Science.gov

Sample records for zobel maarja pik

  1. PIK-20 Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photo shows NASA's PIK-20E motor-glider sailplane during a research flight from the Ames-Dryden Flight Research Facility (later, the Dryden Flight Research Center), Edwards, California, in 1991. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  2. Carcinogenesis of PIK3CA

    PubMed Central

    2013-01-01

    PIK3CA is the most frequently mutated oncogene in human cancers. PIK3CA is phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha. It controls cell growth, proliferation, motility, survival, differentiation and intracellular trafficking. In most of human cancer alteration occurred frequently in the alpha isoform of phosphatidylinositol 3 kinase. PIK3CA mutations were most frequent in endometrial, ovarian, colorectal, breast, cervical, squamous cell cancer of the head and neck, chondroma, thyroid carcinoma and in cancer family syndrome. Inhibition of PI3K signaling can diminish cell proliferation, and in some circumstances, promote cell death. Consequently, components of this pathway present attractive targets for cancer therapeutics. A number of PI3K pathway inhibitors have been developed and used. PI3K inhibitors (both pan-PI3K and isoform-specific PI3K inhibitors), dual PI3K-mTOR inhibitors that are catalytic site inhibitors of the p110 isoforms and mTOR (the kinase component of both mTORC1 and mTORC2), mTOR catalytic site inhibitors, and AKT inhibitors are the most advanced in the clinic. They are approved for the treatment of several carcinomas. PMID:23768168

  3. PIK3CA and PIK3CB silencing by RNAi reverse MDR and inhibit tumorigenic properties in human colorectal carcinoma.

    PubMed

    Wu, Shuhua; Wen, Feifei; Li, Yangyang; Gao, Xiangqian; He, Shuang; Liu, Mengyao; Zhang, Xiangzhi; Tian, Dong

    2016-07-01

    Colorectal carcinoma (CRC) is the second most common and frequent cause of cancer-related deaths for men and women in the world. PIK3CA and PIK3CB that reverse multidrug resistance (MDR) can serve as predictive and prognostic markers as well as therapeutic targets for CRC treatment. In the present study, we showed that PIK3CA and PIK3CB are upregulated in CRCs and positively correlated with MDR-1, LRP, and GST-π. Long-term monitoring of 316 CRC patients showed that PIK3CA and PIK3CB were associated with poor survival time as shown by Kaplan-Meier analysis. Furthermore, we found that the downregulation of PIK3CA and PIK3CB reversed MDR; inhibited the capability of proliferation, migration, and invasion of CRC cells; and slowed down the CRC tumor growth in nude mice. Consistent with clinical observations, PIK3CA and PIK3CB significantly increase multidrug resistance of CRC cells in vivo. Together, these results suggest that PIK3CA and PIK3CB may be used as potential therapeutic drug targets for colorectal cancer.

  4. Gene of the month: PIK3CA.

    PubMed

    Lai, K; Killingsworth, M C; Lee, C S

    2015-04-01

    PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K) which through its role in the PI3K/Akt pathway is important for the regulation of important cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. Mutations in PIK3CA are known to be involved in a wide range of human cancers and mutant PIK3CA is thought to act as an oncogene. The specific PIK3CA inhibitor, NVP-BYL719, has displayed promising results in cancer therapy and is currently under clinical trials. Furthermore, PI3K regulates autophagy, a cellular process that recycles proteins and organelles through lysosomal degradation and has recently been recognised as an attractive therapeutic target due to its pro- and anti-cancer properties. Several studies have attempted to investigate the effects of combining the inhibition of both PI3K and autophagy in cancer therapy, and an in vivo model has demonstrated that the combined use of a concomitant PI3K and autophagy inhibitor induced apoptosis in glioma cells. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Mutations in PIK3CA are infrequent in neuroblastoma

    PubMed Central

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Background Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Methods Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. Results We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. Conclusion These data

  6. PIK-20 and LRV Vehicles Parked on Ramp

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photo shows NASA's PIK-20 motor-glider sailplane on the ramp at the Dryden Flight Research Center, Edwards, California. Next to the PIK-20 is the Low Reynolds Number Vehicle (LRV) remotely-piloted research vehicle. The PIK-20E was a sailplane flown at NASA's Ames-Dryden Flight Research Facility (now Dryden Flight Research Center, Edwards, California) beginning in 1981. The vehicle, bearing NASA tail number 803, was used as a research vehicle on projects calling for high lift-over-drag and low-speed performance. Later NASA used the PIK-20E to study the flow of fluids over the aircraft's surface at various speeds and angles of attack as part of a study of airflow efficiency over lifting surfaces. The single-seat aircraft was used to begin developing procedures for collecting sailplane glide performance data in a program carried out by Ames-Dryden. It was also used to study high-lift aerodynamics and laminar flow on high-lift airfoils. Built by Eiri-Avion in Finland, the PIK-20E is a sailplane with a two-cylinder 43-horsepower, retractable engine. It is made of carbon fiber with sandwich construction. In this unique configuration, it takes off and climbs to altitude on its own. After reaching the desired altitude, the engine is shut down and folded back into the fuselage and the aircraft is then operated as a conventional sailplane. Construction of the PIK-20E series was rather unusual. The factory used high-temperature epoxies cured in an autoclave, making the structure resistant to deformation with age. Unlike today's normal practice of laying glass over gelcoat in a mold, the PIK-20E was built without gelcoat. The finish is the result of smooth glass lay-up, a small amount of filler, and an acrylic enamel paint. The sailplane was 21.4 feet long and had a wingspan of 49.2 feet. It featured a wooden, fixed-pitch propeller, a roomy cockpit, wingtip wheels, and a steerable tailwheel.

  7. PIK3CA gene mutations in Northwest Chinese esophageal squamous cell carcinoma

    PubMed Central

    Liu, Shi-Yuan; Chen, Wei; Chughtai, Ehtesham Annait; Qiao, Zhe; Jiang, Jian-Tao; Li, Shao-Min; Zhang, Wei; Zhang, Jin

    2017-01-01

    AIM To evaluate PIK3CA gene mutational status in Northwest Chinese esophageal squamous cell carcinoma (ESCC) patients, and examine the associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome. METHODS A total of 210 patients with ESCC who underwent curative resection were enrolled in this study. Pyrosequencing was applied to investigate mutations in exons 9 and 20 of PIK3CA gene in 210 Northwest Chinese ESCCs. The associations of PIK3CA gene mutations with clinicopathological characteristics and clinical outcome were examined. RESULTS PIK3CA gene mutations in exon 9 were detected in 48 cases (22.9%) of a non-biased database of 210 curatively resected Northwest Chinese ESCCs. PIK3CA gene mutations were not associated with sex, tobacco use, alcohol use, tumor location, stage, or local recurrence. When compared with wild-type PIK3CA gene cases, patients with PIK3CA gene mutations in exons 9 experienced significantly better disease-free survival and overall survival rates. CONCLUSION The results of this study suggest that PIK3CA gene mutations could act as a prognostic biomarker in Northwest Chinese ESCC patients. PMID:28465643

  8. PIK3CA mutant tumors depend on oxoglutarate dehydrogenase | Office of Cancer Genomics

    Cancer.gov

    Oncogenic PIK3CA mutations are found in a significant fraction of human cancers, but therapeutic inhibition of PI3K has only shown limited success in clinical trials. To understand how mutant PIK3CA contributes to cancer cell proliferation, we used genome scale loss-of-function screening in a large number of genomically annotated cancer cell lines. As expected, we found that PIK3CA mutant cancer cells require PIK3CA but also require the expression of the TCA cycle enzyme 2-oxoglutarate dehydrogenase (OGDH).

  9. PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma.

    PubMed

    Ross, R L; McPherson, H R; Kettlewell, L; Shnyder, S D; Hurst, C D; Alder, O; Knowles, M A

    2016-07-28

    Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer.

  10. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma.

    PubMed

    Oda, Katsutoshi; Stokoe, David; Taketani, Yuji; McCormick, Frank

    2005-12-01

    The phosphatidylinositol 3'-kinase (PI3K) pathway is activated in many human cancers. In addition to inactivation of the PTEN tumor suppressor gene, mutations or amplifications of the catalytic subunit alpha of PI3K (PIK3CA) have been reported. However, the coexistence of mutations in these two genes seems exceedingly rare. As PTEN mutations occur at high frequency in endometrial carcinoma, we screened 66 primary endometrial carcinomas for mutations in the helical and catalytic domains of PIK3CA. We identified a total of 24 (36%) mutations in this gene and coexistence of PIK3CA/PTEN mutations at high frequency (26%). PIK3CA mutations were more common in tumors with PTEN mutations (17 of 37, 46%) compared with those without PTEN mutations (7 of 29, 24%). Array comparative genomic hybridization detected 3q24-qter amplification, which covers the PIK3CA gene (3q26.3), in one of nine tumors. Knocking down PTEN expression in the HEC-1B cell line, which possesses both K-Ras and PIK3CA mutations, further enhances phosphorylation of Akt (Ser473), indicating that double mutation of PIK3CA and PTEN has an additive effect on PI3K activation. Our data suggest that the PI3K pathway is extensively activated in endometrial carcinomas, and that combination of PIK3CA/PTEN alterations might play an important role in development of these tumors.

  11. Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma.

    PubMed

    Song, Zhengbo; Yu, Xinmin; Zhang, Yiping

    2016-10-01

    PIK3CA mutation represents a clinical subset of diverse carcinomas. We explored the status of PIK3CA mutation and evaluated its genetic variability, treatment, and prognosis in patients with lung adenocarcinoma. A total of 810 patients with completely resected lung adenocarcinoma were recruited between 2008 and 2013. The status of PIK3CA mutation and other three genes, that is, EGFR mutation, KRAS mutation and ALK fusion were examined by reverse transcription-polymerase chain reaction (RT-PCR). Survival curves were plotted with the Kaplan-Meier method and log-rank for comparison. Cox proportional hazard model was performed for multivariate analysis. Among the 810 patients, 23 cases of PIK3CA mutation were identified with a frequency of 2.8%. There were 14 men and 9 women with a median age of 61 years. Seventeen tumors revealed concurrent gene abnormalities of EGFR mutation (n = 12), KRAS mutation (n = 3), and ALK fusion (n = 2). Seven patients with EGFR & PIK3CA mutations recurred and administrated of EGFR-TKIs yielded a median progression free-survival of 6.0 months. Among four eviromous-treated patients, stable disease was observed in three patients with a median Progression-free survival (PFS) of 3.5 months. Patients with and without PIK3CA mutation had different overall survivals (32.2 vs. 49.6 months, P = 0.003). Multivariate analysis revealed that PIK3CA mutation was an independent predictor of poor overall survival (HR = 2.37, P = 0.017). The frequency of PIK3CA mutation was around 2.8% in the Chinese patients of lung adenocarcinoma. PIK3CA mutation was associated with reduced PFS of EGFR-TKIs treatment and shorter overall survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Gain of Function Mutations of PIK3CD as a Cause of Primary Sclerosing Cholangitis.

    PubMed

    Hartman, Heather N; Niemela, Julie; Hintermeyer, Mary K; Garofalo, Mary; Stoddard, Jennifer; Verbsky, James W; Rosenzweig, Sergio D; Routes, John M

    2015-01-01

    Gain of function (GOF) mutation in the p110δ catalytic subunit of the phosphatidylinositol-3-OH kinase (PIK3CD) is the cause of a primary immunodeficiency (PID) characterized by recurrent sinopulmonary infections and lymphoproliferation. We describe a family of two adults and three children with GOF mutation in PIK3CD, all with recurrent sinopulmonary infections and varied infectious and non-infectious complications. The two adults have Primary Sclerosing Cholangitis (PSC) without evidence of Cryptosporidium parvum infection and have required liver transplantation. PSC is a novel phenotype of GOF mutation in PIK3CD.

  13. Liquid biopsy of PIK3CA mutations in cervical cancer in Hong Kong Chinese women.

    PubMed

    Chung, Tony K H; Cheung, Tak Hong; Yim, So Fan; Yu, Mei Yun; Chiu, Rossa W K; Lo, Keith W K; Lee, Ida P C; Wong, Raymond R Y; Lau, Kitty K M; Wang, Vivian W; Worley, Michael J; Elias, Kevin M; Fiascone, Stephen J; Smith, David I; Berkowitz, Ross S; Wong, Yick Fu

    2017-08-01

    Cervical cancer is the fourth most common female cancer worldwide. The prognosis for women with advanced-stage or recurrent cervical cancer remains poor and response to treatment is variable. Standardized management protocols leave little room for individualization. We report on a novel blood-based liquid biopsy for specific PIK3CA mutations as a clinically useful biomarker in patients with invasive cervical cancer. One hundred seventeen Hong Kong Chinese women with primary invasive cervical cancer and their pre-treatment plasma samples were investigated. Two PIK3CA mutations, p.E542K and p.E545K were measured in cell free DNA (cfDNA) extracted from plasma using droplet digital PCR. This liquid biopsy of PIK3CA in cervical cancer was correlated to clinico-pathological features to verify the potential of PIK3CA as a clinically useful molecular biomarker for predicting disease prognosis and monitoring for progression. PIK3CA mutations, either p.E542K or p.E545K, were detected in plasma cfDNA from 22.2% of the patients. PIK3CA mutation status was significantly correlated to median tumor size (p<0.01). PIK3CA mutations detected in the plasma were significantly associated with decreased disease-free survival and overall survival (p<0.05). As a liquid molecular biopsy, analysis of circulating PIK3CA mutations shows promise as a way to refine risk stratification of individual patients with cervical cancer, and provides a platform for further research to offer individualized therapy with the purpose of improving outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. p55PIK regulates alpha-fetoprotein expression through the NF-κB signaling pathway.

    PubMed

    Ye, Guoguo; Sun, Ge; Cheng, Zhikui; Zhang, Lei; Hu, Kanghong; Xia, Xianmin; Zhou, Yin

    2017-12-15

    Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Program for studying fundamental interactions at the PIK reactor facilities

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Vassiljev, A. V.; Varlamov, V. E.; Geltenbort, P.; Gridnev, K. A.; Dmitriev, S. P.; Dovator, N. A.; Egorov, A. I.; Ezhov, V. F.; Zherebtsov, O. M.; Zinoviev, V. G.; Ivochkin, V. G.; Ivanov, S. N.; Ivanov, S. A.; Kolomensky, E. A.; Konoplev, K. A.; Krasnoschekova, I. A.; Lasakov, M. S.; Lyamkin, V. A.; Martemyanov, V. P.; Murashkin, A. N.; Neustroev, P. V.; Onegin, M. S.; Petelin, A. L.; Pirozhkov, A. N.; Polyushkin, A. O.; Prudnikov, D. V.; Ryabov, V. L.; Samoylov, R. M.; Sbitnev, S. V.; Fomin, A. K.; Fomichev, A. V.; Zimmer, O.; Cherniy, A. V.; Shoka, I. V.

    2016-05-01

    A research program aimed at studying fundamental interactions by means of ultracold and polarized cold neutrons at the GEK-4-4' channel of the PIK reactor is presented. The apparatus to be used includes a source of cold neutrons in the heavy-water reflector of the reactor, a source of ultracold neutrons based on superfluid helium and installed in a cold-neutron beam extracted from the GEK-4 channel, and a number of experimental facilities in neutron beams. An experiment devoted to searches for the neutron electric dipole moment and an experiment aimed at a measurement the neutron lifetime with the aid of a large gravitational trap are planned to be performed in a beam of ultracold neutrons. An experiment devoted to measuring neutron-decay asymmetries with the aid of a superconducting solenoid is planned in a beam of cold polarized neutrons from the GEK-4' channel. The second ultracold-neutron source and an experiment aimed at measuring the neutron lifetime with the aid of a magnetic trap are planned in the neutron-guide system of the GEK-3 channel. In the realms of neutrino physics, an experiment intended for sterile-neutrino searches is designed. The state of affairs around the preparation of the experimental equipment for this program is discussed.

  16. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation, function and EBV immunity.

    PubMed

    Edwards, Emily S J; Bier, Julia; Cole, Theresa S; Wong, Melanie; Hsu, Peter; Berglund, Lucinda J; Boztug, Kaan; Lau, Anthony; Gostick, Emma; Price, David A; O'Sullivan, Michael; Meyts, Isabelle; Choo, Sharon; Gray, Paul; Holland, Steven M; Deenick, Elissa K; Uzel, Gulbu; Tangye, Stuart G

    2018-05-22

    Germline gain-of function (GOF) mutations in PIK3CD, encoding the catalytic p110δ subunit of phosphatidylinositol-3 kinase, result in hyperactivation of the PI3K-AKT-mTOR pathway and underlie a novel inborn error of immunity. Affected individuals exhibit perturbed humoral and cellular immunity, manifesting as recurrent infections, autoimmunity, hepatosplenomegaly, uncontrolled EBV and/or CMV infection, and an increased incidence of B-cell lymphoproliferation and/or lymphoma. Mechanisms underlying disease pathogenesis remain unknown. Understanding the cellular and molecular mechanisms underpinning inefficient surveillance of EBV-infected B cells is required to understand disease in individuals with PIK3CD GOF mutations, identify key molecules required for cell mediated immunity against EBV, and develop immunotherapeutic interventions for the treatment of this as well as other EBV-opathies. We studied the consequences of PIK3CD GOF mutations on the generation, differentiation and function of CD8 + T cells and NK cells, which are implicated in host defense against infection with herpesviruses including EBV. PIK3CD GOF total and EBV-specific CD8 + T cells were skewed towards an effector phenotype, with exaggerated expression of markers associated with premature immunosenescence/exhaustion, and increased susceptibility to re-activation induced cell death. These findings were recapitulated in a novel mouse model of PI3K GOF. NK cells in PIK3CD GOF individuals also exhibited perturbed expression of differentiation-associated molecules. Both CD8 + T cells and NK cells had reduced capacity to kill EBV-infected B cells. PIK3CD GOF B cells had increased expression of CD48, PDL-1/2 and CD70. PIK3CD GOF mutations aberrantly induce exhaustion and/or senescence and impair cytotoxicity of CD8+ T and NK cells. These defects may contribute to clinical features of affected individuals, such as impaired immunity to herpesviruses and tumor surveillance. Copyright © 2018. Published by

  17. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  18. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    PubMed

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  19. Evaluation of PIK3CA mutations as a biomarker in Chinese breast carcinomas from Western China.

    PubMed

    Cheng, Jingliang; Fu, Shangyi; Wei, Chunli; Tania, Mousumi; Khan, Md Asaduzzaman; Imani, Saber; Zhou, Baixu; Chen, Hanchun; Xiao, Xiuli; Wu, Jingbo; Fu, Junjiang

    2017-01-01

    PIK3CA gene encodes the p110 α catalytic subunit of the oncoprotein phosphatidylinositol 3-kinase (PI3 K) which regulates many biological processes such as cell proliferation, differentiation, migration and survival through the activation of various signaling pathways. In this study, we have investigated the possible somatic mutations in PIK3CA gene in invasive ductal breast carcinomas of Chinese women from Western China. Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE) tissue samples. The hotspot mutations in PIK3CA gene of exon 9 and exon 20 were studied by pyrosequencing. The sequencing identified two hotspot mutations in exon 20 of one cancer samples at p. H1047L (c. 3140A > T) and eight cancer sample at p. H1047R (c. 3140A > G). No mutation in exon 9 of PIK3CA gene was found in these breast cancer tissue samples. PIK3CA mutations showed surprising clinicopathological features in breast cancer patients, as incidence of lymph node invasiveness is increased in the patients with PIK3CA mutation. In addition, all the patients showed tumor size bigger than 3 cm in diameter. It is important that for early detection and early treatment for BC in developing countries or areas like Western China, and for people to provide popularization education using scientific knowledge in cancer fields. This study identified PIK3CA mutations in breast carcinoma patients of Western China that will enable a more rapid molecular diagnosis, and provide a stronger rationale evidence for development of precision therapeutic approaches as well as promising therapeutic targets for breast cancer treatment or patient management.

  20. Dual CCNE1/PIK3CA targeting is synergistic in CCNE1-amplified/PIK3CA-mutated uterine serous carcinomas in vitro and in vivo

    PubMed Central

    Cocco, Emiliano; Lopez, Salvatore; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; Menderes, Gulden; Zammataro, Luca; Buza, Natalia; Hui, Pei; Wong, Serena; Zhao, Siming; Bai, Yalai; Rimm, David L; Ratner, Elena; Litkouhi, Babak; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2016-01-01

    Background: Clinical options for patients harbouring advanced/recurrent uterine serous carcinoma (USC), an aggressive variant of endometrial tumour, are very limited. Next-generation sequencing (NGS) data recently demonstrated that cyclin E1 (CCNE1) gene amplification and pik3ca driver mutations are common in USC and may therefore represent ideal therapeutic targets. Methods: Cyclin E1 expression was evaluated by immunohistochemistry (IHC) on 95 USCs. The efficacy of the cyclin-dependent kinase 2/9 inhibitor CYC065 was assessed on multiple primary USC cell lines with or without CCNE1 amplification. Cell-cycle analyses and knockdown experiments were performed to assess CYC065 targeting specificity. Finally, the in vitro and in vivo activity of CYC065, Taselisib (a PIK3CA inhibitor) and their combinations was tested on USC xenografts derived from CCNE1-amplified/pik3ca-mutated USCs. Results: We found that 89.5% of the USCs expressed CCNE1. CYC065 blocked cells in the G1 phase of the cell cycle and inhibited cell growth specifically in CCNE1-overexpressing USCs. Cyclin E1 knockdown conferred increased resistance to CYC065, whereas CYC065 treatment of xenografts derived from CCNE1-amplified USCs significantly reduced tumour growth. The combination of CYC065 and Taselisib demonstrated synergistic effect in vitro and was significantly more effective than single-agent treatment in decreasing tumour growth in xenografts of CCNE1-amplified/pik3ca-mutated USCs. Conclusions: Dual CCNE1/PIK3CA blockade may represent a novel therapeutic option for USC patients harbouring recurrent CCNE1-amplified/pi3kca-mutated tumours. PMID:27351214

  1. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses

    PubMed Central

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1–CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. PMID:25694549

  2. The Capsicum annuum class IV chitinase ChitIV interacts with receptor-like cytoplasmic protein kinase PIK1 to accelerate PIK1-triggered cell death and defence responses.

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-04-01

    The pepper receptor-like cytoplasmic protein kinase, CaPIK1, which mediates signalling of plant cell death and defence responses was previously identified. Here, the identification of a class IV chitinase, CaChitIV, from pepper plants (Capsicum annuum), which interacts with CaPIK1 and promotes CaPIK1-triggered cell death and defence responses, is reported. CaChitIV contains a signal peptide, chitin-binding domain, and glycol hydrolase domain. CaChitIV expression was up-regulated by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Notably, avirulent Xcv infection rapidly induced CaChitIV expression in pepper leaves. Bimolecular fluorescence complementation and co-immunoprecipitation revealed that CaPIK1 interacts with CaChitIV in planta, and that the CaPIK1-CaChitIV complex is localized mainly in the cytoplasm and plasma membrane. CaChitIV is also localized in the endoplasmic reticulum. Transient co-expression of CaChitIV with CaPIK1 enhanced CaPIK1-triggered cell death response and reactive oxygen species (ROS) and nitric oxide (NO) bursts. Co-silencing of both CaChitIV and CaPIK1 in pepper plants conferred enhanced susceptibility to Xcv infection, which was accompanied by a reduced induction of cell death response, ROS and NO bursts, and defence response genes. Ectopic expression of CaPIK1 in Arabidopsis enhanced basal resistance to Hyaloperonospora arabidopsidis infection. Together, the results suggest that CaChitIV positively regulates CaPIK1-triggered cell death and defence responses through its interaction with CaPIK1. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. PIK3CA Mutations in Mucinous Cystic Neoplasms of the Pancreas

    PubMed Central

    Garcia-Carracedo, Dario; Chen, Zong-Ming; Qiu, Wanglong; Huang, Alicia S.; Tang, Sophia M.; Hruban, Ralph H.; Su, Gloria H.

    2014-01-01

    Objectives Mucinous cystic neoplasms (MCNs) are rare, potentially curable, mucin-producing neoplasms of the pancreas. We have previously reported PIK3CA (phosphoinositide-3-kinase catalytic subunit, p110α) mutations in intraductal papillary mucinous neoplasms, another mucin-producing neoplasm of the pancreas. In this study, we analyzed the presence of PIK3CA and AKT1/PKB (V-akt murine thymoma viral oncogene homolog 1) hot-spot mutations in MCN specimens. Methods Using the genomic DNA sequencing of tumor tissues isolated by laser capture microdissection, we evaluated 15 well-characterized MCNs for the E542K, E545K(exon 9), and H1047R (exon 20) hot-spotmutations in the PIK3CA gene and the E17K mutation in the AKT1 gene. Results A hot-spotmutation (E545K) of the PIK3CA gene was detected in 1 of the 15 MCNs and further confirmed by a mutant-enriched method. Interestingly, this mutation was found to be present only in the high-grade but not in low-grade dysplastic epithelium obtained from this neoplasm and coexisted with a KRASG12D mutation. No mutations were identified in the AKT1 gene. Conclusions Our data, when combined with previous reports on intraductal papillary mucinous neoplasms, indicate that oncogenic activation of the PI3K pathway involving PIK3CA gene mutations can contribute to the progression of mucin-producing neoplasms but not pancreatic intraepithelial neoplasia. PIK3CA status could be useful for understanding their progression to malignancy. PMID:24518503

  4. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  5. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis.

    PubMed

    Groesser, L; Herschberger, E; Landthaler, M; Hafner, C

    2012-04-01

    Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  6. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1.

    PubMed

    Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru

    2018-02-19

    Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA

    SciTech Connect

    Wang, Yihui; Tang, Qingchao; Li, Mingqi

    2014-02-07

    Highlights: • miR-375 is downregulated in colorectal cancer cell lines and tissues. • miR-375 inhibits colorectal cancer cell growth by targeting PIK3CA. • miR-375 inhibits colorectal cancer cell growth in xenograft nude mice model. - Abstract: Colorectal cancer (CRC) is the second most common cause of death from cancer. MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by triggering RNA degradation or interfering with translation. Aberrant miRNA expression is involved in human disease including cancer. Herein, we showed that miR-375 was frequently down-regulated in human colorectal cancer cell lines and tissues when compared to normalmore » human colon tissues. PIK3CA was identified as a potential miR-375 target by bioinformatics. Overexpression of miR-375 in SW480 and HCT15 cells reduced PIK3CA protein expression. Subsequently, using reporter constructs, we showed that the PIK3CA untranslated region (3′-UTR) carries the directly binding site of miR-375. Additionally, miR-375 suppressed CRC cell proliferation and colony formation and led to cell cycle arrest. Furthermore, miR-375 overexpression resulted in inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. SiRNA-mediated silencing of PIK3CA blocked the inhibitory effect of miR-375 on CRC cell growth. Lastly, we found overexpressed miR-375 effectively repressed tumor growth in xenograft animal experiments. Taken together, we propose that overexpression of miR-375 may provide a selective growth inhibition for CRC cells by targeting PI3K/Akt signaling pathway.« less

  8. University of Texas MD Anderson Cancer Center: Characterization of PIK3R1 Neomorphic Mutations | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to functionally characterize the most frequent mutation of the PIK3R1 gene and to explore potential therapeutic approaches to target the aberration. Read the abstract Experimental Approaches Cytotoxicity Screen

  9. Prognostic role of tumor PIK3CA mutation in colorectal cancer: a systematic review and meta-analysis.

    PubMed

    Mei, Z B; Duan, C Y; Li, C B; Cui, L; Ogino, S

    2016-10-01

    Somatic mutations in the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway play a vital role in carcinogenesis. Approximately 15%-20% of colorectal cancers (CRCs) harbor activating mutations in PIK3CA, making it one of the most frequently mutated genes in CRC. We thus carried out a systematic review and meta-analysis investigating the prognostic significance of PIK3CA mutations in CRC. Electronic databases were searched from inception through May 2015. We extracted the study characteristics and prognostic data of each eligible study. The hazard ratio (HR) and 95% confidence interval (CI) were derived and pooled using the random-effects Mantel-Haenszel model. Twenty-eight studies enrolling 12 747 patients were eligible for inclusion. Data on overall survival (OS) and progression-free survival (PFS) were available from 19 and 10 studies, respectively. Comparing PIK3CA-mutated CRC patients with PIK3CA-wild-type CRC patients, the summary HRs for OS and PFS were 0.96 (95% CI 0.83-1.12) and 1.20 (95% CI 0.98-1.46), respectively. The trim-and-fill, Copas model and subgroup analyses stratified by the study characteristics confirmed the robustness of the results. Five studies reported the CRC prognosis for PIK3CA mutations in exons 9 and 20 separately; neither exon 9 mutation nor exon 20 mutation in PIK3CA was significantly associated with patient survival. Our findings suggest that PIK3CA mutation has the neutral prognostic effects on CRC OS and PFS. Evidence was accumulating for the establishment of CRC survival between PIK3CA mutations and patient-specific clinical or molecular profiles. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Activating PIK3CA mutations coexist with BRAF or NRAS mutations in a limited fraction of melanomas.

    PubMed

    Manca, Antonella; Lissia, Amelia; Capone, Mariaelena; Ascierto, Paolo A; Botti, Gerardo; Caracò, Corrado; Stanganelli, Ignazio; Colombino, Maria; Sini, MariaCristina; Cossu, Antonio; Palmieri, Giuseppe

    2015-01-28

    Activated PI3K-AKT pathway may contribute to decrease sensitivity to inhibitors of key pathogenetic effectors (mutated BRAF, active NRAS or MEK) in melanoma. Functional alterations are deeply involved in PI3K-AKT activation, with a minimal role reported for mutations in PIK3CA, the catalytic subunit of the PI3K gene. We here assessed the prevalence of the coexistence of BRAF/NRAS and PIK3CA mutations in a series of melanoma samples. A total of 245 tumor specimens (212 primary melanomas and 33 melanoma cell lines) was screened for mutations in BRAF, NRAS, and PIK3CA genes by automated direct sequencing. Overall, 110 (44.9%) samples carried mutations in BRAF, 26 (10.6%) in NRAS, and 24 (9.8%) in PIK3CA. All identified PIK3CA mutations have been reported to induce PI3K activation; those detected in cultured melanomas were investigated for their interference with the antiproliferative activity of the BRAF-mutant inhibitor vemurafenib. A reduced suppression in cell growth was observed in treated cells carrying both BRAF and PIK3CA mutations as compared with those presenting a mutated BRAF only. Among the analysed melanomas, 12/245 (4.9%) samples presented the coexistence of PIK3CA and BRAF/NRAS mutations. Our study further suggests that PIK3CA mutations account for a small fraction of PI3K pathway activation and have a limited impact in interfering with the BRAF/NRAS-driven growth in melanoma.

  11. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution

    PubMed Central

    Timms, Andrew E.; Conti, Valerio; Girisha, Katta M.; Martin, Beth; Olds, Carissa; Collins, Sarah; Park, Kaylee; Carter, Melissa; Krägeloh-Mann, Inge; Chitayat, David; Parikh, Aditi Shah; Bradshaw, Rachael; Torti, Erin; Braddock, Stephen; Burke, Leah; Ghedia, Sondhya; Stephan, Mark; Stewart, Fiona; Prasad, Chitra; Napier, Melanie; Saitta, Sulagna; Straussberg, Rachel; Gabbett, Michael; O’Connor, Bridget C.; Yin, Lim Jiin; Lai, Angeline Hwei Meeng; Martin, Nicole; McKinnon, Margaret; Addor, Marie-Claude; Schwartz, Charles E.; Lanoel, Agustina; Conway, Robert L.; Devriendt, Koenraad; Tatton-Brown, Katrina; Pierpont, Mary Ella; Painter, Michael; Worgan, Lisa; Reggin, James; Hennekam, Raoul; Pritchard, Colin C.; Aracena, Mariana; Gripp, Karen W.; Cordisco, Maria; Van Esch, Hilde; Garavelli, Livia; Curry, Cynthia; Goriely, Anne; Kayserilli, Hulya; Shendure, Jay; Graham, John; Guerrini, Renzo; Dobyns, William B.

    2016-01-01

    Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of PIK3CA have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identified PIK3CA mutations in 60 individuals. Several other individuals (n = 12) were identified separately to have mutations in PIK3CA by clinical targeted-panel testing (n = 6), whole-exome sequencing (n = 5), or Sanger sequencing (n = 1). Based on the clinical and molecular features, this cohort segregated into three distinct groups: (a) severe focal overgrowth due to low-level but highly activating (hotspot) mutations, (b) predominantly brain overgrowth and less severe somatic overgrowth due to less-activating mutations, and (c) intermediate phenotypes (capillary malformations with overgrowth) with intermediately activating mutations. Sixteen of 29 PIK3CA mutations were novel. We also identified constitutional PIK3CA mutations in 10 patients. Our molecular data, combined with review of the literature, show that PIK3CA-related overgrowth disorders comprise a discontinuous spectrum of disorders that correlate with the severity and distribution of mutations. PMID:27631024

  12. GA binding protein augments autophagy via transcriptional activation of BECN1-PIK3C3 complex genes

    PubMed Central

    Zhu, Wan; Swaminathan, Gayathri; Plowey, Edward D

    2014-01-01

    Macroautophagy is a vesicular catabolic trafficking pathway that is thought to protect cells from diverse stressors and to promote longevity. Recent studies have revealed that transcription factors play important roles in the regulation of autophagy. In this study, we have identified GA binding protein (GABP) as a transcriptional regulator of the combinatorial expression of BECN1-PIK3C3 complex genes involved in autophagosome initiation. We performed bioinformatics analyses that demonstrated highly conserved putative GABP sites in genes that encode BECN1/Beclin 1, several BECN1 interacting proteins, and downstream autophagy proteins including the ATG12–ATG5-ATG16L1 complex. We demonstrate that GABP binds to the promoter regions of BECN1-PIK3C3 complex genes and activates their transcriptional activities. Knockdown of GABP reduced BECN1-PIK3C3 complex transcripts, BECN1-PIK3C3 complex protein levels and autophagy in cultured cells. Conversely, overexpression of GABP increased autophagy. Nutrient starvation increased GABP-dependent transcriptional activity of BECN1-PIK3C3 complex gene promoters and increased the recruitment of GABP to the BECN1 promoter. Our data reveal a novel function of GABP in the regulation of autophagy via transcriptional activation of the BECN1-PIK3C3 complex. PMID:25046113

  13. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis.

    PubMed

    Charles, Roch-Philippe; Silva, Jillian; Iezza, Gioia; Phillips, Wayne A; McMahon, Martin

    2014-07-01

    Thyroid malignancies are the most common type of endocrine tumors. Of the various histologic subtypes, anaplastic thyroid carcinoma (ATC) represents a subset of all cases but is responsible for a significant proportion of thyroid cancer-related mortality. Indeed, ATC is regarded as one of the more aggressive and hard to treat forms of cancer. To date, there is a paucity of relevant model systems to critically evaluate how the signature genetic abnormalities detected in human ATC contribute to disease pathogenesis. Mutational activation of the BRAF protooncogene is detected in approximately 40% of papillary thyroid carcinoma (PTC) and in 25% of ATC. Moreover, in ATC, mutated BRAF is frequently found in combination with gain-of-function mutations in the p110 catalytic subunit of PI3'-Kinase (PIK3CA) or loss-of-function alterations in either the p53 (TP53) or PTEN tumor suppressors. Using mice with conditional, thyrocyte-specific expression of BRAF(V600E), we previously developed a model of PTC. However, as in humans, BRAF(V600E)-induced mouse PTC is indolent and does not lead to rapid development of end-stage disease. Here, we use mice carrying a conditional allele of PIK3CA to demonstrate that, although mutationally activated PIK3CA(H1047R) is unable to drive transformation on its own, when combined with BRAF(V600E) in thyrocytes, this leads to development of lethal ATC in mice. Combined, these data demonstrate that the BRAF(V600E) cooperates with either PIK3CA(H1074R) or with silencing of the tumor-suppressor PTEN, to promote development of anaplastic thyroid carcinoma. This genetically relevant mouse model of ATC will be an invaluable platform for preclinical testing of pathway-targeted therapies for the prevention and treatment of thyroid carcinoma. ©2014 American Association for Cancer Research.

  14. Insulin resistance uncoupled from dyslipidemia due to C-terminal PIK3R1 mutations

    PubMed Central

    Huang-Doran, Isabel; Tomlinson, Patsy; Payne, Felicity; Gast, Alexandra; Sleigh, Alison; Bottomley, William; Harris, Julie; Daly, Allan; Rocha, Nuno; Rudge, Simon; Clark, Jonathan; Kwok, Albert; Romeo, Stefano; McCann, Emma; Müksch, Barbara; Dattani, Mehul; Zucchini, Stefano; Wakelam, Michael; Foukas, Lazaros C.; Savage, David B.; Murphy, Rinki; O’Rahilly, Stephen; Semple, Robert K.

    2016-01-01

    Obesity-related insulin resistance is associated with fatty liver, dyslipidemia, and low plasma adiponectin. Insulin resistance due to insulin receptor (INSR) dysfunction is associated with none of these, but when due to dysfunction of the downstream kinase AKT2 phenocopies obesity-related insulin resistance. We report 5 patients with SHORT syndrome and C-terminal mutations in PIK3R1, encoding the p85α/p55α/p50α subunits of PI3K, which act between INSR and AKT in insulin signaling. Four of 5 patients had extreme insulin resistance without dyslipidemia or hepatic steatosis. In 3 of these 4, plasma adiponectin was preserved, as in insulin receptor dysfunction. The fourth patient and her healthy mother had low plasma adiponectin associated with a potentially novel mutation, p.Asp231Ala, in adiponectin itself. Cells studied from one patient with the p.Tyr657X PIK3R1 mutation expressed abundant truncated PIK3R1 products and showed severely reduced insulin-stimulated association of mutant but not WT p85α with IRS1, but normal downstream signaling. In 3T3-L1 preadipocytes, mutant p85α overexpression attenuated insulin-induced AKT phosphorylation and adipocyte differentiation. Thus, PIK3R1 C-terminal mutations impair insulin signaling only in some cellular contexts and produce a subphenotype of insulin resistance resembling INSR dysfunction but unlike AKT2 dysfunction, implicating PI3K in the pathogenesis of key components of the metabolic syndrome. PMID:27766312

  15. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes

    PubMed Central

    Rivière, Jean-Baptiste; Mirzaa, Ghayda M.; O’Roak, Brian J.; Beddaoui, Margaret; Alcantara, Diana; Conway, Robert L.; St-Onge, Judith; Schwartzentruber, Jeremy A.; Gripp, Karen W.; Nikkel, Sarah M.; Worthylake, Thea; Sullivan, Christopher T.; Ward, Thomas R.; Butler, Hailly E.; Kramer, Nancy A.; Albrecht, Beate; Armour, Christine M.; Armstrong, Linlea; Caluseriu, Oana; Cytrynbaum, Cheryl; Drolet, Beth A.; Innes, A. Micheil; Lauzon, Julie L.; Lin, Angela E.; Mancini, Grazia M. S.; Meschino, Wendy S.; Reggin, James D.; Saggar, Anand K.; Lerman-Sagie, Tally; Uyanik, Gökhan; Weksberg, Rosanna; Zirn, Birgit; Beaulieu, Chandree L.; Majewski, Jacek; Bulman, Dennis E.; O’Driscoll, Mark; Shendure, Jay; Graham, John M.; Boycott, Kym M.; Dobyns, William B.

    2012-01-01

    Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features1-5. We performed exome sequencing in three families with MCAP or MPPH and confirmed our initial observations in exomes from 7 MCAP and 174 control individuals, as well as in 40 additional megalencephaly subjects using a combination of Sanger sequencing, restriction-enzyme assays, and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. These include two mutations of AKT3, one recurrent mutation of PIK3R2 in 11 unrelated MPPH families, and 15 mostly postzygotic mutations of PIK3CA in 23 MCAP and one MPPH patients. Our data highlight the central role of PI3K/AKT signaling in vascular, limb and brain development, and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism. PMID:22729224

  16. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes.

    PubMed

    Rivière, Jean-Baptiste; Mirzaa, Ghayda M; O'Roak, Brian J; Beddaoui, Margaret; Alcantara, Diana; Conway, Robert L; St-Onge, Judith; Schwartzentruber, Jeremy A; Gripp, Karen W; Nikkel, Sarah M; Worthylake, Thea; Sullivan, Christopher T; Ward, Thomas R; Butler, Hailly E; Kramer, Nancy A; Albrecht, Beate; Armour, Christine M; Armstrong, Linlea; Caluseriu, Oana; Cytrynbaum, Cheryl; Drolet, Beth A; Innes, A Micheil; Lauzon, Julie L; Lin, Angela E; Mancini, Grazia M S; Meschino, Wendy S; Reggin, James D; Saggar, Anand K; Lerman-Sagie, Tally; Uyanik, Gökhan; Weksberg, Rosanna; Zirn, Birgit; Beaulieu, Chandree L; Majewski, Jacek; Bulman, Dennis E; O'Driscoll, Mark; Shendure, Jay; Graham, John M; Boycott, Kym M; Dobyns, William B

    2012-06-24

    Megalencephaly-capillary malformation (MCAP) and megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndromes are sporadic overgrowth disorders associated with markedly enlarged brain size and other recognizable features. We performed exome sequencing in 3 families with MCAP or MPPH, and our initial observations were confirmed in exomes from 7 individuals with MCAP and 174 control individuals, as well as in 40 additional subjects with megalencephaly, using a combination of Sanger sequencing, restriction enzyme assays and targeted deep sequencing. We identified de novo germline or postzygotic mutations in three core components of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway. These include 2 mutations in AKT3, 1 recurrent mutation in PIK3R2 in 11 unrelated families with MPPH and 15 mostly postzygotic mutations in PIK3CA in 23 individuals with MCAP and 1 with MPPH. Our data highlight the central role of PI3K-AKT signaling in vascular, limb and brain development and emphasize the power of massively parallel sequencing in a challenging context of phenotypic and genetic heterogeneity combined with postzygotic mosaicism.

  17. CLOVES syndrome: review of a PIK3CA-related overgrowth spectrum (PROS).

    PubMed

    Martinez-Lopez, A; Blasco-Morente, G; Perez-Lopez, I; Herrera-Garcia, J D; Luque-Valenzuela, M; Sanchez-Cano, D; Lopez-Gutierrez, J C; Ruiz-Villaverde, R; Tercedor-Sanchez, J

    2017-01-01

    Overgrowth syndromes are characterized by global or localized disproportionate growth associated with other anomalies, including vascular malformations and neurological and/or visceral disorders. CLOVES (Congenital Lipomatous asymmetric Overgrowth of the trunk with lymphatic, capillary, venous, and combined-type Vascular malformations, Epidermal naevi, Scoliosis/Skeletal and spinal anomalies) is an overgrowth syndrome caused by mosaic activating mutation in gene PIK3CA, which gives rise to abnormal PI3K-AKT-mTOR pathway activation. These mutations are responsible for the clinical manifestations of the syndrome, which include low- and high-flow vascular malformations, thoracic lipomatous hyperplasia, asymmetric growth, and visceral and neurological disorders. These common anomalies are illustrated with figures from two personal cases. Identification of the clinical and genetic characteristics of CLOVES syndrome is crucial for the differential diagnosis with other overgrowth syndromes, such as Proteus or Klippel-Trenaunay (K-T) syndromes, and for the therapeutic management of the different anomalies. In this context, a new entity comprising different syndromes with phenotypic mutations in PIK3CA has been proposed, designated PIK3CA-related overgrowth spectrum (PROS), with the aim of facilitating clinical management and establishing appropriate genetic study criteria. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern

    PubMed Central

    Hafner, Christian; López-Knowles, Elena; Luis, Nuno M.; Toll, Agustí; Baselga, Eulàlia; Fernández-Casado, Alex; Hernández, Silvia; Ribé, Adriana; Mentzel, Thomas; Stoehr, Robert; Hofstaedter, Ferdinand; Landthaler, Michael; Vogt, Thomas; Pujol, Ramòn M.; Hartmann, Arndt; Real, Francisco X.

    2007-01-01

    Activating mutations of the p110 α subunit of PI3K (PIK3CA) oncogene have been identified in a broad spectrum of malignant tumors. However, their role in benign or preneoplastic conditions is unknown. Activating FGF receptor 3 (FGFR3) mutations are common in benign skin lesions, either as embryonic mutations in epidermal nevi (EN) or as somatic mutations in seborrheic keratoses (SK). FGFR3 mutations are also common in low-grade malignant bladder tumors, where they often occur in association with PIK3CA mutations. Therefore, we examined exons 9 and 20 of PIK3CA and FGFR3 hotspot mutations in EN (n = 33) and SK (n = 62), two proliferative skin lesions lacking malignant potential. Nine of 33 (27%) EN harbored PIK3CA mutations; all cases showed the E545G substitution, which is uncommon in cancers. In EN, R248C was the only FGFR3 mutation identified. By contrast, 10 of 62 (16%) SK revealed the typical cancer-associated PIK3CA mutations E542K, E545K, and H1047R. The same lesions displayed a wide range of FGFR3 mutations. Corresponding unaffected tissue was available for four EN and two mutant SK: all control samples displayed a WT sequence, confirming the somatic nature of the mutations found in lesional tissue. Forty of 95 (42%) lesions showed at least one mutation in either gene. PIK3CA and FGFR3 mutations displayed an independent distribution; 5/95 lesions harbored mutations in both genes. Our findings suggest that, in addition to their role in cancer, oncogenic PIK3CA mutations contribute to the pathogenesis of skin tumors lacking malignant potential. The remarkable genotype–phenotype correlation as observed in this study points to a distinct etiopathogenesis of the mutations in keratinocytes occuring either during fetal development or in adult life. PMID:17673550

  19. ESR1 and PIK3CA mutational status in serum and plasma from metastatic breast cancer patients: A comparative study.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Iwase, Hirotaka

    2018-04-07

    Plasma and serum cell-free DNA (cfDNA) are useful sources of tumor DNA, but comparative investigations of the tumor mutational status between them are rare. we performed droplet digital PCR assay for representative hotspot mutations in metastatic breast cancer (MBC) (ESR1 and PIK3CA) in serum and plasma cfDNA concurrently extracted from the blood of 33 estrogen receptor-positive MBC patients. ESR1 mutations in plasma cfDNA were found in 7 of the 33 patients; ESR1 mutations in serum cfDNA were detected in only one out of 7 patients with ESR1 mutations in plasma cfDNA. PIK3CA exon 9 and exon 20 mutations in plasma cfDNA were found in 3 and 7 out of the 33 patients, respectively; PIK3CA exon 9 mutations in serum cfDNA were detected in 2 out of 3 patients with PIK3CA exon 9 mutations in plasma cfDNA; PIK3CA exon 20 mutations in serum cfDNA were detected in 2 out of 7 patients with PIK3CA exon 20 mutations in plasma cfDNA. Here we show the higher frequency of ESR1 and PIK3CA mutations in the plasma than in the serum in 33 MBC patients; therefore, serum samples should not be considered the preferred source of cfDNA.

  20. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA.

    PubMed

    Kong, Dexin; Yamori, Takao; Yamazaki, Kanami; Dan, Shingo

    2014-12-01

    As accumulating evidences suggest close involvement of phosphatidylinositol 3-kinase (PI3K) in cancer, novel PI3K inhibitors such as ZSTK474, GDC-0941, NVP-BEZ235 and BKM-120 have been developed for cancer therapy. A high frequency of hotspot mutations known as E542K, E545K and H1047R in the PIK3CA gene, which encodes the catalytic subunit of PI3Kα, has been found in various types of human cancers. The hotspot PIK3CA mutations also lead to resistance to therapeutics targeting epidermal growth factor receptor (EGFR), further suggesting that inhibition of hotspot mutant PIK3CA be required for a PI3K inhibitor as anticancer drug candidate. To investigate the activity of the novel PI3K inhibitors on the hotspot mutant PIK3CA, we determined the inhibition against the respective recombinant mutant PI3Kαs by biochemical assay. We further examined the activity at cellular background by determining the effect on phosphorylation of Akt (Ser473), and that on the growth of cancer cells. In addition, apoptosis and autophagy in cells with or without hotspot PIK3CA mutation induced by the four inhibitors were investigated. Our results indicated that each inhibitor exhibit comparable activity on the hotspot mutant PI3Kα to that on the wild type, which was further demonstrated by the cell-based assays. No clear correlation was shown between the PIK3CA genetic status and the sensitivity for apoptosis or autophagy induction. Interestingly, among the 4 PI3K inhibitors, BKM-120 is the weakest in PI3K inhibitory potency, but induces most potent apoptosis, suggesting that BKM-120 might have a unique mode of action. Our result shows that the PI3K inhibitors exhibit potent activity on both hotspot mutant and wild type PI3Kα, suggesting they might be used to treat patients with or without PIK3CA mutation when approved.

  1. Aspirin-induced chemoprevention and response kinetics are enhanced by PIK3CA mutations in colorectal cancer cells

    PubMed Central

    Zumwalt, Timothy J; Wodarz, Dominik; Komarova, Natalia L; Toden, Shusuke; Turner, Jacob; Cardenas, Jacob; Burn, John; Chan, Andrew T; Boland, C Richard; Goel, Ajay

    2017-01-01

    This study was designed to determine how aspirin influences the growth kinetics and characteristics of cultured colorectal cancer (CRC) cells that harbor a variety of different mutational backgrounds, including PIK3CA and KRAS activating mutations and the presence or absence of microsatellite instability. CRC cell lines (HCT116, HCT116+Chr3/5, RKO, SW480, HCT15, CACO2, HT29, and SW48) were treated with pharmacologically relevant doses of aspirin (0.5–10 mM) and evaluated for proliferation and cell cycle distribution. These parameters were fitted to a mathematical model to quantify the effects and understand the mechanism(s) by which aspirin modifies growth in CRC cells. We also evaluated the effects of aspirin on key G0/G1 cell cycle genes that are regulated by PI3K-Akt pathway. Aspirin decelerated growth rates and disrupted cell cycle dynamics more profoundly in faster growing CRC cell lines, which tended to be PIK3CA-mutants. Additionally, microarray analysis of 151 CRC cell lines identified important cell cycle regulatory genes downstream targets of PIK3, which were dysregulated by aspirin treatment cycle genes (PCNA and RB1, p<0.01). Our study demonstrated what clinical trials have only speculated, that PIK3CA-mutant CRCs are more sensitive to aspirin. Aspirin inhibited cell growth in all CRC cell lines regardless of mutational background, but the effects were exacerbated in cells with PIK3CA mutations. Mathematical modeling combined with bench science revealed that cells with PIK3CA mutations experience significant G0/G1 arrest and explains why patients with PIK3CA-mutant CRCs may benefit from aspirin use after diagnosis. PMID:28154202

  2. Neomorphic Mutations in PIK3R1 Confer Sensitivity to MAPK Inhibitors due to Activation of ERK and JNK Pathways | Office of Cancer Genomics

    Cancer.gov

    In a recent publication in Cancer Cell, CTD2 investigators discovered that a known cancer-associated gain-of-function alteration in phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) results in novel protein activity that confers sensitivity to mitogen-activated protein kinase (MAPK) inhibitors. The PIK3R1 gene encodes the p85α regulatory subunit of PIK3. Under normal conditions, p85α suppresses PIK3 mediated activation of downstream pathways that promote cell growth and survival.

  3. Response of head and neck squamous cell carcinoma cells carrying PIK3CA mutations to selected targeted therapies.

    PubMed

    Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M

    2015-06-01

    The PIK3CA mutation is one of the most common mutations in head and neck squamous cell carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. (1) To determine the role of oncogene dependence on PIK3CA-one of the more common and targetable oncogenes in HNSCC, and (2) to evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. This was a cell culture-based, in vitro study performed at an academic research laboratory assessing the viability of PIK3CA-mutated head and neck cell lines when treated with targeted therapy. PIK3CA-mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R. Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred increased, rather than reduced, IC50 assay measurements when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared with the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared with control, whereas those expressing E545K showed slightly increased sensitivity of unclear significance. (1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared with control with dual PI3K/mTOR inhibition. (2) Oncogene addiction to PIK3CA hotspot mutations, if it occurs, is likely to evolve in vivo in the context of additional molecular changes that remain to be identified. Additional study is required to develop new model systems and approaches to determine the role of targeted therapy in the treatment of

  4. Response of Head and Neck Squamous Cell Carcinoma Cells Carrying PIK3CA Mutations to Select Targeted Therapies

    PubMed Central

    Wirtz, Eric D; Hoshino, Daisuke; Maldonado, Anthony T; Tyson, Darren R; Weaver, Alissa M

    2015-01-01

    Importance The PIK3CA mutation is one of the most common mutations in Head and Neck Squamous Cell Carcinoma (HNSCC). Through this research we attempt to elicit the role of oncogene dependence and effects of targeted therapy on this PIK3CA mutation. Objectives 1) To determine the role of oncogene dependence on one of the more common and targetable oncogenes in HNSCC – PIK3CA; 2) To evaluate the consequence of this oncogene on the effectiveness of newly developed targeted therapies. Study Design In vitro study. Setting Academic research laboratory. Participants Cell culture based study assessing the viability of PIK3CA mutated head and neck cell lines when treated with targeted therapy. Exposures PIK3CA mutated head and neck cell lines were treated with 17-AAG, GDC-0941, trametinib, and BEZ-235. Main Outcome and Measures Assessment of cell viability of HNSCC cell lines characterized for PIK3CA mutations or SCC25 cells engineered to express the PIK3CA hotspot mutations E545K or H1047R Results Surprisingly, in engineered cell lines, the hotspot E545K and H1047R mutations conferred decreased, rather than increased, sensitivity as measured by IC50 when treated with the respective HSP90, PI3K, and MEK inhibitors, 17-AAG, GDC-0941, and trametinib, compared to the SCC25 control cell lines. When treated with BEZ-235, H1047R-expressing cell lines showed increased sensitivity to inhibition compared to control while those expressing E545K showed slightly increased sensitivity of unclear significance. Conclusions and Relevance 1) The PIK3CA mutations within our engineered cell model did not lead to enhanced oncogene-dependent cell death when treated with direct inhibition of the PI3K enzyme yet did show increased sensitivity compared to control with dual PI3K/mTOR inhibition. 2) Oncogene addiction to PIK3CA hot spot mutations, if it occurs, is likely to evolve in vivo molecular changes that remain to be identified. Additional study is required to develop new model systems and

  5. PIK3CA mutations in non-small cell lung cancer (NSCLC): genetic heterogeneity, prognostic impact and incidence of prior malignancies.

    PubMed

    Scheffler, Matthias; Bos, Marc; Gardizi, Masyar; König, Katharina; Michels, Sebastian; Fassunke, Jana; Heydt, Carina; Künstlinger, Helen; Ihle, Michaela; Ueckeroth, Frank; Albus, Kerstin; Serke, Monika; Gerigk, Ulrich; Schulte, Wolfgang; Töpelt, Karin; Nogova, Lucia; Zander, Thomas; Engel-Riedel, Walburga; Stoelben, Erich; Ko, Yon-Dschun; Randerath, Winfried; Kaminsky, Britta; Panse, Jens; Becker, Carolin; Hellmich, Martin; Merkelbach-Bruse, Sabine; Heukamp, Lukas C; Büttner, Reinhard; Wolf, Jürgen

    2015-01-20

    Somatic mutations of the PIK3CA gene have been described in non-small cell lung cancer (NSCLC), but limited data is available on their biological relevance. This study was performed to characterize PIK3CA-mutated NSCLC clinically and genetically. Tumor tissue collected consecutively from 1144 NSCLC patients within a molecular screening network between March 2010 and March 2012 was analyzed for PIK3CA mutations using dideoxy-sequencing and next-generation sequencing (NGS). Clinical, pathological, and genetic characteristics of PIK3CA-mutated patients are described and compared with a control group of PIK3CA-wildtype patients. Among the total cohort of 1144 patients we identified 42 (3.7%) patients with PIK3CA mutations in exon 9 and exon 20. These mutations were found with a higher frequency in sqamous cell carcinoma (8.9%) compared to adenocarcinoma (2.9%, p<0.001). The most common PIK3CA mutation was exon 9 E545K. The majority of patients (57.1%) had additional oncogenic driver aberrations. With the exception of EGFR-mutated patients, non of the genetically defined subgroups in this cohort had a significantly better median overall survival. Further, PIK3CA-mutated patients had a significantly higher incidence of malignancy prior to lung cancer (p<0.001). PIK3CA-mutated NSCLC represents a clinically and genetically heterogeneous subgroup in adenocarcinomas as well as in squamous cell carcinomas with a higher prevalence of these mutations in sqamous cell carcinoma. PIK3CA mutations have no negative impact on survival after surgery or systemic therapy. However, PIK3CA mutated lung cancer frequently develops in patients with prior malignancies.

  6. Variable Expression of PIK3R3 and PTEN in Ewing Sarcoma Impacts Oncogenic Phenotypes

    PubMed Central

    Niemeyer, Brian F.; Parrish, Janet K.; Spoelstra, Nicole S.; Joyal, Teresa; Richer, Jennifer K.; Jedlicka, Paul

    2015-01-01

    Ewing Sarcoma is an aggressive malignancy of bone and soft tissue affecting children and young adults. Ewing Sarcoma is driven by EWS/Ets fusion oncoproteins, which cause widespread alterations in gene expression in the cell. Dysregulation of receptor tyrosine kinase signaling, particularly involving IGF-1R, also plays an important role in Ewing Sarcoma pathogenesis. However, the basis of this dysregulation, including the relative contribution of EWS/Ets-dependent and independent mechanisms, is not well understood. In the present study, we identify variable expression of two modifiers of PI3K signaling activity, PIK3R3 and PTEN, in Ewing Sarcoma, and examine the consequences of this on PI3K pathway regulation and oncogenic phenotypes. Our findings indicate that PIK3R3 plays a growth-promotional role in Ewing Sarcoma, but suggest that this role is not strictly dependent on regulation of PI3K pathway activity. We further show that expression of PTEN, a well-established, potent tumor suppressor, is lost in a subset of Ewing Sarcomas, and that this loss strongly correlates with high baseline PI3K pathway activity in cell lines. In support of functional importance of PTEN loss in Ewing Sarcoma, we show that re-introduction of PTEN into two different PTEN-negative Ewing Sarcoma cell lines results in downregulation of PI3K pathway activity, and sensitization to the IGF-1R small molecule inhibitor OSI-906. Our findings also suggest that PTEN levels may contribute to sensitivity of Ewing Sarcoma cells to the microtubule inhibitor vincristine, a relevant chemotherapeutic agent in this cancer. Our studies thus identify PIK3R3 and PTEN as modifiers of oncogenic phenotypes in Ewing Sarcoma, with potential clinical implications. PMID:25603314

  7. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma.

    PubMed

    Hayes, Monica Prasad; Douglas, Wayne; Ellenson, Lora Hedrick

    2009-06-01

    Uterine serous carcinoma (USC) is an aggressive endometrial cancer associated with poor prognosis despite comprehensive surgical staging and adjuvant chemotherapy and radiation therapy. Biologic targets have yet to be fully explored in this disease and research on such targets could lead to clinical trials utilizing a new class of therapeutics. This study sought to evaluate primary USC tumors for molecular alterations in epidermal growth factor receptor (EGFR) and the recently characterized oncogene PIK3CA, which encodes the catalytic p110-alpha subunit of phosphatidylinositol 3-kinase (PI3K) and thus activates the AKT-mTOR oncogenic pathway. Paraffin-embedded archival tissue of 45 primary USC tumors was utilized in this study. Immunohistochemical analysis of EGFR was performed and cases given a score of 0 to 12 calculated as the product of staining intensity (0 to 3+) and the percentage of positively stained cells (0-4), with 1=1-25%, 2=26-50%, 3=51-75%, and 4=76-100%. For mutational analysis, neoplastic tissue was microdissected and DNA was extracted with phenol-chloroform. Exons 18 through 21 of EGFR and exons 9 and 20 of PIK3CA, the most commonly mutated exons of these genes, were amplified and directly sequenced. When EGFR was evaluated, moderate or strong EGFR membranous staining was observed in 25/45 (56%) USC cases. Thus, a mutational analysis was performed on 35 cases, including all cases with moderate and strong EGFR staining. No mutations were identified in EGFR. In contrast, PIK3CA mutations were confirmed in 5/34 (15%) of USC cases. Four cases were mutated in exon 20 and one case was mutated in exon 9. Since optimal treatment of uterine serous carcinoma remains unknown, novel therapeutic approaches need to be actively pursued. In the current study of primary USC tumors, oncogenic mutations of the PIK3CA gene were seen in 15% of USC cases. This represents the first report of this gene mutation in USC. In addition, EGFR stained positively in the majority

  8. Dual PI3K/mTOR Inhibition in Colorectal Cancers with APC and PIK3CA Mutations.

    PubMed

    Foley, Tyler M; Payne, Susan N; Pasch, Cheri A; Yueh, Alex E; Van De Hey, Dana R; Korkos, Demetra P; Clipson, Linda; Maher, Molly E; Matkowskyj, Kristina A; Newton, Michael A; Deming, Dustin A

    2017-02-09

    Therapeutic targeting of the PI3K pathway is an active area of research in multiple cancer types, including breast and endometrial cancers. This pathway is commonly altered in cancer and plays an integral role in numerous vital cellular functions. Mutations in the PIK3CA gene, resulting in a constitutively active form of PI3K, often occur in colorectal cancer, though the population of patients who would benefit from targeting this pathway has yet to be identified. In human colorectal cancers, PIK3CA mutations most commonly occur concomitantly with loss of adenomatous polyposis coli (APC). Here, treatment strategies are investigated that target the PI3K pathway in colon cancers with mutations in APC and PIK3CA Colorectal cancer spheroids with Apc and Pik3ca mutations were generated and characterized confirming that these cultures represent the tumors from which they were derived. Pan and alpha isomer-specific PI3K inhibitors did not induce a significant treatment response, whereas the dual PI3K/mTOR inhibitors BEZ235 and LY3023414 induced a dramatic treatment response through decreased cellular proliferation and increased differentiation. The significant treatment responses were confirmed in mice with Apc and Pik3ca -mutant colon cancers as measured using endoscopy with a reduction in median lumen occlusion of 53% with BEZ235 and a 24% reduction with LY3023414 compared with an increase of 53% in controls ( P < 0.001 and P = 0.03, respectively). This response was also confirmed with 18 F-FDG microPET/CT imaging. Implications: Spheroid models and transgenic mice suggest that dual PI3K/mTOR inhibition is a potential treatment strategy for APC and PIK3CA -mutant colorectal cancers. Thus, further clinical studies of dual PI3K/mTOR inhibitors are warranted in colorectal cancers with these mutations. Mol Cancer Res; 15(3); 1-11. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Nucleocytoplasmic Shuttling of the Golgi Phosphatidylinositol 4-Kinase Pik1 Is Regulated by 14-3-3 Proteins and Coordinates Golgi Function with Cell Growth

    PubMed Central

    Demmel, Lars; Beck, Mike; Klose, Christian; Schlaitz, Anne-Lore; Gloor, Yvonne; Hsu, Peggy P.; Havlis, Jan; Shevchenko, Andrej; Krause, Eberhard; Kalaidzidis, Yannis

    2008-01-01

    The yeast phosphatidylinositol 4-kinase Pik1p is essential for proliferation, and it controls Golgi homeostasis and transport of newly synthesized proteins from this compartment. At the Golgi, phosphatidylinositol 4-phosphate recruits multiple cytosolic effectors involved in formation of post-Golgi transport vesicles. A second pool of catalytically active Pik1p localizes to the nucleus. The physiological significance and regulation of this dual localization of the lipid kinase remains unknown. Here, we show that Pik1p binds to the redundant 14-3-3 proteins Bmh1p and Bmh2p. We provide evidence that nucleocytoplasmic shuttling of Pik1p involves phosphorylation and that 14-3-3 proteins bind Pik1p in the cytoplasm. Nutrient deprivation results in relocation of Pik1p from the Golgi to the nucleus and increases the amount of Pik1p–14-3-3 complex, a process reversed upon restored nutrient supply. These data suggest a role of Pik1p nucleocytoplasmic shuttling in coordination of biosynthetic transport from the Golgi with nutrient signaling. PMID:18172025

  10. Detection of PIK3CA gene mutations with HRM analysis and association with IGFBP-5 expression levels in breast cancer.

    PubMed

    Dirican, Ebubekir; Kaya, Zehra; Gullu, Gokce; Peker, Irem; Ozmen, Tolga; Gulluoglu, Bahadir M; Kaya, Handan; Ozer, Ayse; Akkiprik, Mustafa

    2014-01-01

    Breast cancer is the second most common cancer and second leading cause of cancer deaths in women. Phosphatidylinositol-3-kinase (PI3K)/AKT pathway mutations are associated with cancer and phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) gene mutations have been observed in 25-45% of breast cancer samples. Insulin growth factor binding protein-5 (IGFBP-5) can show different effects on apoptosis, cell motility and survival in breast cancer. We here aimed to determine the association between PIK3CA gene mutations and IGFBP-5 expressions for the first time in breast cancer patients. Frozen tumor samples from 101 Turkish breast cancer patients were analyzed with high resolution melting (HRM) for PIK3CA mutations (exon 9 and exon 20) and 37 HRM positive tumor samples were analyzed by DNA sequencing, mutations being found in 31. PIK3CA exon 9 mutations (Q546R, E542Q, E545K, E542K and E545D) were found in 10 tumor samples, exon 20 mutations (H1047L, H1047R, T1025T and G1049R) in 21, where only 1 tumor sample had two exon 20 mutations (T1025T and H1047R). Moreover, we detected one sample with both exon 9 (E542Q) and exon 20 (H1047R) mutations. 35% of the tumor samples with high IGFBP-5 mRNA expression and 29.4% of the tumor samples with low IGFBP-5 mRNA expression had PIK3CA mutations (p=0.9924). This is the first study of PIK3CA mutation screening results in Turkish breast cancer population using HRM analysis. This approach appears to be a very effective and reliable screening method for the PIK3CA exon 9 and 20 mutation detection. Further analysis with a greater number of samples is needed to clarify association between PIK3CA gene mutations and IGFBP-5 mRNA expression, and also clinical outcome in breast cancer patients.

  11. PIK3CA oncogenic mutations represent a major mechanism of resistance to trastuzumab in HER2/neu overexpressing uterine serous carcinomas

    PubMed Central

    Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2015-01-01

    Objectives: We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Methods: Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Results: Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Conclusions: Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment. PMID:26325104

  12. PIK3CA oncogenic mutations represent a major mechanism of resistance to trastuzumab in HER2/neu overexpressing uterine serous carcinomas.

    PubMed

    Black, Jonathan D; Lopez, Salvatore; Cocco, Emiliano; Bellone, Stefania; Altwerger, Gary; Schwab, Carlton L; English, Diana P; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Santin, Alessandro D

    2015-09-29

    We evaluated the role of PIK3CA-mutations as mechanism of resistance to trastuzumab in primary HER2/neu-amplified uterine-serous-carcinoma (USC) cell lines. Fifteen whole-exome-sequenced USC cell lines were tested for HER2/neu-amplification and PIK3CA-mutations. Four HER2/neu-amplified USC (2-harbouring wild-type-PIK3CA-genes and 2-harbouring oncogenic-PIK3CA-mutations) were evaluated in in vitro dose-titration-proliferation-assays, cell-viability and HER2 and S6-protein-phosphorylation after exposure to trastuzumab. USC harbouring wild-type-PIK3CA were transfected with plasmids encoding oncogenic PIK3CA-mutations (i.e., H1047R/R93Q) and exposed to trastuzumab. Finally, trastuzumab efficacy was tested by using two USC xenograft mouse models. Seven out of fifteen (46%) of the USC cell lines were HER2/neu-amplified by fluorescence in situ hybridisation. Within these tumours four out of seven (57%) were found to harbour oncogenic PIK3CA-mutations vs two out of eight (25%) of the HER2/neu not amplified cell lines (P=0.01). HER2/neu-amplified/PIK3CA-mutated USC were highly resistant to trastuzumab when compared with HER2/neu-amplified/wild-type-PIK3CA cell lines (P=0.02). HER2/neu-amplified/PIK3CA wild-type cell lines transfected with oncogenic PIK3CA-mutations increased their resistance to trastuzumab (P<0.0001). Trastuzumab was effective in reducing tumour growth (P=0.001) and improved survival (P=0.0001) in mouse xenografts harbouring HER2-amplified/PIK3CA wild-type USC but not in HER2-amplified/PIK3CA-mutated tumours. Oncogenic PIK3CA mutations are common in HER2/neu-amplified USC and may constitute a major mechanism of resistance to trastuzumab treatment.

  13. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  14. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams naturally emerge through this approach and can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid scale representation of calving front motion (Albrecht et al., 2010) and a physically motivated dynamic calving law based on horizontal spreading rates. The model is validated within the Marine Ice Sheet Model Intercomparison Project (MISMIP) and is used for a dynamic equilibrium simulation of Antarctica under present-day conditions in the second part of this paper (Martin et al., 2010).

  15. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells.

    PubMed

    Arjumand, Wani; Merry, Cole D; Wang, Chen; Saba, Elias; McIntyre, John B; Fang, Shujuan; Kornaga, Elizabeth; Ghatage, Prafull; Doll, Corinne M; Lees-Miller, Susan P

    2016-12-13

    The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy.

  16. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors.

    PubMed

    Dueñas, Marta; Martínez-Fernández, Mónica; García-Escudero, Ramón; Villacampa, Felipe; Marqués, Miriam; Saiz-Ladera, Cristina; Duarte, José; Martínez, Victor; Gómez, M José; Martín, M Luisa; Fernández, Manoli; Castellano, Daniel; Real, Francisco X; Rodriguez-Peralto, Jose L; De La Rosa, Federico; Paramio, Jesús M

    2015-07-01

    Bladder cancer (BC) is the fifth most common cancer in the world, being the non-muscle invasive tumors (NMIBC) the most frequent. NMIBC shows a very high frequency of recurrence and, in certain cases, tumor progression. The phosphatidylinositol 3-kinase (PI3K) pathway, which controls cell growth, tumorigenesis, cell invasion and drug response, is frequently activated in numerous human cancers, including BC, in part through alterations of PIK3CA gene. However, the significance of PIK3CA gene alterations with respect to clinicopathological characteristics, and in particular tumor recurrence and progression, remains elusive. Here, we analyzed the presence of mutations in FGFR3 and PIK3CA genes and copy number alterations of PIK3CA gene in bladder tumor and their correspondent paired normal samples from 87 patients. We observed an extremely high frequency of PIK3CA gene alterations (mutations, copy gains, or both) in tumor samples, affecting primarily T1 and T2 tumors. A significant number of normal tissues also showed mutations and copy gains, being coincident with those found in the corresponding tumor sample. In low-grade tumors PIK3CA mutations associated with FGFR3 mutations. Alterations in PIK3CA gene resulted in increased Akt activity in tumors. Interestingly, the presence of PIK3CA gene alterations, and in particular gene mutations, is significantly associated with reduced recurrence of NMIBC patients. Importantly, the presence of FGFR3 mutations may influence the clinical outcome of patients bearing alterations in PIK3CA gene, and increased recurrence was associated to FGFR3 mutated, PIK3CA wt tumors. These findings may have high relevance in terms of using PI3K-targeted therapies for BC treatment. © 2013 Wiley Periodicals, Inc.

  17. Experimental verification of a predicted novel microRNA located in human PIK3CA gene with a potential oncogenic function in colorectal cancer.

    PubMed

    Saleh, Ali Jason; Soltani, Bahram M; Dokanehiifard, Sadat; Medlej, Abdallah; Tavalaei, Mahmoud; Mowla, Seyed Javad

    2016-10-01

    PI3K/AKT signaling is involved in cell survival, proliferation, and migration. In this pathway, PI3Kα enzyme is composed of a regulatory protein encoded by p85 gene and a catalytic protein encoded by PIK3CA gene. Human PIK3CA locus is amplified in several cancers including lung and colorectal cancer (CRC). Therefore, microRNAs (miRNAs) that are encoded within the PIK3CA gene might have a role in cancer development. Here, we report a novel microRNA named PIK3CA-miR1 (EBI accession no. LN626315), which is located within PIK3CA gene. A DNA segment corresponding to PIK3CA-premir1 sequence was transfected in human cell lines that resulted in generation of mature exogenous PIK3CA-miR1. Following the overexpression of PIK3CA-miR1, its predicted target genes (APPL1 and TrkC) were significantly downregulated in the CRC-originated HCT116 and SW480 cell lines, detected by qRT-PCR. Then, dual luciferase assay supported the interaction of PIK3CA-miR1 with APPL1 and TrkC transcripts. Endogenous PIK3CA-miR1 expression was also detected in several cell lines (highly in HCT116 and SW480) and highly in CRC specimens. Consistently, overexpression of PIK3CA-premir1 in HCT116 and SW480 cells resulted in significant reduction of the sub-G1 cell distribution and apoptotic cell rate, as detected by flowcytometry, and resulted in increased cell proliferation, as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. PIK3CA-miR1 overexpression also resulted in Wnt signaling upregulation detected by Top/Fop assay. Overall, accumulative evidences indicated the presence of a bona fide novel onco-miRNA encoded within the PIK3CA oncogene, which is highly expressed in colorectal cancer and has a survival effect in CRC-originated cells.

  18. PIK3CA and KRAS mutations in cell free circulating DNA are useful markers for monitoring ovarian clear cell carcinoma

    PubMed Central

    Morikawa, Asuka; Hayashi, Tomoatsu; Shimizu, Naomi; Kobayashi, Mana; Taniue, Kenzui; Takahashi, Akiko; Tachibana, Kota; Saito, Misato; Kawabata, Ayako; Iida, Yasushi; Ueda, Kazu; Saito, Motoaki; Yanaihara, Nozomu; Tanabe, Hiroshi; Yamada, Kyosuke; Takano, Hirokuni; Nureki, Osamu; Okamoto, Aikou; Akiyama, Tetsu

    2018-01-01

    Ovarian clear cell carcinoma (OCCC) exhibits distinct phenotypes, such as resistance to chemotherapy, poor prognosis and an association with endometriosis. Biomarkers and imaging techniques currently in use are not sufficient for reliable diagnosis of this tumor or prediction of therapeutic response. It has recently been reported that analysis of somatic mutations in cell-free circulating DNA (cfDNA) released from tumor tissues can be useful for tumor diagnosis. In the present study, we attempted to detect mutations in PIK3CA and KRAS in cfDNA from OCCC patients using droplet digital PCR (ddPCR). Here we show that we were able to specifically detect PIK3CA-H1047R and KRAS-G12D in cfDNA from OCCC patients and monitor their response to therapy. Furthermore, we found that by cleaving wild-type PIK3CA using the CRISPR/Cas9 system, we were able to improve the sensitivity of the ddPCR method and detect cfDNA harboring PIK3CA-H1047R. Our results suggest that detection of mutations in cfDNA by ddPCR would be useful for the diagnosis of OCCC, and for predicting its recurrence. PMID:29632642

  19. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation

    PubMed Central

    Anderson, Grace R.; Wardell, Suzanne E.; Cakir, Merve; Crawford, Lorin; Leeds, Jim C.; Nussbaum, Daniel P.; Shankar, Pallavi S.; Soderquist, Ryan S.; Stein, Elizabeth M.; Tingley, Jennifer P.; Winter, Peter S.; Zieser-Misenheimer, Elizabeth K.; Alley, Holly M.; Yllanes, Alexander; Haney, Victoria; Blackwell, Kimberly L.; McCall, Shannon J.; McDonnell, Donald P.; Wood, Kris C.

    2017-01-01

    Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that the combined inhibition of BCL-XL and the mTOR/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses MCL-1 protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL. This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of molecular subtype or PIK3CA mutational status. Further, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to anti-apoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard of care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations. PMID:27974663

  20. PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells.

    PubMed

    Liu, Tao; Zu, Cai-Hua; Wang, Shu-Sen; Song, Hong-Li; Wang, Zheng-Lu; Xu, Xin-Nv; Liu, Hong-Sheng; Wang, Yu-Liang; Shen, Zhong-Yang

    2016-07-12

    Competing endogenous RNAs (ceRNAs) are RNA transcripts that can crosstalk with each other by competing for shared microRNAs (miRNAs) through miRNA response elements (MREs). Involved in ceRNA networks, the RNA transcripts may be in a balance, disruption of which could lead to tumorigenesis. Here we reveal a ceRNA interaction between PIK3C2A and CD151 mRNAs in hepatocellular carcinoma (HCC) cells. PIK3C2A is a candidate ceRNA of CD151 because mRNA 3' untranslated regions (3'UTRs) of these two genes contain miR-124 binding sites. miR-124 is downregulated, while PIK3C2A and CD151 are upregulated in HCC cells compared with normal hepatocytes. Direct and negative regulation of PIK3C2A and CD151 by miR-124 was confirmed in HCC cells. miR-124 and the two potential ceRNAs are all recruited to the RNA-induced silencing complex (RISC). In HCC cell lines QGY- 7703 and SMMC-7721, and normal hepatic cell line HL-7702, miR-124 plays a tumor suppressor role by targeting PIK3C2A and CD151. The MREs within PIK3C2A 3'UTR can independently stimulate CD151 expression level by acting as miR-124 decoys. PIK3C2A MREs enhance HCC cell malignancy by absorbing endogenous miR-124 and activating CD151 in HCC cells. We conclude that PIK3C2A 3'UTR functions as a trans activator to stimulate CD151 by competing for miR-124 binding in HCC cells. The collaboration of PIK3C2A and CD151 through ceRNA mechanism may be implicated in HCC initiation and development.

  1. Molecular evaluation of PIK3CA gene mutation in breast cancer: determination of frequency, distribution pattern and its association with clinicopathological findings in Indian patients.

    PubMed

    Ahmad, Firoz; Badwe, Anuya; Verma, Geeta; Bhatia, Simi; Das, Bibhu Ranjan

    2016-07-01

    Somatic mutations in the PIK3CA gene are common in breast cancer and represent a clinically useful marker for prognosis and therapeutic target. Activating mutations in the PI3K p110 catalytic subunit (PIK3CA) have been identified in 18-40 % of breast carcinomas. In this study, we evaluated PIK3CA mutation in 185 Indian breast cancer patients by direct DNA sequencing. PIK3CA mutations were observed in 23.2 % (43/185) of breast tumor samples. PIK3CA mutations were more frequent exon 30 (76.8 %) than in exon 9 (23.2 %). Mutations were mostly clustered within two hotspot region between nucleotides 1624 and 1636 or between 3129 and 3140. Sequencing analysis revealed four different missense mutations at codon 542 and 545 (E542K, E545K, E545A and E545G) in the helical domain and two different amino acid substitutions at codon 1047 (H1047R and H1047L) in the kinase domain. None of the cases harbored concomitant mutations at multiple codons. PIK3CA mutations were more frequent in older patients, smaller size tumors, ductal carcinomas, grade II tumors, lymph node-positive tumors and non-DCIS tumors; however, none of the differences were significant. In addition, PIK3CA mutations were common in ER+, PR+ and HER2+ cases (30 %), and a comparatively low frequency were noted in triple-negative tumors (13.6 %). In conclusion, to our knowledge, this is the largest study to evaluate the PIK3CA mutation in Indian breast cancer patients. The frequency and distribution pattern of PIK3CA mutations is similar to global reports. Furthermore, identification of molecular markers has unique strengths and can provide insights into the pathogenic process of breast carcinomas.

  2. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

    PubMed Central

    Rios, Jonathan J.; Paria, Nandina; Burns, Dennis K.; Israel, Bonnie A.; Cornelia, Reuel; Wise, Carol A.; Ezaki, Marybeth

    2013-01-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a ‘nerve territory’. The classic terminology for this condition is ‘lipofibromatous hamartoma of nerve’ or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes. PMID:23100325

  3. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.

    PubMed

    Rios, Jonathan J; Paria, Nandina; Burns, Dennis K; Israel, Bonnie A; Cornelia, Reuel; Wise, Carol A; Ezaki, Marybeth

    2013-02-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'lipofibromatous hamartoma of nerve' or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes.

  4. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer.

    PubMed

    Avivar-Valderas, Alvaro; McEwen, Robert; Taheri-Ghahfarokhi, Amir; Carnevalli, Larissa S; Hardaker, Elizabeth L; Maresca, Marcello; Hudson, Kevin; Harrington, Elizabeth A; Cruzalegui, Francisco

    2018-04-20

    The PI3Kα signaling pathway is frequently hyper-activated in breast cancer (BrCa), as a result of mutations/amplifications in oncogenes (e.g. HER2 ), decreased function in tumor suppressors (e.g. PTEN ) or activating mutations in key components of the pathway. In particular, activating mutations of PIK3CA (~45%) are frequently found in luminal A BrCa samples. Genomic studies have uncovered inactivating mutations in MAP3K1 (13-20%) and MAP2K4 (~8%), two upstream kinases of the JNK apoptotic pathway in luminal A BrCa samples. Further, simultaneous mutation of PIK3CA and MAP3K1 are found in ~11% of mutant PIK3CA tumors. How these two alterations may cooperate to elicit tumorigenesis and impact the sensitivity to PI3K and AKT inhibitors is currently unknown. Using CRISPR gene editing we have genetically disrupted MAP3K1 expression in mutant PIK3CA cell lines to specifically create in vitro models reflecting the mutational status of PIK3CA and MAP3K1 in BrCa patients. MAP3K1 deficient cell lines exhibited ~2.4-fold increased proliferation rate and decreased sensitivity to PI3Kα/δ(AZD8835) and AKT (AZD5363) inhibitors (~2.61 and ~5.23-fold IC 50 increases, respectively) compared with parental control cell lines. In addition, mechanistic analysis revealed that MAP3K1 disruption enhances AKT phosphorylation and downstream signaling and reduces sensitivity to AZD5363-mediated pathway inhibition. This appears to be a consequence of deficient MAP3K1-JNK signaling increasing IRS1 stability and therefore promoting IRS1 binding to p85, resulting in enhanced PI3Kα activity. Using 3D-MCF10A-PI3Kα H1047R models, we found that MAP3K1 depletion increased overall acinar volume and counteracted AZD5363-mediated reduction of acinar growth due to enhanced proliferation and reduced apoptosis. Furthermore, in vivo efficacy studies revealed that MAP3K1-deficient MCF7 tumors were less sensitive to AKT inhibitor treatment, compared with parental MCF7 tumors. Our study provides

  5. University of Texas MD Anderson Cancer Center (UT-MDACC): Characterization of PIK3R1 Neomorphic Mutations | Office of Cancer Genomics

    Cancer.gov

    The goal of this project was to functionally characterize the most frequent mutation of the PIK3R1 gene and to explore potential therapeutic approaches to target the aberration. Read the abstract Experimental Approaches Cytotoxicity Screen

  6. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer.

    PubMed

    Sewell, Andrew; Brown, Brandee; Biktasova, Asel; Mills, Gordon B; Lu, Yiling; Tyson, Darren R; Issaeva, Natalia; Yarbrough, Wendell G

    2014-05-01

    Human papilloma virus (HPV)-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCC) have different molecular and biologic characteristics and clinical behavior compared with HPV-negative (HPV-) OPSCC. PIK3CA mutations are more common in HPV(+) OPSCC. To define molecular differences and tumor subsets, protein expression and phosphorylation were compared between HPV(+) and HPV(-) OPSCC and between tumors with and without PIK3CA mutations. Expression of 137 total and phosphorylated proteins was evaluated by reverse-phase protein array in 29 HPV(+) and 13 HPV(-) prospectively collected OPSCCs. Forty-seven OPSCCs were tested for hotspot-activating mutations in PIK3CA and AKT. Activation of PIK3CA downstream targets and sensitivity to pathway inhibitors were determined in HPV(+) head and neck cancer cells overexpressing wild-type or mutant PIK3CA. Analyses revealed 41 differentially expressed proteins between HPV(+) and HPV(-) OPSCC categorized into functional groups: DNA repair, cell cycle, apoptosis, phosphoinositide 3-kinase (PI3K)/AKT/mTOR, and receptor kinase pathways. All queried DNA repair proteins were significantly upregulated in HPV(+) samples. A total of 8 of 33 HPV(+) and 0 of 14 HPV(-) tumors contained activating PIK3CA mutations. Despite all activating PIK3CA mutations occurring in HPV(+) samples, HPV(+) tumors had lower mean levels of activated AKT and downstream AKT target phosphorylation. Ectopic expression of mutant PIK3CA in HPV(+) cells increased mTOR, but not AKT activity. HPV E6/E7 overexpression inhibited AKT phosphorylation in HPV-negative cells. Mutant PIK3CA overexpressing cells were more sensitive to a dual PI3K/mTOR inhibitor compared with an AKT inhibitor. Protein expression analyses suggest that HPV(+) and HPV(-) OPSCC differentially activate DNA repair, cell cycle, apoptosis, PI3K/AKT/mTOR, and receptor kinase pathways. PIK3CA mutations are more common in HPV(+) OPSCC and are associated with activation of mTOR, but not AKT. These

  7. Physiological Levels of Pik3ca H1047R Mutation in the Mouse Mammary Gland Results in Ductal Hyperplasia and Formation of ERα-Positive Tumors

    PubMed Central

    Tikoo, Anjali; Roh, Vincent; Montgomery, Karen G.; Ivetac, Ivan; Waring, Paul; Pelzer, Rebecca; Hare, Lauren; Shackleton, Mark; Humbert, Patrick; Phillips, Wayne A.

    2012-01-01

    PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3caH1047R, into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin−; CD29lo; CD24+; CD61+) cell population. The Pik3caH1047R expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3caH1047R in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3caH1047R mutation in mammary tumorigenesis both in vivo and in vitro. PMID:22666336

  8. Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-08-08

    The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations.

  9. Analysis of ESR1 and PIK3CA mutations in plasma cell-free DNA from ER-positive breast cancer patients

    PubMed Central

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-01-01

    Background The measurement of ESR1 and PIK3CA mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive method to quickly assess and monitor endocrine therapy (ET) resistant metastatic breast cancer (MBC) patients. Methods The subjects of this retrospective study were a total of 185 plasma samples from 86 estrogen receptor-positive BC patients, of which 151 plasma samples were from 69 MBC patients and 34 plasma samples were from 17 primary BC (PBC) patients. We developed multiplex droplet digital PCR assays to verify the clinical significance of ESR1 and PIK3CA mutations both in a snapshot and serially in these patients. Results cfDNA ESR1 and PIK3CA mutations were found in 28.9% and 24.6 % of MBC patients, respectively. The relation between ESR1 or PIK3CA mutations and clinical features showed that ESR1 mutations occurred mostly in patients previously treated by ET, which was not the case for PIK3CA mutations. The analysis of the clinical impact of those mutations on subsequent lines of treatment for the 69 MBC patients revealed that both ESR1 and PIK3CA mutations detection were related to a shorter duration of ET effectiveness in univariate analysis but only for ESR1 mutations in multivariate analysis. The monitoring of cfDNA in a subset of 52 patients showed that loss of ESR1 mutations was related to a longer duration of response, which was not the case for PIK3CA mutations. Conclusions We have demonstrated the clinical significance of on-treatment ESR1 mutations both in a snapshot and serially in comparison with PIK3CA mutations. PMID:28881720

  10. Highly sensitive detection of the PIK3CA (H1047R) mutation in colorectal cancer using a novel PCR-RFLP method.

    PubMed

    Li, Wan-Ming; Hu, Ting-Ting; Zhou, Lin-Lin; Feng, Yi-Ming; Wang, Yun-Yi; Fang, Jin

    2016-07-12

    The PIK3CA (H1047R) mutation is considered to be a potential predictive biomarker for EGFR-targeted therapies. In this study, we developed a novel PCR-PFLP approach to detect the PIK3CA (H1047R) mutation in high effectiveness. A 126-bp fragment of PIK3CA exon-20 was amplified by PCR, digested with FspI restriction endonuclease and separated by 3 % agarose gel electrophoresis for the PCR-RFLP analysis. The mutant sequence of the PIK3CA (H1047R) was spiked into the corresponding wild-type sequence in decreasing ratios for sensitivity analysis. Eight-six cases of formalin-fixed paraffin-embedded colorectal cancer (CRC) specimens were subjected to PCR-RFLP to evaluate the applicability of the method. The PCR-RFLP method had a capability to detect as litter as 0.4 % of mutation, and revealed 16.3 % of the PIK3CA (H1047R) mutation in 86 CRC tissues, which was significantly higher than that discovered by DNA sequencing (9.3 %). A positive association between the PIK3CA (H1047R) mutation and the patients' age was first found, except for the negative relationship with the degree of tumor differentiation. In addition, the highly sensitive detection of a combinatorial mutation of PIK3CA, KRAS and BRAF was achieved using individual PCR-RFLP methods. We developed a sensitive, simple and rapid approach to detect the low-abundance PIK3CA (H1047R) mutation in real CRC specimens, providing an effective tool for guiding cancer targeted therapy.

  11. Dual HER2\\PIK3CA targeting overcomes single-agent acquired resistance in HER2 amplified uterine serous carcinoma cell lines in vitro and in vivo

    PubMed Central

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L.; English, Diana P.; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E.; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D.

    2015-01-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC), and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA mutated and PIK3CA-wild type HER2/neu amplified USC cell lines. Cell viability and cell cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC-xenografts. We found both single agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long lasting growth inhibition in both USC xenografts when compared to single agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA or pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild type PIK3CA resistant to chemotherapy. PMID:26333383

  12. Dual HER2/PIK3CA Targeting Overcomes Single-Agent Acquired Resistance in HER2-Amplified Uterine Serous Carcinoma Cell Lines In Vitro and In Vivo.

    PubMed

    Lopez, Salvatore; Cocco, Emiliano; Black, Jonathan; Bellone, Stefania; Bonazzoli, Elena; Predolini, Federica; Ferrari, Francesca; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Terranova, Corrado; Angioli, Roberto; Santin, Alessandro D

    2015-11-01

    HER2/neu gene amplification and PIK3CA driver mutations are common in uterine serous carcinoma (USC) and may represent ideal therapeutic targets against this aggressive variant of endometrial cancer. We examined the sensitivity to neratinib, taselisib, and the combination of the two compounds in in vitro and in vivo experiments using PIK3CA-mutated and PIK3CA wild-type HER2/neu-amplified USC cell lines. Cell viability and cell-cycle distribution were assessed using flow-cytometry assays. Downstream signaling was assessed by immunoblotting. Preclinical efficacy of single versus dual inhibition was evaluated in vivo using two USC xenografts. We found both single-agent neratinib and taselisib to be active but only transiently effective in controlling the in vivo growth of USC xenografts harboring HER2/neu gene amplification with or without oncogenic PIK3CA mutations. In contrast, the combination of the two inhibitors caused a stronger and long-lasting growth inhibition in both USC xenografts when compared with single-agent therapy. Combined targeting of HER2 and PIK3CA was associated with a significant and dose-dependent increase in the percentage of cells in the G0-G1 phase of the cell cycle and a dose-dependent decline in the phosphorylation of S6. Importantly, dual inhibition therapy initiated after tumor progression in single-agent-treated mice was still remarkably effective at inducing tumor regression in both large PIK3CA and pan-ErbB inhibitor-resistant USC xenografts. Dual HER2/PIK3CA blockade may represent a novel therapeutic option for USC patients harboring tumors with HER2/neu gene amplification and mutated or wild-type PIK3CA resistant to chemotherapy. ©2015 American Association for Cancer Research.

  13. MiR-422a acts as a tumor suppressor in glioblastoma by targeting PIK3CA

    PubMed Central

    Liang, Haiqian; Wang, Renjie; Jin, Ying; Li, Jianwei; Zhang, Sai

    2016-01-01

    Although surgical treatment, chemotherapy, and radiotherapy have improved the overall survival rate in glioblastoma multiforme (GBM), further intensive research of GBM’s molecular mechanism is still needed. In this study, we observed that miR-422a was downregulated in GBM tissues and cell lines by quantitative real-time polymerase chain reaction (PCR) and primer extension assay. Overexpression of miR-422a significantly reduced the cell proliferation, migration, and invasion of GBM cells. Functional study indicated that miR-422a inhibited cell proliferation, invasion, and migration by targeting PIK3CA, an important member of PI3K/Akt signal pathway. These results demonstrate that the miR-422a/PIK3CA axis may constitute a potential target for GBM therapy. PMID:27648359

  14. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas.

    PubMed

    Yamaguchi, Hiroshi; Kuboki, Yuko; Hatori, Takashi; Yamamoto, Masakazu; Shiratori, Keiko; Kawamura, Shunji; Kobayashi, Makio; Shimizu, Michio; Ban, Shinichi; Koyama, Isamu; Higashi, Morihiro; Shin, Nobuhiro; Ishida, Kazuyuki; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Kanno, Atsushi; Satoh, Kennichi; Shimosegawa, Tooru; Orikasa, Hideki; Watanabe, Tomoo; Nishimura, Kazuhiko; Harada, Youji; Furukawa, Toru

    2011-12-01

    Intraductal tubulopapillary neoplasm (ITPN) is a recently recognized rare variant of intraductal neoplasms of the pancreas. Molecular aberrations underlying the neoplasm remain unknown. We investigated somatic mutations in PIK3CA, PTEN, AKT1, KRAS, and BRAF. We also investigated aberrant expressions of phosphorylated AKT, phosphatase and tensin homolog (PTEN), tumor protein 53 (TP53), SMAD4, and CTNNB1 in 11 cases of ITPNs and compared these data with those of 50 cases of intraductal papillary mucinous neoplasm (IPMN), another distinct variant of pancreatic intraductal neoplasms. Mutations in PIK3CA were found in 3 of 11 ITPNs but not in IPMNs (P = 0.005; Fisher exact test). In contrast, mutations in KRAS were found in none of the ITPNs but were found in 26 of the 50 IPMNs (P = 0.001; Fisher exact test). PIK3CA mutations were associated with strong expression of phosphorylated AKT (P < 0.001; the Mann-Whitney U test). Moreover, the expression of phosphorylated AKT was apparent in most ITPNs but only in a few IPMNs (P < 0.001; the Mann-Whitney U test). Aberrant expressions of TP53, SMAD4, and CTNNB1 were not statistically different between these neoplasms. Mutations in PIK3CA and the expression of phosphorylated AKT were not associated with age, sex, tissue invasion, and patients' prognosis in ITPNs. These results indicate that activation of the phosphatidylinositol 3-kinase pathway may play a crucial role in ITPNs but not in IPMNs. In contrast, the mutation in KRAS seems to play a major role in IPMNs but not in ITPNs. The activated phosphatidylinositol 3-kinase pathway may be a potential target for molecular diagnosis and therapy of ITPNs.

  15. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in Bladder Cancer.

    PubMed

    Christensen, Emil; Birkenkamp-Demtröder, Karin; Nordentoft, Iver; Høyer, Søren; van der Keur, Kirstin; van Kessel, Kim; Zwarthoff, Ellen; Agerbæk, Mads; Ørntoft, Torben Falck; Jensen, Jørgen Bjerggaard; Dyrskjøt, Lars

    2017-06-01

    Disease surveillance in patients with bladder cancer is important for early diagnosis of progression and metastasis and for optimised treatment. To develop urine and plasma assays for disease surveillance for patients with FGFR3 and PIK3CA tumour mutations. Droplet digital polymerase chain reaction (ddPCR) assays were developed and tumour DNA from two patient cohorts was screened for FGFR3 and PIK3CA hotspot mutations. One cohort included 363 patients with non-muscle-invasive bladder cancer (NMIBC). The other cohort included 468 patients with bladder cancer undergoing radical cystectomy (Cx). Urine supernatants (NMIBC n=216, Cx n=27) and plasma samples (NMIBC n=39, Cx n=27) from patients harbouring mutations were subsequently screened using ddPCR assays. Progression-free survival, recurrence-free survival, and overall survival were measured. Fisher's exact test, the Wilcoxon rank-sum test and Cox regression analysis were applied. In total, 36% of the NMIBC patients (129/363) and 11% of the Cx patients (44/403) harboured at least one FGFR3 or PIK3CA mutation. Screening of DNA from serial urine supernatants from the NMIBC cohort revealed that high levels of tumour DNA (tDNA) were associated with later disease progression in NMIBC (p=0.003). Furthermore, high levels of tDNA in plasma samples were associated with recurrence in the Cx cohort (p=0.016). A positive correlation between tDNA levels in urine and plasma was observed (correlation coefficient 0.6). The retrospective study design and low volumes of plasma available for analysis were limitations of the study. Increased levels of FGFR3 and PIK3CA mutated DNA in urine and plasma are indicative of later progression and metastasis in bladder cancer. Urine and plasma from patients with bladder cancer may be monitored for diagnosis of progression and metastasis using mutation assays. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  16. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation.

    PubMed

    Keppler-Noreuil, Kim M; Rios, Jonathan J; Parker, Victoria E R; Semple, Robert K; Lindhurst, Marjorie J; Sapp, Julie C; Alomari, Ahmad; Ezaki, Marybeth; Dobyns, William; Biesecker, Leslie G

    2015-02-01

    Somatic activating mutations in the phosphatidylinositol-3-kinase/AKT/mTOR pathway underlie heterogeneous segmental overgrowth phenotypes. Because of the extreme differences among patients, we sought to characterize the phenotypic spectrum associated with different genotypes and mutation burdens, including a better understanding of associated complications and natural history. Historically, the clinical diagnoses in patients with PIK3CA activating mutations have included Fibroadipose hyperplasia or Overgrowth (FAO), Hemihyperplasia Multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular Malformations, Epidermal Nevi, Scoliosis/Skeletal and Spinal (CLOVES) syndrome, macrodactyly, Fibroadipose Infiltrating Lipomatosis, and the related megalencephaly syndromes, Megalencephaly-Capillary Malformation (MCAP or M-CM) and Dysplastic Megalencephaly (DMEG). A workshop was convened at the National Institutes of Health (NIH) to discuss and develop a consensus document regarding diagnosis and treatment of patients with PIK3CA-associated somatic overgrowth disorders. Participants in the workshop included a group of researchers from several institutions who have been studying these disorders and have published their findings, as well as representatives from patient-advocacy and support groups. The umbrella term of "PIK3CA-Related Overgrowth Spectrum (PROS)" was agreed upon to encompass both the known and emerging clinical entities associated with somatic PIK3CA mutations including, macrodactyly, FAO, HHML, CLOVES, and related megalencephaly conditions. Key clinical diagnostic features and criteria for testing were proposed, and testing approaches summarized. Preliminary recommendations for a uniform approach to assessment of overgrowth and molecular diagnostic testing were determined. Future areas to address include the surgical management of overgrowth tissue and vascular anomalies, the optimal approach to thrombosis risk, and the testing of potential

  17. PIK3CA-Related Overgrowth Spectrum (PROS): Diagnostic and Testing Eligibility Criteria, Differential Diagnosis, and Evaluation

    PubMed Central

    Keppler-Noreuil, Kim M.; Rios, Jonathan J.; Parker, Victoria E.R.; Semple, Robert K.; Lindhurst, Marjorie J.; Sapp, Julie C.; Alomari, Ahmad; Ezaki, Marybeth; Dobyns, William; Biesecker, Leslie G.

    2015-01-01

    Somatic activating mutations in the phosphatidylinositol-3-kinase/AKT/mTOR pathway underlie heterogeneous segmental overgrowth phenotypes. Because of the extreme differences among patients, we sought to characterize the phenotypic spectrum associated with different genotypes and mutation burdens, including a better understanding of associated complications and natural history. Historically, the clinical diagnoses in patients with PIK3CA activating mutations have included Fibroadipose hyperplasia or Overgrowth (FAO), Hemihyperplasia Multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular Malformations, Epidermal Nevi, Scoliosis/Skeletal and Spinal (CLOVES) syndrome, macrodactyly, Fibroadipose Infiltrating Lipomatosis, and the related megalencephaly syndromes, Megalencephaly-Capillary Malformation (MCAP or M-CM) and Dysplastic Megalencephaly (DMEG). A workshop was convened at the National Institutes of Health (NIH) to discuss and develop a consensus document regarding diagnosis and treatment of patients with PIK3CA-associated somatic overgrowth disorders. Participants in the workshop included a group of researchers from several institutions who have been studying these disorders and have published their findings, as well as representatives from patient-advocacy and support groups. The umbrella term of “PIK3CA-Related Overgrowth Spectrum (PROS)” was agreed upon to encompass both the known and emerging clinical entities associated with somatic PIK3CA mutations including, macrodactyly, FAO, HHML, CLOVES, and related megalencephaly conditions. Key clinical diagnostic features and criteria for testing were proposed, and testing approaches summarized. Preliminary recommendations for a uniform approach to assessment of overgrowth and molecular diagnostic testing were determined. Future areas to address include the surgical management of overgrowth tissue and vascular anomalies, the optimal approach to thrombosis risk, and the testing of potential

  18. Blocked recombinase polymerase amplification for mutation analysis of PIK3CA gene.

    PubMed

    Martorell, Sara; Palanca, Sarai; Maquieira, Ángel; Tortajada-Genaro, Luis A

    2018-03-01

    A blocked recombinase polymerase amplification (blocked-RPA) approach has been developed for the enrichment of mutated templates in heterogeneous specimens as tumor tissues. This isothermal amplification technique opens alternative solutions for meeting the technological demand of physician office laboratories. Herein, the detection of mutations in PIK3CA gene, such as p.E545K, and p.H1047L, is presented. The main element was an oligonucleotide (dideoxycytidine functionalized at 3'-end) which matched with wild-type sequence in the target locus. The amplification was performed operating at 37 °C during 40 min. The results demonstrated that the competition between the upstream primer and the blocker reduced the percentage of amplified wild-type allele, making the detection of the present mutation easier. For mutation discrimination, a fast hybridization assay was performed in microarray format on plastic chip and colorimetric detection. This approach enabled the reliable discrimination of specific mutations against a background of up to 95% wild-type DNA. The applicability of the method, based on the combination of blocked-RPA and low-cost chip hybridization, was successfully proven for the genotyping of various cancer cell lines as well as tumor tissues. The assignations agreed with those provided by next-generation sequencing. Therefore, these investigations would support a personalized approach to patient care based on the molecular signature of human cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    PubMed

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. PIK3CA missense mutation is associated with unfavorable outcome in grade 3 endometrioid carcinoma but not in serous endometrial carcinoma.

    PubMed

    McIntyre, John B; Nelson, Gregg S; Ghatage, Prafull; Morris, Don; Duggan, Máire A; Lee, Cheng-Han; Doll, Corinne M; Köbel, Martin

    2014-01-01

    To evaluate the outcome association of PIK3CA mutational status within histological types of rigorously classified high-grade endometrial carcinomas. We assessed PIK3CA mutational status in exon 9 and exon 20 hot spots by Sanger sequencing of DNA derived from formalin fixed paraffin embedded tissue of 57 grade 3 endometrioid, 26 serous, 11 clear cell and 5 dedifferentiated carcinomas. We correlated PIK3CA mutation status with clinicopathological and other molecular parameters. Univariate and multivariate disease specific survival analysis was performed using Kaplan-Meier and Cox regression analyses. PIK3CA exon 9 or exon 20 missense mutations were identified in 20 of 99 (20%) high-grade endometrial carcinomas without significant difference across histological types (p=0.22). Presence of PIK3CA exon 9 or exon 20 missense mutations was associated with shorter disease specific survival within grade 3 endometrioid (p=0.0029) but not endometrial serous (p=0.57) carcinoma based on univariate analysis. Within grade 3 endometrioid carcinoma, PIK3CA exon 9 or exon 20 missense mutations were more commonly observed in cases that were deficient for mismatch repair protein expression (p=0.0058) and showed loss of ARID1A expression (p=0.037). PIK3CA exon 9 or exon 20 missense mutations are present across all histological types of high-grade endometrial carcinomas but a significant outcome association is only seen in grade 3 endometrioid carcinoma, suggesting a greater biological importance in this tumor type. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. More antitumor efficacy of the PI3K inhibitor GDC-0941 in breast cancer with PIK3CA mutation or HER2 amplification status in vitro.

    PubMed

    Zheng, Jie; Wang, Huan; Yao, Jia; Zou, Xianjin

    2014-01-01

    PIK3CA is probably the most commonly mutated kinase in several malignant tumors. Activation of class I phosphatidylinositol 3' kinase (PI3K) regulates tumor proliferation, survival, etc. This study sought to identify whether the pan-inhibitor has more antitumor efficacy in breast cancer cells with PIK3CA Mutation or HER2 amplification than basal-like cancer cells. The proliferation of breast cancer cells was measured by MTT assay in the presence of GDC-0941. Afterwards, we determined the visible changes in signaling in the PI3K/AKT/mTOR pathway. Finally, we examined GDC-0941 effects on cell cycle, apoptosis and motility. GDC-0941 exhibited excellent inhibition on three cell lines with PIK3CA mutation or HER2 amplification. In addition, GDC-0941 resulted in decreased Akt activity. GDC-0941 downregulated the key components of the cell cycle machinery, such as cyclin D1, upregulated the apoptotic markers and inhibited cell motility on three cell lines with PIK3CA Mutation or HER2 amplification. Antitumor activity of GDC-0941 treatment amongst tumor cell lines with PIK3CA mutation and HER2 amplification may have clinical utility in patients with these oncogenic alterations.

  3. Shp2 deletion in hepatocytes suppresses hepatocarcinogenesis driven by oncogenic β-Catenin, PIK3CA and MET.

    PubMed

    Liu, Jacey J; Li, Yanjie; Chen, Wendy S; Liang, Yan; Wang, Gaowei; Zong, Min; Kaneko, Kota; Xu, Ruiyun; Karin, Michael; Feng, Gen-Sheng

    2018-07-01

    Shp2 is an SH2-tyrosine phosphatase acting downstream of receptor tyrosine kinases (RTKs). Most recent data demonstrated a liver tumor-suppressing role for Shp2, as ablating Shp2 in hepatocytes aggravated hepatocellular carcinoma (HCC) induced by chemical carcinogens or Pten loss. We further investigated the effect of Shp2 deficiency on liver tumorigenesis driven by classical oncoproteins c-Met (receptor for HGF), β-catenin and PIK3CA. We performed hydrodynamic tail vein injection of two pairs of plasmids expressing c-Met and ΔN90-β-catenin (MET/CAT), or c-Met and PIK3CA H1047R (MET/PIK), into WT and Shp2 hep-/- mice. We compared liver tumor loads and investigated the pathogenesis and molecular mechanisms involved using multidisciplinary approaches. Despite the induction of oxidative and metabolic stresses, Shp2 deletion in hepatocytes suppressed hepatocarcinogenesis driven by overexpression of oncoproteins MET/CAT or MET/PIK. Shp2 loss inhibited proliferative signaling from c-Met, Wnt/β-catenin, Ras/Erk and PI3K/Akt pathways, but triggered cell senescence following exogenous expression of the oncogenes. Shp2, acting downstream of RTKs, is positively required for hepatocyte-intrinsic tumorigenic signaling from these oncoproteins, even if Shp2 deficiency induces a tumor-promoting hepatic microenvironment. These data suggest a new and more effective therapeutic strategy for HCCs driven by oncogenic RTKs and other upstream molecules, by inhibiting Shp2 and also suppressing any tumor-enhancing stromal factors produced because of Shp2 inhibition. Primary liver cancer is a malignant disease with poor prognosis, largely because there are limited systemic therapies available. We show here that a cytoplasmic tyrosine phosphatase Shp2 is required for liver tumorigenesis. This tumorigenesis is driven by two oncoproteins that are implicated in human liver cancer. This, together with our previous studies, uncovers the complexity of liver tumorigenesis, by elucidating the

  4. Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer

    PubMed Central

    Roper, Jatin; Sinnamon, Mark J.; Coffee, Erin M.; Belmont, Peter; Keung, Lily; Georgeon-Richard, Larissa; Wang, Wei Vivian; Faber, Anthony C.; Yun, Jihye; Yilmaz, Omer H.; Bronson, Roderick T.; Martin, Eric S.; Tsichlis, Philip N.; Hung, Kenneth E.

    2014-01-01

    PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer. PMID:24576621

  5. Molecular and Functional Characterization of Three Different Postzygotic Mutations in PIK3CA-Related Overgrowth Spectrum (PROS) Patients: Effects on PI3K/AKT/mTOR Signaling and Sensitivity to PIK3 Inhibitors

    PubMed Central

    Forte, Giovanna; Bagnulo, Rosanna; Stella, Alessandro; Lastella, Patrizia; Cutrone, Mario; Benedicenti, Francesco; Susca, Francesco C.; Patruno, Margherita; Varvara, Dora; Germani, Aldo; Chessa, Luciana; Laforgia, Nicola; Tenconi, Romano; Simone, Cristiano; Resta, Nicoletta

    2015-01-01

    Background PIK3CA-related overgrowth spectrum (PROS) include a group of disorders that affect only the terminal portion of a limb, such as type I macrodactyly, and conditions like fibroadipose overgrowth (FAO), megalencephaly-capillary malformation (MCAP) syndrome, congenital lipomatous asymmetric overgrowth of the trunk, lymphatic, capillary, venous, and combined-type vascular malformations, epidermal nevi, skeletal and spinal anomalies (CLOVES) syndrome and Hemihyperplasia Multiple Lipomatosis (HHML). Heterozygous postzygotic PIK3CA mutations are frequently identified in these syndromes, while timing and tissue specificity of the mutational event are likely responsible for the extreme phenotypic variability observed. Methods We carried out a combination of Sanger sequencing and targeted deep sequencing of genes involved in the PI3K/AKT/mTOR pathway in three patients (1 MCAP and 2 FAO) to identify causative mutations, and performed immunoblot analyses to assay the phosphorylation status of AKT and P70S6K in affected dermal fibroblasts. In addition, we evaluated their ability to grow in the absence of serum and their response to the PI3K inhibitors wortmannin and LY294002 in vitro. Results and Conclusion Our data indicate that patients’ cells showed constitutive activation of the PI3K/Akt pathway. Of note, PI3K pharmacological blockade resulted in a significant reduction of the proliferation rate in culture, suggesting that inhibition of PI3K might prove beneficial in future therapies for PROS patients. PMID:25915946

  6. Characterization of Atg38 and NRBF2, a fifth subunit of the autophagic Vps34/PIK3C3 complex

    PubMed Central

    Ohashi, Yohei; Soler, Nicolas; García Ortegón, Miguel; Zhang, Lufei; Kirsten, Marie L.; Perisic, Olga; Masson, Glenn R.; Burke, John E.; Jakobi, Arjen J.; Apostolakis, Apostolos A.; Johnson, Christopher M.; Ohashi, Maki; Ktistakis, Nicholas T.; Sachse, Carsten; Williams, Roger L.

    2016-01-01

    ABSTRACT The phosphatidylinositol 3-kinase Vps34 is part of several protein complexes. The structural organization of heterotetrameric complexes is starting to emerge, but little is known about organization of additional accessory subunits that interact with these assemblies. Combining hydrogen-deuterium exchange mass spectrometry (HDX-MS), X-ray crystallography and electron microscopy (EM), we have characterized Atg38 and its human ortholog NRBF2, accessory components of complex I consisting of Vps15-Vps34-Vps30/Atg6-Atg14 (yeast) and PIK3R4/VPS15-PIK3C3/VPS34-BECN1/Beclin 1-ATG14 (human). HDX-MS shows that Atg38 binds the Vps30-Atg14 subcomplex of complex I, using mainly its N-terminal MIT domain and bridges the coiled-coil I regions of Atg14 and Vps30 in the base of complex I. The Atg38 C-terminal domain is important for localization to the phagophore assembly site (PAS) and homodimerization. Our 2.2 Å resolution crystal structure of the Atg38 C-terminal homodimerization domain shows 2 segments of α-helices assembling into a mushroom-like asymmetric homodimer with a 4-helix cap and a parallel coiled-coil stalk. One Atg38 homodimer engages a single complex I. This is in sharp contrast to human NRBF2, which also forms a homodimer, but this homodimer can bridge 2 complex I assemblies. PMID:27630019

  7. PIK3CA rs7640662 (C/G) single nucleotide polymorphism lacks association with breast cancer cases in Persians

    PubMed Central

    Mir, Atefeh; Sadegh, Mahdiyeh Harati; Ahmadinia, Zahra

    2015-01-01

    Phosphatidylinositol-3-kinase (PI3K) is a group of enzymes involved in cellular growth, proliferation, differentiation, cell motility, intracellular trafficking, and survival that play very important roles in developing breast cancer. PIK3CA is a gene that encodes α catalytic subunit of this enzyme. A common polymorphism of PIK3CA, rs7640662 (C/G), was analyzed, and its association to breast cancer cases was determined. In this study, DNA was extracted from peripheral blood samples of 278 women suffering from breast cancer and 128 healthy women. Tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) method was performed to genotype rs7640662. P values and ODD ratios were measured using SPSS. P value less than 0.05 and ODD ratios more than 1 were considered as significant. All ODD ratios were less than 1, and P values were more than 0.05 showing that rs7640662 (C/G) and breast cancer are not significantly associated. However, the genotypes observed in the Persian population, as an ancient population living in the Middle East, was significantly different from the genotypes reported by HapMap for Asian populations. As a conclusion, rs7640662 was not associated with the risk of breast cancer in a Persian population; however, it was observed that heterozygote (GC) is the most common genotypes in both case and control samples. PMID:25838920

  8. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells.

    PubMed

    Pasquier, Benoit

    2015-04-03

    Autophagy plays an important role in cancer and it has been suggested that it functions not only as a tumor suppressor pathway to prevent tumor initiation, but also as a prosurvival pathway that helps tumor cells endure metabolic stress and resist death triggered by chemotherapeutic agents. We recently described the discovery of inhibitors of PIK3C3/Vps34 (phosphatidylinositol 3-kinase, catalytic subunit type 3), the lipid kinase component of the class III phosphatidylinositol 3-kinase (PtdIns3K). This PtdIns3K isoform has attracted significant attention in recent years because of its role in autophagy. Following chemical optimization we identified SAR405, a low molecular mass kinase inhibitor of PIK3C3, highly potent and selective with regard to other lipid and protein kinases. We demonstrated that inhibiting the catalytic activity of PIK3C3 disrupts vesicle trafficking from late endosomes to lysosomes. SAR405 treatment also inhibits autophagy induced either by starvation or by MTOR (mechanistic target of rapamycin) inhibition. Finally our results show that combining SAR405 with everolimus, the FDA-approved MTOR inhibitor, results in a significant synergy on the reduction of cell proliferation using renal tumor cells. This result indicates a potential therapeutic application for PIK3C3 inhibitors in cancer.

  9. [Clinical and genetic analysis for activated PI3K-δ syndrome by PIK3CD gene mutation].

    PubMed

    Liu, H; Tang, X L; Liu, J R; Li, H M; Zhao, S Y

    2016-09-01

    To analyze clinical and genetic features of activated PI3K-δ syndrome (APDS), a new form of immunodeficiency disease caused by PIK3CD gene mutation. Data of two patients diagnosed as APDS at Second Department of Respiratory Medicine of Beijing Children's Hospital Affiliated to Capital Medical University in 2015 were retrospectively reviewed. Pathogenetic genes were screened by whole exome sequencing, and identified by first generation sequencing. The identified pathogenetic genes were further verified in patients' parents. Then the gene sequencing results were analyzed. Both patients were females, aged 2 years and 4 months and 5 years respectively. The main clinical features of both cases were recurrent respiratory infections, enlargement of lymph node, hepatosplenomegaly, cytomegalovirus (CMV) or Epstein-Barr virus (EBV) viremia, decreased number of native CD4(+) T cell, inverted CD4(+) /CD8(+) T cell ratio and increased IgM. Patient 1 has decreased IgA and IgG. Patient 2 showed wide follicular hyperplasia of the airway mucosa. Both patients had de novo mutation in c. 3061G>A(E1021K)of PIK3CD gene, which was homozygous in patient 1 and heterozygous in patient 2. Both were treated with 500 mg/kg dose of gamma globulin intravenously at 4-weeks interval. Patient 1 started oral rapamycin therapy at the dose of 1 mg/(m(2)·d) and discontinued the treatment after 2 weeks. Patient 2 was given low dose of oral prednisone. The two patients were followed up for 2 months. The number of respiratory infection in both patients was decreased. Hepatosplenomegaly was subsided, while respiratory tract damage was not improved in patient 2. The clinical manifestations of APDS include recurrent respiratory tract infection, enlargement of lymph nodes, hepatosplenomegaly, and CMV or EBV infection. The immunophenotype is decreased native CD4(+) T cell, inverted CD4(+) /CD8(+) T cell ratio, increased IgM and decreased IgA/IgG for some patients. c. 3061G>A(E1021K)of PIK3CD gene is a

  10. Significance of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving Bevacizumab: a single institution experience

    PubMed Central

    Baltruškevičienė, Edita; Mickys, Ugnius; Žvirblis, Tadas; Stulpinas, Rokas; Pipirienė Želvienė, Teresė; Aleknavičius, Eduardas

    2016-01-01

    Background. KRAS mutation is an important predictive and prognostic factor for patients receiving anti-EGFR therapy. An expanded KRAS, NRAS, BRAF, PIK3CA mutation analysis provides additional prognostic information, but its role in predicting bevacizumab efficacy is unclear. The aim of our study was to evaluate the incidence of KRAS, NRAS, BRAF and PIK3CA mutations in metastatic colorectal cancer patients receiving first line oxaliplatin based chemotherapy with or without bevacizumab and to evaluate their prognostic and predictive significance. Methods. 55 patients with the first-time diagnosed CRC receiving FOLFOX ± bevacizumab were involved in the study. Tumour blocks were tested for KRAS mutations in exons 2, 3 and 4, NRAS mutations in exons 2, 3 and 4, BRAF mutation in exon 15 and PIK3CA mutations in exons 9 and 20. The association between mutations and clinico-pathological factors, treatment outcomes and survival was analyzed. Results. KRAS mutations were detected in 67.3% of the patients, BRAF in 1.8%, PIK3CA in 5.5% and there were no NRAS mutations. A significant association between the high CA 19–9 level and KRAS mutation was detected (mean CA 19–9 levels were 276 and 87 kIU/l, respectively, p = 0.019). There was a significantly higher response rate in the KRAS, NRAS, BRAF and PIK3CA wild type cohort receiving bevacizumab compared to any gene mutant type (100 and 60%, respectively, p = 0.030). The univariate Cox regression analysis did not confirm KRAS and other tested mutations as prognostic factors for PFS or OS. Conclusions. Our study revealed higher KRAS and lower NRAS, BRAF and PIK3CA mutation rates in the Lithuanian population than those reported in the literature. KRAS mutation was associated with the high CA 19–9 level and mucinous histology type, but did not show any predictive or prognostic significance. The expanded KRAS, NRAS, BRAF and PIK3CA mutation analysis provided additional significant predictive information. PMID:28356789

  11. PIK3CA-mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation.

    PubMed

    Silva, Jillian M; Deuker, Marian M; Baguley, Bruce C; McMahon, Martin

    2017-05-01

    Malignant conversion of BRAF- or NRAS-mutated melanocytes into melanoma cells can be promoted by PI3'-lipid signaling. However, the mechanism by which PI3'-lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS- or BRAF-mutated melanoma cells that co-express mutationally activated PIK3CA, we explored the contribution of PI3'-lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α-selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single-agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1-mediated effects on ribosomal protein S6 and 4E-BP1 phosphorylation in an AKT-dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRAS Q61H /PIK3CA H1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA-mutated melanoma proliferation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Clinical implications of genomic profiles in metastatic breast cancer with a focus on TP53 and PIK3CA, the most frequently mutated genes.

    PubMed

    Kim, Ji-Yeon; Lee, Eunjin; Park, Kyunghee; Park, Woong-Yang; Jung, Hae Hyun; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2017-04-25

    Breast cancer (BC) has been genetically profiled through large-scale genome analyses. However, the role and clinical implications of genetic alterations in metastatic BC (MBC) have not been evaluated. Therefore, we conducted whole-exome sequencing (WES) and RNA-Seq of 37 MBC samples and targeted deep sequencing of another 29 MBCs. We evaluated somatic mutations from WES and targeted sequencing and assessed gene expression and performed pathway analysis from RNA-Seq. In this analysis, PIK3CA was the most commonly mutated gene in estrogen receptor (ER)-positive BC, while in ER-negative BC, TP53 was the most commonly mutated gene (p = 0.018 and p < 0.001, respectively). TP53 stopgain/loss and frameshift mutation was related to low expression of TP53 in contrast nonsynonymous mutation was related to high expression. The impact of TP53 mutation on clinical outcome varied with regard to ER status. In ER-positive BCs, wild type TP53 had a better prognosis than mutated TP53 (median overall survival (OS) (wild type vs. mutated): 88.5 ± 54.4 vs. 32.6 ± 10.7 (months), p = 0.002). In contrast, mutated TP53 had a protective effect in ER-negative BCs (median OS: 0.10 vs. 32.6 ± 8.2, p = 0.026). However, PIK3CA mutation did not affect patient survival. In gene expression analysis, CALM1, a potential regulator of AKT, was highly expressed in PIK3CA-mutated BCs. In conclusion, mutation of TP53 was associated with expression status and affect clinical outcome according to ER status in MBC. Although mutation of PIK3CA was not related to survival in this study, mutation of PIK3CA altered the expression of other genes and pathways including CALM1 and may be a potential predictive marker of PI3K inhibitor effectiveness.

  13. Ernst Julius Öpik's (1916) note on the theory of explosion cratering on the Moon's surface—The complex case of a long-overlooked benchmark paper

    NASA Astrophysics Data System (ADS)

    Racki, Grzegorz; Koeberl, Christian; Viik, Tõnu; Jagt-Yazykova, Elena A.; Jagt, John W. M.

    2014-10-01

    High-velocity impact as a common phenomenon in planetary evolution was ignored until well into the twentieth century, mostly because of inadequate understanding of cratering processes. An eight-page note, published in Russian by the young Ernst Julius Öpik, a great Estonian astronomer, was among the key selenological papers, but due to the language barrier, it was barely known and mostly incorrectly cited. This particular paper is here intended to serve as an explanatory supplement to an English translation of Öpik's article, but also to document an early stage in our understanding of cratering. First, we outline the historical-biographical background of this benchmark paper, and second, a comprehensive discussion of its merits is presented, from past and present perspectives alike. In his theoretical research, Öpik analyzed the explosive formation of craters numerically, albeit in a very simple way. For the first time, he approximated relationships among minimal meteorite size, impact energy, and crater diameter; this scaling focused solely on the gravitational energy of excavating the crater (a "useful" working approach). This initial physical model, with a rational mechanical basis, was developed in a series of papers up to 1961. Öpik should certainly be viewed as the founder of the numerical simulation approach in planetary sciences. In addition, the present note also briefly describes Nikolai A. Morozov as a remarkable man, a forgotten Russian scientist and, surprisingly, the true initiator of Öpik's explosive impact theory. In fact, already between 1909 and 1911, Morozov probably was the first to consider conclusively that explosion craters would be circular, bowl-shaped depressions even when formed under different impact angles.

  14. Investigating the Structure and Dynamics of the PIK3CA Wild-Type and H1047R Oncogenic Mutant

    PubMed Central

    Pavlaki, Maria; Lazani, Vasiliki; Christoforidis, Savvas; Agianian, Bogos; Cournia, Zoe

    2014-01-01

    The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation. PMID:25340423

  15. Simultaneous identification of 36 mutations in KRAS codons 61and 146, BRAF, NRAS, and PIK3CA in a single reaction by multiplex assay kit

    PubMed Central

    2013-01-01

    Background Retrospective analyses in the West suggest that mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA are negative predictive factors for cetuximab treatment in colorectal cancer patients. We developed a novel multiplex kit detecting 36 mutations in KRAS codons 61 and 146, BRAF, NRAS, and PIK3CA using Luminex (xMAP) assay in a single reaction. Methods Tumor samples and clinical data from Asian colorectal cancer patients treated with cetuximab were collected. We investigated KRAS, BRAF, NRAS, and PIK3CA mutations using both the multiplex kit and direct sequencing methods, and evaluated the concordance between the 2 methods. Objective response, progression-free survival (PFS), and overall survival (OS) were also evaluated according to mutational status. Results In total, 82 of 83 samples (78 surgically resected specimens and 5 biopsy specimens) were analyzed using both methods. All multiplex assays were performed using 50 ng of template DNA. The concordance rate between the methods was 100%. Overall, 49 (59.8%) patients had all wild-type tumors, 21 (25.6%) had tumors harboring KRAS codon 12 or 13 mutations, and 12 (14.6%) had tumors harboring KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations. The response rates in these patient groups were 38.8%, 4.8%, and 0%, respectively. Median PFS in these groups was 6.1 months (95% confidence interval (CI): 3.1–9.2), 2.7 months (1.2–4.2), and 1.6 months (1.5–1.7); median OS was 13.8 months (9.2–18.4), 8.2 months (5.7–10.7), and 6.3 months (1.3–11.3), respectively. Statistically significant differences in both PFS and OS were found between patients with all wild-type tumors and those with KRAS codon 61, KRAS codon 146, BRAF, NRAS, or PIK3CA mutations (PFS: 95% CI, 0.11–0.44; P < 0.0001; OS: 95% CI, 0.15–0.61; P < 0.0001). Conclusions Our newly developed multiplex kit is practical and feasible for investigation of a range of sample types. Moreover, mutations in KRAS

  16. Effectors of epidermal growth factor receptor pathway: the genetic profiling ofKRAS, BRAF, PIK3CA, NRAS mutations in colorectal cancer characteristics and personalized medicine.

    PubMed

    Shen, Yinchen; Wang, Jianfei; Han, Xiaohong; Yang, Hongying; Wang, Shuai; Lin, Dongmei; Shi, Yuankai

    2013-01-01

    Mutations in KRAS oncogene are recognized biomarkers that predict lack of response to anti- epidermal growth factor receptor (EGFR) antibody therapies. However, some patients with KRAS wild-type tumors still do not respond, so other downstream mutations in BRAF, PIK3CA and NRAS should be investigated. Herein we used direct sequencing to analyze mutation status for 676 patients in KRAS (codons 12, 13 and 61), BRAF (exon 11 and exon 15), PIK3CA (exon 9 and exon 20) and NRAS (codons12, 13 and 61). Clinicopathological characteristics associations were analyzed together with overall survival (OS) of metastatic colorectal cancer patients (mCRC). We found 35.9% (242/674) tumors harbored a KRAS mutation, 6.96% (47/675) harbored a BRAF mutation, 9.9% (62/625) harbored a PIK3CA mutation and 4.19% (26/621) harbored a NRAS mutation. KRAS mutation coexisted with BRAF, PIK3CA and NRAS mutation, PIK3CA exon9 mutation appeared more frequently in KRAS mutant tumors (P = 0.027) while NRAS mutation almost existed in KRAS wild-types (P<0.001). Female patients and older group harbored a higher KRAS mutation (P = 0.018 and P = 0.031, respectively); BRAF (V600E) mutation showed a higher frequency in colon cancer and poor differentiation tumors (P = 0.020 and P = 0.030, respectively); proximal tumors appeared a higher PIK3CA mutation (P<0.001) and distant metastatic tumors shared a higher NRAS mutation (P = 0.010). However, in this study no significant result was found between OS and gene mutation in mCRC group. To our knowledge, the first large-scale retrospective study on comprehensive genetic profile which associated with anti-EGFR MoAbs treatment selection in East Asian CRC population, appeared a specific genotype distribution picture, and the results provided a better understanding between clinicopathological characteristics and gene mutations in CRC patients.

  17. Retrospective study of RAS/PIK3CA/BRAF tumor mutations as predictors of response to first-line chemotherapy with bevacizumab in metastatic colorectal cancer patients.

    PubMed

    Nakayama, Izuma; Shinozaki, Eiji; Matsushima, Tomohiro; Wakatsuki, Takeru; Ogura, Mariko; Ichimura, Takashi; Ozaka, Masato; Takahari, Daisuke; Suenaga, Mitsukuni; Chin, Keisho; Mizunuma, Nobuyuki; Yamaguchi, Kensei

    2017-01-09

    After analysis of minor RAS mutations (KRAS exon 3, 4/NRAS) in the FIRE-3 and PRIME studies, an expanded range of RAS mutations were established as a negative predictive marker for the efficacy of anti-EGFR antibody treatment. BRAF and PIK3CA mutations may be candidate biomarkers for anti-EGFR targeted therapies. However, it remains unknown whether RAS/PIK3CA/BRAF tumor mutations can predict the efficacy of bevacizumab in metastatic colorectal cancer. We assessed whether selection according to RAS/PIK3CA/BRAF mutational status could be beneficial for patients treated with bevacizumab as first-line treatment for metastatic colorectal cancer. Of the 1001 consecutive colorectal cancer patients examined for RAS, PIK3CA, and BRAF tumor mutations using a multiplex kit (Luminex®), we studied 90 patients who received combination chemotherapy with bevacizumab as first-line treatment for metastatic colorectal cancer. The objective response rate (ORR) and progression-free survival (PFS) were evaluated according to mutational status. The ORR was higher among patients with wild-type tumors (64.3%) compared to those with tumors that were only wild type with respect to KRAS exon 2 (54.8%), and the differences in ORR between patients with wild-type and mutant-type tumors were greater when considering only KRAS exon 2 mutations (6.8%) rather than RAS/PIK3CA/BRAF mutations (18.4%). There were no statistically significant differences in ORR or PFS between all wild-type tumors and tumors carrying any of the mutations. Multivariate analysis revealed that liver metastasis and RAS and BRAF mutations were independent negative factors for disease progression after first-line treatment with bevacizumab. Patient selection according to RAS/PIK3CA/BRAF mutations could help select patients who will achieve a better response to bevacizumab treatment. We found no clinical benefit of restricting combination therapy with bevacizumab for metastatic colorectal cancer patients with EGFR-wild type

  18. Characterisation of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next-generation sequencing study.

    PubMed

    Mirzaa, Ghayda M; Conti, Valerio; Timms, Andrew E; Smyser, Christopher D; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B; Guerrini, Renzo

    2015-12-01

    Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment, and epilepsy. The causes of BPP are heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic causes of BPP and characterise their frequency in this population. Children (aged ≤18 years) with polymicrogyria were enrolled into our research programme from July, 1980, to October, 2015, at two centres (Florence, Italy, and Seattle, WA, USA). We obtained samples (blood and saliva) throughout this period at both centres and did whole-exome sequencing on DNA from eight trios (two parents and one affected child) with BPP in 2014. After the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 by two methods in a cohort of 118 children with BPP. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal to large head size. Second, we did amplicon sequencing of the recurrent PIK3R2 mutation (Gly373Arg) in 80 children with various types of polymicrogyria including BPP. One additional patient had clinical whole-exome sequencing done independently, and was included in this study because of the phenotypic similarity to our cohort. We identified a mosaic mutation (Gly373Arg) in a regulatory subunit of the PI3K-AKT-mTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal to large head size who underwent targeted next-generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient had the recurrent PIK3R2 mutation identified by clinical whole-exome sequencing. Seven of these 20 patients had BPP alone, and 13 had BPP in association with features of the

  19. Characterization of mutations of the phosphoinositide-3-kinase regulatory subunit, PIK3R2, in perisylvian polymicrogyria: a next generation sequencing study

    PubMed Central

    Mirzaa, Ghayda; Conti, Valerio; Timms, Andrew E.; Smyser, Christopher D.; Ahmed, Sarah; Carter, Melissa; Barnett, Sarah; Hufnagel, Robert B.; Goldstein, Amy; Narumi-Kishimoto, Yoko; Olds, Carissa; Collins, Sarah; Johnston, Kathreen; Deleuze, Jean-François; Nitschké, Patrick; Friend, Kathryn; Harris, Catharine; Goetsch, Allison; Martin, Beth; Boyle, Evan August; Parrini, Elena; Mei, Davide; Tattini, Lorenzo; Slavotinek, Anne; Blair, Ed; Barnett, Christopher; Shendure, Jay; Chelly, Jamel; Dobyns, William B.; Guerrini, Renzo

    2015-01-01

    SUMMARY Background Bilateral perisylvian polymicrogyria (BPP), the most common form of regional polymicrogyria, causes the congenital bilateral perisylvian syndrome, featuring oromotor dysfunction, cognitive impairment and epilepsy. BPP is etiologically heterogeneous, but only a few genetic causes have been reported. The aim of this study was to identify additional genetic etiologies of BPP and delineate their frequency in this patient population. Methods We performed child-parent (trio)-based whole exome sequencing (WES) on eight children with BPP. Following the identification of mosaic PIK3R2 mutations in two of these eight children, we performed targeted screening of PIK3R2 in a cohort of 118 children with BPP who were ascertained from 1980 until 2015 using two methods. First, we performed targeted sequencing of the entire PIK3R2 gene by single molecule molecular inversion probes (smMIPs) on 38 patients with BPP with normal-large head size. Second, we performed amplicon sequencing of the recurrent PIK3R2 mutation (p.Gly373Arg) on 80 children with various types of polymicrogyria including BPP. One additional patient underwent clinical WES independently, and was included in this study given the phenotypic similarity to our cohort. All patients included in this study were children (< 18 years of age) with polymicrogyria enrolled in our research program. Findings Using WES, we identified a mosaic mutation (p.Gly373Arg) in the regulatory subunit of the PI3K-AKT-MTOR pathway, PIK3R2, in two children with BPP. Of the 38 patients with BPP and normal-large head size who underwent targeted next generation sequencing by smMIPs, we identified constitutional and mosaic PIK3R2 mutations in 17 additional children. In parallel, one patient was found to have the recurrent PIK3R2 mutation by clinical WES. Seven patients had BPP alone, and 13 had BPP in association with features of the megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH). Nineteen patients had

  20. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    PubMed Central

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  1. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP) - pure coincidence?

    PubMed Central

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia

    2015-01-01

    Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly—thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations. PMID:24939587

  2. Germline PTPN11 and somatic PIK3CA variant in a boy with megalencephaly-capillary malformation syndrome (MCAP)--pure coincidence?

    PubMed

    Döcker, Dennis; Schubach, Max; Menzel, Moritz; Spaich, Christiane; Gabriel, Heinz-Dieter; Zenker, Martin; Bartholdi, Deborah; Biskup, Saskia

    2015-03-01

    Megalencephaly-capillary malformation (MCAP) syndrome is an overgrowth syndrome that is diagnosed by clinical criteria. Recently, somatic and germline variants in genes that are involved in the PI3K-AKT pathway (AKT3, PIK3R2 and PIK3CA) have been described to be associated with MCAP and/or other related megalencephaly syndromes. We performed trio-exome sequencing in a 6-year-old boy and his healthy parents. Clinical features were macrocephaly, cutis marmorata, angiomata, asymmetric overgrowth, developmental delay, discrete midline facial nevus flammeus, toe syndactyly and postaxial polydactyly--thus, clearly an MCAP phenotype. Exome sequencing revealed a pathogenic de novo germline variant in the PTPN11 gene (c.1529A>G; p.(Gln510Arg)), which has so far been associated with Noonan, as well as LEOPARD syndrome. Whole-exome sequencing (>100 × coverage) did not reveal any alteration in the known megalencephaly genes. However, ultra-deep sequencing results from saliva (>1000 × coverage) revealed a 22% mosaic variant in PIK3CA (c.2740G>A; p.(Gly914Arg)). To our knowledge, this report is the first description of a PTPN11 germline variant in an MCAP patient. Data from experimental studies show a complex interaction of SHP2 (gene product of PTPN11) and the PI3K-AKT pathway. We hypothesize that certain PTPN11 germline variants might drive toward additional second-hit alterations.

  3. MARCH2 regulates autophagy by promoting CFTR ubiquitination and degradation and PIK3CA-AKT-MTOR signaling.

    PubMed

    Xia, Dan; Qu, Liujing; Li, Ge; Hongdu, Beiqi; Xu, Chentong; Lin, Xin; Lou, Yaxin; He, Qihua; Ma, Dalong; Chen, Yingyu

    2016-09-01

    MARCH2 (membrane-associated RING-CH protein 2), an E3 ubiquitin ligase, is mainly associated with the vesicle trafficking. In the present study, for the first time, we demonstrated that MARCH2 negatively regulates autophagy. Our data indicated that overexpression of MARCH2 impaired autophagy, as evidenced by attenuated levels of LC3B-II and impaired degradation of endogenous and exogenous autophagic substrates. By contrast, loss of MARCH2 expression had the opposite effects. In vivo experiments demonstrate that MARCH2 knockout mediated autophagy results in an inhibition of tumorigenicity. Further investigation revealed that the induction of autophagy by MARCH2 deficiency was mediated through the PIK3CA-AKT-MTOR signaling pathway. Additionally, we found that MARCH2 interacts with CFTR (cystic fibrosis transmembrane conductance regulator), promotes the ubiquitination and degradation of CFTR, and inhibits CFTR-mediated autophagy in tumor cells. The functional PDZ domain of MARCH2 is required for the association with CFTR. Thus, our study identified a novel negative regulator of autophagy and suggested that the physical and functional connection between the MARCH2 and CFTR in different conditions will be elucidated in the further experiments.

  4. TP53, PIK3CA, FBXW7 and KRAS Mutations in Esophageal Cancer Identified by Targeted Sequencing.

    PubMed

    Zheng, Huili; Wang, Yan; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Zhang, Guangchun; Cao, Weihai; Li, Jingwen; Liu, Lifeng; Liu, Zhencong; Zhang, Chao; Lou, Feng; Liu, Zhiyuan; Li, Yangyang; Shi, Zhenfen; Zhang, Jingbo; Zhang, Dandan; Sun, Hong; Dong, Haichao; Dong, Zhishou; Guo, Baishuai; Yan, H E; Lu, Qingyu; Huang, Xue; Chen, Si-Yi

    2016-01-01

    Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive. Recent technological advancements have made targeted DNA sequencing more cost- and time-effective with reliable results. This technology may be useful for clinicians to direct patient treatment. The Ion PGM and AmpliSeq Cancer Panel was used to identify mutations at 737 hotspot loci of 45 cancer-related genes in 64 EC samples from Chinese patients. Frequent mutations were found in TP53 and less frequent mutations in PIK3CA, FBXW7 and KRAS. These results demonstrate that targeted sequencing can reliably identify mutations in individual tumors that make this technology a possibility for clinical use. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  5. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  6. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    NASA Astrophysics Data System (ADS)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2010-08-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.

  7. microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway.

    PubMed

    Zhang, Junfeng; Zhang, Zongqi; Zhang, David Y; Zhu, Jianbing; Zhang, Tiantian; Wang, Changqian

    2013-01-01

    Endothelial progenitor cells (EPCs) are capable of proliferating and differentiating into mature endothelial cells, and they have been considered as potential candidates for coronary heart disease therapy. However, the transition of EPCs to mesenchymal cells is not fully understood. This study aimed to explore the role of microRNA 126 (miR-126) in the endothelial-to-mesenchymal transition (EndMT) induced by transforming growth factor beta 1 (TGFβ1). EndMT of rat bone marrow-derived EPCs was induced by TGFβ1 (5 ng/mL) for 7 days. miR-126 expression was depressed in the process of EPC EndMT. The luciferase reporter assay showed that the PI3K regulatory subunit p85 beta (PIK3R2) was a direct target of miR-126 in EPCs. Overexpression of miR-126 by a lentiviral vector (lenti-miR-126) was found to downregulate the mRNA expression of mesenchymal cell markers (α-SMA, sm22-a, and myocardin) and to maintain the mRNA expression of progenitor cell markers (CD34, CD133). In the cellular process of EndMT, there was an increase in the protein expression of PIK3R2 and the nuclear transcription factors FoxO3 and Smad4; PI3K and phosphor-Akt expression decreased, a change that was reversed markedly by overexpression of miR-126. Furthermore, knockdown of PIK3R2 gene expression level showed reversed morphological changes of the EPCs treated with TGFβ1, thereby giving the evidence that PIK3R2 is the target gene of miR-126 during EndMT process. These results show that miR-126 targets PIK3R2 to inhibit EPC EndMT and that this process involves regulation of the PI3K/Akt signalling pathway. miR-126 has the potential to be used as a biomarker for the early diagnosis of intimal hyperplasia in cardiovascular disease and can even be a therapeutic tool for treating cardiovascular diseases mediated by the EndMT process.

  8. Epithelial PIK3R1 (p85) and TP53 Regulate Survivin Expression during Adaptation to Ileocecal Resection.

    PubMed

    Cohran, Valeria; Managlia, Elizabeth; Bradford, Emily M; Goretsky, Tatiana; Li, Ting; Katzman, Rebecca B; Cheresh, Paul; Brown, Jeffrey B; Hawkins, Jennifer; Liu, Shirley X L; De Plaen, Isabelle G; Weitkamp, Jörn-Hendrik; Helmrath, Michael; Zhang, Zheng; Barrett, Terrence A

    2016-07-01

    Intestinal adaptation to small-bowel resection (SBR) after necrotizing enterocolitis expands absorptive surface areas and promotes enteral autonomy. Survivin increases proliferation and blunts apoptosis. The current study examines survivin in intestinal epithelial cells after ileocecal resection. Wild-type and epithelial Pik3r1 (p85α)-deficient mice underwent sham surgery or 30% resection. RNA and protein were isolated from small bowel to determine levels of β-catenin target gene expression, activated caspase-3, survivin, p85α, and Trp53. Healthy and post-resection human infant small-bowel sections were analyzed for survivin, Ki-67, and TP53 by immunohistochemistry. Five days after ileocecal resection, epithelial levels of survivin increased relative to sham-operated on mice, which correlated with reduced cleaved caspase-3, p85α, and Trp53. At baseline, p85α-deficient intestinal epithelial cells had less Trp53 and more survivin, and relative responses to resection were blunted compared with wild-type. In infant small bowel, survivin in transit amplifying cells increased 71% after SBR. Resection increased proliferation and decreased numbers of TP53-positive epithelial cells. Data suggest that ileocecal resection reduces p85α, which lowers TP53 activation and releases survivin promoter repression. The subsequent increase in survivin among transit amplifying cells promotes epithelial cell proliferation and lengthens crypts. These findings suggest that SBR reduces p85α and TP53, which increases survivin and intestinal epithelial cell expansion during therapeutic adaptation in patients with short bowel syndrome. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts

    PubMed Central

    Li, S; Li, L; Zhu, Y; Huang, C; Qin, Y; Liu, H; Ren-Heidenreich, L; Shi, B; Ren, H; Chu, X; Kang, J; Wang, W; Xu, J; Tang, K; Yang, H; Zheng, Y; He, J; Yu, G; Liang, N

    2014-01-01

    Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment. PMID:24743704

  10. Enlarging cystic lymphangioma of the mediastinum in an adult: is this a neoplastic lesion related to the recently discovered PIK3CA mutation?

    PubMed

    Tajima, Shogo; Takanashi, Yusuke; Koda, Kenji

    2015-01-01

    Cystic lymphangioma, a lymphatic system malformation, is usually observed in infants and children and is rarely found in adults. It most commonly occurs in the cervicofacial region, followed by the axilla. Mediastinal cystic lymphangioma is rare, accounting for 1.8% of all mediastinal cysts. Herein, we present an exceedingly rare adult case of mediastinal cystic lymphangioma that had increased in size over a 5-year period. Although fluid collection might be an alternative explanation for this increase in size, this lymphangioma might harbor a neoplastic nature related to the recently discovered PIK3CA mutation.

  11. Clinical significance of plasma cell-free DNA mutations in PIK3CA, AKT1, and ESR1 gene according to treatment lines in ER-positive breast cancer.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Iwase, Hirotaka

    2018-02-26

    The somatic activation of PI3K/AKT pathway mutations, PIK3CA and AKT1, and ESR1 mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive procedure to quickly assess and monitor disease progression or therapeutic effect in breast cancer (BC) patients, but the clinical significance of these mutations in late treatment lines (TLs) remains unclear. The subjects of this study were a total of 251 plasma samples from 128 estrogen receptor-positive (ER+) BC patients. Of these plasma samples, 133 were from 73 primary BC (PBC) patients, and 118 plasma samples were from 68 metastatic BC (MBC) patients. We developed droplet digital PCR (ddPCR) assays to verify the clinical significance of PIK3CA, AKT1, and ESR1 mutations in these patients. cfDNA PIK3CA mutations were observed in 15.1% of the PBC patients, while a cfDNA AKT1 mutation was observed in 1.4% of patients, and cfDNA ESR1 mutations were observed in 2.7% of patients. Patients with detectable cfDNA PIK3CA mutations were not associated with clinical outcomes. According to the TL, the prevalence of the PIK3CA and ESR1 mutations in cfDNA were lower in early TLs compared with late TLs. In the early TL group, patients with cfDNA PIK3CA mutations had a shorter time to treatment failure (TTF) than patients without mutations (P = 0.035). However, there was no statistically significant difference between patients with or without cfDNA ESR1 mutations. However, in the late TL group, patients with cfDNA ESR1 mutations had a shorter TTF than patients without mutations (P = 0.048). However, there was no statistically significant difference between patients with or without cfDNA PIK3CA mutations. Since the prevalence of cfDNA AKT1 mutation is low in both PBC and MBC patients, the impact of AKT1 mutations on the prognosis remains unclear. We have demonstrated the difference in the clinical significance of the hotspot PIK3CA, AKT1, and ESR1 mutations in cfDNA for each TL in ER+ BC patients.

  12. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients.

    PubMed

    Beelen, Karin; Opdam, Mark; Severson, Tesa M; Koornstra, Rutger H T; Vincent, Andrew D; Wesseling, Jelle; Muris, Jettie J; Berns, Els M J J; Vermorken, Jan B; van Diest, Paul J; Linn, Sabine C

    2014-01-27

    Inhibitors of the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway can overcome endocrine resistance in estrogen receptor (ER) α-positive breast cancer, but companion diagnostics indicating PI3K/AKT/mTOR activation and consequently endocrine resistance are lacking. PIK3CA mutations frequently occur in ERα-positive breast cancer and result in PI3K/AKT/mTOR activation in vitro. Nevertheless, the prognostic and treatment-predictive value of these mutations in ERα-positive breast cancer is contradictive. We tested the clinical validity of PIK3CA mutations and other canonic pathway drivers to predict intrinsic resistance to adjuvant tamoxifen. In addition, we tested the association between these drivers and downstream activated proteins. Primary tumors from 563 ERα-positive postmenopausal patients, randomized between adjuvant tamoxifen (1 to 3 years) versus observation were recollected. PIK3CA hotspot mutations in exon 9 and exon 20 were assessed with Sequenom Mass Spectometry. Immunohistochemistry was performed for human epidermal growth factor receptor 2 (HER2), phosphatase and tensin homolog (PTEN), and insulin-like growth factor 1 receptor (IGF-1R). We tested the association between these molecular alterations and downstream activated proteins (like phospho-protein kinase B (p-AKT), phospho-mammalian target of rapamycin (p-mTOR), p-ERK1/2, and p-p70S6K). Recurrence-free interval improvement with tamoxifen versus control was assessed according to the presence or absence of canonic pathway drivers, by using Cox proportional hazard models, including a test for interaction. PIK3CA mutations (both exon 9 and exon 20) were associated with low tumor grade. An enrichment of PIK3CA exon 20 mutations was observed in progesterone receptor- positive tumors. PIK3CA exon 20 mutations were not associated with downstream-activated proteins. No significant interaction between PIK3CA mutations or any of the other canonic pathway

  13. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  14. Isoform-selective induction of human p110δ PI3K expression by TNFα: identification of a new and inducible PIK3CD promoter

    PubMed Central

    Whitehead, Maria A.; Bombardieri, Michele; Pitzalis, Costantino; Vanhaesebroeck, Bart

    2012-01-01

    PI3Ks (phosphoinositide 3-kinases) are signalling molecules and drug targets with important biological functions, yet the regulation of PI3K gene expression is poorly understood. Key PI3Ks are the class IA PI3Ks that consist of a catalytic subunit (p110α, p110β and p110δ) in complex with a p85 regulatory subunit. Whereas p110α and p110β are ubiquitously expressed, high levels of p110δ are mainly found in white blood cells, with most non-leucocytes expressing low levels of p110δ. In the present paper we report that TNFα (tumour necrosis factor α) stimulation induces p110δ expression in human ECs (endothelial cells) and synovial fibroblasts, but not in leucocytes, through transcription start sites located in a novel promoter region in the p110δ gene (PIK3CD). This promoter is used in all cell types, including solid tumour cell lines that express p110δ, and is activated by TNFα in ECs and synovial fibroblasts. We further present a detailed biochemical and bioinformatic characterization of p110δ gene regulation, demonstrating that PIK3CD has distinct promoters, some of which can be dynamically activated by pro-inflammatory mediators. This is the first molecular identification of a PI3K promoter under the control of acute extracellular stimulation. PMID:22375552

  15. Surface Enhanced Raman Spectroscopy (SERS) for the Multiplex Detection of Braf, Kras, and Pik3ca Mutations in Plasma of Colorectal Cancer Patients

    PubMed Central

    Li, Xiaozhou; Yang, Tianyue; Li, Caesar Siqi; Song, Youtao; Lou, Hong; Guan, Dagang; Jin, Lili

    2018-01-01

    In this paper, we discuss the use of a procedure based on polymerase chain reaction (PCR) and surface enhanced Raman spectroscopy (SERS) (PCR-SERS) to detect DNA mutations. Methods: This method was implemented by first amplifying DNA-containing target mutations, then by annealing probes, and finally by applying SERS detection. The obtained SERS spectra were from a mixture of fluorescence tags labeled to complementary sequences on the mutant DNA. Then, the SERS spectra of multiple tags were decomposed to component tag spectra by multiple linear regression (MLR). Results: The detection limit was 10-11 M with a coefficient of determination (R2) of 0.88. To demonstrate the applicability of this process on real samples, the PCR-SERS method was applied on blood plasma taken from 49 colorectal cancer patients to detect six mutations located at the BRAF, KRAS, and PIK3CA genes. The mutation rates obtained by the PCR-SERS method were in concordance with previous research. Fisher's exact test showed that only two detected mutations at BRAF (V600E) and PIK3CA (E542K) were significantly positively correlated with right-sided colon cancer. No other clinical feature such as gender, age, cancer stage, or differentiation was correlated with mutation (V600E at BRAF, G12C, G12D, G12V, G13D at KRAS, and E542K at PIK3CA). Visually, a dendrogram drawn through hierarchical clustering analysis (HCA) supported the results of Fisher's exact test. The clusters drawn by all six mutations did not conform to the distributions of cancer stages, differentiation or cancer positions. However, the cluster drawn by the two mutations of V600E and E542K showed that all samples with those mutations belonged to the right-sided colon cancer group. Conclusion: The suggested PCR-SERS method is multiplexed, flexible in probe design, easy to incorporate into existing PCR conditions, and was sensitive enough to detect mutations in blood plasma. PMID:29556349

  16. FGFR2 Point Mutations in 466 Endometrioid Endometrial Tumors: Relationship with MSI, KRAS, PIK3CA, CTNNB1 Mutations and Clinicopathological Features

    PubMed Central

    Powell, Matthew A.; Wellens, Candice L.; Gao, Feng; Mutch, David G.; Goodfellow, Paul J.; Pollock, Pamela M.

    2012-01-01

    Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35–7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09–3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05–0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies. PMID:22383975

  17. Strategically timing inhibition of phosphatidylinositol 3-kinase to maximize therapeutic index in estrogen receptor alpha-positive, PIK3CA-mutant breast cancer

    PubMed Central

    Yang, Wei; Hosford, Sarah R.; Dillon, Lloye M.; Shee, Kevin; Liu, Stephanie C.; Bean, Jennifer R.; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A.; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D.; Marotti, Jonathan D.; Eastman, Alan R.; Miller, Todd W.

    2016-01-01

    Purpose Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with anti-estrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER+ breast cancer will provide rationale for treatment scheduling to maximize therapeutic index. Experimental Design Anti-estrogen-sensitive and -resistant ER+ human breast cancer cell lines, and mice bearing PIK3CA-mutant xenografts were treated with the anti-estrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Results Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6–9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared to fulvestrant alone. Conclusions Continuous and metronomic PI3K inhibition elicit robust anti-cancer effects in ER+, PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors

  18. The Impact of Cetuximab Plus AKT- or mTOR- Inhibitor in a Patient-Derived Colon Cancer Cell Model with Wild-Type RAS and PIK3CA Mutation.

    PubMed

    Kim, Ju Sun; Kim, Jung Eun; Kim, Kyung; Lee, Jeeyun; Park, Joon Oh; Lim, Ho Yeong; Park, Young Suk; Kang, Won Ki; Kim, Seung Tae

    2017-01-01

    Background: Anti-EGFR therapies have been recommended for advanced colorectal cancer (CRC) with wild-type RAS and PIK3CA mutation. However, PIK3CA mutations are a poor prognostic marker and a negative predictor of response to anti-EGFR therapies in RAS wild-type CRC. Therefore, new and advanced treatment strategies are needed for personalized medical treatment of patients with wild-type RAS and PIK3CA mutation. Methods: Patient-derived tumor cells were collected from the ascites of a refractory colon cancer patient with wild-type RAS and PIK3CA mutation. We performed a cell viability assay for cetuximab, AZD5363 (AKT inhibitor), and everolimus (mTOR inhibitor) using PDCs. We also evaluated combinations of cetuximab plus AZD5363 or everolimus in a cell viability assay. Results: Based on cellular proliferation by MTT assay, tumor cells were significantly inhibited by 1uM cetuximab (control vs. cetuximab, mean growth = 100.0% vs 58.07%, p = 0.0103), 1uM AZD5363 (control vs. AZD5363, mean growth = 100.0% vs 58.22%, p = 0.0123), and 1uM everolimus (control vs. everolimus, mean growth = 100.0% vs 52.17%, p = 0.0011). Tumor cell growth was more profoundly reduced by combinations of cetuximab plus AZD5363 (control vs. cetuximab plus AZD5363, mean growth = 100.0% vs 25.00%, p < 0.0001) or everolimus (control vs. cetuximab+everolimus, mean growth = 100.0% vs 28.24%, p < 0.0001). Conclusions: Taken together, these results indicate that RAS wild-type and PIK3CA mutant PDCs originating from CRC are considerably inhibited by treatment with cetuximab plus AZD5363 or everolimus, with downregulation of the AKT and ERK pathways. These combinations may be considered as new options for advanced CRC patients with wild-type RAS and PIK3CA mutation in the context of clinical trials.

  19. A Novel Workflow to Enrich and Isolate Patient-Matched EpCAMhigh and EpCAMlow/negative CTCs Enables the Comparative Characterization of the PIK3CA Status in Metastatic Breast Cancer

    PubMed Central

    Lampignano, Rita; Yang, Liwen; Neumann, Martin H. D.; Franken, André; Fehm, Tanja; Niederacher, Dieter; Neubauer, Hans

    2017-01-01

    Circulating tumor cells (CTCs), potential precursors of most epithelial solid tumors, are mainly enriched by epithelial cell adhesion molecule (EpCAM)-dependent technologies. Hence, these approaches may overlook mesenchymal CTCs, considered highly malignant. Our aim was to establish a workflow to enrich and isolate patient-matched EpCAMhigh and EpCAMlow/negative CTCs within the same blood samples, and to investigate the phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) mutational status within single CTCs. We sequentially processed metastatic breast cancer (MBC) blood samples via CellSearch® (EpCAM-based) and via Parsortix™ (size-based) systems. After enrichment, cells captured in Parsortix™ cassettes were stained in situ for nuclei, cytokeratins, EpCAM and CD45. Afterwards, sorted cells were isolated via CellCelector™ micromanipulator and their genomes were amplified. Lastly, PIK3CA mutational status was analyzed by combining an amplicon-based approach with Sanger sequencing. In 54% of patients′ blood samples both EpCAMhigh and EpCAMlow/negative cells were identified and successfully isolated. High genomic integrity was observed in 8% of amplified genomes of EpCAMlow/negative cells vs. 28% of EpCAMhigh cells suggesting an increased apoptosis in the first CTC-subpopulation. Furthermore, PIK3CA hotspot mutations were detected in both EpCAMhigh and EpCAMlow/negative CTCs. Our workflow is suitable for single CTC analysis, permitting—for the first time—assessment of the heterogeneity of PIK3CA mutational status within patient-matched EpCAMhigh and EpCAMlow/negative CTCs. PMID:28858218

  20. Subcellular localization of FOXO3a as a potential biomarker of response to combined treatment with inhibitors of PI3K and autophagy in PIK3CA-mutant cancer cells.

    PubMed

    Kim, Hyun-Jung; Lee, Soo Yoon; Kim, Chan Young; Kim, Yun Hwan; Ju, Woong; Kim, Seung Cheol

    2017-01-24

    Autophagy is the process of lysosome-mediated degradation and recycling that functions as an adaptive survival mechanism during anti-cancer therapy. Aberrant activation of the phosphoinositide-3-kinase (PI3K) pathway frequently occurs in solid tumors, including cervical cancer. However, single-agent PI3K inhibitors show modest anti-tumor efficacy in clinics. To see whether autophagy inhibition improves the efficacy of PI3K inhibitor in PIK3CA-mutant cancer cells, cells were treated with BKM120, a pan-PI3K inhibitor, and the autophagy inhibitor hydroxychloroquine (HCQ). Autophagy inhibition augmented the efficacy of BKM120 depending on PIK3CA-mutant cancer cell type. BKM120 treatment led to the nuclear accumulation of forkhead box O3 (FOXO3a) in Caski and T47D cells, which showed a synergistic effect of BKM120 and HCQ and the strong induction of autophagy. However, most FOXO3a remained in cytoplasm in C33A and ME180 cells, which did not exhibit synergy. These data suggest that BKM120-induced nuclear translocation of FOXO3a might elicit autophagy and be a critical factor determining the synergistic activity of BKM120 and HCQ in PIK3CA-mutant cancer cells. The release of FOXO3a from 14-3-3 by BV02 or 14-3-3 knockdown induced autophagy by BKM120 in C33A cells and sensitized the cells to the combined BKM120 and HCQ treatment, suggesting that cytoplasmic retention of FOXO3a by 14-3-3 even in the presence of BKM120 inhibit autophagy induction and synergistic effect of BKM120 and HCQ combination. Taken together, our study shows that subcellular localization of FOXO3a might be a potential biomarker for predicting response to the combination treatment with PI3K and autophagy inhibitors in PIK3CA-mutant cervical cancer patients.

  1. Strategically Timing Inhibition of Phosphatidylinositol 3-Kinase to Maximize Therapeutic Index in Estrogen Receptor Alpha-Positive, PIK3CA-Mutant Breast Cancer.

    PubMed

    Yang, Wei; Hosford, Sarah R; Dillon, Lloye M; Shee, Kevin; Liu, Stephanie C; Bean, Jennifer R; Salphati, Laurent; Pang, Jodie; Zhang, Xiaolin; Nannini, Michelle A; Demidenko, Eugene; Bates, Darcy; Lewis, Lionel D; Marotti, Jonathan D; Eastman, Alan R; Miller, Todd W

    2016-05-01

    Phosphatidylinositol 3-kinase (PI3K) inhibitors are being developed for the treatment of estrogen receptor α (ER)-positive breast cancer in combination with antiestrogens. Understanding the temporal response and pharmacodynamic effects of PI3K inhibition in ER(+) breast cancer will provide a rationale for treatment scheduling to maximize therapeutic index. Antiestrogen-sensitive and antiestrogen-resistant ER(+) human breast cancer cell lines and mice bearing PIK3CA-mutant xenografts were treated with the antiestrogen fulvestrant, the PI3K inhibitor GDC-0941 (pictilisib; varied doses/schedules that provided similar amounts of drug each week), or combinations. Cell viability, signaling pathway inhibition, proliferation, apoptosis, tumor volume, and GDC-0941 concentrations in plasma and tumors were temporally measured. Treatment with the combination of fulvestrant and GDC-0941, regardless of dose/schedule, was significantly more effective than that with single-agent treatments in fulvestrant-resistant tumors. Short-term, complete PI3K inhibition blocked cell growth in vitro more effectively than chronic, incomplete inhibition. Longer-term PI3K inhibition hypersensitized cells to growth factor signaling upon drug withdrawal. Different schedules of GDC-0941 elicited similar tumor responses. While weekly high-dose GDC-0941 with fulvestrant continuously suppressed PI3K signaling for 72 hours, inducing a bolus of apoptosis and inhibiting proliferation, PI3K reactivation upon GDC-0941 washout induced a proliferative burst. Fulvestrant with daily low-dose GDC-0941 metronomically suppressed PI3K for 6 to 9 hours/day, repeatedly inducing small amounts of apoptosis and temporarily inhibiting proliferation, followed by proliferative rebound compared with fulvestrant alone. Continuous and metronomic PI3K inhibition elicits robust anticancer effects in ER(+), PIK3CA-mutant breast cancer. Clinical exploration of alternate treatment schedules of PI3K inhibitors with antiestrogens

  2. Colon Tumors with the Simultaneous Induction of Driver Mutations in APC, KRAS, and PIK3CA Still Progress through the Adenoma-to-carcinoma Sequence.

    PubMed

    Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A

    2015-10-01

    Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.

  3. Colon tumors with the simultaneous induction of driver mutations in APC, KRAS, and PIK3CA still progress through the adenoma-to-carcinoma sequence

    PubMed Central

    Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.

    2015-01-01

    Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752

  4. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2).

    PubMed

    English, Diana P; Bellone, Stefania; Cocco, Emiliano; Bortolomai, Ileana; Pecorelli, Sergio; Lopez, Salvatore; Silasi, Dan-Arin; Schwartz, Peter E; Rutherford, Thomas; Santin, Alessandro D

    2013-11-01

    To evaluate PIK3CA mutational status and c-erbB2 gene amplification in a series of primary uterine serous carcinomas (USC) cell lines. To assess the efficacy of GDC-0980, a potent inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2), against primary USC harboring HER2/neu gene amplification and/or PIK3CA mutations. Twenty-two primary USC cell lines were evaluated for c-erbB2 oncogene amplification by fluorescence in situ hybridization (FISH) assays and for PIK3CA gene mutations by direct DNA sequencing of exons 9 and 20. In vitro sensitivity to GDC-0980 was evaluated by flow-cytometry-based viability and proliferation assays. Downstream cellular responses to GDC-0980 were assessed by measuring phosphorylation of the 4-EBP1 protein by flow-cytometry. Five of 22 (22.7%) USC cell lines contained oncogenic PIK3CA mutations although 9 (40.9%) harbored c-erbB2 gene amplification by FISH. GDC-0980 caused a strong differential growth inhibition in FISH+ USC when compared with FISH- (GDC-0980 IC50 mean ± SEM = 0.29 ± 0.05 μM in FISH+ vs 1.09 ± 0.20 μM in FISH- tumors, P = .02). FISH+ USC harboring PIK3CA mutations were significantly more sensitive to GDC-0980 exposure when compared with USC cell lines harboring wild-type PIK3CA (P = .03). GDC-0980 growth-inhibition was associated with a significant and dose-dependent decline in phosphorylated 4-EBP1 levels. Oncogenic PIK3CA mutations and c-erbB2 gene amplification may represent biomarkers to identify patients harboring USC who may benefit most from the use of GDC-0980. Copyright © 2013 Mosby, Inc. All rights reserved.

  5. Comprehensive mutation analysis of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 genes is suggestive of a non- neoplastic nature of phenytoin induced gingival overgrowth.

    PubMed

    Swamikannu, Bhuminathan; Kumar, Kishore S; Jayesh, Raghavendra S; Rajendran, Senthilnathan; Muthupalani, Rajendran Shanmugam; Ramanathan, Arvind

    2013-01-01

    Dilantin sodium (phenytoin) is an antiepileptic drug, which is routinely used to control generalized tonic clonic seizure and partial seizure episodes. A few case reports of oral squamous cell carcinomas arising from regions of phenytoin induced gingival overgrowth (GO), and overexpression of mitogenic factors and p53 have presented this condition as a pathology with potential to transform into malignancy. We recently investigated the genetic status of p53 and H-ras, which are known to be frequently mutated in Indian oral carcinomas in GO tissues and found them to only contain wild type sequences, which suggested a non-neoplastic nature of phenytoin induced GO. However, besides p53 and H-ras, other oncogenes and tumor suppressors such as PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1, are frequently altered in oral squamous cell carcinoma, and hence are required to be analyzed in phenytoin induced GO tissues to be affirmative of its non-neoplastic nature. 100ng of chromosomal DNA isolated from twenty gingival overgrowth tissues were amplified with primers for exons 9 and 20 of PIK3CA, exons 1α, 1β and 2 of p16INK4a and p14ARF, and exon 2 of p21Waf1/Cip1, in independent reactions. PCR amplicons were subsequently gel purified and eluted products were sequenced. Sequencing analysis of the twenty samples of phenytoin induced gingival growth showed no mutations in the analyzed exons of PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1. The present data indicate that the mutational alterations of genes, PIK3CA, p14ARF, p16INK4a and p21Waf1/Cip1 that are frequently mutated in oral squamous cell carcinomas are rare in phenytoin induced gingival growth. Thus the findings provide further evidence that phenytoin induced gingival overgrowth as a non-neoplastic lesion, which may be considered as clinically significant given the fact that the epileptic patients are routinely administered with phenytoin for the rest of their lives to control seizure episodes.

  6. Enumeration and targeted analysis of KRAS, BRAF and PIK3CA mutations in CTCs captured by a label-free platform: Comparison to ctDNA and tissue in metastatic colorectal cancer.

    PubMed

    Kidess-Sigal, Evelyn; Liu, Haiyan E; Triboulet, Melanie M; Che, James; Ramani, Vishnu C; Visser, Brendan C; Poultsides, George A; Longacre, Teri A; Marziali, Andre; Vysotskaia, Valentina; Wiggin, Matthew; Heirich, Kyra; Hanft, Violet; Keilholz, Ulrich; Tinhofer, Ingeborg; Norton, Jeffrey A; Lee, Mark; Sollier-Christen, Elodie; Jeffrey, Stefanie S

    2016-12-20

    Treatment of advanced colorectal cancer (CRC) requires multimodal therapeutic approaches and need for monitoring tumor plasticity. Liquid biopsy biomarkers, including CTCs and ctDNA, hold promise for evaluating treatment response in real-time and guiding therapeutic modifications. From 15 patients with advanced CRC undergoing liver metastasectomy with curative intent, we collected 41 blood samples at different time points before and after surgery for CTC isolation and quantification using label-free Vortex technology. For mutational profiling, KRAS, BRAF, and PIK3CA hotspot mutations were analyzed in CTCs and ctDNA from 23 samples, nine matched liver metastases and three primary tumor samples. Mutational patterns were compared. 80% of patient blood samples were positive for CTCs, using a healthy baseline value as threshold (0.4 CTCs/mL), and 81.4% of captured cells were EpCAM+ CTCs. At least one mutation was detected in 78% of our blood samples. Among 23 matched CTC and ctDNA samples, we found a concordance of 78.2% for KRAS, 73.9% for BRAF and 91.3% for PIK3CA mutations. In several cases, CTCs exhibited a mutation that was not detected in ctDNA, and vice versa. Complementary assessment of both CTCs and ctDNA appears advantageous to assess dynamic tumor profiles.

  7. Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells

    PubMed Central

    Brachmann, Saskia M.; Hofmann, Irmgard; Schnell, Christian; Fritsch, Christine; Wee, Susan; Lane, Heidi; Wang, Shaowen; Garcia-Echeverria, Carlos; Maira, Sauveur-Michel

    2009-01-01

    NVP-BEZ235 is a dual PI3K/mTOR inhibitor currently in phase I clinical trials. We profiled this compound against a panel of breast tumor cell lines to identify the patient populations that would benefit from such treatment. In this setting, NVP-BEZ235 selectively induced cell death in cell lines presenting either HER2 amplification and/or PIK3CA mutation, but not in cell lines with PTEN loss of function or KRAS mutations, for which resistance could be attributed, in part to ERK pathway activity. An in depth analysis of death markers revealed that the cell death observed upon NVP-BEZ235 treatment could be recapitulated with other PI3K inhibitors and that this event is linked to active PARP cleavage indicative of an apoptotic process. Moreover, the effect seemed to be partly independent of the caspase-9 executioner and mitochondrial activated caspases, suggesting an alternate route for apoptosis induction by PI3K inhibitors. Overall, this study will provide guidance for patient stratification for forthcoming breast cancer phase II trials for NVP-BEZ235. PMID:20007781

  8. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1.

    PubMed

    Cimino, Daniela; De Pittà, Cristiano; Orso, Francesca; Zampini, Matteo; Casara, Silvia; Penna, Elisa; Quaglino, Elena; Forni, Marco; Damasco, Christian; Pinatel, Eva; Ponzone, Riccardo; Romualdi, Chiara; Brisken, Cathrin; De Bortoli, Michele; Biglia, Nicoletta; Provero, Paolo; Lanfranchi, Gerolamo; Taverna, Daniela

    2013-03-01

    Breast cancer is often fatal during its metastatic dissemination. To unravel the role of microRNAs (miRs) during malignancy, we analyzed miR expression in 77 primary breast carcinomas and identified 16 relapse-associated miRs that correlate with survival and/or distinguish tumor subtypes in different datasets. Among them, miR-148b, down-regulated in aggressive breast tumors, was found to be a major coordinator of malignancy. In fact, it is able to oppose various steps of tumor progression when overexpressed in cell lines by influencing invasion, survival to anoikis, extravasation, lung metastasis formation, and chemotherapy response. miR-148b controls malignancy by coordinating a novel pathway involving over 130 genes and, in particular, it directly targets players of the integrin signaling, such as ITGA5, ROCK1, PIK3CA/p110α, and NRAS, as well as CSF1, a growth factor for stroma cells. Our findings reveal the importance of the identified 16 miRs for disease outcome predictions and suggest a critical role for miR-148b in the control of breast cancer progression.

  9. PI3Kbeta Inhibitor AZD8186 and Docetaxel in Treating Patients Advanced Solid Tumors With PTEN or PIK3CB Mutations That Are Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-05-16

    Advanced Malignant Solid Neoplasm; Anatomic Stage III Breast Cancer AJCC v8; Anatomic Stage IIIA Breast Cancer AJCC v8; Anatomic Stage IIIB Breast Cancer AJCC v8; Anatomic Stage IIIC Breast Cancer AJCC v8; Anatomic Stage IV Breast Cancer AJCC v8; Castration-Resistant Prostate Carcinoma; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Metastatic Malignant Solid Neoplasm; Metastatic Prostate Carcinoma; PIK3CB Gene Mutation; Progesterone Receptor Negative; Prognostic Stage III Breast Cancer AJCC v8; Prognostic Stage IIIA Breast Cancer AJCC v8; Prognostic Stage IIIB Breast Cancer AJCC v8; Prognostic Stage IIIC Breast Cancer AJCC v8; Prognostic Stage IV Breast Cancer AJCC v8; PTEN Gene Mutation; PTEN Loss; Stage III Prostate Cancer AJCC v8; Stage IIIA Prostate Cancer AJCC v8; Stage IIIB Prostate Cancer AJCC v8; Stage IIIC Prostate Cancer AJCC v8; Stage IV Prostate Cancer AJCC v8; Stage IVA Prostate Cancer AJCC v8; Stage IVB Prostate Cancer AJCC v8; Triple-Negative Breast Carcinoma; Unresectable Solid Neoplasm

  10. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus-positive and Merkel cell polyomavirus-negative carcinomas.

    PubMed

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Nagata, Keiko; Nakajima, Hideki; Sano, Shigetoshi; Hayashi, Kazuhiko

    2015-02-01

    Merkel cell polyomavirus (MCPyV) integrates monoclonally into the genomes of approximately 80% of Merkel cell carcinomas (MCCs), affecting their clinicopathological features. The molecular mechanisms underlying MCC development after MCPyV infection remain unclear. We investigated the association of MCPyV infection with activation of the Akt/mammalian target of rapamycin (mTOR)/4E-binding protein 1 (4E-BP1) signaling pathway in MCCs to elucidate the role of these signal transductions and to identify molecular targets for treatment. We analyzed the molecular and pathological characteristics of 41 MCPyV-positive and 27 MCPyV-negative MCCs. Expression of mTOR, TSC1, and TSC2 messenger RNA was significantly higher in MCPyV-negative MCCs, and Akt (T308) phosphorylation also was significantly higher (92% vs 66%; P = .019), whereas 4E-BP1 (S65 and T70) phosphorylation was common in both MCC types (92%-100%). The expression rates of most other tested signals were high (60%-100%) and not significantly correlated with MCPyV large T antigen expression. PIK3CA mutations were observed more frequently in MCPyV-positive MCCs (6/36 [17%] vs 2/20 [10%]). These results suggest that protein expression (activation) of most Akt/mTOR/4E-BP1 pathway signals was not significantly different in MCPyV-positive and MCPyV-negative MCCs, although these 2 types may differ in tumorigenesis, and MCPyV-negative MCCs showed significantly more frequent p-Akt (T308) activation. Therefore, certain Akt/mTOR/4E-BP1 pathway signals could be novel therapeutic targets for MCC regardless of MCPyV infection status. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Identification of blast resistance genes for managing rice blast disease

    USDA-ARS?s Scientific Manuscript database

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  12. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays

    USDA-ARS?s Scientific Manuscript database

    Resistance (R) genes have been effectively deployed in preventing rice crop losses due to the fungus Magnaporthe oryzae. In the present study, we studied the interaction between 24 monogenic lines carrying at least one major R gene, Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pi...

  13. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Cancer.gov

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  14. Moving forward with fine-root definitions and research

    DOE PAGES

    McCormack, M. Luke; Iversen, Colleen M.; Eissenstat, David M.

    2016-08-30

    Here, in the letter published in this issue of New Phytologist (pp. 310-312), 'Fine roots - functional definition expanded to crop species?' Dr. Zobel emphasizes the importance of heterogeneity within crop-root systems.

  15. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells.

    PubMed

    Deng, Xiaobei; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2013-06-01

    It has been well documented in in vitro studies that ambient airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM(2.5)) is capable of inducing oxidative stress, which plays a key role in PM(2.5)-mediated cytotoxicity. Although nuclear factor erythroid-2-related factor 2 (Nrf2) has been shown to regulate the intracellular defense mechanisms against oxidative stress, a potential of the Nrf2-mediated cellular defense against oxidative stress induced by PM(2.5) remains to be determined. This study was aimed to explore the potential signaling pathway of Nrf2-mediated defense mechanisms against PM(2.5)-induced oxidative stress in human type II alveolar epithelial A549 cells. We exposed A549 cells to PM(2.5) particles collected from Beijing at a concentration of 16 μg/cm(2). We observed that PM(2.5) triggered an increase of intracellular reactive oxygen species (ROS) in a time-dependent manner during a period of 2 h exposure. We also found that Nrf2 overexpression suppressed and Nrf2 knockdown increased PM(2.5)-induced ROS generation. Using Western blot and confocal microscopy, we found that PM(2.5) exposure triggered significant translocation of Nrf2 into nucleus, resulting in AKT phosphorylation and significant transcription of ARE-driven phases II enzyme genes, such as NAD(P)H:quinone oxidoreductase (NQO-1), heme oxygenase-1 (HO-1), and glutamate-cysteine ligase catalytic subunit (GCLC) in A549 cells. Evaluation of signaling pathways showed that a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), but not an ERK 1/2 inhibitor (PD98059) or a p38 MAPK (SB203580), significantly down-regulated PM(2.5)-induced Nrf2 nuclear translocation and HO-1 mRNA expression, indicating PI3K/AKT is involved in the signaling pathway leads to the PM(2.5)-induced nuclear translocation of Nrf2 and subsequent Nrf2-mediated HO-1 transcription. Taken together, our results suggest that PM(2.5)-induced ROS may function as signaling molecules to activate Nrf2-mediated defenses, such as HO-1 expression, against oxidative stress induced by PM(2.5) through the PI3K/AKT signaling pathway.

  16. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    PubMed

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  17. University of Texas MD Anderson Cancer Center: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  18. University of Texas MD Anderson: Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  19. Optical Characterization of Wide Field-of-View Night Vision Devices

    DTIC Science & Technology

    1999-01-01

    This paper has been cleared by ASC 99-2354 Optical Characterization of Wide Field-Of-View Night Vision Devices Peter L. Marasco and H. Lee Task Air...the SAFE SocietyÕs 36th Annual Symposium. Task, H.L., Hartman, R., Marasco , P.L., Zobel, A, (1993) Methods for measuring characteristics of night

  20. Methods for Measuring Characteristics of Night Vision Goggles

    DTIC Science & Technology

    1993-10-01

    TA 18 6. AUTHOR(S) WU 07 Harry L. Task Peter L. Marasco Richard T. Hartman, Capt Annette R. Zobel 7. PEP.FORMING...DTIC S SELECTE T Harry L. Task 3 MR 16 1994 R Richard T. Hartman 0 Peter L. Mardsco F N CREW SYSTEMS DIRECTORATE G HUMAN ENGINEERING DIVX[SIONWRIGHT-PAT

  1. Effects of the silvicultural intensity on the 4-years growth and leaf-level physiology of loblolly pine varieties

    Treesearch

    Marco Yanez; John Seiler; Thomas Fox

    2015-01-01

    The role that genetic improvement plays in the increase of productivity in loblolly pine (Pinus taeda L.) in the South has been recognized (McKeand and others 2003). Varietal forestry has the potential to improve the productivity and quality of loblolly pine stands, and higher genetic gains can be achieved in volume and stand uniformity (Zobel and Talbert 1984).

  2. RMIT University at TREC 2008: Relevance Feedback Track

    DTIC Science & Technology

    2008-11-01

    extracted . A term was defined as a sequence of alphanumeric characters delimited by whitespace Williams and Zobel (2005). Terms were then case-folded and...lemons* navel* nfc* concentrated* oranges* economic* growers* exporter* juice* crop* grapefruit * fresh* citrus* conditions* september* tangerines

  3. Marine Caulobacters. Isolation, Characterization and Assessing the Potential for Genetic Experimentation.

    DTIC Science & Technology

    1987-01-01

    grants from the Washington SeaGrant Program, the Office of Naval Research (N00014-81-C-0570) and the California Toxic Substances Research and Teaching ...negative bacteria. Biotechnology _, 269-275. 45.ZoBell, C.E. (1946) Marine microbiology: a monograph on hydrobacteriology. Chronica Botanica Co., Waltham

  4. University of Texas MD Anderson Cancer Center (UT-MDACC): Phenotypic Examination of PIK3CA Allelic Series using In Vitro/In Vivo Sensor Platforms | Office of Cancer Genomics

    Cancer.gov

    The CTD2 Center at the University of Texas MD Anderson Cancer Center utilized an established and operational MCF10A normal breast epithelial cell model to assess the ability of candidate driver aberrations to promote cell grow in anchorage-independent conditions (soft agar assay) and proliferate in the absence of insulin and epidermal growth factor (EGF).

  5. Bibliography of Research Reports and Publications Issued by the Human Engineering Division, January 1987 - December 1993

    DTIC Science & Technology

    1994-03-01

    cues in an aircraft simulator. AMAA Flight Simulation Technologies Conference, 63- 70. Marasco , P. L., & Dereniak, E. L. (1993). Uncooled infrared...Space Center, TX: National Aeronautics and Space Administration. Task, H. L., Hartman, R. T., Marasco , P. L., & Zobel, A. R. (1993). Methods for...Aerospace VIIJ Conference, 2, 623-644. Marasco , P. L., & Dereniak, E. L. (1993). Uncooled infrared sensor performance. In B. F. Andresen, & F. D

  6. Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 1: Command Lineage Scientific Achievement and Major Tenant Missions

    DTIC Science & Technology

    2003-08-01

    Gerhard Braun, Dr. Rudolf Edse, Dr. Wolfgang Noeggerath, Hans Rister, and Dr. Theodor Zobel. (Dr. von Braun and the four other rocket specialists...Heinrich Albers, Herman Bottenhorn, Gerhard Krause , Dr. Ernst Kugel, and Hermann Nehlsen to Loewy Hydropress, Inc., in New York, while Dr. Claus...March 1948, Air Materiel Command maintained the Watson- and Cambridge-assigned German scientists at status quo, but added Dr. Wolfgang Pfister the next

  7. Copanlisib in Treating Patients With Persistent or Recurrent Endometrial Cancer

    ClinicalTrials.gov

    2018-02-14

    Endometrial Endometrioid Adenocarcinoma; Endometrial Mixed Adenocarcinoma; Endometrial Serous Adenocarcinoma; Endometrial Undifferentiated Carcinoma; Metastatic Endometrioid Adenocarcinoma; PIK3CA Gene Mutation; Recurrent Uterine Corpus Carcinoma

  8. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    PubMed

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. 3D Culture Represents Apoptosis Induced by Trastuzumab Better than 2D Monolayer Culture.

    PubMed

    Tatara, Takashi; Mukohara, Toru; Tanaka, Rina; Shimono, Yohei; Funakoshi, Yohei; Imamura, Yoshinori; Toyoda, Masanori; Kiyota, Naomi; Hirai, Midori; Kakeji, Yoshihiro; Minami, Hironobu

    2018-05-01

    Our hypothesis was that three-dimensional (3D) culture better represents differential in vivo responses to trastuzumab between PIK3CA-wild-type (wt) and mutant (mt) cell lines than does two-dimensional (2D) culture. Apoptosis and cell signaling proteins were evaluated in response to trastuzumab with and without BKM120, a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, using western blot analysis of four breast cancer cell lines with human epidermal growth factor receptor 2 (HER2) amplification. Increased expression of cleaved poly (ADP-ribose) polymerase (PARP) was observed only in 3D-cultured PIK3CA-wt lines in response to trastuzumab, but not in 2D-cultured PIK3CA-wt or PIK3CA-mt lines. Decrease in the ratio of phosphorylated (p-)AKT to AKT in response to trastuzumab was more profound in PIK3CA-wt cells than in PIK3CA-mt cells in 3D culture, while the difference between PIK3CA genotypes was less apparent in 2D culture. Treatment with BKM120 and trastuzumab resulted in a stronger increase in cleaved PARP than either treatment alone. 3D Culture appears to better represent trastuzumab-induced apoptosis and resistance to trastuzumab associated with PIK3CA mutation. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Role of Class III phosphoinositide 3-kinase in the brain development: possible involvement in specific learning disorders.

    PubMed

    Inaguma, Yutaka; Matsumoto, Ayumi; Noda, Mariko; Tabata, Hidenori; Maeda, Akihiko; Goto, Masahide; Usui, Daisuke; Jimbo, Eriko F; Kikkawa, Kiyoshi; Ohtsuki, Mamitaro; Momoi, Mariko Y; Osaka, Hitoshi; Yamagata, Takanori; Nagata, Koh-Ichi

    2016-10-01

    Class III phosphoinositide 3-kinase (PIK3C3 or mammalian vacuolar protein sorting 34 homolog, Vps34) regulates vesicular trafficking, autophagy, and nutrient sensing. Recently, we reported that PIK3C3 is expressed in mouse cerebral cortex throughout the developmental process, especially at early embryonic stage. We thus examined the role of PIK3C3 in the development of the mouse cerebral cortex. Acute silencing of PIK3C3 with in utero electroporation method caused positional defects of excitatory neurons during corticogenesis. Time-lapse imaging revealed that the abnormal positioning was at least partially because of the reduced migration velocity. When PIK3C3 was silenced in cortical neurons in one hemisphere, axon extension to the contralateral hemisphere was also delayed. These aberrant phenotypes were rescued by RNAi-resistant PIK3C3. Notably, knockdown of PIK3C3 did not affect the cell cycle of neuronal progenitors and stem cells at the ventricular zone. Taken together, PIK3C3 was thought to play a crucial role in corticogenesis through the regulation of excitatory neuron migration and axon extension. Meanwhile, when we performed comparative genomic hybridization on a patient with specific learning disorders, a 107 Kb-deletion was identified on 18q12.3 (nt. 39554147-39661206) that encompasses exons 5-23 of PIK3C3. Notably, the above aberrant migration and axon growth phenotypes were not rescued by the disease-related truncation mutant (172 amino acids) lacking the C-terminal kinase domain. Thus, functional defects of PIK3C3 might impair corticogenesis and relate to the pathophysiology of specific learning disorders and other neurodevelopmental disorders. Acute knockdown of Class III phosphoinositide 3-kinase (PIK3C3) evokes migration defects of excitatory neurons during corticogenesis. PIK3C3-knockdown also disrupts axon outgrowth, but not progenitor proliferation in vivo. Involvement of PIK3C3 in neurodevelopmental disorders might be an interesting future

  11. The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum--new tools for designing specific inhibitors.

    PubMed

    Bahia, Diana; Oliveira, Luciana Márcia; Lima, Fabio Mitsuo; Oliveira, Priscila; Silveira, José Franco da; Mortara, Renato Arruda; Ruiz, Jerônimo Conceição

    2009-12-18

    Phosphatidylinositol (PI) kinases are at the heart of one of the major pathways of intracellular signal transduction. Herein, we present the first report on a survey made by similarity searches against the five human pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum genomes available to date for phosphatidylinositol- and related-kinases (TryPIKs). In addition to generating a panel called "The TryPIKinome", we propose a model of signaling pathways for these TryPIKs. The involvement of TryPIKs in fundamental pathways, such as intracellular signal transduction and host invasion processes, makes the study of TryPIKs an important area for further inquiry. New subtype-specific inhibitors are expected to work on individual members of the PIK family and, therefore, can presumably neutralize trypanosomatid invasion processes.

  12. Decoupling of the PI3K pathway via mutation necessitates combinatorial treatment in HER2+ breast cancer

    DOE PAGES

    Korkola, James E.; Collisson, Eric A.; Heiser, Laura; ...

    2015-07-16

    We report here on experimental and theoretical efforts to determine how best to combine drugs that inhibit HER2 and AKT in HER2 + breast cancers. We accomplished this by measuring cellular and molecular responses to lapatinib and the AKT inhibitors (AKT i) GSK690693 and GSK2141795 in a panel of 22 HER2 + breast cancer cell lines carrying wild type or mutant PIK3CA. We observed that combinations of lapatinib plus AKT i were synergistic in HER2 /PIK3CA mut cell lines but not in HER2 +/PIK3CA wt cell lines. We measured changes in phospho-protein levels in 15 cell lines after treatment withmore » lapatinib, AKT i or lapatinib + AKT i to shed light on the underlying signaling dynamics. This revealed that p-S6RP levels were less well attenuated by lapatinib in HER2 +/PIK3CA mut cells compared to HER2 +/PIK3CA wt cells and that lapatinib + AKT i reduced p-S6RP levels to those achieved in HER2 +/PIK3CA wt cells with lapatinib alone. We also found that that compensatory up-regulation of p-HER3 and p-HER2 is blunted in PIK3CA mut cells following lapatinib + AKT i treatment. Responses of HER2 + SKBR3 cells transfected with lentiviruses carrying control or PIK3CA mut sequences were similar to those observed in HER2 +/PIK3CA mut cell lines but not in HER2 +/PIK3CA wt cell lines. We used a nonlinear ordinary differential equation model to support the idea that PIK3CA mutations act as downstream activators of AKT that blunt lapatinib inhibition of downstream AKT signaling and that the effects of PIK3CA mutations can be countered by combining lapatinib with an AKT i. This combination does not confer substantial benefit beyond lapatinib in HER2 +/PIK3CA wt cells.« less

  13. Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique

    SciTech Connect

    Leveque, T.; Gauguet, A.; Michaud, F.

    2009-08-21

    In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(Planck constant/2pi)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(Planck constant/2pi)k momentum transfer by a multipulse sequence and is implemented on a 8(Planck constant/2pi)k interferometer. We demonstrate the area enhancement by measuring inertial forces.

  14. Enhancing the culturability of bacteria from the gastrointestinal tract of farmed adult turbot Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Xing, Mengxin; Hou, Zhanhui; Qu, Yanmei; Liu, Bin

    2014-03-01

    Eighteen agar media were tested for the culture of gut-associated bacteria from farmed adult turbot ( Scophthalmus maximus), including 16 agar media with or without 1% gastrointestinal (GI) supernatant, or with 2% or 4% GI supernatant. A total of 1 711 colonies were analyzed and 24 operational taxonomic units (OTUs) were identified. The greatest bacterial diversity was isolated on Zobell 2216E/Zobell 2216E+ agar media, whereas MRS/MRS+ agar media produced a low diversity of colonies. Agar media with GI supernatant (1%, 2%, or 4%) showed increased diversity and yielded different profiles of OTUs from the corresponding original media, suggesting that GI supernatant provides substances that enhance the culture efficiency of bacteria from the turbot GI tract. The large majority of the colonies (82%) were γ-Proteobacteria, whereas 15.6% and 2.4% of colonies were Firmicutes and Actinobacteria, respectively. At the genus level, 49.4% of all colonies were assigned to Vibrio. Other potential pathogens, including Pseudomonas, Photobacterium, and Enterobacter, and potential probiotics, including Bacillus, Paenibacillus, and Pseudomonas, were also isolated on agar media. Most cultured bacteria belonged to species that were first described in the turbot GI tract. The impact of these species on turbot physiology and health should be investigated further.

  15. Safety, Tolerability & Potential Anti-cancer Activity of Increasing Doses of AZD5363 in Different Treatment Schedules

    ClinicalTrials.gov

    2018-06-22

    Advanced Solid Malignancy; Safety and Tolerability; Pharmacokinetics; Pharmacodynamics; Tumour Response; Advanced or Metastatic Breast Cancer; Ovarian Cancer; Cervical Cancer; Endometrial Cancer; PIK3CA; AKT1; PTEN; ER Positive; HER2 Positive

  16. Molecular alterations of Ras-Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathways in colorectal cancers from a tertiary hospital at Kuala Lumpur, Malaysia.

    PubMed

    Yip, Wai Kien; Choo, Chee Wei; Leong, Vincent Ching-Shian; Leong, Pooi Pooi; Jabar, Mohd Faisal; Seow, Heng Fong

    2013-10-01

    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  17. Cell of Origin: Exploring an Alternative Contributor to Ovarian Cancer

    DTIC Science & Technology

    2014-09-01

    previously shown that DDX4 is expressed in ovarian carcinomas and its expression is associated with age and the serous histophenotype. Thus, we analyzed...oncogenic alleles of human TP53, AKT1, KRAS, and PIK3CA were constructed and initially validated in both a human endometrial cancer cell line and mouse...AKT1, KRAS, or PIK3CA were successfully constructed. 9. The viral constructs were initially validated in a human endometrial cancer cell line and

  18. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner.

    PubMed

    Dagia, Nilesh M; Agarwal, Gautam; Kamath, Divya V; Chetrapal-Kunwar, Anshu; Gupte, Ravindra D; Jadhav, Mahesh G; Dadarkar, Shruta S; Trivedi, Jacqueline; Kulkarni-Almeida, Asha A; Kharas, Firuza; Fonseca, Lyle C; Kumar, Sanjay; Bhonde, Mandar R

    2010-04-01

    A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.

  19. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials.

    PubMed

    Fritsch, Christine; Huang, Alan; Chatenay-Rivauday, Christian; Schnell, Christian; Reddy, Anupama; Liu, Manway; Kauffmann, Audrey; Guthy, Daniel; Erdmann, Dirk; De Pover, Alain; Furet, Pascal; Gao, Hui; Ferretti, Stephane; Wang, Youzhen; Trappe, Joerg; Brachmann, Saskia M; Maira, Sauveur-Michel; Wilson, Christopher; Boehm, Markus; Garcia-Echeverria, Carlos; Chene, Patrick; Wiesmann, Marion; Cozens, Robert; Lehar, Joseph; Schlegel, Robert; Caravatti, Giorgio; Hofmann, Francesco; Sellers, William R

    2014-05-01

    Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials.

  20. Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy

    PubMed Central

    Yu, Xinlei; Long, Yun Chau; Shen, Han-Ming

    2015-01-01

    Autophagy is an evolutionarily conserved and exquisitely regulated self-eating cellular process with important biological functions. Phosphatidylinositol 3-kinases (PtdIns3Ks) and phosphoinositide 3-kinases (PI3Ks) are involved in the autophagic process. Here we aim to recapitulate how 3 classes of these lipid kinases differentially regulate autophagy. Generally, activation of the class I PI3K suppresses autophagy, via the well-established PI3K-AKT-MTOR (mechanistic target of rapamycin) complex 1 (MTORC1) pathway. In contrast, the class III PtdIns3K catalytic subunit PIK3C3/Vps34 forms a protein complex with BECN1 and PIK3R4 and produces phosphatidylinositol 3-phosphate (PtdIns3P), which is required for the initiation and progression of autophagy. The class II enzyme emerged only recently as an alternative source of PtdIns3P and autophagic initiator. However, the orthodox paradigm is challenged by findings that the PIK3CB catalytic subunit of class I PI3K acts as a positive regulator of autophagy, and PIK3C3 was thought to be an amino acid sensor for MTOR, which curbs autophagy. At present, a number of PtdIns3K and PI3K inhibitors, including specific PIK3C3 inhibitors, have been developed for suppression of autophagy and for clinical applications in autophagy-related human diseases. PMID:26018563

  1. IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity

    PubMed Central

    Chiang, Sarah; Weigelt, Britta; Wen, Huei-Chi; Pareja, Fresia; Raghavendra, Ashwini; Martelotto, Luciano G.; Burke, Kathleen A.; Basili, Thais; Li, Anqi; Geyer, Felipe C.; Piscuoglio, Salvatore; Ng, Charlotte K.Y.; Jungbluth, Achim A.; Balss, Jörg; Pusch, Stefan; Baker, Gabrielle M.; Cole, Kimberly S.; von Deimling, Andreas; Batten, Julie M.; Marotti, Jonathan D.; Soh, Hwei-Choo; McCalip, Benjamin L.; Serrano, Jonathan; Lim, Raymond S.; Siziopikou, Kalliopi P.; Lu, Song; Liu, Xiaolong; Hammour, Tarek; Brogi, Edi; Snuderl, Matija; Iafrate, A. John; Reis-Filho, Jorge S.; Schnitt, Stuart J.

    2017-01-01

    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1. One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. PMID:27913435

  2. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.

    PubMed

    Lin, Zhiqiang; Zhou, Pingzhu; von Gise, Alexander; Gu, Fei; Ma, Qing; Chen, Jinghai; Guo, Haidong; van Gorp, Pim R R; Wang, Da-Zhi; Pu, William T

    2015-01-02

    Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival. © 2014 American Heart Association, Inc.

  3. Phosphoinositide 3-Kinase p110δ Mediates Estrogen- and FSH-Stimulated Ovarian Follicle Growth

    PubMed Central

    Li, Qian; He, Hui; Zhang, Yin-Li; Li, Xiao-Meng; Guo, Xuejiang; Huo, Ran; Bi, Ye; Li, Jing

    2013-01-01

    In the mammalian ovary, primordial follicles are generated early in life and remain dormant for prolonged periods. Their growth resumes via primordial follicle activation, and they continue to grow until the preovulatory stage under the regulation of hormones and growth factors, such as estrogen, FSH, and IGF-1. Both FSH and IGF-1 activate the phosphatidylinositol-3 kinase (PI3K)/Akt (acute transforming retrovirus thymoma protein kinase) signaling pathway in granulosa cells (GCs), yet it remains inconclusive whether the PI3K pathway is crucial for follicle growth. In this study, we investigated the p110δ isoform (encoded by the Pik3cd gene) of PI3K catalytic subunit expression in the mouse ovary and its function in fertility. Pik3cd-null females were subfertile, exhibited fewer growing follicles and more atretic antral follicles in the ovary, and responded poorly to exogenous gonadotropins compared with controls. Ovary transplantation showed that Pik3cd-null ovaries responded poorly to FSH stimulation in vitro; this confirmed that the follicle growth defect was intrinsically ovarian. In addition, estradiol (E2)-stimulated follicle growth and GC proliferation in preantral follicles was impaired in Pik3cd-null ovaries. FSH and E2 substantially activated the PI3K/Akt pathway in GCs of control mice but not in those of Pik3cd-null mice. However, primordial follicle activation and oocyte meiotic maturation were not affected by Pik3cd knockout. Taken together, our findings indicate that the p110δ isoform of the PI3K catalytic subunit is a key component of the PI3K pathway for both FSH and E2-stimulated follicle growth in ovarian GCs; however, it is not required for primordial follicle activation and oocyte development. PMID:23820902

  4. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed

    Zhu, Y; Lin, E C

    1988-05-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose.

  5. A mutant crp allele that differentially activates the operons of the fuc regulon in Escherichia coli.

    PubMed Central

    Zhu, Y; Lin, E C

    1988-01-01

    L-Fucose is used by Escherichia coli through an inducible pathway mediated by a fucP-encoded permease, a fucI-encoded isomerase, a fucK-encoded kinase, and a fucA-encoded aldolase. The adolase catalyzes the formation of dihydroxyacetone phosphate and L-lactaldehyde. Anaerobically, lactaldehyde is converted by a fucO-encoded oxidoreductase to L-1,2-propanediol, which is excreted. The fuc genes belong to a regulon comprising four linked operons: fucO, fucA, fucPIK, and fucR. The positive regulator encoded by fucR responds to fuculose 1-phosphate as the effector. Mutants serially selected for aerobic growth on propanediol became constitutive in fucO and fucA [fucO(Con) fucA(Con)], but noninducible in fucPIK [fucPIK(Non)]. An external suppressor mutation that restored growth on fucose caused constitutive expression of fucPIK. Results from this study indicate that this suppressor mutation occurred in crp, which encodes the cyclic AMP-binding (or receptor) protein. When the suppressor allele (crp-201) was transduced into wild-type strains, the recipient became fucose negative and fucose sensitive (with glycerol as the carbon and energy source) because of impaired expression of fucA. The fucPIK operon became hyperinducible. The growth rate on maltose was significantly reduced, but growth on L-rhamnose, D-galactose, L-arabinose, glycerol, or glycerol 3-phosphate was close to normal. Lysogenization of fuc+ crp-201 cells by a lambda bacteriophage bearing crp+ restored normal growth ability on fucose. In contrast, lysogenization of [fucO(Con)fucA(Con)fucPIK(Non)crp-201] cells by the same phage retarded their growth on fucose. PMID:2834341

  6. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer

    SciTech Connect

    Lin, Jiong; Lin, Yao; Fan, Li

    Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inversemore » expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3′UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC. - Highlights: • Much lower miR-203 expression in cisplatin resistant Tca8113 cells is discovered. • Delivery of miR-203 can sensitize the Tca8113 cells to cisplatin induced cell death. • MiR-203 can downregulate PIK3CA through the 3′UTR. • The effects of miR-203 on cisplatin sensitivity is mainly through PIK3CA pathway.« less

  7. Tumor mutational analysis of GOG248, a phase II study of temsirolimus or temsirolimus and alternating megestrol acetate and tamoxifen for advanced endometrial cancer (EC): An NRG Oncology/Gynecologic Oncology Group study

    PubMed Central

    Myers, Andrea P.; Filiaci, Virginia L.; Zhang, Yuping; Pearl, Michael; Behbakht, Kian; Makker, Vicky; Hanjani, Parviz; Zweizig, Susan; Burke, James J.; Downey, Gordon; Leslie, Kimberly K.; Van Hummelen, Paul; Birrer, Michael J.; Fleming, Gini F.

    2016-01-01

    Objective Rapamycin analogs have reproducible but modest efficacy in endometrial cancer (EC). Identification of molecular biomarkers that predict benefit could guide clinical development. Methods Fixed primary tissue and whole blood were collected prospectively from patients enrolled on GOG 248. DNA was isolated from macro-dissected tumors and blood; next–generation sequence analysis was performed on a panel of cancer related genes. Associations between clinical outcomes [response rate (RR) 20%; progression-free survival (PFS) median 4.9 months] and mutations (PTEN, PIK3CA, PIK3R1, KRAS, CTNNB1, AKT1, TSC1, TSC2, NF1, FBXW7) were explored. Results Sequencing data was obtained from tumors of 55 of the 73 enrolled pts. Mutation rates were consistent with published reports: mutations in PTEN (45%), PIK3CA (29%), PIK3R1 (24%), K-RAS (16%), CTNNB1 (18%) were common and mutations in AKT1 (4%), TSC1 (2%), TSC2 (2%), NF1 (9%) and FBXW7 (4%) were less common. Increased PFS (HR 0.16; 95% CI 0.01–0.78) and RR (response difference 0.83; 95% CI 0.03–0.99) were noted for AKT1 mutation. An increase in PFS (HR 0.46; 95% CI 0.20–0.97) but not RR (response difference 0.00, 95% CI −0.34–0.34) was identified for CTNNB1 mutation. Both patients with TSC mutations had an objective response. There were no statistically significant associations between mutations in PIK3CA, PTEN, PIK3R1, or KRAS and PFS or RR. Conclusions Mutations in AKT1, TSC1 and TSC2 are rare, but may predict clinical benefit from temsirolimus. CTNNB1 mutations were associated with longer PFS on temsirolimus. PMID:27016228

  8. Analysis of the PI3K-AKT-mTOR pathway in penile cancer: evaluation of a therapeutically targetable pathway.

    PubMed

    Adimonye, Anthony; Stankiewicz, Elzbieta; Kudahetti, Sakunthala; Trevisan, Giorgia; Tinwell, Brendan; Corbishley, Cathy; Lu, Yong-Jie; Watkin, Nick; Berney, Daniel

    2018-03-23

    To determine whether phosphatidylinositol-4,5-bisphosphate 3- kinase, catalytic subunit alpha (PIK3CA) copy number gain is common and could prove a useful marker for the activation status of the PI3K-AKT-mTOR pathway in penile squamous cell carcinoma (PSCC). Fresh frozen tissue and archival blocks were collected from 24 PSCC patients with 15 matched normal penile epithelium (NPE) tissue from St George's Hospital. PIK3CA mutational and copy number status (CNS) was assessed via Sanger sequencing and fluorescence in-situ hybridisation, respectively. PIK3CA RNA expression was quantified using TaqMan gene expression assay. HPV DNA was detected with INNO-LiPA assay. p-AKT and p-mTOR protein expression were assessed using western blot and immunohistochemistry. PIK3CA copy number gain was found in 11/23 (48%) patients, with mutations present in only 2/24 (8%) patients. In comparison to NPE, PSCC showed significantly lower PIK3CA RNA expression (p=0.0007), p-AKT (Ser473) nuclear immunoexpression (p=0.026) and protein expression of p-AKT (Thr308) (p=0.0247) and p-mTOR (Ser2448) (p=0.0041). No association was found between PIK3CA CNS and p-AKT and p-mTOR protein expression. Based on our results the PI3K-AKT-mTOR pathway is not a key driver in PSCC carcinogenesis and the therapeutic targeting of this pathway is unlikely to produce significant clinical benefit.

  9. The importance of prenatal 3-dimensional sonography in a case of a segmental overgrowth syndrome with unclear chromosomal microarray results.

    PubMed

    Asoglu, Mehmet Resit; Higgs, Amanda; Esin, Sertac; Kaplan, Julie; Turan, Sifa

    2018-06-01

    PIK3CA-related overgrowth spectrum, caused by mosaic mutations in the PIK3CA gene, is associated with regional or generalized asymmetric overgrowth of the body or a body part in addition to other clinical findings. Three-dimensional ultrasonography (3-D US) has the capability to display structural abnormalities in soft tissues or other organs, thereby facilitating identification of segmental overgrowth lesions. We present a case suspected of having a segmental overgrowth disorder based on 3-D US, whose chromosomal microarray result was abnormal, but apparently was not the cause of the majority of the fetus's clinical features. © 2017 Wiley Periodicals, Inc.

  10. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85α, p55α, and p50α

    PubMed Central

    Mouta-Bellum, Carla; Kirov, Aleksander; Miceli-Libby, Laura; Mancini, Maria L.; Petrova, Tatiana V.; Liaw, Lucy; Prudovsky, Igor; Thorpe, Philip E.; Miura, Naoyuki; Cantley, Lewis C.; Alitalo, Kari; Fruman, David A.; Vary, Calvin P.H.

    2010-01-01

    The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85α, p55α, and p50α impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the TGFβ co-receptor endoglin, and reduced levels of mature VEGF-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis. PMID:19705443

  11. Botulism Type E Outbreak Associated with Eating a Beached Whale, Alaska

    PubMed Central

    Sobel, Jeremy; Lynn, Tracey; Funk, Elizabeth; Middaugh, John P.

    2004-01-01

    We report an outbreak of botulism that occurred in July 2002 in a group of 12 Alaskan Yu'pik Eskimos who ate blubber and skin from a beached beluga whale. Botulism death rates among Alaska Natives have declined in the last 20 years, yet incidence has increased. PMID:15498179

  12. 7 CFR 1435.500 - General statement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.500 General statement. This subpart shall be applicable to sugar beet and... sugarcane or sugar beets processed by the processors, reduce sugar production in return for a payment of...

  13. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  14. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  15. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  16. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  17. 7 CFR 1435.504 - Timing of distribution of CCC-owned sugar.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Timing of distribution of CCC-owned sugar. 1435.504... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.504 Timing of distribution of CCC-owned sugar. Distribution of sugar...

  18. Molecular alterations and clinical prognostic factors for cholangiocarcinoma in Thai population

    PubMed Central

    Trachu, N; Sirachainan, E; Larbcharoensub, N; Rattanadech, W; Detarkom, S; Monnamo, N; Kamprerasart, K; MunTham, D; Sukasem, C; Reungwetwattana, T

    2017-01-01

    This study explores genomic alterations in cholangiocarcinoma (CCC) tissues in Thai patients. We identified and reviewed the records of patients who had been diagnosed with CCC and for whom sufficient tumor samples for DNA and RNA extraction were available in our database. The specimens were explored for EGFR, KRAS, BRAF, and PIK3CA mutations and ROS1 translocation in 81 samples. Immunohistochemistry staining for HER2, ALK, and Ki-67 expression was tested in 74 samples. Prevalence of EGFR, KRAS, and PIK3CA mutations in this study was 21%, 12%, and 16%, respectively. No BRAF V600 mutation or ROS1 translocation was found. Patients with T790M mutation had a significantly longer overall survival (18.84 months) than those with the other types of EGFR mutations (4.08 months; hazard ratio [HR]: 0.26, P=0.038) and also had a significantly lower median Ki-67 (22.5% vs 80%, P=0.025). Furthermore, patients with PIK3CA mutations had a significantly longer median progression-free survival (15.87 vs 7.01 months; HR: 0.46, P=0.043). Strongly positive HER2 expression was found in only 1 patient, whereas ALK expression was not found. The presence of EGFR and/or PIK3CA mutations implies that targeted drugs may provide a feasible CCC treatment in the future. PMID:29066915

  19. PI3K Activation in Neural Stem Cells Drives Tumorigenesis which can be Ameliorated by Targeting the cAMP Response Element Binding (CREB) Protein.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Brown, Daniel V; Christie, Michael; Waring, Paul M; Zhang, Yi; Haynes, John M; Pouton, Colin; Flanagan, Dustin; Vincan, Elizabeth; Johns, Terrance G; Montgomery, Karen; Phillips, Wayne A; Mantamadiotis, Theo

    2018-04-30

    Hyperactivation of PI3K signaling is common in cancers but the precise role of the pathway in glioma biology remains to be determined. Some understanding of PI3K signaling mechanisms in brain cancer comes from studies on neural stem/progenitor cells, where signals transmitted via the PI3K pathway cooperate with other intracellular pathways and downstream transcription factors to regulate critical cell functions. To investigate the role for the PI3K pathway in glioma initiation and development, we generated a mouse model targeting the inducible expression of a PIK3CAH1047A oncogenic mutant and deletion of the PI3K negative regulator, PTEN, to neural stem/progenitor cells (NSPCs). Expression of a Pik3caH1047A was sufficient to generate tumors with oligodendroglial features but simultaneous loss of PTEN was required for the development of invasive, high-grade glioma. Pik3caH1047A-PTEN mutant NSPCs exhibited enhanced neurosphere formation which correlated with increased WNT signaling, while loss of CREB in Pik3caH1047A-Pten mutant tumors led to longer symptom-free survival in mice. Taken together, our findings present a novel mouse model for glioma demonstrating that the PI3K pathway is important for initiation of tumorigenesis and that disruption of downstream CREB signaling attenuates tumor expansion.

  20. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors.

    PubMed

    Shern, Jack F; Chen, Li; Chmielecki, Juliann; Wei, Jun S; Patidar, Rajesh; Rosenberg, Mara; Ambrogio, Lauren; Auclair, Daniel; Wang, Jianjun; Song, Young K; Tolman, Catherine; Hurd, Laura; Liao, Hongling; Zhang, Shile; Bogen, Dominik; Brohl, Andrew S; Sindiri, Sivasish; Catchpoole, Daniel; Badgett, Thomas; Getz, Gad; Mora, Jaume; Anderson, James R; Skapek, Stephen X; Barr, Frederic G; Meyerson, Matthew; Hawkins, Douglas S; Khan, Javed

    2014-02-01

    Despite gains in survival, outcomes for patients with metastatic or recurrent rhabdomyosarcoma remain dismal. In a collaboration between the National Cancer Institute, Children's Oncology Group, and Broad Institute, we performed whole-genome, whole-exome, and transcriptome sequencing to characterize the landscape of somatic alterations in 147 tumor/normal pairs. Two genotypes are evident in rhabdomyosarcoma tumors: those characterized by the PAX3 or PAX7 fusion and those that lack these fusions but harbor mutations in key signaling pathways. The overall burden of somatic mutations in rhabdomyosarcoma is relatively low, especially in tumors that harbor a PAX3/7 gene fusion. In addition to previously reported mutations in NRAS, KRAS, HRAS, FGFR4, PIK3CA, and CTNNB1, we found novel recurrent mutations in FBXW7 and BCOR, providing potential new avenues for therapeutic intervention. Furthermore, alteration of the receptor tyrosine kinase/RAS/PIK3CA axis affects 93% of cases, providing a framework for genomics-directed therapies that might improve outcomes for patients with rhabdomyosarcoma. This is the most comprehensive genomic analysis of rhabdomyosarcoma to date. Despite a relatively low mutation rate, multiple genes were recurrently altered, including NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. In addition, a majority of rhabdomyosarcoma tumors alter the receptor tyrosine kinase/RAS/PIK3CA axis, providing an opportunity for genomics-guided intervention. 2014 AACR

  1. Mutation frequency in 15 common cancer genes in high-risk head and neck squamous cell carcinoma.

    PubMed

    McBride, Sean M; Rothenberg, S Michael; Faquin, William C; Chan, Annie W; Clark, John R; Ellisen, Leif W; Wirth, Lori J

    2014-08-01

    With prior studies having looked at unselected cohorts, we sought to explore the mutational landscape in a high-risk group of head and neck squamous cell carcinoma (HNSCC) tumors. A multiplexed polymerase chain reaction (PCR) assay evaluating 68 loci in 15 genes was performed on 64 patients with high-risk HNSCC. Because of the frequent PIK3CA and AKT1 mutations in patients with oropharyngeal carcinoma, we evaluated the relationship between mutation status and both clinical/pathologic variables and tumor control in this subgroup. Seventeen of 64 patients harbored mutations in the assayed loci: 16% in PIK3CA, 9% in TP53, 2% in AKT1, and 2% in epidermal growth factor receptor (EGFR). The frequency of PIK3CA/AKT1 mutations in oropharyngeal and sinonasal primaries was increased compared to other primary sites (35% vs 6%; p = .005). There was no relationship between mutation status and overall survival (OS), disease-specific death, or progression in the oropharyngeal cohort. We identified frequent PIK3CA mutations in patients with high-risk HNSCC confined predominantly to the oropharyngeal and sinonasal subsites; for the first time, mutation in AKT1 has been identified in HNSCC. Copyright © 2014 Wiley Periodicals, Inc.

  2. Mutation of genes of the PI3K/AKT pathway in breast cancer supports their potential importance as biomarker for breast cancer aggressiveness.

    PubMed

    Tserga, Aggeliki; Chatziandreou, Ilenia; Michalopoulos, Nicolaos V; Patsouris, Efstratios; Saetta, Angelica A

    2016-07-01

    Deregulation of phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is closely associated with cancer development and cancer progression. PIK3CA, AKT1, and PTEN are the fundamental molecules of the PI3K/AKT pathway with increased mutation rates in cancer cases leading to aberrant regulation of the pathway. Even though molecular alterations of the PI3K/AKT pathway have been studied in breast cancer, correlations between specific molecular alterations and clinicopathological features remain contradictory. In this study, we examined mutations of the PI3K/AKT pathway in 75 breast carcinomas using high-resolution melting analysis and pyrosequencing, in parallel with analysis of relative expression of PIK3CA and AKT2 genes. Mutations of PIK3CA were found in our cohort in 21 cases (28 %), 10 (13 %) in exon 9 and 11(15 %) in exon 20. Mutation frequency of AKT1 and PTEN genes was 4 and 3 %, respectively. Overall, alterations in the PI3K/AKT signaling cascade were detected in 35 % of the cases. Furthermore, comparison of 50 breast carcinomas with adjacent normal tissues showed elevated PIK3CA messenger RNA (mRNA) levels in 18 % of tumor cases and elevated AKT2 mRNA levels in 14 %. Our findings, along with those of previous studies, underline the importance of the PI3K/AKT pathway components as potential biomarkers for breast carcinogenesis.

  3. miR-502 inhibits cell proliferation and tumor growth in hepatocellular carcinoma through suppressing phosphoinositide 3-kinase catalytic subunit gamma

    SciTech Connect

    Chen, Suling, E-mail: suling_chen86@163.com; Li, Fang; Chai, Haiyun

    2015-08-21

    MicroRNAs (miRNAs) play a key role in carcinogenesis and tumor progression in hepatocellular carcinoma (HCC). In the present study, we demonstrated that miR-502 significantly inhibits HCC cell proliferation in vitro and tumor growth in vivo. G1/S cell cycle arrest and apoptosis of HCC cells were induced by miR-502. Phosphoinositide 3-kinase catalytic subunit gamma (PIK3CG) was identified as a direct downstream target of miR-502 in HCC cells. Notably, overexpression of PIK3CG reversed the inhibitory effects of miR-502 in HCC cells. Our findings suggest that miR-502 functions as a tumor suppressor in HCC via inhibition of PI3KCG, supporting its utility as a promising therapeuticmore » gene target for this tumor type. - Highlights: • miR-502 suppresses HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-502 regulates cell cycle and apoptosis in HCC cells. • PIK3CG is a direct target of miR-502. • miR-502 and PIK3CG expression patterns are inversely correlated in HCC tissues.« less

  4. Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Nicoletti, Ferdinando; Fagone, Paolo; Malaponte, Grazia; Mazzarino, Maria C.; Candido, Saverio; Libra, Massimo; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors. PMID:23006971

  5. Frequency of manure application in organic versus annual application of synthetic fertilizer in conventional vegetable production

    USDA-ARS?s Scientific Manuscript database

    Transporting manure is an input cost that can affect profit. Manure was applied either annually, or biannually, to bell pepper (Capsicum annuum L.), cv. Jupiter, cucumber (Cucumis sativus L.), cv. Earli Pik, and sweet corn (Zea mays var. rugosa Bonaf.), cv. Incredible (se endosperm genotype), grown...

  6. Recurrent hotspot mutations in HRAS Q61 and PI3K-AKT pathway genes as drivers of breast adenomyoepitheliomas.

    PubMed

    Geyer, Felipe C; Li, Anqi; Papanastasiou, Anastasios D; Smith, Alison; Selenica, Pier; Burke, Kathleen A; Edelweiss, Marcia; Wen, Huei-Chi; Piscuoglio, Salvatore; Schultheis, Anne M; Martelotto, Luciano G; Pareja, Fresia; Kumar, Rahul; Brandes, Alissa; Fan, Dan; Basili, Thais; Da Cruz Paula, Arnaud; Lozada, John R; Blecua, Pedro; Muenst, Simone; Jungbluth, Achim A; Foschini, Maria P; Wen, Hannah Y; Brogi, Edi; Palazzo, Juan; Rubin, Brian P; Ng, Charlotte K Y; Norton, Larry; Varga, Zsuzsanna; Ellis, Ian O; Rakha, Emad A; Chandarlapaty, Sarat; Weigelt, Britta; Reis-Filho, Jorge S

    2018-05-08

    Adenomyoepithelioma of the breast is a rare tumor characterized by epithelial-myoepithelial differentiation, whose genetic underpinning is largely unknown. Here we show through whole-exome and targeted massively parallel sequencing analysis that whilst estrogen receptor (ER)-positive adenomyoepitheliomas display PIK3CA or AKT1 activating mutations, ER-negative adenomyoepitheliomas harbor highly recurrent codon Q61 HRAS hotspot mutations, which co-occur with PIK3CA or PIK3R1 mutations. In two- and three-dimensional cell culture models, forced expression of HRAS Q61R in non-malignant ER-negative breast epithelial cells with or without a PIK3CA H1047R somatic knock-in results in transformation and the acquisition of the cardinal features of adenomyoepitheliomas, including the expression of myoepithelial markers, a reduction in E-cadherin expression, and an increase in AKT signaling. Our results demonstrate that adenomyoepitheliomas are genetically heterogeneous, and qualify mutations in HRAS, a gene whose mutations are vanishingly rare in common-type breast cancers, as likely drivers of ER-negative adenomyoepitheliomas.

  7. 50 CFR Table 9 to Part 680 - Initial Issuance of Crab PQS by Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... fisheries for any... Bristol Bay red king crab (BBR) 3 years of the 3-year QS base period beginning on: (1... Bristol Bay red king crab fishery during the qualifying years established for that fishery. Pribilof Islands red and blue king crab (PIK) 3 years of the 3-year period beginning on: (1) September 15-26, 1996...

  8. 50 CFR Table 7 to Part 680 - Initial Issuance of Crab QS by Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... used to calculate QS for each QS fishery is: 1. Bristol Bay red king crab (BBR) 4 years of the 5-year..., Western Aleutian Island golden (brown) king crab, Bering Sea snow crab, or Bristol Bay red king crab fisheries. 4 years 5. Pribilof red king and blue king crab (PIK) 4 years of the 5-year period beginning on...

  9. 50 CFR Table 9 to Part 680 - Initial Issuance of Crab PQS by Crab QS Fishery

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fisheries for any... Bristol Bay red king crab (BBR) 3 years of the 3-year QS base period beginning on: (1... Bristol Bay red king crab fishery during the qualifying years established for that fishery. Pribilof Islands red and blue king crab (PIK) 3 years of the 3-year period beginning on: (1) September 15-26, 1996...

  10. The PRIMAP-hist national historical emissions time series

    NASA Astrophysics Data System (ADS)

    Gütschow, Johannes; Jeffery, M. Louise; Gieseke, Robert; Gebel, Ronja; Stevens, David; Krapp, Mario; Rocha, Marcia

    2016-11-01

    To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data are needed. We combine several published datasets to create a comprehensive set of emissions pathways for each country and Kyoto gas, covering the years 1850 to 2014 with yearly values, for all UNFCCC member states and most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional time series of CO2 are available for energy and industry subsectors. Country-resolved data are combined from different sources and supplemented using year-to-year growth rates from regionally resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset, including its limitations and uncertainties. The dataset is available from PIK.2016.003" target="_blank">doi:10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (pik-potsdam.de/primap-live/primap-hist/" target="_blank">http://www.pik-potsdam.de/primap-live/primap-hist/).

  11. Genetic defects in PI3Kδ affect B-cell differentiation and maturation leading to hypogammaglobulineamia and recurrent infections.

    PubMed

    Wentink, Marjolein; Dalm, Virgil; Lankester, Arjan C; van Schouwenburg, Pauline A; Schölvinck, Liesbeth; Kalina, Tomas; Zachova, Radana; Sediva, Anna; Lambeck, Annechien; Pico-Knijnenburg, Ingrid; van Dongen, Jacques J M; Pac, Malgorzata; Bernatowska, Ewa; van Hagen, Martin; Driessen, Gertjan; van der Burg, Mirjam

    2017-03-01

    Mutations in PIK3CD and PIK3R1 cause activated PI3K-δ syndrome (APDS) by dysregulation of the PI3K-AKT pathway. We studied precursor and peripheral B-cell differentiation and apoptosis via flowcytometry. Furthermore, we performed AKT-phosphorylation assays and somatic hypermutations (SHM) and class switch recombination (CSR) analysis. We identified 13 patients of whom 3 had new mutations in PIK3CD or PIK3R1. Patients had low total B-cell numbers with increased frequencies of transitional B cells and plasmablasts, while the precursor B-cell compartment in bone marrow was relatively normal. Basal AKT phosphorylation was increased in lymphocytes from APDS patients and natural effector B cells where most affected. PI3K mutations resulted in altered SHM and CSR and increased apoptosis. The B-cell compartment in APDS patients is affected by the mutations in PI3K. There is reduced differentiation beyond the transitional stage, increased AKT phosphorylation and increased apoptosis. This B-cell phenotype contributes to the clinical phenotype. Copyright © 2017. Published by Elsevier Inc.

  12. 7 CFR 1435.500 - General statement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS SUGAR PROGRAM Processor Sugar Payment-In-Kind (PIK) Program § 1435.500 General statement. This subpart shall be applicable to sugar beet and... sugarcane or sugar beets processed by the processors, reduce sugar production in return for a payment of...

  13. 7 CFR 1435.503 - In-kind payments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (PIK) Program § 1435.503 In-kind payments. (a) CCC will, through such methods as CCC deems appropriate, make payments in the form of sugar held in CCC inventory. (b) To the maximum extent practicable, CCC will use its inventory in making an in-kind payment based on the following priority: (1) CCC-owned...

  14. 7 CFR 1435.503 - In-kind payments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (PIK) Program § 1435.503 In-kind payments. (a) CCC will, through such methods as CCC deems appropriate, make payments in the form of sugar held in CCC inventory. (b) To the maximum extent practicable, CCC will use its inventory in making an in-kind payment based on the following priority: (1) CCC-owned...

  15. 7 CFR 1435.503 - In-kind payments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (PIK) Program § 1435.503 In-kind payments. (a) CCC will, through such methods as CCC deems appropriate, make payments in the form of sugar held in CCC inventory. (b) To the maximum extent practicable, CCC will use its inventory in making an in-kind payment based on the following priority: (1) CCC-owned...

  16. 7 CFR 1435.503 - In-kind payments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (PIK) Program § 1435.503 In-kind payments. (a) CCC will, through such methods as CCC deems appropriate, make payments in the form of sugar held in CCC inventory. (b) To the maximum extent practicable, CCC will use its inventory in making an in-kind payment based on the following priority: (1) CCC-owned...

  17. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers.

    PubMed

    Kächele, Martin; Hennige, Anita M; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs' in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. We could demonstrate that common genetic variation in the PIK3CG locus, possibly via altered PIK3CG gene expression, determines

  18. Relationship between Tumor Biomarkers and Efficacy in EMILIA, a Phase III Study of Trastuzumab Emtansine in HER2-Positive Metastatic Breast Cancer.

    PubMed

    Baselga, José; Lewis Phillips, Gail D; Verma, Sunil; Ro, Jungsil; Huober, Jens; Guardino, Alice E; Samant, Meghna K; Olsen, Steve; de Haas, Sanne L; Pegram, Mark D

    2016-08-01

    HER2-positive breast cancer is heterogeneous. Some tumors express mutations, like activating PIK3CA mutations or reduced PTEN expression, that negatively correlate with response to HER2-targeted therapies. In this exploratory analysis, we investigated whether the efficacy of trastuzumab emtansine (T-DM1), an antibody-drug conjugate comprised of the cytotoxic agent DM1 linked to the HER2-targeted antibody trastuzumab, was correlated with the expression of specific biomarkers in the phase III EMILIA study. Tumors were evaluated for HER2 (n = 866), EGFR (n = 832), and HER3 (n = 860) mRNA expression by quantitative reverse transcriptase PCR; for PTEN protein expression (n = 271) by IHC; and for PIK3CA mutations (n = 259) using a mutation detection kit. Survival outcomes were analyzed by biomarker subgroups. T-DM1 was also tested on cell lines and in breast cancer xenograft models containing PIK3CA mutations. Longer progression-free survival (PFS) and overall survival (OS) were observed with T-DM1 compared with capecitabine plus lapatinib in all biomarker subgroups. PIK3CA mutations were associated with shorter median PFS (mutant vs. wild type: 4.3 vs. 6.4 months) and OS (17.3 vs. 27.8 months) in capecitabine plus lapatinib-treated patients, but not in T-DM1-treated patients (PFS, 10.9 vs. 9.8 months; OS, not reached in mutant or wild type). T-DM1 showed potent activity in cell lines and xenograft models with PIK3CA mutations. Although other standard HER2-directed therapies are less effective in tumors with PI3KCA mutations, T-DM1 appears to be effective in both PI3KCA-mutated and wild-type tumors. Clin Cancer Res; 22(15); 3755-63. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. PI3K pathway dependencies in endometrioid endometrial cancer cell lines

    PubMed Central

    Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian

    2013-01-01

    Purpose Endometrioid endometrial cancers (EECs) frequently harbor coexisting mutations in PI3K pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Experimental Design Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and MAPK signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, MEK and RAF inhibitors. RNA interference (RNAi) was employed to assess effects of KRAS silencing in EEC cells. Results EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor Temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2/6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66, a decrease in cell viability was observed. Conclusions Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA-mutant and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. PMID:23674493

  20. SciTech Connect

    Sims, David; Brettin, Thomas; Detter, John C.

    Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marinemore » environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  1. Cytotoxicity and Phytochemical Profiling of Sargassum Sp. Extract As Anti-Mdr Bacteria

    NASA Astrophysics Data System (ADS)

    Setyati, Wilis A.; Pramesti, Rini; Zainuddin, Muhamad; Puspita, Maya; Renta, Person P.

    2018-02-01

    Sargassum sp. contains bioactive compounds having the potential as an antibacterial agent. Sargassum sp. was collected from five different locations, i.e., Teluk Awur, Panjang Island, Bandengan, Ujung Piring, and Bondo. There were several different species of Sargassum sp. identified from each sampling locations. The collected seaweeds were washed, naturally dried, and ground to the powder-sized dry material. Dry seaweed was extracted gradually using n-hexane, ethyl acetate, and methanol (1:3 w/v). The antibacterial analysis was conducted based on Agar Diffusion method using Zobell as media. Resistance analysis was performed to evaluate the resistance of pathogen against commercial antibiotics, namely, chloramphenicol, ampicillin, erythromycin, amoxycillin, and tetracycline. Each Sargassum sp. extract was tested against three candidates of MDR bacteria, i.e., Staphylococcus aureus, Escherichia coli, and S. epidermidis. Results showed that S. aureus was resistant towards four out of five commercial antibiotics. E. coli and S. epidermidis were not susceptible to two and three out of five commercial antibiotics, respectively. N-hexane, ethyl acetate and methanol yielded 0.1-0.3%, 0.3-0.7 % and 0.8-4.7% of dry extract. Ethyl acetate extract of Sargassum from Teluk Awur performed the best antibacterial activity and contained an alkaloid, flavonoid, and phenolic compounds. Toxicity analysis showed that this ethyl acetate extract had LC50 at 463 ppm and categorized as chronic toxicity.

  2. Carbon from Crust to Core: A history of deep carbon science

    NASA Astrophysics Data System (ADS)

    Mitton, Simon

    2017-04-01

    As an academic historian of science, I am writing a history of the discovery of the interior workings of our dynamic planet. I am preparing a book, titled Carbon from Crust to Core: A Chronicle of Deep Carbon Science, in which I will present the first history of deep carbon science. I will identify and document key discoveries, the impact of new knowledge, and the roles of deep carbon scientists and their institutions from the 1400s to the present. This innovative book will set down the engaging human story of many remarkable scientists from whom we have learned about Earth's interior, and particularly the fascinating story of carbon in Earth. I will describe a great journey of discovery that has led to a better understanding of the physical, chemical, and biological behaviour of carbon in the vast majority of Earth's interior. My poster has a list of remarkable Deep Carbon Explorers, from Georgius Agricola (1494-1555) to Claude ZoBell (1904-1989). Come along to my poster and add to my compilation: choose pioneers from history, or nominate your colleagues, or even add a selfie! As a biographer, I am keen to add researchers who may have been overlooked in the standard histories of geology and geophysics. And I am always on the lookout for standout stories and personal recollections. I am equipped to do oral history interviews. What's your story? Cambridge University Press will publish the book in 2019.

  3. Bacterial diversity in the intestine of young farmed puffer fish Takifugu rubripes

    NASA Astrophysics Data System (ADS)

    Li, Yanyu; Zhang, Tao; Zhang, Congyao; Zhu, Ying; Ding, Jianfeng; Ma, Yuexin

    2015-07-01

    The aim of the study was to examine the bacterial community associated with the intestinal mucus of young farmed puffer fish Takifugu rubripes. Polymerase chain reaction and partial 16S rDNA sequencing was performed on DNA from bacteria cultivated on Zobell 2216E medium. All the isolates were classified into two phyla—Proteobacteria and Firmicutes. Proteobacteria were the dominant, culturable intestinal microbiota (68.3%). At the genus level, Vibrio, Enterobacter, Bacillus, Pseudomonas, Exiguobacterium, Staphylococcus, Acinetobacter, Pseudoalteromonas and Shewanella were isolated from the intestine, with representatives of the genera Vibrio, Enterobacter and Bacillus accounting for 70.7% of the total. This is the first report of Enterobacter, Bacillus, Exiguobacterium and Staphylococcus as part of the intestinal bacterial microflora in T. rubripes. The profile of the culturable bacterial community differed between samples collected from the same tank at 2-month intervals, as indicated by Bray-Curtis and Sorensen indices, and the impact on the intestinal physiology and health of puffer fish requires further investigation.

  4. Genetic diversity of the causative agent of ice-ice disease of the seaweed Kappaphycus alvarezii from Karimunjawa island, Indonesia

    NASA Astrophysics Data System (ADS)

    Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.

    2017-02-01

    An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.

  5. Effect of hydrostatic pressure on prokaryotic heterotrophic activity in the dark ocean

    NASA Astrophysics Data System (ADS)

    Amano, C.; Sintes, E.; Utsumi, M.; Herndl, G. J.

    2016-02-01

    The pioneering work of ZoBell in the 1940s revealed the existence of piezophilic bacteria in the deep ocean, capable of growing only under high-pressure conditions. However, it is still unclear to what extent the bulk prokaryotic community inhabiting the deep ocean is affected by hydrostatic pressure. Essentially, the fractions of the bulk microbial community being piezophilic, piezotolerant and piezosensitive remain unknown. To determine the influence of hydrostatic pressure on the heterotrophic microbial activity, an in situ microbial incubator (ISMI) was deployed in the North Atlantic Ocean at depths down to 3200 m. Natural prokaryotic communities were incubated under both in situ hydrostatic pressure and atmospheric pressure conditions at in situ temperature following the addition of 5 nM 3H-leucine. Bulk leucine incorporation rates and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. Prokaryotic leucine incorporation rates obtained under in situ pressure conditions were generally lower than under atmospheric pressure conditions, suggesting that hydrostatic pressure inhibits overall heterotrophic activity in the deep sea. The ratio of leucine incorporation rates obtained under in situ pressure conditions to atmospheric pressure conditions decreased with depth for the bulk prokaryotic community. Moreover, MICRO-CARD-FISH revealed that specific prokaryotic groups are apparently more affected by hydrostatic pressure than others. Taken together, our results indicate varying sensitivities of prokaryotic groups to hydrostatic pressure.

  6. Subjecting appropriate lung adenocarcinoma samples to next-generation sequencing-based molecular testing: challenges and possible solutions.

    PubMed

    Li, Weihua; Qiu, Tian; Ling, Yun; Gao, Shugeng; Ying, Jianming

    2018-05-01

    Next-generation sequencing (NGS) has recently been rapidly adopted in the molecular diagnosis of cancer, but it still faces some obstacles. In this study, 665 lung adenocarcinoma samples (558 TKI-naive and 107 TKI-relapsed samples) were interrogated using NGS, and the challenges and possible solutions of subjecting appropriate tissue samples to NGS testing were explored. The results showed that lower frequencies of HER2/BRAF/PIK3CA and acquired EGFR T790M mutations were observed in biopsy samples with <20% tumor cellularity than in those with ≥20%, but there were no significant differences in the frequencies of EGFR or KRAS mutations. Moreover, tumor heterogeneity was assessed by heterogeneity score (HS), which was calculated through multiplying by 2 the mutant allele frequency (MAF) of tumor cells. In TKI-naive samples, intratumor heterogeneity could occur in EGFR, KRAS, HER2, BRAF, and PIK3CA mutant tumors, but the degree was variable. Higher EGFR, but lower BRAF and PIK3CA HS values were observed compared with KRAS HS. In TKI-relapsed samples, analysis of concomitant sensitizing EGFR and T790M MAFs showed that intratumor heterogeneity was common in acquired EGFR T790M mutant tumors. The mutational status between primary and metastatic tumors was usually concordant, but KRAS, HER2, and PIK3CA HS were significantly higher in metastatic tumors than in primary tumors. Additionally, the discordance rate of mutational status in multifocal lung adenocarcinomas diagnosed as equivocal or multiple primary tumors was high. Together, our findings demonstrate that a comprehensive quality assessment is necessary during tissue process to mitigate the challenges of poor tumor cellularity, tumor heterogeneity, and multifocal clonally independent tumors. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  7. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  8. Neuregulin 1-ErbB4-PI3K signaling in schizophrenia and phosphoinositide 3-kinase-p110δ inhibition as a potential therapeutic strategy.

    PubMed

    Law, Amanda J; Wang, Yanhong; Sei, Yoshitatsu; O'Donnell, Patricio; Piantadosi, Patrick; Papaleo, Francesco; Straub, Richard E; Huang, Wenwei; Thomas, Craig J; Vakkalanka, Radhakrishna; Besterman, Aaron D; Lipska, Barbara K; Hyde, Thomas M; Harrison, Paul J; Kleinman, Joel E; Weinberger, Daniel R

    2012-07-24

    Neuregulin 1 (NRG1) and ErbB4, critical neurodevelopmental genes, are implicated in schizophrenia, but the mediating mechanisms are unknown. Here we identify a genetically regulated, pharmacologically targetable, risk pathway associated with schizophrenia and with ErbB4 genetic variation involving increased expression of a PI3K-linked ErbB4 receptor (CYT-1) and the phosphoinositide 3-kinase subunit, p110δ (PIK3CD). In human lymphoblasts, NRG1-mediated phosphatidyl-inositol,3,4,5 triphosphate [PI(3,4,5)P3] signaling is predicted by schizophrenia-associated ErbB4 genotype and PIK3CD levels and is impaired in patients with schizophrenia. In human brain, the same ErbB4 genotype again predicts increased PIK3CD expression. Pharmacological inhibition of p110δ using the small molecule inhibitor, IC87114, blocks the effects of amphetamine in a mouse pharmacological model of psychosis and reverses schizophrenia-related phenotypes in a rat neonatal ventral hippocampal lesion model. Consistent with these antipsychotic-like properties, IC87114 increases AKT phosphorylation in brains of treated mice, implicating a mechanism of action. Finally, in two family-based genetic studies, PIK3CD shows evidence of association with schizophrenia. Our data provide insight into a mechanism of ErbB4 association with schizophrenia; reveal a previously unidentified biological and disease link between NRG1-ErbB4, p110δ, and AKT; and suggest that p110δ is a previously undescribed therapeutic target for the treatment of psychiatric disorders.

  9. Genomic Characterization of Brain Metastasis in Non-Small Cell Lung Cancer Patients

    DTIC Science & Technology

    2014-01-01

    patients from our pilot set, we identified genomic variants (SNVs and CNVs to date) that are enriched in metastatic tumors. Aligned reads were used for...patient, illustrating variants that are detected at low VAF frequency in the primary tumor but greatly enriched in the metastatic lesion, or that are...more than one of the 9 samples, several of them, including PIK3CA E545K (not detectable at 25X read depth in patient 1 primary tumor, but present at

  10. RAS mutations affect pattern of metastatic spread and increase propensity for brain metastasis in colorectal cancer.

    PubMed

    Yaeger, Rona; Cowell, Elizabeth; Chou, Joanne F; Gewirtz, Alexandra N; Borsu, Laetitia; Vakiani, Efsevia; Solit, David B; Rosen, Neal; Capanu, Marinela; Ladanyi, Marc; Kemeny, Nancy

    2015-04-15

    RAS and PIK3CA mutations in metastatic colorectal cancer (mCRC) have been associated with worse survival. We sought to evaluate the impact of RAS and PIK3CA mutations on cumulative incidence of metastasis to potentially curable sites of liver and lung and other sites such as bone and brain. We performed a computerized search of the electronic medical record of our institution for mCRC cases genotyped for RAS or PIK3CA mutations from 2008 to 2012. Cases were reviewed for patient characteristics, survival, and site-specific metastasis. Among the 918 patients identified, 477 cases were RAS wild type, and 441 cases had a RAS mutation (394 at KRAS exon 2, 29 at KRAS exon 3 or 4, and 18 in NRAS). RAS mutation was significantly associated with shorter median overall survival (OS) and on multivariate analysis independently predicted worse OS (HR, 1.6; P < .01). RAS mutant mCRC exhibited a significantly higher cumulative incidence of lung, bone, and brain metastasis and on multivariate analysis was an independent predictor of involvement of these sites (HR, 1.5, 1.6, and 3.7, respectively). PIK3CA mutations occurred in 10% of the 786 cases genotyped, did not predict for worse survival, and did not exhibit a site-specific pattern of metastatic spread. The metastatic potential of CRC varies with the presence of RAS mutation. RAS mutation is associated with worse OS and increased incidence of lung, bone, and brain metastasis. An understanding of this site-specific pattern of spread may help to inform physicians' assessment of symptoms in patients with mCRC. © 2014 American Cancer Society.

  11. Cell-free DNA as a molecular tool for monitoring disease progression and response to therapy in breast cancer patients.

    PubMed

    Liang, Diana H; Ensor, Joe E; Liu, Zhe-Bin; Patel, Asmita; Patel, Tejal A; Chang, Jenny C; Rodriguez, Angel A

    2016-01-01

    Due to the spatial and temporal genomic heterogeneity of breast cancer, genomic sequencing obtained from a single biopsy may not capture the complete genomic profile of tumors. Thus, we propose that cell-free DNA (cfDNA) in plasma may be an alternate source of genomic information to provide comprehensive data throughout a patient's clinical course. We performed a retrospective chart review of 100 patients with stage 4 or high-risk stage 3 breast cancer. The degree of agreement between genomic alterations found in tumor DNA (tDNA) and cfDNA was determined by Cohen's Kappa. Clinical disease progression was compared to mutant allele frequency using a two-sided Fisher's exact test. The presence of mutations and mutant allele frequency was correlated with progression-free survival (PFS) using a Cox proportional hazards model and a log-rank test. The most commonly found genomic alterations were mutations in TP53 and PIK3CA, and amplification of EGFR and ERBB2. PIK3CA mutation and ERBB2 amplification demonstrated robust agreement between tDNA and cfDNA (Cohen's kappa = 0.64 and 0.77, respectively). TP53 mutation and EGFR amplification demonstrated poor agreement between tDNA and cfDNA (Cohen's kappa = 0.18 and 0.33, respectively). The directional changes of TP53 and PIK3CA mutant allele frequency were closely associated with response to therapy (p = 0.002). The presence of TP53 mutation (p = 0.0004) and PIK3CA mutant allele frequency [p = 0.01, HR 1.074 (95 % CI 1.018-1.134)] was excellent predictors of PFS. Identification of selected cancer-specific genomic alterations from cfDNA may be a noninvasive way to monitor disease progression, predict PFS, and offer targeted therapy.

  12. The Gene Expression Status of the PI3K/AKT/mTOR Pathway in Gastric Cancer Tissues and Cell Lines.

    PubMed

    Riquelme, Ismael; Tapia, Oscar; Espinoza, Jaime A; Leal, Pamela; Buchegger, Kurt; Sandoval, Alejandra; Bizama, Carolina; Araya, Juan Carlos; Peek, Richard M; Roa, Juan Carlos

    2016-10-01

    The PI3K/AKT/mTOR pathway plays a crucial role in the regulation of multiple cellular functions including cell growth, proliferation, metabolism and angiogenesis. Emerging evidence has shown that deregulation of this pathway has a role promoting gastric cancer (GC). The aim was to assess the expression of genes involved in this pathway by qPCR in 23 tumor and 23 non-tumor gastric mucosa samples from advanced GC patients, and in AGS, MKN28 and MKN45 gastric cancer cell lines. Results showed a slight overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1, EIF4EBP1 and EIF4E genes, and a slightly decreased PTEN and TSC1 expression. In AGS, MKN28 and MKN45 cells a significant gene overexpression of PIK3CA, PIK3CB, AKT1, MTOR, RPS6KB1 and EIF4E, and a significant repression of PTEN gene expression were observed. Immunoblotting showed that PI3K-β, AKT, p-AKT, PTEN, mTOR, p-mTOR, P70S6K1, p-P70S6K1, 4E-BP1, p-4E-BP1, eIF4E and p-eIF4E proteins were present in cell lines at different levels, confirming activation of this pathway in vitro. This is the first time this extensive panel of 9 genes within PI3K/AKT/mTOR pathway has been studied in GC to clarify the biological role of this pathway in GC and develop new strategies for this malignancy.

  13. Tumor Genomic Profiling in Breast Cancer Patients Using Targeted Massively Parallel Sequencing

    DTIC Science & Technology

    2016-03-01

    recently, we identified several novel alterations in in ER+ breast tumors, including translocations in ESR1 , the gene that encodes the estrogen receptor...modified our bait design to include genomic coordinates across select introns in ESR1 . In addition, two papers from the Broad Institute published in...with PIK3CA mutations, 23% with ESR1 ligand-binding domain mutations, 9% with ERBB2 mutations, 9% with FGFR1/2 amplifications, and 1% with

  14. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models.

    PubMed

    Spoerke, Jill M; O'Brien, Carol; Huw, Ling; Koeppen, Hartmut; Fridlyand, Jane; Brachmann, Rainer K; Haverty, Peter M; Pandita, Ajay; Mohan, Sankar; Sampath, Deepak; Friedman, Lori S; Ross, Leanne; Hampton, Garret M; Amler, Lukas C; Shames, David S; Lackner, Mark R

    2012-12-15

    Class 1 phosphatidylinositol 3-kinase (PI3K) plays a major role in cell proliferation and survival in a wide variety of human cancers. Here, we investigated biomarker strategies for PI3K pathway inhibitors in non-small-cell lung cancer (NSCLC). Molecular profiling for candidate PI3K predictive biomarkers was conducted on a collection of NSCLC tumor samples. Assays included comparative genomic hybridization, reverse-transcription polymerase chain reaction gene expression, mutation detection for PIK3CA and other oncogenes, PTEN immunohistochemistry, and FISH for PIK3CA copy number. In addition, a panel of NSCLC cell lines characterized for alterations in the PI3K pathway was screened with PI3K and dual PI3K/mTOR inhibitors to assess the preclinical predictive value of candidate biomarkers. PIK3CA amplification was detected in 37% of squamous tumors and 5% of adenocarcinomas, whereas PIK3CA mutations were found in 9% of squamous and 0% of adenocarcinomas. Total loss of PTEN immunostaining was found in 21% of squamous tumors and 4% of adenocarcinomas. Cell lines harboring pathway alterations (receptor tyrosine kinase activation, PI3K mutation or amplification, and PTEN loss) were exquisitely sensitive to the PI3K inhibitor GDC-0941. A dual PI3K/mTOR inhibitor had broader activity across the cell line panel and in tumor xenografts. The combination of GDC-0941 with paclitaxel, erlotinib, or a mitogen-activated protein-extracellular signal-regulated kinase inhibitor had greater effects on cell viability than PI3K inhibition alone. Candidate biomarkers for PI3K inhibitors have predictive value in preclinical models and show histology-specific alterations in primary tumors, suggesting that distinct biomarker strategies may be required in squamous compared with nonsquamous NSCLC patient populations. ©2012 AACR.

  15. Use of multivariate analysis to suggest a new molecular classification of colorectal cancer

    PubMed Central

    Domingo, Enric; Ramamoorthy, Rajarajan; Oukrif, Dahmane; Rosmarin, Daniel; Presz, Michal; Wang, Haitao; Pulker, Hannah; Lockstone, Helen; Hveem, Tarjei; Cranston, Treena; Danielsen, Havard; Novelli, Marco; Davidson, Brian; Xu, Zheng-Zhou; Molloy, Peter; Johnstone, Elaine; Holmes, Christopher; Midgley, Rachel; Kerr, David; Sieber, Oliver; Tomlinson, Ian

    2013-01-01

    Abstract Molecular classification of colorectal cancer (CRC) is currently based on microsatellite instability (MSI), KRAS or BRAF mutation and, occasionally, chromosomal instability (CIN). Whilst useful, these categories may not fully represent the underlying molecular subgroups. We screened 906 stage II/III CRCs from the VICTOR clinical trial for somatic mutations. Multivariate analyses (logistic regression, clustering, Bayesian networks) identified the primary molecular associations. Positive associations occurred between: CIN and TP53 mutation; MSI and BRAF mutation; and KRAS and PIK3CA mutations. Negative associations occurred between: MSI and CIN; MSI and NRAS mutation; and KRAS mutation, and each of NRAS, TP53 and BRAF mutations. Some complex relationships were elucidated: KRAS and TP53 mutations had both a direct negative association and a weaker, confounding, positive association via TP53–CIN–MSI–BRAF–KRAS. Our results suggested a new molecular classification of CRCs: (1) MSI+ and/or BRAF-mutant; (2) CIN+ and/or TP53– mutant, with wild-type KRAS and PIK3CA; (3) KRAS- and/or PIK3CA-mutant, CIN+, TP53-wild-type; (4) KRAS– and/or PIK3CA-mutant, CIN–, TP53-wild-type; (5) NRAS-mutant; (6) no mutations; (7) others. As expected, group 1 cancers were mostly proximal and poorly differentiated, usually occurring in women. Unexpectedly, two different types of CIN+ CRC were found: group 2 cancers were usually distal and occurred in men, whereas group 3 showed neither of these associations but were of higher stage. CIN+ cancers have conventionally been associated with all three of these variables, because they have been tested en masse. Our classification also showed potentially improved prognostic capabilities, with group 3, and possibly group 1, independently predicting disease-free survival. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:23165447

  16. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  17. Revealing the Effects of the Herbal Pair of Euphorbia kansui and Glycyrrhiza on Hepatocellular Carcinoma Ascites with Integrating Network Target Analysis and Experimental Validation

    PubMed Central

    Zhang, Yanqiong; Lin, Ya; Zhao, Haiyu; Guo, Qiuyan; Yan, Chen; Lin, Na

    2016-01-01

    Although the herbal pair of Euphorbia kansui (GS) and Glycyrrhiza (GC) is one of the so-called "eighteen antagonistic medicaments" in Chinese medicinal literature, it is prescribed in a classic Traditional Chinese Medicine (TCM) formula Gansui-Banxia-Tang for cancerous ascites, suggesting that GS and GC may exhibit synergistic or antagonistic effects in different combination designs. Here, we modeled the effects of GS/GC combination with a target interaction network and clarified the associations between the network topologies involving the drug targets and the drug combination effects. Moreover, the "edge-betweenness" values, which is defined as the frequency with which edges are placed on the shortest paths between all pairs of modules in network, were calculated, and the ADRB1-PIK3CG interaction exhibited the greatest edge-betweenness value, suggesting its crucial role in connecting the other edges in the network. Because ADRB1 and PIK3CG were putative targets of GS and GC, respectively, and both had functional interactions with AVPR2 approved as known therapeutic target for ascites, we proposed that the ADRB1-PIK3CG-AVPR2 signal axis might be involved in the effects of the GS-GC combination on ascites. This proposal was further experimentally validated in a H22 hepatocellular carcinoma (HCC) ascites model. Collectively, this systems-level investigation integrated drug target prediction and network analysis to reveal the combination principles of the herbal pair of GS and GC. Experimental validation in an in vivo system provided convincing evidence that different combination designs of GS and GC might result in synergistic or antagonistic effects on HCC ascites that might be partially related to their regulation of the ADRB1-PIK3CG-AVPR2 signal axis. PMID:27143956

  18. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.

    PubMed

    Wang, Hong; Hong, Jungil; Yang, Chung S

    2016-11-01

    The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Comparison of targeted next-generation sequencing with conventional sequencing for predicting the responsiveness to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy in never-smokers with lung adenocarcinoma.

    PubMed

    Han, Ji-Youn; Kim, Sun Hye; Lee, Yeon-Su; Lee, Seung-Youn; Hwang, Jung-Ah; Kim, Jin Young; Yoon, Sung Jin; Lee, Geon Kook

    2014-08-01

    To investigate the clinical utility of targeted next-generation sequencing (NGS) for predicting the responsiveness to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy, we compared the efficacy with conventional sequencing in never-smokers with lung adenocarcinoma (NSLAs). We obtained DNA from 48 NSLAs who received gefitinib or erlotinib for their recurrent disease after surgery. Sanger sequencing and peptide nucleic acid clamp polymerase chain reaction (PCR) were used to analyze EGFR, KRAS, BRAF, and PIK3CA mutations. We analyzed ALK, RET, and ROS1 rearrangements by fluorescent in situ hybridization or reverse transcriptase-PCR and quantitative real-time PCR. After molecular screening, Ion Torrent NGS was performed in 31 cases harboring only EGFR exon 19 deletions (19DEL), an L858R mutation, or none of the above mutations. The 31 samples were divided into four groups: (1) responders to EGFR-TKIs with only 19DEL or L858R (n=15); (2) primary resistance to EGFR-TKI with only 19DEL or L858R (n=4); (3) primary resistance to EGFR-TKI without any mutations (n=8); (4) responders to EGFR-TKI without any mutations (n=4). With NGS, all conventionally detected mutations were confirmed except for one L858R in group 2. Additional uncovered predictive mutations with NGS included one PIK3CA E542K in group 2, two KRAS (G12V and G12D), one PIK3CA E542K, one concomitant PIK3CA and EGFR L858R in group 3, and one EGFR 19DEL in group 4. Targeted NGS provided a more accurate and clinically useful molecular classification of NSLAs. It may improve the efficacy of EGFR-TKI therapy in lung cancer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. 50 CFR Table 8 to Part 680 - Initial QS and PQS Pool for Each Crab QS Fishery

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Crab QS Fishery Crab QS Fishery Initial QS Pool Initial PQS Pool BBR Bristol Bay red king crab 400,000... 200,000,000 PIK Pribilof Islands red and blue king crab 30,000,000 30,000,000 SMB St. Matthew blue... Western Aleutian Islands red king crab 60,000,000 60,000,000 WBT Western Bering Sea Tanner crab (C. bairdi...

  1. 50 CFR Table 8 to Part 680 - Initial QS and PQS Pool for Each Crab QS Fishery

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Crab QS Fishery Crab QS Fishery Initial QS Pool Initial PQS Pool BBR Bristol Bay red king crab 400,000... 200,000,000 PIK Pribilof Islands red and blue king crab 30,000,000 30,000,000 SMB St. Matthew blue... Western Aleutian Islands red king crab 60,000,000 60,000,000 WBT Western Bering Sea Tanner crab (C. bairdi...

  2. Gene expression associated with suicide attempts in US veterans (Open Access)

    DTIC Science & Technology

    2017-09-05

    schizophrenia who had died from suicide. This gene codes for a cytokine that is part of the tumor necrosis factor family. In addition, the PIK3C3...expression level of eIF2 (and mTOR and WNT) was downregulated in one published report examining post- mortem tissue in people who had a schizophrenia ...HK. Suicide candidate genes associated with bipolar disorder and schizophrenia : an exploratory gene expression profiling analysis of post-mortem

  3. P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse

    PubMed Central

    Iyengar, Sunil; Clear, Andrew; Bödör, Csaba; Maharaj, Lenushka; Lee, Abigail; Calaminici, Maria; Matthews, Janet; Iqbal, Sameena; Auer, Rebecca; Joel, Simon

    2013-01-01

    Phosphoinositide-3 kinase (PI3K) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis, but early-phase studies of the PI3K p110δ inhibitor GS-1101 have reported inferior responses in MCL compared with other non-Hodgkin lymphomas. Because the relative importance of the class IA PI3K isoforms p110α, p110β, and p110δ in MCL is not clear, we studied expression of these isoforms and assessed their contribution to PI3K signaling in this disease. We found that although p110δ was highly expressed in MCL, p110α showed wide variation and expression increased significantly with relapse. Loss of phosphatase and tensin homolog expression was found in 16% (22/138) of cases, whereas PIK3CA and PIK3R1 mutations were absent. Although p110δ inhibition was sufficient to block B-cell receptor–mediated PI3K activation, combined p110α and p110δ inhibition was necessary to abolish constitutive PI3K activation. In addition, GDC-0941, a predominantly p110α/δ inhibitor, was significantly more active compared with GS-1101 against MCL cell lines and primary samples. We found that a high PIK3CA/PIK3CD ratio identified a subset of primary MCLs resistant to GS-1101 and this ratio increased significantly with relapse. These findings support the use of dual p110α/p110δ inhibitors in MCL and suggest a role for p110α in disease progression. PMID:23341541

  4. Nuclear Factor-Kappa B Activity in the Host-Tumor Microenvironment of Ovarian Cancer

    DTIC Science & Technology

    2012-08-01

    analysis was performed in the Vanderbilt University Small Animal Imaging Core using the Xenogen IVIS 200 bioluminescent image system with Living...progression through systemic NF-B inhibition is that anti-tumor cytotoxic macrophages 9 may require NF-B signaling for normal function, and NF...Shin, L Klampfer, LH Augenlicht, R Perez- Soler , JM Mariadason. PIK3CA/PTEN expression status predicts response of colon cancer cells to the EGFR

  5. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan.

    PubMed

    Kim, Seung Tae; Ahn, Tae Jin; Lee, Eunjin; Do, In-Gu; Lee, Su Jin; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Kim, Suk Hyeong; Lee, Jeeyun; Kim, Hee Cheol

    2015-10-20

    More than half of the patients selected based on KRAS mutation status fail to respond to the treatment with cetuximab in metastatic colorectal cancer (mCRC). We designed a study to identify additional biomarkers that could act as indicators for cetuximab treatment in mCRC. We investigated 58 tumor samples from wild type KRAS CRC patients treated with cetuximab plus irinotecan (CI). We conducted the genotyping for mutations in either BRAF or PIK3CA and profiled comprehensively the expression of 522 kinase genes. BRAF mutation was detected in 5.1 % (3/58) of patients. All 50 patients showed wild type PIK3CA. Gene expression patterns that categorized patients with or without the disease control to CI were compared by supervised classification analysis. PSKH1, TLK2 and PHKG2 were overexpressed significantly in patients with the disease control to IC. The higher expression value of PSKH1 (r = 0.462, p < 0.001) and TLK2 (r = 0.361, p = 0.005) had the significant correlation to prolonged PFS. The result of this work demonstrated that expression nature of kinase genes such as PSKH1, TLK2 and PHKG2 may be informative to predict the efficacy of CI in wild type KRAS CRC. Mutations in either BRAF or PIK3CA were rare subsets in wild type KRAS CRC.

  6. An alteration of the gut-liver axis drives pulmonary inflammation after intoxication and burn injury in mice

    PubMed Central

    Chen, Michael M.; Zahs, Anita; Brown, Mary M.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2014-01-01

    Approximately half of all adult burn patients are intoxicated at the time of their injury and have worse clinical outcomes than those without prior alcohol exposure. This study tested the hypothesis that intoxication alters the gut-liver axis, leading to increased pulmonary inflammation mediated by burn-induced IL-6 in the liver. C57BL/6 mice were given 1.2 g/kg ethanol 30 min prior to a 15% total body surface area burn. To restore gut barrier function, the specific myosin light chain kinase inhibitor membrane-permeant inhibitor of kinase (PIK), which we have demonstrated to reduce bacterial translocation from the gut, was administered 30 min after injury. Limiting bacterial translocation with PIK attenuated hepatic damage as measured by a 47% reduction in serum alanine aminotransferase (P < 0.05), as well as a 33% reduction in hepatic IL-6 mRNA expression (P < 0.05), compared with intoxicated and burn-injured mice without PIK. This mitigation of hepatic damage was associated with a 49% decline in pulmonary neutrophil infiltration (P < 0.05) and decreased alveolar wall thickening compared with matched controls. These results were reproduced by prophylactic reduction of the bacterial load in the intestines with oral antibiotics before intoxication and burn injury. Overall, these data suggest that the gut-liver axis is deranged when intoxication precedes burn injury and that limiting bacterial translocation in this setting attenuates hepatic damage and pulmonary inflammation. PMID:25104501

  7. ARRB1/β-arrestin-1 mediates neuroprotection through coordination of BECN1-dependent autophagy in cerebral ischemia

    PubMed Central

    Wang, Pei; Xu, Tian-Ying; Wei, Kai; Guan, Yun-Feng; Wang, Xia; Xu, Hui; Su, Ding-Feng; Pei, Gang; Miao, Chao-Yu

    2014-01-01

    Autophagy, a highly conserved process conferring cytoprotection against stress, contributes to the progression of cerebral ischemia. β-arrestins are multifunctional proteins that mediate receptor desensitization and serve as important signaling scaffolds involved in numerous physiopathological processes. Here, we show that both ARRB1 (arrestin, β 1) and ARRB2 (arrestin, β 2) were upregulated by cerebral ischemic stress. Knockout of Arrb1, but not Arrb2, aggravated the mortality, brain infarction, and neurological deficit in a mouse model of cerebral ischemia. Accordingly, Arrb1-deficient neurons exhibited enhanced cell injury upon oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Deletion of Arrb1 did not affect the cerebral ischemia-induced inflammation, oxidative stress, and nicotinamide phosphoribosyltransferase upregulation, but markedly suppressed autophagy and induced neuronal apoptosis/necrosis in vivo and in vitro. Additionally, we found that ARRB1 interacted with BECN1/Beclin 1 and PIK3C3/Vps34, 2 major components of the BECN1 autophagic core complex, under the OGD condition but not normal conditions in neurons. Finally, deletion of Arrb1 impaired the interaction between BECN1 and PIK3C3, which is a critical event for autophagosome formation upon ischemic stress, and markedly reduced the kinase activity of PIK3C3. These findings reveal a neuroprotective role for ARRB1, in the context of cerebral ischemia, centered on the regulation of BECN1-dependent autophagosome formation. PMID:24988431

  8. Genetic heterogeneity of diffuse large B-cell lymphoma.

    PubMed

    Zhang, Jenny; Grubor, Vladimir; Love, Cassandra L; Banerjee, Anjishnu; Richards, Kristy L; Mieczkowski, Piotr A; Dunphy, Cherie; Choi, William; Au, Wing Yan; Srivastava, Gopesh; Lugar, Patricia L; Rizzieri, David A; Lagoo, Anand S; Bernal-Mizrachi, Leon; Mann, Karen P; Flowers, Christopher; Naresh, Kikkeri; Evens, Andrew; Gordon, Leo I; Czader, Magdalena; Gill, Javed I; Hsi, Eric D; Liu, Qingquan; Fan, Alice; Walsh, Katherine; Jima, Dereje; Smith, Lisa L; Johnson, Amy J; Byrd, John C; Luftig, Micah A; Ni, Ting; Zhu, Jun; Chadburn, Amy; Levy, Shawn; Dunson, David; Dave, Sandeep S

    2013-01-22

    Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.

  9. The Prognostic Influence of BRAF Mutation and other Molecular, Clinical and Laboratory Parameters in Stage IV Colorectal Cancer.

    PubMed

    Karadima, Maria L; Saetta, Angelica A; Chatziandreou, Ilenia; Lazaris, Andreas C; Patsouris, Efstratios; Tsavaris, Nikolaos

    2016-10-01

    Our aim was to evaluate the predictive and prognostic influence of BRAF mutation and other molecular, clinical and laboratory parameters in stage IV colorectal cancer (CRC). 60 patients were included in this retrospective analysis, and 17 variables were examined for their relation with treatment response and survival. KRAS mutation was identified in 40.3 % of cases, BRAF and PIK3CA in 8.8 % and 10.5 % respectively. 29.8 % of patients responded to treatment. Median survival time was 14.3 months. Weight loss, fever, abdominal metastases, blood transfusion, hypoalbuminaimia, BRAF and PIK3CA mutations, CRP and DNA Index were associated with survival. In multivariate analysis, male patients had 3.8 times higher probability of response, increased DNA Index was inversely correlated with response and one unit raise of DNA Index augmented 6 times the probability of death. Our findings potentiate the prognostic role of BRAF, PIK3CA mutations and ploidy in advanced CRC.

  10. The dual PH domain protein Opy1 functions as a sensor and modulator of PtdIns(4,5)P₂ synthesis.

    PubMed

    Ling, Yading; Stefan, Christopher J; Macgurn, Jason A; Audhya, Anjon; Emr, Scott D

    2012-06-29

    Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.

  11. Screening for the protective effect target of deproteinized extract of calf blood and its mechanisms in mice with CCl4-induced acute liver injury.

    PubMed

    Xu, Guangyu; Han, Xiao; Yuan, Guangxin; An, Liping; Du, Peige

    2017-01-01

    Liver injury is a common pathological basis of various liver diseases, and long-term liver injury is often an important initiation factor leading to liver fibrosis and even liver cirrhosis and hepatocellular carcinoma (HCC). It has been reported that deproteinized extract of calf blood (DECB) can inhibit the replication of hepatitis B virus and confers a protective effect on the liver after traumatic liver injury. However, few studies on the regulatory factors and mechanisms of DECB have been reported. In this current study, an acute mouse liver injury model was established with carbon tetrachloride (CCl4). The differentially expressed genes and related cell signal transduction pathways were screened using mRNA expression microarray. STEM software V1.3.6 was used for clustering gene functions, and the DAVID and KEGG databases were applied for the analysis. A total of 1355 differentially expressed genes were selected, among which nine were validated by RT-qPCR. The results showed that the Fas, IL1b, Pik3r1, Pik3r5, Traf2, Traf2, Csf2rb2, Map3k14, Pik3cd and Ppp3cc genes were involved in the regulation of DECB in an acute mouse liver injury model. Targets of the protective effects of DECB and its related mechanisms were found in mice with acute liver injury induced by carbon tetrachloride, which may provide an important theoretical basis for further DECB research.

  12. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis.

    PubMed

    Camps, Montserrat; Rückle, Thomas; Ji, Hong; Ardissone, Vittoria; Rintelen, Felix; Shaw, Jeffrey; Ferrandi, Chiara; Chabert, Christian; Gillieron, Corine; Françon, Bernard; Martin, Thierry; Gretener, Denise; Perrin, Dominique; Leroy, Didier; Vitte, Pierre-Alain; Hirsch, Emilio; Wymann, Matthias P; Cirillo, Rocco; Schwarz, Matthias K; Rommel, Christian

    2005-09-01

    Phosphoinositide 3-kinases (PI3K) have long been considered promising drug targets for the treatment of inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases. But the lack of specificity, isoform selectivity and poor biopharmaceutical profile of PI3K inhibitors have so far hampered rigorous disease-relevant target validation. Here we describe the identification and development of specific, selective and orally active small-molecule inhibitors of PI3Kgamma (encoded by Pik3cg). We show that Pik3cg(-/-) mice are largely protected in mouse models of rheumatoid arthritis; this protection correlates with defective neutrophil migration, further validating PI3Kgamma as a therapeutic target. We also describe that oral treatment with a PI3Kgamma inhibitor suppresses the progression of joint inflammation and damage in two distinct mouse models of rheumatoid arthritis, reproducing the protective effects shown by Pik3cg(-/-) mice. Our results identify selective PI3Kgamma inhibitors as potential therapeutic molecules for the treatment of chronic inflammatory disorders such as rheumatoid arthritis.

  13. Systematic Functional Characterization of Resistance to PI3K Inhibition in Breast Cancer.

    PubMed

    Le, Xiuning; Antony, Rajee; Razavi, Pedram; Treacy, Daniel J; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A

    2016-10-01

    PIK3CA (which encodes the PI3K alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, Proviral Insertion site in Murine leukemia virus (PIM) kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacologic inhibition of PIM and PI3K overcame this resistance mechanism. We also observed increased PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression was mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PIM kinase overexpression confers resistance to small-molecule PI3K inhibitors. Combined inhibition of PIM and PI3K may therefore be warranted in a subset of breast cancers. Cancer Discov; 6(10); 1134-47. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1069. ©2016 American Association for Cancer Research.

  14. Systematic functional characterization of resistance to PI3K inhibition in breast cancer

    PubMed Central

    Treacy, Daniel J.; Luo, Flora; Ghandi, Mahmoud; Castel, Pau; Scaltriti, Maurizio; Baselga, Jose; Garraway, Levi A.

    2016-01-01

    PIK3CA (which encodes the phosphoinositide-3 kinase (PI3K) alpha isoform) is the most frequently mutated oncogene in breast cancer. Small-molecule PI3K inhibitors have shown promise in clinical trials; however, intrinsic and acquired resistance limits their utility. We used a systematic gain-of-function approach to identify genes whose upregulation confers resistance to the PI3K inhibitor BYL719 in breast cancer cells. Among the validated resistance genes, PIM kinases conferred resistance by maintaining downstream PI3K effector activation in an AKT-independent manner. Concurrent pharmacological inhibition of PIM and PI3K overcame this resistance mechanism. We also observed upregulated PIM expression and activity in a subset of breast cancer biopsies with clinical resistance to PI3K inhibitors. PIM1 overexpression is mutually exclusive with PIK3CA mutation in treatment-naïve breast cancers, suggesting downstream functional redundancy. Together, these results offer new insights into resistance to PI3K inhibitors and support clinical studies of combined PIM/PI3K inhibition in a subset of PIK3CA-mutant cancers. PMID:27604488

  15. Role of p38 MAPK in enhanced human cancer cells killing by the combination of aspirin and ABT-737

    PubMed Central

    Zhang, Chong; Shi, Jing; Mao, Shi-ying; Xu, Ya-si; Zhang, Dan; Feng, Lin-yi; Zhang, Bo; Yan, You-you; Wang, Si-cong; Pan, Jian-ping; Yang, You-ping; Lin, Neng-ming

    2015-01-01

    Regular use of aspirin after diagnosis is associated with longer survival among patients with mutated-PIK3CA colorectal cancer, but not among patients with wild-type PIK3CA cancer. In this study, we showed that clinically achievable concentrations of aspirin and ABT-737 in combination could induce a synergistic growth arrest in several human PIK3CA wild-type cancer cells. In addition, our results also demonstrated that long-term combination treatment with aspirin and ABT-737 could synergistically induce apoptosis both in A549 and H1299 cells. In the meanwhile, short-term aspirin plus ABT-737 combination treatment induced a greater autophagic response than did either drug alone and the combination-induced autophagy switched from a cytoprotective signal to a death-promoting signal. Furthermore, we showed that p38 acted as a switch between two different types of cell death (autophagy and apoptosis) induced by aspirin plus ABT-737. Moreover, the increased anti-cancer efficacy of aspirin combined with ABT-737 was further validated in a human lung cancer A549 xenograft model. We hope that this synergy may contribute to failure of aspirin cancer therapy and ultimately lead to efficacious regimens for cancer therapy. PMID:25388762

  16. PI3K pathway dependencies in endometrioid endometrial cancer cell lines.

    PubMed

    Weigelt, Britta; Warne, Patricia H; Lambros, Maryou B; Reis-Filho, Jorge S; Downward, Julian

    2013-07-01

    Endometrioid endometrial cancers (EEC) frequently harbor coexisting mutations in phosphoinositide 3-kinase (PI3K) pathway genes, including PTEN, PIK3CA, PIK3R1, and KRAS. We sought to define the genetic determinants of PI3K pathway inhibitor response in EEC cells, and whether PTEN-mutant EEC cell lines rely on p110β signaling for survival. Twenty-four human EEC cell lines were characterized for their mutation profile and activation state of PI3K and mitogen-activated protein kinase (MAPK) signaling pathway proteins. Cells were treated with pan-class I PI3K, p110α, and p110β isoform-specific, allosteric mTOR, mTOR kinase, dual PI3K/mTOR, mitogen-activated protein/extracellular signal-regulated kinase (MEK), and RAF inhibitors. RNA interference (RNAi) was used to assess effects of KRAS silencing in EEC cells. EEC cell lines harboring PIK3CA and PTEN mutations were selectively sensitive to the pan-class I PI3K inhibitor GDC-0941 and allosteric mTOR inhibitor temsirolimus, respectively. Subsets of EEC cells with concurrent PIK3CA and/or PTEN and KRAS mutations were sensitive to PI3K pathway inhibition, and only 2 of 6 KRAS-mutant cell lines showed response to MEK inhibition. KRAS RNAi silencing did not induce apoptosis in KRAS-mutant EEC cells. PTEN-mutant EEC cell lines were resistant to the p110β inhibitors GSK2636771 and AZD6482, and only in combination with the p110α selective inhibitor A66 was a decrease in cell viability observed. Targeted pan-PI3K and mTOR inhibition in EEC cells may be most effective in PIK3CA- and PTEN-mutant tumors, respectively, even in a subset of EECs concurrently harboring KRAS mutations. Inhibition of p110β alone may not be sufficient to sensitize PTEN-mutant EEC cells and combination with other targeted agents may be required. ©2013 AACR.

  17. Recolonization of laser-ablated bacterial biofilm.

    PubMed

    Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo

    2004-01-20

    The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.

  18. Isolation of marine fungi Aspergillus sp. and its in vitro antifouling activity against marine bacteria.

    PubMed

    Thiyagarajan, Santhananmari; Bavya, Manoharan; Jamal, Alruwaili

    2016-09-01

    Biofouling is considered as a main issue of concern in aquatic environment causing severe economic loss and pollution. The aim of the present study was to isolate marine fungus antagonistic to biofouling bacteria and to define antifouling compounds present in it. Using standard plate method five predominant biofouling bacteria viz., Methylococcus sp., Flavobacterium sp., Marinococcus sp., Serratia sp. and Pseudomonas sp. were isolated from marine solid substances on Zobell's agar. Tolerance range of these bacteria to NaCl was 2-10%. Isolation of fungi from mangrove and estuarine sediments and their screening identified Aspergillus sp. EF4 as a potential isolate. This isolate caused inhibition of all the five test bacterial cultures measuring zone diameters respectively of 11, 16, 12, 13 and 11mm.? Subsequent to submerged fermentation using shaking flask method this fungus produced bioactive compounds within 5 days. The culture parameters optimized were raffinose as carbon source, yeast extract as lone nitrogen source, pH up to 9.0 and temperature up to 40?C. Antifouling compounds of culture filtrate were separated and detected by a three-step procedure involving thin layer chromatography, bioautography and preparative TLC. The in vitro assay involving glass slide-wooden stick-biofilm method revealed that these compounds could cause inhibition and destruction of bacteria to an extent of 2.16 x 104 CFU ml-1 and 2.46 x 104 CFU ml-1 respectively while growth of bacteria in control beaker was enumerated to be 4.41 x 104 CFU ml-1. High performance liquid chromatography of culture filtrate indicated probable principal antifouling compound as Fumonisin B2. Isolation of antagonistic marine fungus from Indian coast and detection of its antifouling compound would help in planning effective strategies for controlling biofouling in marine environment.

  19. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer.

    PubMed

    De Marco, Carmela; Laudanna, Carmelo; Rinaldo, Nicola; Oliveira, Duarte Mendes; Ravo, Maria; Weisz, Alessandro; Ceccarelli, Michele; Caira, Elvira; Rizzuto, Antonia; Zoppoli, Pietro; Malanga, Donatella; Viglietto, Giuseppe

    2017-01-01

    Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant Bio

  20. Hotspot mutation panel testing reveals clonal evolution in a study of 265 paired primary and metastatic tumors.

    PubMed

    Goswami, Rashmi S; Patel, Keyur P; Singh, Rajesh R; Meric-Bernstam, Funda; Kopetz, E Scott; Subbiah, Vivek; Alvarez, Ricardo H; Davies, Michael A; Jabbar, Kausar J; Roy-Chowdhuri, Sinchita; Lazar, Alexander J; Medeiros, L Jeffrey; Broaddus, Russell R; Luthra, Rajyalakshmi; Routbort, Mark J

    2015-06-01

    We used a clinical next-generation sequencing (NGS) hotspot mutation panel to investigate clonal evolution in paired primary and metastatic tumors. A total of 265 primary and metastatic tumor pairs were sequenced using a 46-gene cancer mutation panel capable of detecting one or more single-nucleotide variants as well as small insertions/deletions. Mutations were tabulated together with tumor type and percentage, mutational variant frequency, time interval between onset of primary tumor and metastasis, and neoadjuvant therapy status. Of note, 227 of 265 (85.7%) tumor metastasis pairs showed identical mutation calls. Of the tumor pairs with identical mutation calls, 160 (60.4%) possessed defining somatic mutation signatures and 67 (25.3%) did not exhibit any somatic mutations. There were 38 (14.3%) cases that showed at least one novel mutation call between the primary and metastasis. Metastases were almost two times more likely to show novel mutations (n = 20, 7.5%) than primary tumors (n = 12, 4.5%). TP53 was the most common additionally mutated gene in metastatic lesions, followed by PIK3CA and SMAD4. PIK3CA mutations were more often associated with metastasis in colon carcinoma samples. Clinical NGS hotspot panels can be useful in analyzing clonal evolution within tumors as well as in determining subclonal mutations that can expand in future metastases. PIK3CA, SMAD4, and TP53 are most often involved in clonal divergence, providing potential targets that may help guide the clinical management of tumor progression or metastases. ©2015 American Association for Cancer Research.

  1. Hot spot mutations in Finnish non-small cell lung cancers.

    PubMed

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Mutation profiles in early-stage lung squamous cell carcinoma with clinical follow-up and correlation with markers of immune function.

    PubMed

    Choi, M; Kadara, H; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Kim, K; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Herbst, R S; Wistuba, I I

    2017-01-01

    Lung squamous cell carcinoma (LUSC) accounts for 20–30% of non-small cell lung cancers (NSCLCs). There are limited treatment strategies for LUSC in part due to our inadequate understanding of the molecular underpinnings of the disease. We performed whole-exome sequencing (WES) and comprehensive immune profiling of a unique set of clinically annotated early-stage LUSCs to increase our understanding of the pathobiology of this malignancy. Matched pairs of surgically resected stage I-III LUSCs and normal lung tissues (n = 108) were analyzed by WES. Immunohistochemistry and image analysis-based profiling of 10 immune markers were done on a subset of LUSCs (n = 91). Associations among mutations, immune markers and clinicopathological variables were statistically examined using analysis of variance and Fisher’s exact test. Cox proportional hazards regression models were used for statistical analysis of clinical outcome. This early-stage LUSC cohort displayed an average of 209 exonic mutations per tumor. Fourteen genes exhibited significant enrichment for somatic mutation: TP53, MLL2, PIK3CA, NFE2L2, CDH8, KEAP1, PTEN, ADCY8, PTPRT, CALCR, GRM8, FBXW7, RB1 and CDKN2A. Among mutated genes associated with poor recurrence-free survival, MLL2 mutations predicted poor prognosis in both TP53 mutant and wild-type LUSCs. We also found that in treated patients, FBXW7 and KEAP1 mutations were associated with poor response to adjuvant therapy, particularly in TP53-mutant tumors. Analysis of mutations with immune markers revealed that ADCY8 and PIK3CA mutations were associated with markedly decreased tumoral PD-L1 expression, LUSCs with PIK3CA mutations exhibited elevated CD45ro levels and CDKN2A-mutant tumors displayed an up-regulated immune response. Our findings pinpoint mutated genes that may impact clinical outcome as well as personalized strategies for targeted immunotherapies in early-stage LUSC.

  3. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck.

    PubMed

    Kim, Jun-Mo; Lim, Kyu-Sang; Byun, Mijeong; Lee, Kyung-Tai; Yang, Young-Rok; Park, Mina; Lim, Dajeong; Chai, Han-Ha; Bang, Han-Tae; Hwangbo, Jong; Choi, Yang-Ho; Cho, Yong-Min; Park, Jong-Eun

    2017-11-01

    White Pekin duck is an important meat resource in the livestock industries. However, the temperature increase due to global warming has become a serious environmental factor in duck production, because of hyperthermia. Therefore, identifying the gene regulations and understanding the molecular mechanism for adaptation to the warmer environment will provide insightful information on the acclimation system of ducks. This study examined transcriptomic responses to heat stress treatments (3 and 6 h at 35 °C) and control (C, 25 °C) using RNA-sequencing analysis of genes from the breast muscle tissue. Based on three distinct differentially expressed gene (DEG) sets (3H/C, 6H/C, and 6H/3H), the expression patterns of significant DEGs (absolute log2 > 1.0 and false discovery rate < 0.05) were clustered into three responsive gene groups divided into upregulated and downregulated genes. Next, we analyzed the clusters that showed relatively higher expression levels in 3H/C and lower levels in 6H/C with much lower or opposite levels in 6H/3H; we referred to these clusters as the adaptable responsive gene group. These genes were significantly enriched in the ErbB signaling pathway, neuroactive ligand-receptor interaction and type II diabetes mellitus in the KEGG pathways (P < 0.01). From the functional enrichment analysis and significantly regulated genes observed in the enriched pathways, we think that the adaptable responsive genes are responsible for the acclimation mechanism of ducks and suggest that the regulation of phosphoinositide 3-kinase genes including PIK3R6, PIK3R5, and PIK3C2B has an important relationship with the mechanisms of adaptation to heat stress in ducks.

  4. Pre-trial inter-laboratory analytical validation of the FOCUS4 personalised therapy trial.

    PubMed

    Richman, Susan D; Adams, Richard; Quirke, Phil; Butler, Rachel; Hemmings, Gemma; Chambers, Phil; Roberts, Helen; James, Michelle D; Wozniak, Sue; Bathia, Riya; Pugh, Cheryl; Maughan, Timothy; Jasani, Bharat

    2016-01-01

    Molecular characterisation of tumours is increasing personalisation of cancer therapy, tailored to an individual and their cancer. FOCUS4 is a molecularly stratified clinical trial for patients with advanced colorectal cancer. During an initial 16-week period of standard first-line chemotherapy, tumour tissue will undergo several molecular assays, with the results used for cohort allocation, then randomisation. Laboratories in Leeds and Cardiff will perform the molecular testing. The results of a rigorous pre-trial inter-laboratory analytical validation are presented and discussed. Wales Cancer Bank supplied FFPE tumour blocks from 97 mCRC patients with consent for use in further research. Both laboratories processed each sample according to an agreed definitive FOCUS4 laboratory protocol, reporting results directly to the MRC Trial Management Group for independent cross-referencing. Pyrosequencing analysis of mutation status at KRAS codons12/13/61/146, NRAS codons12/13/61, BRAF codon600 and PIK3CA codons542/545/546/1047, generated highly concordant results. Two samples gave discrepant results; in one a PIK3CA mutation was detected only in Leeds, and in the other, a PIK3CA mutation was only detected in Cardiff. pTEN and mismatch repair (MMR) protein expression was assessed by immunohistochemistry (IHC) resulting in 6/97 discordant results for pTEN and 5/388 for MMR, resolved upon joint review. Tumour heterogeneity was likely responsible for pyrosequencing discrepancies. The presence of signet-ring cells, necrosis, mucin, edge-effects and over-counterstaining influenced IHC discrepancies. Pre-trial assay analytical validation is essential to ensure appropriate selection of patients for targeted therapies. This is feasible for both mutation testing and immunohistochemical assays and must be built into the workup of such trials. ISRCTN90061564. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  5. Use of molecular markers in identification and characterization of resistance to rice blast in India.

    PubMed

    Yadav, Manoj Kumar; S, Aravindan; Ngangkham, Umakanta; Shubudhi, H N; Bag, Manas Kumar; Adak, Totan; Munda, Sushmita; Samantaray, Sanghamitra; Jena, Mayabini

    2017-01-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most destructive disease causing huge losses to rice yield in different parts of the world. Therefore, an attempt has been made to find out the resistance by screening and studying the genetic diversity of eighty released rice varieties by National Rice Research Institute, Cuttack (NRVs) using molecular markers linked to twelve major blast resistance (R) genes viz Pib, Piz, Piz-t, Pik, Pik-p, Pikm Pik-h, Pita/Pita-2, Pi2, Pi9, Pi1 and Pi5. Out of which, nineteen varieties (23.75%) showed resistance, twenty one were moderately resistant (26.25%) while remaining forty varieties (50%) showed susceptible in uniform blast nursery. Rice varieties possessing blast resistance genes varied from four to twelve and the frequencies of the resistance genes ranged from 0 to 100%. The cluster analysis grouped the eighty NRVs into two major clusters at 63% level of genetic similarity coefficient. The PIC value for seventeen markers varied from 0 to 0.37 at an average of 0.20. Out of seventeen markers, only five markers, 195R-1, Pi9-i, Pita3, YL155/YL87 and 40N23r corresponded to three broad spectrum R genes viz. Pi9, Pita/Pita2 and Pi5 were found to be significantly associated with the blast disease with explaining phenotypic variance from 3.5% to 7.7%. The population structure analysis and PCoA divided the entire 80 NRVs into two sub-groups. The outcome of this study would help to formulate strategies for improving rice blast resistance through genetic studies, plant-pathogen interaction, identification of novel R genes, development of new resistant varieties through marker-assisted breeding for improving rice blast resistance in India and worldwide.

  6. Analysis of molecular markers as predictive factors of lymph node involvement in breast carcinoma.

    PubMed

    Paula, Luciana Marques; De Moraes, Luis Henrique Ferreira; Do Canto, Abaeté Leite; Dos Santos, Laurita; Martin, Airton Abrahão; Rogatto, Silvia Regina; De Azevedo Canevari, Renata

    2017-01-01

    Nodal status is the most significant independent prognostic factor in breast cancer. Identification of molecular markers would allow stratification of patients who require surgical assessment of lymph nodes from the large numbers of patients for whom this surgical procedure is unnecessary, thus leading to a more accurate prognosis. However, up to now, the reported studies are preliminary and controversial, and although hundreds of markers have been assessed, few of them have been used in clinical practice for treatment or prognosis in breast cancer. The purpose of the present study was to determine whether protein phosphatase Mg2+/Mn2+ dependent 1D, β-1,3-N-acetylglucosaminyltransferase, neural precursor cell expressed, developmentally down-regulated 9, prohibitin, phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5), phosphatidylinositol-5-phosphate 4-kinase type IIα, TRF1-interacting ankyrin-related ADP-ribose polymerase 2, BCL2 associated agonist of cell death, G2 and S-phase expressed 1 and PAX interacting protein 1 genes, described as prognostic markers in breast cancer in a previous microarray study, are also predictors of lymph node involvement in breast carcinoma Reverse transcription-quantitative polymerase chain reaction analysis was performed on primary breast tumor tissues from women with negative lymph node involvement (n=27) compared with primary tumor tissues from women with positive lymph node involvement (n=23), and was also performed on primary tumors and paired lymph node metastases (n=11). For all genes analyzed, only the PIK3R5 gene exhibited differential expression in samples of primary tumors with positive lymph node involvement compared with primary tumors with negative lymph node involvement (P=0.0347). These results demonstrate that the PIK3R5 gene may be considered predictive of lymph node involvement in breast carcinoma. Although the other genes evaluated in the present study have been previously characterized to be involved with

  7. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy.

    PubMed

    Ali, Siraj M; Yao, Ming; Yao, Jicheng; Wang, Jing; Cheng, Yuwei; Schrock, Alexa B; Chirn, Gung-Wei; Chen, Hui; Mu, Shuo; Gay, Laurie; Elvin, Julia A; Suh, James; Miller, Vincent A; Stephens, Philip J; Ross, Jeffrey S; Wang, Kai

    2017-09-15

    To date, no targeted therapy has been approved for nasopharyngeal carcinoma (NPC), and this underscores the need for an in-depth understanding of clinically relevant genomic alterations (CRGAs). Comprehensive genomic profiling was performed for 190 NPC patients, including 20 patients with nasopharyngeal adenocarcinoma (NPAC), 62 patients with nasopharyngeal squamous cell carcinoma (NPSCC), and 108 patients with nasopharyngeal undifferentiated carcinoma (NPUC). The associations of genes and pathways with subtypes, Epstein-Barr virus (EBV) infections, and the tumor mutation burden (TMB) were statistically evaluated. Although the overall rates of genomic alterations were similar, the 3 NPC subtypes exhibited different mutational landscapes. Notably, mutations in a proven-treatable target gene, isocitrate dehydrogenase 2 (IDH2), were significantly associated with NPUC but not with NPAC or NPSCC. The top 5 ranked CRGAs included CDKN2A (29%), IDH2 (16%), SMARCB1 (7%), PIK3CA (6%), and NF1 (5%) in NPUC; CDKN2A (27%), PIK3CA (23%), FBXW7 (11%), PTEN (11%), and EGFR (8%) in NPSCC; and CDKN2A (20%), KRAS (15%), CCND1 (10%), MAP3K1 (10%), and NOTCH1 (10%) in NPAC. The incidence of EBV infections significantly correlated with the subtypes and with TP53, CDKN2A, and CDKN2B. The TMB status correlated with the subtypes and with LRP1B, FBXW7, and PIK3CA mutations as well as DNA repair, phosphoinositide 3-kinase/mammalian target of rapamycin, and mitogen-activated protein kinase pathways. These results indicate that different NPC subtypes harbor different CRGAs. Both EBV infections and the TMB are associated with the NPC subtypes as well as the alterations of individual genes and pathways. The high frequency of IDH2 mutations in NPUC may facilitate potential targeted therapy and will ultimately point to new therapeutic strategies. Cancer 2017;123:3628-37. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. Four MicroRNAs Promote Prostate Cell Proliferation with Regulation of PTEN and Its Downstream Signals In Vitro

    PubMed Central

    Xue, Jing-lun; Chen, Jin-zhong

    2013-01-01

    Background Phosphatase and tensin homologue (PTEN), as a tumor suppressor, plays vital roles in tumorigenesis and progression of prostate cancer. However, the mechanisms of PTEN regulation still need further investigation. We here report that a combination of four microRNAs (miR-19b, miR-23b, miR-26a and miR-92a) promotes prostate cell proliferation by regulating PTEN and its downstream signals in vitro. Methodology/Principal Findings We found that the four microRNAs (miRNAs) could effectively suppress PTEN expression by directly interacting with its 3’ UTR in prostate epithelial and cancer cells. Under-expression of the four miRNAs by antisense neutralization up-regulates PTEN expression, while overexpression of the four miRNAs accelerates epithelial and prostate cancer cell proliferation. Furthermore, the expression of the four miRNAs could, singly or jointly, alter the expression of the key components in the phosphoinositide 3-kinase (PI3K)/Akt pathway, including PIK3CA, PIK3CD, PIK3R1 and Akt, along with their downstream signal, cyclin D1. Conclusions These results suggested that the four miRNAs could promote prostate cancer cell proliferation by co-regulating the expression of PTEN, PI3K/Akt pathway and cyclin D1 in vitro. These findings increase understanding of the molecular mechanisms of prostate carcinogenesis and progression, even provide valuable insights into the diagnosis, prognosis, and rational design of novel therapeutics for prostate cancer. PMID:24098737

  9. Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts

    PubMed Central

    Ramakrishnan, Swathi; Elbanna, May; Wang, Jianmin; Hu, Qiang; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Gomez, Eduardo Cortes; Sun, Yuchen; Conroy, Jacob; Miles, Kiersten Marie; Malathi, Kullappan; Ramaiah, Sudha; Anbarasu, Anand; Woloszynska-Read, Anna; Johnson, Candace S.; Conroy, Jeffrey; Liu, Song; Morrison, Carl D.; Pili, Roberto

    2016-01-01

    Purpose Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. Experimental design We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interference. Results We identified a number of somatic mutations, mostly shared by the primary tumors and PDX. In particular, BLCAb001, which is less responsive to cisplatin than BLCAb002, carried non-sense mutations in several genes associated with cisplatin resistance, including MLH1, BRCA2, and CASP8. Furthermore, RNA-Seq analysis revealed the overexpression of cisplatin resistance associated genes such as SLC7A11, TLE4, and IL1A in BLCAb001. Two different PIK3CA mutations, E542K and E545K, were identified in BLCAb001 and BLCAb002, respectively. Thus, we tested whether the genomic profiling was predictive of response to a dual PI3K/mTOR targeting agent, LY3023414. Despite harboring similar PIK3CA mutations, BLCAb001 and BLCAb002 exhibited differential response, both in vitro and in vivo. Sustained target modulation was observed in the sensitive model BLCAb002 but not in BLCAb001, as well as decreased autophagy. Interestingly, computational modelling of mutant structures and affinity binding to PI3K revealed that E542K mutation was associated with weaker drug binding than E545K. Conclusions Our results suggest that the presence of activating PIK3CA mutations may not necessarily predict in vivo treatment response to PI3K targeted therapies, while specific gene alterations may be predictive for cisplatin response in bladder cancer models and, potentially, in patients as well. PMID:27823983

  10. Mutation Spectra of Common Cancer-Associated Genes in Different Phenotypes of Colorectal Carcinoma Without Distant Metastasis.

    PubMed

    Chang, Shih-Ching; Lin, Pei-Ching; Lin, Jen-Kou; Lin, Chien-Hsing; Yang, Shung-Haur; Liang, Wen-Yi; Chen, Wei-Shone; Jiang, Jeng-Kai

    2016-03-01

    Colorectal cancer (CRC) is a heterogeneous disease caused by genetic and epigenetic alterations. This study aimed to describe the mutation frequency of 12 genes in different CRC phenotypes. Patients who underwent surgery at the Taipei Veterans General Hospital during 2000-2010 for CRC (n = 1249) were enrolled. The endpoint was overall survival. The prognostic value was determined with the log-rank test and Cox regression analysis. We found 1836 mutations of 12 genes in 997 (79.8%) tumors. Mutations were most frequently in KRAS (485, 38.8%), TP53 (373, 29.9%), APC (363, 29.0%), and PIK3CA (179, 14.3%); 137 (11.0%) cancers had high microsatellite instability (MSI). Women had significantly higher high MSI (14.3%) and BRAF mutation (6.3%) frequencies. The abnormal MSI (21.7%) and KRAS (44.6%), BRAF (8.6%), PIK3CA (19.4%), AKT1 (2.2%), and TGF - βR (9.6%) mutation frequencies were significantly higher in proximal colon cancer. The high MSI (35.6%) and BRAF (20.3%), TGF - βR (18.6%), PTEN (5.1%), and AKT1 (3.4%) mutation frequencies were significantly higher in 59 (4.7%) poorly differentiated tumors. The high MSI (21.3%) and KRAS (51.9%), BRAF (8.3%), PIK3CA (25.0%), AKT1 (4.6%), and SMAD4 (8.3%) mutation frequencies were significantly higher in 108 mucinous tumors. TNM stage, lymphovascular invasion, and mucinous histology were significantly associated with patient outcomes in univariate and multivariate analyses. Only NRAS mutation (hazard ratio 1.59, 95% confidence interval 1.06-2.38) affected patient survival. Mutational spectra differ significantly between CRC subtypes, implying diverse carcinogenetic pathways. The NRAS mutation is important, despite its low frequency.

  11. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway.

    PubMed

    Zhang, L-H; Yin, A-A; Cheng, J-X; Huang, H-Y; Li, X-M; Zhang, Y-Q; Han, N; Zhang, X

    2015-01-29

    The tripartite motif protein TRIM24 (tripartite motif-containing 24) has been found to play distinct roles in tumor development and progression, according to different tumor contexts. However, it remains elusive whether TRIM24 plays a role in malignant gliomas that are the most common and deadly primary brain tumors in adults. We report here that TRIM24 expression is positively correlated with glioma malignancy and is negatively associated with prognosis of patients with newly diagnosed glioblastoma, which is the most malignant form of gliomas but displays highly heterogeneous clinical outcome. The multivariate Cox regression analysis demonstrates the independent predictive value of TRIM24 expression level for overall and progression-free survival. Knockdown of TRIM24 suppresses cell proliferation, cell cycle progression, clone formation and in vivo tumor development, whereas overexpression of TRIM24 promotes cell growth. Chromatin immunoprecipitation, real-time reverse transcription-PCR and mutation analyses demonstrate that TRIM24 binds to the PIK3CA promoter via its PHD-Bromo domain to activate the transcription of PIK3CA gene, thus enhancing phosphatidylinositide 3-kinase (PI3K)/Akt signaling. The pan-PI3K inhibitor LY294002 and small interfering RNA targeting PIK3CA both abrogate the growth-promoting effect of TRIM24. Moreover, TRIM24 regulates the expression of DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) through PI3K/Akt/nuclear factor-κB signaling transduction and enhances resistance to temozolomide, the standard chemotherapeutic agent for glioblastoma. Finally, glioblastoma patients with low TRIM24 expression benefit from chemotherapy, whereas those with high TRIM24 expression do not have such benefit. Our results suggest that TRIM24 might serve as a potential prognostic marker and therapeutic target for the management of malignant gliomas.

  12. Colorectal cancer cell-derived exosomes containing miR-10b regulate fibroblast cells via the PI3K/Akt pathway.

    PubMed

    Dai, Guangyao; Yao, Xiaoguang; Zhang, Yubin; Gu, Jianbin; Geng, Yunfeng; Xue, Fei; Zhang, Jingcheng

    2018-04-01

    Cancer-associated fibroblasts (CAFs) contribute to the proliferation of colorectal cancer(CRC) cells. However, the mechanism by which CAFs develop in the tumor microenvironment remains unknown. Exosomes may be involved in activating CAFs. Using a miRNA expression profiling array, we determined the miRNA expression profile of secretory exosomes in CRC cells and then identified potential miRNAs with significant differential expression compared to normal cells via enrichment analysis. Predicted targets of candidate miRNAs were then assessed via bioinformatics analysis. Realtime qPCR, western blot, and cell cycle analyses were performed to evaluate the role of candidate exosomal miRNAs. Luciferase reporter assays were applied to confirm whether candidate exosomal miRNAs control target pathway expression. A CRC xenograft mouse model was constructed to evaluate tumor growth in vivo. Exosomes from CRC cells contained significantly higher levels of miR-10b than did exosomes from normal colorectal epithelial cells. Moreover, exosomes containing miR-10b were transferred to fibroblasts. Bioinformatics analysis identified PIK3CA, as a potential target of miR-10b. Luciferase reporter assays confirmed that miR-10b directly inhibited PIK3CA expression. Co-culturing fibroblasts with exosomes containing miR-10b significantly suppressed PIK3CA expression and decreased PI3K/Akt/mTOR pathway activity. Finally, exosomes containing miR-10b reduced fibroblast proliferation but promoted expression of TGF-β and SM α-actin, suggesting that exosomal miR-10b may activate fibroblasts to become CAFs that express myofibroblast markers. These activated fibroblasts were able to promote CRC growth in vitro and in vivo. CRC-derived exosomes actively promote disease progression by modulating surrounding stromal cells, which subsequently acquire features of CAFs. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  13. Polyketide intermediate mimics as probes for revealing cryptic stereochemistry of ketoreductase domains.

    PubMed

    Li, Yang; Fiers, William D; Bernard, Steffen M; Smith, Janet L; Aldrich, Courtney C; Fecik, Robert A

    2014-12-19

    Among natural product families, polyketides have shown the most promise for combinatorial biosynthesis of natural product-like libraries. Though recent research in the area has provided many mechanistic revelations, a basic-level understanding of kinetic and substrate tolerability is still needed before the full potential of combinatorial biosynthesis can be realized. We have developed a novel set of chemical probes for the study of ketoreductase domains of polyketide synthases. This chemical tool-based approach was validated using the ketoreductase of pikromycin module 2 (PikKR2) as a model system. Triketide substrate mimics 12 and 13 were designed to increase stability (incorporating a nonhydrolyzable thioether linkage) and minimize nonessential functionality (truncating the phosphopantetheinyl arm). PikKR2 reduction product identities as well as steady-state kinetic parameters were determined by a combination of LC-MS/MS analysis of synthetic standards and a NADPH consumption assay. The d-hydroxyl product is consistent with bioinformatic analysis and results from a complementary biochemical and molecular biological approach. When compared to widely employed substrates in previous studies, diketide 63 and trans-decalone 64, substrates 12 and 13 showed 2-10 fold lower K(M) values (2.4 ± 0.8 and 7.8 ± 2.7 mM, respectively), indicating molecular recognition of intermediate-like substrates. Due to an abundance of the nonreducable enol-tautomer, the k(cat) values were attenuated by as much as 15-336 fold relative to known substrates. This study reveals the high stereoselectivity of PikKR2 in the face of gross substrate permutation, highlighting the utility of a chemical probe-based approach in the study of polyketide ketoreductases.

  14. Comprehensive molecular screening by next generation sequencing reveals a distinctive mutational profile of KIT/PDGFRA genes and novel genomic alterations: results from a 20-year cohort of patients with GIST from north-western Greece.

    PubMed

    Mavroeidis, Leonidas; Metaxa-Mariatou, Vassiliki; Papoudou-Bai, Alexandra; Lampraki, Angeliki Maria; Kostadima, Lida; Tsinokou, Ilias; Zarkavelis, George; Papadaki, Alexandra; Petrakis, Dimitrios; Gκoura, Stefania; Kampletsas, Eleftherios; Nasioulas, George; Batistatou, Anna; Pentheroudakis, George

    2018-01-01

    Gastrointestinal stromal tumours (GIST) are mesenchymal neoplasms that usually carry an activating mutation in KIT or platelet-derived growth factor receptor alpha ( PDGFRA ) genes with predictive and prognostic significance. We investigated the extended mutational status of GIST in a patient population of north-western Greece in order to look at geopraphic/genotypic distinctive traits. Clinicopathological and molecular data of 38 patients diagnosed from 1996 to 2016 with GIST in the region of Epirus in Greece were retrospectively assessed. Formalin-fixed paraffin-embedded tumours were successfully analysed for mutations in 54 genes with oncogenic potential. Next generation sequencing was conducted by using the Ion AmpliSeqCancer Hotspot Panel V.2 for DNA analysis (Thermofisher Scientific). Among 38 tumours, 24 (63.16%) and seven (18.42%) of the tumours harboured mutations in the KIT and PDGFRA genes, respectively, while seven (18.42%) tumours were negative for either KIT or PDGFRA mutation. No mutations were detected in five (13.16%) cases. Concomitant mutations of BRAF and fibroblast growth factor receptor 3 ( FGFR3 ) genes were observed in two patients with KIT gene mutation. Two patients with KIT / PDGFRA wild-type GIST had mutations in either KRAS or phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) genes. There was no significant survival difference regarding the exonic site of mutation in either KIT or PDGFRA gene. The presence of a mutation in pathway effectors downstream of KIT or PDGFRA , such as BRAF , KRAS or PIK3CA , was associated with poor prognosis. Adverse prognosticators were also high mitotic index and the advanced disease status at diagnosis. We report comparable incidence of KIT and PDGFRA mutation in patients with GIST from north-western Greece as compared with cohorts from other regions. Interestingly, we identified rare mutations on RAS , BRAF and PIK3CA genes in patients with poor prognosis.

  15. Synergistic Effects of Targeted PI3K Signaling Inhibition and Chemotherapy in Liposarcoma

    PubMed Central

    Guo, Shang; Lopez-Marquez, Hector; Fan, Kenneth C.; Choy, Edwin; Cote, Gregory; Harmon, David; Nielsen, G. Petur; Yang, Cao; Zhang, Changqing; Mankin, Henry; Hornicek, Francis J.; Borger, Darrell R.; Duan, Zhenfeng

    2014-01-01

    While liposarcoma is the second most common soft tissue malignant tumor, the molecular pathogenesis in this malignancy is poorly understood. Our goal was therefore to expand the understanding of molecular mechanisms that drive liposarcoma and identify therapeutically-susceptible genetic alterations. We studied a cohort of high-grade liposarcomas and benign lipomas across multiple disease sites, as well as two liposarcoma cell lines, using multiplexed mutational analysis. Nucleic acids extracted from diagnostic patient tissue were simultaneously interrogated for 150 common mutations across 15 essential cancer genes using a clinically-validated platform for cancer genotyping. Western blot analysis was implemented to detect activation of downstream pathways. Liposarcoma cell lines were used to determine the effects of PI3K targeted drug treatment with or without chemotherapy. We identified mutations in the PIK3CA gene in 4 of 18 human liposarcoma patients (22%). No PIK3CA mutations were identified in benign lipomas. Western blot analysis confirmed downstream activation of AKT in both PIK3CA mutant and non-mutant liposarcoma samples. PI-103, a dual PI3K/mTOR inhibitor, effectively inhibited the activation of the PI3K/AKT in liposarcoma cell lines and induced apoptosis. Importantly, combination with PI-103 treatment strongly synergized the growth-inhibitory effects of the chemotherapy drugs doxorubicin and cisplatin in liposarcoma cells. Taken together, these findings suggest that activation of the PI3K/AKT pathway is an important cancer mechanism in liposarcoma. Targeting the PI3K/AKT/pathway with small molecule inhibitors in combination with chemotherapy could be exploited as a novel strategy in the treatment of liposarcoma. PMID:24695632

  16. HER1 signaling mediates extravillous trophoblast differentiation in humans.

    PubMed

    Wright, J K; Dunk, C E; Amsalem, H; Maxwell, C; Keating, S; Lye, S J

    2010-12-01

    This study examines the role of HER1 signaling in the differentiation of proliferative extravillous trophoblast (EVT) into invasive EVT. Using the JAR choriocarcinoma cell line and placental villous explants as experimental models and immunohistochemical assessment of protein markers of EVT differentiation (downregulation of HER1 and Cx40 and upregulation of HER2 and alpha1 integrin), we show that the ability of decidual conditioned medium (DCM) to induce HER1/2 switching was abrogated in the presence of the HER1 antagonist, AG1478. Similarly, epidermal growth factor (EGF) treatment resulted in the downregulation of HER1 and an upregulation of HER2 expression, whereas co-incubation of EGF with AG1478 inhibited this response. However, EGF did not downregulate Cx40 or induce migration of EVT. In contrast, heparin-binding epidermal-like growth factor (HBEGF) stimulated dose-dependent JAR cell migration, which was inhibited by both AG1478 and AG825 (HER2 antagonist). Western blot analysis of HER1 activation demonstrated that HBEGF-mediated phosphorylation of the HER1 Tyr992 and Tyr1068 sites, while EGF activated the Tyr1045 site. Moreover, HBEGF induced a stronger and more sustained activation of both the mitogen-activated protein kinase and phosphoinositol 3 kinase (PIK3) signaling pathways. Migration assays using a panel of signaling pathway inhibitors demonstrated that the HBEGF-mediated migration was dependent on the PIK3 pathway. These results demonstrate that HBEGF-mediated HER1 signaling through PIK3 is an important component of EVT invasion.

  17. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer.

    PubMed

    Kang, Melissa; Shen, Xiang J; Kim, Sangmi; Araujo-Perez, Felix; Galanko, Joseph A; Martin, Chris F; Sandler, Robert S; Keku, Temitope O

    2013-01-01

    African Americans have worse outcomes in colorectal cancer (CRC) than Caucasians. We sought to determine if KRAS, BRAF and PIK3CA mutations might contribute to the racial differences in CRC outcome. DNA was extracted from tissue microarrays made from CRC samples from 67 African Americans and 237 Caucasians. Mutations in KRAS, BRAF, and PIK3CA were evaluated by PCR sequencing. We also examined microsatellite instability (MSI) status. Associations of mutation status with tumor stage and grade were examined using a logistic regression model. Cox proportional hazards models were used to estimate the all-cause mortality associated with mutational status, race and other clinicopathologic features. KRAS mutations were more common in African Americans than among Caucasians (37% vs 21%, p=0.01) and were associated with advanced stage (unadjusted odds ratio (OR)=3.31, 95% confidence interval (CI) 1.03-10.61) and grade (unadjusted OR=5.60, 95% CI 1.01-31.95) among African Americans. Presence of BRAF mutations was also positively associated with advanced tumor stage (adjusted OR=3.99, 95%CI 1.43-11.12) and grade (adjusted OR=3.93, 95%CI 1.05-14.69). PIK3CA mutations showed a trend toward an association with an increased risk of death compared to absence of those mutations (adjusted for age, sex and CRC site HR=1.89, 95% CI 0.98-3.65). Among African Americans, the association was more evident (adjusted for age, sex and CRC site HR=3.92, 95% CI 1.03-14.93) and remained significant after adjustment for MSI-H status and combined education-income level, with HR of 12.22 (95%CI 1.32-121.38). Our results suggest that African Americans may have different frequencies of somatic genetic alterations that may partially explain the worse prognosis among African Americans with CRC compared to whites.

  18. Clinicopathogenomic analysis of mismatch repair proficient colorectal adenocarcinoma uncovers novel prognostic subgroups with differing patterns of genetic evolution.

    PubMed

    Braxton, David R; Zhang, Ray; Morrissette, Jennifer D; Loaiza-Bonilla, Arturo; Furth, Emma E

    2016-10-01

    Cancer somatic genetic evolution is a direct contributor to heterogeneity at the clonal and molecular level in colorectal adenocarcinoma (COAD). We sought to determine the extent to which genetic evolution may be detected in COAD in routinely obtained single clinical specimens and establish clinical significance with regard to clinicopathologic and outcome data. One hundred and twenty three cases of routinely collected mismatch repair proficient COAD were sequenced on the Illumina Truseq Amplicon assay. Measures of intratumoral heterogeneity and the preferential timing of mutational events were assessed and compared to clinicopathologic data. Survival subanalysis was performed on 55 patients. Patient age (p = 0.013) and specimen percent tumor (p = 0.033) was associated with clonal diversity, and biopsy (p = 0.044) and metastasis (p = 0.044) returned fewer mutations per case. APC and TP53 mutations preferentially occurred early while alterations in FBXW7, FLT3, SMAD4, GNAS and PTEN preferentially occurred as late events. Temporal heterogeneity was evident in KRAS and PIK3CA mutations. Hierarchical clustering revealed a TP53 mutant subtype and a MAPK-PIK3CA subtype with differing patterns of late mutational events. Survival subanalysis showed a decreased median progression free survival for the MAPK-PIK3CA subtype (8 months vs. 13 months; univariate logrank p = 0.0380, cox model p= 0.018). Neoadjuvant therapy associated mutations were found for ERBB2 (p = 0.0481) and FBXW7 (p = 0.015). Our data indicate novel molecular subtypes of mismatch repair proficient COAD display differing patterns of genetic evolution which correlate with clinical outcomes. Furthermore, we report treatment acquired and/or selected mutations in ERBB2 and FBXW7. © 2016 UICC.

  19. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury

    PubMed Central

    Zahs, Anita; Bird, Melanie D.; Ramirez, Luis; Turner, Jerrold R.; Choudhry, Mashkoor A.

    2012-01-01

    Laboratory evidence suggests that intestinal permeability is elevated following either binge ethanol exposure or burn injury alone, and this barrier dysfunction is further perturbed when these insults are combined. We and others have previously reported a rise in both systemic and local proinflammatory cytokine production in mice after the combined insult. Knowing that long myosin light-chain kinase (MLCK) is important for epithelial barrier maintenance and can be activated by proinflammatory cytokines, we examined whether inhibition of MLCK alleviated detrimental intestinal responses seen after ethanol exposure and burn injury. To accomplish this, mice were given vehicle or a single binge ethanol exposure followed by a sham or dorsal scald burn injury. Following injury, one group of mice received membrane permeant inhibitor of MLCK (PIK). At 6 and 24 h postinjury, bacterial translocation and intestinal levels of proinflammatory cytokines were measured, and changes in tight junction protein localization and total intestinal morphology were analyzed. Elevated morphological damage, ileal IL-1β and IL-6 levels, and bacterial translocation were seen in mice exposed to ethanol and burn injury relative to either insult alone. This increase was not seen in mice receiving PIK after injury. Ethanol-exposed and burn-injured mice had reduced zonula occludens protein-1 and occludin localization to the tight junction relative to sham-injured mice. However, the observed changes in junctional complexes were not seen in our PIK-treated mice following the combined insult. These data suggest that MLCK activity may promote morphological and inflammatory responses in the ileum following ethanol exposure and burn injury. PMID:22790598

  20. Molecular profiles of benign and (pre)malignant endometrial lesions.

    PubMed

    van der Putten, Louis J M; van Hoof, Renée; Tops, Bastiaan B J; Snijders, Marc P L M; van den Berg-van Erp, Saskia H; van der Wurff, Anneke A M; Bulten, Johan; Pijnenborg, Johanna M A; Massuger, Leon F A G

    2017-03-01

    Endometrial carcinomas are histologically classified as endometrioid, assumed to originate from hyperplastic endometrium, or non-endometrioid carcinomas, assumed to originate from atrophic endometrium. However, both on a histological and a molecular level there are indications that there are more carcinoma types and carcinogenetic pathways. This study aims to analyze endometrial carcinogenesis on a molecular level. The presence of known KRAS, PIK3CA, AKT1, CTNNB1, BRAF, EGFR and NRAS mutations was studied in proliferative, atrophic and hyperplastic endometrium, endometrioid and serous carcinomas, and the endometrium next to these carcinomas, using single molecule Molecular Inversion Probes. Mutations were found in 9 (15%) of the 62 non atypical, and in 6 (18%) of the 34 atypical hyperplasia cases. In comparison, mutations were found in 1 (3%) of the simple, and 8 (30%) of the 27 complex hyperplasia cases. In 12/22 (55%) endometrioid carcinomas, a mutation was found. The KRAS gene was most often mutated in carcinomas next to hyperplastic endometrium, whereas PIK3CA and CTNNB1 mutations were found in endometrioid carcinomas with adjacent atrophic endometrium. Complex hyperplasia rather than atypical hyperplasia appears to be the most important lesion in the carcinogenesis of endometrioid carcinomas, and KRAS, PIK3CA and CTNNB1 mutations appear to play an important role in this process. Carcinogenesis of endometrioid carcinomas next to hyperplasia seems to be different to that of those next to atrophia. The value of these findings in managing endometrial hyperplasia and carcinoma should be studied. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities

    SciTech Connect

    Gilks, C. Blake; Press, Joshua Z.; De Luca, Alessandro

    2008-05-02

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteenmore » (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n=5), clear cell (n=4), or low grade serous (n=2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.« less

  2. Ovarian carcinomas with genetic and epigenetic BRCA1 loss havedistinct molecular abnormalities

    SciTech Connect

    Press, Joshua Z.; De Luca, Alessandro; Boyd, Niki

    2007-07-23

    Subclassification of ovarian carcinomas can be used to guide treatment and determine prognosis. Germline and somatic mutations, loss of heterozygosity (LOH), and epigenetic events such as promoter hypermethylation can lead to decreased expression of BRCA1/2 in ovarian cancers. The mechanism of BRCA1/2 loss is a potential method of subclassifying high grade serous carcinomas. A consecutive series of 49 ovarian cancers was assessed for mutations status of BRCA1 and BRCA2, LOH at the BRCA1 and BRCA2 loci, methylation of the BRCA1 promoter, BRCA1, BRCA2, PTEN, and PIK3CA transcript levels, PIK3CA gene copy number, and BRCA1, p21, p53, and WT-1 immunohistochemistry. Eighteenmore » (37%) of the ovarian carcinomas had germline or somatic BRCA1 mutations, or epigenetic loss of BRCA1. All of these tumors were high-grade serous or undifferentiated type. None of the endometrioid (n = 5), clear cell (n = 4), or low grade serous (n = 2) carcinomas showed loss of BRCA1, whereas 47% of the 38 high-grade serous or undifferentiated carcinomas had loss of BRCA1. It was possible to distinguish high grade serous carcinomas with BRCA1 mutations from those with epigenetic BRCA1 loss: tumors with BRCA1 mutations typically had decreased PTEN mRNA levels while those with epigenetic loss of BRCA1 had copy number gain of PIK3CA. Overexpression of p53 with loss of p21 expression occurred significantly more frequently in high grade serous carcinomas with epigenetic loss of BRCA1, compared to high grade serous tumors without loss of BRCA1. High grade serous carcinomas can be subclassified into three groups: BRCA1 loss (genetic), BRCA1 loss (epigenetic), and no BRCA1 loss. Tumors in these groups show distinct molecular alterations involving the PI3K/AKT and p53 pathways.« less

  3. Preoperative chemoradiation with capecitabine, irinotecan and cetuximab in rectal cancer: significance of pre-treatment and post-resection RAS mutations.

    PubMed

    Gollins, Simon; West, Nick; Sebag-Montefiore, David; Myint, Arthur Sun; Saunders, Mark; Susnerwala, Shabbir; Quirke, Phil; Essapen, Sharadah; Samuel, Leslie; Sizer, Bruce; Worlding, Jane; Southward, Katie; Hemmings, Gemma; Tinkler-Hundal, Emma; Taylor, Morag; Bottomley, Daniel; Chambers, Philip; Lawrie, Emma; Lopes, Andre; Beare, Sandy

    2017-10-24

    The influence of EGFR pathway mutations on cetuximab-containing rectal cancer preoperative chemoradiation (CRT) is uncertain. In a prospective phase II trial (EXCITE), patients with magnetic resonance imaging (MRI)-defined non-metastatic rectal adenocarinoma threatening/involving the surgical resection plane received pelvic radiotherapy with concurrent capecitabine, irinotecan and cetuximab. Resection was recommended 8 weeks later. The primary endpoint was histopathologically clear (R0) resection margin. Pre-planned retrospective DNA pyrosequencing (PS) and next generation sequencing (NGS) of KRAS, NRAS, PIK3CA and BRAF was performed on the pre-treatment biopsy and resected specimen. Eighty-two patients were recruited and 76 underwent surgery, with R0 resection in 67 (82%, 90%CI: 73-88%) (four patients with clinical complete response declined surgery). Twenty-four patients (30%) had an excellent clinical or pathological response (ECPR). Using NGS 24 (46%) of 52 matched biopsies/resections were discrepant: ten patients (19%) gained 13 new resection mutations compared to biopsy (12 KRAS, one PIK3CA) and 18 (35%) lost 22 mutations (15 KRAS, 7 PIK3CA). Tumours only ever testing RAS wild-type had significantly greater ECPR than tumours with either biopsy or resection RAS mutations (14/29 [48%] vs 10/51 [20%], P=0.008), with a trend towards increased overall survival (HR 0.23, 95% CI 0.05-1.03, P=0.055). This regimen was feasible and the primary study endpoint was met. For the first time using pre-operative rectal CRT, emergence of clinically important new resection mutations is described, likely reflecting intratumoural heterogeneity manifesting either as treatment-driven selective clonal expansion or a geographical biopsy sampling miss.

  4. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells.

    PubMed

    Sharma, Shailendra; Sharma, Shiveta; Hirabuchi, Akiko; Yoshida, Kentaro; Fujisaki, Koki; Ito, Akiko; Uemura, Aiko; Terauchi, Ryohei; Kamoun, Sophien; Sohn, Kee Hoon; Jones, Jonathan D G; Saitoh, Hiromasa

    2013-05-01

    Genome sequences of plant fungal pathogens have enabled the identification of effectors that cooperatively modulate the cellular environment for successful fungal growth and suppress host defense. Identification and characterization of novel effector proteins are crucial for understanding pathogen virulence and host-plant defense mechanisms. Previous reports indicate that the Pseudomonas syringae pv. tomato DC3000 type III secretion system (T3SS) can be used to study how non-bacterial effectors manipulate dicot plant cell function using the effector detector vector (pEDV) system. Here we report a pEDV-based effector delivery system in which the T3SS of Burkholderia glumae, an emerging rice pathogen, is used to translocate the AVR-Pik and AVR-Pii effectors of the fungal pathogen Magnaporthe oryzae to rice cytoplasm. The translocated AVR-Pik and AVR-Pii showed avirulence activity when tested in rice cultivars containing the cognate R genes. AVR-Pik reduced and delayed the hypersensitive response triggered by B. glumae in the non-host plant Nicotiana benthamiana, indicative of an immunosuppressive virulence activity. AVR proteins fused with fluorescent protein and nuclear localization signal were delivered by B. glumae T3SS and observed in the nuclei of infected cells in rice, wheat, barley and N. benthamiana. Our bacterial T3SS-enabled eukaryotic effector delivery and subcellular localization assays provide a useful method for identifying and studying effector functions in monocot plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician's choice in previously treated HER2-positive advanced breast cancer.

    PubMed

    Kim, Sung-Bae; Wildiers, Hans; Krop, Ian E; Smitt, Melanie; Yu, Ron; Lysbet de Haas, Sanne; Gonzalez-Martin, Antonio

    2016-11-15

    In the phase III TH3RESA study (NCT01419197), 602 patients with HER2-positive advanced breast cancer who received prior taxane therapy and ≥2 HER2-directed regimens, including trastuzumab and lapatinib (advanced setting), were randomized to trastuzumab emtansine (T-DM1) or treatment of physician's choice (TPC). A statistically significant progression-free survival (PFS) benefit favoring T-DM1 was demonstrated. Here, we examine the relationship between HER2-related biomarkers and PFS in an exploratory analysis. Biomarkers assessed included HER2 (n = 505) and HER3 (n = 505) mRNA expression, PIK3CA mutation status (n = 410) and PTEN protein expression (n = 358). For biomarkers with continuous data (HER2, HER3, PTEN), subgroups were defined using median values (>median and ≤median). For all biomarker subgroups, median PFS was longer with T-DM1 vs. TPC. The PFS benefit favoring T-DM1 vs. TPC was numerically greater in the HER2 mRNA >median subgroup (7.2 vs. 3.4 months; unstratified hazard ratio [HR], 0.40; 95% CI, 0.28-0.59; p < 0.0001) vs. ≤median subgroup (5.5 vs. 3.9 months; HR, 0.68; 95% CI, 0.49-0.92; p = 0.0131). The PFS benefit with T-DM1 was similar among HER3, PIK3CA and PTEN subgroups. Consistent with other reports, benefit was seen with T-DM1 regardless of PIK3CA mutation status. In a multivariate analysis including an interaction term (treatment group by log2-transformed HER2 mRNA), patients with higher HER2 mRNA levels benefited more from receiving T-DM1 (HR, 0.84; 95% CI, 0.75-0.94; interaction p value = 0.0027). In summary, T-DM1 prolonged median PFS in all biomarker subgroups analyzed, including activating PIK3CA mutations, with numerically greater benefit in patients with tumors expressing HER2 mRNA >median vs. ≤median. © 2016 UICC.

  6. Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma.

    PubMed

    Moss, Tyler J; Qi, Yuan; Xi, Liu; Peng, Bo; Kim, Tae-Beom; Ezzedine, Nader E; Mosqueda, Maribel E; Guo, Charles C; Czerniak, Bogdan A; Ittmann, Michael; Wheeler, David A; Lerner, Seth P; Matin, Surena F

    2017-10-01

    Upper urinary tract urothelial cancer (UTUC) may have unique etiologic and genomic factors compared to bladder cancer. To characterize the genomic landscape of UTUC and provide insights into its biology using comprehensive integrated genomic analyses. We collected 31 untreated snap-frozen UTUC samples from two institutions and carried out whole-exome sequencing (WES) of DNA, RNA sequencing (RNAseq), and protein analysis. Adjusting for batch effects, consensus mutation calls from independent pipelines identified DNA mutations, gene expression clusters using unsupervised consensus hierarchical clustering (UCHC), and protein expression levels that were correlated with relevant clinical variables, The Cancer Genome Atlas, and other published data. WES identified mutations in FGFR3 (74.1%; 92% low-grade, 60% high-grade), KMT2D (44.4%), PIK3CA (25.9%), and TP53 (22.2%). APOBEC and CpG were the most common mutational signatures. UCHC of RNAseq data segregated samples into four molecular subtypes with the following characteristics. Cluster 1: no PIK3CA mutations, nonsmokers, high-grade PIK3CA, no TP53 mutations, five bladder recurrences, tobacco use, tumors all PIK3CA mutations, high-grade pT2+ disease, tobacco use, carcinoma in situ, shorter survival. We identified a novel SH3KBP1-CNTNAP5 fusion. Mutations in UTUC occur at differing frequencies from bladder cancer, with four unique molecular and clinical subtypes. A novel SH3KBP1 fusion regulates RTK signaling. Further studies are needed to validate the described subtypes, explore their responses to therapy, and better define the novel fusion mutation. We conducted a comprehensive study of the genetics of upper urinary tract urothelial cancer by evaluating DNA, RNA and protein

  7. Progress on Development of the New FDIRC PID Detector

    SciTech Connect

    Vavra, Jerry

    2012-08-03

    We present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires {pi}/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25x smaller and speed increased by a factor of ten compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background

  8. Involvement of 53BP1, a p53 Binding Protein, in Chk2 Phosphorylation of p53 and DNA Damage Cell Cycle Checkpoints

    DTIC Science & Technology

    2005-05-01

    NaC1, 1 mM EDTA, 1% NP40 supplemented required for cell survival. Mal. Cell. Biol. 22, 555-566 (2002). with protease inhibitors (Roche) and Benzonase...response is delayed or inhibited by treatment with the PIK this fact. inhibitors caffeine and wortmannin. 53BP1 foci also overlap I1 A fellow of the U...ltr Xbal __BTK_ _ WT 2,6 kB VICTR54 LTR NEO PGK BTK LT 8A 4DSI) inutant 1.5 LII + 13 D A +C +1tr rtrtr Neo 2 kR-’ c +i+ +i+tr tr/tr 2 3 A b

  9. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes

    PubMed Central

    Du, Zhihua

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein–protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the

  10. Differential splicing of oncogenes and tumor suppressor genes in African and Caucasian American populations: contributing factor in prostate cancer disparities

    DTIC Science & Technology

    2017-12-01

    exhibited enhanced activation of the PI3K/AKT pathway compared to the same lines over-expressing the CA- enriched long (-L) variant PIK3CD-L (retains...demonstrate that FGFR3-S: i) encodes a more aggressive oncogenic signaling protein compared to CA-enriched FGFR3-L (retains exon 14) as defined by in vitro...into PCa cell lines for in vitro and in vivo investigations completed in Year 1 (see description below). 3 FIGURE 1. Full-length cDNA

  11. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1

    PubMed Central

    Ebi, Hiromichi; Costa, Carlotta; Faber, Anthony C.; Nishtala, Madhuri; Kotani, Hiroshi; Juric, Dejan; Della Pelle, Patricia; Song, Youngchul; Yano, Seiji; Mino-Kenudson, Mari; Benes, Cyril H.; Engelman, Jeffrey A.

    2013-01-01

    The PI3K pathway is genetically altered in excess of 70% of breast cancers, largely through PIK3CA mutation and HER2 amplification. Preclinical studies have suggested that these subsets of breast cancers are particularly sensitive to PI3K inhibitors; however, the reasons for this heightened sensitivity are mainly unknown. We investigated the signaling effects of PI3K inhibition in PIK3CA mutant and HER2 amplified breast cancers using PI3K inhibitors currently in clinical trials. Unexpectedly, we found that in PIK3CA mutant and HER2 amplified breast cancers sensitive to PI3K inhibitors, PI3K inhibition led to a rapid suppression of Rac1/p21-activated kinase (PAK)/protein kinase C-RAF (C-RAF)/ protein kinase MEK (MEK)/ERK signaling that did not involve RAS. Furthermore, PI3K inhibition led to an ERK-dependent up-regulation of the proapoptotic protein, BIM, followed by induction of apoptosis. Expression of a constitutively active form of Rac1 in these breast cancer models blocked PI3Ki-induced down-regulation of ERK phosphorylation, apoptosis, and mitigated PI3K inhibitor sensitivity in vivo. In contrast, protein kinase AKT inhibitors failed to block MEK/ERK signaling, did not up-regulate BIM, and failed to induce apoptosis. Finally, we identified phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) as the PI(3,4,5)P3-dependent guanine exchange factor for Rac1 responsible for regulation of the Rac1/C-RAF/MEK/ERK pathway in these cells. The expression level of P-Rex1 correlates with sensitivity to PI3K inhibitors in these breast cancer cell lines. Thus, PI3K inhibitors have enhanced activity in PIK3CA mutant and HER2 amplified breast cancers in which PI3K inhibition down-regulates both the AKT and Rac1/ERK pathways. In addition, P-Rex1 may serve as a biomarker to predict response to single-agent PI3K inhibitors within this subset of breast cancers. PMID:24327733

  12. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. | Office of Cancer Genomics

    Cancer.gov

    Activating mutations involving the PI3K pathway occur frequently in human cancers. However, PI3K inhibitors primarily induce cell cycle arrest, leaving a significant reservoir of tumor cells that may acquire or exhibit resistance. We searched for genes that are required for the survival of PI3K mutant cancer cells in the presence of PI3K inhibition by conducting a genome scale shRNA-based apoptosis screen in a PIK3CA mutant human breast cancer cell. We identified 5 genes (PIM2, ZAK, TACC1, ZFR, ZNF565) whose suppression induced cell death upon PI3K inhibition.

  13. SciTech Connect

    Not Available

    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5more » figures.« less

  14. Integrated Artillery Recoil Mechanism and Automated Handling Design for 155mm Self-Propelled Howitzer

    DTIC Science & Technology

    1980-04-01

    3.8" iv, ?J Oo -r- p,Ik-- 1. 346.57T ,.~ ~ ~~ q 1-- - 44t_ L m50 PCF-RM-1284 A-3 PACIFIC CAR AND FOUNDRY COMPANY lit) ENGINEERING DEPARTMENT .1 NAME...c . / KBEARSTR _ 14138 11/19/79 MONDAY I06 THIS PROG. CALCS. BEARING STRESS IN HOLES DUE TO BOLT BEARING & IOMtENT. ENTER HOLT (SHAFT) & HOLE...Ref 2. Alternativ ly, the calculated Survival after 10 million cycles of ASI-SA| 4340 steel with tensile strengths of "S, 1320, stress may be adjusted

  15. Mutational analysis of cutaneous squamous cell carcinomas and verrucal keratosis in patients taking BRAF inhibitors.

    PubMed

    Anforth, Rachael; Tembe, Varsha; Blumetti, Tatiana; Fernandez-Peñas, Pablo

    2012-09-01

    B-RAF inhibitors (BRAFi) have been shown to improve rates of overall and progression-free survival in patients with stage IV metastatic melanoma positive for the BRAF V600E mutation. However, the main drawback is the development of verrucal keratosis (hyperkeratotic papules with verruca-like characteristics with benign histological findings) and cutaneous squamous cell carcinomas (cuSCC). We have found upstream mutations in RAS as well as PIK3CA in both verrucal keratosis and cuSCC. This suggests that verrucal keratosis is an early clinical presentation of cuSCC in patients on BRAFi. © 2012 John Wiley & Sons A/S.

  16. Carpal Tunnel Syndrome in Aberrant Muscle Syndrome: A Case Report and Review of the Literature.

    PubMed

    Steele, Jessica; Coombs, Christopher

    2018-06-01

    Aberrant Muscle Syndrome (AMS) is a rare congenital hand difference that is characterised by unilateral non-progressive muscular hyperplasia. The aetiology of aberrant muscle syndrome is not known, but a recently published case has shown a somatic PIK3CA activating mutation in a patient with AMS. Carpal tunnel syndrome (CTS) in children is rare. The most common causes are the mucopolysaccaridoses but space-occupying lesions have also been reported to cause CTS in children. We report the first case of CTS in a child with AMS successfully treated with open carpal tunnel release and excision of aberrant muscles.

  17. Identification and Characterization of Genomic Amplifications in Ovarian Serous Carcinoma

    DTIC Science & Technology

    2009-01-01

    Powell B, Mills GB, Gray JW. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21:99-102. 26. Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC...Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A...McCormick F, Gray JW. Chromosome aberrations in solid tumors. Nat Genet 2003;34:369–76. 3. Wang TL, Diaz LA, Jr, Romans K, Bardelli A, Saha S, Galizia

  18. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer.gov

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  19. Theoretical cratering rates on Ida, Mathilde, Eros and Gaspra

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Asher, D. J.; Bailey, M. E.

    2002-11-01

    We investigate the main influences on crater size distributions, by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY (Chambers 1999) numerical integrator. The use of an efficient, Öpik-type, collision code enables the calculation of a velocity histogram and the probability of impact. This when combined with a crater scaling law and an impactor size distribution, through a Monte Carlo method, results in a crater size distribution. The resulting crater probability distributions are in good agreement with observed crater distributions on these asteroids.

  20. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes.

    PubMed

    Du, Zhihua; Uversky, Vladimir N

    2017-09-21

    Type 2 diabetes mellitus (T2DM) is a chronic and progressive disease that is strongly associated with hyperglycemia (high blood sugar) related to either insulin resistance or insufficient insulin production. Among the various molecular events and players implicated in the manifestation and development of diabetes mellitus, proteins play several important roles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database has information on 34 human proteins experimentally shown to be related to the T2DM pathogenesis. It is known that many proteins associated with different human maladies are intrinsically disordered as a whole, or contain intrinsically disordered regions. The presented study shows that T2DM is not an exception to this rule, and many proteins known to be associated with pathogenesis of this malady are intrinsically disordered. The multiparametric bioinformatics analysis utilizing several computational tools for the intrinsic disorder characterization revealed that IRS1, IRS2, IRS4, MAFA, PDX1, ADIPO, PIK3R2, PIK3R5, SoCS1, and SoCS3 are expected to be highly disordered, whereas VDCC, SoCS2, SoCS4, JNK9, PRKCZ, PRKCE, insulin, GCK, JNK8, JNK10, PYK, INSR, TNF-α, MAPK3, and Kir6.2 are classified as moderately disordered proteins, and GLUT2, GLUT4, mTOR, SUR1, MAPK1, IKKA, PRKCD, PIK3CB, and PIK3CA are predicted as mostly ordered. More focused computational analyses and intensive literature mining were conducted for a set of highly disordered proteins related to T2DM. The resulting work represents a comprehensive survey describing the major biological functions of these proteins and functional roles of their intrinsically disordered regions, which are frequently engaged in protein-protein interactions, and contain sites of various posttranslational modifications (PTMs). It is also shown that intrinsic disorder-associated PTMs may play important roles in controlling the functions of these proteins. Consideration of the T2DM proteins from the perspective

  1. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis.

    PubMed

    Qian, Xu; Li, Xinjian; Lu, Zhimin

    2017-07-03

    Macroautophagy/autophagy is a cellular defense response to stress conditions and is crucial for cell homeostasis maintenance. However, the precise mechanism underlying autophagy initiation, especially in response to glutamine deprivation and hypoxia, is yet to be explored. We recently discovered that PGK1 (phosphoglycerate kinase 1), a glycolytic enzyme, functions as a protein kinase, phosphorylating BECN1/Beclin 1 to initiate autophagy. Under glutamine deprivation or hypoxia stimulation, PGK1 is acetylated at K388 by NAA10/ARD1 in an MTOR-inhibition-dependent manner, leading to the interaction between PGK1 and BECN1 and the subsequent phosphorylation of BECN1 at S30 by PGK1. This phosphorylation enhances ATG14-associated PIK3C3/VPS34-BECN1-PIK3R4/VPS15 complex activity, thereby increasing phosphatidylinositol-3-phosphate (PtdIns3P) generation in the initiation stage of autophagy. Furthermore, NAA10-dependent PGK1 acetylation and PGK1-dependent BECN1 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumor formation. Our work reveals the important dual roles of PGK1 as a glycolytic enzyme and a protein kinase in the mutual regulation of cell metabolism and autophagy in maintaining cell homeostasis.

  2. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388.

    PubMed

    Zhang, Deyi; Wang, Wei; Sun, Xiujie; Xu, Daqian; Wang, Chenyao; Zhang, Qian; Wang, Huafei; Luo, Wenwen; Chen, Yan; Chen, Huaiyong; Liu, Zhixue

    2016-09-01

    Macroautophagy/autophagy is a conserved catabolic process that recycles cytoplasmic material during low energy conditions. BECN1/Beclin1 (Beclin 1, autophagy related) is an essential protein for function of the class 3 phosphatidylinositol 3-kinase (PtdIns3K) complexes that play a key role in autophagy nucleation and elongation. Here, we show that AMP-activated protein kinase (AMPK) regulates autophagy by phosphorylating BECN1 at Thr388. Phosphorylation of BECN1 is required for autophagy upon glucose withdrawal. BECN1(T388A), a phosphorylation defective mutant, suppresses autophagy through decreasing the interaction between PIK3C3 (phosphatidylinositol 3-kinase catalytic subunit type 3) and ATG14 (autophagy-related 14). The BECN1(T388A) mutant has a higher affinity for BCL2 than its wild-type counterpart; the mutant is more prone to dimer formation. Conversely, a BECN1 phosphorylation mimic mutant, T388D, has stronger binding to PIK3C3 and ATG14, and promotes higher autophagy activity than the wild-type control. These findings uncover a novel mechanism of autophagy regulation.

  3. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    PubMed

    Deming, Dustin A; Leystra, Alyssa A; Farhoud, Mohammed; Nettekoven, Laura; Clipson, Linda; Albrecht, Dawn; Washington, Mary Kay; Sullivan, Ruth; Weichert, Jamey P; Halberg, Richard B

    2013-01-01

    The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.

  4. Somatic mutations in salivary duct carcinoma and potential therapeutic targets

    PubMed Central

    Smith, Joel A.; Clarke, Angus J.; Luk, Peter P.; Selinger, Christina I.; Mahon, Kate L.; Kraitsek, Spiridoula; Palme, Carsten; Boyer, Michael J.; Dinger, Marcel E.; Cowley, Mark J.; O’Toole, Sandra A.

    2017-01-01

    Background Salivary duct carcinomas (SDCa) are rare highly aggressive malignancies. Most patients die from distant metastatic disease within three years of diagnosis. There are limited therapeutic options for disseminated disease. Results 11 cases showed androgen receptor expression and 6 cases showed HER2 amplification. 6 Somatic mutations with additional available targeted therapies were identified: EGFR (p.G721A: Gefitinib), PDGFRA (p.H845Y: Imatinib and Crenolanib), PIK3CA (p.H1047R: Everolimus), ERBB2 (p.V842I: Lapatinib), HRAS (p.Q61R: Selumetinib) and KIT (p.T670I: Sorafenib). Furthermore, alterations in PTEN, PIK3CA and HRAS that alter response to androgen deprivation therapy and HER2 inhibition were also seen. Materials and Methods Somatic mutation analysis was performed on DNA extracted from 15 archival cases of SDCa using the targeted Illumina TruSeq Amplicon Cancer Panel. Potential targetable genetic alterations were identified using extensive literature and international somatic mutation database (COSMIC, KEGG) search. Immunohistochemistry for androgen receptor and immunohistochemistry and fluorescent in situ hybridization for HER2 were also performed. Conclusions SDCa show multiple somatic mutations, some that are amenable to pharmacologic manipulation and others that confer resistance to treatments currently under investigation. These findings emphasize the need to develop testing and treatment strategies for SDCa. PMID:29100278

  5. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant

    PubMed Central

    Spoerke, Jill M.; Gendreau, Steven; Walter, Kimberly; Qiu, Jiaheng; Wilson, Timothy R.; Savage, Heidi; Aimi, Junko; Derynck, Mika K.; Chen, Meng; Chan, Iris T.; Amler, Lukas C.; Hampton, Garret M.; Johnston, Stephen; Krop, Ian; Schmid, Peter; Lackner, Mark R.

    2016-01-01

    Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study. PMID:27174596

  6. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant.

    PubMed

    Spoerke, Jill M; Gendreau, Steven; Walter, Kimberly; Qiu, Jiaheng; Wilson, Timothy R; Savage, Heidi; Aimi, Junko; Derynck, Mika K; Chen, Meng; Chan, Iris T; Amler, Lukas C; Hampton, Garret M; Johnston, Stephen; Krop, Ian; Schmid, Peter; Lackner, Mark R

    2016-05-13

    Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study.

  7. Molecular characterization of oral squamous cell carcinoma using targeted next-generation sequencing.

    PubMed

    Er, Tze-Kiong; Wang, Yen-Yun; Chen, Chih-Chieh; Herreros-Villanueva, Marta; Liu, Ta-Chih; Yuan, Shyng-Shiou F

    2015-10-01

    Many genetic factors play an important role in the development of oral squamous cell carcinoma. The aim of this study was to assess the mutational profile in oral squamous cell carcinoma using formalin-fixed, paraffin-embedded tumors from a Taiwanese population by performing targeted sequencing of 26 cancer-associated genes that are frequently mutated in solid tumors. Next-generation sequencing was performed in 50 formalin-fixed, paraffin-embedded tumor specimens obtained from patients with oral squamous cell carcinoma. Genetic alterations in the 26 cancer-associated genes were detected using a deep sequencing (>1000X) approach. TP53, PIK3CA, MET, APC, CDH1, and FBXW7 were most frequently mutated genes. Most remarkably, TP53 mutations and PIK3CA mutations, which accounted for 68% and 18% of tumors, respectively, were more prevalent in a Taiwanese population. Other genes including MET (4%), APC (4%), CDH1 (2%), and FBXW7 (2%) were identified in our population. In summary, our study shows the feasibility of performing targeted sequencing using formalin-fixed, paraffin-embedded samples. Additionally, this study also reports the mutational landscape of oral squamous cell carcinoma in the Taiwanese population. We believe that this study will shed new light on fundamental aspects in understanding the molecular pathogenesis of oral squamous cell carcinoma and may aid in the development of new targeted therapies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. PTEN is a potent suppressor of small cell lung cancer.

    PubMed

    Cui, Min; Augert, Arnaud; Rongione, Michael; Conkrite, Karina; Parazzoli, Susan; Nikitin, Alexander Yu; Ingolia, Nicholas; MacPherson, David

    2014-05-01

    Small cell lung carcinoma (SCLC) is a highly metastatic tumor type with neuroendocrine features and a dismal prognosis. PTEN mutations and PIK3CA activating mutations have been reported in SCLC but the functional relevance of this pathway is unknown. The PTEN/PIK3CA pathway was interrogated using an AdenoCre-driven mouse model of SCLC harboring inactivated Rb and p53. Inactivation of one allele of PTEN in Rb/p53-deleted mice led to accelerated SCLC with frequent metastasis to the liver. In contrast with the high mutation burden reported in human SCLC, exome analyses revealed a low number of protein-altering mutations in mouse SCLC. Inactivation of both alleles of PTEN in the Rb/p53-deleted system led to nonmetastatic adenocarcinoma with neuroendocrine differentiation. This study reveals a critical role for the PTEN/PI3K pathway in both SCLC and lung adenocarcinoma and provides an ideal system to test the phosphoinositide 3-kinase (PI3K) pathway inhibitors as targeted therapy for subsets of patients with SCLC. The ability of PTEN inactivation to accelerate SCLC in a genetic mouse model suggests that targeting the PTEN pathway is a therapeutic option for a subset of human patients with SCLC. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/early/2014/04/28/1541-7786.MCR-13-0554/F1.large.jpg. ©2014 AACR.

  9. Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.

    PubMed

    Wheler, Jennifer J; Parker, Barbara A; Lee, Jack J; Atkins, Johnique T; Janku, Filip; Tsimberidou, Apostolia M; Zinner, Ralph; Subbiah, Vivek; Fu, Siqing; Schwab, Richard; Moulder, Stacy; Valero, Vicente; Schwaederle, Maria; Yelensky, Roman; Miller, Vincent A; Stephens, M Philip J; Meric-Bernstam, Funda; Kurzrock, Razelle

    2014-05-15

    Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

  10. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    PubMed

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  11. Active PI3K Pathway Causes an Invasive Phenotype Which Can Be Reversed or Promoted by Blocking the Pathway at Divergent Nodes

    PubMed Central

    Wallin, Jeffrey J.; Guan, Jane; Edgar, Kyle A.; Zhou, Wei; Francis, Ross; Torres, Anthony C.; Haverty, Peter M.; Eastham-Anderson, Jeffrey; Arena, Sabrina; Bardelli, Alberto; Griffin, Sue; Goodall, John E.; Grimshaw, Kyla M.; Hoeflich, Klaus P.; Torrance, Christopher; Belvin, Marcia; Friedman, Lori S.

    2012-01-01

    The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis. PMID:22570710

  12. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells.

    PubMed

    Zou, Zu-Quan; Zhang, Li-Na; Wang, Feng; Bellenger, Jérôme; Shen, Yin-Zhuo; Zhang, Xiao-Hong

    2012-02-01

    Lung cancer is a malignant disease with poor outcome, which has led to a search for new therapeutics. The PI3K/Akt/mTOR and Ras/raf/Erk pathways are key regulators of tumor growth and survival. In the present study, their roles were evaluated by MTT assay, flow cytometry and Western blotting in lung cancer cells. We found that a high efficacy of antitumor activity was shown with GDC-0941 treatment in two gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines, A549 and H460. In addition, H460 cells with activating mutations of PIK3CA were relatively more sensitive to GDC-0941 than A549 cells with wild-type PIK3CA. Furthermore, GDC-0941 was highly efficacious in combination with U0126 in inducing cell growth inhibition, G0-G1 arrest and cell apoptosis. These antitumor activities of combined treatment may be attributed to the alterations of G0-G1 phase regulators, apoptosis-related proteins and eukaryotic translation initiation factor 4B (eIF4B), induced by concomitant blockade of the PI3K/Akt/mTOR and Ras/raf/Erk pathways. In conclusion, this study suggests that multi‑targeted intervention is the most effective treatment for tumors. Additionally, the blockade of PI3K, mTOR and Erk with GDC-0941 and MEK inhibitors shows promise for treating gefitinib-resistant NSCLC.

  13. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention

    PubMed Central

    Davis, Nicole M.; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Stephen L.; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D’Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L.; Demidenko, Zoya N.; Martelli, Alberto M.; Cocco, Lucio; Steelman, Linda S.; McCubrey, James A.

    2014-01-01

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. PMID:25051360

  14. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention.

    PubMed

    Davis, Nicole M; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Steve L; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D'Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L; Demidenko, Zoya; Martelli, Alberto M; Cocco, Lucio; Steelman, Linda S; McCubrey, James A

    2014-07-15

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.

  15. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    PubMed Central

    Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R

    2010-01-01

    Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848

  16. Ovarian clear cell carcinoma--bad endometriosis or bad endometrium?

    PubMed

    Gounaris, Ioannis; Charnock-Jones, D Stephen; Brenton, James D

    2011-10-01

    It has become increasingly clear that the four main histological subtypes of epithelial ovarian cancer (EOC), high-grade serous, endometrioid, clear cell and mucinous, are entities with different epidemiologies, clinical presentations, responses to treatment, and ultimate outcomes. In fact, for all intents and purposes, they can be considered different diseases, their only common denominator being that they frequently involve the ovary and pelvic organs. However, clinical practice has not caught up with these insights and the treatment of EOC is that of a single disease entity. In part, this is because we lack detailed knowledge of the molecular mechanisms driving the pathogenesis of each disease, which is vital in order to develop therapeutic approaches against common driver events. In the last few years, mutations in ARID1A and PIK3CA have been described in a substantial fraction of cases of ovarian clear cell carcinoma, yet the paper by Yamamoto et al in this issue of The Journal of Pathology reveals that PIK3CA mutations can be detected in precursor endometriosis tissues. These and other recent observations underscore the importance of investigating whether mutations in the eutopic endometrium actually predispose to endometriosis and eventually to malignancy. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Genomic portfolio of Merkel cell carcinoma as determined by comprehensive genomic profiling: implications for targeted therapeutics.

    PubMed

    Cohen, Philip R; Tomson, Brett N; Elkin, Sheryl K; Marchlik, Erica; Carter, Jennifer L; Kurzrock, Razelle

    2016-04-26

    Merkel cell carcinoma is an ultra-rare cutaneous neuroendocrine cancer for which approved treatment options are lacking. To better understand potential actionability, the genomic landscape of Merkel cell cancers was assessed. The molecular aberrations in 17 patients with Merkel cell carcinoma were, on physician request, tested in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Foundation Medicine, Cambridge, MA) using next-generation sequencing (182 or 236 genes) and analyzed by N-of-One, Inc. (Lexington, MA). There were 30 genes harboring aberrations and 60 distinct molecular alterations identified in this patient population. The most common abnormalities involved the TP53 gene (12/17 [71% of patients]) and the cell cycle pathway (CDKN2A/B, CDKN2C or RB1) (12/17 [71%]). Abnormalities also were observed in the PI3K/AKT/mTOR pathway (AKT2, FBXW7, NF1, PIK3CA, PIK3R1, PTEN or RICTOR) (9/17 [53%]) and DNA repair genes (ATM, BAP1, BRCA1/2, CHEK2, FANCA or MLH1) (5/17 [29%]). Possible cognate targeted therapies, including FDA-approved drugs, could be identified in most of the patients (16/17 [94%]). In summary, Merkel cell carcinomas were characterized by multiple distinct aberrations that were unique in the majority of analyzed cases. Most patients had theoretically actionable alterations. These results provide a framework for investigating tailored combinations of matched therapies in Merkel cell carcinoma patients.

  18. Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity.

    PubMed

    Grünewald, Inga; Vollbrecht, Claudia; Meinrath, Jeannine; Meyer, Moritz F; Heukamp, Lukas C; Drebber, Uta; Quaas, Alexander; Beutner, Dirk; Hüttenbrink, Karl-Bernd; Wardelmann, Eva; Hartmann, Wolfgang; Büttner, Reinhard; Odenthal, Margarete; Stenner, Markus

    2015-07-20

    Salivary gland cancer represents a heterogeneous group of malignant tumors. Due to their low incidence and the existence of multiple morphologically defined subtypes, these tumors are still poorly understood with regard to their molecular pathogenesis and therapeutically relevant genetic alterations.Performing a systematic and comprehensive study covering 13 subtypes of salivary gland cancer, next generation sequencing was done on 84 tissue samples of parotid gland cancer using multiplex PCR for enrichment of cancer related gene loci covering hotspots of 46 cancer genes.Mutations were identified in 22 different genes. The most frequent alterations affected TP53, followed by RAS genes, PIK3CA, SMAD4 and members of the ERB family. HRAS mutations accounted for more than 90% of RAS mutations, occurring especially in epithelial-myoepithelial carcinomas and salivary duct carcinomas. Additional mutations in PIK3CA also affected particularly epithelial-myoepithelial carcinomas and salivary duct carcinomas, occurring simultaneously with HRAS mutations in almost all cases, pointing to an unknown and therapeutically relevant molecular constellation. Interestingly, 14% of tumors revealed mutations in surface growth factor receptor genes including ALK, HER2, ERBB4, FGFR, cMET and RET, which might prove to be targetable by new therapeutic agents. 6% of tumors revealed mutations in SMAD4.In summary, our data provide novel insight into the fundamental molecular heterogeneity of salivary gland cancer, relevant in terms of tumor classification and the establishment of targeted therapeutic concepts.

  19. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: a data mining prediction followed by experimental exploration of the molecular mechanism.

    PubMed

    Nagashima, Takuya; Shirakawa, Hisashi; Nakagawa, Takayuki; Kaneko, Shuji

    2016-05-20

    Atypical antipsychotics are associated with an increased risk of hyperglycaemia, thus limiting their clinical use. This study focused on finding the molecular mechanism underlying antipsychotic-induced hyperglycaemia. First, we searched for drug combinations in the FDA Adverse Event Reporting System (FAERS) database wherein a coexisting drug reduced the hyperglycaemia risk of atypical antipsychotics, and found that a combination with vitamin D analogues significantly decreased the occurrence of quetiapine-induced adverse events relating diabetes mellitus in FAERS. Experimental validation using mice revealed that quetiapine acutely caused insulin resistance, which was mitigated by dietary supplementation with cholecalciferol. Further database analysis of the relevant signalling pathway and gene expression predicted quetiapine-induced downregulation of Pik3r1, a critical gene acting downstream of insulin receptor. Focusing on the phosphatidylinositol 3-kinase (PI3K) signalling pathway, we found that the reduced expression of Pik3r1 mRNA was reversed by cholecalciferol supplementation in skeletal muscle, and that insulin-stimulated glucose uptake into C2C12 myotube was inhibited in the presence of quetiapine, which was reversed by concomitant calcitriol in a PI3K-dependent manner. Taken together, these results suggest that vitamin D coadministration prevents antipsychotic-induced hyperglycaemia and insulin resistance by upregulation of PI3K function.

  20. Efficacy and safety analysis of trastuzumab and paclitaxel based regimen plus carboplatin or epirubicin as neoadjuvant therapy for clinical stage II-III, HER2-positive breast cancer patients: a phase 2, open-label, multicenter, randomized trial

    PubMed Central

    Yang, Wentao; Xu, Binghe; Huang, Tao; Yang, Hongjian; Zheng, Hong; Wang, Yongsheng; Song, Erwei; Zhang, Jin; Cui, Shude; Pang, Da; Tang, Lili; Lei, Yutao; Geng, Cuizhi; Shao, Zhiming

    2015-01-01

    This trial was designed to compare the efficacy and safety between epirubicin (E) and carboplatin (C) in combination with paclitaxel (P) and trastuzumab (H) in neoadjuvant setting. In 13 Chinese cancer centers, 100 patients with HER2-positive, locally advanced breast cancer were 1:1 randomized to receive medication as follows: trastuzumab and paclitaxel weekly combined with carboplatin weekly for PCH group, or epirubicin every 3 weeks for PEH group. Patients were given 4 to 6 cycles of chemotherapy. The primary endpoint was pathologic complete response (pCR) rate, which was no significant difference in PCH and PEH regimen (39.1% vs. 48.8%; p=0.365). However, PEH regimen achieved higher pCR in luminal-B (HER2-poitive) subgroup (55.0% vs. 24.0%; p = 0.033), but not in ERBB2+ subgroup (42.9% vs. 57.1%; p = 0.355). PEH regimen showed a favorable efficacy in PIK3CA mutated subgroup (69.2% vs.23.5%, p=0.012). No significant difference was observed in the subgroup analysis of TP53 mutation status, PTEN expression, FCGR2A SNP and FCGR3A SNP. Both regimens as neoadjuvant chemotherapy achieve similar efficacy and safety. PEH might improve pCR rate, especially in the luminal-B subtype and PIK3CA mutation subtype. PEH is feasible and less likely to increase the incidence of acute cardiac events compared to PCH. PMID:26084292

  1. Whole genomes redefine the mutational landscape of pancreatic cancer

    PubMed Central

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K.; Kassahn, Karin S.; Bailey, Peter; Johns, Amber L.; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C. J.; Robertson, Alan J.; Fadlullah, Muhammad Z. H.; Bruxner, Tim J. C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J.; Fink, J. Lynn; Holmes, Oliver; Kazakoff, Stephen H.; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J.; Lee, Hong C.; Jones, Marc D.; Nagrial, Adnan M.; Humphris, Jeremy; Chantrill, Lorraine A.; Chin, Venessa; Steinmann, Angela M.; Mawson, Amanda; Humphrey, Emily S.; Colvin, Emily K.; Chou, Angela; Scarlett, Christopher J.; Pinho, Andreia V.; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S.; Kench, James G.; Pettitt, Jessica A.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B.; Graham, Janet S.; Niclou, Simone P.; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A.; Gill, Anthony J.; Eshleman, James R.; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A.; Pearson, John V.; Biankin, Andrew V.; Grimmond, Sean M.

    2015-01-01

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded. PMID:25719666

  2. Whole genomes redefine the mutational landscape of pancreatic cancer.

    PubMed

    Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie; Chang, David K; Kassahn, Karin S; Bailey, Peter; Johns, Amber L; Miller, David; Nones, Katia; Quek, Kelly; Quinn, Michael C J; Robertson, Alan J; Fadlullah, Muhammad Z H; Bruxner, Tim J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Wilson, Peter J; Markham, Emma; Cloonan, Nicole; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen H; Leonard, Conrad; Newell, Felicity; Poudel, Barsha; Song, Sarah; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Lee, Hong C; Jones, Marc D; Nagrial, Adnan M; Humphris, Jeremy; Chantrill, Lorraine A; Chin, Venessa; Steinmann, Angela M; Mawson, Amanda; Humphrey, Emily S; Colvin, Emily K; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Giry-Laterriere, Marc; Rooman, Ilse; Samra, Jaswinder S; Kench, James G; Pettitt, Jessica A; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; Graham, Janet S; Niclou, Simone P; Bjerkvig, Rolf; Grützmann, Robert; Aust, Daniela; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Corbo, Vincenzo; Bassi, Claudio; Falconi, Massimo; Zamboni, Giuseppe; Tortora, Giampaolo; Tempero, Margaret A; Gill, Anthony J; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2015-02-26

    Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

  3. KRAS Mutation as a Potential Prognostic Biomarker of Biliary Tract Cancers

    PubMed Central

    Yokoyama, Masaaki; Ohnishi, Hiroaki; Ohtsuka, Kouki; Matsushima, Satsuki; Ohkura, Yasuo; Furuse, Junji; Watanabe, Takashi; Mori, Toshiyuki; Sugiyama, Masanori

    2016-01-01

    BACKGROUND The aim of this study was to identify the unique molecular characteristics of biliary tract cancer (BTC) for the development of novel molecular-targeted therapies. MATERIALS AND METHODS We performed mutational analysis of KRAS, BRAF, PIK3CA, and FBXW7 and immunohistochemical analysis of EGFR and TP53 in 63 Japanese patients with BTC and retrospectively evaluated the association between the molecular characteristics and clinicopathological features of BTC. RESULTS KRAS mutations were identified in 9 (14%) of the 63 BTC patients; no mutations were detected within the analyzed regions of BRAF, PIK3CA, and FBXW7. EGFR overexpression was observed in 5 (8%) of the 63 tumors, while TP53 overexpression was observed in 48% (30/63) of the patients. Overall survival of patients with KRAS mutation was significantly shorter than that of patients with the wild-type KRAS gene (P = 0.005). By multivariate analysis incorporating molecular and clinicopathological features, KRAS mutations and lymph node metastasis were identified to be independently associated with shorter overall survival (KRAS, P = 0.004; lymph node metastasis, P = 0.015). CONCLUSIONS Our data suggest that KRAS mutation is a poor prognosis predictive biomarker for the survival in BTC patients. PMID:28008299

  4. Three Rounds of External Quality Assessment in France to Evaluate the Performance of 28 Platforms for Multiparametric Molecular Testing in Metastatic Colorectal and Non-Small Cell Lung Cancer.

    PubMed

    Dequeker, Elisabeth M C; Keppens, Cleo; Egele, Caroline; Delen, Sofie; Lamy, Aude; Lemoine, Antoinette; Sabourin, Jean-Christophe; Andrieu, Catherine; Ligtenberg, Marjolijn; Fetique, Dominique; Tops, Bastiaan; Descarpentries, Clotilde; Blons, Hélène; Denoux, Yves; Aube, Cécile; Penault-Llorca, Frederique; Hofman, Paul; Leroy, Karen; Le Marechal, Cédric; Doucet, Laurent; Duranton-Tanneur, Valérie; Pedeutour, Florence; Soubeyran, Isabelle; Côté, Jean-François; Emile, Jean-François; Vignaud, Jean-Michel; Monhoven, Nathalie; Haddad, Véronique; Laurent-Puig, Pierre; van Krieken, Han; Nowak, Frederique; Lonchamp, Etienne; Bellocq, Jean-Pierre; Rouleau, Etienne

    2016-03-01

    Personalized medicine has gained increasing importance in clinical oncology, and several clinically important biomarkers are implemented in routine practice. In an effort to guarantee high quality of molecular testing in France, three subsequent external quality assessment rounds were organized at the initiative of the National Cancer Institute between 2012 and 2014. The schemes included clinically relevant biomarkers for metastatic colorectal (KRAS, NRAS, BRAF, PIK3CA, microsatellite instability) and non-small cell lung cancer (EGFR, KRAS, BRAF, PIK3CA, ERBB2), and they represent the first multigene/multicancer studies throughout Europe. In total, 56 laboratories coordinated by 28 regional molecular centers participated in the schemes. Laboratories received formalin-fixed, paraffin-embedded samples and were asked to use routine methods for molecular testing to predict patient response to targeted therapies. They were encouraged to return results within 14 calendar days after sample receipt. Both genotyping and reporting were evaluated separately. During the three external quality assessment rounds, mean genotype scores were all above the preset standard of 90% for all biomarkers. Participants were mainly challenged in case of rare insertions or deletions. Assessment of the written reports showed substantial progress between the external quality assessment schemes on multiple criteria. Several essential elements such as the clinical interpretation of test results and the reason for testing still require improvement by continued external quality assessment education. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. SciTech Connect

    Qu, Liujing; Li, Ge; Xia, Dan

    The atypical protein kinase C isoform PRKC iota (PRKCI) plays a key role in cell proliferation, differentiation, and carcinogenesis, and it has been shown to be a human oncogene. Here, we show that PRKCI overexpression in U2OS cells impaired functional autophagy in normal or cell stress conditions, as characterized by decreased levels of light chain 3B-II protein (LC3B-II) and weakened degradation of endogenous and exogenous autophagic substrates. Conversely, PRKCI knockdown by small interference RNA resulted in opposite effects. Additionally, we identified two novel PRKCI mutants, PRKCI{sup L485M} and PRKCI{sup P560R}, which induced autophagy and exhibited dominant negative effects. Further studiesmore » indicated that PRKCI knockdown–mediated autophagy was associated with the inactivation of phosphatidylinositol 3-kinase alpha/AKT–mammalian target of rapamycin (PIK3CA/AKT–MTOR) signaling. These data underscore the importance of PRKCI in the regulation of autophagy. Moreover, the finding may be useful in treating PRKCI-overexpressing carcinomas that are characterized by increased levels of autophagy. - Highlights: • The atypical protein kinase C iota isoform (PRKCI) is a human oncogene. • PRKCI overexpression impairs functional autophagy in U2OS cells. • It reduces LC3B-II levels and weakens SQSTM1 and polyQ80 aggregate degradation. • PRKCI knockdown has the opposite effect. • The effect of PRKCI knockdown is related to PIK3CA/AKT–MTOR signaling inactivation.« less

  6. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing

    PubMed Central

    Liu, Pengyuan; Morrison, Carl; Wang, Liang; Xiong, Donghai; Vedell, Peter; Cui, Peng; Hua, Xing; Ding, Feng; Lu, Yan; James, Michael; Ebben, John D.; Xu, Haiming; Adjei, Alex A.; Head, Karen; Andrae, Jaime W.; Tschannen, Michael R.; Jacob, Howard; Pan, Jing; Zhang, Qi; Van den Bergh, Francoise; Xiao, Haijie; Lo, Ken C.; Patel, Jigar; Richmond, Todd; Watt, Mary-Anne; Albert, Thomas; Selzer, Rebecca; Anderson, Marshall; Wang, Jiang; Wang, Yian; Starnes, Sandra; Yang, Ping; You, Ming

    2012-01-01

    Lung cancer is the leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Most lung cancer is caused by the accumulation of genomic alterations due to tobacco exposure. To uncover its mutational landscape, we performed whole-exome sequencing in 31 NSCLCs and their matched normal tissue samples. We identified both common and unique mutation spectra and pathway activation in lung adenocarcinomas and squamous cell carcinomas, two major histologies in NSCLC. In addition to identifying previously known lung cancer genes (TP53, KRAS, EGFR, CDKN2A and RB1), the analysis revealed many genes not previously implicated in this malignancy. Notably, a novel gene CSMD3 was identified as the second most frequently mutated gene (next to TP53) in lung cancer. We further demonstrated that loss of CSMD3 results in increased proliferation of airway epithelial cells. The study provides unprecedented insights into mutational processes, cellular pathways and gene networks associated with lung cancer. Of potential immediate clinical relevance, several highly mutated genes identified in our study are promising druggable targets in cancer therapy including ALK, CTNNA3, DCC, MLL3, PCDHIIX, PIK3C2B, PIK3CG and ROCK2. PMID:22510280

  7. Microarray-based identification of differentially expressed genes in extramammary Paget’s disease

    PubMed Central

    Lin, Jin-Ran; Liang, Jun; Zhang, Qiao-An; Huang, Qiong; Wang, Shang-Shang; Qin, Hai-Hong; Chen, Lian-Jun; Xu, Jin-Hua

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a rare cutaneous malignancy accounting for approximately 1-2% of vulvar cancers. The rarity of this disease has caused difficulties in characterization and the molecular mechanism underlying EMPD development remains largely unclear. Here we used microarray analysis to identify differentially expressed genes in EMPD of the scrotum comparing with normal epithelium from healthy donors. Agilent single-channel microarray was used to compare the gene expression between 6 EMPD specimens and 6 normal scrotum epithelium samples. A total of 799 up-regulated genes and 723 down-regulated genes were identified in EMPD tissues. Real-time PCR was conducted to verify the differential expression of some representative genes, including ERBB4, TCF3, PAPSS2, PIK3R3, PRLR, SULT1A1, TCF7L1, and CREB3L4. Generally, the real-time PCR results were consistent with microarray data, and the expression of ERBB4, PRLR, TCF3, PIK3R3, SULT1A1, and TCF7L1 was significantly overexpressed in EMPD (P<0.05). Moreover, the overexpression of PRLR in EMPD, a receptor for the anterior pituitary hormone prolactin (PRL), was confirmed by immunohistochemistry. These data demonstrate that the differentially expressed genes from the microarray-based identification are tightly associated with EMPD occurrence. PMID:26221264

  8. Somatic mutations in early onset luminal breast cancer

    PubMed Central

    de Lyra, Eduardo Carneiro; Hirata Katayama, Maria Lucia; Maistro, Simone; de Vasconcellos Valle, Pedro Wilson Mompean; de Lima Pereira, Gláucia Fernanda; Rodrigues, Lívia Munhoz; de Menezes Pacheco Serio, Pedro Adolpho; de Gouvêa, Ana Carolina Ribeiro Chaves; Geyer, Felipe Correa; Basso, Ricardo Alves; Pasini, Fátima Solange; del Pilar Esteves Diz, Maria; Brentani, Maria Mitzi; Guedes Sampaio Góes, João Carlos; Chammas, Roger; Boutros, Paul C.; Koike Folgueira, Maria Aparecida Azevedo

    2018-01-01

    Breast cancer arising in very young patients may be biologically distinct; however, these tumors have been less well studied. We characterized a group of very young patients (≤ 35 years) for BRCA germline mutation and for somatic mutations in luminal (HER2 negative) breast cancer. Thirteen of 79 unselected very young patients were BRCA1/2 germline mutation carriers. Of the non-BRCA tumors, eight with luminal subtype (HER2 negative) were submitted for whole exome sequencing and integrated with 29 luminal samples from the COSMIC database or previous literature for analysis. We identified C to T single nucleotide variants (SNVs) as the most common base-change. A median of six candidate driver genes was mutated by SNVs in each sample and the most frequently mutated genes were PIK3CA, GATA3, TP53 and MAP2K4. Potential cancer drivers affected in the present non-BRCA tumors include GRHL2, PIK3AP1, CACNA1E, SEMA6D, SMURF2, RSBN1 and MTHFD2. Sixteen out of 37 luminal tumors (43%) harbored SNVs in DNA repair genes, such as ATR, BAP1, ERCC6, FANCD2, FANCL, MLH1, MUTYH, PALB2, POLD1, POLE, RAD9A, RAD51 and TP53, and 54% presented pathogenic mutations (frameshift or nonsense) in at least one gene involved in gene transcription. The differential biology of luminal early-age onset breast cancer needs a deeper genomic investigation. PMID:29854292

  9. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    PubMed

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  10. [Aspirin and colorectal cancer].

    PubMed

    Grancher, Adrien; Michel, Pierre; Di Fiore, Frédéric; Sefrioui, David

    2018-02-01

    Colorectal cancer is a worldwide public health problem. Aspirin has been identified as a protective factor against the apparition of colorectal cancer. There are several mechanisms about the actions by aspirin on colorectal tumorogenesis. These are not perfectly known nowadays. On one hand, there are direct mechanisms on colorectal mucosa, on the other hand there are indirect mechanisms through platelet functions. Aspirin also plays a role by its anti-inflammatory action and the stimulation of antitumor immunity. Several studies show that long-term treatment with low-doses of aspirin decreases the incidence of adenomas and colorectal cancers. In the United States, aspirin is currently recommended for primary prevention of the risk of colorectal cancer in all patients aged 50 to 59, with a 10-year risk of cardiovascular event greater than 10 %. However, primary prevention with aspirin should not be a substitute for screening in colorectal cancer. Furthermore, aspirin seems to be beneficial when used in post-diagnosis of colorectal cancer. It could actually decrease the risk of metastasis in case of a localized colorectal cancer, and increase the survival in particular, concerning PIK3CA mutated tumors. The association of aspirin with neoadjuvant treatment of colorectal cancer by radiochimiotherapy seems to have beneficial effects. French prospective randomized study is currently being conducted to investigate postoperative aspirin in colorectal cancers with a PIK3CA mutation. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  11. Retreived bacteria from Noctiluca miliaris (green) bloom of the northeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Basu, Subhajit; Matondkar, S. G. Prabhu; Furtado, Irene

    2013-01-01

    In recent years, seasonal blooms of the dinoflagellate Noctiluca miliaris have appeared in the open-waters of the northern Arabian Sea (NAS). This study provides the first characterization of bacteria from a seasonal bloom of green Noctiluca of NAS (20°N-17°N and 64°E-70°E), during the spring-inter-monsoon cruise of Sagar Sampada 253, in March 2007. Bacterial growth as assessed by most-probable number (MPN) and plate counts, revealed `variable-physiotypes' over a wide range of salinities (0%-25% w/v NaCl), pH levels (5-8.5), and organic nutrient strengths, in comparison to non-bloom waters. MPN indices of bacteria in surface waters of bloom stations *DWK and *PRB, corresponded to (3.08-4.41)×103 cells/mL at 3.5% NaCl (w/v), and (2.82-9.49)×102 cells/mL at 25% (w/v) NaCl in tryptone-yeast extract broth (TYE). Plate counts were (1.12-4)×106 CFU/mL at 0% (w/v) NaCl, (1.28-3.9)×106 CFU/mL at 3.5% (w/v) NaCl, and (0.4-7)×104 CFU/mL at 25% NaCl (w/v) on TYE. One-tenth-strength Zobell's gave (0.6-3.74)×105 CFU/mL at pH 5 to (3.58-7.5)×105 CFU/mL at pH 8.5. These bacteria were identified to the genera Bacillus, Cellulomonas, Staphylococcus, Planococcus, Dietzia, Virgibacillus, Micrococcus, Sporosarcinae, Leucobacter, and Halomonas. The identity of three strains (GUFBSS253N2, GUFBSS253N30, and GUFBSS253N84) was confirmed through 16S rDNA sequence homology as Bacillus cohnii, Bacillus flexus, and Bacillus cereus. The ˜2-3-fold higher plate counts of culturable bacteria from the open-waters of the NAS indicate that these bacteria could critically determine the biogeochemical dynamics of the bloom and its milieu. The role of these bacteria in sustaining/terminating the bloom is under evaluation.

  12. Pathway level alterations rather than mutations in single genes predict response to HER2-targeted therapies in the neo-ALTTO trial.

    PubMed

    Shi, W; Jiang, T; Nuciforo, P; Hatzis, C; Holmes, E; Harbeck, N; Sotiriou, C; Peña, L; Loi, S; Rosa, D D; Chia, S; Wardley, A; Ueno, T; Rossari, J; Eidtmann, H; Armour, A; Piccart-Gebhart, M; Rimm, D L; Baselga, J; Pusztai, L

    2017-01-01

    We performed whole-exome sequencing of pretreatment biopsies and examined whether genome-wide metrics of overall mutational load, clonal heterogeneity or alterations at variant, gene, and pathway levels are associated with treatment response and survival. Two hundred and three biopsies from the NeoALTTO trial were analyzed. Mutations were called with MuTect, and Strelka, using pooled normal DNA. Associations between DNA alterations and outcome were evaluated by logistic and Cox-proportional hazards regression. There were no recurrent single gene mutations significantly associated with pathologic complete response (pCR), except PIK3CA [odds ratio (OR) = 0.42, P = 0.0185]. Mutations in 33 of 714 pathways were significantly associated with response, but different genes were affected in different individuals. PIK3CA was present in 23 of these pathways defining a ‘trastuzumab resistance-network’ of 459 genes. Cases with mutations in this network had low pCR rates to trastuzumab (2/50, 4%) compared with cases with no mutations (9/16, 56%), OR = 0.035; P < 0.001. Mutations in the ‘Regulation of RhoA activity’ pathway were associated with higher pCR rate to lapatinib (OR = 14.8, adjusted P = 0.001), lapatinib + trastuzumab (OR = 3.0, adjusted P = 0.09), and all arms combined (OR = 3.77, adjusted P = 0.02). Patients (n = 124) with mutations in the trastuzumab resistance network but intact RhoA pathway had 2% (1/41) pCR rate with trastuzumab alone (OR = 0.026, P = 0.001) but adding lapatinib increased pCR rate to 45% (17/38, OR = 1.68, P = 0.3). Patients (n = 46) who had no mutations in either gene set had 6% pCR rate (1/15) with lapatinib, but had the highest pCR rate, 52% (8/15) with trastuzumab alone. Mutations in the RhoA pathway are associated with pCR to lapatinib and mutations in a PIK3CA-related network are associated with resistance to trastuzumab. The combined mutation status of these two

  13. Somatic profiling of the epidermal growth factor receptor pathway in tumours from patients with advanced colorectal cancer, treated with chemotherapy ± cetuximab

    PubMed Central

    Smith, Christopher G.; Fisher, David; Claes, Bart; Maughan, Timothy S.; Idziaszczyk, Shelley; Peuteman, Gilian; Harris, Rebecca; James, Michelle D.; Meade, Angela; Jasani, Bharat; Adams, Richard A.; Kenny, Sarah; Kaplan, Richard; Lambrechts, Diether; Cheadle, Jeremy P.

    2013-01-01

    Purpose To study the somatic molecular profile of the epidermal growth factor receptor (EGFR) pathway in advanced CRC (aCRC), its relationship to prognosis, the site of the primary and metastases, and response to cetuximab. Experimental Design We used Sequenom and Pyrosequencing for high-throughput somatic profiling the EGFR pathway in 1,976 tumours from patients with aCRC from the COIN trial (oxaliplatin and fluoropyrimidine chemotherapy ±cetuximab). Correlations between mutations, clinico-pathological, response and survival data were carried out. Results Sequenom and Pyrosequencing had 99.0% (9961/10063) genotype concordance. We identified thirteen different KRAS mutations in 42.3% of aCRCs, two BRAF mutations in 9.0%, four NRAS mutations in 3.6% and five PIK3CA mutations in 12.7%. 4.2% of aCRCs had microsatellite instability (MSI). KRAS and PIK3CA exon 9, but not exon 20, mutations co-occurred (P=8.9×10−4) as did MSI and BRAF mutations (P=5.3×10−10). KRAS mutations were associated with right colon cancers (P=5.2×10−5) and BRAF mutations with right (P=7.2×10−5) and transverse colon (P=9.8×10−6) cancers. KRAS mutations were associated with lung-only metastases (P=2.3×10−4), BRAF mutations with peritoneal (P=9.2×10−4) and nodal-only (P=3.7×10−5) metastases, and MSI (BRAFWT) with nodal-only metastases (P=2.9×10−4). MSI (BRAFWT) was associated with worse survival (HR=1.89, 95% CI 1.30-2.76, P=8.5×10−4). No mutations, subsets of mutations, or MSI-status were associated with response to cetuximab. Conclusions Our data support a functional co-operation between KRAS and PIK3CA in colorectal tumourigenesis and link somatic profiles to the sites of metastases. MSI was associated with poor prognosis in advanced disease, and no individual somatic profile was associated with response to cetuximab in COIN. PMID:23741067

  14. Dual Inhibition of PI3K/Akt and mTOR by the Dietary Antioxidant, Delphinidin, Ameliorates Psoriatic Features In Vitro and in an Imiquimod-Induced Psoriasis-Like Disease in Mice

    PubMed Central

    Adhami, Vaqar M.; Esnault, Stephane; Sechi, Mario; Siddiqui, Imtiaz A.; Satyshur, Kenneth A.; Syed, Deeba N.; Dodwad, Shah-Jahan M.; Chaves-Rodriquez, Maria-Ines; Longley, B. Jack; Wood, Gary S.

    2017-01-01

    Abstract Aim: The treatment of psoriasis remains elusive, underscoring the need for identifying novel disease targets and mechanism-based therapeutic approaches. We recently reported that the PI3K/Akt/mTOR pathway that is frequently deregulated in many malignancies is also clinically relevant for psoriasis. We also provided rationale for developing delphinidin (Del), a dietary antioxidant for the management of psoriasis. This study utilized high-throughput biophysical and biochemical approaches and in vitro and in vivo models to identify molecular targets regulated by Del in psoriasis. Results: A kinome-level screen and Kds analyses against a panel of 102 human kinase targets showed that Del binds to three lipid (PIK3CG, PIK3C2B, and PIK3CA) and six serine/threonine (PIM1, PIM3, mTOR, S6K1, PLK2, and AURKB) kinases, five of which belong to the PI3K/Akt/mTOR pathway. Surface plasmon resonance and in silico molecular modeling corroborated Del's direct interactions with three PI3Ks (α/c2β/γ), mTOR, and p70S6K. Del treatment of interleukin-22 or TPA-stimulated normal human epidermal keratinocytes (NHEKs) significantly inhibited proliferation, activation of PI3K/Akt/mTOR components, and secretion of proinflammatory cytokines and chemokines. To establish the in vivo relevance of these findings, an imiquimod (IMQ)-induced Balb/c mouse psoriasis-like skin model was employed. Topical treatment of Del significantly decreased (i) hyperproliferation and epidermal thickness, (ii) skin infiltration by immune cells, (iii) psoriasis-related cytokines/chemokines, (iv) PI3K/Akt/mTOR pathway activation, and (v) increased differentiation when compared with controls. Innovation and Conclusion: Our observation that Del inhibits key kinases involved in psoriasis pathogenesis and alleviates IMQ-induced murine psoriasis-like disease suggests a novel PI3K/AKT/mTOR pathway modulator that could be developed to treat psoriasis. Antioxid. Redox Signal. 26, 49–69. PMID:27393705

  15. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review

    PubMed Central

    2014-01-01

    Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence

  16. Distinct Molecular Features of Different Macroscopic Subtypes of Colorectal Neoplasms

    PubMed Central

    Konda, Kenichi; Konishi, Kazuo; Yamochi, Toshiko; Ito, Yoichi M.; Nozawa, Hisako; Tojo, Masayuki; Shinmura, Kensuke; Kogo, Mari; Katagiri, Atsushi; Kubota, Yutaro; Muramoto, Takashi; Yano, Yuichiro; Kobayashi, Yoshiya; Kihara, Toshihiro; Tagawa, Teppei; Makino, Reiko; Takimoto, Masafumi; Imawari, Michio; Yoshida, Hitoshi

    2014-01-01

    Background Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs). Methods We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI]) and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers) alterations in 158 CRNs including 56 polypoid neoplasms (PNs), 25 granular type laterally spreading tumors (LST-Gs), 48 non-granular type LSTs (LST-NGs), 19 depressed neoplasms (DNs) and 10 small flat-elevated neoplasms (S-FNs) on the basis of macroscopic appearance. Results S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs) (P<0.001). By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively) (P<0.007). We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively) (P<0.005). Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05). PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41). Conclusion We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal

  17. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling.

    PubMed

    Han, Sang Wook; Hwang, Byung Kook

    2017-02-01

    Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant

  18. Genomic alterations in neuroendocrine cancers of the ovary.

    PubMed

    Yaghmour, George; Prouet, Philippe; Wiedower, Eric; Jamy, Omer Hassan; Feldman, Rebecca; Chandler, Jason C; Pandey, Manjari; Martin, Mike G

    2016-08-26

    As we have previously reported, small cell carcinoma of the ovary (SCCO) is a rare, aggressive form of ovarian cancer associated with poor outcomes. In an effort to identify new treatment options, we utilized comprehensive genomic profiling to assess the potential for novel therapies in SCCO. Patients with SCCO, SCCO-HT (hypercalcemic type), neuroendocrine tumors of the ovary (NET-O), and small cell carcinoma of the lung (SCLC) profiled by Caris Life Sciences between 2007-2015 were identified. Tumors were assessed with up to 21 IHC stains, in situ hybridization of cMET, EGFR, HER2 and PIK3CA, and next-generation sequencing (NGS) as well as Sanger sequencing of selected genes. Forty-six patients with SCCO (10 SCCO, 18 SCCO-HT, 18 NET-O) were identified as well as 58 patients with SCLC for comparison. Patients with SCCO and SCCO-HT were younger (median 42 years [range 12-75] and 26 years [range 8-40], respectively) than patients with NET-O 62 [range 13-76] or SCLC 66 [range 36-86]. SCCO patients were more likely to be metastatic (70 %) than SCCO-HT (50 %) or NET-O (33 %) patients, but at a similar rate to SCLC patients (65 %). PD1 expression varied across tumor type with SCCO (100 %), SCCO-HT (60 %), NET-O (33 %) vs SCLC (42 %). PDL1 expression also varied with SCCO (50 %), SCCO-HT (20 %), NET-O (33 %) and SCLC (0 %). No amplifications were identified in cMET, EGFR, or HER2 and only 1 was found in PIK3CA (NET-O). Actionable mutations were rare with 1 patient with SCCO having a BRCA2 mutation and 1 patient with NET-O having a PIK3CA mutation. No other actionable mutations were identified. No recurrent actionable mutations or rearrangements were identified using this platform in SCCO. IHC patterns may help guide the use of chemotherapy in these rare tumors.

  19. Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform.

    PubMed

    Dhakal, Dipesh; Chaudhary, Amit Kumar; Yi, Jeong Sang; Pokhrel, Anaya Raj; Shrestha, Biplav; Parajuli, Prakash; Shrestha, Anil; Yamaguchi, Tokutaro; Jung, Hye Jin; Kim, Seung-Young; Kim, Byung-Gee; Sohng, Jae Kyung

    2016-12-01

    Nargenicin A1, an antibacterial produced by Nocardia sp. CS682 (KCTC 11297BP), demonstrates effective activity against various Gram-positive bacteria. Hence, we attempted to enhance nargenicin A1 production by utilizing the cumulative effect of synthetic biology, metabolic engineering and statistical media optimization strategies. To facilitate the modular assembly of multiple genes for genetic engineering in Nocardia sp. CS682, we constructed a set of multi-monocistronic vectors, pNV18L1 and pNV18L2 containing hybrid promoter (derived from ermE* and promoter region of neo r ), ribosome binding sites (RBS), and restriction sites for cloning, so that each cloned gene was under its own promoter and RBS. The multi-monocistronic vector, pNV18L2 containing transcriptional terminator showed better efficiency in reporter gene assay. Thus, multiple genes involved in the biogenesis of pyrrole moiety (ngnN2, ngnN3, ngnN4, and ngnN5 from Nocardia sp. CS682), glucose utilization (glf and glk from Zymomonas mobilis), and malonyl-CoA synthesis (accA2 and accBE from Streptomyces coelicolor A3 (2)), were cloned in pNV18L2. Further statistical optimization of specific precursors (proline and glucose) and their feeding time led to ~84.9 mg/L nargenicin from Nocardia sp. GAP, which is ~24-fold higher than Nocardia sp. CS682 (without feeding). Furthermore, pikC from Streptomyces venezuelae was expressed to generate Nocardia sp. PikC. Nargenicin A1 acid was characterized as novel derivative of nargenicin A1 produced from Nocardia sp. PikC by mass spectrometry (MS) and nuclear magnetic resonance (NMR) analyses. We also performed comparative analysis of the anticancer and antibacterial activities of nargenicin A1 and nargenicin A1 acid, which showed a reduction in antibacterial potential for nargenicin A1 acid. Thus, the development of an efficient synthetic biological platform provided new avenues for enhancing or structurally diversifying nargenicin A1 by means of pathway designing

  20. Integrated genomic and immunophenotypic classification of pancreatic cancer reveals three distinct subtypes with prognostic/predictive significance.

    PubMed

    Wartenberg, Martin; Cibin, Silvia; Zlobec, Inti; Vassella, Erik; Eppenberger-Castori, Serenella M M; Terracciano, Luigi; Eichmann, Micha; Worni, Mathias; Gloor, Beat; Perren, Aurel; Karamitopoulou, Eva

    2018-04-16

    Current clinical classification of pancreatic ductal adenocarcinoma (PDAC) is unable to predict prognosis or response to chemo- or immunotherapy and does not take into account the host reaction to PDAC-cells. Our aim is to classify PDAC according to host- and tumor-related factors into clinically/biologically relevant subtypes by integrating molecular and microenvironmental findings. A well-characterized PDAC-cohort (n=110) underwent next-generation sequencing with a hotspot cancer panel, while Next-generation Tissue-Microarrays were immunostained for CD3, CD4, CD8, CD20, PD-L1, p63, hyaluronan-mediated motility receptor (RHAMM) and DNA mismatch-repair proteins. Previous data on FOXP3 were integrated. Immune-cell counts and protein expression were correlated with tumor-derived driver mutations, clinicopathologic features (TNM 8. 2017), survival and epithelial-mesenchymal-transition (EMT)-like tumor budding.  Results: Three PDAC-subtypes were identified: the "immune-escape" (54%), poor in T- and B-cells and enriched in FOXP3+Tregs, with high-grade budding, frequent CDKN2A- , SMAD4- and PIK3CA-mutations and poor outcome; the "immune-rich" (35%), rich in T- and B-cells and poorer in FOXP3+Tregs, with infrequent budding, lower CDKN2A- and PIK3CA-mutation rate and better outcome and a subpopulation with tertiary lymphoid tissue (TLT), mutations in DNA damage response genes (STK11, ATM) and the best outcome; and the "immune-exhausted" (11%) with immunogenic microenvironment and two subpopulations: one with PD-L1-expression and high PIK3CA-mutation rate and a microsatellite-unstable subpopulation with high prevalence of JAK3-mutations. The combination of low budding, low stromal FOXP3-counts, presence of TLTs and absence of CDKN2A-mutations confers significant survival advantage in PDAC-patients. Immune host responses correlate with tumor characteristics leading to morphologically recognizable PDAC-subtypes with prognostic/predictive significance. Copyright ©2018

  1. TU-CD-BRB-07: Identification of Associations Between Radiologist-Annotated Imaging Features and Genomic Alterations in Breast Invasive Carcinoma, a TCGA Phenotype Research Group Study

    SciTech Connect

    Rao, A; Net, J; Brandt, K

    2015-06-15

    Purpose: To determine associations between radiologist-annotated MRI features and genomic measurements in breast invasive carcinoma (BRCA) from the Cancer Genome Atlas (TCGA). Methods: 98 TCGA patients with BRCA were assessed by a panel of radiologists (TCGA Breast Phenotype Research Group) based on a variety of mass and non-mass features according to the Breast Imaging Reporting and Data System (BI-RADS). Batch corrected gene expression data was obtained from the TCGA Data Portal. The Kruskal-Wallis test was used to assess correlations between categorical image features and tumor-derived genomic features (such as gene pathway activity, copy number and mutation characteristics). Image-derived features weremore » also correlated with estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2/neu) status. Multiple hypothesis correction was done using Benjamini-Hochberg FDR. Associations at an FDR of 0.1 were selected for interpretation. Results: ER status was associated with rim enhancement and peritumoral edema. PR status was associated with internal enhancement. Several components of the PI3K/Akt pathway were associated with rim enhancement as well as heterogeneity. In addition, several components of cell cycle regulation and cell division were associated with imaging characteristics.TP53 and GATA3 mutations were associated with lesion size. MRI features associated with TP53 mutation status were rim enhancement and peritumoral edema. Rim enhancement was associated with activity of RB1, PIK3R1, MAP3K1, AKT1,PI3K, and PIK3CA. Margin status was associated with HIF1A/ARNT, Ras/ GTP/PI3K, KRAS, and GADD45A. Axillary lymphadenopathy was associated with RB1 and BCL2L1. Peritumoral edema was associated with Aurora A/GADD45A, BCL2L1, CCNE1, and FOXA1. Heterogeneous internal nonmass enhancement was associated with EGFR, PI3K, AKT1, HF/MET, and EGFR/Erbb4/neuregulin 1. Diffuse nonmass enhancement was associated with HGF/MET/MUC20

  2. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells.

    PubMed

    Royer, Carine; Lucas, Thaís F G; Lazari, Maria F M; Porto, Catarina S

    2012-04-01

    The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear

  3. ECR-MAPK regulation in liver early development.

    PubMed

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  4. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton.

    PubMed

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A; Lien, Evan C; Albeck, John G; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R; Tolan, Dean R; Grant, Aaron K; Needleman, Daniel J; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-01-28

    The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  6. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin cytoskeleton

    PubMed Central

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A.; Lien, Evan C.; Albeck, John G.; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R.; Tolan, Dean R.; Grant, Aaron K.; Needleman, Daniel J.; Asara, John M.; Cantley, Lewis C.

    2016-01-01

    Summary The Phosphoinositide 3-Kinase (PI3K) pathway regulates multiple steps in glucose metabolism but also cytoskeletal functions, such as cell movement and attachment. Here we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A and an increase in aldolase activity. Consistently, PI3K-, but not AKT-, SGK- or mTOR-inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point towards a master regulatory function of PI3K that integrates an epithelial cell’s metabolism and its form, shape and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. PMID:26824656

  7. Activated phosphoinositide 3-kinase δ syndrome presenting with gut-associated T-cell lymphoproliferative disease.

    PubMed

    Teranishi, Hideto; Ishimura, Masataka; Koga, Yuuki; Eguchi, Katsuhide; Sonoda, Motoshi; Kobayashi, Tetsuko; Shiraishi, Satoru; Nakashima, Kentaro; Ikegami, Kouji; Aman, Murasaki; Yamamoto, Hidetaka; Takada, Hidetoshi; Ohga, Shouichi

    2017-01-01

    A 13-year-old boy was admitted to our hospital because of persistent diarrhea, abdominal pain, and bloody stools. The patient had experienced repeated hospitalizations for the treatment of respiratory infections since early childhood. Colonoscopic and pathological studies led to a diagnosis of gut-associated T-cell lymphoproliferative disease (T-cell LPD). Laboratory data showed T-lymphocytopenia (492/µl), increased serum IgG levels (1,984 mg/dl), and low serum antibody titers for specific pathogens. Combined immunodeficiency accompanied by T-LPD suggested the diagnosis of activated PI3Kδ syndrome (APDS). Genetic analyses identified a heterozygous mutation of the PIK3CD gene (c.1573 G to A p.Glu525Lys). Although prednisolone and cyclosporine therapy has controlled the T-cell LPD, this patient awaits allogeneic hematopoietic cell transplantation to achieve a complete cure of his APDS.

  8. Integrative Clinical Genomics of Metastatic Cancer

    PubMed Central

    Robinson, Dan R.; Wu, Yi-Mi; Lonigro, Robert J.; Vats, Pankaj; Cobain, Erin; Everett, Jessica; Cao, Xuhong; Rabban, Erica; Kumar-Sinha, Chandan; Raymond, Victoria; Schuetze, Scott; Alva, Ajjai; Siddiqui, Javed; Chugh, Rashmi; Worden, Francis; Zalupski, Mark M.; Innis, Jeffrey; Mody, Rajen J.; Tomlins, Scott A.; Lucas, David; Baker, Laurence H.; Ramnath, Nithya; Schott, Ann F.; Hayes, Daniel F.; Vijai, Joseph; Offit, Kenneth; Stoffel, Elena M.; Roberts, J. Scott; Smith, David C.; Kunju, Lakshmi P.; Talpaz, Moshe; Cieslik, Marcin; Chinnaiyan, Arul M.

    2017-01-01

    SUMMARY Metastasis is the primary cause of cancer-related deaths. While The Cancer Genome Atlas (TCGA) has sequenced primary tumor types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here, we perform whole exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing for the identification of gene fusions, pathway activation, and immune profiling. Integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers. PMID:28783718

  9. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics.

    PubMed

    Best, Myron G; Sol, Nik; Kooi, Irsan; Tannous, Jihane; Westerman, Bart A; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Koster, Jan; Ylstra, Bauke; Ameziane, Najim; Dorsman, Josephine; Smit, Egbert F; Verheul, Henk M; Noske, David P; Reijneveld, Jaap C; Nilsson, R Jonas A; Tannous, Bakhos A; Wesseling, Pieter; Wurdinger, Thomas

    2015-11-09

    Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based "liquid biopsies". Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics

    PubMed Central

    Best, Myron G.; Sol, Nik; Kooi, Irsan; Tannous, Jihane; Westerman, Bart A.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Koster, Jan; Ylstra, Bauke; Ameziane, Najim; Dorsman, Josephine; Smit, Egbert F.; Verheul, Henk M.; Noske, David P.; Reijneveld, Jaap C.; Nilsson, R. Jonas A.; Tannous, Bakhos A.; Wesseling, Pieter; Wurdinger, Thomas

    2015-01-01

    Summary Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and metastasized tumors from 55 healthy individuals with 96% accuracy. Across six different tumor types, the location of the primary tumor was correctly identified with 71% accuracy. Also, MET or HER2-positive, and mutant KRAS, EGFR, or PIK3CA tumors were accurately distinguished using surrogate TEP mRNA profiles. Our results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”. PMID:26525104

  11. EGFR G796D mutation mediates resistance to osimertinib.

    PubMed

    Zheng, Di; Hu, Min; Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-07-25

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance.

  12. EGFR G796D mutation mediates resistance to osimertinib

    PubMed Central

    Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-01-01

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance. PMID:28572531

  13. Intercomparison of four regional climate models for the German State of Saxonia

    NASA Astrophysics Data System (ADS)

    Kreienkamp, F.; Spekat, A.; Enke, W.

    2009-09-01

    Results from four regional climate models which focus on Central Europe are presented: CCLM, the climate version of the German Weather Service's Local Model - REMO, the regional dynamic model from the Max Planck Institute for Meteorology in Hamburg - STAR, the statistical model developed at the PIK Potsdam Institute and WETTREG, the statistic-dynamic model developed by the company CEC Potsdam. For the area of the German State of Saxonia a host of properties and indicators were analyzed aiming to show the models' abilities to reconstruct the current climate and compare climate model scenarios. These include a group of thermal indicators, such as the number of ice, frost, summer and hot days, the number of tropical nights; then there are hydrometeorological indicators such as the exceedance of low and high precipitation thresholds; humidity, cloudiness and wind indicators complement the array. A selection of them showing similarities and differences of the models investigated will be presented.

  14. Sequencing the head and neck cancer genome: implications for therapy

    PubMed Central

    Sun, Wenyue; Califano, Joseph A.

    2015-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a disease with significant morbidity and mortality. The advancement of next-generation sequencing technologies now enables the landscape of genetic alterations in HNSCCs to be deciphered. In this review, we describe the mutation spectrum discovered in HNSCCs, especially human papilloma virus (HPV)- and/or tobacco smoke exposure–associated HNSCCs. We also describe related research from two independent investigators and from the Cancer Genome Atlas (TCGA). Emphasis is placed on the therapeutic implications of genes frequently altered in HNSCCs (i.e., TP53, PIK3CA, and NOTCH1) and their corresponding pathways, with a particular focus on recent findings of NOTCH pathway activation in HNSCC. We also discuss the application of integrated genomic pathway–based analysis for precision cancer therapy in HNSCC. PMID:25440877

  15. Dysregulation of the Phosphatidylinositol 3-kinase Pathway in Thyroid Neoplasia

    PubMed Central

    Paes, John E.; Ringel, Matthew D.

    2008-01-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is an important regulator of many cellular events, including apoptosis, proliferation, and motility. Enhanced activation of this pathway can occur through several mechanisms, such as inactivation of its negative regulator, phosphatase and tensin homolog deleted on chromosome ten (PTEN) and activating mutations and gene amplification of the gene encoding the catalytic subunit of PI3K (PIK3CA). These genetic abnormalities have been particularly associated with follicular thyroid neoplasia and anaplastic thyroid cancer, suggesting an important role for PI3K signaling in these disorders. In this review, the role of PI3K pathway activation in thyroid cancer will be discussed, with a focus on recent advances. PMID:18502332

  16. Colorectal Liver Metastases: Does the Future of Precision Medicine Lie in Genetic Testing?

    PubMed

    Barbon, Carlotta; Margonis, Georgios Antonios; Andreatos, Nikolaos; Rezaee, Neda; Sasaki, Kazunari; Buettner, Stefan; Damaskos, Christos; Pawlik, Timothy M; He, Jin; Wolfgang, Christopher L; Weiss, Matthew J

    2018-04-11

    Colorectal liver metastases (CRLM) present an important clinical challenge in both surgical and medical oncology. Despite improvements in management, survival among patients undergoing resection of CRLM is still very variable and there is a paucity of clinical trial data and reliable biomarkers that could guide prognostic forecasts, treatment selection, and follow-up. Fortunately, recent advances in molecular biology and tumor sequencing have identified a number of critical genetic loci and proliferation markers that may hold the key to understanding the biologic behavior of CRLM; specifically, mutations of KRAS, BRAF, TP53, PIK3CA, APC, expression of Ki-67, and the presence of microsatellite instability appear to have a decisive impact on prognosis and response to treatment in patients with CRLM. While the applicability of genetic biomarkers in everyday clinical practice remains conditional on the development of inexpensive bedside sequencing, targeted therapies, and the conduct of appropriate clinical trials, the promise of personalized treatment may be closer to realization than ever before.

  17. Functional genomic Landscape of Human Breast Cancer drivers, vulnerabilities, and resistance

    PubMed Central

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R.; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E.; Bader, Gary D.; Mills, Gordon B.; Pe’er, Dana; Moffat, Jason; Neel, Benjamin G.

    2016-01-01

    Summary Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations, and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors. PMID:26771497

  18. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.

    PubMed

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E; Bader, Gary D; Mills, Gordon B; Pe'er, Dana; Moffat, Jason; Neel, Benjamin G

    2016-01-14

    Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole-genome small hairpin RNA (shRNA) "dropout screens" on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate "drivers," and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer and PIK3CA mutations as a resistance determinant for BET-inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Targeted Therapies in Non-Small Cell Lung Cancer-Beyond EGFR and ALK.

    PubMed

    Rothschild, Sacha I

    2015-05-26

    Systemic therapy for non-small cell lung cancer (NSCLC) has undergone a dramatic paradigm shift over the past decade. Advances in our understanding of the underlying biology of NSCLC have revealed distinct molecular subtypes. A substantial proportion of NSCLC depends on oncogenic molecular aberrations (so-called "driver mutations") for their malignant phenotype. Personalized therapy encompasses the strategy of matching these subtypes with effective targeted therapies. EGFR mutations and ALK translocation are the most effectively targeted oncogenes in NSCLC. EGFR mutations and ALK gene rearrangements are successfully being targeted with specific tyrosine kinase inhibitors. The number of molecular subgroups of NSCLC continues to grow. The scope of this review is to discuss recent data on novel molecular targets as ROS1, BRAF, KRAS, HER2, c-MET, RET, PIK3CA, FGFR1 and DDR2. Thereby the review will focus on therapeutic strategies targeting these aberrations. Moreover, the emerging challenge of acquired resistance to initially effective therapies will be discussed.

  20. Theoretical calculation of the cratering on Ida, Mathilde, Eros and Gaspra

    NASA Astrophysics Data System (ADS)

    Jeffers, S. V.; Asher, D. J.

    2003-07-01

    The main influences on crater size distributions are investigated by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY numerical integrator. An efficient, Öpik-type, collision code enables the distribution of impact velocities and the overall impact probability to be found. When combined with a crater scaling law and an impactor size distribution, using a Monte Carlo method, this yields a crater size distribution. The cratering time-scale is longer for Ida than either Gaspra or Mathilde, though it is harder to constrain for Eros due to the chaotic variation of its orbital elements. The slopes of the crater size distribution are in accord with observations.

  1. Type II thioesterase gene (ECO-orf27) from Amycolatopsis orientalis influences production of the polyketide antibiotic, ECO-0501 (LW01).

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2012-11-01

    ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.

  2. Integrated Molecular Characterization of Uterine Carcinosarcoma.

    PubMed

    Cherniack, Andrew D; Shen, Hui; Walter, Vonn; Stewart, Chip; Murray, Bradley A; Bowlby, Reanne; Hu, Xin; Ling, Shiyun; Soslow, Robert A; Broaddus, Russell R; Zuna, Rosemary E; Robertson, Gordon; Laird, Peter W; Kucherlapati, Raju; Mills, Gordon B; Weinstein, John N; Zhang, Jiashan; Akbani, Rehan; Levine, Douglas A

    2017-03-13

    We performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. LPJmL4 - a dynamic global vegetation model with managed land - Part 2: Model evaluation

    NASA Astrophysics Data System (ADS)

    Schaphoff, Sibyll; Forkel, Matthias; Müller, Christoph; Knauer, Jürgen; von Bloh, Werner; Gerten, Dieter; Jägermeyr, Jonas; Lucht, Wolfgang; Rammig, Anja; Thonicke, Kirsten; Waha, Katharina

    2018-04-01

    The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and the potential impacts of global environmental change. A comprehensive model description of the new model version, LPJmL4, is provided in a companion paper (Schaphoff et al., 2018c). Here, we provide a full picture of the model performance, going beyond standard benchmark procedures and give hints on the strengths and shortcomings of the model to identify the need for further model improvement. Specifically, we evaluate LPJmL4 against various datasets from in situ measurement sites, satellite observations, and agricultural yield statistics. We apply a range of metrics to evaluate the quality of the model to simulate stocks and flows of carbon and water in natural and managed ecosystems at different temporal and spatial scales. We show that an advanced phenology scheme improves the simulation of seasonal fluctuations in the atmospheric CO2 concentration, while the permafrost scheme improves estimates of carbon stocks. The full LPJmL4 code including the new developments will be supplied open source through pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL. We hope that this will lead to new model developments and applications that improve the model performance and possibly build up a new understanding of the terrestrial biosphere.

  4. LPJmL4 - a dynamic global vegetation model with managed land - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Schaphoff, Sibyll; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten; Biemans, Hester; Forkel, Matthias; Gerten, Dieter; Heinke, Jens; Jägermeyr, Jonas; Knauer, Jürgen; Langerwisch, Fanny; Lucht, Wolfgang; Müller, Christoph; Rolinski, Susanne; Waha, Katharina

    2018-04-01

    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.

  5. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer.

    PubMed

    Petty, Russell D; Dahle-Smith, Asa; Stevenson, David A J; Osborne, Aileen; Massie, Doreen; Clark, Caroline; Murray, Graeme I; Dutton, Susan J; Roberts, Corran; Chong, Irene Y; Mansoor, Wasat; Thompson, Joyce; Harrison, Mark; Chatterjee, Anirban; Falk, Stephen J; Elyan, Sean; Garcia-Alonso, Angel; Fyfe, David Walter; Wadsley, Jonathan; Chau, Ian; Ferry, David R; Miedzybrodzka, Zosia

    2017-07-10

    Purpose The Cancer Esophagus Gefitinib trial demonstrated improved progression-free survival with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib relative to placebo in patients with advanced esophageal cancer who had disease progression after chemotherapy. Rapid and durable responses were observed in a minority of patients. We hypothesized that genetic aberration of the EGFR pathway would identify patients benefitting from gefitinib. Methods A prespecified, blinded molecular analysis of Cancer Esophagus Gefitinib trial tumors was conducted to compare efficacy of gefitinib with that of placebo according to EGFR copy number gain (CNG) and EGFR, KRAS, BRAF, and PIK3CA mutation status. EGFR CNG was determined by fluorescent in situ hybridization (FISH) using prespecified criteria and EGFR FISH-positive status was defined as high polysomy or amplification. Results Biomarker data were available for 340 patients. In EGFR FISH-positive tumors (20.2%), overall survival was improved with gefitinib compared with placebo (hazard ratio [HR] for death, 0.59; 95% CI, 0.35 to 1.00; P = .05). In EGFR FISH-negative tumors, there was no difference in overall survival with gefitinib compared with placebo (HR for death, 0.90; 95% CI, 0.69 to 1.18; P = .46). Patients with EGFR amplification (7.2%) gained greatest benefit from gefitinib (HR for death, 0.21; 95% CI, 0.07 to 0.64; P = .006). There was no difference in overall survival for gefitinib versus placebo for patients with EGFR, KRAS, BRAF, and PIK3CA mutations, or for any mutation versus none. Conclusion EGFR CNG assessed by FISH appears to identify a subgroup of patients with esophageal cancer who may benefit from gefitinib as a second-line treatment. Results of this study suggest that anti-EGFR therapies should be investigated in prospective clinical trials in different settings in EGFR FISH-positive and, in particular, EGFR-amplified esophageal cancer.

  6. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas

    PubMed Central

    Showler, Kaye; Nishimura, Mayumi; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J.; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro

    2017-01-01

    Abstract The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. PMID:27738081

  7. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA.

    PubMed

    Nguyen, Anh H; Sim, Sang Jun

    2015-05-15

    Circulating tumor DNA (ctDNA) bearing tumor-specific mutation and methylation are promising biomarkers for noninvasive cancer assessment. However, existing methods for ctDNA detection are restricted to genetic mutations. Recently, nanoplasmonics has emerged as a platform for one-step dual detection with high sensitivity and specificity. Here we present a strategy for ultrasensitive detection of tumor-specific mutations (E542K and E545K) and methylation of ctDNA of PIK3CA gene based on localized surface plasmon resonance (LSPR) and the coupling plasmon mode of gold nanoparticles (AuNPs). Peptide nucleic acids (PNA) is used as a probe to capture and enrich the 69-bp PIK3CA ctDNA. The exposure of PNA-probed AuNPs to 200 fM ctDNA generates LSPR-peak shift of 4.3 nm, corresponding to the primary response. Immunogold colloids are exploited as methylation detectors and plasmon coupling based enhancement for secondary response. LSPR-peak shifted from 4.3 nm to 11.4 nm upon the immunogold colloids binding to two methylcytosines (mCpG), which is an approximately 107% increase, compared to that of the primary response. This enhancement leads to four times (~50 fM) improvement of sensitivity and because of two mCpG sites, ctDNA was detected. These results demonstrate that the sensor can simultaneously detect the hot-spot mutation and epigenetic changes on the ctDNA. Promisingly, other specific-tumor mutants and epigenetic changes can be detected at low concentration with this platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Activation of the PI3K/AKT pathway induces urothelial carcinoma of the renal pelvis: identification in human tumors and confirmation in animal models.

    PubMed

    Qian, Chao-Nan; Furge, Kyle A; Knol, Jared; Huang, Dan; Chen, Jindong; Dykema, Karl J; Kort, Eric J; Massie, Aaron; Khoo, Sok Kean; Vanden Beldt, Kristin; Resau, James H; Anema, John; Kahnoski, Richard J; Morreau, Hans; Camparo, Philippe; Comperat, Eva; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Vieillefond, Annick; Eng, Charis; Williams, Bart O; Teh, Bin Tean

    2009-11-01

    Urothelial carcinoma of the renal pelvis is a deadly disease with an unclear tumorigenic mechanism. We conducted gene expression profiling on a set of human tumors of this type and identified a phosphatidylinositol 3-kinase (PI3K)/AKT activation expression signature in 76.9% (n = 13) of our samples. Sequence analysis found both activating mutations of PIK3CA (13.6%, n = 22) and loss of heterozygosity at the PTEN locus (25%, n = 8). In contrast, none of the other subtypes of kidney neoplasms (e.g., clear-cell renal cell carcinoma) harbored PIK3CA mutations (n = 87; P < 0.001). Immunohistochemical analysis of urothelial carcinoma samples found loss of PTEN protein expression (36.4%, n = 11) and elevation of phosphorylated mammalian target of rapamycin (mTOR; 63.6%, n = 11). To confirm the role of the PI3K/AKT pathway in urothelial carcinoma, we generated mice containing biallelic inactivation of Pten in the urogenital epithelia. These mice developed typical renal pelvic urothelial carcinomas, with an incidence of 57.1% in mice older than 1 year. Laser capture microdissection followed by PCR confirmed the deletion of Pten exons 4 and 5 in the animal tumor cells. Immunohistochemical analyses showed increased phospho-mTOR and phospho-S6K levels in the animal tumors. Renal lymph node metastases were found in 15.8% of the animals with urothelial carcinoma. In conclusion, we identified and confirmed an important role for the PI3K/AKT pathway in the development of urothelial carcinoma and suggested that inhibitors of this pathway (e.g., mTOR inhibitor) may serve as effective therapeutic agents.

  9. Activation of the PI3K/AKT pathway induces urothelial carcinoma of the renal pelvis: Identification in human tumors and confirmation in animal models

    PubMed Central

    Qian, Chao-Nan; Furge, Kyle A.; Knol, Jared; Huang, Dan; Chen, Jindong; Dykema, Karl J.; Kort, Eric J.; Massie, Aaron; Khoo, Sok Kean; VandenBeldt, Kristin; Resau, James H.; Anema, John; Kahnoski, Richard J.; Morreau, Hans; Camparo, Philippe; Comperat, Eva; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Vieillefond, Annick; Eng, Charis; Williams, Bart O.; Teh, Bin Tean

    2009-01-01

    Urothelial carcinoma of the renal pelvis is a deadly disease with an unclear tumorigenic mechanism. We conducted gene expression profiling on a set of human tumors of this type, and identified a PI3K/AKT activation expression signature in 76.9% (n=13) of our samples. Sequence analysis found both activating mutations of PIK3CA (13.6%, n = 22) and loss of heterozygosity at the PTEN locus (25%, n = 8). In contrast, none of the other subtypes of kidney neoplasms (e.g., clear cell renal cell carcinoma) harbored PIK3CA mutations (n = 87; P < 0.001). Immunohistochemical analysis of urothelial carcinoma samples found loss of PTEN protein expression (36.4%, n = 11) and elevation of phospho-mTOR (63.6%, n = 11). To confirm the role of the PI3K/AKT pathway in urothelial carcinoma, we generated mice containing biallelic inactivation of Pten in the urogenital epithelia. These mice developed typical renal pelvic urothelial carcinomas, with an incidence of 57.1% in mice older than one year. Laser capture microdissection followed by PCR confirmed the deletion of Pten exons 4 and 5 in the animal tumor cells. Immunohistochemical analyses demonstrated increased phospho-mTOR and phospho-S6K levels in the animal tumors. Renal lymph node metastases were found in 15.8% of the animals with urothelial carcinoma. In conclusion, we identified and confirmed an important role for the PI3K/AKT pathway in the development of urothelial carcinoma and suggested that inhibitors of this pathway (e.g. mTOR inhibitor) may serve as effective therapeutic agents. PMID:19843858

  10. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle.

    PubMed

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan; Mortensen, Brynjulf; Grarup, Niels; Friedrichsen, Martin; Jørgensen, Torben; Lauritzen, Torsten; Wojtaszewski, Jørgen F P; Pedersen, Oluf; Hansen, Torben; Vaag, Allan

    2010-04-01

    Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp. Basal and insulin-stimulated biopsies were taken from the vastus lateralis muscle, and tissue p110beta and p85alpha proteins were measured by Western blotting. The genetic association with type 2 diabetes and quantitative metabolic traits was investigated in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: -16%, P(add) = 0.004) during high physiological insulin infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact with rs361072 on these traits. Our study suggests that the minor G allele of PIK3CB rs361072 associates with decreased muscle p85alpha:p110beta ratio and lower hepatic glucose production at high plasma insulin levels. However, no impact on type 2 diabetes prevalence was found.

  11. Analysis of genes involved in the PI3K/Akt pathway in radiation- and MNU-induced rat mammary carcinomas.

    PubMed

    Showler, Kaye; Nishimura, Mayumi; Daino, Kazuhiro; Imaoka, Tatsuhiko; Nishimura, Yukiko; Morioka, Takamitsu; Blyth, Benjamin J; Kokubo, Toshiaki; Takabatake, Masaru; Fukuda, Maki; Moriyama, Hitomi; Kakinuma, Shizuko; Fukushi, Masahiro; Shimada, Yoshiya

    2017-03-01

    The PI3K/AKT pathway is one of the most important signaling networks in human breast cancer, and since it was potentially implicated in our preliminary investigations of radiation-induced rat mammary carcinomas, our aim here was to verify its role. We included mammary carcinomas induced by the chemical carcinogen 1-methyl-1-nitrosourea to determine whether any changes were radiation-specific. Most carcinomas from both groups showed activation of the PI3K/AKT pathway, but phosphorylation of AKT1 was often heterogeneous and only present in a minority of carcinoma cells. The negative pathway regulator Inpp4b was significantly downregulated in both groups, compared with in normal mammary tissue, and radiation-induced carcinomas also showed a significant decrease in Pten expression, while the chemically induced carcinomas showed a decrease in Pik3r1 and Pdk1. Significant upregulation of the positive regulators Erbb2 and Pik3ca was observed only in chemically induced carcinomas. However, no genes showed clear correlations with AKT phosphorylation levels, except in individual carcinomas. Only rare carcinomas showed mutations in PI3K/AKT pathway genes, yet these carcinomas did not exhibit stronger AKT phosphorylation. Thus, while AKT phosphorylation is a common feature of rat mammary carcinomas induced by radiation or a canonical chemical carcinogen, the mutation of key genes in the pathways or permanent changes to gene expression of particular signaling proteins do not explain the pathway activation in the advanced cancers. Although AKT signaling likely facilitates cancer development and growth in rat mammary carcinomas, it is unlikely that permanent disruption of the PI3K/AKT pathway genes is a major causal event in radiation carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  12. ESR1 Mutations Affect Anti-proliferative Responses to Tamoxifen through Enhanced Cross-Talk with IGF Signaling

    PubMed Central

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Ando’, Sebastiano; Fuqua, Suzanne AW

    2017-01-01

    It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers, however we do not yet know how to best treat these patients. We have modeled the three most frequent hormone binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR we identified mutations at high frequencies ranging from 12% for Y537N, 5% for Y537S, and 2% for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort, and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  13. Maintenance Treatment with Cetuximab and BAY86-9766 Increases Antitumor Efficacy of Irinotecan plus Cetuximab in Human Colorectal Cancer Xenograft Models.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Cardone, Claudia; Normanno, Nicola; Vitagliano, Donata; Morgillo, Floriana; Fenizia, Francesca; Lambiase, Matilde; Formisano, Luigi; Bianco, Roberto; Ciardiello, Davide; Ciardiello, Fortunato

    2015-09-15

    The use of cetuximab in the treatment of metastatic colorectal cancer is limited by development of resistance. We have investigated in three models of highly epidermal growth factor receptor (EGFR)-dependent colorectal cancer xenografts, the effect of maintenance therapy with different kinase inhibitors alone or in combination with cetuximab, after cytotoxic treatment induction with irinotecan plus cetuximab. SW48, LIM 1215, and GEO colorectal cancer cell lines were engrafted into nude mice and treated for 3 weeks with irinotecan and/or cetuximab. The combined treatment induced a significant reduction of tumor size. A subsequent experiment was performed in all three xenograft models in which after an induction treatment with irinotecan plus cetuximab, mice were randomly assigned to one of the following treatments: control, cetuximab, regorafenib, a selective PIK3CA inhibitor (PIK3CAi), a selective MEK inhibitor (MEKi), and/or the combination of each inhibitor with cetuximab. The cetuximab plus MEKi treatment determined the best antitumor activity with suppression of tumor growth. This effect was prolonged for 13 to 15 weeks after cessation of therapy and was accompanied by prolonged survival. Antitumor activity was accompanied by inhibition of the MAPK and MEK pathways. Moreover, in the cetuximab plus MEKi-treated SW48 xenograft group, KRAS mutations as a mechanism of acquired resistance were detected in 25% of cases compared with 75% KRAS mutations in the MEKi-treated group. A possible strategy to prevent and/or overcome resistance to anti-EGFR inhibitors in metastatic colorectal cancer is a maintenance therapy with cetuximab plus MEKi after an initial treatment with irinotecan plus cetuximab. ©2015 American Association for Cancer Research.

  14. Consistency and reproducibility of next-generation sequencing and other multigene mutational assays: A worldwide ring trial study on quantitative cytological molecular reference specimens.

    PubMed

    Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo

    2017-08-01

    Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational

  15. A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral AKT inhibitor GSK2141795 in patients with solid tumors.

    PubMed

    Aghajanian, Carol; Bell-McGuinn, Katherine M; Burris, Howard A; Siu, Lillian L; Stayner, Lee-Ann; Wheler, Jennifer J; Hong, David S; Kurkjian, Carla; Pant, Shubham; Santiago-Walker, Ademi; Gauvin, Jennifer L; Antal, Joyce M; Opalinska, Joanna B; Morris, Shannon R; Infante, Jeffrey R

    2018-04-03

    Background We sought to determine the recommended phase II dose (RP2D) and schedule of GSK2141795, an oral pan-AKT kinase inhibitor. Patients and Methods Patients with solid tumors were enrolled in the dose-escalation phase. Pharmacokinetic (PK) analysis after a single dose (Cycle 0) informed dose escalation using accelerated dose titration. Once one grade 2 toxicity or dose-limiting toxicity was observed in Cycle 1, the accelerated dose titration was terminated and a 3 + 3 dose escalation was started. Continuous daily dosing was evaluated along with two intermittent regimens (7 days on/7 days off and 3 times per week). In the expansion phase at RP2D, patients with endometrial or prostate cancer, as well as those with select tumor types with a PIK3CA mutation, AKT mutation or PTEN loss, were enrolled. Patients were evaluated for adverse events (AEs), PK parameters, blood glucose and insulin levels, and tumor response. Results The RP2D of GSK2141795 for once-daily dosing is 75 mg. The most common (>10%) treatment-related AEs included diarrhea, fatigue, vomiting, and decreased appetite. Most AEs were low grade. The frequency of hyperglycemia increased with dose; however, at the RP2D, grade 3 hyperglycemia was only reported in 4% of patients and no grade 4 events were observed. PK characteristics were favorable, with a prolonged half-life and low peak-to-trough ratio. There were two partial responses at the RP2D in patients with either a PIK3CA mutation or PTEN loss. Conclusion GSK2141795 was safe and well-tolerated, with clinical activity seen as monotherapy at the RP2D of 75 mg daily. NCT00920257.

  16. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma.

    PubMed

    Slomovitz, Brian M; Lu, Karen H; Johnston, Taren; Coleman, Robert L; Munsell, Mark; Broaddus, Russell R; Walker, Cheryl; Ramondetta, Lois M; Burke, Thomas W; Gershenson, David M; Wolf, Judith

    2010-12-01

    Dysregulation of phosphatase and tensin homolog (PTEN) and the gene that encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), PIK3CA, are the most common mutations in endometrial carcinoma (EC). Loss of PTEN or activation of PIK3CA results in constitutive activation of AKT, which leads to up-regulation of mammalian target of rapamycin (mTOR). Everolimus is an oral rapamycin analog that acts by selectively inhibiting mTOR. A single-institution, open-labeled, phase 2 study of everolimus in patients with measurable recurrent EC who had failed at least 1 and no more than 2 prior chemotherapeutic regimens was performed. Everolimus was administered at a dose of 10 mg orally daily for 28-day cycles. Patients were treated until disease progression or toxicity. The primary endpoint was clinical benefit response (CBR), defined as a confirmed complete or partial response or prolonged stable disease (SD) (≥8 weeks). Inclusion was limited to patients with endometrioid histology. A total of 35 patients were enrolled (median age, 58 years; range, 38-81 years). A total of 81 cycles were administered. Twelve of 28 (43%) evaluable patients had not developed disease progression at the time of the first objective evaluation (8 weeks). All these patients had SD (median, 4.5 cycles; range, 2-10 cycles). Six of the 28 (21%) patients had a confirmed CBR at 20 weeks of therapy. Patients with CBR discontinued treatment because of toxicity (6 patients), disease progression (5 patients), and noncompliance (1 patient). Seven patients were unevaluable after receiving ≤1 cycle because of toxicity (5 patients) or noncompliance (2 patients). The most common drug-related toxicities were fatigue, anemia, pain, lymphopenia, and nausea. Everolimus demonstrated encouraging single-agent CBR in pretreated patients with recurrent endometrioid EC. Future studies will evaluate this agent in combination with hormonal and/or cytotoxic therapy. Copyright © 2010 American Cancer

  17. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: The Lung Cancer Mutation Consortium experience

    PubMed Central

    Dias-Santagata, Dora; Wistuba, Ignacio I.; Chen, Heidi; Fujimoto, Junya; Kugler, Kelly; Franklin, Wilbur A.; Iafrate, A. John; Ladanyi, Marc; Kris, Mark G.; Johnson, Bruce E.; Bunn, Paul A.; Minna, John D.; Kwiatkowski, David J.

    2015-01-01

    Introduction Molecular genetic analyses of lung adenocarcinoma have recently become standard of care for treatment selection. The Lung Cancer Mutation Consortium was formed to enable collaborative multi-institutional analyses of 10 potential oncogenic driver mutations. Technical aspects of testing, and clinicopathologic correlations are presented. Methods Mutation testing in at least one of 8 genes (EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, NRAS, PIK3CA) using SNaPshot, mass spectrometry, Sanger sequencing +/− PNA and/or sizing assays, along with ALK and/or MET FISH were performed in 6 labs on 1007 patients from 14 institutions. Results 1007 specimens had mutation analysis performed, and 733 specimens had all 10 genes analyzed. Mutation identification rates did not vary by analytic method. Biopsy and cytology specimens were inadequate for testing in 26% and 35% of cases compared to 5% of surgical specimens. Among the 1007 cases with mutation analysis performed, EGFR, KRAS, ALK, and ERBB2 alterations were detected in 22, 25, 8.5, and 2.4% of cases, respectively. EGFR mutations were highly associated with female sex, Asian race, and never smoking status; and less strongly associated with stage IV disease, presence of bone metastases, and absence of adrenal metastases. ALK rearrangements were strongly associated with never smoking status, and more weakly associated with presence of liver metastases. ERBB2 mutations were strongly associated with Asian race and never smoking status. Two mutations were seen in 2.7% of samples, all but one of which involved one or more of PIK3CA, ALK or MET. Conclusion Multi-institutional molecular analysis across multiple platforms, sample types, and institutions can yield consistent results and novel clinicopathological observations. PMID:25738220

  18. Somatic mutation profiles of clear cell endometrial tumors revealed by whole exome and targeted gene sequencing.

    PubMed

    Le Gallo, Matthieu; Rudd, Meghan L; Urick, Mary Ellen; Hansen, Nancy F; Zhang, Suiyuan; Lozy, Fred; Sgroi, Dennis C; Vidal Bel, August; Matias-Guiu, Xavier; Broaddus, Russell R; Lu, Karen H; Levine, Douglas A; Mutch, David G; Goodfellow, Paul J; Salvesen, Helga B; Mullikin, James C; Bell, Daphne W

    2017-09-01

    The molecular pathogenesis of clear cell endometrial cancer (CCEC), a tumor type with a relatively unfavorable prognosis, is not well defined. We searched exome-wide for novel somatically mutated genes in CCEC and assessed the mutational spectrum of known and candidate driver genes in a large cohort of cases. We conducted whole exome sequencing of paired tumor-normal DNAs from 16 cases of CCEC (12 CCECs and the CCEC components of 4 mixed histology tumors). Twenty-two genes-of-interest were Sanger-sequenced from another 47 cases of CCEC. Microsatellite instability (MSI) and microsatellite stability (MSS) were determined by genotyping 5 mononucleotide repeats. Two tumor exomes had relatively high mutational loads and MSI. The other 14 tumor exomes were MSS and had 236 validated nonsynonymous or splice junction somatic mutations among 222 protein-encoding genes. Among the 63 cases of CCEC in this study, we identified frequent somatic mutations in TP53 (39.7%), PIK3CA (23.8%), PIK3R1 (15.9%), ARID1A (15.9%), PPP2R1A (15.9%), SPOP (14.3%), and TAF1 (9.5%), as well as MSI (11.3%). Five of 8 mutations in TAF1, a gene with no known role in CCEC, localized to the putative histone acetyltransferase domain and included 2 recurrently mutated residues. Based on patterns of MSI and mutations in 7 genes, CCEC subsets molecularly resembled serous endometrial cancer (SEC) or endometrioid endometrial cancer (EEC). Our findings demonstrate molecular similarities between CCEC and SEC and EEC and implicate TAF1 as a novel candidate CCEC driver gene. Cancer 2017;123:3261-8. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. Performance of amplicon-based next generation DNA sequencing for diagnostic gene mutation profiling in oncopathology.

    PubMed

    Sie, Daoud; Snijders, Peter J F; Meijer, Gerrit A; Doeleman, Marije W; van Moorsel, Marinda I H; van Essen, Hendrik F; Eijk, Paul P; Grünberg, Katrien; van Grieken, Nicole C T; Thunnissen, Erik; Verheul, Henk M; Smit, Egbert F; Ylstra, Bauke; Heideman, Daniëlle A M

    2014-10-01

    Next generation DNA sequencing (NGS) holds promise for diagnostic applications, yet implementation in routine molecular pathology practice requires performance evaluation on DNA derived from routine formalin-fixed paraffin-embedded (FFPE) tissue specimens. The current study presents a comprehensive analysis of TruSeq Amplicon Cancer Panel-based NGS using a MiSeq Personal sequencer (TSACP-MiSeq-NGS) for somatic mutation profiling. TSACP-MiSeq-NGS (testing 212 hotspot mutation amplicons of 48 genes) and a data analysis pipeline were evaluated in a retrospective learning/test set approach (n = 58/n = 45 FFPE-tumor DNA samples) against 'gold standard' high-resolution-melting (HRM)-sequencing for the genes KRAS, EGFR, BRAF and PIK3CA. Next, the performance of the validated test algorithm was assessed in an independent, prospective cohort of FFPE-tumor DNA samples (n = 75). In the learning set, a number of minimum parameter settings was defined to decide whether a FFPE-DNA sample is qualified for TSACP-MiSeq-NGS and for calling mutations. The resulting test algorithm revealed 82% (37/45) compliance to the quality criteria and 95% (35/37) concordant assay findings for KRAS, EGFR, BRAF and PIK3CA with HRM-sequencing (kappa = 0.92; 95% CI = 0.81-1.03) in the test set. Subsequent application of the validated test algorithm to the prospective cohort yielded a success rate of 84% (63/75), and a high concordance with HRM-sequencing (95% (60/63); kappa = 0.92; 95% CI = 0.84-1.01). TSACP-MiSeq-NGS detected 77 mutations in 29 additional genes. TSACP-MiSeq-NGS is suitable for diagnostic gene mutation profiling in oncopathology.

  20. PI3K Inhibitors Synergize with FGFR Inhibitors to Enhance Antitumor Responses in FGFR2mutant Endometrial Cancers.

    PubMed

    Packer, Leisl M; Geng, Xinyan; Bonazzi, Vanessa F; Ju, Robert J; Mahon, Clare E; Cummings, Margaret C; Stephenson, Sally-Anne; Pollock, Pamela M

    2017-04-01

    Improved therapeutic approaches are needed for the treatment of recurrent and metastatic endometrial cancer. Endometrial cancers display hyperactivation of the MAPK and PI3K pathways, the result of somatic aberrations in genes such as FGFR2, KRAS, PTEN, PIK3CA , and PIK3R1 The FGFR2 and PI3K pathways, have emerged as potential therapeutic targets in endometrial cancer. Activation of the PI3K pathway is seen in more than 90% of FGFR2 mutant endometrial cancers. This study aimed to examine the efficacy of the pan-FGFR inhibitor BGJ398 with pan-PI3K inhibitors (GDC-0941, BKM120) and the p110α-selective inhibitor BYL719. We assessed synergy in three FGFR2 mutant endometrial cancer cell lines (AN3CA, JHUEM2, and MFE296), and the combination of BGJ398 and GDC-0941 or BYL719 showed strong synergy. A significant increase in cell death and decrease in long-term survival was seen when PI3K inhibitors were combined with BGJ398. Importantly, these effects were seen at low concentrations correlating to only partial inhibition of AKT. The combination of BGJ398 and GDC-0941 showed tumor regressions in vivo , whereas each drug alone only showed moderate tumor growth inhibition. BYL719 alone resulted in increased tumor growth of AN3CA xenografts but in combination with BGJ398 resulted in tumor regression in both AN3CA- and JHUEM2-derived xenografts. These data provide evidence that subtherapeutic doses of PI3K inhibitors enhance the efficacy of anti-FGFR therapies, and a combination therapy may represent a superior therapeutic treatment in patients with FGFR2 mutant endometrial cancer. Mol Cancer Ther; 16(4); 637-48. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Current advances in biomarkers for targeted therapy in triple-negative breast cancer

    PubMed Central

    Fleisher, Brett; Clarke, Charlotte; Ait-Oudhia, Sihem

    2016-01-01

    Triple-negative breast cancer (TNBC) is a complex heterogeneous disease characterized by the absence of three hallmark receptors: human epidermal growth factor receptor 2, estrogen receptor, and progesterone receptor. Compared to other breast cancer subtypes, TNBC is more aggressive, has a higher prevalence in African-Americans, and more frequently affects younger patients. Currently, TNBC lacks clinically accepted targets for tailored therapy, warranting the need for candidate biomarkers. BiomarkerBase, an online platform used to find biomarkers reported in clinical trials, was utilized to screen all potential biomarkers for TNBC and select only the ones registered in completed TNBC trials through clinicaltrials.gov. The selected candidate biomarkers were classified as surrogate, prognostic, predictive, or pharmacodynamic (PD) and organized by location in the blood, on the cell surface, in the cytoplasm, or in the nucleus. Blood biomarkers include vascular endothelial growth factor/vascular endothelial growth factor receptor and interleukin-8 (IL-8); cell surface biomarkers include EGFR, insulin-like growth factor binding protein, c-Kit, c-Met, and PD-L1; cytoplasm biomarkers include PIK3CA, pAKT/S6/p4E-BP1, PTEN, ALDH1, and the PIK3CA/AKT/mTOR-related metabolites; and nucleus biomarkers include BRCA1, the gluco-corticoid receptor, TP53, and Ki67. Candidate biomarkers were further organized into a “cellular protein network” that demonstrates potential connectivity. This review provides an inventory and reference point for promising biomarkers for breakthrough targeted therapies in TNBC. PMID:27785100

  2. Actionable mutations in canine hemangiosarcoma

    PubMed Central

    Wang, Guannan; Wu, Ming; Maloneyhuss, Martha A.; Wojcik, John; Durham, Amy C.; Mason, Nicola J.

    2017-01-01

    Background Angiosarcomas (AS) are rare in humans, but they are a deadly subtype of soft tissue sarcoma. Discovery sequencing in AS, especially the visceral form, is hampered by the rarity of cases. Most diagnostic material exists as archival formalin fixed, paraffin embedded tissue which serves as a poor source of high quality DNA for genome-wide sequencing. We approached this problem through comparative genomics. We hypothesized that exome sequencing a histologically similar tumor, hemangiosarcoma (HSA), that occurs in approximately 50,000 dogs per year, may lead to the identification of potential oncogenic drivers and druggable targets that could also occur in angiosarcoma. Methods Splenic hemangiosarcomas are common in dogs, which allowed us to collect a cohort of archived matched tumor and normal tissue samples suitable for whole exome sequencing. Mapping of the reads to the latest canine reference genome (Canfam3) demonstrated that >99% of the targeted exomal regions were covered, with >80% at 20X coverage and >90% at 10X coverage. Results and conclusions Sequence analysis of 20 samples identified somatic mutations in PIK3CA, TP53, PTEN, and PLCG1, all of which correspond to well-known tumor drivers in human cancer, in more than half of the cases. In one case, we identified a mutation in PLCG1 identical to a mutation observed previously in this gene in human visceral AS. Activating PIK3CA mutations present novel therapeutic targets, and clinical trials of targeted inhibitors are underway in human cancers. Our results lay a foundation for similar clinical trials in canine HSA, enabling a precision medicine approach to this disease. PMID:29190660

  3. Actionable mutations in canine hemangiosarcoma.

    PubMed

    Wang, Guannan; Wu, Ming; Maloneyhuss, Martha A; Wojcik, John; Durham, Amy C; Mason, Nicola J; Roth, David B

    2017-01-01

    Angiosarcomas (AS) are rare in humans, but they are a deadly subtype of soft tissue sarcoma. Discovery sequencing in AS, especially the visceral form, is hampered by the rarity of cases. Most diagnostic material exists as archival formalin fixed, paraffin embedded tissue which serves as a poor source of high quality DNA for genome-wide sequencing. We approached this problem through comparative genomics. We hypothesized that exome sequencing a histologically similar tumor, hemangiosarcoma (HSA), that occurs in approximately 50,000 dogs per year, may lead to the identification of potential oncogenic drivers and druggable targets that could also occur in angiosarcoma. Splenic hemangiosarcomas are common in dogs, which allowed us to collect a cohort of archived matched tumor and normal tissue samples suitable for whole exome sequencing. Mapping of the reads to the latest canine reference genome (Canfam3) demonstrated that >99% of the targeted exomal regions were covered, with >80% at 20X coverage and >90% at 10X coverage. Sequence analysis of 20 samples identified somatic mutations in PIK3CA, TP53, PTEN, and PLCG1, all of which correspond to well-known tumor drivers in human cancer, in more than half of the cases. In one case, we identified a mutation in PLCG1 identical to a mutation observed previously in this gene in human visceral AS. Activating PIK3CA mutations present novel therapeutic targets, and clinical trials of targeted inhibitors are underway in human cancers. Our results lay a foundation for similar clinical trials in canine HSA, enabling a precision medicine approach to this disease.

  4. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    PubMed

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the

  5. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    PubMed

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (P<0.01). Expression of amphiregulin correlated with better differentiation (P<0.01), but no difference was observed between two major histologic types. Expression and activation of EGFR was more commonly seen in the pancreatobiliary type (P<0.01). Mutations were detected in 50% of the pancreatobiliary type and 60% of the intestinal type. KRAS was the most common gene mutated in the pancreatobiliary type (42%) as well as the intestinal type (52%). Other mutations detected included PIK3CA, SMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  6. A global historical data set of tropical cyclone exposure (TCE-DAT)

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at pik.2017.011" target="_blank">https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  7. Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

    PubMed Central

    Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu

    2018-01-01

    Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395

  8. Endometrial Carcinomas With Clear Cells: A Study of a Heterogeneous Group of Tumors Including Interobserver Variability, Mutation Analysis, and Immunohistochemistry With HNF-1β.

    PubMed

    Han, Guangming; Soslow, Robert A; Wethington, Stephanie; Levine, Douglas A; Bogomolniy, Faina; Clement, Philip B; Köbel, Martin; Gilks, Blake; DeLair, Deborah

    2015-07-01

    Endometrial clear cell carcinoma (CC) is an uncommon tumor and often carries a poor prognosis. It has histologic features that overlap with other endometrial carcinomas and is frequently misclassified. Accurate classification is crucial, however, to improve treatment options. The objectives of this study were (1) to assess diagnostic interobserver variability among 5 gynecologic pathologists for tumors originally diagnosed as CC or with a component of CC (n=44); (2) to determine the utility of immunohistochemical markers estrogen receptor and HNF-1β; and (3) to detect mutations in select genes. Clinical data and morphologic features were also recorded. Agreement among reviewers was only moderate: only 46% of the original CC remained classified as such. After reclassification, estrogen receptor was positive in 8% of CC, 67% of endometrioid carcinomas (EC), and 47% of serous carcinomas (SC). Sensitivities of HNF-1β in CC, SC, and EC were 62%, 27%, and 17%, respectively, whereas specificity for CC versus EC or SC was 78%. Mutations in PIK3CA, PIK3R1, PTEN, KRAS, and NRAS were detected in 41% of 37 cases that had adequate material for study. At least 1 mutation was identified in 33% of CC, 67% of EC, and 33% of SC. This group of patients had poor outcomes: 72% of the patients with follow-up information had died of disease. In summary, this study suggests that the current pool of CC is a heterogeneous group of tumors from the morphologic, immunophenotypic, and molecular point of views and that only a percentage of them represent true CC.

  9. Arid1a Inactivation in an Apc and Pten-defective Mouse Ovarian Cancer Model Enhances Epithelial Differentiation and Prolongs Survival

    PubMed Central

    Zhai, Yali; Kuick, Rork; Tipton, Courtney; Wu, Rong; Sessine, Michael; Wang, Zhong; Baker, Suzanne J.; Fearon, Eric R.; Cho, Kathleen R.

    2015-01-01

    Inactivation of the ARID1A tumor suppressor gene is frequent in ovarian endometrioid (OEC) and clear cell carcinomas (OCCC), often in conjunction with mutations activating the PI3K/AKT and/or canonical Wnt signaling pathways. Prior work has shown that conditional bi-allelic inactivation of the Apc and Pten tumor suppressor genes in the mouse ovarian surface epithelium (OSE) promotes outgrowth of tumors that reflect the biological behavior and gene expression profiles of human OECs harboring comparable Wnt and PI3K/AKT pathway defects, though the mouse tumors are more poorly differentiated than their human tumor counterparts. We found that conditional inactivation of one or both Arid1a alleles in OSE concurrently with Apc and Pten inactivation unexpectedly prolonged survival of tumor-bearing mice and promoted striking epithelial differentiation of the cancer cells, resulting in morphological features akin to those in human OECs. Enhanced epithelial differentiation was linked to reduced expression of mesenchymal markers N-cadherin and vimentin, and increased expression of epithelial markers Crb3 and E-cadherin. Global gene expression profiling showed enrichment for genes associated with mesenchymal-to-epithelial transition in the Arid1a-deficient tumors. We also found that an activating (E545K) Pik3ca mutation, unlike Pten inactivation or Pik3ca H1047R mutation, cannot cooperate with Arid1a loss to promote ovarian cancer development in the mouse. Our results indicate the Arid1a tumor suppressor gene has a key role in regulating OEC differentiation, and paradoxically the mouse cancers with more initiating tumor suppressor gene defects had a less aggressive phenotype than cancers arising from fewer gene alterations. PMID:26279473

  10. Primary tumor location predicts poor clinical outcome with cetuximab in RAS wild-type metastatic colorectal cancer.

    PubMed

    Kim, Dalyong; Kim, Sun Young; Lee, Ji Sung; Hong, Yong Sang; Kim, Jeong Eun; Kim, Kyu-Pyo; Kim, Jihun; Jang, Se Jin; Yoon, Young-Kwang; Kim, Tae Won

    2017-11-23

    In metastatic colorectal cancer, the location of the primary tumor has been suggested to have biological significance. In this study, we investigated whether primary tumor location affects cetuximab efficacy in patients with RAS wild-type metastatic colorectal cancer. Genotyping by the SequenomMassARRAY technology platform (OncoMap) targeting KRAS, NRAS, PIK3CA, and BRAF was performed in tumors from 307 patients who had been given cetuximab as salvage treatment. Tumors with mutated RAS (KRAS or NRAS; n = 127) and those with multiple primary location (n = 10) were excluded. Right colon cancer was defined as a tumor located in the proximal part to splenic flexure. A total of 170 patients were included in the study (right versus left, 23 and 147, respectively). Patients with right colon cancer showed more mutated BRAF (39.1% vs. 5.4%), mutated PIK3CA (13% vs. 1.4%), poorly differentiated tumor (17.4% vs. 3.4%), and peritoneal involvement (26.1% vs. 8.8%) than those with left colon and rectal cancer. Right colon cancer showed poorer progression-free survival (2.0 vs.5.0 months, P = 0.002) and overall survival (4.1 months and 13.0 months, P < 0.001) than the left colon and rectal cancer. By multivariable analysis, BRAF mutation, right colon primary, poorly differentiated histology, and peritoneal involvement were associated with risk of death. In RAS wild-type colon cancer treated with cetuximab as salvage treatment, right colon primary was associated with poorer survival outcomes than left colon and rectal cancer.

  11. Genetic alterations in seborrheic keratoses

    PubMed Central

    Heidenreich, Barbara; Denisova, Evygenia; Rachakonda, Sivaramakrishna; Sanmartin, Onofre; Dereani, Timo; Hosen, Ismail; Nagore, Eduardo; Kumar, Rajiv

    2017-01-01

    Seborrheic keratoses are common benign epidermal lesions that are associated with increased age and sun-exposure. Those lesions despite harboring multiple somatic alterations in contrast to malignant tumors appear to be genetically stable. In order to investigate and characterize the presence of recurrent mutations, we performed exome sequencing on DNA from one seborrheic keratosis lesion and corresponding blood cells from the same patients with follow up investigation of alterations identified by exome sequencing in 24 additional lesions from as many patients. In addition we investigated alterations in all lesions at specific genes loci that included FGFR3, PIK3CA, HRAS, BRAF, CDKN2A and TERT and DHPH3 promoters. The exome sequencing data indicated three mutations per Mb of the targeted sequence. The mutational pattern depicted typical UV signature with majority of alterations being C>T and CC>TT base changes at dipyrimidinic sites. The FGFR3 mutations were the most frequent, detected in 12 of 25 (48%) lesions, followed by the PIK3CA (32%), TERT promoter (24%) and DPH3 promoter mutations (24%). TERT promoter mutations associated with increased age and were present mainly in the lesions excised from head and neck. Three lesions also carried alterations in CDKN2A. FGFR3, TERT and DPH3 expression did not correlate with mutations in the respective genes and promoters; however, increased FGFR3 transcript levels were associated with increased FOXN1 levels, a suggested positive feedback loop that stalls malignant progression. Thus, in this study we report overall mutation rate through exome sequencing and show the most frequent mutations seborrheic keratosis. PMID:28410231

  12. Genetic heterogeneity and actionable mutations in HER2-positive primary breast cancers and their brain metastases.

    PubMed

    De Mattos-Arruda, Leticia; Ng, Charlotte K Y; Piscuoglio, Salvatore; Gonzalez-Cao, Maria; Lim, Raymond S; De Filippo, Maria R; Fusco, Nicola; Schultheis, Anne M; Ortiz, Carolina; Viteri, Santiago; Arias, Alexandra; Macedo, Gabriel S; Oliveira, Mafalda; Gomez, Patricia; Teixidó, Cristina; Nuciforo, Paolo; Peg, Vicente; Saura, Cristina; Ramon Y Cajal, Santiago; Casas, Francesc Tresserra; Weigelt, Britta; Cortes, Javier; Seoane, Joan; Reis-Filho, Jorge S

    2018-04-17

    Brain metastases constitute a challenge in the management of patients with HER2-positive breast cancer treated with anti-HER2 systemic therapies. Here we sought to define the repertoire of mutations private to or enriched for in HER2-positive brain metastases. Massively parallel sequencing targeting all exons of 254 genes frequently mutated in breast cancers and/or related to DNA repair was used to characterize the spatial and temporal heterogeneity of HER2-positive breast cancers and their brain metastases in six patients. Data were analyzed with state-of-the-art bioinformatics algorithms and selected mutations were validated with orthogonal methods. Spatial and temporal inter-lesion genetic heterogeneity was observed in the HER2-positive brain metastases from an index patient subjected to a rapid autopsy. Genetic alterations restricted to the brain metastases included mutations in cancer genes FGFR2, PIK3CA and ATR , homozygous deletion in CDKN2A and amplification in KRAS . Shifts in clonal composition and the acquisition of additional mutations in the progression from primary HER2-positive breast cancer to brain metastases following anti-HER2 therapy were investigated in additional five patients. Likely pathogenic mutations private to or enriched in the brain lesions affected cancer and clinically actionable genes, including ATR, BRAF, FGFR2, MAP2K4, PIK3CA, RAF1 and TP53 . Changes in clonal composition and the acquisition of additional mutations in brain metastases may affect potentially actionable genes in HER2-positive breast cancers. Our observations have potential clinical implications, given that treatment decisions for patients with brain metastatic disease are still mainly based on biomarkers assessed in the primary tumor.

  13. Biomarker-driven trial in metastatic pancreas cancer: feasibility in a multicenter study of saracatinib, an oral Src inhibitor, in previously treated pancreatic cancer.

    PubMed

    Arcaroli, John; Quackenbush, Kevin; Dasari, Arvind; Powell, Rebecca; McManus, Martine; Tan, Aik-Choon; Foster, Nathan R; Picus, Joel; Wright, John; Nallapareddy, Sujatha; Erlichman, Charles; Hidalgo, Manuel; Messersmith, Wells A

    2012-10-01

    Src tyrosine kinases are overexpressed in pancreatic cancers, and the oral Src inhibitor saracatinib has shown antitumor activity in preclinical models of pancreas cancer. We performed a CTEP-sponsored Phase II clinical trial of saracatinib in previously treated pancreas cancer patients, with a primary endpoint of 6-month survival. A Simon MinMax two-stage phase II design was used. Saracatinib (175 mg/day) was administered orally continuously in 28-day cycles. In the unselected portion of the study, 18 patients were evaluable. Only two (11%) patients survived for at least 6 months, and three 6-month survivors were required to move to second stage of study as originally designed. The study was amended as a biomarker-driven trial (leucine rich repeat containing protein 19 [LRRC19] > insulin-like growth factor-binding protein 2 [IGFBP2] "top scoring pairs" polymerase chain reaction [PCR] assay, and PIK3CA mutant) based on preclinical data in a human pancreas tumor explant model. In the biomarker study, archival tumor tissue or fresh tumor biopsies were tested. Biomarker-positive patients were eligible for the study. Only one patient was PIK3CA mutant in a 3' untranslated region (UTR) portion of the gene. This patient was enrolled in the study and failed to meet the 6-month survival endpoint. As the frequency of biomarker-positive patients was very low (<3%), the study was closed. Although we were unable to conclude whether enriching for a subset of second/third line pancreatic cancer patients treated with a Src inhibitor based on a biomarker would improve 6-month survival, we demonstrate that testing pancreatic tumor samples for a biomarker-driven, multicenter study in metastatic pancreas cancer is feasible.

  14. Massively parallel sequencing analysis of mucinous ovarian carcinomas: genomic profiling and differential diagnoses.

    PubMed

    Mueller, Jennifer J; Schlappe, Brooke A; Kumar, Rahul; Olvera, Narciso; Dao, Fanny; Abu-Rustum, Nadeem; Aghajanian, Carol; DeLair, Deborah; Hussein, Yaser R; Soslow, Robert A; Levine, Douglas A; Weigelt, Britta

    2018-05-21

    Mucinous ovarian cancer (MOC) is a rare type of epithelial ovarian cancer resistant to standard chemotherapy regimens. We sought to characterize the repertoire of somatic mutations in MOCs and to define the contribution of massively parallel sequencing to the classification of tumors diagnosed as primary MOCs. Following gynecologic pathology and chart review, DNA samples obtained from primary MOCs and matched normal tissues/blood were subjected to whole-exome (n = 9) or massively parallel sequencing targeting 341 cancer genes (n = 15). Immunohistochemical analysis of estrogen receptor, progesterone receptor, PTEN, ARID1A/BAF250a, and the DNA mismatch (MMR) proteins MSH6 and PMS2 was performed for all cases. Mutational frequencies of MOCs were compared to those of high-grade serous ovarian cancers (HGSOCs) and mucinous tumors from other sites. MOCs were heterogeneous at the genetic level, frequently harboring TP53 (75%) mutations, KRAS (71%) mutations and/or CDKN2A/B homozygous deletions/mutations (33%). Although established criteria for diagnosis were employed, four cases harbored mutational and immunohistochemical profiles similar to those of endometrioid carcinomas, and one case for colorectal or endometrioid carcinoma. Significant differences in the frequencies of KRAS, TP53, CDKN2A, FBXW7, PIK3CA and/or APC mutations between the confirmed primary MOCs (n = 19) and HGSOCs, mucinous gastric and/or mucinous colorectal carcinomas were found, whereas no differences in the 341 genes studied between MOCs and mucinous pancreatic carcinomas were identified. Our findings suggest that the assessment of mutations affecting TP53, KRAS, PIK3CA, ARID1A and POLE, and DNA MMR protein expression may be used to further aid the diagnosis and treatment decision-making of primary MOC. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Continuous national gross domestic product (GDP) time series for 195 countries: past observations (1850-2005) harmonized with future projections according to the Shared Socio-economic Pathways (2006-2100)

    NASA Astrophysics Data System (ADS)

    Geiger, Tobias

    2018-04-01

    Gross domestic product (GDP) represents a widely used metric to compare economic development across time and space. GDP estimates have been routinely assembled only since the beginning of the second half of the 20th century, making comparisons with prior periods cumbersome or even impossible. In recent years various efforts have been put forward to re-estimate national GDP for specific years in the past centuries and even millennia, providing new insights into past economic development on a snapshot basis. In order to make this wealth of data utilizable across research disciplines, we here present a first continuous and consistent data set of GDP time series for 195 countries from 1850 to 2009, based mainly on data from the Maddison Project and other population and GDP sources. The GDP data are consistent with Penn World Tables v8.1 and future GDP projections from the Shared Socio-economic Pathways (SSPs), and are freely available at pik.2018.010" target="_blank">http://doi.org/10.5880/pik.2018.010 (Geiger and Frieler, 2018). To ease usability, we additionally provide GDP per capita data and further supplementary and data description files in the online archive. We utilize various methods to handle missing data and discuss the advantages and limitations of our methodology. Despite known shortcomings this data set provides valuable input, e.g., for climate impact research, in order to consistently analyze economic impacts from pre-industrial times to the future.

  16. DNA content analysis of colorectal cancer defines a distinct ‘microsatellite and chromosome stable’ group but does not predict response to radiotherapy

    PubMed Central

    Fadhil, Wakkas; Kindle, Karin; Jackson, Darryl; Zaitoun, Abed; Lane, Nina; Robins, Adrian; Ilyas, Mohammad

    2014-01-01

    Colorectal cancers (CRC) are thought to have genetic instability in the form of either microsatellite instability (MSI) or chromosomal instability (CIN). Recently, tumours have been described without either MSI or CIN, that is, microsatellite and chromosome stable (MACS) CRCs. We investigated the (i) frequency of the MACS-CRCs and (ii) whether this genotype predicted responsiveness to neoadjuvant chemoradiotherapy. To examine the frequency of MACS-CRCs, DNA content (ploidy) was examined in 89 sporadic microsatellite-stable CRCs using flow cytometry. The tumours were also screened for mutations in KRAS/BRAF/TP53/PIK3CA by QMC-PCR. To examine the value of tumour ploidy in predicting response to chemoradiotherapy, DNA content was tested in a separate group of 62 rectal cancers treated with neoadjuvant chemoradiotherapy. Fifty-one of 89 CRCs (57%) were aneuploid and 38 (43%) were diploid. There was no significant association between mutations in TP53/KRAS/BRAF/PIK3CA and ploidy. Testing of association between mutations revealed only mutual exclusivity of KRAS/BRAF mutation (P < 0.001). Of the 62 rectal cancers treated with neoadjuvant chemoradiotherapy, 22 had responded (Mandard tumour regression grade 1/2) and 40 failed to respond (Grade 3–5). Twenty-five of 62 (40%) tumours were diploid, but there was no association between ploidy and response to therapy. We conclude that MACS-CRCs form a significant proportion of microsatellite-stable CRCs with a mutation profile overlapping that of CRCs with CIN. A diploid genotype does not, however, predict the responsiveness to radiotherapy. PMID:24456329

  17. Clinical mutational profiling of 1006 lung cancers by next generation sequencing

    PubMed Central

    Illei, Peter B.; Belchis, Deborah; Tseng, Li-Hui; Nguyen, Doreen; De Marchi, Federico; Haley, Lisa; Riel, Stacy; Beierl, Katie; Zheng, Gang; Brahmer, Julie R.; Askin, Frederic B.; Gocke, Christopher D.; Eshleman, James R.; Forde, Patrick M.; Lin, Ming-Tseh

    2017-01-01

    Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2–5% in 33 (4.3%) mutations and 2–10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p.L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. PMID:29228562

  18. Integrated tumor and germline whole-exome sequencing identifies mutations in MAPK and PI3K pathway genes in an adolescent with rosette-forming glioneuronal tumor of the fourth ventricle

    PubMed Central

    Lin, Frank Y.; Bergstrom, Katie; Person, Richard; Bavle, Abhishek; Ballester, Leomar Y.; Scollon, Sarah; Raesz-Martinez, Robin; Jea, Andrew; Birchansky, Sherri; Wheeler, David A.; Berg, Stacey L.; Chintagumpala, Murali M.; Adesina, Adekunle M.; Eng, Christine; Roy, Angshumoy; Plon, Sharon E.; Parsons, D. Williams

    2016-01-01

    The integration of genome-scale studies such as whole-exome sequencing (WES) into the clinical care of children with cancer has the potential to provide insight into the genetic basis of an individual's cancer with implications for clinical management. This report describes the results of clinical tumor and germline WES for a patient with a rare tumor diagnosis, rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Three pathogenic gene alterations with implications for clinical care were identified: somatic activating hotspot mutations in FGFR1 (p.N546K) and PIK3CA (p.H1047R) and a germline pathogenic variant in PTPN11 (p.N308S) diagnostic for Noonan syndrome. The molecular landscape of RGNT is not well-described, but these data are consistent with prior observations regarding the importance of the interconnected MAPK and PI3K/AKT/mTOR signaling pathways in this rare tumor. The co-occurrence of FGFR1, PIK3CA, and PTPN11 alterations provides further evidence for consideration of RGNT as a distinct molecular entity from pediatric low-grade gliomas and suggests potential therapeutic strategies for this patient in the event of tumor recurrence as novel agents targeting these pathways enter pediatric clinical trials. Although RGNT has not been definitively linked with cancer predisposition syndromes, two prior cases have been reported in patients with RASopathies (Noonan syndrome and neurofibromatosis type 1 [NF1]), providing an additional link between these tumors and the mitogen-activated protein kinase (MAPK) signaling pathway. In summary, this case provides an example of the potential for genome-scale sequencing technologies to provide insight into the biology of rare tumors and yield both tumor and germline results of potential relevance to patient care. PMID:27626068

  19. Mixed and Ambiguous Endometrial Carcinomas: A Heterogenous Group of Tumors With Different Clinicopathologic and Molecular Genetic Features.

    PubMed

    Espinosa, Iñigo; D'Angelo, Emanuela; Palacios, José; Prat, Jaime

    2016-07-01

    Besides endometrioid, serous, and clear cell carcinomas, there are endometrial carcinomas exhibiting mixed and ambiguous morphologic features. We have analyzed the immunophenotype (p53, p16, β-catenin, ER, HNF-1B, MLH1, and Ki-67) and mutational status (PTEN, KRAS, PIK3CA, and POLE) of 7 mixed carcinomas and 13 ambiguous carcinomas, all of them classified initially as mixed carcinomas. Only 2 of the 7 (28%) mixed carcinomas showed different immunophenotypes in different components. All but 2 tumors (5/7, 71%) overexpressed p53 and p16 and were negative for ER. Both carcinomas (2/7, 28%) showed a prominent micropapillary component that resembled an ovarian low-grade serous carcinoma and merged with villoglandular endometrioid carcinoma. The ambiguous carcinomas exhibited glandular architecture, high nuclear grade, and overlapping features of endometrioid and serous carcinomas. All tumors overexpressed p53 and p16, and the majority of cases (12/13, 92%) were negative for ER. KRAS mutations were identified in 3 of 7 (42%) mixed carcinomas, including the 2 cases with a "low-grade" serous-like component. PIK3CA mutations occurred in 2 (2/13, 15%) ambiguous carcinomas and PTEN mutations in 1 (1/7, 14%) mixed and 1 (1/13, 8%) ambiguous carcinoma. POLE exonuclease domain mutations were encountered in a case of mixed undifferentiated and well-differentiated (dedifferentiated) carcinoma. Two of the 7 (29%) mixed endometrial carcinomas and 5 of the 13 (38%) ambiguous carcinomas had extended beyond the pelvis (stages III and IV). Two of the 7 (29%) patients with mixed endometrial carcinoma and 6 of 12 (50%) patients with ambiguous endometrial carcinoma were alive with disease or had died of tumor. Our results show that, biologically, many so-called mixed carcinomas represent serous carcinomas with ambiguous morphology. Our series include 2 true mixed endometrial carcinomas with a "low-grade serous"-like component, microcystic, elongated, or fragmented features, KRAS mutations

  20. Undifferentiated and Dedifferentiated Endometrial Carcinomas With POLE Exonuclease Domain Mutations Have a Favorable Prognosis.

    PubMed

    Espinosa, Iñigo; Lee, Cheng-Han; D'Angelo, Emanuela; Palacios, José; Prat, Jaime

    2017-08-01

    POLE exonuclease domain mutations have recently been described in undifferentiated endometrial carcinoma but, because of the rarity of this aggressive type of endometrial cancer, their prognostic significance is unknown. We have analyzed the immunophenotype (ARID1A, MLH1, PMS2, MSH2, MSH6, p53, β-catenin, and SMARCB1) and mutational status (POLE, PIK3CA, and PTEN) of 21 undifferentiated carcinomas (8 undifferentiated and 13 dedifferentiated carcinomas). Loss of ARID1A expression was observed in 9 of 19 cases (47%), loss of expression of at least 1 DNA mismatch repair protein in 7 (7/21; 33%), and p53 immunoreaction was aberrant (mutated/inactivated) in 11 cases (11/21; 52%). All tumors were negative for β-catenin. Normal nuclear SMARCB1 (INI1) staining was found in all but 1 dedifferentiated case. Two undifferentiated and 7 dedifferentiated carcinomas showed POLE exonuclease domain mutations (9/21; 42%). PIK3CA mutations occurred in six tumors (6/21; 28%) (2 undifferentiated and 4 dedifferentiated carcinomas). PTEN mutations were found in 7 of 15 cases (47%) (4 undifferentiated and 3 dedifferentiated carcinomas). POLE-mutated undifferentiated and dedifferentiated endometrial carcinomas were more frequently stage I tumors than similar carcinomas lacking exonuclease domain mutations (7/9; 78% vs. 3/12; 25%; P=0.023) and patients had significantly better outcome (disease-specific survival) than those without POLE exonuclease domain mutations (P=0.02). Determination of the POLE mutation status is important for the management of these patients.

  1. Dedifferentiated endometrial carcinomas with neuroendocrine features: a clinicopathologic, immunohistochemical, and molecular genetic study.

    PubMed

    Espinosa, Iñigo; De Leo, Antonio; D'Angelo, Emanuela; Rosa-Rosa, Juan M; Corominas, Marina; Gonzalez, Alan; Palacios, José; Prat, Jaime

    2018-02-01

    Undifferentiated endometrial carcinoma is an aggressive type of uterine cancer, which is occasionally associated with a low-grade endometrioid carcinoma component. This combination is referred to as "dedifferentiated endometrioid endometrial carcinoma." Neuroendocrine expression may occur in undifferentiated endometrial carcinoma, but its significance in dedifferentiated endometrial carcinomas is unknown. To gain insight into the pathogenesis of these tumors we have analyzed the immunophenotype (ARID1A, MLH1, PMS2, MSH2, MSH6, p53, β-catenin, SMARCB1, synaptophysin, chromogranin A, and CD56) and mutational status (PTEN, KRAS, PIK3CA, TP53 and POLE) of 4 dedifferentiated endometrial carcinomas with strong and diffuse neuroendocrine expression. All tumors demonstrated neuroendocrine expression in ≥70% of the cells in the undifferentiated carcinoma areas. Loss of expression of at least 1 DNA mismatch repair protein was observed in 2 cases, and p53 immunoreaction was aberrant (mutated/inactivated) in one case. All carcinomas were negative for β-catenin and maintained nuclear SMARCB1 (INI1) and ARID1A expression. Three tumors shared identical endometrioid molecular profile (PTEN and/or PIK3CA mutations) in both components. One tumor had POLE exonuclease domain mutation in the undifferentiated component. In one case, TP53 mutation was found exclusively in the undifferentiated component. Two patients died with peritoneal carcinomatosis and abdominal metastases, respectively; one patient died of a renal failure without evidence of disease, and the last patient is alive and free of disease at 3.3 years. Dedifferentiated endometrial carcinomas with neuroendocrine features are clinically and molecularly heterogeneous tumors. Probably, these carcinomas might acquire undifferentiated phenotype through mutations in TP53 and POLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Use of mutation profiles to refine the classification of endometrial carcinomas

    PubMed Central

    Cheang, Maggie CU; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P.; Mutch, David G.; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C. Blake; Huntsman, David G

    2014-01-01

    The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following 9 genes; ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF and PPP2R5C. Based on this gene panel each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles we were able to identify subtype outliers, i.e. cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours; endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations), and serous-type (TP53 and PPP2R1A mutations). While this nine gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility

  3. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry

    PubMed Central

    Maccari, Maria Elena; Abolhassani, Hassan; Aghamohammadi, Asghar; Aiuti, Alessandro; Aleinikova, Olga; Bangs, Catherine; Baris, Safa; Barzaghi, Federica; Baxendale, Helen; Buckland, Matthew; Burns, Siobhan O.; Cancrini, Caterina; Cant, Andrew; Cathébras, Pascal; Cavazzana, Marina; Chandra, Anita; Conti, Francesca; Coulter, Tanya; Devlin, Lisa A.; Edgar, J. David M.; Faust, Saul; Fischer, Alain; Garcia-Prat, Marina; Hammarström, Lennart; Heeg, Maximilian; Jolles, Stephen; Karakoc-Aydiner, Elif; Kindle, Gerhard; Kiykim, Ayca; Kumararatne, Dinakantha; Grimbacher, Bodo; Longhurst, Hilary; Mahlaoui, Nizar; Milota, Tomas; Moreira, Fernando; Moshous, Despina; Mukhina, Anna; Neth, Olaf; Neven, Benedicte; Nieters, Alexandra; Olbrich, Peter; Ozen, Ahmet; Schmid, Jana Pachlopnik; Picard, Capucine; Prader, Seraina; Rae, William; Reichenbach, Janine; Rusch, Stephan; Savic, Sinisa; Scarselli, Alessia; Scheible, Raphael; Sediva, Anna; Sharapova, Svetlana O.; Shcherbina, Anna; Slatter, Mary; Soler-Palacin, Pere; Stanislas, Aurelie; Suarez, Felipe; Tucci, Francesca; Uhlmann, Annette; van Montfrans, Joris; Warnatz, Klaus; Williams, Anthony Peter; Wood, Phil; Kracker, Sven; Condliffe, Alison Mary; Ehl, Stephan

    2018-01-01

    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2–3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies. PMID:29599784

  4. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry.

    PubMed

    Maccari, Maria Elena; Abolhassani, Hassan; Aghamohammadi, Asghar; Aiuti, Alessandro; Aleinikova, Olga; Bangs, Catherine; Baris, Safa; Barzaghi, Federica; Baxendale, Helen; Buckland, Matthew; Burns, Siobhan O; Cancrini, Caterina; Cant, Andrew; Cathébras, Pascal; Cavazzana, Marina; Chandra, Anita; Conti, Francesca; Coulter, Tanya; Devlin, Lisa A; Edgar, J David M; Faust, Saul; Fischer, Alain; Garcia-Prat, Marina; Hammarström, Lennart; Heeg, Maximilian; Jolles, Stephen; Karakoc-Aydiner, Elif; Kindle, Gerhard; Kiykim, Ayca; Kumararatne, Dinakantha; Grimbacher, Bodo; Longhurst, Hilary; Mahlaoui, Nizar; Milota, Tomas; Moreira, Fernando; Moshous, Despina; Mukhina, Anna; Neth, Olaf; Neven, Benedicte; Nieters, Alexandra; Olbrich, Peter; Ozen, Ahmet; Schmid, Jana Pachlopnik; Picard, Capucine; Prader, Seraina; Rae, William; Reichenbach, Janine; Rusch, Stephan; Savic, Sinisa; Scarselli, Alessia; Scheible, Raphael; Sediva, Anna; Sharapova, Svetlana O; Shcherbina, Anna; Slatter, Mary; Soler-Palacin, Pere; Stanislas, Aurelie; Suarez, Felipe; Tucci, Francesca; Uhlmann, Annette; van Montfrans, Joris; Warnatz, Klaus; Williams, Anthony Peter; Wood, Phil; Kracker, Sven; Condliffe, Alison Mary; Ehl, Stephan

    2018-01-01

    Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2-3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies.

  5. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia

    PubMed Central

    Mirzaa, Ghayda M.; Ishak, Gisele E.; O'Roak, Brian J.; Hiatt, Joseph B.; Roden, William H.; Gunter, Sonya A.; Christian, Susan L.; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G.; Shendure, Jay; Hevner, Robert F.; Dobyns, William B.

    2015-01-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. PMID:25722288

  6. Experimentally induced, synergistic late effects of a single dose of radiation and aging: significance in LKS fraction as compared with mature blood cells.

    PubMed

    Hirabayashi, Yoko; Tsuboi, Isao; Nakachi, Kei; Kusunoki, Yoichiro; Inoue, Tohru

    2015-03-01

    The number of murine mature blood cells recovered within 6 weeks after 2-Gy whole-body irradiation at 6 weeks of age, whereas in the case of the undifferentiated hematopoietic stem/progenitor cell (HSC/HPC) compartment [cells in the lineage-negative, c-kit-positive and stem-cell-antigen-1-positive (LKS) fraction], the numerical differences between mice with and without irradiation remained more than a year, but conclusively the cells showed numerical recovery. When mice were exposed to radiation at 6 months of age, acute damages of mature blood cells were rather milder probably because of their maturation with age; but again, cells in the LKS fraction were specifically damaged, and their numerical recovery was significantly delayed probably as a result of LKS-specific cellular damages. Interestingly, in contrast to the recovery of the number of cells in the LKS fraction, their quality was not recovered, which was quantitatively assessed on the basis of oxidative-stress-related fluorescence intensity. To investigate why the recovery in the number of cells in the LKS fraction was delayed, expression levels of genes related to cellular proliferation and apoptosis of cells in the bone marrow and LKS fraction were analyzed by real-time polymerase chain reaction (RT-PCR). In the case of 21-month-old mice after radiation exposure, Ccnd1, PiK3r1 and Fyn were overexpressed solely in cells in the LKS fraction. Because Ccnd1and PiK3r1 upregulated by aging were further upregulated by radiation, single-dose radiation seemed to induce the acceleration of aging, which is related to the essential biological responses during aging based on a lifetime-dependent relationship between a living creature and xenobiotic materials. Copyright © 2014 John Wiley & Sons, Ltd.

  7. MERTK interactions with SH2-domain proteins in the retinal pigment epithelium.

    PubMed

    Shelby, Shameka J; Colwill, Karen; Dhe-Paganon, Sirano; Pawson, Tony; Thompson, Debra A

    2013-01-01

    The receptor tyrosine kinase MERTK plays an essential role in the phagocytic uptake of shed photoreceptor membranes by the retinal pigment epithelium (RPE). A fundamental aspect of signal transduction by receptor tyrosine kinases involves autophosphorylation of tyrosine residues that recruit Src-homology 2 (SH2)-domain proteins to the receptor intracellular domain. The goal of the current study was to evaluate the interactions of human MERTK with SH2-domain proteins present in the RPE. The MERTK intracellular domain was expressed as a 6xHis-fusion protein (6xHis-rMERTK(571-999)), purified and phosphorylated. Ni(2+)-NTA pull downs were performed using 6xHis-rMERTK(571-999) in incubations with recombinant phosphotyrosine-recognition sequences expressed as GST-fusion proteins. In addition, pull downs of native SH2-domain proteins were performed using 6xHis-rMERTK(571-999) and protein homogenates from rat RPE/choroid. For both recombinant and native proteins, western analysis detected MERTK interactions with GRB2, PIK3R1 (P85α), VAV3, and SRC. Immunohistochemical analysis localized each protein to mouse RPE. In cultured RPE-J cells incubated with rod outer segments (OS), siRNA knockdown of Grb2 had no effect on OS binding, but significantly reduced OS uptake. Pik3r1 localized to early phagosomes along with Rab5 and Eea1. Phosphorylation and activation of Src was detected downstream of phagocytosis and Mertk activation. These findings suggest that MERTK signaling in the RPE involves a cohort of SH2-domain proteins with the potential to regulate both cytoskeletal rearrangement and membrane movement. Identification of the SH2-domain signaling partners of MERTK is an important step toward further defining the mechanism of RPE phagocytosis that is central to the function and survival of the retina.

  8. Investigating the Feasibility of Targeted Next-Generation Sequencing to Guide the Treatment of Head and Neck Squamous Cell Carcinoma.

    PubMed

    Lim, Sun Min; Cho, Sang Hee; Hwang, In Gyu; Choi, Jae Woo; Chang, Hyun; Ahn, Myung-Ju; Park, Keon Uk; Kim, Ji-Won; Ko, Yoon Ho; Ahn, Hee Kyung; Cho, Byoung Chul; Nam, Byung-Ho; Chun, Sang Hoon; Hong, Ji Hyung; Kwon, Jung Hye; Choi, Jong Gwon; Kang, Eun Joo; Yun, Tak; Lee, Keun-Wook; Kim, Joo-Hang; Kim, Jin Soo; Lee, Hyun Woo; Kim, Min Kyoung; Jung, Dongmin; Kim, Ji Eun; Keam, Bhumsuk; Yun, Hwan Jung; Kim, Sangwoo; Kim, Hye Ryun

    2018-05-09

    Head and neck squamous cell carcinoma (HNSCC) is a deadly disease in which precision medicine needs to be incorporated. We aimed to implement next-generation sequencing (NGS) in determining actionable targets to guide appropriate molecular targeted therapy in HNSCC patients. Ninety-three tumors and matched blood samples underwent targeted sequencing of 244 genes using the Illumina HiSeq 2500 platform with an average depth of coverage of greater than 1,000×. Clinicopathological data from patients were obtained from 17 centers in Korea, and were analyzed in correlation with NGS data. Ninety-two of the 93 tumors were amenable to data analysis. TP53 was the most common mutation, occurring in 47 (51%) patients, followed by CDKN2A (n=23, 25%), CCND1 (n=22, 24%) and PIK3CA (n=19, 21%). The total mutational burden was similar between human papillomavirus (HPV)-negative vs. positive tumors, although TP53, CDKN2A and CCND1 gene alterations occurred more frequently in HPV-negative tumors. HPV-positive tumors were significantly associated with immune signature-related genes compared to HPV-negative tumors. Mutations of NOTCH1 (p=0.027), CDKN2A (p<0.001) and TP53 (p=0.038) were significantly associated with poorer overall survival. FAT1 mutations were highly enriched in cisplatin responders, and potentially targetable alterations such as PIK3CA E545K and CDKN2A R58X were noted in 14 (15%) patients. We found several targetable genetic alterations, and our findings suggest that implementation of precision medicine in HNSCC is feasible. The predictive value of each targetable alteration should be assessed in a future umbrella trial using matched molecular targeted agents.

  9. Genomic and mutational profiling of ductal carcinomas in situ and matched adjacent invasive breast cancers reveals intra-tumour genetic heterogeneity and clonal selection

    PubMed Central

    Lambros, Maryou B; Campion-Flora, Adriana; Rodrigues, Daniel Nava; Gauthier, Arnaud; Cabral, Cecilia; Pawar, Vidya; Mackay, Alan; A’Hern, Roger; Marchiò, Caterina; Palacios, Jose; Natrajan, Rachael; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    The mechanisms underlying the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) of the breast are yet to be fully elucidated. Several hypotheses have been put forward to explain the progression from DCIS to IDC, including the selection of a subpopulation of cancer cells with specific genetic aberrations, the acquisition of new genetic aberrations or non-genetic mechanisms mediated by the tumour microenvironment. To determine whether synchronously diagnosed ipsilateral DCIS and IDCs have modal populations with distinct repertoires of gene copy number aberrations and mutations in common oncogenes, matched frozen samples of DCIS and IDCs were retrieved from 13 patients and subjected to microarray-based comparative genomic hybridisation (aCGH), and Sequenom MassARRAY (Oncocarta v1.0 panel). Fluorescence in situ hybridisation and Sanger sequencing were employed to validate the aCGH and Sequenom findings, respectively. Although the genomic profiles of matched DCIS and IDCs were similar, in three of 13 matched pairs amplification of distinct loci (i.e. 1q41, 2q24.2, 6q22.31, 7q11.21, 8q21.2 and 9p13.3) was either restricted to, or more prevalent in, the modal population of cancer cells of one of the components. Sequenom MassARRAY identified PIK3CA mutations restricted to the DCIS component in two cases, and in a third case, the frequency of the PIK3CA mutant allele reduced from 49% in the DCIS to 25% in the IDC component. Despite the genomic similarities between synchronous DCIS and IDC, our data provide strong circumstantial evidence to suggest that in some cases the progression from DCIS to IDC is driven by the selection of non-modal clones that harbour a specific repertoire of genetic aberrations. PMID:22252965

  10. Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT.

    PubMed

    Chen, Shang-Wen; Lin, Chien-Yu; Ho, Cheng-Man; Chang, Ya-Sian; Yang, Shu-Fen; Kao, Chia-Hung; Chang, Jan-Gowth

    2015-08-01

    The aim of this study was to understand the association between various genetic mutation and (18)F-FDG PET-related parameters in patients with colorectal cancer (CRC). One hundred three CRC patients who had undergone preoperative PET/CTs were included in this study. Several PET/CT-related parameters, including SUV(max), and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width (TW) were measured. Using high-resolution melting methods for genetic mutation analysis, tumor- and PET/CT-related parameters were correlated with various genetic alterations including TP53, KRAS, APC, BRAF, and PIK3CA. Mann-Whitney U test and logistic regression analysis were carried out for this analysis. Genetic alterations in TP53, KRAS, and APC were found in 41 (40%), 34 (33%), and 27 (26%) of tumors, respectively. PIK3CA and BRAF were exhibited by 5 and 4 of the patients with CRC. TP53 mutants exhibited higher SUV(max). The odds ratio was 1.28 (P = 0.04; 95% confidence interval, 1.01-1.61). Tumors with a mutated KRAS had an increased accumulation of FDG using a 40% threshold level for maximal uptake of TW (TW(40%)), whereas the odds ratio was 1.15 (P = 0.001; 95% confidence interval, 1.06-1.24). The accuracy of SUV(max) greater than 10 in predicting TP53 mutation was 60%, whereas that for TW(40%) for KRAS was 61%. Increased SUV(max) and TW(40%) were associated in CRC tumors with TP53 and KRAS mutations, respectively. Further studies are required because of the low predictive accuracy.

  11. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press

  12. Morphologic Reproducibility, Genotyping, and Immunohistochemical Profiling Do Not Support a Category of Seromucinous Carcinoma of the Ovary.

    PubMed

    Rambau, Peter F; McIntyre, John B; Taylor, Jennifer; Lee, Sandra; Ogilvie, Travis; Sienko, Anna; Morris, Don; Duggan, Máire A; McCluggage, W Glenn; Köbel, Martin

    2017-05-01

    The 2014 World Health Organization Classification of Tumors of Female Reproductive Organs endorsed the new category of seromucinous carcinoma, a neoplasm that exhibits morphologic and immunophenotypic overlap with other histotypes of ovarian carcinoma. The goal of this study was to determine whether seromucinous carcinoma was a distinct histotype by assessing its diagnostic reproducibility and comparing its molecular composition to the 5 major histotypes of ovarian carcinoma. Thirty-two tumors diagnosed as seromucinous carcinomas from 2 centers were studied. Eighteen cases were randomly selected for a review set comprising a total of 50 ovarian carcinomas of various histotypes. Morphologic histotype was independently assessed by 4 pathologists. For the 32 seromucinous carcinomas, a histotype-specific immunophenotype was assigned using a diagnostic immunohistochemical panel. Histotype-specific genotype was assigned using a combination of immunohistochemistry and targeted next-generation sequencing for somatic mutations, including genes recurrently mutated in ovarian carcinomas. There was low to modest agreement between pathologists with the reference diagnosis of seromucinous carcinoma, ranging from 39% to 56% for the 4 observers. The immunophenotype was not unique but overlapped predominantly with endometrioid and to a lesser extent with mucinous and low-grade serous carcinoma. Genomic and immunohistochemical alterations were detected in a number of target genes, including KRAS (70%), PIK3CA (37%), PTEN (19%), and ARID1A (16%); no CTNNB1 mutations were identified. Nine cases (30%) harbored concurrent KRAS/PIK3CA mutations. An endometrioid genotype was assigned to 19 cases, a low-grade serous genotype to 9, and a mucinous genotype to 1 and 3 cases were uninformative. Integrating morphology, immunophenotype, and genotyping resulted in reclassifying the seromucinous carcinomas to endometrioid 23/32 (72%), low-grade serous 8/32 (25%), and mucinous 1/32 (3%). The

  13. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  14. Identification of mutations in the PI3K-AKT-mTOR signalling pathway in patients with macrocephaly and developmental delay and/or autism.

    PubMed

    Yeung, Kit San; Tso, Winnie Wan Yee; Ip, Janice Jing Kun; Mak, Christopher Chun Yu; Leung, Gordon Ka Chun; Tsang, Mandy Ho Yin; Ying, Dingge; Pei, Steven Lim Cho; Lee, So Lun; Yang, Wanling; Chung, Brian Hon-Yin

    2017-01-01

    Macrocephaly, which is defined as a head circumference greater than or equal to + 2 standard deviations, is a feature commonly observed in children with developmental delay and/or autism spectrum disorder. Although PTEN is a well-known gene identified in patients with this syndromic presentation, other genes in the PI3K-AKT-mTOR signalling pathway have also recently been suggested to have important roles. The aim of this study is to characterise the mutation spectrum of this group of patients. We performed whole-exome sequencing of 21 patients with macrocephaly and developmental delay/autism spectrum disorder. Sources of genomic DNA included blood, buccal mucosa and saliva. Germline mutations were validated by Sanger sequencing, whereas somatic mutations were validated by droplet digital PCR. We identified ten pathogenic/likely pathogenic mutations in PTEN ( n  = 4), PIK3CA ( n  = 3), MTOR ( n  = 1) and PPP2R5D ( n  = 2) in ten patients. An additional PTEN mutation, which was classified as variant of unknown significance, was identified in a patient with a pathogenic PTEN mutation, making him harbour bi-allelic germline PTEN mutations. Two patients harboured somatic PIK3CA mutations, and the level of somatic mosaicism in blood DNA was low. Patients who tested positive for mutations in the PI3K-AKT-mTOR pathway had a lower developmental quotient than the rest of the cohort (DQ = 62.8 vs. 76.1, p = 0.021). Their dysmorphic features were non-specific, except for macrocephaly. Among the ten patients with identified mutations, brain magnetic resonance imaging was performed in nine, all of whom showed megalencephaly. We identified mutations in the PI3K-AKT-mTOR signalling pathway in nearly half of our patients with macrocephaly and developmental delay/autism spectrum disorder. These patients have subtle dysmorphic features and mild developmental issues. Clinically, patients with germline mutations are difficult to distinguish from patients with somatic

  15. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up

    PubMed Central

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Abstract Background Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. Methods We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher’s exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. Results LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Conclusion(s) Our study highlights molecular and immune phenotypes that warrant further analysis for their

  16. Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up.

    PubMed

    Kadara, H; Choi, M; Zhang, J; Parra, E R; Rodriguez-Canales, J; Gaffney, S G; Zhao, Z; Behrens, C; Fujimoto, J; Chow, C; Yoo, Y; Kalhor, N; Moran, C; Rimm, D; Swisher, S; Gibbons, D L; Heymach, J; Kaftan, E; Townsend, J P; Lynch, T J; Schlessinger, J; Lee, J; Lifton, R P; Wistuba, I I; Herbst, R S

    2017-01-01

    Lung adenocarcinomas (LUADs) lead to the majority of deaths attributable to lung cancer. We performed whole-exome sequencing (WES) and immune profiling analyses of a unique set of clinically annotated early-stage LUADs to better understand the pathogenesis of this disease and identify clinically relevant molecular markers. We performed WES of 108 paired stage I-III LUADs and normal lung tissues using the Illumina HiSeq 2000 platform. Ten immune markers (PD-L1, PD-1, CD3, CD4, CD8, CD45ro, CD57, CD68, FOXP3 and Granzyme B) were profiled by imaging-based immunohistochemistry (IHC) in a subset of LUADs (n = 92). Associations among mutations, immune markers and clinicopathological variables were analyzed using ANOVA and Fisher's exact test. Cox proportional hazards regression models were used for multivariate analysis of clinical outcome. LUADs in this cohort exhibited an average of 243 coding mutations. We identified 28 genes with significant enrichment for mutation. SETD2-mutated LUADs exhibited relatively poor recurrence- free survival (RFS) and mutations in STK11 and ATM were associated with poor RFS among KRAS-mutant tumors. EGFR, KEAP1 and PIK3CA mutations were predictive of poor response to adjuvant therapy. Immune marker analysis revealed that LUADs in smokers and with relatively high mutation burdens exhibited increased levels of immune markers. Analysis of immunophenotypes revealed that LUADs with STK11 mutations exhibited relatively low levels of infiltrating CD4+/CD8+ T-cells indicative of a muted immune response. Tumoral PD-L1 was significantly elevated in TP53 mutant LUADs whereas PIK3CA mutant LUADs exhibited markedly down-regulated PD-L1 expression. LUADs with TP53 or KEAP1 mutations displayed relatively increased CD57 and Granzyme B levels indicative of augmented natural killer (NK) cell infiltration. Our study highlights molecular and immune phenotypes that warrant further analysis for their roles in clinical outcomes and personalized immune

  17. YORP: Its origin

    NASA Astrophysics Data System (ADS)

    Paddack, Stephen; Rubincam, David P.

    2015-11-01

    It’s all about photons and their behavior. Yarkovsky (1844-1902) did not have the knowledge we have today about photons and radiation pressure. Nevertheless, he published a pamphlet in 1901 that small rotating celestial bodies could absorb sunlight and reradiate it as heat after a delay, resulting in possible orbital changes, setting the stage for radiation effects in celestial mechanics. Yarkovsly’s work remained obscure until Öpik recalled having read Yarkovsky’s pamphlet. Öpik brought Yarkovsky’s idea to the attention of John A. O’Keefe in the late 1960s. O’Keefe, the mentor for two aspiring PhD students, Paddack and Rubincam, told them about Yarkovsky. In 1968 Paddack postulated that the reflection of sunlight off of small, irregularly shaped celestial bodies could have a significant effect on their spin rates. He referred to this as a windmill effect. Paddack and O’Keefe tested the idea of windmill shapes causing spin by dropping crushed stones with irregular shapes into a swimming pool and watching them twirl. Paddack then mimicked the space environment by placing windmill-shaped artificial objects and tektites in a vacuum chamber on an almost frictionless bearing and spinning them up with a strong source of light, conclusively showing the relation of shape to spin. Earlier in 1954 Radzievskii wrote about the effects radiation pressure on variations in the albedo of small celestial bodies as a means of changing their spin rates. The uniform color of Paddack’s test bodies ruled out Radzievskii’s effect as the cause for the observed spin-up. The Yarkovsky effect was minimized because the test object had a coating of vapor-deposited aluminum with a very high albedo and consequently did not heat up. In 2000 Rubincam applied Paddack’s idea to small asteroids and called it the YORP effect (YORP = Yarkovsky-O’Keefe-Radzievskii-Paddack), to give it a catchy name and sell the idea. In 2007 results were published in Science about the observed

  18. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.

    PubMed

    Xing, Mingzhao

    2010-07-01

    Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years. This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC. Genetic alterations

  19. The Influence of the CHIEF Pathway on Colorectal Cancer-Specific Mortality

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie

    2014-01-01

    Many components of the CHIEF (Convergence of Hormones, Inflammation, and Energy Related Factors) pathway could influence survival given their involvement in cell growth, apoptosis, angiogenesis, and tumor invasion stimulation. We used ARTP (Adaptive Rank Truncation Product) to test if genes in the pathway were associated with colorectal cancer-specific mortality. Colon cancer (n = 1555) and rectal cancer (n = 754) cases were followed over five years. Age, center, stage at diagnosis, and tumor molecular phenotype were considered when calculating ARTP p values. A polygenic risk score was used to summarize the magnitude of risk associated with this pathway. The JAK/STAT/SOC was significant for colon cancer survival (PARTP = 0.035). Fifteen genes (DUSP2, INFGR1, IL6, IRF2, JAK2, MAP3K10, MMP1, NFkB1A, NOS2A, PIK3CA, SEPX1, SMAD3, TLR2, TYK2, and VDR) were associated with colon cancer mortality (PARTP <0.05); JAK2 (PARTP  = 0.0086), PIK3CA (PARTP = 0.0098), and SMAD3 (PARTP = 0.0059) had the strongest associations. Over 40 SNPs were significantly associated with survival within the 15 significant genes (PARTP<0.05). SMAD3 had the strongest association with survival (HRGG 2.46 95% CI 1.44,4.21 PTtrnd = 0.0002). Seven genes (IL2RA, IL8RA, IL8RB, IRF2, RAF1, RUNX3, and SEPX1) were significantly associated with rectal cancer (PARTP<0.05). The HR for colorectal cancer-specific mortality among colon cancer cases in the upper at-risk alleles group was 11.81 (95% CI 7.07, 19. 74) and was 10.99 (95% CI 5.30, 22.78) for rectal cancer. These results suggest that several genes in the CHIEF pathway are important for colorectal cancer survival; the risk associated with the pathway merits validation in other studies. PMID:25541970

  20. Concurrent Oncogene Mutation Profile in Chinese Patients With Stage Ib Lung Adenocarcinoma

    PubMed Central

    Wen, Ying-Sheng; Cai, Ling; Zhang, Xue-wen; Zhu, Jian-fei; Zhang, Zi-chen; Shao, Jian-yong; Zhang, Lan-Jun

    2014-01-01

    Abstract Molecular characteristics in lung cancer are associated with carcinogenesis, response to targeted therapies, and prognosis. With concurrent oncogene mutations being reported more often, the adjustment of treatment based on the driver gene mutations would improve therapy. We proposed to investigate the distribution of concurrent oncogene mutations in stage Ib lung adenocarcinoma in a Chinese population and find out the correlation between survival outcome and the most frequently mutated genes in EGFR and KRAS in Chinese population. Simultaneously, we tried to validate the Sequenom method by real time fluoresce qualification reverse transcription polymerase chain reaction (RT-PCR) in oncogene detection. One hundred fifty-six patients who underwent complete surgical resection in our hospital between 1999 and 2007 were retrospectively investigated. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined. Genetic mutations occurred in 86 of 156 patients (55.13%). EGFR was most frequently gene contained driver mutations, with a rate of 44.23%, followed by KRAS (8.33%), PIK3CA (3.84%), KIT (3.20%), BRAF (2.56%), AKT (1.28%), MET (0.64%), NRAS (0.64%), HRAS (0.64%), and ERBB2 (0.64%). No mutations were found in the RET, PDGFRA, FGFR1, FGFR3, FLT3, ABL, CDK, or JAK2 oncogenes. Thirteen patients (8.3%) were detected in multiple gene mutations. Six patients had PIK3CA mutations in addition to mutations in EGFR and KRAS. EGFR mutations can coexist with mutations in NRAS, KIT, ERBB2, and BRAF. Only one case was found to have a KRAS mutation coexisting with the EGFR T790M mutation. Otherwise, mutations in EGFR and KRAS seem to be mutually exclusive. There is no survival benefit in favor of EGFR/KRAS mutation. Several concomitant driver gene mutations were observed in our study. None of EFGR/KRAS mutation was demonstrated as a prognostic factor. Polygenic mutation testing by time-of-flight mass spectrometry was validated by RT

  1. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.

  2. Noninvasive detection of activating estrogen receptor 1 (ESR1) mutations in estrogen receptor-positive metastatic breast cancer.

    PubMed

    Guttery, David S; Page, Karen; Hills, Allison; Woodley, Laura; Marchese, Stephanie D; Rghebi, Basma; Hastings, Robert K; Luo, Jinli; Pringle, J Howard; Stebbing, Justin; Coombes, R Charles; Ali, Simak; Shaw, Jacqueline A

    2015-07-01

    Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of <1%. In serial blood samples from 11 patients, 4 showed changes in cfDNA, 2 with emergence of a mutation in ESR1. We also detected a low frequency ESR1 mutation (1.3%) in cfDNA of 1 primary patient who was thought to have metastatic disease but was clear by scans. Early identification of ESR1 mutations by liquid biopsy might allow for cessation of ineffective endocrine therapies and switching to other treatments, without the need for tissue biopsy and before the emergence of metastatic disease. © 2015 American Association for Clinical Chemistry.

  3. Proteomic and Biochemical Comparison of the Cellular Interaction Partners of Human VPS33A and VPS33B.

    PubMed

    Hunter, Morag R; Hesketh, Geoffrey G; Benedyk, Tomasz H; Gingras, Anne-Claude; Graham, Stephen C

    2018-05-17

    Multi-subunit tethering complexes control membrane fusion events in eukaryotic cells. Class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) are two such complexes, both containing the Sec1/Munc18 protein subunit VPS33A. Metazoans additionally possess VPS33B, which has considerable sequence similarity to VPS33A but does not integrate into CORVET or HOPS complexes and instead stably interacts with VIPAR. It has been recently suggested that VPS33B and VIPAR comprise two subunits of a novel multi-subunit tethering complex (named "CHEVI"), perhaps analogous in configuration to CORVET and HOPS. We utilized the BioID proximity biotinylation assay to compare and contrast the interactomes of VPS33A and VPS33B. Overall, few proteins were identified as associating with both VPS33A and VPS33B, suggesting that these proteins have distinct sub-cellular localizations. Consistent with previous reports, we observed that VPS33A was co-localized with many components of class III phosphatidylinositol 3-kinase (PI3KC3) complexes: PIK3C3, PIK3R4, NRBF2, UVRAG and RUBICON. Although VPS33A clearly co-localized with several subunits of CORVET and HOPS in this assay, no proteins with the canonical CORVET/HOPS domain architecture were found to co-localize with VPS33B. Instead, we identified that VPS33B interacts directly with CCDC22, a member of the CCC complex. CCDC22 does not co-fractionate with VPS33B and VIPAR in gel filtration of human cell lysates, suggesting that CCDC22 interacts transiently with VPS33B/VIPAR rather than forming a stable complex with these proteins in cells. We also observed that the protein complex containing VPS33B and VIPAR is considerably smaller than CORVET/HOPS, suggesting that the CHEVI complex comprises just VPS33B and VIPAR. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib

    PubMed Central

    Bessette, Darrell C.; Tilch, Erik; Seidens, Tatjana; Quinn, Michael C. J.; Wiegmans, Adrian P.; Shi, Wei; Cocciardi, Sibylle; McCart-Reed, Amy; Saunus, Jodi M.; Simpson, Peter T.; Grimmond, Sean M.; Lakhani, Sunil R.; Khanna, Kum Kum; Waddell, Nic; Al-Ejeh, Fares; Chenevix-Trench, Georgia

    2015-01-01

    Background Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. Materials and Methods Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. Results Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. Conclusions Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for

  5. KRAS Mutation Status and Clinical Outcome of Preoperative Chemoradiation With Cetuximab in Locally Advanced Rectal Cancer: A Pooled Analysis of 2 Phase II Trials

    SciTech Connect

    Kim, Sun Young; Shim, Eun Kyung; Yeo, Hyun Yang

    2013-01-01

    Purpose: Cetuximab-containing chemotherapy is known to be effective for KRAS wild-type metastatic colorectal cancer; however, it is not clear whether cetuximab-based preoperative chemoradiation confers an additional benefit compared with chemoradiation without cetuximab in patients with locally advanced rectal cancer. Methods and Materials: We analyzed EGFR, KRAS, BRAF, and PIK3CA mutation status with direct sequencing and epidermal growth factor receptor (EGFR) and Phosphatase and tensin homolog (PTEN) expression status with immunohistochemistry in tumor samples of 82 patients with locally advanced rectal cancer who were enrolled in the IRIX trial (preoperative chemoradiation with irinotecan and capecitabine; n=44) or the ERBIRIX trial (preoperativemore » chemoradiation with irinotecan and capecitabine plus cetuximab; n=38). Both trials were similarly designed except for the administration of cetuximab; radiation therapy was administered at a dose of 50.4 Gy/28 fractions and irinotecan and capecitabine were given at doses of 40 mg/m{sup 2} weekly and 1650 mg/m{sup 2}/day, respectively, for 5 days per week. In the ERBIRIX trial, cetuximab was additionally given with a loading dose of 400 mg/m{sup 2} on 1 week before radiation, and 250 mg/m{sup 2} weekly thereafter. Results: Baseline characteristics before chemoradiation were similar between the 2 trial cohorts. A KRAS mutation in codon 12, 13, and 61 was noted in 15 (34%) patients in the IRIX cohort and 5 (13%) in the ERBIRIX cohort (P=.028). Among 62 KRAS wild-type cancer patients, major pathologic response rate, disease-free survival and pathologic stage did not differ significantly between the 2 cohorts. No mutations were detected in BRAF exon 11 and 15, PIK3CA exon 9 and 20, or EGFR exon 18-24 in any of the 82 patients, and PTEN and EGFR expression were not predictive of clinical outcome. Conclusions: In patients with KRAS wild-type locally advanced rectal cancer, the addition of cetuximab to the

  6. A Higher Proportion of the EGFR T790M Mutation May Contribute to the Better Survival of Patients with Exon 19 Deletions Compared with Those with L858R.

    PubMed

    Ke, E-E; Zhou, Qing; Zhang, Qiu-Yi; Su, Jian; Chen, Zhi-Hong; Zhang, Xu-Chao; Xu, Chong-Rui; Yang, Jin-Ji; Tu, Hai-Yan; Yan, Hong-Hong; Zhang, Yi-Chen; Niu, Fei-Yu; Wu, Yi-Long

    2017-09-01

    Increasing evidence has demonstrated that exon 19 deletions (Del19) and L858R mutation in EGFR have different prognostic and predictive roles in NSCLC. We aimed to investigate whether these two mutations produced differences in mechanisms of resistance to EGFR tyrosine kinase inhibitors. Consecutive patients with advanced EGFR-mutant NSCLC who acquired resistance to EGFR tyrosine kinase inhibitors and underwent postprogression biopsy were enrolled. Mechanisms including T790M mutation, mesenchymal-epithelial transition proto-oncogene (MET) amplification, and histological transformation, as well as KRAS, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation, and anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion, were analyzed. The prevalence of T790M mutation was significantly higher in the Del19 subgroup than that in L858R subgroup (50.4% versus 36.5%, p = 0.043). Apart from this, there was no difference in other mechanisms including MET amplification and histological transformation. The median overall survival (OS) of patients with T790M mutation was 36.0 months (95% confidence interval [CI]: 30.9-41.2), which was significantly longer than the 26.5 months (95% CI: 24.0-29.0) in MET-positive patients, 19.7 months (95% CI: 18.2-21.2) in patients with histological transformation, and 23.0 months (95% CI: 17.4-28.6) in the KRAS/PIK3CA/ALK-altered population (p = 0.021). The hazard ratios of the MET-amplification subgroup and subgroup with histological transformation were 1.809-fold and 2.370-fold higher than that in T790M-positive subgroup. The median OS times were months 33.3 (95% CI: 28.9-37.7) in the Del19 subgroup and 26.4 months (95% CI: 23.2-29.6) in the L858R subgroup (p = 0.028). However, in multivariable analysis adjusted for T790M genotype, the EGFR mutation subtype was no longer found to be significant. Significant OS benefit was observed in patients with T790M mutation, suggesting that a larger

  7. Frequency of EGFR T790M mutation and multimutational profiles of rebiopsy samples from non-small cell lung cancer developing acquired resistance to EGFR tyrosine kinase inhibitors in Japanese patients.

    PubMed

    Ko, Ryo; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Koh, Yasuhiro; Wakuda, Kazushige; Ono, Akira; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Isaka, Mitsuhiro; Endo, Masahiro; Nakajima, Takashi; Ohde, Yasuhisa; Yamamoto, Nobuyuki; Takahashi, Kazuhisa; Takahashi, Toshiaki

    2016-11-08

    The majority of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR tyrosine kinase inhibitors (TKIs). Minimal information exists regarding genetic alterations in rebiopsy samples from Asian NSCLC patients who develop acquired resistance to EGFR-TKIs. We retrospectively reviewed the medical records of patients with NSCLC harboring EGFR mutations who had undergone rebiopsies after developing acquired resistance to EGFR-TKIs. We analyzed 27 practicable samples using a tumor genotyping panel to assess 23 hot-spot sites of genetic alterations in nine genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, and HER2), gene copy number of EGFR, MET, PIK3CA, FGFR1, and FGFR2, and ALK, ROS1, and RET fusions. Additionally, 34 samples were analyzed by commercially available EGFR mutation tests. Sixty-one patients underwent rebiopsy. Twenty-seven samples were analyzed using our tumor genotyping panel, and 34 samples were analyzed for EGFR mutations only by commercial clinical laboratories. Twenty-one patients (34 %) had EGFR T790M mutation. Using our tumor genotyping panel, MET gene copy number gain was observed in two of 27 (7 %) samples. Twenty patients received continuous treatment with EGFR-TKIs even after disease progression, and 11 of these patients had T790M mutation in rebiopsy samples. In contrast, only 10 of 41 patients who finished EGFR-TKI treatment at disease progression had T790M mutation. The frequency of T790M mutation in patients who received continuous treatment with EGFR-TKIs after disease progression was significantly higher than that in patients who finished EGFR-TKI treatment at disease progression (55 % versus 24 %, p = 0.018). The frequency of T790M mutation in this study was lower than that in previous reports examining western patients. These results suggest that continuous treatment with EGFR-TKI after disease progression may enhance the frequency of EGFR T

  8. [Correlation of clinicopathologic features and driver gene mutation in non-small cell lung cancer].

    PubMed

    Chen, L F; Chen, X Y; Yu, X B

    2016-04-08

    To study the relationship between mutations of well-known driver genes and clinicopathologic characteristics of non-small cell lung cancers (NSCLC). Scorpions amplification refractory mutation system (scorpions ARMS) fluorescence quantitative PCR was performed to investigate 205 driver gene mutation status in NSCLC in correlation with clinicopathological characteristics of the patients. Driver gene mutations were detected in 146 of 205 (71.2%) patients with NSCLC, including 81.7%(138/169) adenocarcinomas, in which mutations of nine genes were found: EGFR (63.3%, 107/169), KRAS (5.9%, 10/169), PIK3CA (4.1%, 7/169), ALK (4.1%, 7/169), ROS1 (3.0%, 5/169), RET (3.6%, 6/169), HER2 (1.8%, 3/169), NRAS (0.6%, 1/169) and BRAF (0.6%, 1/169). The frequencies of driver gene mutations were higher in adenocarcinomas, female patients and non-smokers (P<0.01, P=0.003, P<0.01, respectively). Driver gene mutation status showed no correlation with either the age or the clinical stage (P=0.281, P=0.490, respectively). However, EGFR mutations tended to occur in adenocarcinoma, female, non-smokers, and patients of ≥62 years of age (P<0.01, P<0.01, P=0.002, P=0.012, respectively). The frequency of EGFR mutation was positively correlated with the tumor histology of lepidic, acinar, papillary and micropapillary predominant growth patterns. There was no relationship between EGFR mutation and the clinical stage (P=0.237). The frequency of KRAS mutation was higher in solid predominant and invasive mucinous adenocarcinomas (P=0.015); that of PIK3CA mutation was higher in patients of ≥62 years of age, invasive mucinous adenocarcinoma and fetal adenocarcinoma (P=0.015, P=0.006, respectively). ALK, ROS1 or RET mutation positive NSCLC tended to occur in nonsmokers and have solid predominant tumors and invasive mucinous adenocarcinoma (P=0.012, P=0.017 respectively). The frequency of EML4-ALK mutation was higher in the early stage patients with solid predominant tumors and invasive mucinous

  9. HSP27 expression in primary colorectal cancers is dependent on mutation of KRAS and PI3K/AKT activation status and is independent of TP53.

    PubMed

    Ghosh, Anil; Lai, Cecilia; McDonald, Sarah; Suraweera, Nirosha; Sengupta, Neel; Propper, David; Dorudi, Sina; Silver, Andrew

    2013-02-01

    Colorectal adenomas display features of senescence, but these are often lost upon progression to carcinoma, indicating that oncogene induced senescence (OIS) could be a roadblock in colorectal cancer (CRC) development. Heat shock proteins (HSPs) have been implicated in the prognosis of CRC and HSP based therapy is a current interest for drug development. Recent cell culture studies have suggested that in the absence of a TP53 mutation, OIS mediated by PI3K/AKT activation can be circumvented by high expression of HSPs. Furthermore, while PI3K/AKT activation and KRAS mutations are independent inducers of OIS, PI3K/AKT activation can suppress KRAS-induced OIS when both are present in cultured cells. As KRAS mutations, PI3K/AKT activation and TP53 mutations are all common features of CRC, it is possible that the requirement for HSP to inhibit OIS in CRC is dependent on the mutation spectrum of a tumour. However, work on HSP that utilised mutation profiled human tumour tissues has been limited. Here, we characterised the expression of two major HSP proteins (HSP27 and 72) by immunohistochemistry (IHC), the mutation status of TP53, KRAS and PIK3CA genes by direct sequencing and the activation status of AKT by IHC in a cohort of unselected primary CRC (n=74). We compare our data with findings generated from cell-based studies. Expression of HSP27 and HSP72 was correlated to clinicopathological and survival data but no significant association was found. We also established the mutation status of TP53, KRAS and PIK3CA genes and the activation status of AKT in our CRC panel. We did not detect any associations between HSP27 or HSP72 expression with TP53 mutation status. However, HSP27 expression in CRCs was strongly associated with the co-presence of wildtype KRAS and activated PI3K/AKT (p=0.004), indicating a possible role of HSP27 in overcoming PI3K/AKT induced OIS in tumours. Our studies suggest a role for using archival tissues in validating hypotheses generated from cell

  10. Avirulence (AVR) Gene-Based Diagnosis Complements Existing Pathogen Surveillance Tools for Effective Deployment of Resistance (R) Genes Against Rice Blast Disease.

    PubMed

    Selisana, S M; Yanoria, M J; Quime, B; Chaipanya, C; Lu, G; Opulencia, R; Wang, G-L; Mitchell, T; Correll, J; Talbot, N J; Leung, H; Zhou, B

    2017-06-01

    Avirulence (AVR) genes in Magnaporthe oryzae, the fungal pathogen that causes the devastating rice blast disease, have been documented to be major targets subject to mutations to avoid recognition by resistance (R) genes. In this study, an AVR-gene-based diagnosis tool for determining the virulence spectrum of a rice blast pathogen population was developed and validated. A set of 77 single-spore field isolates was subjected to pathotype analysis using differential lines, each containing a single R gene, and classified into 20 virulent pathotypes, except for 4 isolates that lost pathogenicity. In all, 10 differential lines showed low frequency (<24%) of resistance whereas 8 lines showed a high frequency (>95%), inferring the effectiveness of R genes present in the respective differential lines. In addition, the haplotypes of seven AVR genes were determined by polymerase chain reaction amplification and sequencing, if applicable. The calculated frequency of different AVR genes displayed significant variations in the population. AVRPiz-t and AVR-Pii were detected in 100 and 84.9% of the isolates, respectively. Five AVR genes such as AVR-Pik-D (20.5%) and AVR-Pik-E (1.4%), AVRPiz-t (2.7%), AVR-Pita (0%), AVR-Pia (0%), and AVR1-CO39 (0%) displayed low or even zero frequency. The frequency of AVR genes correlated almost perfectly with the resistance frequency of the cognate R genes in differential lines, except for International Rice Research Institute-bred blast-resistant lines IRBLzt-T, IRBLta-K1, and IRBLkp-K60. Both genetic analysis and molecular marker validation revealed an additional R gene, most likely Pi19 or its allele, in these three differential lines. This can explain the spuriously higher resistance frequency of each target R gene based on conventional pathotyping. This study demonstrates that AVR-gene-based diagnosis provides a precise, R-gene-specific, and differential line-free assessment method that can be used for determining the virulence spectrum of

  11. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  12. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer.

    PubMed

    Rothé, F; Laes, J-F; Lambrechts, D; Smeets, D; Vincent, D; Maetens, M; Fumagalli, D; Michiels, S; Drisis, S; Moerman, C; Detiffe, J-P; Larsimont, D; Awada, A; Piccart, M; Sotiriou, C; Ignatiadis, M

    2014-10-01

    Molecular screening programs use next-generation sequencing (NGS) of cancer gene panels to analyze metastatic biopsies. We interrogated whether plasma could be used as an alternative to metastatic biopsies. The Ion AmpliSeq™ Cancer Hotspot Panel v2 (Ion Torrent), covering 2800 COSMIC mutations from 50 cancer genes was used to analyze 69 tumor (primary/metastases) and 31 plasma samples from 17 metastatic breast cancer patients. The targeted coverage for tumor DNA was ×1000 and for plasma cell-free DNA ×25 000. Whole blood normal DNA was used to exclude germline variants. The Illumina technology was used to confirm observed mutations. Evaluable NGS results were obtained for 60 tumor and 31 plasma samples from 17 patients. When tumor samples were analyzed, 12 of 17 (71%, 95% confidence interval (CI) 44% to 90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1 or IDH2 gene. When plasma samples were analyzed, 12 of 17 (71%, 95% CI: 44-90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1, IDH2 and SMAD4. All mutations were confirmed. When we focused on tumor and plasma samples collected at the same time-point, we observed that, in four patients, no mutation was identified in either tumor or plasma; in nine patients, the same mutations was identified in tumor and plasma; in two patients, a mutation was identified in tumor but not in plasma; in two patients, a mutation was identified in plasma but not in tumor. Thus, in 13 of 17 (76%, 95% CI 50% to 93%) patients, tumor and plasma provided concordant results whereas in 4 of 17 (24%, 95% CI 7% to 50%) patients, the results were discordant, providing complementary information. Plasma can be prospectively tested as an alternative to metastatic biopsies in molecular screening programs. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology

  13. Golgi-Associated Protein Kinase C-ε Is Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate.

    PubMed

    Hanes, Cheryl M; D'Amico, Anna E; Ueyama, Takehiko; Wong, Alexander C; Zhang, Xuexin; Hynes, W Frederick; Barroso, Margarida M; Cady, Nathaniel C; Trebak, Mohamed; Saito, Naoaki; Lennartz, Michelle R

    2017-07-01

    Protein kinase C-ε (PKC-ε) at phagocytic cups mediates the membrane fusion necessary for efficient IgG-mediated phagocytosis. The C1B and pseudosubstrate (εPS) domains are necessary and sufficient for this concentration. C1B binds diacylglycerol; the docking partner for εPS is unknown. Liposome assays revealed that the εPS binds phosphatidylinositol 4-phosphate (PI4P) and PI(3,5)P 2 Wortmannin, but not LY294002, inhibits PKC-ε concentration at cups and significantly reduces the rate of phagocytosis. As Wortmannin inhibits PI4 kinase, we hypothesized that PI4P mediates the PKC-ε concentration at cups and the rate of phagocytosis. PKC-ε colocalizes with the trans -Golgi network (TGN) PI4P reporter, P4M, suggesting it is tethered at the TGN. Real-time imaging of GFP-PKC-ε-expressing macrophages revealed a loss of Golgi-associated PKC-ε during phagocytosis, consistent with a Golgi-to-phagosome translocation. Treatment with PIK93, a PI4 kinase inhibitor, reduces PKC-ε at both the TGN and the cup, decreases phagocytosis, and prevents the increase in capacitance that accompanies membrane fusion. Finally, expression of the Golgi-directed PI4P phosphatase, hSac1-K2A, recapitulates the PIK93 phenotype, confirming that Golgi-associated PI4P is critical for efficient phagocytosis. Together these data are consistent with a model in which PKC-ε is tethered to the TGN via an εPS-PI4P interaction. The TGN-associated pool of PKC-ε concentrates at the phagocytic cup where it mediates the membrane fusion necessary for phagocytosis. The novelty of these data lies in the demonstration that εPS binds PI4P and PI(3,5)P 2 and that PI4P is necessary for PKC-ε localization at the TGN, its translocation to the phagocytic cup, and the membrane fusion required for efficient Fc [γ] receptor-mediated phagocytosis. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    PubMed

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  15. Genomic profiling in a homogeneous molecular subtype of non-small cell lung cancer: An effort to explore new drug targets.

    PubMed

    Veldore, Vidya H; Patil, S; Satheesh, C T; Shashidhara, H P; Tejaswi, R; Prabhudesai, Shilpa A; Krishnamoorthy, N; Hazarika, D; Naik, R; Rao, Raghavendra M; Ajai Kumar, B S

    2015-01-01

    Patients' who are positive for kinase domain activating mutations in epidermal growth factor receptor (EGFR) gene, constitute 30-40% of non-small cell lung cancer (NSCLC), and are suitable candidates for Tyrosine Kinase Inhibitor based targeted/personalized therapy. In EGFR non-mutated subset, 8-10% that show molecular abnormalities such as EML4-ALK, ROS1-ALK, KIP4-ALK, may also derive the benefit of targeted therapy. However, 40% of NSCLC belong to a grey zone of tumours that are negative for the clinically approved biomarkers for personalized therapy. This pilot study aims to identify and classify molecular subtypes of this group to address the un-met need for new drug targets in this category. Here we screened for known/novel oncogenic driver mutations using a 46 gene Ampliseq Panel V1.0 that includes Ser/Thr/Tyr kinases, transcription factors and tumor suppressors. NSCLC with tumor burden of at least 40% on histopathology were screened for 29 somatic mutations in the EGFR kinase domain by real-time polymerase chain reaction methods. 20 cases which were EGFR non-mutated for TK domain mutations were included in this study. DNA Quality was verified from each of the 20 cases by fluorimeter, pooled and subjected to targeted re-sequencing in the Ion Torrent platform. Torrent Suite software was used for next generation sequencing raw data processing and variant calling. The clinical relevance and pathological role of all the mutations/variants that include SNPs and Indels was assessed using polyphen-2/SIFT/PROVEAN/mutation assessor structure function prediction programs. There were 10 pathogenic mutations in six different oncogenes for which annotation was available in the COSMIC database; C420R mutation in PIK3CA, Q472H mutation in vascular endothelial growth factor receptor 2 (VEGFR2) (KDR), C630W and C634R in RET, K367M mutation in fibroblast growth factor receptor 2 (FGFR2), G12C in KRAS and 4 pathogenic mutations in TP53 in the DNA binding domain (E285K, R213L, R

  16. Screening for susceptibility genes in hereditary non-polyposis colorectal cancer.

    PubMed

    Yu, Li; Yin, Bo; Qu, Kaiying; Li, Jingjing; Jin, Qiao; Liu, Ling; Liu, Chunlan; Zhu, Yuxing; Wang, Qi; Peng, Xiaowei; Zhou, Jianda; Cao, Peiguo; Cao, Ke

    2018-06-01

    In the present study, hereditary non-polyposis colorectal cancer (HNPCC) susceptibility genes were screened for using whole exome sequencing in 3 HNPCC patients from 1 family and using single nucleotide polymorphism (SNP) genotyping assays in 96 other colorectal cancer and control samples. Peripheral blood was obtained from 3 HNPCC patients from 1 family; the proband and the proband's brother and cousin. High-throughput sequencing was performed using whole exome capture technology. Sequences were aligned against the HAPMAP, dbSNP130 and 1,000 Genome Project databases. Reported common variations and synonymous mutations were filtered out. Non-synonymous single nucleotide variants in the 3 HNPCC patients were integrated and the candidate genes were identified. Finally, SNP genotyping was performed for the genes in 96 peripheral blood samples. In total, 60.4 Gb of data was retrieved from the 3 HNPCC patients using whole exome capture technology. Subsequently, according to certain screening criteria, 15 candidate genes were identified. Among the 96 samples that had been SNP genotyped, 92 were successfully genotyped for 15 gene loci, while genotyping for HTRA1 failed in 4 sporadic colorectal cancer patient samples. In 12 control subjects and 81 sporadic colorectal cancer patients, genotypes at 13 loci were wild-type, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 . The CEP290 genotype was mutant in 1 sporadic colorectal cancer patient and was wild-type in all other subjects. A total of 5 of the 12 control subjects and 30 of the 81 sporadic colorectal cancer patients had a mutant HTRA1 genotype. In all 3 HNPCC patients, the same mutant genotypes were identified at all 15 gene loci. Overall, 13 potential susceptibility genes for HNPCC were identified, namely DDX20, ZFYVE26, PIK3R3, SLC26A8, ZEB2, TP53INP1, SLC11A1, LRBA, CEBPZ, ETAA1, SEMA3G, IFRD2 and FAT1 .

  17. Subsets of salivary duct carcinoma defined by morphologic evidence of pleomorphic adenoma, PLAG1 or HMGA2 rearrangements, and common genetic alterations.

    PubMed

    Chiosea, Simion I; Thompson, Lester D R; Weinreb, Ilan; Bauman, Julie E; Mahaffey, Alyssa M; Miller, Caitlyn; Ferris, Robert L; Gooding, William E

    2016-10-15

    The authors hypothesized that histogenetic classification of salivary duct carcinoma (SDC) could account for de novo tumors and those with morphologic or molecular evidence (pleomorphic adenoma gene 1 [PLAG1], high-mobility group AT hook 2 [HMGA2] rearrangement, amplification) of pleomorphic adenoma (PA). SDCs (n = 66) were reviewed for morphologic evidence of PA. PLAG1 and HMGA2 alterations were detected by fluorescence in situ hybridization (FISH). PLAG1-positive tumors were tested by FISH for fibroblast growth factor receptor 1 (FGFR1) rearrangement. Thirty-nine tumors were analyzed using a commercial panel for mutations and copy number variations in 50 cancer-related genes. On the basis of combined morphologic and molecular evidence of PA, 4 subsets of SDC emerged: 1) carcinomas with morphologic evidence of PA but intact PLAG1 and HMGA2 (n = 22); 2) carcinomas with PLAG1 alteration (n = 18) or 3) HMGA2 alteration (n = 12); and 4) de novo carcinomas, without morphologic or molecular evidence of PA (n = 14). The median disease-free survival was 37 months (95% confidence interval, 28.4-45.6 months). Disease-free survival and other clinicopathologic parameters did not differ for the subsets defined above. Combined Harvey rat sarcoma viral oncogene homolog/phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit α (HRAS/PIK3CA) mutations were observed predominantly in de novo carcinomas (5 of 8 vs 2 of 31 tumors; P = .035). Erb-B2 receptor tyrosine kinase 2 (ERBB2) copy number gain was not observed in de novo carcinomas (0 of 8 vs 12 of 31 tumors; P = .08). Tumor protein 53 (TP53) mutations were more common in SDC ex pleomorphic adenomas than in de novo carcinomas (17 of 31 vs 1 of 8 tumors; P = .033). The genetic profile of SDC varies with the absence or presence of pre-existing PA and its cytogenetic signature. Most de novo SDCs harbor combined HRAS/PIK3CA mutations and no ERBB2 amplification. Cancer 2016;122:3136-44. © 2016 American Cancer Society.

  18. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis

    PubMed Central

    Kim, Bo Ram; Van de Laar, Emily; Tarumi, Shintaro; Hasenoeder, Stefan; Wang, Dennis; Virtanen, Carl; Bandarchi, Bizhan; Pham, Nhu An; Lee, Sharon; Keshavjee, Shaf; Tsao, Ming-Sound; Moghal, Nadeem

    2016-01-01

    Although cancers are considered stem cell diseases, mechanisms involving stem cell alterations are poorly understood. Squamous cell carcinoma (SQCC) is the second most common lung cancer, and its pathogenesis appears to hinge on changes in the stem cell behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and differentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting in progressive premalignant epithelial changes ranging from squamous metaplasia to dysplasia. These changes can regress naturally, even with chronic smoking. However, for unknown reasons, dysplasias have higher progression rates than earlier stages. We used primary human tracheobronchial basal cells to investigate how copy number gains in SOX2 and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs, may promote progression. We find that SOX2 cooperates with PI3K signaling, which is activated by smoking, to initiate the squamous injury response in basal cells. This response involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high during dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2HiSOX9Lo state with active PI3K signaling, which sustains the squamous injury response while precluding normal mucociliary differentiation. Surprisingly, we find that, although later in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in a subset of SQCCs with less squamous identity and

  19. Use of mutation profiles to refine the classification of endometrial carcinomas.

    PubMed

    McConechy, Melissa K; Ding, Jiarui; Cheang, Maggie Cu; Wiegand, Kimberly; Senz, Janine; Tone, Alicia; Yang, Winnie; Prentice, Leah; Tse, Kane; Zeng, Thomas; McDonald, Helen; Schmidt, Amy P; Mutch, David G; McAlpine, Jessica N; Hirst, Martin; Shah, Sohrab P; Lee, Cheng-Han; Goodfellow, Paul J; Gilks, C Blake; Huntsman, David G

    2012-09-01

    The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, undifferentiated, and clear cell) are associated with distinct molecular alterations. This current classification system for high-grade subtypes, in particular the distinction between high-grade endometrioid (EEC-3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following nine genes: ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF, and PPP2R5C. Based on this gene panel, each endometrial carcinoma subtype shows a distinct mutation profile. EEC-3s have significantly different frequencies of PTEN and TP53 mutations when compared to low-grade endometrioid carcinomas. ESCs and EEC-3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles, we were able to identify subtype outliers, ie cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours: endometrioid-type (PTEN, PIK3CA, ARID1A, KRAS mutations) and serous-type (TP53 and PPP2R1A mutations). While this nine-gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved

  20. The genetic landscape of endometrial clear cell carcinomas.

    PubMed

    DeLair, Deborah F; Burke, Kathleen A; Selenica, Pier; Lim, Raymond S; Scott, Sasinya N; Middha, Sumit; Mohanty, Abhinita S; Cheng, Donavan T; Berger, Michael F; Soslow, Robert A; Weigelt, Britta

    2017-10-01

    Clear cell carcinoma of the endometrium is a rare type of endometrial cancer that is generally associated with an aggressive clinical behaviour. Here, we sought to define the repertoire of somatic genetic alterations in endometrial clear cell carcinomas (ECCs), and whether ECCs could be classified into the molecular subtypes described for endometrial endometrioid and serous carcinomas. We performed a rigorous histopathological review, immunohistochemical analysis and massively parallel sequencing targeting 300 cancer-related genes of 32 pure ECCs. Eleven (34%), seven (22%) and six (19%) ECCs showed abnormal expression patterns for p53, ARID1A, and at least one DNA mismatch repair (MMR) protein, respectively. Targeted sequencing data were obtained from 30 of the 32 ECCs included in this study, and these revealed that two ECCs (7%) were ultramutated and harboured mutations affecting the exonuclease domain of POLE. In POLE wild-type ECCs, TP53 (46%), PIK3CA (36%), PPP2R1A (36%), FBXW7 (25%), ARID1A (21%), PIK3R1 (18%) and SPOP (18%) were the genes most commonly affected by mutations; 18% and 11% harboured CCNE1 and ERBB2 amplifications, respectively, and 11% showed DAXX homozygous deletions. ECCs less frequently harboured mutations affecting CTNNB1 and PTEN but more frequently harboured PPP2R1A and TP53 mutations than non-POLE endometrioid carcinomas from The Cancer Genome Atlas (TCGA). Compared to endometrial serous carcinomas (TCGA), ECCs less frequently harboured TP53 mutations. When a surrogate model for the molecular-based TCGA classification was used, all molecular subtypes previously identified in endometrial endometrioid and serous carcinomas were present in the ECCs studied, including POLE, MMR-deficient, copy-number high (serous-like)/p53 abnormal, and copy-number low (endometrioid)/p53 wild-type, which were significantly associated with disease-free survival in univariate analysis. These findings demonstrate that ECCs constitute a histologically and

  1. Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation.

    PubMed

    Huang, Hsien-Neng; Chiang, Ying-Cheng; Cheng, Wen-Fang; Chen, Chi-An; Lin, Ming-Chieh; Kuo, Kuan-Ting

    2015-02-01

    Recently, mutations of telomerase reverse transcriptase (TERT) promoter were found in several types of cancer. A few reports demonstrate TERT promoter mutations in ovarian clear cell carcinomas but endometrial clear cell carcinoma has not been studied. The aims of this study were to compare differences of molecular alterations and clinical factors, and identify their prognostic impact in endometrial and ovarian clear cell carcinomas. We evaluated mutations of the TERT promoter and PIK3CA, expression of ARID1A, and other clinicopathological factors in 56 ovarian and 14 endometrial clear cell carcinomas. We found that TERT promoter mutations were present in 21% (3/14) of endometrial clear cell carcinomas and 16% (9/56) of ovarian clear cell carcinomas. Compared with ovarian clear cell carcinomas, endometrial clear cell carcinomas showed older mean patient age (P<0.001), preserved ARID1A immunoreactivity (P=0.017) and infrequent PIK3CA mutation (P=0.025). In ovarian clear cell carcinomas, TERT promoter mutations were correlated with patient age >45 (P=0.045) and preserved ARID1A expression (P=0.003). In cases of endometrial clear cell carcinoma, TERT promoter mutations were not statistically associated with any other clinicopathological factors. In ovarian clear cell carcinoma patients with early FIGO stage (stages I and II), TERT promoter mutation was an independent prognostic factor and correlated with a shorter disease-free survival and overall survival (P=0.015 and 0.009, respectively). In recurrent ovarian clear cell carcinoma patients with early FIGO stage, TERT promoter mutations were associated with early relapse within 6 months (P=0.018). We concluded that TERT promoter mutations were present in endometrial and ovarian clear cell carcinomas. Distinct molecular alteration patterns in endometrial and ovarian clear cell carcinomas implied different processes of tumorigenesis in these morphologically similar tumors. In ovarian clear cell carcinoma of early FIGO

  2. Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options.

    PubMed

    Gay, Laurie M; Kim, Sungeun; Fedorchak, Kyle; Kundranda, Madappa; Odia, Yazmin; Nangia, Chaitali; Battiste, James; Colon-Otero, Gerardo; Powell, Steven; Russell, Jeffery; Elvin, Julia A; Vergilio, Jo-Anne; Suh, James; Ali, Siraj M; Stephens, Philip J; Miller, Vincent A; Ross, Jeffrey S

    2017-07-01

    Esthesioneuroblastoma (ENB), also known as olfactory neuroblastoma, is a rare malignant neoplasm of the olfactory mucosa. Despite surgical resection combined with radiotherapy and adjuvant chemotherapy, ENB often relapses with rapid progression. Current multimodality, nontargeted therapy for relapsed ENB is of limited clinical benefit. We queried whether comprehensive genomic profiling (CGP) of relapsed or refractory ENB can uncover genomic alterations (GA) that could identify potential targeted therapies for these patients. CGP was performed on formalin-fixed, paraffin-embedded sections from 41 consecutive clinical cases of ENBs using a hybrid-capture, adaptor ligation based next-generation sequencing assay to a mean coverage depth of 593X. The results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes (amplifications and homozygous deletions). Clinically relevant GA (CRGA) were defined as GA linked to drugs on the market or under evaluation in clinical trials. A total of 28 ENBs harbored GA, with a mean of 1.5 GA per sample. Approximately half of the ENBs (21, 51%) featured at least one CRGA, with an average of 1 CRGA per sample. The most commonly altered gene was TP53 (17%), with GA in PIK3CA , NF1 , CDKN2A , and CDKN2C occurring in 7% of samples. We report comprehensive genomic profiles for 41 ENB tumors. CGP revealed potential new therapeutic targets, including targetable GA in the mTOR, CDK and growth factor signaling pathways, highlighting the clinical value of genomic profiling in ENB. Comprehensive genomic profiling of 41 relapsed or refractory ENBs reveals recurrent alterations or classes of mutation, including amplification of tyrosine kinases encoded on chromosome 5q and mutations affecting genes in the mTOR/PI3K pathway. Approximately half of the ENBs (21, 51%) featured at least one clinically relevant genomic alteration (CRGA), with an average of 1 CRGA per sample. The most commonly altered

  3. Integrated Copy Number and Expression Analysis Identifies Profiles of Whole-Arm Chromosomal Alterations and Subgroups with Favorable Outcome in Ovarian Clear Cell Carcinomas

    PubMed Central

    Uehara, Yuriko; Oda, Katsutoshi; Ikeda, Yuji; Koso, Takahiro; Tsuji, Shingo; Yamamoto, Shogo; Asada, Kayo; Sone, Kenbun; Kurikawa, Reiko; Makii, Chinami; Hagiwara, Otoe; Tanikawa, Michihiro; Maeda, Daichi; Hasegawa, Kosei; Nakagawa, Shunsuke; Wada-Hiraike, Osamu; Kawana, Kei; Fukayama, Masashi; Fujiwara, Keiichi; Yano, Tetsu; Osuga, Yutaka; Fujii, Tomoyuki; Aburatani, Hiroyuki

    2015-01-01

    Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis. PMID:26043110

  4. Suppressed decays of D(s)(+) mesons to two pseudoscalar mesons.

    PubMed

    Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B

    2007-11-09

    Using data collected near the D{s}{*+}D{s}{-} peak production energy E_{cm}=4170 MeV by the CLEO-c detector, we study the decays of D{s}{+} mesons to two pseudoscalar mesons. We report on searches for the singly Cabibbo-suppressed D{s}{+} decay modes K{+}eta, K{+}eta', pi{+}K{S}{0}, K{+}pi{0}, and the isospin-forbidden decay mode D{s}{+}-->pi{+}pi{0}. We normalize with respect to the Cabibbo-favored D{s}{+} modes pi{+}eta, pi{+}eta', and K{+}K{S}{0}, and obtain ratios of branching fractions: B(D{s}{+}-->K{+}eta)/B(D{s}{+}-->pi{+}eta)=(8.9+/-1.5+/-0.4)%, B(D{s}{+}-->K{+}eta')/B(D{s}{+}-->pi{+}eta')=(4.2+/-1.3+/-0.3)%, B(D{s}{+}-->pi{+}K{S}{0})/B(D{s}{+}-->K{+}K{S}{0})=(8.2+/-0.9+/-0.2)%, B(D{s}{+}-->K{+}pi{0})/B(D{s}{+}-->K{+}K{S}{0})=(5.5+/-1.3+/-0.7)%, and B(D{s}{+}-->pi{+}pi{0})/B(D{s}{+}-->K{+}K{S}{0})<4.1% at 90% C.L., where the uncertainties are statistical and systematic, respectively.

  5. Comprehensive molecular characterization of gastric adenocarcinoma

    PubMed Central

    Bass, Adam J.; Thorsson, Vesteinn; Shmulevich, Ilya; Reynolds, Sheila M.; Miller, Michael; Bernard, Brady; Hinoue, Toshinori; Laird, Peter W.; Curtis, Christina; Shen, Hui; Weisenberger, Daniel J.; Schultz, Nikolaus; Shen, Ronglai; Weinhold, Nils; Kelsen, David P.; Bowlby, Reanne; Chu, Andy; Kasaian, Katayoon; Mungall, Andrew J.; Robertson, A. Gordon; Sipahimalani, Payal; Cherniack, Andrew; Getz, Gad; Liu, Yingchun; Noble, Michael S.; Pedamallu, Chandra; Sougnez, Carrie; Taylor-Weiner, Amaro; Akbani, Rehan; Lee, Ju-Seog; Liu, Wenbin; Mills, Gordon B.; Yang, Da; Zhang, Wei; Pantazi, Angeliki; Parfenov, Michael; Gulley, Margaret; Piazuelo, M. Blanca; Schneider, Barbara G.; Kim, Jihun; Boussioutas, Alex; Sheth, Margi; Demchok, John A.; Rabkin, Charles S.; Willis, Joseph E.; Ng, Sam; Garman, Katherine; Beer, David G.; Pennathur, Arjun; Raphael, Benjamin J.; Wu, Hsin-Ta; Odze, Robert; Kim, Hark K.; Bowen, Jay; Leraas, Kristen M.; Lichtenberg, Tara M.; Weaver, Stephanie; McLellan, Michael; Wiznerowicz, Maciej; Sakai, Ryo; Getz, Gad; Sougnez, Carrie; Lawrence, Michael S.; Cibulskis, Kristian; Lichtenstein, Lee; Fisher, Sheila; Gabriel, Stacey B.; Lander, Eric S.; Ding, Li; Niu, Beifang; Ally, Adrian; Balasundaram, Miruna; Birol, Inanc; Bowlby, Reanne; Brooks, Denise; Butterfield, Yaron S. N.; Carlsen, Rebecca; Chu, Andy; Chu, Justin; Chuah, Eric; Chun, Hye-Jung E.; Clarke, Amanda; Dhalla, Noreen; Guin, Ranabir; Holt, Robert A.; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Li, Haiyan A.; Lim, Emilia; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen L.; Nip, Ka Ming; Robertson, A. Gordon; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Beroukhim, Rameen; Carter, Scott L.; Cherniack, Andrew D.; Cho, Juok; Cibulskis, Kristian; DiCara, Daniel; Frazer, Scott; Fisher, Sheila; Gabriel, Stacey B.; Gehlenborg, Nils; Heiman, David I.; Jung, Joonil; Kim, Jaegil; Lander, Eric S.; Lawrence, Michael S.; Lichtenstein, Lee; Lin, Pei; Meyerson, Matthew; Ojesina, Akinyemi I.; Pedamallu, Chandra Sekhar; Saksena, Gordon; Schumacher, Steven E.; Sougnez, Carrie; Stojanov, Petar; Tabak, Barbara; Taylor-Weiner, Amaro; Voet, Doug; Rosenberg, Mara; Zack, Travis I.; Zhang, Hailei; Zou, Lihua; Protopopov, Alexei; Santoso, Netty; Parfenov, Michael; Lee, Semin; Zhang, Jianhua; Mahadeshwar, Harshad S.; Tang, Jiabin; Ren, Xiaojia; Seth, Sahil; Yang, Lixing; Xu, Andrew W.; Song, Xingzhi; Pantazi, Angeliki; Xi, Ruibin; Bristow, Christopher A.; Hadjipanayis, Angela; Seidman, Jonathan; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Kim, Sang-Bae; Lee, Ju-Seog; Lu, Yiling; Mills, Gordon; Laird, Peter W.; Hinoue, Toshinori; Weisenberger, Daniel J.; Bootwalla, Moiz S.; Lai, Phillip H.; Shen, Hui; Triche, Timothy; Van Den Berg, David J.; Baylin, Stephen B.; Herman, James G.; Getz, Gad; Chin, Lynda; Liu, Yingchun; Murray, Bradley A.; Noble, Michael S.; Askoy, B. Arman; Ciriello, Giovanni; Dresdner, Gideon; Gao, Jianjiong; Gross, Benjamin; Jacobsen, Anders; Lee, William; Ramirez, Ricardo; Sander, Chris; Schultz, Nikolaus; Senbabaoglu, Yasin; Sinha, Rileen; Sumer, S. Onur; Sun, Yichao; Weinhold, Nils; Thorsson, Vésteinn; Bernard, Brady; Iype, Lisa; Kramer, Roger W.; Kreisberg, Richard; Miller, Michael; Reynolds, Sheila M.; Rovira, Hector; Tasman, Natalie; Shmulevich, Ilya; Ng, Santa Cruz Sam; Haussler, David; Stuart, Josh M.; Akbani, Rehan; Ling, Shiyun; Liu, Wenbin; Rao, Arvind; Weinstein, John N.; Verhaak, Roeland G.W.; Mills, Gordon B.; Leiserson, Mark D. M.; Raphael, Benjamin J.; Wu, Hsin-Ta; Taylor, Barry S.; Black, Aaron D.; Bowen, Jay; Carney, Julie Ann; Gastier-Foster, Julie M.; Helsel, Carmen; Leraas, Kristen M.; Lichtenberg, Tara M.; McAllister, Cynthia; Ramirez, Nilsa C.; Tabler, Teresa R.; Wise, Lisa; Zmuda, Erik; Penny, Robert; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Curely, Erin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Shelton, Troy; Shelton, Candace; Sherman, Mark; Benz, Christopher; Lee, Jae-Hyuk; Fedosenko, Konstantin; Manikhas, Georgy; Potapova, Olga; Voronina, Olga; Belyaev, Smitry; Dolzhansky, Oleg; Rathmell, W. Kimryn; Brzezinski, Jakub; Ibbs, Matthew; Korski, Konstanty; Kycler, Witold; ŁaŸniak, Radoslaw; Leporowska, Ewa; Mackiewicz, Andrzej; Murawa, Dawid; Murawa, Pawel; Spychała, Arkadiusz; Suchorska, Wiktoria M.; Tatka, Honorata; Teresiak, Marek; Wiznerowicz, Maciej; Abdel-Misih, Raafat; Bennett, Joseph; Brown, Jennifer; Iacocca, Mary; Rabeno, Brenda; Kwon, Sun-Young; Penny, Robert; Gardner, Johanna; Kemkes, Ariane; Mallery, David; Morris, Scott; Shelton, Troy; Shelton, Candace; Curley, Erin; Alexopoulou, Iakovina; Engel, Jay; Bartlett, John; Albert, Monique; Park, Do-Youn; Dhir, Rajiv; Luketich, James; Landreneau, Rodney; Janjigian, Yelena Y.; Kelsen, David P.; Cho, Eunjung; Ladanyi, Marc; Tang, Laura; McCall, Shannon J.; Park, Young S.; Cheong, Jae-Ho; Ajani, Jaffer; Camargo, M. Constanza; Alonso, Shelley; Ayala, Brenda; Jensen, Mark A.; Pihl, Todd; Raman, Rohini; Walton, Jessica; Wan, Yunhu; Demchok, John A.; Eley, Greg; Mills Shaw, Kenna R.; Sheth, Margi; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean Claude; Davidsen, Tanja; Hutter, Carolyn M.; Sofia, Heidi J.; Burton, Robert; Chudamani, Sudha; Liu, Jia

    2014-01-01

    Gastric cancer is a leading cause of cancer deaths, but analysis of its molecular and clinical characteristics has been complicated by histological and aetiological heterogeneity. Here we describe a comprehensive molecular evaluation of 295 primary gastric adenocarcinomas as part of The Cancer Genome Atlas (TCGA) project. We propose a molecular classification dividing gastric cancer into four subtypes: tumours positive for Epstein–Barr virus, which display recurrent PIK3CA mutations, extreme DNA hypermethylation, and amplification of JAK2, CD274 (also known as PD-L1) and PDCD1LG2 (also knownasPD-L2); microsatellite unstable tumours, which show elevated mutation rates, including mutations of genes encoding targetable oncogenic signalling proteins; genomically stable tumours, which are enriched for the diffuse histological variant and mutations of RHOA or fusions involving RHO-family GTPase-activating proteins; and tumours with chromosomal instability, which show marked aneuploidy and focal amplification of receptor tyrosine kinases. Identification of these subtypes provides a roadmap for patient stratification and trials of targeted therapies. PMID:25079317

  6. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE PAGES

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  7. A Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer

    DOE PAGES

    Viel, Alessandra; Bruselles, Alessandro; Meccia, Ettore; ...

    2017-04-13

    8-Oxoguanine, a common mutagenic DNA lesion, generates G:C > T:A transversions via mispairing with adenine during DNA replication. When operating normally, the MUTYH DNA glycosylase prevents 8-oxoguanine-related mutagenesis by excising the incorporated adenine. Biallelic MUTYH mutations impair this enzymatic function and are associated with colorectal cancer (CRC) in MUTYH-Associated Polyposis (MAP) syndrome. Here in this paper, we perform whole-exome sequencing that reveals a modest mutator phenotype in MAP CRCs compared to sporadic CRC stem cell lines or bulk tumours. The excess G:C > T:A transversion mutations in MAP CRCs exhibits a novel mutational signature, termed Signature 36, with a strongmore » sequence dependence. The MUTYH mutational signature reflecting persistent 8-oxoG:A mismatches occurs frequently in the APC, KRAS, PIK3CA, FAT4, TP53, FAT1, AMER1, KDM6A, SMAD4 and SMAD2 genes that are associated with CRC. In conclusion, the occurrence of Signature 36 in other types of human cancer indicates that DNA 8-oxoguanine-related mutations might contribute to the development of cancer in other organs.« less

  8. Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes.

    PubMed

    Wong, John K L; Campbell, Desmond; Ngo, Ngoc Diem; Yeung, Fanny; Cheng, Guo; Tang, Clara S M; Chung, Patrick H Y; Tran, Ngoc Son; So, Man-Ting; Cherny, Stacey S; Sham, Pak C; Tam, Paul K; Garcia-Barcelo, Maria-Mercè

    2016-12-12

    Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. We aim to identify genetic risk factors by a "trio-based" exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p < 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p < 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD.

  9. A best on-line algorithm for single machine scheduling the equal length jobs with the special chain precedence and delivery time

    NASA Astrophysics Data System (ADS)

    Gu, Cunchang; Mu, Yundong

    2013-03-01

    In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.

  10. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells.

    PubMed

    Testa, Ugo; Petrucci, Eleonora; Pasquini, Luca; Castelli, Germana; Pelosi, Elvira

    2018-02-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A , PIK3CA , PTEN , CTNNB1 and RAS . Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.

  11. The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

    PubMed

    Shah, Sohrab P; Roth, Andrew; Goya, Rodrigo; Oloumi, Arusha; Ha, Gavin; Zhao, Yongjun; Turashvili, Gulisa; Ding, Jiarui; Tse, Kane; Haffari, Gholamreza; Bashashati, Ali; Prentice, Leah M; Khattra, Jaswinder; Burleigh, Angela; Yap, Damian; Bernard, Virginie; McPherson, Andrew; Shumansky, Karey; Crisan, Anamaria; Giuliany, Ryan; Heravi-Moussavi, Alireza; Rosner, Jamie; Lai, Daniel; Birol, Inanc; Varhol, Richard; Tam, Angela; Dhalla, Noreen; Zeng, Thomas; Ma, Kevin; Chan, Simon K; Griffith, Malachi; Moradian, Annie; Cheng, S-W Grace; Morin, Gregg B; Watson, Peter; Gelmon, Karen; Chia, Stephen; Chin, Suet-Feung; Curtis, Christina; Rueda, Oscar M; Pharoah, Paul D; Damaraju, Sambasivarao; Mackey, John; Hoon, Kelly; Harkins, Timothy; Tadigotla, Vasisht; Sigaroudinia, Mahvash; Gascard, Philippe; Tlsty, Thea; Costello, Joseph F; Meyer, Irmtraud M; Eaves, Connie J; Wasserman, Wyeth W; Jones, Steven; Huntsman, David; Hirst, Martin; Caldas, Carlos; Marra, Marco A; Aparicio, Samuel

    2012-04-04

    Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.

  12. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma.

    PubMed

    Hao, Jia-Jie; Lin, De-Chen; Dinh, Huy Q; Mayakonda, Anand; Jiang, Yan-Yi; Chang, Chen; Jiang, Ye; Lu, Chen-Chen; Shi, Zhi-Zhou; Xu, Xin; Zhang, Yu; Cai, Yan; Wang, Jin-Wu; Zhan, Qi-Min; Wei, Wen-Qiang; Berman, Benjamin P; Wang, Ming-Rong; Koeffler, H Phillip

    2016-12-01

    Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumoral heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCC cases and multiregion global methylation profiling for 3 of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of