fluorescence resonance energy transfer (FRET). The FRET efficiency of BSA-QD conjugates can reach as high as 24.87% by electrostatic interaction. The higher binding constant (3.63 × 107 L mol-1) and number of binding sites (1.75) between ZnSe ZnS QDs and BSA demonstrated that the QDs could easily associate to plasma proteins and enhance the transport efficacy of drugs. The magnitude of binding constants (103-106 L mol-1), in the presence of QDs, was between drugs-BSA and drugs-QDs in agreement with common affinities of drugs for serum albumins (104-106 L mol-1) in vivo. ZnSe ZnS QDs significantly increased the affinities for BSA of Vorinostat (SAHA), Docetaxel (DOC), Carmustine (BCNU), Doxorubicin (Dox) and 10-Hydroxycamptothecin (HCPT). However, they slightly reduced the affinities of Vincristine (VCR) and Methotrexate (MTX) for BSA. The recent work will not only provide useful information for appropriately understanding the binding affinity and binding mechanism at the molecular level, but also illustrate the ZnSe ZnS QDs are perfect candidates for nanoscal drug delivery system (DDS).

  2. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots.

    PubMed

    Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng

    2018-05-10

    Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.

  3. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: A colorimetric probe in metal detection

    NASA Astrophysics Data System (ADS)

    Uddandarao, Priyanka; Balakrishnan, Raj Mohan

    2017-03-01

    Nanostructured semiconductor materials are of great importance for several technological applications due to their optical and thermal properties. The design and fabrication of metal sulfide nanoparticles with tunable properties for advanced applications have drawn a great deal of attention in the field of nanotechnology. ZnS is a potential II-IV group material which is used in hetero-junction solar cells, light emitting diodes, optoelectronic devices, electro luminescent devices and photovoltaic cells. Due to their multiple applications, there is a need to elucidate their thermal and optical properties. In the present study, thermal and optical properties of biologically synthesized ZnS nanoparticles are determined in detail with Thermal Gravimetric Analysis (TGA), Derivative Thermogravimetric Analysis (DTG), Differential Scanning Calorimeter (DSC), Diffuse Reflectance Spectroscopy (DRS), Photoluminescence (PL) and Raman spectroscopy. The results reveal that ZnS NPs exhibit a very strong quantum confinement with a significant increase in their optical band gap energy. These biologically synthesized ZnS NPs contain protein residues that can selectively bind with metal ions in aqueous solutions and can exhibit an aggregation-induced color change. This phenomenon is utilized to quantitatively measure the metal concentrations of Cu2 + and Mn2 + in this study. Further the stability of nanoparticles for the metal sensing process is accessed by UV-Vis spectrometer, zeta potential and cyclic voltammeter. The selectivity and sensitivity of ZnS NPs indicate its potential use as a sensor for metal detection in the ecosystem.

  4. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene

    NASA Astrophysics Data System (ADS)

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-01

    Visible light photocatalytic H2 production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet, which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H2-production rate of 7.42 μmol h-1 g-1, eight times more than the pure ZnS sample. This high visible-light photocatalytic H2 production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H2 evolution.

  5. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of grapheme.

    PubMed

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-28

    Visible light photocatalytic H(2) production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet,which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H(2)-production rate of 7.42 μmol h(−1) g(−1), eight times more than the pure ZnS sample. This high visible-light photocatalytic H(2) production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H(2) evolution.

  6. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  7. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.

    PubMed

    Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian

    2011-12-01

    To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

  8. Nanocrystalline copper films are never flat

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.

    2017-07-01

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

  9. Syntheses of nanocrystalline BaTiO3 and their optical properties

    NASA Astrophysics Data System (ADS)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  10. Thermal conductivity in nanocrystalline-SiC/C superlattices

    DOE PAGES

    Habermehl, S.; Serrano, J. R.

    2015-11-17

    We reported the formation of thin film superlattices consisting of alternating layers of nitrogen-doped SiC (SiC:N) and C. Periodically terminating the SiC:N surface with a graphitic C boundary layer and controlling the SiC:N/C thickness ratio yield nanocrystalline SiC grains ranging in size from 365 to 23 nm. Frequency domain thermo-reflectance is employed to determine the thermal conductivity, which is found to vary from 35.5 W m -1 K -1 for monolithic undoped α-SiC films to 1.6 W m -1 K -1 for a SiC:N/C superlattice with a 47 nm period and a SiC:N/C thickness ratio of 11. A series conductancemore » model is employed to explain the dependence of the thermal conductivity on the superlatticestructure. Our results indicate that the thermal conductivity is more dependent on the SiC:N/C thickness ratio than the SiC:N grain size, indicative of strong boundary layerphonon scattering.« less

  11. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  12. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  13. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  14. Thermally stable solids based on endohedrally doped ZnS clusters.

    PubMed

    Matxain, Jon M; Piris, Mario; Lopez, Xabier; Ugalde, Jesus M

    2009-01-01

    The existence of inorganic, hollow, fullerene-like ZnS clusters has been theoretically predicted and then recently confirmed experimentally. These clusters were observed to trap alkali metals and halogens because the ionization energies (IE) of alkali metals are very similar to the electron affinities (EA) of halogens. This opens the possibility of forming molecular solids composed of these fullerene building blocks because the energy released due to the difference between the IE and EA would be very small. Herein we have focused on assembling bare Zn(12)S(12) and endohedral X@Zn(12)S(12)-Y@Zn(12)S(12) dimers (X = Na, K; Y = Cl, Br) by considering the square-faces-square orientation of every two adjacent clusters, which leads to a fcc cubic crystal structure in the solid. The structures were fully optimized in all cases, and their thermal stability was confirmed by ab initio thermal molecular dynamics calculations. The optimum lattice parameter of the solids was found to be around 13.8 A, which corresponds to distances of about 2.5 A between monomers, which is typical of covalent Zn-S bonds. The resulting solids are nanoporous materials similar to B(12)N(12). Due to their nanoporous structure, these zeolite-shaped solids could be used in heterogeneous catalysis and as storage materials and molecular sieves.

  15. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  16. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  17. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    PubMed

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  19. ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors.

    PubMed

    Onwudiwe, Damian C; Ajibade, Peter A

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively.

  20. ZnS, CdS and HgS Nanoparticles via Alkyl-Phenyl Dithiocarbamate Complexes as Single Source Precursors

    PubMed Central

    Onwudiwe, Damian C.; Ajibade, Peter A.

    2011-01-01

    The synthesis of II-VI semiconductor nanoparticles obtained by the thermolysis of certain group 12 metal complexes as precursors is reported. Thermogravimetric analysis of the single source precursors showed sharp decomposition leading to their respective metal sulfides. The structural and optical properties of the prepared nanoparticles were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) UV-Vis and photoluminescence spectroscopy. The X-ray diffraction pattern showed that the prepared ZnS nanoparticles have a cubic sphalerite structure; the CdS indicates a hexagonal phase and the HgS show the presence of metacinnabar phase. The TEM image demonstrates that the ZnS nanoparticles are dot-shaped, the CdS and the HgS clearly showed a rice and spherical morphology respectively. The UV-Vis spectra exhibited a blue-shift with respect to that of the bulk samples which is attributed to the quantum size effect. The band gap of the samples have been calculated from absorption spectra and werefound to be about 4.33 eV (286 nm), 2.91 eV (426 nm) and 4.27 eV (290 nm) for the ZnS, CdS and HgS samples respectively. PMID:22016607

  1. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  2. Influence of the dopant concentration on structural, optical and photovoltaic properties of Cu-doped ZnS nanocrystals based bulk heterojunction hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Jabeen, Uzma; Adhikari, Tham; Shah, Syed Mujtaba; Pathak, Dinesh; Wagner, Tomas; Nunzi, Jean-Michel

    2017-06-01

    Zinc sulphide (ZnS) and Cu-doped ZnS nanoparticles were synthesized by the wet chemical method. The nanoparticles were characterized by UV-visible, fluorescence, fourier transform infra-red (FTIR) spectrometry, X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Scanning electron microscopy supplemented with EDAX was employed to observe the morphology and chemical composition of the un-doped and doped samples. A significant blue shift of the absorption band with respect to the un-doped zinc sulphide was sighted by increasing the Cu concentration in the doped sample with decreasing the size of nanoparticles. Consequently, the band gap was tuned from 3.13 to 3.49 eV due to quantum confinement. The green emission arises from the recombination between the shallow donor level (sulfur vacancy) and the t2 level of Cu2+. However, the fluorescence emission spectrum of the undoped ZnS nanoparticles was deconvoluted into two bands, which are centered at 419 and 468 nm. XRD analysis showed that the nanomaterials were in cubic crystalline state. XRD peaks show that there were no massive crystalline distortions in the crystal lattice when the Cu concentration (0.05-0.1 M) was increased in the ZnS lattice. However, in the case of Cu-doped samples (0.15-0.2 M), the XRD pattern showed an additional peak at 37° due to incomplete substitution occurring during the experimental reaction step. A comparative study of surfaces of undoped and Cu-doped ZnS nanoparticles were investigated using X-ray photoelectron spectroscopy (XPS). The synthesized nanomaterial in combination with poly(3-hexylthiophene) (P3HT) was used in the fabrication of solar cells. The devices with ZnS nanoparticles showed an efficiency of 0.31%. The overall power conversion efficiency of the solar cells at 0.1 M Cu content in doped ZnS nanoparticles was found to be 1.6 times higher than the

  3. The solubility of sphalerite (ZnS) in sulfidic solutions at 25°C and 1 atm pressure

    NASA Astrophysics Data System (ADS)

    Daskalakis, Kostas D.; Helz, George R.

    1993-10-01

    The solubility of both synthetic and natural sphalerite have been measured at 25°, pH 2.2 to 9.1, and ΣS(-II) 0.1 to 0.0004 M. Inversion of wurtzite to sphalerite during equilibration precluded measuring wurtzite solubilities. To hinder colloid formation, we used well-crystallized ZnS preleached with EDTA. Run durations were several months. Clean-room analytical procedures were used. Measured solubilities are much lower than those of GüBELI and STE-MARIE (1967), whose solutions probably contained colloids. Colloidal ZnS sols are shown not to equilibrate with sphalerite even over several months. The new data are consistent with, and complementary to those of HAYASHI et al. (1990). The solubility of Zn 2+ in equilibrium with sphalerite is given by a Zn2+a 2HS-/a H2 S = 10 18.47 +- 0.01. Aqueous Zn-polysulfides appear to be unimportant under the conditions studied. In terms of anhydrous, mononuclear complexes, Zn solubility can be described by a series of complexes whose formation is represented by: ZnS( sp) + (2 y- z-2) HS- + ( z- y+1) H2SaqZnSyHz-(2 y- z-2) , Kyz. Three complexes are essential to model the results adequately: Zn( HS) -24, logK44 = -3.83 ± 0.17; ZnS( HS) -, logK21 = -4.64 ± 0.08; and ZnS( HS) -22, logK32 = -5.33 ± 0.07. Additional complexes improve the fit marginally. Others have suggested that ZnS(HS) -22 should be represented by its hydrated formula, Zn(OH)(HS) -23. The observed stability of this complex is much greater than predicted for a mixed ligand complex derived from Zn(HS) -24 and Zn(OH) -24. Based on recent calculations, less than 3/4 of the discrepancy can be accounted for by molecular orbital stabilization. A tetranuclear formula suggested by known Zn-thiolate structures and supported by EXAFS evidence of multinuclearity is a possible alternative. The solubility of Zn in anoxic marine waters is determined largely by ZnS(HS) -, which dominates in mildly alkaline solutions at low σS(-II). According to the new data, anoxic zones in

  4. Swift heavy ion induced topography changes of Tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj K.; Kumar, Avesh; Kanjilal, D.; Mohanty, T.

    2012-12-01

    Monodisperse tin oxide nanocrystalline thin films are grown on silicon substrates by electron beam evaporation method followed by 100 MeV silver ion bombardment with varying ion fluence from 5 × 1011 ions cm-2 to 1 × 1013 ions cm-2 at constant ion flux. Enhancement of crystallinity of thin films with fluence is observed from glancing angle X-ray diffraction studies. Morphological studies by atomic force microscopy reveal the changes in grain size from 25 nm to 44 nm with variation in ion fluence. The effect of initial surface roughness and adatom mobility on topography is reported. In this work correlation between ion beam induced defect concentration with topography and grain size distribution is emphasized.

  5. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  6. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  7. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  8. Molecular level energy and electron transfer processes at nanocrystalline titanium dioxide interfaces

    NASA Astrophysics Data System (ADS)

    Farzad, Fereshteh

    This thesis describes photo-induced molecular electron and energy transfer processes occurring at nanocrystalline semiconductor interfaces. The Introductory Chapter provides background and describes how these materials may be useful for solar energy conversion. In Chapter 2, results describing excitation of Ru(deeb)(bpy)2 2+, bis(2,2'-bipyridine)(2,2'-bipyridine-4,4 '-diethylester)ruthenium(II) hexafluorophosphate, bound to nanocrystalline TiO2 thin films, immersed in an acetonitrile bath are presented. The data indicates that light excitation forms predominately long-lived metal-to-ligand charge-transfer, MLCT, excited states under these conditions. Modeling of the data as a function of irradiance has been accomplished assuming parallel unimolecular and bimolecular excited state deactivation processes. The quantum yield for excited state formation depends on the excitation irradiance, consistent with triplet-triplet annihilation processes that occur with k > 1 x 108 s-1. Chapter 3 extends the work described in Chapter 2 to LiClO4 acetonitrile solutions. Li+ addition results in a red shift in the MLCT absorption and photoluminescence, PL, and a concentration dependent quenching of the PL intensity on TiO2. The Li+ induced spectroscopic changes were found to be reversible by varying the electrolyte composition. A second-order kinetic model quantified charge recombination transients. A model is proposed wherein Li+ ion adsorption stabilizes TiO2 acceptor states resulting in energetically more favorable interfacial electron transfer. The photophysical and photoelectrochemical properties of porous nanocrystalline anatase TiO2 electrodes modified with Ru(deeb)(bpy)2 2+, Os(deeb)(bpy)22+, and mixtures of both are described in Chapters 4 and 5. In regenerative solar cells with 0.5 M LiI/0.05 M I2 acetonitrile electrolyte, both compounds efficiently inject electrons into TiO2 producing monochromatic incident photon-to-current efficiencies (IPCE), IPCE (460 nm) = 0.70 + 0

  9. Anomalous behavior of B{sub 1g} mode in highly transparent anatase nano-crystalline Nb-doped Titanium Dioxide (NTO) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com; Ojha, S.; Singh, Fouran, E-mail: subodhkgtm@gmail.com, E-mail: fouran@gmail.com

    2015-12-15

    The effect of Niobium doping and size of crystallites on highly transparent nano-crystalline Niobium doped Titanium Dioxide (NTO) thin films with stable anatase phase are reported. The Nb doping concentration is varied within the solubility limit in TiO{sub 2} lattice. Films were annealed in controlled environment for improving the crystallinity and size of crystallites. Elemental and thickness analysis were carried out using Rutherford backscattering spectrometry and cross sectional field emission scanning electron microscopy. Structural characteristics reveal a substitutional incorporation of Nb{sup +5} in the TiO{sub 2} lattice which inhibits the anatase crystallites growth with increasing the doping percentage. The micro-Ramanmore » (MR) spectra of films with small size crystallites shows stiffening of about 4 cm{sup −1} for the E{sub g(1)} mode and is ascribed to phonon confinement and non-stoichiometry. In contrast, B{sub 1g} mode exhibits a large anomalous softening of 20 cm{sup −1} with asymmetrical broadening; which was not reported for the case of pure TiO{sub 2} crystallites. This anomalous behaviour is explained by contraction of the apical Ti-O bonds at the surface upon substitutional Nb{sup 5+} doping induced reduction of Ti{sup 4+} ions also known as hetero-coordination effect. The proposed hypotheses is manifested through studying the electronic structure and phonon dynamics by performing the near edge x-ray absorption fine structure (NEXAFS) and temperature dependent MR down to liquid nitrogen temperature on pure and 2.5 at.% doped NTO films, respectively.« less

  10. Physical properties of nanostructured strontium oxide thin film grown by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan; Belkhedkar, M. R.; Salodkar, R. V.

    2018-05-01

    Nanostructured SrO thin film of thickness 139 nm was deposited by chemical bath deposition technique onto glass substrates using SrCl2.6H2O and NaOH as cationic and anionic precursors without complexing agents. The X-ray diffraction studies revealed that, SrO thin film is nanocrystalline in nature with cubic structure. The surface morphology of the SrO film was investigated by means of field emission scanning electron microscopy. The optical studies showed that SrO film exhibits direct as well as indirect optical band gap energy. The electrical resistivity and activation energy of SrO thin film is found to be of the order of 106 Ω cm and 0.58eV respectively.

  11. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    NASA Astrophysics Data System (ADS)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  12. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  13. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  14. Sulfide and Oxide Heterostructures For the SrTiO3 Thin Film Growth on Si and Their Structural and Interfacial Stabilities

    NASA Astrophysics Data System (ADS)

    Yoo, Young‑Zo; Song, Jeong‑Hwan; Konishi, Yoshinori; Kawasaki, Masashi; Koinuma, Hideomi; Chikyow, Toyohiro

    2006-03-01

    Epitaxial SrTiO3 (STO) thin films with high electrical properties were grown on Si using ZnS single- and SrS/MnS hetero-buffer layers. STO films on both ZnS-buffered and SrS/MnS-buffered Si showed two growth orientations, (100) and (110). The temperature dependence of the growth orientation for STO films was different for the ZnS single-buffer layer in comparison with the SrS/MnS heterobuffer layers. (100) growth of STO films on SrS/MnS-buffered Si became dominant at high temperatures about 700 °C, while (100) growth of STO films on ZnS-buffered Si became dominant at a relatively low growth temperature of 550 °C. STO(100) films on ZnS-buffered and SrS/MnS-buffered Si showed lattice and domain matches for epitaxial relationships with [001]ZnS\\parallel[011]STO and SrS[001]\\parallel[011]STO, respectively via 45° in-plane rotation of STO films relative to both ZnS and SrS layers. The ZnS buffer layer contained many stacking faults because of the mismatch between ZnS and Si, however, those defects were terminated at the ZnS/STO interface. In contrast, the MnS buffer was very stable against stacking defect formation. Transmission electron microscopy measurements revealed the presence of a disordered region at the ZnS/Si and MnS/Si interfaces. Auger electron spectroscopy and transmission electron microscopy results showed that a good MnS/Si interface at the initial growth stage degraded to a SiS2-x-rich phase during MnS deposition and again into a SiO2-x-rich phase during STO deposition at the high growth temperature of 700 °C. It was also observed that STO on SrS/MnS-buffered Si showed a markedly high dielectric constant compared with that of STO on ZnS-buffered Si.

  15. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  16. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  17. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  18. Deposition of thin Si and Ge films by ballistic hot electron reduction in a solution-dripping mode and its application to the growth of thin SiGe films

    NASA Astrophysics Data System (ADS)

    Suda, Ryutaro; Yagi, Mamiko; Kojima, Akira; Mentek, Romain; Mori, Nobuya; Shirakashi, Jun-ichi; Koshida, Nobuyoshi

    2015-04-01

    To enhance the usefulness of ballistic hot electron injection into solutions for depositing thin group-IV films, a dripping scheme is proposed. A very small amount of SiCl4 or GeCl4 solution was dripped onto the surface of a nanocrystalline Si (nc-Si) electron emitter, and then the emitter is driven without using any counter electrodes. It is shown that thin Si and Ge films are deposited onto the emitting surface. Spectroscopic surface and compositional analyses showed no extrinsic carbon contaminations in deposited thin films, in contrast to the results of a previous study using the dipping scheme. The availability of this technique for depositing thin SiGe films is also demonstrated using a mixture SiCl4+GeCl4 solution. Ballistic hot electrons injected into solutions with appropriate kinetic energies promote preferential reduction of target ions with no by-products leading to nuclei formation for the thin film growth. Specific advantageous features of this clean, room-temperature, and power-effective process is discussed in comparison with the conventional dry and wet processes.

  19. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  20. Structural, optical, and photoluminescence characterization of electron beam evaporated ZnS/CdSe nanoparticles thin films

    NASA Astrophysics Data System (ADS)

    Mohamed, S. H.; Ali, H. M.

    2011-01-01

    Structural, optical, and photoluminescence investigations of ZnS capped with CdSe films prepared by electron beam evaporation are presented. X-ray diffraction analysis revealed that the ZnS/CdSe nanoparticles films contain cubic cadmium selenide and hexagonal zinc sulfide crystals and the ZnS grain sizes increased with increasing ZnS thickness. The refractive index was evaluated in terms of envelope method, which has been suggested by Swanepoel in the transparent region. The refractive index values were found to increase with increasing ZnS thickness. However, the optical band gap and the extinction coefficient were decreased with increasing ZnS thickness. Photoluminescence (PL) investigations revealed the presence of two broad emission bands. The ZnS thickness significantly influenced the PL intensities.

  1. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    NASA Astrophysics Data System (ADS)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  2. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  3. Remarkably Enhancing Green-Excitation Efficiency for Solar Energy Utilization: Red Phosphors Ba2ZnS3:Eu2+, X- Co-Doped Halide Ions (X = Cl, Br, I).

    PubMed

    Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun

    2017-05-15

    Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.

  4. Enhanced magneto-optical Kerr effect in rare earth substituted nanostructured cobalt ferrite thin film prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.

    2016-11-01

    A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.

  5. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  6. Growth of Au and ZnS nanostructures via engineered peptide and M13 bacteriophage templates.

    PubMed

    Chung, Sungwook; Chung, Woo-Jae; Wang, Debin; Lee, Seung-Wuk; De Yoreo, James J

    2018-04-25

    We demonstrate directed nucleation of Au and ZnS patterns on templates comprised of functional peptides and an M13 bacteriophage. We discuss the control over nucleation in terms of the interplay between enhanced ion binding and reduced interfacial energy resulting from the presence of the templates.

  7. Growth characteristics of nanocrystalline silicon films fabricated by using chlorinated precursors at low temperatures.

    PubMed

    Huang, Rui; Ding, Honglin; Song, Jie; Guo, Yanqing; Wang, Xiang; Lin, Xuanying

    2010-11-01

    We employed plasma enhanced chemical vapor deposition technique to fabricate nanocrystalline Si films at a low temperature of 250 degrees C by using SiCl4 and H2 as source gases. The evolution of microstructure of the films with deposition periods shows that nanocrystalline Si can be directly grown on amorphous substrate at the initial growth process, which is in contrast to the growth behavior observed in the SiH4/H2 system. Furthermore, it is interesting to find that the area density of nanocrystalline Si as well as grain size can be controlled by modulating the concentration of SiCl4. By decreasing the SiCl4 concentration, the area density of nanocrystalline Si can be enhanced up to 10(11) cm(-2), while the grain size is shown to decrease down to 10 nm. It is suggested that Cl plays an important role in the low-temperature growth of nanocrystalline Si.

  8. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  9. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  10. CuInS2/ZnS QD exposure induces developmental toxicity, oxidative stress and DNA damage in rare minnow (Gobiocypris rarus) embryos and larvae.

    PubMed

    Liu, Li; Xiao, Yuan-Yuan; Ji, Yan-Hong; Liu, Ming-Zhi; Chen, Yao; Zeng, Yu-Lian; Zhang, Yao-Guang; Jin, Li

    2017-08-01

    Chinese rare minnow (Gobiocypris rarus) embryos were used as an experimental model to investigate the effects of CuInS 2 /ZnS quantum dots (QDs) on the early life stages of G. rarus. Normal developmental parameters (survival rate, body length and average heart rate), biomarker genes [stress response (Hsp70), detoxification (Cyp1a), organizer function and axis formation (Wnt8α), and muscle (Mstn)], enzymatic activity and DNA damage were recorded as endpoints in the developing embryos/larvae after exposure until 96h post-fertilization (hpf). Reduced survival rate, decreased heart rate, altered body length, increased malformation rate, decreased hatching rate, advanced hatching time in response to low concentrations (50 and 100nmol/L) and delayed hatching time in response to high concentrations were observed after exposure, as were many other toxic effects, including pericardial edema and bent tails. The 72 hpf LC 50 (median lethal concentration) was determined to be 624.364nmol/L. Treatment with certain concentrations of CuInS 2 /ZnS QDs significantly increased the superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels and significantly induced DNA damage. After treatment with CuInS 2 /ZnS QDs, the embryos showed highly up-regulated expression of Hsp70, Cyp1a and Wnt8a and significantly up-regulated expression of Mstn at 12 hpf. Overall, this study indicates that CuInS 2 /ZnS QDs are potentially toxic to G. rarus embryos. The information presented in this study will be helpful for fully understanding the toxicity induced by CuInS 2 /ZnS QDs in fish embryos. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  12. Controlling electrostatic charging of nanocrystalline diamond at nanoscale.

    PubMed

    Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav

    2013-06-11

    Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.

  13. Nanocrystalline copper films are never flat.

    PubMed

    Zhang, Xiaopu; Han, Jian; Plombon, John J; Sutton, Adrian P; Srolovitz, David J; Boland, John J

    2017-07-28

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  15. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  16. Spectroscopic ellipsometry analysis of nanocrystalline silicon carbide obtained at low temperature

    NASA Astrophysics Data System (ADS)

    Kerdiles, S.; Madelon, R.; Rizk, R.

    2001-12-01

    Thin films of silicon carbide obtained by hydrogen-reactive magnetron sputtering with various substrate temperatures TS (100-600 °C) were analysed by transmission electron microscopy (TEM) and spectroscopic ellipsometry (SE). The TEM images show evidence of the growth of hydrogenated nanocrystalline silicon carbide (nc-SiC:H) deposited at TS as low as 300 °C, with an average grain size of 4-5 nm. The SE spectra were reproduced by using the Forouhi-Bloomer model and assuming a 7 nm thick overlayer with a void fraction of 45%. The observed increase of the refractive index with TS is assigned to the improvement of both crystallinity and compactness of the layer. The expected increase of the optical gap seems to be offset by the drop of hydrogen content, leaving the gap unchanged. The fabrication and characteristics of nc-SiC:H/c-Si diode are finally described and the data indicate a good rectifying behaviour, together with a low leakage current.

  17. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  19. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  20. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  1. Nanocrystalline ferroelectric BaTiO3/Pt/fused silica for implants synthetized by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl

    2017-09-01

    The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.

  2. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  3. Structural, thermal, spectroscopic, and spectral dispersion studies of nanocrystalline methyl red thin films

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mohamed M.; El-Denglawey, Adel

    2018-04-01

    Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.

  4. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  5. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  6. Calixarene capped ZnS quantum dots as an optical nanoprobe for detection and determination of menadione.

    PubMed

    Joshi, Kuldeep V; Joshi, Bhoomika K; Pandya, Alok; Sutariya, Pinkesh G; Menon, Shobhana K

    2012-10-21

    In this communication we report a p-sulfonatocalix[4]arene coated ZnS quantum dots "cup type" highly stable optical probe for the detection and determination of menadione (VK(3)) with high sensitivity and selectivity. The detection of VK(3) depends on supramolecular host-guest chemistry.

  7. Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition

    NASA Astrophysics Data System (ADS)

    Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao

    2006-09-01

    Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.

  8. Nanocrystalline diamond thin films on titanium-6 aluminum-4 vanadium alloy temporomandibular joint prosthesis simulants by microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fries, Marc Douglas

    A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without

  9. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation.

    PubMed

    Verdanova, Martina; Rezek, Bohuslav; Broz, Antonin; Ukraintsev, Egor; Babchenko, Oleg; Artemenko, Anna; Izak, Tibor; Kromka, Alexander; Kalbac, Martin; Hubalek Kalbacova, Marie

    2016-05-01

    Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  11. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  12. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  13. Magnetorheological finishing with chemically modified fluids for studying material removal of single-crystal ZnS

    NASA Astrophysics Data System (ADS)

    Salzman, S.; Romanofsky, H. J.; Clara, Y. I.; Giannechini, L. J.; West, Garrett J.; Lambropoulos, J. C.; Jacobs, S. D.

    2013-09-01

    Magnetorheological finishing (MRF) of polycrystalline, chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and zinc selenide (ZnSe) can leave millimeter-size artifacts on the part surface. These pebble-like features come from the anisotropic mechanical and chemical properties of the ceramic material and from the CVD growth process itself. The resulting surface texture limits the use of MRF for polishing aspheric and other complex shapes using these important infrared (IR) ceramics. An investigation of the individual contributions of chemistry and mechanics to polishing of other polycrystalline ceramics has been employed in the past to overcome similar material anisotropy problems. The approach taken was to study the removal process for the different single-crystal orientations that comprise the ceramic, making adjustments to mechanics (polishing abrasive type and concentration) and polishing slurry chemistry (primarily pH) to equalize the removal rate for all crystal orientations. Polishing with the modified slurry was shown to prevent the development of surface texture. Here we present mechanical (microhardness testing) and chemical (acid etching) studies performed on the four single-crystal orientations of ZnS: 100, 110, 111, and 311. We found that the (111) plane is 35% to 55% harder and 30% to 40% more resistant to chemical etching than the other three planes. This relatively high degree of variation in these properties can help to explain the surface texture developed from MRF of the polycrystalline material. Theoretical calculations of microhardness, planar, and bond densities are presented and compared with the experimental data. Here surface characterization of these single-crystal orientations of ZnS for material removal and roughness with chemically modified MR fluids at various pH levels between pH 4 and pH 6 are presented for the first time.

  14. A novel metallogel based approach to synthesize (Mn, Cu) doped ZnS quantum dots and labeling of MCF-7 cancer cells.

    PubMed

    Bhowal, Soumya; Ghosh, Arijit; Chowdhuri, Srijita Paul; Mondal, Raju; Das, Benu Brata

    2018-05-08

    The present study aims to formulate a common synthetic strategy for preparing quantum dots (QDs) in a greener way by using combination of popular methods, viz. a colloidal method with suitable capping agent and low molecular weight gel based synthesis. Pyridine dicarboxylic acid (PDC) in presence of AlCl3 forms a stable metallogel, which serves as an excellent medium for selective ZnS QD synthesis. The aromatic pyridine moiety, well known for being a capping agent, indeed plays its part in the run up to QD synthesis. To the best of our knowledge, this is the first example of a metallogel based doped ZnS QD synthesis. Altering the doping material and its composition changes the properties of the QDs, but herein we also tried to establish how these changes affect the gel morphology and stability of both gel and QDs. We further demonstrate, by using live cell confocal microscopy, the delivery of QDs Cu ZnS and MnZnS nanomaterials in the nucleus and the cytoplasm of human breast cancer cells (MCF7), implicating the use of metallogel based QDs for bio-imaging and bio-labeling.

  15. Remarkably High Mobility Thin-Film Transistor on Flexible Substrate by Novel Passivation Material.

    PubMed

    Shih, Cheng Wei; Chin, Albert

    2017-04-25

    High mobility thin-film transistor (TFT) is crucial for future high resolution and fast response flexible display. Remarkably high performance TFT, made at room temperature on flexible substrate, is achieved with record high field-effect mobility (μ FE ) of 345 cm 2 /Vs, small sub-threshold slope (SS) of 103 mV/dec, high on-current/off-current (I ON /I OFF ) of 7 × 10 6 , and a low drain-voltage (V D ) of 2 V for low power operation. The achieved mobility is the best reported data among flexible electronic devices, which is reached by novel HfLaO passivation material on nano-crystalline zinc-oxide (ZnO) TFT to improve both I ON and I OFF . From X-ray photoelectron spectroscopy (XPS) analysis, the non-passivated device has high OH-bonding intensity in nano-crystalline ZnO, which damage the crystallinity, create charged scattering centers, and form potential barriers to degrade mobility.

  16. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers

    PubMed Central

    Kim, Yeonho; Kim, Sang Jin; Cho, Sung-Pyo; Hong, Byung Hee; Jang, Du-Jeon

    2015-01-01

    Ultraviolet (UV) light photodetectors constructed from solely inorganic semiconductors still remain unsatisfactory because of their low electrical performances. To overcome this limitation, the hybridization is one of the key approaches that have been recently adopted to enhance the photocurrent. High-performance UV photodetectors showing stable on-off switching and excellent spectral selectivity have been fabricated based on the hybrid structure of solution-grown ZnS nanobelts and CVD-grown graphene. Sandwiched structures and multilayer stacking strategies have been applied to expand effective junction between graphene and photoactive ZnS nanobelts. A multiply sandwich-structured photodetector of graphene/ZnS has shown a photocurrent of 0.115 mA under illumination of 1.2 mWcm−2 in air at a bias of 1.0 V, which is higher 107 times than literature values. The multiple-sandwich structure of UV-light sensors with graphene having high conductivity, flexibility, and impermeability is suggested to be beneficial for the facile fabrication of UV photodetectors with extremely efficient performances. PMID:26197784

  17. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  18. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  19. White Light-Emitting Diodes Based on AgInS2/ZnS Quantum Dots with Improved Bandwidth in Visible Light Communication

    PubMed Central

    Ruan, Cheng; Zhang, Yu; Lu, Min; Ji, Changyin; Sun, Chun; Chen, Xiongbin; Chen, Hongda; Colvin, Vicki L.; Yu, William W.

    2016-01-01

    Quantum dot white light-emitting diodes (QD-WLEDs) were fabricated from green- and red-emitting AgInS2/ZnS core/shell QDs coated on GaN LEDs. Their electroluminescence (EL) spectra were measured at different currents, ranging from 50 mA to 400 mA, and showed good color stability. The modulation bandwidth of previously prepared QD-WLEDs was confirmed to be much wider than that of YAG:Ce phosphor-based WLEDs. These results indicate that the AgInS2/ZnS core/shell QDs are good color-converting materials for WLEDs and they are capable in visible light communication (VLC). PMID:28344270

  20. Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium.

    PubMed

    Vilardell, A M; Cinca, N; Garcia-Giralt, N; Dosta, S; Cano, I G; Nogués, X; Guilemany, J M

    2018-06-01

    Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  2. Grain growth in nanocrystalline iron and Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Zomorodian, Amir

    2010-02-01

    The effects of the annealing temperature and time, cryomilling in liquid nitrogen, and the addition of aluminum powder on the thermal stability and grain growth behavior of nanocrystalline iron were modeled using the Artificial Neural Network (ANN) technique. The developed model can be used as a guide for the quantification of the grain growth by considering the effects of annealing temperature and time. The model also quantified the effect of Al on the thermal stability of cryomilled nanocrystalline Fe. The model results showed that the cryomilling of Fe has a tangible effect on the stabilization of the nanostructure.

  3. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  4. A Facile Growth of Cu2ZnSnS4/ZnS Materials by Sulfurization of Stacked Co-Electroplated-Annealed Metallic Film(s) for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Turkdogan, Sunay

    2018-04-01

    In this paper, growth and characterization of functional Cu2ZnSnS4 (CZTS) and ZnS materials are demonstrated. We propose a versatile growth method that depends on the deposition of stacked metallic film by electroplating followed by sulfurization in Sulfur ambient at 500 °C. We have investigated the effect of direct and indirect sulfurization methods ZnS materials were grown as a proof of concept material to make the comparison between two methods. Indirect sulfurization was found to produce higher quality materials and therefore used for CZTS material growth, as well. The results show that CZTS and ZnS materials were grown with high crystal quality in wurtzite and zincblende structure form, respectively. CZTS materials have ∼1.49 eV direct-band gap energy, hydrophilic surface and possess p-type conductivity. All the results are in good agreement with the literature and we believe that our versatile growth method is superior to most of vacuum and non-vacuum based growth methods when the large-scale production and low-cost fabrication are of particular interests. The developed method might not only be promising to grow CZTS and ZnS, but also other semiconductors that can be employed for various optoelectronic/electronic devices.

  5. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    NASA Astrophysics Data System (ADS)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  6. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging.

    PubMed

    Lai, Pei-Yu; Huang, Chih-Ching; Chou, Tzung-Han; Ou, Keng-Liang; Chang, Jia-Yaw

    2017-03-01

    Here, we present the microwave-assisted synthesis of In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + altered the optical properties of the host QDs, whereas the spin magnetic moment (S=5/2) of Mn 2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In 2 S 3 /ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s -1 mM -1 ), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In 2 S 3 /ZnS conjugated to hyaluronic acid (referred to as AgMn:In 2 S 3 /ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In 2 S 3 /ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. In this manuscript, we reported a facial and rapid method to prepare In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + dopants were used to alter the optical properties of the In 2 S 3 host, whereas Mn 2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In 2 S 3 /Zn

  7. Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

    NASA Astrophysics Data System (ADS)

    Bak, Daegil; Kim, Jung Hyeun

    2018-06-01

    Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.

  8. Effect of annealing atmosphere on properties of Cu2ZnSn(S,Se)4 thin films

    NASA Astrophysics Data System (ADS)

    Xue, Yuming; Yu, Bingbing; Li, Wei; Feng, Shaojun; Wang, Yukun; Huang, Shengming; Zhang, Chao; Qiao, Zaixiang

    2017-12-01

    Earth-abundant Cu2ZnSn(S,Se)4(CZTSSe) thin film photovoltaic absorber layers were fabricated by co-evaporated Cu, ZnS, SnS and Se sources in a vacuum chamber followed by annealing at tubular furnace for 30 min at 550 °C. In this paper, we investigated the metal elements with stoichiometric ratio film to study the effect of annealing conditions of Se, SnS + Se, S and SnS + S atmosphere on the structure, surface morphological, optical and electrical properties of Cu2ZnSn(S,Se)4 thin films respectively. These films were characterized by Inductively Coupled Plasma-Mass Spectrometer, scanning electron microscopy, X-ray diffraction to investigate the composition, morphological and crystal structural properties. The grain size of samples were found to increase after annealing. XRD patterns confirmed the formation of pure polycrystalline CZTSSe thin films at S atmosphere, the optical band gaps are 1.02, 1.05, 1.23, 1.35 eV for Se, SnS + Se, SnS + S and S atmosphere respectively.

  9. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  10. Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP

    NASA Astrophysics Data System (ADS)

    Sugimura, K.; Miyajima, Y.; Sonehara, M.; Sato, T.; Hayashi, F.; Zettsu, N.; Teshima, K.; Mizusaki, H.

    2016-05-01

    This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.

  11. Formation of high electrical-resistivity thin surface layer on carbonyl-iron powder (CIP) and thermal stability of nanocrystalline structure and vortex magnetic structure of CIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimura, K.; Miyajima, Y.; Sonehara, M.

    2016-05-15

    This study focuses on the carbonyl-iron powder (CIP) used in the metal composite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 μm is used to suppress the MHz band eddy current inside the CIP body. When applying the CIP to composite core together with the resin matrix, high electrical resistivity layer must be formed on the CIP-surface in order to suppress the overlapped eddy current between adjacent CIPs. In this study, tens nm thick silica (SiO{sub 2}) was successfully deposited on the CIP-surface by using hydrolysismore » of TEOS (Si(OC{sub 2}H{sub 5}){sub 4}). Also tens nm thick oxidized layer of the CIP-surface was successfully formed by using CIP annealing in dry air. The SiC/GaN power device can operate at ambient temperature over 200 degree-C, and the composite magnetic core is required to operate at such ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe) due to its nanocrystalline-structure and had a single vortex magnetic structure. From the experimental results, both nanocrystalline and single vortex magnetic structure were maintained after heat-exposure of 250 degree-C, and the powder coercivity after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the CIP with thermally stable nanocrystalline-structure and vortex magnetic state was considered to be heat-resistant magnetic powder used in the iron-based composite core for SiC/GaN power electronics.« less

  12. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S) 2 and Cu 2ZnSn(Se,S) 4 devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  13. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S) 2 and Cu 2ZnSn(Se,S) 4 devices

    DOE PAGES

    Varley, J. B.; Lordi, V.

    2014-08-08

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se) 2 (CIGS) or Cu 2ZnSn(S,Se) 4 (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Lastly, our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  14. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang

    2018-04-01

    Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure

  15. Ionic Conduction in Nanocrystalline Materials

    DTIC Science & Technology

    2000-02-10

    In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the

  16. Investigation of microstructure, micro-mechanical and optical properties of HfTiO{sub 4} thin films prepared by magnetron co-sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Michal, E-mail: michal.mazur@pwr.edu.pl; Wojcieszak, Damian; Domaradzki, Jaroslaw

    2015-12-15

    Highlights: • HfTiO{sub 4} thin films were deposited by magnetron co-sputtering. • As-prepared and annealed at 800 °C thin films were nanocrystalline. • Optical properties and hardness were investigated in relation to thin films structure. • Hardness was 3-times higher in the case of as-deposited thin films. • HfTiO{sub 4} thin films are suitable for use as optical coatings with protective properties. - Abstract: Titania (TiO{sub 2}) and hafnium oxide (HfO{sub 2}) thin films are in the focus of interest to the microelectronics community from a dozen years. Because of their outstanding properties like, among the others, high stability, highmore » refractive index, high electric permittivity, they found applications in many optical and electronics domains. In this work discussion on the hardness, microstructure and optical properties of as-deposited and annealed HfTiO{sub 4} thin films has been presented. Deposited films were prepared using magnetron co-sputtering method. Performed investigations revealed that as-deposited coatings were nanocrystalline with HfTiO{sub 4} structure. Deposited films were built from crystallites of ca. 4–12 nm in size and after additional annealing an increase in crystallites size up to 16 nm was observed. Micro-mechanical properties, i.e., hardness and elastic modulus were determined using conventional load-controlled nanoindentation testing. the annealed films had 3-times lower hardness as-compared to as-deposited ones (∼9 GPa). Based on optical investigations real and imaginary components of refractive index were calculated, both for as-deposited and annealed thin films. The real refractive index component increased after annealing from 2.03 to 2.16, while extinction coefficient increased by an order from 10{sup −4} to 10{sup −3}. Structure modification was analyzed together with optical energy band-gap, Urbach energy and using Wemple–DiDomenico model.« less

  17. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  18. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer.

    PubMed

    Zhang, Yanhui; Zhang, Nan; Tang, Zi-Rong; Xu, Yi-Jun

    2012-11-27

    We report the assembly of nanosized ZnS particles on the 2D platform of a graphene oxide (GO) sheet by a facile two-step wet chemistry process, during which the reduced graphene oxide (RGO, also called GR) and the intimate interfacial contact between ZnS nanoparticles and the GR sheet are achieved simultaneously. The ZnS-GR nanocomposites exhibit visible light photoactivity toward aerobic selective oxidation of alcohols and epoxidation of alkenes under ambient conditions. In terms of structure-photoactivity correlation analysis, we for the first time propose a new photocatalytic mechanism where the role of GR in the ZnS-GR nanocomposites acts as an organic dye-like macromolecular "photosensitizer" for ZnS instead of an electron reservoir. This novel photocatalytic mechanism is distinctly different from all previous research on GR-semiconductor photocatalysts, for which GR is claimed to behave as an electron reservoir to capture/shuttle the electrons photogenerated from the semiconductor. This new concept of the reaction mechanism in graphene-semiconductor photocatalysts could provide a new train of thought on designing GR-based composite photocatalysts for targeting applications in solar energy conversion, promoting our in-depth thinking on the microscopic charge carrier transfer pathway connected to the interface between the GR and the semiconductor.

  19. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  20. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  1. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  2. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  3. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  4. Photo-sensitization of ZnS nanoparticles with renowned ruthenium dyes N3, N719 and Z907 for application in solid state dye sensitized solar cells: A comparative study.

    PubMed

    Nosheen, Erum; Shah, Syed Mujtaba; Hussain, Hazrat; Murtaza, Ghulam

    2016-09-01

    This article presents a comprehensive relative report on the grafting of ZnS with renowned ruthenium ((Ru) dyes i.e. N3, N719 and Z907) and gives insight into their charge transfer interaction and sensitization mechanism for boosting solar cell efficiency. Influence of dye concentration on cell performance is also reported here. ZnS nanoparticles synthesized by a simple coprecipitation method with an average particle size of 15±2nm were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Elemental dispersive X-ray analysis (EDAX), tunneling electron microscopy (TEM) and UV-Visible (UV-Vis) spectroscopy. UV-Vis, photoluminescence (PL) and Fourier transform infra-red (FT-IR) spectroscopy confirms the successful grafting of these dyes over ZnS nanoparticles surface. Low-energy metal-to-ligand charge-transfer transition (MLCT) bands of dyes are mainly affected on grafting over the nanoparticle surface. Moreover their current voltage (I-V) results confirm the efficiency enhancement in ZnS solid state dye sensitized solar cells (SSDSSCs) owing to effective sensitization of this material with Ru dyes and helps in finding the optimum dye concentration for nanoparticles sensitization. Highest rise in overall solar cell efficiency i.e. 64% of the reference device has been observed for 0.3mM N719-ZnS sample owing to increased open circuit voltage (Voc) and fill factor (FF). Experimental and proposed results were found in good agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Weibing; Lan, Si; Gao, Libo

    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less

  6. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    NASA Astrophysics Data System (ADS)

    Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.

    2016-01-01

    The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  7. Interpreting the adsorption of serum albumin and lactoglobulin onto ZnS nanopaticles: effect of conformational rigidity of the proteins.

    PubMed

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2014-02-15

    The work we have undertaken is to investigate the adsorption of two different proteins (BSA and BLG) having near same IEP and differing in their conformational flexibility, onto the surface of ZnS nanoparticles (ZnS NPs). BSA and BLG both have an IEP value around pH~5. BSA is more prone to conformational deformation and considered "soft" while BLG holds the conformational rigidity and considered as "hard" protein. To ascertain the differences in surface coverage and conformation of the protein onto ZnS surface (PZC ~ 3.7), we have evaluated the adsorption profile at pH 7, where the entire surface behaves negatively. An integrated approach was taken by incorporating zeta (ζ) potential, fluorescence and CD for analyzing the adsorption process. In both systems, an increase in protein surface coverage was observed with the increase in free protein concentration in the solution and ζ values approaching that of native protein at high surface coverage. An alteration in the tertiary structure was observed for both BSA and BLG. The CD spectra analysis reveals that the secondary structure of the BSA was more deviated from the native protein structure, accommodating the increased adsorption value. For BLG no such prominent structural alteration was observed. These findings help us to understand better, how adjustment of the protein adsorption amount can be achieved onto the surface of nanoparticles having like charges. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots.

    PubMed

    Zhu, Dong; Li, Wei; Wen, Hong-Mei; Yu, Sheng; Miao, Zhao-Yi; Kang, An; Zhang, Aihua

    2015-12-15

    A silver nanoparticles (AgNPs)-enhanced time-resolved fluorescence (TR-FL) sensor based on long-lived fluorescent Mn-doped ZnS quantum dots (QDs) is developed for the sensitive detection of vascular endothelial growth factor-165 (VEGF165), a predominant cancer biomarker in cancer angiogenesis. The aptamers bond with the Mn-doped ZnS QDs and the BHQ-2 quencher-labelling strands hybridized in duplex are coupled with streptavidin (SA)-functionalized AgNPs to form the AgNPs-enhanced TR-FL sensor, showing lower fluorescence intensity in the duplex state due to the fluorescence resonance energy transfer (FRET) between the Mn-doped ZnS QDs and quenchers. Upon the addition of VEGF165, the BHQ-2 quencher-labelling strands of the duplex are displaced, leading to the disruption of the FRET. As a result, the fluorescence of the Mn-doped QDs within the proximity of the AgNPs is recovered. The FL signal can be measured free of the interference of short-lived background by setting appropriate delay time and gate time, which offers a signal with high signal-to-noise ratio in photoluminescent biodetection. Compared with the bare TR-FL sensor, the AgNPs-based TR-FL sensor showed a huge improvement in fluorescence based on metal-enhanced fluorescence (MEF) effect, and the sensitivity increased 11-fold with the detection limit of 0.08 nM. In addition, the sensor provided a wide range of linear detection from 0.1 nM to 16 nM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  10. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  11. Intermixing at the absorber-buffer layer interface in thin-film solar cells: The electronic effects of point defects in Cu(In,Ga)(Se,S){sub 2} and Cu{sub 2}ZnSn(Se,S){sub 4} devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varley, J. B.; Lordi, V.

    We investigate point defects in the buffer layers CdS and ZnS that may arise from intermixing with Cu(In,Ga)(S,Se){sub 2} (CIGS) or Cu{sub 2}ZnSn(S,Se){sub 4} (CZTS) absorber layers in thin-film photovoltaics. Using hybrid functional calculations, we characterize the electrical and optical behavior of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities in the buffer. We find that In and Ga substituted on the cation site act as shallow donors in CdS and tend to enhance the prevailing n-type conductivity at the interface facilitated by Cd incorporation in CIGS, whereas they are deep donors in ZnS and will be lessmore » effective dopants. Substitutional In and Ga can favorably form complexes with cation vacancies (A-centers) which may contribute to the “red kink” effect observed in some CIGS-based devices. For CZTS absorbers, we find that Zn and Sn defects substituting on the buffer cation site are electrically inactive in n-type buffers and will not supplement the donor doping at the interface as in CIGS/CdS or ZnS devices. Sn may also preferentially incorporate on the S site as a deep acceptor in n-type ZnS, which suggests possible concerns with absorber-related interfacial compensation in CZTS devices with ZnS-derived buffers. Cu, Na, and K impurities are found to all have the same qualitative behavior, most favorably acting as compensating acceptors when substituting on the cation site. Our results suggest one beneficial role of K and Na incorporation in CIGS or CZTS devices is the partial passivation of vacancy-related centers in CdS and ZnS buffers, rendering them less effective interfacial hole traps and recombination centers.« less

  12. Extinction of photoemission of Mn-Doped ZnS nanofluid in weak magnetic field

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Bui, Hong-Van; Pham, Van-Ben; Le, Van-Hong; Hoang, Nam-Nhat

    2016-08-01

    The observation of extinction of photoluminescence of Mn-doped ZnS nanofluid under applying of weak magnetic field is reported. At a constant field of 270 Gauss and above, the exponential decays of photoluminescent intensity was observed in disregard of field direction. About 50% extinction was achieved after 30 minute magnetization and a total extinction after 1 hour. The memory effect preserved for more than 2 hours at room temperature. This extinction was observed in a system with no clear ferromagnetic behavior.

  13. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  14. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  15. Studying Structural, Optical, Electrical, and Sensing Properties of Nanocrystalline SnO2:Cu Films Prepared by Sol-Gel Method for CO Gas Sensor Application at Low Temperature

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl2ṡ2H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.

  16. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  17. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  18. Evidence of a temperature transition for denuded zone formation in nanocrystalline Fe under He irradiation

    DOE PAGES

    El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...

    2016-10-18

    Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.

  19. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A [Plainfield, IL; Gruen, Dieter M [Downers Grove, IL; Auciello, Orlando [Bolingbrook, IL; Xiao, Xingcheng [Woodridge, IL

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  20. Development of Nanocrystalline Zeolite Materials for the Decontamination of Chemical Warfare Agents

    DTIC Science & Technology

    2008-11-17

    phosphite (CH3O)2P(O)H or DMP. There is -40-20020406080100 In te ns ity ppm a) b) c) d) * ** ** ** * * 33 37 1225 9 Figure 6. 31P MAS NMR spectra...The main objective of this research is to use novel nanocrystalline zeolite materials synthesized in our laboratories for the decontamination of...nanocrystalline zeolite materials. In these studies, we have focused our attention on the decontamination of 2-CEES and DMMP, two simulants for mustard gas

  1. Molecular beam epitaxial growth and structural characterization of ZnS on (001) GaAs

    NASA Technical Reports Server (NTRS)

    Benz, R. G., II; Huang, P. C.; Stock, S. R.; Summers, C. J.

    1988-01-01

    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as assessed by X-ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces.

  2. Grain growth behavior at absolute zero during nanocrystalline metal indentation

    NASA Astrophysics Data System (ADS)

    Sansoz, F.; Dupont, V.

    2006-09-01

    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metals.

  3. Post-annealing-free, room temperature processed nanocrystalline indium tin oxide thin films for plastic electronics

    NASA Astrophysics Data System (ADS)

    Nyoung Jang, Jin; Jong Lee, You; Jang, YunSung; Yun, JangWon; Yi, Seungjun; Hong, MunPyo

    2016-06-01

    In this study, we confirm that bombardment by high energy negative oxygen ions (NOIs) is the key origin of electro-optical property degradations in indium tin oxide (ITO) thin films formed by conventional plasma sputtering processes. To minimize the bombardment effect of NOIs, which are generated on the surface of the ITO targets and accelerated by the cathode sheath potential on the magnetron sputter gun (MSG), we introduce a magnetic field shielded sputtering (MFSS) system composed of a permanent magnetic array between the MSG and the substrate holder to block the arrival of energetic NOIs. The MFSS processed ITO thin films reveal a novel nanocrystal imbedded polymorphous structure, and present not only superior electro-optical characteristics but also higher gas diffusion barrier properties. To the best of our knowledge, no gas diffusion barrier composed of a single inorganic thin film formed by conventional plasma sputtering processes achieves such a low moisture permeability.

  4. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  5. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  6. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  7. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  8. New insight into the ZnO sulfidation reaction: mechanism and kinetics modeling of the ZnS outward growth.

    PubMed

    Neveux, Laure; Chiche, David; Pérez-Pellitero, Javier; Favergeon, Loïc; Gay, Anne-Sophie; Pijolat, Michèle

    2013-02-07

    Zinc oxide based materials are commonly used for the final desulfurization of synthesis gas in Fischer-Tropsch based XTL processes. Although the ZnO sulfidation reaction has been widely studied, little is known about the transformation at the crystal scale, its detailed mechanism and kinetics. A model ZnO material with well-determined characteristics (particle size and shape) has been synthesized to perform this study. Characterizations of sulfided samples (using XRD, TEM and electron diffraction) have shown the formation of oriented polycrystalline ZnS nanoparticles with a predominant hexagonal form (wurtzite phase). TEM observations also have evidenced an outward development of the ZnS phase, showing zinc and oxygen diffusion from the ZnO-ZnS internal interface to the surface of the ZnS particle. The kinetics of ZnO sulfidation by H(2)S has been investigated using isothermal and isobaric thermogravimetry. Kinetic tests have been performed that show that nucleation of ZnS is instantaneous compared to the growth process. A reaction mechanism composed of eight elementary steps has been proposed to account for these results, and various possible rate laws have been determined upon approximation of the rate-determining step. Thermogravimetry experiments performed in a wide range of H(2)S and H(2)O partial pressures have shown that the ZnO sulfidation reaction rate has a nonlinear variation with H(2)S partial pressure at the same time no significant influence of water vapor on reaction kinetics has been observed. From these observations, a mixed kinetics of external interface reaction with water desorption and oxygen diffusion has been determined to control the reaction kinetics and the proposed mechanism has been validated. However, the formation of voids at the ZnO-ZnS internal interface, characterized by TEM and electron tomography, strongly slows down the reaction rate. Therefore, the impact of the decreasing ZnO-ZnS internal interface on reaction kinetics has been

  9. Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane

    DOE PAGES

    Coloyan, Gabriella; Cultrara, Nicholas D.; Katre, Ankita; ...

    2016-09-30

    Recently, we synthesized Germanane (GeH), a hydrogen-terminated layered germanium structure. We employed a four-probe thermal transport measurement method to obtain the basal-plane thermal conductivity of thin exfoliated GeH flakes and correlated the measurement results with the crystal structure. Furthermore, the obtained thermal conductivity increases with increasing temperature, suggesting that extrinsic grain boundary and defect scattering dominate intrinsic phonon-phonon scattering. Annealing a polycrystalline GeH sample at 195 C caused it to become amorphous, reducing the room-temperature thermal conductivity from 0.53± 0.03 W m -1 K -1, which is close to the value calculated for 3.3 nm grain size, to 0.29± 0.02more » W m -1 K -1, which approaches the calculated amorphous limit in the basal plane thermal conductivity.« less

  10. Basal-plane thermal conductivity of nanocrystalline and amorphized thin germanane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coloyan, Gabriella; Cultrara, Nicholas D.; Katre, Ankita

    Recently, we synthesized Germanane (GeH), a hydrogen-terminated layered germanium structure. We employed a four-probe thermal transport measurement method to obtain the basal-plane thermal conductivity of thin exfoliated GeH flakes and correlated the measurement results with the crystal structure. Furthermore, the obtained thermal conductivity increases with increasing temperature, suggesting that extrinsic grain boundary and defect scattering dominate intrinsic phonon-phonon scattering. Annealing a polycrystalline GeH sample at 195 C caused it to become amorphous, reducing the room-temperature thermal conductivity from 0.53± 0.03 W m -1 K -1, which is close to the value calculated for 3.3 nm grain size, to 0.29± 0.02more » W m -1 K -1, which approaches the calculated amorphous limit in the basal plane thermal conductivity.« less

  11. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron

  12. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  13. Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.

    2018-04-01

    The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.

  14. Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu2Zn1-xSnxS4 thin films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Thiruvenkadam, S.; Prabhakaran, S.; Sujay Chakravarty; Ganesan, V.; Vasant Sathe; Santhosh Kumar, M. C.; Leo Rajesh, A.

    2018-03-01

    Quaternary kesterite Cu2ZnSnS4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on Cu2Zn1-xSnxS4 (0 ≤ x ≤ 1) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu2ZnSnS4, Cu2SnS3, Sn2S3, CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, Cu2SnS3, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm-1 corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found to be greater than 105 cm-1. Hall measurements exhibited that all the deposited Cu2Zn1-xSnxS4 films were p type and the resistivity lies between 10.9 ×10-2Ωcm and 149.6 × 10-2Ωcm .

  15. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  16. Europium-doped mesoporous titania thin films: rare-earth locations and emission fluctuations under illumination.

    PubMed

    Leroy, Celine Marie; Cardinal, Thierry; Jubera, Veronique; Treguer-Delapierre, Mona; Majimel, Jerome; Manaud, Jean Pierre; Backov, Renal; Boissière, Cedric; Grosso, David; Sanchez, Clement; Viana, Bruno; Pellé, Fabienne

    2008-10-06

    Herein, Eu(III)-doped 3D mesoscopically ordered arrays of mesoporous and nanocrystalline titania are prepared and studied. The rare-earth-doped titania thin films-synthesized via evaporation-induced self-assembly (EISA)-are characterized by using environmental ellipsoporosimetry, electronic microscopy (i.e. high-resolution scanning electron microscopy, HR-SEM, and transmission electron microscopy, HR-TEM), X-ray diffraction, and luminescence spectroscopy. Structural characterizations show that high europium-ion loadings can be incorporated into the titanium-dioxide walls without destroying the mesoporous arrangement. The luminescence properties of Eu(III) are investigated by using steady-state and time-resolved spectroscopy via excitation of the Eu(III) ions through the titania host. Using Eu(III) luminescence as a probe, the europium-ion sites can be addressed with at least two different environments within the mesoporous framework, namely, a nanocrystalline environment and a glasslike one. Emission fluctuations ((5)D(0)-->(7)F(2)) are observed upon continuous UV excitation in the host matrix. These fluctuations are attributed to charge trapping and appear to be strongly dependent on the amount of europium and the level of crystallinity.

  17. Stacking fault energies and slip in nanocrystalline metals.

    PubMed

    Van Swygenhoven, H; Derlet, P M; Frøseth, A G

    2004-06-01

    The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.

  18. Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Verma, Payal; Savelyev, Dmitry A.; Khonina, Svetlana N.; Sudhakar, S.; Kumar, Sushil

    2016-04-01

    An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.

  19. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.

    PubMed

    Stehlik, Stepan; Varga, Marian; Stenclova, Pavla; Ondic, Lukas; Ledinsky, Martin; Pangrac, Jiri; Vanek, Ondrej; Lipov, Jan; Kromka, Alexander; Rezek, Bohuslav

    2017-11-08

    Color centers in diamonds have shown excellent potential for applications in quantum information processing, photonics, and biology. Here we report chemical vapor deposition (CVD) growth of nanocrystalline diamond (NCD) films as thin as 5-6 nm with photoluminescence (PL) from silicon-vacancy (SiV) centers at 739 nm. Instead of conventional 4-6 nm detonation nanodiamonds (DNDs), we prepared and employed hydrogenated 2 nm DNDs (zeta potential = +36 mV) to form extremely dense (∼1.3 × 10 13 cm -2 ), thin (2 ± 1 nm), and smooth (RMS roughness < 0.8 nm) nucleation layers on an Si/SiO x substrate, which enabled the CVD growth of such ultrathin NCD films in two different and complementary microwave (MW) CVD systems: (i) focused MW plasma with an ellipsoidal cavity resonator and (ii) pulsed MW plasma with a linear antenna arrangement. Analytical ultracentrifuge, infrared and Raman spectroscopies, atomic force microscopy, and scanning electron microscopy are used for detailed characterization of the 2 nm H-DNDs and the nucleation layer as well as the ultrathin NCD films. We also demonstrate on/off switching of the SiV center PL in the NCD films thinner than 10 nm, which is achieved by changing their surface chemistry.

  20. Deformation-induced localized solid-state amorphization in nanocrystalline nickel.

    PubMed

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification.

  1. Deformation-induced localized solid-state amorphization in nanocrystalline nickel

    PubMed Central

    Han, Shuang; Zhao, Lei; Jiang, Qing; Lian, Jianshe

    2012-01-01

    Although amorphous structures have been widely obtained in various multi-component metallic alloys, amorphization in pure metals has seldom been observed and remains a long-standing scientific curiosity and technological interest. Here we present experimental evidence of localized solid-state amorphization in bulk nanocrystalline nickel introduced by quasi-static compression at room temperature. High-resolution electron microscope observations illustrate that nano-scale amorphous structures present at the regions where severe deformation occurred, e.g. along crack paths or surrounding nano-voids. These findings have indicated that nanocrystalline structures are highly desirable for promoting solid-state amorphization, which may provide new insights for understanding the nature of the crystalline-to-amorphous transformation and suggested a potential method to produce elemental metallic glasses that have hardly been available hitherto through rapid solidification. PMID:22768383

  2. Grain boundary and triple junction diffusion in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Wegner, M.; Leuthold, J.; Peterlechner, M.; Song, X.; Divinski, S. V.; Wilde, G.

    2014-09-01

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, , of ˜35 and ˜44 nm produced by spark plasma sintering were investigated by the radiotracer method using the 63Ni isotope. The measured diffusivities, Deff, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500ṡDgb within the temperature interval from 420 K to 470 K.

  3. Analyzing Dirac Cone and Phonon Dispersion in Highly Oriented Nanocrystalline Graphene.

    PubMed

    Nai, Chang Tai; Xu, Hai; Tan, Sherman J R; Loh, Kian Ping

    2016-01-26

    Chemical vapor deposition (CVD) is one of the most promising growth techniques to scale up the production of monolayer graphene. At present, there are intense efforts to control the orientation of graphene grains during CVD, motivated by the fact that there is a higher probability for oriented grains to achieve seamless merging, forming a large single crystal. However, it is still challenging to produce single-crystal graphene with no grain boundaries over macroscopic length scales, especially when the nucleation density of graphene nuclei is high. Nonetheless, nanocrystalline graphene with highly oriented grains may exhibit single-crystal-like properties. Herein, we investigate the spectroscopic signatures of graphene film containing highly oriented, nanosized grains (20-150 nm) using angle-resolved photoemission spectroscopy (ARPES) and high-resolution electron energy loss spectroscopy (HREELS). The robustness of the Dirac cone, as well as dispersion of its phonons, as a function of graphene's grain size and before and after film coalescence, was investigated. In view of the sensitivity of atomically thin graphene to atmospheric adsorbates and intercalants, ARPES and HREELS were also used to monitor the changes in spectroscopic signatures of the graphene film following exposure to the ambient atmosphere.

  4. Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mecartnery, Martha; Graeve, Olivia; Patel, Maulik

    2017-05-25

    The goal of this research is to help develop new fuels for higher efficiency, longer lifetimes (higher burn-up) and increased accident tolerance in future nuclear reactors. Multiphase nanocrystalline ceramics will be used in the design of simulated advanced inert matrix nuclear fuel to provide for enhanced plasticity, better radiation tolerance, and improved thermal conductivity

  5. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    PubMed Central

    2010-01-01

    Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis

  6. Synthesis of Mn-doped ZnS thin films by chemical bath deposition: Optical properties in the visible region

    NASA Astrophysics Data System (ADS)

    Erken, Ozge; Gunes, Mustafa; Gumus, Cebrail

    2017-04-01

    Transparent ZnS:Mn thin films were produced by chemical bath deposition (CBD) technique at 80 °C for 4h, 6h and 8h durations. The optical properties such as optical transmittance (T %), reflectance (R %), extinction coefficient (k) and refractive index (n) were deeply investigated in terms of contribution ratio, wavelength and film thickness. The optical properties of ZnS:Mn thin films were determined by UV/vis spectrophotometer transmittance measurements in the range of λ=300-1100 nm. Optical transmittances of the films were found from 12% to 92% in the visible region. The refractive index (n) values for visible region were calculated as 1.34-5.09. However, film thicknesses were calculated between 50 and 901 nm by gravimetric analysis.

  7. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-12-01

    This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.

  8. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    PubMed

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  9. Cyclic compression response of micropillars extracted from textured nanocrystalline NiTi thin-walled tubes

    DOE PAGES

    Ghassemi-Armaki, Hassan; Leff, Asher C.; Taheri, Mitra L.; ...

    2017-06-22

    Compression-compression cyclic deformation of nanocrystalline NiTi tubes intended for medical stents and with an outer diameter of 1 mm and wall thickness of 70 μm was studied using micropillars produced by FIB with the loading axis orthogonal to the tube axis. These micropillars were cycled in a displacement-controlled mode using a nanoindenter equipped with a flat punch to strain levels of 4, 6 and 8% in each cycle and specimens were subjected to several hundred cycles. Furthermore, the cyclic response of two NiTi tubes, one with Af of 17 °C and the other with an Af of -5 °C ismore » compared. The texture of the tube with the Af of -5 °C was measured at the microscopic level using transmission electron microscopy and at the macroscopic level by X-ray diffraction and good agreement was noted. Characteristics such as i) a reduction in the forward transformation stress, ii) increase in maximum stress for a given displacement amplitude, and iii) a reduction in the hysteresis loop area, all with increasing number of cycles, observed typically during cyclic deformation of conventional macroscopic specimens, were captured in the micropillar cyclic tests. Our observations lead to the conclusion that micropillar compression testing in a cyclic mode can enable characterizing the orientation-dependent response in such small dimension components that see complex loading in service, and additionally provide an opportunity for calibrating constitutive equations in micromechanical models.« less

  10. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  11. Functional materials based on nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  12. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.

    PubMed

    Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook

    2010-12-07

    We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.

  13. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.

    PubMed

    Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S

    2017-05-10

    Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

  14. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  15. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chang, E-mail: cye@uakron.edu; Ren, Zhencheng; Zhao, Jingyi

    2015-10-07

    In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to themore » amorphization of pure nanocrystalline nickel.« less

  16. Influence of film thickness and Fe doping on LPG sensing properties of Mn3O4 thin film grown by SILAR method

    NASA Astrophysics Data System (ADS)

    Belkhedkar, M. R.; Ubale, A. U.

    2018-05-01

    Nanocrystalline Fe doped and undoped Mn3O4 thin films have been deposited by Successive Ionic Layer Adsorption and Reaction (SILAR) method onto glass substrates using MnCl2 and NaOH as cationic and anionic precursors. The grazing incidence X-ray diffraction (GIXRD) and field emission scanning electron microscopy (FESEM)) have been carried out to analyze structural and surface morphological properties of the films. The LPG sensing performance of Mn3O4thin films have been studied by varying temperature, concentration of LPG, thickness of the film and doping percentage of Fe. The LPG response of the Mn3O4thin films were found to be enhances with film thickness and decreases with increased Fe doping (0 to 8 wt. %) at 573 K temperature.

  17. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    DOE PAGES

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less

  18. Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

    NASA Astrophysics Data System (ADS)

    Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.

    2008-06-01

    The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this

  19. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  20. Transmission electron microscopy of polyhydroxybutyrate-co-valerate (PHBV)/nanocrystalline cellulose (NCC) bio-nanocomposite prepared using cryo-ultramicrotomy

    NASA Astrophysics Data System (ADS)

    Ismarul, N. I.; Engku, A. H. E. U.; Siti, N. K.; Tay, K. Y.

    2017-12-01

    Environmental issues on disposal and end-of-life for product made from synthetic petroleum-derived polymers have gained increasing attention from materials scientist to search for new materials with similar physical and mechanical properties but environmental friendly in a way that they are renewable and biodegradable as well. This work is to study the effect of nanocrystalline cellulose in improving the thermal stability of polyhydroxybutyrate-co-valerate biopolymer for high temperature processing of packaging material. 10 % w/w PHBV-NCC bio-nanocomposite feedstock pellet prepared using RONDOL minilab compounder was used as the sample for the preparation of Transmission Electron Microscopy (TEM) sample. RMC Cryo-Ultramicrotomy equipment was used to prepare the ultra-thin slice of the bio-nanocomposite pellet under liquid nitrogen at - 60 °C. Diamond knife was used to slice off about 80-100 nm ultra-thin bio-nanocomposite films and was transferred into the lacey carbon film coated grid using cooled sugar solution. A few drops of phosphotungstic acid was used as negative stain to improve the contrast during the TEM analysis. HITACHI TEM systems was used to obtain the TEM micrograph of PHBV-NCC bio-nanocomposite using 80kV accelerating voltage. A well dispersed NCC in PHBV matrix, ranging from 5 to 25 nm in width was observed.