Sample records for zonal wave-one pattern

  1. Zonal flow as pattern formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  2. Rethinking wave-kinetic theory applied to zonal flows

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey

    2017-10-01

    Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.

  3. Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions

    NASA Astrophysics Data System (ADS)

    Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda

    2015-12-01

    A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from

  4. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  5. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  6. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE PAGES

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...

    2018-05-29

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  7. Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed

    NASA Astrophysics Data System (ADS)

    Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat

    2018-02-01

    Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.

  8. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  9. Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.

    2010-02-15

    Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less

  10. On the wave forcing of the semi-annual zonal wind oscillation

    NASA Technical Reports Server (NTRS)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  11. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wavezonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  12. How pattern is selected in drift wave turbulence: Role of parallel flow shear

    NASA Astrophysics Data System (ADS)

    Kosuga, Y.

    2017-12-01

    The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.

  13. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  14. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.

    2013-04-15

    Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allowsmore » to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.« less

  15. Drift-wave turbulence and zonal flow generation.

    PubMed

    Balescu, R

    2003-10-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.

  16. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  17. Evolution of stationary wave patterns in mesospheric water vapor due to climate change

    NASA Astrophysics Data System (ADS)

    Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur

    2016-07-01

    The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.

  18. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO

    NASA Technical Reports Server (NTRS)

    Takahashi, Masaaki; Holton, James R.

    1991-01-01

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.

  19. Predictability of Zonal Means During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.

  20. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; hide

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  1. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    NASA Technical Reports Server (NTRS)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  2. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Holton, J.R.

    1991-09-15

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less

  3. Time-varying zonal asymmetries in stratospheric nitrous oxide and methane

    NASA Technical Reports Server (NTRS)

    Gao, H.; Stanford, J. L.

    1993-01-01

    Previously analyses of Stratospheric And Mesospheric Sounder (SAMS) data of atmospheric constituent gases have dealt almost exclusively with zonal means (and mostly monthly means), owing perhaps to concern over data quality. The purpose of this note is to show that, with care, time-dependent zonally-asymmetric features may be recovered from the SAMS nitrous oxide and methane data. As an example, we demonstrate the existence of zonal wave-1 constituent perturbations with periods of a few weeks in the middle and upper stratosphere. When the perturbations are normalized by the constituent zonal-mean mixing ratio to compensate for the slowly varying (in both space and time) background concentration of constituents, wavepacket-like features are found over all latitudes and seasons in the three-year SAMS record. One specific low-latitude case discussed had features which appear to be consistent with constituent oscillations induced by episodic equatorial Kelvin waves. Further studies are needed to better identify the nature of the plethora of observed wave-like phenomena.

  4. Wave Forcing of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.

    2011-01-01

    Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.

  5. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to

  6. Geographic distribution of zonal wind and UV albedo at cloud top level from VMC camera on Venus Express: Influence of Venus topography through stationary gravity waves vertical propagation.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojciech; Marcq, Emmanuel; Lebonnois, Sébastien; Patsaeva, Marina; Turin, Alexander

    2015-04-01

    UV images (at 365 nm) of Venus cloud top collected with VMC camera on board Venus Express allowed to derive a large number of wind measurements at altitude 67±2 km from tracking of cloud features in the period 2006-2012. Both manual (45,600) and digital (391,600) individual wind measurements over 127 orbits were analyzed showing various patterns with latitude and local time. A new longitude-latitude geographic map of the zonal wind shows a conspicuous region of strongly decreased zonal wind, a remarkable feature that was unknown up to now. While the average zonal wind near equator (from 5°S to 15°s) is -100.9 m/s in the longitude range 200-330°, it reaches -83.4 m/s in the range 60-100°, a difference of 17.5 m/s. When compared to the altimetry map of Venus, it is found that the zonal wind pattern is well correlated with the underlying relief in the region of Aphrodite Terra, with a downstream shift of about 30° (˜3,200 km). We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. A similar phenomenon is known to operate on Earth with an influence on mesospheric winds. The LMD-GCM for Venus was run with or without topography, with and without a parameterization of gravity waves and does not display such an observed change of velocity near equator. The cloud albedo map at 365 nm varies also in longitude and latitude. We speculate that it might be the result of increased vertical mixing associated to wave breaking, and decreased abundance of the UV absorber which makes the contrast in images. The impact of these new findings on current super rotation theories remains to be assessed. This work was triggered by the presence of a conspicuous peak at 117 days in a time series of wind measurements. This is the length of the solar day as seen at the

  7. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  8. Jet and storm track variability and change: adiabatic QG zonal averages and beyond... (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, W. A.

    2013-12-01

    The zonally averaged structures of extratropical jets and stormtracks, their slow variations, and their responses to climate change are all tightly constrained on the one hand by thermal wind balance and the necessary application of eddy torques to produce zonally averaged meridional motion, and, on the other hand, by the necessity that eddies propagate upshear to extract energy from the mean flow. Combining these constraints with the well developed theory of linear Rossby-wave propagation on zonally symmetric basic states has led to a large and growing number of plausible mechanisms to explain observed and modeled jet/storm track variability and responses to climate change and idealized forcing. Hidden within zonal averages is the reality that most baroclinic eddy activity is destroyed at the same latitude at which is generated: from one end to another of the fixed stormtracks in the Northern Hemisphere and baroclinic wave packets in the Southern Hemisphere. Ignored within adiabatic QG theory is the reality that baroclinic eddies gain significant energy from latent heating that involves sub-syntopic scale structures and dynamics. Here we use results from high-resolution regional and global simulations of the Northern Hemisphere storm tracks to explore the importance of non-zonal and diabatic dynamics in influencing jet change and variability and their influences on the much-studied zonal means.

  9. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  10. Dynamics of zonal flows in helical systems.

    PubMed

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  11. The generation of a zonal-wind oscillation by nonlinear interactions of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy

    2003-11-01

    Nonlinear interactions of internal gravity waves give rise to numerous large-scale phenomena that are observed in the atmosphere, for example the quasi-biennial oscillation (QBO). This is an oscillation in zonal wind direction which is observed in the equatorial stratosphere; it is characterized by alternating regimes of easterly and westerly shear that descend with time. In the past few decades, a number of theories have been developed to explain the mechanism by which the QBO is generated. These theories are all based on ``quasi-linear'' representations of wave-mean-flow interactions. In this presentation, a fully nonlinear numerical simulation of the QBO is described. A spectrum of gravity waves over a range of phase speeds is forced at the lower boundary of the computational domain and propagates upwards in a density-stratified shear flow. As a result of the absorption and reflection of the waves at their critical levels, regions of large shear develop in the background flow and propagate downwards with time.

  12. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  13. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  14. Zonal Wave Number 2 Rossby Wave (3.5-day oscillation) Over The Martian Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Thokuluwa, R. K.

    2013-12-01

    to get decreasing monotonously to the statistically significant lowest power of 20 K^2 in the height of 450 Pascal level. Similar to the 0-30E longitude region, there is no significant wave in all the heights above the 450 Pascal level. The 190-230 E region shows similar wave characteristics (both the power and height structure) as observed for the 0-30 E region. This would indicate that the here reporting 3.5 day wave might be associated with eastward propagating (observed the zonal phase speed of ~0.5 days per 30 degree longitude) wave number 2 Rossby wave as the wave shows similar characteristics in the two longitude regions of 0-30E and 190-230 E with the longitudinal interval of 180 degrees. Peculiarly, in the 250-280 E region, the wave shows maximum power (120 K^2) in the two heights of 550 and 700 Pascal levels. As a further support for the zonal wave number 2 structure, there is no significant 3.5-day oscillation in all the height levels in the 290-320 E longitude region which is similar to what observed in the 35-60E longitude sector. A detailed investigation of this 3.5 day oscillation will be presented also for other periods of different years.

  15. Transport in zonal flows in analogous geophysical and plasma systems

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  16. On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation

    NASA Technical Reports Server (NTRS)

    Dunkerton, T.

    1979-01-01

    The role of the Kelvin wave, discovered by Hirota (1978), in producing the westerly accelerations of the semiannual zonal wind oscillation in the tropical upper stratosphere is examined quantitatively. It is shown that, for reasonable values of the wave parameters, this Kelvin wave could indeed give rise to the observed accelerations. For the thermal damping rates of Dickinson (1973), the most likely range of phase speeds for a wavenumber 1 disturbance is from 45 to 60 m/sec. For 'photochemically accelerated' damping rates (Blake and Lindzen, 1973), a phase speed in excess of 70 m/sec would be required. The possibility of a significant modulation of the semiannual westerlies by the quasi-biennial oscillation is also suggested.

  17. The transport of nitric oxide in the upper atmosphere by planetary waves and the zonal mean circulation

    NASA Technical Reports Server (NTRS)

    Jones, G. A.; Avery, S. K.

    1982-01-01

    A time-dependent numerical model was developed and used to study the interaction between planetary waves, the zonal mean circulation, and the trace constituent nitric oxide in the region between 55 km and 120 km. The factors which contribute to the structure of the nitric oxide distribution were examined, and the sensitivity of the distribution to changes in planetary wave amplitude was investigated. Wave-induced changes in the mean nitric oxide concentration were examined as a possible mechanism for the observed winter anomaly. Results indicate that vertically-propagating planetary waves induce a wave-like structure in the nitric oxide distribution and that at certain levels, transports of nitric oxide by planetary waves could significantly affect the mean nitric oxide distribution. The magnitude and direction of these transports at a given level was found to depend not only on the amplitude of the planetary wave, but also on the loss rate of nitric oxide at that level.

  18. Major dust storms and westward traveling waves on Mars

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun

    2017-04-01

    Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.

  19. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Chargazia, Kh. Z.

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth's angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are shearedmore » flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.« less

  20. Zonal Flows and Turbulence in Fluids and Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    2014-09-01

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetricmore » coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type Is instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the

  1. Zonal flows and turbulence in fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  2. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Wang and T.S. Hahm

    Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarizationmore » shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.« less

  3. On the tertiary instability formalism of zonal flows in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.

    2018-05-01

    This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZFzonal temperature perturbations on the tertiary instability is examined. Although temperature perturbations favor instability, the realistic values of gradient-driven gyro-kinetic simulations still lie deeply in the stable parameter regime. Therefore, the relevance of the tertiary instability as a saturation mechanism to the zonal flow amplitude is questioned, as most of the zonal flow intensity is concentrated in modes satisfying kZF≪kZF,c as well as ωE×B≪ωE×B,c .

  4. The role of zonal flows in disc gravito-turbulence

    NASA Astrophysics Data System (ADS)

    Vanon, R.

    2018-07-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  5. The role of zonal flows in disc gravito-turbulence

    NASA Astrophysics Data System (ADS)

    Vanon, R.

    2018-04-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  6. Zonally Symmetric Oscillations of the Thermosphere at Planetary Wave Periods

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey M.; Zhang, Xiaoli; Maute, Astrid; Hagan, Maura E.

    2018-05-01

    New mechanisms for imposing planetary wave (PW) variability on the ionosphere-thermosphere system are discovered in numerical experiments conducted with the National Center for Atmospheric Research thermosphere-ionosphere-electrodynamics general circulation model. First, it is demonstrated that a tidal spectrum modulated at PW periods (3-20 days) entering the ionosphere-thermosphere system near 100 km is responsible for producing ±40 m/s and ±10-15 K PW period oscillations between 110 and 150 km at low to middle latitudes. The dominant response is broadband and zonally symmetric (i.e., "S0") over a range of periods and is attributable to tidal dissipation; essentially, the ionosphere-thermosphere system "vacillates" in response to dissipation of the PW-modulated tidal spectrum. In addition, some specific westward propagating PWs such as the quasi-6-day wave are amplified by the presence of the tidal spectrum; the underlying mechanism is hypothesized to be a second-stage nonlinear interaction. The S0 total neutral mass density (ρ) response at 325 km consists of PW period fluctuations of order ±3-4%, roughly equivalent to the day-to-day variability associated with low-level geomagnetic activity. The variability in ρ over short periods (˜< 9 days) correlates with temperature changes, indicating a response of hydrostatic origin. Over longer periods ρ is also controlled by composition and mean molecular mass. While the upper-thermosphere impacts are modest, they do translate to more significant changes in the F region ionosphere.

  7. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    NASA Astrophysics Data System (ADS)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  8. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  9. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  10. Study of zonal large scale wave structure (LSWS) and equatorial scintillation with low-latitude GRBR network over Southeast Asia and African sectors

    NASA Astrophysics Data System (ADS)

    Ram Sudarsanam, Tulasi; Yamamoto, Mamoru; Gurubaran, Subramanian; Tsunoda, Roland

    2012-07-01

    The day-to-day variability of Equatorial Spread-F, when and where the equatorial plasma bubbles (EPBs) may initiate, were the challenging problems that puzzling the space weather researchers for several decades. The zonal large scale wave structure (LSWS) at the base of F-layer is the earliest manifestation of seed perturbation for the evolution of EPBs by R-T instability processes, hence, found to play deterministic role on the development of ESF. Yet, only a little is known about LSWS with lack of sufficient observations, primarily because of inability to detect the LSWS with the currently existing instruments except with steerable incoherent scatter radar such as ALTAIR radar. This situation, however, was recently changed with launch of C/NOFS in a unique low-inclination (13 ^{o}) orbit. With the availability of CERTO beacon transmissions from C/NOFS in a near equatorial orbit, it is now possible to detect and resolve the roles by LSWS on a regular basis. A ground based low-latitude GNU Radio Beacon Receiver (GRBR) Network has been recently established that provide coverage of Southeast Asia, Pacific and African low-latitude regions. Recent observations suggest that these wave structures with zonal wave lengths varying between 200 and 800 km can be earliest detected even before E-region sunset and found to grow significantly after sunset, probably, aided by the polarization electric fields. Further, these zonal structures consistently found to be aligned with field lines for several hundreds of kilometers and EPBs were found to grow from the westward walls of upwellings. The characteristic differences on the strength of LSWS between the Asian and African longitudes were identified during the recent increasing solar activity and discussed in this paper.

  11. Decomposing variations of geopotential height in the troposphere and stratosphere into stationary and travelling waves

    NASA Astrophysics Data System (ADS)

    Guryanov, Vladimir; Eliseev, Alexey

    2016-07-01

    The ERA-Interim geopotential height in the Northern Hemisphere from November to March, 1992-2015 in the layer from between pressure levels 1000 mb and 1 mb is expanded into stationary and travelling zonal waves with zonal wavenumbers, k, from 1 to 10, and with periods, T, from 2 to 156 days (the so called Hayashi spectra). Among the studied waves, the largest amplitude is attained by the stationary and travelling waves with zonal wavenumber k=1 and with periods from 3 to 4 weeks in the upper stratosphere over the latitudinal belt 60-70oN. The stationary waves with k from 1 to 3 and with T from 2 to 3 weeks are most pronounced in the stratosphere. In turn, the largest amplitudes of the travelling waves with zonal wavenumbers k ≥ 5 are found in the troposphere. The dominant periods of the latter waves are about 1 week or slightly higher, and this dominant period basically decrease with increasing wavenumber. In the upper stratosphere, the eastward travelling waves generally dominate over westward ones. The only exception is the longest zonal mode with k=1, for which the amplitude of the westward travelling wave is larger than that for the eastward one. The period of the travelling waves dominating in the upper stratosphere is close to 3 weeks. In the upper troposphere, the amplitudes of the eastward waves with k from 4 to 10 is several-fold larger than those for their westward counterparts. The latter is reflected in the larger average wavenumber of the eastward travelling wave in comparison to that of the westarward one. The period of the gravest of the dominant travelling waves in the upper troposphere is close to one week, and it decreases to 2-4 days for the dominant travelling waves with k=8-10.

  12. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  13. A theory of self-organized zonal flow with fine radial structure in tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  14. Waves and aggregation patterns in myxobacteria

    NASA Astrophysics Data System (ADS)

    Igoshin, Oleg A.; Welch, Roy; Kaiser, Dale; Oster, George

    2004-03-01

    Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.

  15. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    NASA Astrophysics Data System (ADS)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  16. Properties of QBO and SAO Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.

    1999-01-01

    We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are

  17. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  18. REVIEWS OF TOPICAL PROBLEMS: Generation of large-scale eddies and zonal winds in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.

    2008-06-01

    The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.

  19. Zonal and meridional patterns of phytoplankton biomass and carbon fixation in the Equatorial Pacific Ocean, between 110°W and 140°W

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Poulton, A. J.; Drapeau, D. T.; Bowler, B. C.; Windecker, L. A.; Booth, E. S.

    2011-03-01

    Primary production (P prim) and calcification (C calc) were measured in the eastern and central Equatorial Pacific during December 2004 and September 2005, between 110°W and 140°W. The design of the field sampling allowed partitioning of P prim and total chlorophyll a (B) between large (>3 μm) and small (0.45-3 μm) phytoplankton cells. The station locations allowed discrimination of meridional and zonal patterns. The cruises coincided with a warm El Niño Southern Oscillation (ENSO) phase and ENSO-neutral phase, respectively, which proved to be the major factors relating to the patterns of productivity. Production and biomass of large phytoplankton generally covaried with that of small cells; large cells typically accounted for 20-30% of B and 20% of P prim. Elevated biomass and primary production of all size fractions were highest along the equator as well as at the convergence zone between the North Equatorial Counter Current and the South Equatorial Current. C calc by >0.4 μm cells was 2-3% of P prim by the same size fraction, for both cruises. Biomass-normalized P prim values were, on average, slightly higher during the warm-phase ENSO period, inconsistent with a "bottom-up" control mechanism (such as nutrient supply). Another source of variability along the equator was Tropical Instability Waves (TIWs). Zonal variance in integrated phytoplankton biomass (along the equator, between 110° and 140°) was almost the same as the meridional variance across it (between 4° N and 4° S). However, the zonal variance in integrated P prim was half the variance observed meridionally. The variance in integrated C calc along the equator was half that seen meridionally during the warm ENSO phase cruise whereas during the ENSO-neutral period, it was identical. No relation could be observed between the patterns of integrated carbon fixation (P prim or C calc) and integrated nutrients (nitrate, ammonium, silicate or dissolved iron). This suggests that the factors

  20. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  1. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    NASA Astrophysics Data System (ADS)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  2. Thermospheric Extension of the Quasi 6-day Wave Observed by the TIMED Satellite

    NASA Astrophysics Data System (ADS)

    Gan, Q.; Oberheide, J.

    2017-12-01

    The quasi 6-day wave is one of the most prevailing planetary waves in the mesosphere and lower thermosphere (MLT) region. Its peak amplitude can attain 20-30 m/s in low-latitude zonal winds at around equinoxes. Consequently, it is anticipated that the 6-day wave can induce not only significantly dynamic effects (via wave-mean flow and wave-wave interactions) in the MLT, but also have significant impacts on the Thermosphere and Ionosphere (T-I). The understanding of the 6-day wave impact on the T-I system has been advanced a lot due to the recent development of whole atmosphere models and new satellite observations. Three pathways were widely proposed to explain the upward coupling due to the 6-day wave: E-region dynamo modulation, dissipation and nonlinear interaction with thermal tides. The current work aims to show a comprehensive pattern of the 6-day wave from the mesosphere up to the thermosphere/ionosphere in neutral fields (temperature, 3-D winds and density) and plasma drifts. To achieve this goal, we carry out the 6-day wave diagnostics by two different means. Firstly, the output of a one-year WACCM+DART run with data assimilation is analyzed to show the global structure of the 6-day wave in the MLT, followed by E-P flux diagnostics to elucidate the 6-day wave source and wave-mean flow interactions. Secondly, we produce observation-based 6-day wave patterns throughout the whole thermosphere by constraining modeled (TIME-GCM) 6-day wave patterns with observed 6-day wave patterns from SABER and TIDI in the MLT region. This allows us to fill the 110-400 km gap between remote sensing and in-situ satellites, and to obtain more realistic 6-day wave plasma drift patterns.

  3. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E r. We observe fine-scale spatial structures in the edge E r well with a wave number k rρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-modemore » transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  4. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    PubMed

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  5. Mapping potential vorticity dynamics on saturn: Zonal mean circulation from Cassini and Voyager data

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Conrath, B. J.; Fletcher, L. N.; Gierasch, P. J.; Simon-Miller, A. A.; Zuchowski, L. C.

    2009-12-01

    Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow (i.e. geostrophic or similar). Here we derive maps of zonal mean IPV and QGPV in Saturn's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the combined tracking of cloud features in images from the Voyager and Cassini missions, and thermal measurements from the Cassini Composite Infrared Spectrometer (CIRS) instrument. IPV and QGPV are mapped and compared for the entire globe between latitudes 89∘S-82∘N. As on Jupiter, profiles of zonally averaged PV show evidence for a step-like "stair-case" pattern suggestive of local PV homogenisation, separated by strong PV gradients in association with eastward jets. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, however, even when baroclinic contributions are taken into account. The stability criterion with respect to Arnol'd's second stability theorem may be violated near the peaks of westward jets. Visible, near-IR and thermal-IR Cassini observations have shown that these regions exhibit many prominent, large-scale eddies and waves, e.g. including 'storm alley'. This suggests the possibility that at least some of these features originate from instabilities of the background zonal flow.

  6. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.

    2016-03-01

    In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind

  7. Jupiter: New estimates of mean zonal flow at the cloud level

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1986-01-01

    In order to reexamine the magnitude differences of the Jovian atmosphere's jets, as determined by Voyager 1 and 2 images, a novel approach is used to ascertain the zonal mean east-west component of motion. This technique is based on digital pattern matching, and is applied on pairs of mapped images to yield a profile of the mean zonal component that reproduces the exact locations of the easterly and westerly jets between + and 60 deg latitude. Results were obtained for all of the Voyager 1 and 2 cylindrical mosaics; the correlation coefficient between Voyagers 1 and 2 in mean zonal flow between + and - 60 deg latitude, determined from violet filter mosaics, is 0.998.

  8. Cyclic Fatigue Resistance of Reciproc, WaveOne, and WaveOne Gold Nickel-Titanium Instruments.

    PubMed

    Özyürek, Taha

    2016-10-01

    The purpose of this study was to compare the cyclic fatigue resistance of Reciproc R25 (VDW, Munich, Germany), WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland), and WaveOne Gold Primary files (Dentsply Maillefer). Twenty Reciproc R25, 20 WaveOne Primary, and 20 WaveOne Gold Primary instruments were included in this study. The cyclic fatigue tests were performed using a cyclic fatigue testing device, which has an artificial stainless steel canal with a 60° angle of curvature and a 5-mm radius of curvature. The files were randomly divided into 3 groups (group 1: Reciproc R25; group 2: WaveOne Primary; and group 3: WaveOne Gold Primary). All the instruments were rotated until fracture occurred, and the time to fracture was recorded in seconds using a digital chronometer. The number of cycles to failure (NCF) was calculated. The data were analyzed statistically (P < .05). There was a significant difference among the groups (P < .05). The WaveOne Gold Primary showed the greatest mean of NCF (1628 ± 107), and the WaveOne Primary showed the lowest mean of NCF (1153 ± 119.2). Within the limitations of this in vitro study, the cyclic fatigue resistance of the WaveOne Gold Primary single-file system was higher than the WaveOne Primary and Reciproc R25 single-file instruments. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. On the wave number 2 eastward propagating quasi 2 day wave at middle and high latitudes

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Pedatella, N. M.; Dou, Xiankang; Liu, Yu

    2017-04-01

    The temperature and wind data sets from the ensemble data assimilation version of the Whole Atmosphere Community Climate Model + Data Assimilation Research Testbed (WACCM + DART) developed at the National Center for Atmospheric Research (NCAR) are utilized to study the seasonal variability of the eastward quasi 2 day wave (QTDW) with zonal wave number 2 (E2) during 2007. The aliasing ratio of E2 from wave number 3 (W3) in the synoptic WACCM data set is a constant value of 4 × 10-6% due to its uniform sampling pattern, whereas the aliasing is latitudinally dependent if the WACCM fields are sampled asynoptically based on the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) sampling. The aliasing ratio based on SABER sampling is 75% at 40°S during late January, where and when W3 peaks. The analysis of the synoptic WACCM data set shows that the E2 is in fact a winter phenomenon, which peaks in the stratosphere and lower mesosphere at high latitudes. In the austral winter period, the amplitudes of E2 can reach 10 K, 20 m/s, and 30 m/s for temperature, zonal, and meridional winds, respectively. In the boreal winter period, the wave perturbations are only one third as strong as those in austral winter. Diagnostic analysis also shows that the mean flow instabilities in the winter upper mesosphere polar region provide sources for the amplification of E2. This is different from the westward QTDWs, whose amplifications are related to the summer easterly jet. In addition, the E2 also peaks at lower altitude than the westward modes.

  10. New observations of Yanai waves and equatorial inertia-gravity waves in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Farrar, J. T.; Durland, T.

    2011-12-01

    In the 1970's and 1980's, there was a great deal of research activity on near-equatorial variability at periods of days to weeks associated with oceanic equatorial inertia-gravity waves and Yanai waves. At that time, the measurements available for studying these waves were much more limited than today: most of the available observations were from island tide gauges and a handful of short mooring records. We use more than a decade of the extensive modern data record from the TAO/TRITON mooring array in the Pacific Ocean to re-examine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-wavenumber/frequency spectrum of surface dynamic height relative to 500-m depth. Many equatorial-wave meridional modes can be identified, for both the first and second baroclinic mode. We also estimated zonal-wavenumber/frequency spectra for the zonal and meridional wind stress components. The location and extent of spectral peaks in dynamic height is readily rationalized using basic, linear theory of forced equatorial waves and the observed wind stress spectrum.

  11. Exploring Wave-Wave Interactions in a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Nystrom, Virginia; Gasperini, Federico; Forbes, Jeffrey M.; Hagan, Maura E.

    2018-01-01

    Nonlinear interactions involving Kelvin waves with (periods, zonal wave numbers) = (3.7d, s =- 1) (UFKW1) and = (2.4d, s =- 1) (UFKW2) and s = 0 and s = 1 quasi 9 day waves (Q9DW) with diurnal tides DW1, DW2, DW3, DE2, and DE3 are explored within a National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulation driven at its ˜30 km lower boundary by interpolated 3-hourly output from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The existence of nonlinear wave-wave interactions between the above primary waves is determined by the presence of secondary waves (SWs) with frequencies and zonal wave numbers that are the sums and differences of those of the primary (interacting) waves. Focus is on 10-21 April 2009, when the nontidal dynamics in the mesosphere-lower thermosphere (MLT) region is dominated by UFKW and when identification of SW is robust. Fifteen SWs are identified in all. An interesting triad is identified involving UFKW1, DE3, and a secondary UFKW4 = (1.5d, s =- 2): The UFKW1-DE3 interaction produces UFKW4, the UFKW4-DE3 interaction produces UFKW1, and the UFKW1 interaction with UFKW4 produces DE3. At 120 km the dynamic range of the reconstructed latitude-longitude zonal wind field due to all of the SW is roughly half that of the primary waves, which produced them. This suggests that nonlinear wave-wave interactions could significantly modify the way that the lower atmosphere couples with the ionosphere.

  12. Inertial Waves and Steady Flows in a Liquid Filled Librating Cylinder

    NASA Astrophysics Data System (ADS)

    Subbotin, Stanislav; Dyakova, Veronika

    2018-05-01

    The fluid flow in a non-uniformly rotating (librating) cylinder about a horizontal axis is experimentally studied. In the absence of librations the fluid performs a solid-body rotation together with the cavity. Librations lead to the appearance of steady zonal flow in the whole cylinder and the intensive steady toroidal flows near the cavity corners. If the frequency of librations is twice lower than the mean rotation rate the inertial waves are excited. The oscillating motion associated with the propagation of inertial wave in the fluid bulk leads to the appearance of an additional steady flow in the Stokes boundary layers on the cavity side wall. In this case the heavy particles of the visualizer are assembled on the side wall into ring structures. The patterns are determined by the structure of steady flow, which in turn depends on the number of reflections of inertial wave beams from the cavity side wall. For some frequencies, inertial waves experience spatial resonance, resulting in inertial modes, which are eigenmodes of the cavity geometry. The resonance of the inertial modes modifies the steady flow structure close to the boundary layer that is manifested in the direct rebuilding of patterns. It is shown that the intensity of zonal flow, as well as the intensity of steady flows excited by inertial waves, is proportional to the square of the amplitude of librations.

  13. Patterns in the Waves

    NASA Astrophysics Data System (ADS)

    Coco, G.; Guza, R. T.; Garnier, R.; Lomonaco, P.; Lopez De San Roman Blanco, B.; Dalrymple, R. A.; Xu, M.

    2014-12-01

    Edge waves, gravity waves trapped close to the shoreline by refraction, can in some cases form a standing wave pattern with alongshore periodic sequence of high and low runup. Nonlinear mechanisms for generation of edge waves by monochromatic waves incident on a planar beach from deep water have been elaborated theoretically and in the lab. Edge waves have been long considered a potential source for alongshore periodic morphological patterns in the swash (e.g., beach cusps), and edge-wave based predictions of cusp spacing compare qualitatively well with many field observations. We will discuss the extension of lab observations and numerical modeling to include incident waves with significant frequency and directional bandwidth. Laboratory experiments were performed at the Cantabria Coastal and Ocean Basin. The large rectangular basin (25 m cross-shore by 32 m alongshore) was heavily instrumented, had reflective sidewalls, and a steep concrete beach (slope 1:5) with a constant depth (1m) section between the wavemaker and beach. With monochromatic, normally incident waves we observed the expected, previously described subharmonic observations. Edge wave vertical heights at the shoreline reached 80cm, and edge wave uprushes exceeded the sloping beach freeboard. When frequency and frequency-directional spread are increased, the excited edge wave character changes substantially. In some cases, subharmonic excitation is suppressed completely. In other cases, edge waves are excited intermittently and unpredictably. The spatially and temporally steady forcing required for strong, persistent subharmonic instability is lacking with even modestly spread (direction and frequency) incident waves. An SPH numerical model is capable of reproducing aspects of the observations. It seems unlikely to us that subhamonic edge waves alone are responsible for most cusp formation on natural beaches. The steady incident wave forcing needed to initiate subharmonic growth, and to maintain

  14. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  15. Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11

  16. A Zonal Approach for Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Shih, S. H.; Hixon, D. R.; Mankbadi, Reda R.

    1995-01-01

    A zonal approach for direct computation of sound generation and propagation from a supersonic jet is investigated. The present work splits the computational domain into a nonlinear, acoustic-source regime and a linear acoustic wave propagation regime. In the nonlinear regime, the unsteady flow is governed by the large-scale equations, which are the filtered compressible Navier-Stokes equations. In the linear acoustic regime, the sound wave propagation is described by the linearized Euler equations. Computational results are presented for a supersonic jet at M = 2. 1. It is demonstrated that no spurious modes are generated in the matching region and the computational expense is reduced substantially as opposed to fully large-scale simulation.

  17. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2017-08-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  18. Observations of planetary mixed Rossby-gravity waves in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Boville, Byron A.; Gille, John C.

    1990-01-01

    Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.

  19. On the Variation of Zonal Gravity Coefficients of a Giant Planet Caused by Its Deep Zonal Flows

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2012-04-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients \\bar{J}_{2n}, n=1,2,3, \\dots, without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, \\Delta {J}_{2n}={J}_{2n}-\\bar{J}_{2n}, n=1,2,3, \\dots, caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., \\Delta {J}_{2n} \\,{\\ge}\\, \\bar{J}_{2n} for n >= 5.

  20. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  1. Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model

    NASA Astrophysics Data System (ADS)

    Peatman, Simon; Methven, John; Woolnough, Steve

    2016-04-01

    Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal

  2. Baroclinic stationary waves in aquaplanet models

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Zappa, G.

    2012-04-01

    An aquaplanet model is used to study the nature of the highly persistent low frequency waves that have been observed in models forced by zonally symmetric boundary conditions. Using the Hayashi spectral analysis of the extratropical waves, we find that a quasi-stationary (QS) wave five belongs to a wave packet obeying a well defined dispersion relation with eastward group velocity. The components of the dispersion relation with k>5 baroclinically convert eddy available potential energy into eddy kinetic energy, while those with k<5 are baroclinically neutral. In agreement with the Green's model of baroclinic instability, the wave five is weakly unstable, and the inverse energy cascade, which had been previously proposed as a main forcing for this type of waves, only acts as a positive feedback on its predominantly baroclinic energetics. The QS wave is reinforced by a phase lock to an analogous pattern in the tropical convection, which provides further amplification to the wave. We also find that the Pedlosky bounds on the phase speed of unstable waves provide guidance in explaining the latitudinal structure of the energy conversion, which is shown to be more enhanced where the zonal westerly surface wind is weaker. The wave energy is then trapped in the wave guide created by the upper tropospheric jet stream. In agreement with Green's theory, as the equator to pole SST difference is reduced the stationary marginally stable component shifts toward higher wavenumbers, while the wave five becomes neutral and westward propagating. Some properties of the aquaplanet QS waves are found in interesting agreement with a low frequency wave observed by Salby (1982) in the southern hemisphere DJF, so that this perspective on low frequency variability might be, apart from its value in terms of basic geophysical fluid dynamics, of specific interest for studying the Earth's atmosphere.

  3. Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzawa, K.; Li Jiquan; Kishimoto, Y.

    2009-04-15

    The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determinedmore » not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.« less

  4. Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Xue, Junpeng; Gao, Bo

    2017-06-14

    There are wide applications for zonal reconstruction methods in slope-based metrology due to its good capability of reconstructing the local details on surface profile. It was noticed in the literature that large reconstruction errors occur when using zonal reconstruction methods designed for rectangular geometry to process slopes in a quadrilateral geometry, which is a more general geometry with phase measuring deflectometry. In this paper, we present a new idea for the zonal methods for quadrilateral geometry. Instead of employing the intermediate slopes to set up height-slope equations, we consider the height increment as a more general connector to establish themore » height-slope relations for least-squares regression. The classical zonal methods and interpolation-assisted zonal methods are compared with our proposal. Results of both simulation and experiment demonstrate the effectiveness of the proposed idea. In implementation, the modification on the classical zonal methods is addressed. Finally, the new methods preserve many good aspects of the classical ones, such as the ability to handle a large incomplete slope dataset in an arbitrary aperture, and the low computational complexity comparable with the classical zonal method. Of course, the accuracy of the new methods is much higher when integrating the slopes in quadrilateral geometry.« less

  5. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells.

    PubMed

    Bernitt, Erik; Döbereiner, Hans-Günther

    2017-01-27

    Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.

  6. Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.

    2013-07-01

    MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the

  7. New Patterns of the Two-Dimensional Rogue Waves: (2+1)-Dimensional Maccari System

    NASA Astrophysics Data System (ADS)

    Wang, Gai-Hua; Wang, Li-Hong; Rao, Ji-Guang; He, Jing-Song

    2017-06-01

    The ocean rogue wave is one kind of puzzled destructive phenomenon that has not been understood thoroughly so far. The two-dimensional nature of this wave has inspired the vast endeavors on the recognizing new patterns of the rogue waves based on the dynamical equations with two-spatial variables and one-temporal variable, which is a very crucial step to prevent this disaster event at the earliest stage. Along this issue, we present twelve new patterns of the two-dimensional rogue waves, which are reduced from a rational and explicit formula of the solutions for a (2+1)-dimensional Maccari system. The extreme points (lines) of the first-order lumps (rogue waves) are discussed according to their analytical formulas. For the lower-order rogue waves, we show clearly in formula that parameter b 2 plays a significant role to control these patterns. Supported by the National Natural Science Foundation of China under Grant No. 11671219, the K. C. Wong Magna Fund in Ningbo University, Gai-Hua Wang is also supported by the Scientific Research Foundation of Graduate School of Ningbo University

  8. Observational evidence of the downstream impact on tropical rainfall from stratospheric Kelvin waves

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Karnauskas, Kristopher B.; Weiss, Jeffrey B.; Polvani, Lorenzo M.

    2017-08-01

    Analysis of one continuous decade of daily, high-vertical resolution sounding data from five proximate islands in the western equatorial Pacific region reveals eastward and downward propagating Kelvin waves in the tropical stratosphere, with a zonal wave number one structure and a period of 15 days. By defining an initiation index, we find that these waves are primarily generated over the western Pacific warm pool and South America-tropical Atlantic sector, consistent with regions of frequent deep convection. The zonal phase speed of the stratospheric Kelvin waves (SKWs) is relatively slow ( 10 m s-1) over the initiation region due to coupling with deep convection, and becomes much faster ( 30-40 m s-1) once decoupled from the downstream troposphere. SKWs have significant impacts on downstream tropical rainfall through modulation of tropopause height. The cold phase of SKWs at tropopause leads to higher tropopause heights and more convection in tropics—with opposite impacts associated with the warm phase. Downstream tropical precipitation anomalies associated with these SKWs also propagate eastward with the same speed and zonal scale as observed SKWs. Interannual variability of the amplitude of the SKWs is shown to be associated with the Quasi-Biennial oscillation (QBO); implications for predictability are discussed.

  9. Climatology of the quasi-2-day waves observed in the MLS/Aura measurements (2005-2014)

    NASA Astrophysics Data System (ADS)

    Pancheva, Dora; Mukhtarov, Plamen; Siskind, David E.

    2018-06-01

    The paper presents the climatology and interannual variability of both eastward- and westward-propagating ∼2-day waves (QTDW) observed in the MLS/Aura geopotential height data for a period of 10 full years (2005-2014). The climatology of the QTDWs has been studied in two steps: (i) by using average 2D-wavelet spectra both the dominant modes of variability and how these modes vary in time and space have been determined, and (ii) by applying a 2D decomposition procedure, where all planetary waves are simultaneously extracted from the data, the average global spatio-temporal distributions of all defined by the 2D-wavelet analysis modes have been obtained. It is found that the westward-propagating waves at mid-high latitudes have zonal wave numbers 2, 3 and 4 and are observed mainly in summer hemisphere. Two different types of eastward-propagating waves have been identified: (i) waves at mid-high latitudes with zonal wave numbers 2 and 3 observed in the winter hemisphere, and (ii) waves observed predominantly over the equator with zonal wave number 2, which do not have a well-defined seasonal variability but show some enhancement in both solstices. While the climatological features of the MLS/Aura QTDWs for the considered period are robust the interannual variations have to be adopted cautiously. The primary reason is that the length of the considered period of 10 years is not enough for finding clear variability pattern. The only long-term variability which appears to have some robustness is that of the W3 wave in the Southern Hemisphere where the influence of the solar cycle has been distinguished.

  10. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  11. A numerical model of gravity wave breaking and stress in the mesosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.

    1983-01-01

    The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.

  12. Wave Activity and Its Changes in the Troposphere and Stratosphere of the Northern Hemisphere in Winters of 1979-2016

    NASA Astrophysics Data System (ADS)

    Guryanov, V. V.; Eliseev, A. V.; Mokhov, I. I.; Perevedentsev, Yu. P.

    2018-03-01

    An analysis of spectra of wave disturbances with zonal wave numbers 1 ≤ k ≤ 10 is carried out using winter (November to March) ERA-Interim reanalysis geopotential data in the troposphere and stratosphere for 1979-2016. Contributions of eastward-traveling ( E), westward-traveling ( W), and stationary ( S) waves are estimated. The intensification of wave activity is observed in the tropical troposphere and stratosphere and in the upper stratosphere of the entire Northern Hemisphere. The intensification of wave activity in the tropics and subtropics is noted for waves of all types ( E, W, and S), while in the middle and higher latitudes it is related mainly to stationary and eastward waves. Near the subtropical tropopause, the energy of stationary waves has increased in recent decades. In addition, in the tropical and subtropical troposphere and in the subtropical lower stratosphere, the energy of the eastward-traveling waves in El Niño years may be one and a half times or twice the energy in La Niña years. The spectrally weighted zonal wave numbers for waves of all types ( E, W, and S) are the largest in the upper subtropical troposphere. The spectrally weighted zonal wave number for W and S waves is correlated with the Atlantic Multidecadal Oscillation index and varies by 15% in 1979-2016 (on an interdecadal time scale). The spectrally weighted wave period is larger in the stratosphere than in the troposphere. It is maximal in the middle extratropical stratosphere. The spectrally weighted wave periods correlate with the activity of sudden stratospheric warmings. The sign of this correlation depends on the latitude, atmospheric layer, and zonal wave number.

  13. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  14. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard

    2010-06-01

    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.

  15. Long-range intercellular Ca2+ wave patterns

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.

    2015-10-01

    Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.

  16. Probability of US Heat Waves Affected by a Subseasonal Planetary Wave Pattern

    NASA Technical Reports Server (NTRS)

    Teng, Haiyan; Branstator, Grant; Wang, Hailan; Meehl, Gerald A.; Washington, Warren M.

    2013-01-01

    Heat waves are thought to result from subseasonal atmospheric variability. Atmospheric phenomena driven by tropical convection, such as the Asian monsoon, have been considered potential sources of predictability on subseasonal timescales. Mid-latitude atmospheric dynamics have been considered too chaotic to allow significant prediction skill of lead times beyond the typical 10-day range of weather forecasts. Here we use a 12,000-year integration of an atmospheric general circulation model to identify a pattern of subseasonal atmospheric variability that can help improve forecast skill for heat waves in the United States. We find that heat waves tend to be preceded by 15-20 days by a pattern of anomalous atmospheric planetary waves with a wavenumber of 5. This circulation pattern can arise as a result of internal atmospheric dynamics and is not necessarily linked to tropical heating.We conclude that some mid-latitude circulation anomalies that increase the probability of heat waves are predictable beyond the typical weather forecast range.

  17. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  18. Zonal-Mean Temperature Variations Inferred from SABER Measurements on TIMED Compared with UARS Observations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans; Russell, James; Mlynczak, Marty; Reber, Carl A.

    2005-01-01

    In the Numerical Spectral Model (NSM, Mayr et al., 2003), small-scale gravity waves propagating in the north/south direction can generate zonal mean (m = 0) meridional wind oscillations with periods between 2 and 4 months. These oscillations tend to be confined to low latitudes and have been interpreted to be the meridional counterpart of the wave-driven Quasi Biennial Oscillation in the zonal circulation. Wave driven meridional winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. We have analyzed SABER temperature measurements in the altitude range between 55 and 95 km to investigate the existence such variations. Because there are also strong tidal signatures (up to approximately 20 K) in the data, our algorithm estimates both mean values and tides together from the data. Based on SABER temperature data, the intra-annual variations with periods between 2 and 4 months can have amplitudes up to 5 K or more, depending on the altitude. Their amplitudes are in qualitative agreement with those inferred Erom UARS data (from different years). The SABER temperature variations also reveal pronounced hemispherical asymmetries, which are qualitatively consistent with wave driven meridional wind oscillations across the equator. Oscillations with similar periods have been seen in the meridional winds based on UARS data (Huang and Reber, 2003).

  19. Observations of Secondary Waves Generated from Interaction Between the 2-Day Wave and the Migrating Diurnal Tide.

    NASA Astrophysics Data System (ADS)

    Lieberman, R. S.; Riggin, D. M.; Siskind, D. E.; Nguyen, V.; Palo, S. E.; Mitchell, N. J.; Livesey, N. J.; Stober, G.; Wilhelm, S.; Jacobi, C.

    2015-12-01

    Nonlinear coupling between the migrating diurnal tide and the westward traveling quasi-2-day wave yields a westward-traveling "sum" wave with zonal wavenumber 4 and a period of 16 hours, and an eastward-traveling "difference" wave with a zonal wavenumber 2 and a period of 2 days. While the eastward 2-day wave has been reported in TIMED/SABER temperatures, the westward 16-hour wave lies outside SABER's Nyquist limits of resolution. To obtain simultaneous definitions of the parent and child waves, we examine hourly output from NOGAPS-ALPHA during January 2005, 2006 and 2008. The westward 16-hour wave maximizes in the winter hemisphere, and behaves like an inertia-gravity wave. The eastward 2-day wave maximizes at low latitudes, and exhibits a mixture of Kelvin and higher-order modes. The 16-hour and the eastward 2-day waves are of comparable magnitude, and alias to the same apparent frequency when viewed from the satellite perspective.

  20. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  1. Rogue-wave pattern transition induced by relative frequency.

    PubMed

    Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying

    2014-08-01

    We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.

  2. Phase transition of traveling waves in bacterial colony pattern

    NASA Astrophysics Data System (ADS)

    Wakano, Joe Yuichiro; Komoto, Atsushi; Yamaguchi, Yukio

    2004-05-01

    Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model, which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.

  3. Spin flip statistics and spin wave interference patterns in Ising ferromagnetic films: A Monte Carlo study.

    PubMed

    Acharyya, Muktish

    2017-07-01

    The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.

  4. Impact of Surface Emissions to the Zonal Variability of Tropical Tropospheric Ozone and Carbon Monoxide for November 2004

    NASA Technical Reports Server (NTRS)

    Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.

    2008-01-01

    The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.

  5. Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere

  6. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  7. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking

  8. Migrating diurnal tide variability induced by propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.

    The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on

  9. Equinoctial asymmetry in the zonal distribution of scintillation as observed by GPS receivers in Indonesia

    NASA Astrophysics Data System (ADS)

    Abadi, P.; Otsuka, Y.; Shiokawa, K.; Husin, A.; Liu, Huixin; Saito, S.

    2017-08-01

    We investigate the azimuthal distribution of amplitude scintillation observed by Global Positioning System (GPS) ground receivers at Pontianak (0.0°S, 109.3°E; magnetic latitude: 9.8°S) and Bandung (6.9°S, 107.6°E; magnetic latitude: 16.7°S) in Indonesia in March and September from 2011 to 2015. The scintillation is found to occur more to the west than to the east in March at both stations, whereas no such zonal difference is found in September. We also analyze the zonal scintillation drift as estimated using three closely spaced single-frequency GPS receivers at Kototabang (0.2°S, 100.3°E; magnetic latitude: 9.9°S) in Indonesia during 2003-2015 and the zonal thermospheric neutral wind as measured by the CHAMP satellite at longitudes of 90°-120°E during 2001-2008. We find that the velocities of both the zonal scintillation drift and the neutral wind decrease with increasing latitudes. Interestingly, the latitudinal gradients of both the zonal scintillation drift and the neutral wind are steeper in March than in September. These steeper March gradients may be responsible for the increased westward altitudinal and latitudinal tilting of plasma bubbles in March. This equinoctial asymmetry could be responsible for the observed westward bias in scintillation in March, because the scintillation is more likely to occur when radio waves pass through longer lengths of plasma irregularities in the plasma bubbles.

  10. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    NASA Astrophysics Data System (ADS)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  11. Convectively driven decadal zonal accelerations in Earth's fluid core

    NASA Astrophysics Data System (ADS)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  12. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  13. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking

  14. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    PubMed

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  15. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  16. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  17. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  18. A new paradigm for predicting zonal-mean climate and climate change

    NASA Astrophysics Data System (ADS)

    Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.

    2016-12-01

    How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.

  19. Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Krizan, Peter; Kozubek, Michal

    2018-01-01

    One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.

  20. Faraday wave patterns on a square cell network

    NASA Astrophysics Data System (ADS)

    Peña-Polo, Franklin; Vargas, Carlos A.; Vásquez-González, Benjamín; Medina, Abraham; Trujillo, Leonardo; Klapp, Jaime; Sigalotti, Leonardo Di G.

    2017-05-01

    We present the experimental observations of the Faraday instability when the vibrated liquid is contained in a network of small square cells for exciting frequencies in the range 10≤ F≤ 24 Hz. A sweep of the parameter space has been performed to investigate the amplitudes and frequencies of the driving force for which different patterns form over the network. Regular patterns in the form of square lattices are observed for driving frequencies in the range 10≤ F<14 Hz, while ordered matrices of oscillons are formed for 1423 Hz, disordered periodic patterns appear within individual cells for a small range of amplitudes. In this case, the wave field is dominated by oscillating blobs that interact on the capillary-gravity scale. A Pearson correlation analysis of the recorded videos shows that for all ordered patterns, the surface waves are periodic and correspond to Faraday waves of dominant frequency equal to half the excitation frequency (i.e., f=F/2). In contrast, the oscillons formed for 14wave fields forming at F>23 Hz are not subharmonic and correspond to periodic harmonic waves with f=nF/2 (for n=2,4,\\ldots ). We find that the experimentally determined minimum forcing necessary to destabilize the rest state and generate surface waves is consistent with a recent stability analysis of stationary solutions as derived from a new dispersion relation for time-periodic waves with nonzero forcing and dissipation.

  1. Field patterns: A new type of wave with infinitely degenerate band structure

    NASA Astrophysics Data System (ADS)

    Mattei, Ornella; Milton, Graeme W.

    2017-12-01

    Field pattern materials (FP-materials) are space-time composites with PT-symmetry in which the one-dimensional-spatial distribution of the constituents changes in time in such a special manner to give rise to a new type of waves, which we call field pattern waves (FP-waves) (MILTON G. W. and MATTEI O., Proc. R. Soc. A, 473 (2017) 20160819; MATTEI O. and MILTON G. W., New J. Phys., 19 (2017) 093022). Specifically, due to the special periodic space-time geometry of these materials, when an instantaneous disturbance propagates through the system, the branching of the characteristic lines at the space-time interfaces between phases does not lead to a chaotic cascade of disturbances but concentrates on an orderly pattern of disturbances: this is the field pattern. In this letter, by applying Bloch-Floquet theory, we show that the dispersion diagrams associated with these FP-materials are infinitely degenerate: associated with each point on the dispersion diagram is an infinite space of Bloch functions. Each generalized function is concentrated on a specific field pattern, each parameterized by a variable that we call the launch parameter. The dynamics separates into independent dynamics on the different field patterns, each with the same dispersion relation.

  2. The Role of Gravity Waves in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.

    1999-01-01

    We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.

  3. Magellan radio occultation measurements of atmospheric waves on Venus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Jenkins, J. M.

    1995-01-01

    Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these

  4. Zonal subdivision of marine sequences: achievements and discrepancies

    NASA Astrophysics Data System (ADS)

    Gladenkov, Yuri

    2010-05-01

    It was 150 years ago when a notion of zone was introduced into stratigraphy. By the present time zonal units with a duration of 0.3-3.0 M.y. in average have been established virtually for all systems and stages of the Phanerozoic. Their quantity reached 300. It is not a chance that zonal stratigraphy is considered to be one of the most significant achievement of the modern geology. There are different interpretations of essence and goals of zonal stratigraphy, techniques of separation of zones, and evaluation of zones as stratigraphic units. Particularly it is reflected in International Stratigraphic Guide (Murphy, Salvador, 1999), Russian Stratigraphic Code (Zhamoida, 2006), and a number of stratigraphic reports of the last years. It concerns different approaches to: (a) establishment of different types of zones (biostratigraphic zones and chronozones, oppel-zones and biohorizons, etc.); (b) assessment of spatial distribution of zones (global or provincial) and a role of sedimentological factor; (c) definition of zones as stratigraphic units (relationships with geostratigraphic units of the standard and regional scales). The latest publications show that because of the different interpretations of zones, authors should explain usage of certain type of zone (for example, when they use the terms "interval-zone" or "assemblage-zone", what limitations stem from application of datum-levels, and others). It is common opinion, that biostratigraphic zones used widely by paleontologists and stratigraphers cannot be a final goal of stratigraphy although they provide a base for solution of many important problems (definition of certain stratigraphic levels, correlation of different biofacies, and others). At the same time, the most important stratigraphic units are chronozones, which correspond to stages or phases of geological evolutio of basins and are marked by distinct fossil assemblages and other properties (magnetic and other characteristics) in the type sections

  5. Effect of resonant magnetic perturbations on secondary structures in drift-wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093

    2011-08-15

    Recent experiments showed a decrease of long range correlations during the application of resonant magnetic perturbations (RMPs) [Y. Xu et al., Nucl. Fusion 51, 063020 (2011)]. This finding suggests that RMPs damp zonal flows. To elucidate the effect of the RMPs on zonal structures in drift wave turbulence, we construct a generalized Hasegawa-Wakatani model including RMP fields. The effect of the RMPs is to induce a linear coupling between the zonal electric field and the zonal density gradient, which drives the system to a state of electron radial force balance for large RMP amplitude. A predator-prey model coupling the primarymore » drift wave dynamics to the zonal modes evolution is derived. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. The novel regime has a power threshold which increases with RMP amplitude as {gamma}{sub c}{approx}[({delta}B{sub r}/B)]{sup 2}.« less

  6. Stability of nonlinear waves and patterns and related topics

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-01

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  7. The observed life cycle of a baroclinic instability

    NASA Technical Reports Server (NTRS)

    Randel, W. J.; Stanford, J. L.

    1985-01-01

    Medium-scale waves (zonal wavenumbers 4-7) frequently dominate Southern Hemisphere summer circulation patterns. Randel and Stanford have studied the dynamics of these features, demonstrating that the medium-scale waves result from baroclinic excitation and exhibit well-defined life cycles. This study details the evolution of the medium-scale waves during a particular life cycle. The specific case chosen exhibits a high degree of zonal symmetry, prompting study based upon zonally averaged diagnostics. An analysis of the medium-scale wave energetics reveals a well-defined life cycle of baroclinic growth, maturity, and barotropic decay. Eliassen-Palm flux diagrams detail the daily wave structure and its interaction with the zonally-averaged flow.

  8. Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere

    PubMed Central

    Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R

    2014-01-01

    Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)—a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5–10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N2, as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Key Points Dissipating planetary waves (PWs) in the MLT can drive background wind changes Mixing from dissipating PWs drive thermosphere/ionosphere composition changes First observations of QTDW-driven variability from this mechanism PMID:26312201

  9. Quasi two day wave-related variability in the background dynamics and composition of the mesosphere/thermosphere and the ionosphere.

    PubMed

    Chang, Loren C; Yue, Jia; Wang, Wenbin; Wu, Qian; Meier, R R

    2014-06-01

    Dissipating planetary waves in the mesosphere/lower thermosphere (MLT) region may cause changes in the background dynamics of that region, subsequently driving variability throughout the broader thermosphere/ionosphere system via mixing due to the induced circulation changes. We report the results of case studies examining the possibility of such coupling during the northern winter in the context of the quasi two day wave (QTDW)-a planetary wave that recurrently grows to large amplitudes from the summer MLT during the postsolstice period. Six distinct QTDW events between 2003 and 2011 are identified in the MLT using Sounding of the Atmosphere using Broadband Emission Radiometry temperature observations. Concurrent changes to the background zonal winds, zonal mean column O/N 2 density ratio, and ionospheric total electron content (TEC) are examined using data sets from Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer, Global Ultraviolet Imager, and Global Ionospheric Maps, respectively. We find that in the 5-10 days following a QTDW event, the background zonal winds in the MLT show patterns of eastward and westward anomalies in the low and middle latitudes consistent with past modeling studies on QTDW-induced mean wind forcing, both below and at turbopause altitudes. This is accompanied by potentially related decreases in zonal mean thermospheric column O/N 2 , as well as to low-latitude TECs. The recurrent nature of the above changes during the six QTDW events examined point to an avenue for vertical coupling via background dynamics and chemistry of the thermosphere/ionosphere not previously observed. Dissipating planetary waves (PWs) in the MLT can drive background wind changesMixing from dissipating PWs drive thermosphere/ionosphere composition changesFirst observations of QTDW-driven variability from this mechanism.

  10. The structure and large-scale organization of extreme cold waves over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Xie, Zuowei; Black, Robert X.; Deng, Yi

    2017-12-01

    Extreme cold waves (ECWs) occurring over the conterminous United States (US) are studied through a systematic identification and documentation of their local synoptic structures, associated large-scale meteorological patterns (LMPs), and forcing mechanisms external to the US. Focusing on the boreal cool season (November-March) for 1950‒2005, a hierarchical cluster analysis identifies three ECW patterns, respectively characterized by cold surface air temperature anomalies over the upper midwest (UM), northwestern (NW), and southeastern (SE) US. Locally, ECWs are synoptically organized by anomalous high pressure and northerly flow. At larger scales, the UM LMP features a zonal dipole in the mid-tropospheric height field over North America, while the NW and SE LMPs each include a zonal wave train extending from the North Pacific across North America into the North Atlantic. The Community Climate System Model version 4 (CCSM4) in general simulates the three ECW patterns quite well and successfully reproduces the observed enhancements in the frequency of their associated LMPs. La Niña and the cool phase of the Pacific Decadal Oscillation (PDO) favor the occurrence of NW ECWs, while the warm PDO phase, low Arctic sea ice extent and high Eurasian snow cover extent (SCE) are associated with elevated SE-ECW frequency. Additionally, high Eurasian SCE is linked to increases in the occurrence likelihood of UM ECWs.

  11. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  12. CALL FOR PAPERS: Special cluster issue on `Experimental studies of zonal flow and turbulence'

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.

    2005-07-01

    Plasma Physics and Controlled Fusion (PPCF) invites submissions on the topic of `Experimental studies of zonal flow and turbulence', for consideration for a special topical cluster of articles to be published early in 2006. The topical cluster will be published in an issue of PPCF, combined with regular articles. The Guest Editor for the special cluster will be S-I Itoh, Kyushu University, Japan. There has been remarkable progress in the area of structure formation by turbulence. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in turbulence and zonal flows. At the same time, experimental research on the zonal flow, geodesic acoustic modes and generation of global electric field by turbulence has evolved rapidly. Fast growth in reports of experimental results has stimulated further efforts to develop increased knowledge and systematic understanding. Each paper considered for the special cluster should describe the present research status and new scientific knowledge/results from the authors on experimental studies of zonal flow, geodesic acoustic modes and generation of electric field by turbulence (including studies of Reynolds-Maxwell stresses, etc). Manuscripts submitted to this special cluster in Plasma Physics and Controlled Fusion will be refereed according to the normal criteria and procedures of the journal. The Guest Editor guides the progress of the cluster from the initial open call, through the standard refereeing process, to publication. To be considered for inclusion in the special cluster, articles must be submitted by 2 September 2005 and must clearly state `for inclusion in the Turbulent Plasma Cluster'. Articles submitted after this deadline may not be included in the cluster issue but may be published in a later issue of the journal. Please submit your manuscript electronically via our web site at www

  13. Zonal wind observations during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  14. The family of anisotropically scaled equatorial waves

    NASA Astrophysics Data System (ADS)

    RamíRez GutiéRrez, Enver; da Silva Dias, Pedro Leite; Raupp, Carlos; Bonatti, Jose Paulo

    2011-04-01

    In the present work we introduce the family of anisotropic equatorial waves. This family corresponds to equatorial waves at intermediate states between the shallow water and the long wave approximation model. The new family is obtained by using anisotropic time/space scalings on the linearized, unforced and inviscid shallow water model. It is shown that the anisotropic equatorial waves tend to the solutions of the long wave model in one extreme and to the shallow water model solutions in the other extreme of the parameter dependency. Thus, the problem associated with the completeness of the long wave model solutions can be asymptotically addressed. The anisotropic dispersion relation is computed and, in addition to the typical dependency on the equivalent depth, meridional quantum number and zonal wavenumber, it also depends on the anisotropy between both zonal to meridional space and velocity scales as well as the fast to slow time scales ratio. For magnitudes of the scales compatible with those of the tropical region, both mixed Rossby-gravity and inertio-gravity waves are shifted to a moderately higher frequency and, consequently, not filtered out. This draws attention to the fact that, for completeness of the long wave like solutions, it is necessary to include both the anisotropic mixed Rossby-gravity and inertio-gravity waves. Furthermore, the connection of slow and fast manifolds (distinguishing feature of equatorial dynamics) is preserved, though modified for the equatorial anisotropy parameters used δ ∈ < 1]. New possibilities of horizontal and vertical scale nonlinear interactions are allowed. Thus, the anisotropic shallow water model is of fundamental importance for understanding multiscale atmosphere and ocean dynamics in the tropics.

  15. Stability of nonlinear waves and patterns and related topics.

    PubMed

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-13

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  16. Application of a planetary wave breaking parameterization to stratospheric circulation statistics

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Garcia, Rolando R.

    1994-01-01

    The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.

  17. Interannual variability of the Submonthly Wave Patterns over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ko, K. C.

    2017-12-01

    This study examines the interannual variability of the 5-16 day wave patterns by separating them into active (A4mV) and inactive (I4mV) years on the basis of the 4-month (July-October) variance of a Japan-South China Sea (JSCS) circulation index from 1979 to 2013. The sea surface temperature for the A4mV years exhibited an ENSO pattern but a reversed anomaly pattern was observed in the I4mV years. Composite results indicate that tropical cyclone (TC) tracks are closely linked to the activity of the wave patterns. When the wave patterns were strong with a solid wave structure in the A4mV years, TCs would follow the propagation routes of the cyclonic anomalies of the wave patterns and separated into two types of tracks: straight-moving and recurving. However, in the I4mV years when the wave patterns were weak and poorly organized, the shapes of the cyclonic anomalies became irregular and sporadic. The weakening structure of the wave patterns in the I4mV years would induce the TCs to undergo more scattered routes near Taiwan and east coast of China. Therefore, Taiwan experienced more rainfall in the I4mV years.

  18. Zonal-flow dynamics from a phase-space perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  19. Zonal-flow dynamics from a phase-space perspective

    DOE PAGES

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...

    2016-12-16

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  20. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  1. Tunable Nanowire Patterning Using Standing Surface Acoustic Waves

    PubMed Central

    Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun

    2014-01-01

    Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330

  2. Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Ze

    2017-06-01

    A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5-6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA-EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.

  3. Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability

    NASA Astrophysics Data System (ADS)

    Sheshadri, A.; Plumb, R. A.

    2016-12-01

    Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.

  4. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. View of atmospheric wave patterns by effect of island on wind currents

    NASA Image and Video Library

    1973-12-14

    SL4-137-3632 (February 1974) --- A photograph taken from the Skylab space station in Earth orbit illustrating an atmospheric wave pattern by the affect of a small mountainous island on wind currents. Various patterns can be seen downwind of small islands. Often a Von Karmon vortex can be seen which appears as a spiral pattern. Multiple vortices have been photographed on previous missions. This photograph illustrates a "bow wave" pattern which extends for hundreds of miles downwind from the island. The island itself is often clear when a wave pattern is formed downstream. This particular pattern is very symmetrical. These wave patterns are most common in the South Pacific. This picture was taken by a Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. Photo credit: NASA

  6. Gravity Waves in the Atmosphere: Instability, Saturation, and Transport.

    DTIC Science & Technology

    1995-11-13

    role of gravity wave drag in the extratropical QBO , destabilization of large-scale tropical waves by deep moist convection, and a general theory of equatorial inertial instability on a zonally nonuniform, nonparallel flow.

  7. Solid perception mechanism by a shading pattern: spatial frequency components in a corrugated wave pattern.

    PubMed

    Nameda, N

    1988-01-01

    Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.

  8. The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.

    1999-01-01

    We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the tides and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. Without the diurnal

  9. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  10. Comparative analysis of zonal systems for macro-level crash modeling.

    PubMed

    Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen

    2017-06-01

    Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  11. Transonic Navier-Stokes wing solutions using a zonal approach. Part 2: High angle-of-attack simulation

    NASA Technical Reports Server (NTRS)

    Chaderjian, N. M.

    1986-01-01

    A computer code is under development whereby the thin-layer Reynolds-averaged Navier-Stokes equations are to be applied to realistic fighter-aircraft configurations. This transonic Navier-Stokes code (TNS) utilizes a zonal approach in order to treat complex geometries and satisfy in-core computer memory constraints. The zonal approach has been applied to isolated wing geometries in order to facilitate code development. Part 1 of this paper addresses the TNS finite-difference algorithm, zonal methodology, and code validation with experimental data. Part 2 of this paper addresses some numerical issues such as code robustness, efficiency, and accuracy at high angles of attack. Special free-stream-preserving metrics proved an effective way to treat H-mesh singularities over a large range of severe flow conditions, including strong leading-edge flow gradients, massive shock-induced separation, and stall. Furthermore, lift and drag coefficients have been computed for a wing up through CLmax. Numerical oil flow patterns and particle trajectories are presented both for subcritical and transonic flow. These flow simulations are rich with complex separated flow physics and demonstrate the efficiency and robustness of the zonal approach.

  12. Jupiter cloud morphology and zonal winds from ground-based observations during Juno's first year around Jupiter

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Gómez-Forrellad, J. M.; Rojas, J. F.; Pérez-Hoyos, S.; Sanz-Requena, J. F.; Peralta, J.; Ordonez-Etxeberria, I.; Chen-Chen, H.; Mendikoa, I.; Peach, D.; Go, C.; Wesley, A.; Miles, P.; Olivetti, T.

    2017-09-01

    We present an analysis of Jupiter's atmospheric activity over Juno's first year around the planet based on ground-based observations. We present variability of the zonal winds associated to large outbreaks of convective activity at different belts in the planet, a study of short-scale atmospheric waves at low latitudes and examine polar views of the planet that can be compared with JunoCam observations.

  13. Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.

    2016-07-01

    Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 h

  14. Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.

  15. Gravitational Anomalies Caused by Zonal Winds in Jupiter

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Kong, D.; Zhang, K.

    2012-12-01

    We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal winds in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal winds are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of density and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal winds extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the wind-related density anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal winds.

  16. Subsurface Zonal and Meridional Flows from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Howe, Rachel; Hill, Frank

    2016-10-01

    We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.

  17. Zonal wind indices to reconstruct United States winter precipitation during El Niño

    NASA Astrophysics Data System (ADS)

    Farnham, D. J.; Steinschneider, S.; Lall, U.

    2017-12-01

    The highly discussed 2015/16 El Niño event, which many likened to the similarly strong 1997/98 El Niño event, led to precipitation impacts over the continental United States (CONUS) inconsistent with general expectations given past events and model-based forecasts. This presents a challenge for regional water managers and others who use seasonal precipitation forecasts who previously viewed El Niño events as times of enhanced confidence in seasonal water availability and flood risk forecasts. It is therefore useful to understand the extent to which wintertime CONUS precipitation during El Niño events can be explained by seasonal sea surface temperature heating patterns and the extent to which the precipitation is a product of natural variability. In this work, we define two seasonal indices based on the zonal wind field spanning from the eastern Pacific to the western Atlantic over CONUS that can explain El Niño precipitation variation spatially throughout CONUS over 11 historic El Niño events from 1950 to 2016. The indices reconstruct El Niño event wintertime (Jan-Mar) gridded precipitation over CONUS through cross-validated regression much better than the traditional ENSO sea surface temperature indices or other known modes of variability. Lastly, we show strong relationships between sea surface temperature patterns and the phases of the zonal wind indices, which in turn suggests that some of the disparate CONUS precipitation during El Niño events can be explained by different heating patterns. The primary contribution of this work is the identification of intermediate variables (in the form of zonal wind indices) that can facilitate further studies into the distinct hydroclimatic response to specific El Niño events.

  18. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other

  19. Arctic Sea Ice Export Through Fram Strait and Atmospheric Planetary Waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Koblinsky, Chester (Technical Monitor)

    2001-01-01

    A link is found between the variability of Arctic sea ice export through Ram Strait and the phase of the longest atmospheric planetary wave (zonal wave 1) in SLP for the period 1958-1997. Previous studies have identified a link between From Strait ice export and the North Atlantic Oscillation (NAO), but this link has been described as unstable because of a lack of consistency over time scales longer than the last two decades. Inconsistent and low correlations are also found between From Strait ice export and the Arctic Oscillation (AD) index. This paper shows that the phase of zonal wave 1 explains 60% - 70% of the simulated From Strait ice export variance over the Goodyear period 1958 - 1997. Unlike the NAB and AD links, these high variances are consistent for both the first and second halves of the Goodyear period. This consistency is attributed to the sensitivity of the wave I phase at high latitudes to the presence of secondary low pressure systems in the Barents Sea that serve to drive sea ice southward through From Strait. These results provide further evidence that the phase of zonal wave 1 in SLP at high latitudes drives regional as well as hemispheric low frequency Arctic Ocean and sea ice variability.

  20. Amplification of warming due to intensification of zonal circulation in the mid-latitudes

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana

    2015-04-01

    We propose a new index to evaluate the impact of atmospheric zonal transport oscillations on inter-annual variability and trends of average air temperature in mid-latitudes, Northern Hemisphere and globe. A simple model of mid-latitude channel "ocean-land-atmosphere" was used to produce the analytic relationship between the zonal circulation and the land-ocean temperature contrast which was used as a basis for index. An inverse relationship was found between indexes and average mid-latitude, hemisphere and global temperatures during the cold half of year and opposite one in summer. These relationships keep under 400 mb height. In winter relationship describes up to 70, 50 and 40 % of surface air temperature inter-annual variability of these averages, respectively. The contribution of zonal circulation to the increase in the average surface air temperature during warming period 1969-2008 reaches 75% in the mid-latitudes and 40% in the Northern Hemisphere. Proposed mid-latitude index correlates negatively with surface air temperature in the Arctic except summer. ECHAM4 projections with the A1B scenario show that increase of zonal circulation defines more than 74% of the warming in the Northern Hemisphere for 2001-2100. Our analysis confirms that the proposed index is an effective indicator of the climate change caused by variations of the zonal circulation that arise due to anthropogenic and/or natural global forcing mechanisms.

  1. Spatial patterns of fasting and fed antropyloric pressure waves in humans.

    PubMed Central

    Sun, W M; Hebbard, G S; Malbert, C H; Jones, K L; Doran, S; Horowitz, M; Dent, J

    1997-01-01

    1. Gastric mechanics were investigated by categorizing the temporal and spatial patterning of pressure waves associated with individual gastric contractions. 2. In twelve healthy volunteers, intraluminal pressures were monitored from nine side hole recording points spaced at 1.5 cm intervals along the antrum, pylorus and duodenum. 3. Pressure wave sequences that occurred during phase II fasting contractions (n = 221) and after food (n = 778) were evaluated. 4. The most common pattern of pressure wave onset along the antrum was a variable combination of antegrade, synchronous and retrograde propagation between side hole pairs. This variable pattern accounted for 42% of sequences after food, and 34% during fasting (P < 0.05). Other common pressure wave sequence patterns were: purely antegrade-29% after food and 42% during fasting (P < 0.05); purely synchronous-23% fed and 17% fasting; and purely retrograde-6% fed and 8% fasting. The length of sequences was shorter after food (P < 0.05). Some sequences 'skipped' individual recording points. 5. The spatial patterning of gastric pressure wave sequences is diverse, and may explain the differing mechanical outcomes among individual gastric contractions. 6. Better understanding of gastric mechanics may be gained from temporally precise correlations of luminal flows and pressures and gastric wall motion during individual gastric contraction sequences. PMID:9306286

  2. A mathematical model of the chevron-like wave pattern on a weld piece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowden, J.; Kapadia, P.

    1996-12-31

    In welding processes in general the surface of a metallic weld displays a chevron-like pattern. Such a pattern is also clearly seen to be present if welding is carried out using a laser beam. In the welding process a laser beam is directed normally on the metal undergoing translation and usually penetrates it to form a keyhole. The keyhole is surrounded by a molten region, the weld pool. Even if a CO{sub 2} laser is used, there are numerous fluctuations and instabilities that occur, so that the keyhole imposes forcing frequencies on the molten weld pool, additional to vibrations attendantmore » on the process of translation. The weld pool in turn responds by supporting a spectrum of waves of different frequencies involving the natural frequency of the weld pool as well as various forcing frequencies. These waves are surface tension-type capillary waves and previous publications have attempted to model their behavior mathematically, although not all aspects of the problem have always been included. The wave pattern that is manifested in the chevron-like pattern seen on the weld piece is, however, not necessarily identical to the wave pattern present in the weld pool. This is because the chevron-like wave pattern forms as a result of several complicating effects that arise as the weld specimen cools on its surface immediately after the weld has been formed. This process involves the waves on the surface of the weld pool freezing to form the chevron-like wave pattern. A feature that is often ignored is the fact that the waves on the weld pool can only be regarded as irrotational if the translation speed is sufficiently low. This paper describes mathematically the formation of the chevron-like wave pattern based on suitable simplifying assumptions to model the process. The mathematical description of the way in which this chevron-like pattern forms is a step toward a more comprehensive understanding of this process.« less

  3. True amplitude wave equation migration arising from true amplitude one-way wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Guanquan; Bleistein, Norman

    2003-10-01

    One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition

  4. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    DTIC Science & Technology

    2011-04-15

    synoptically warm condition and susequently affect ozone depletion (Hamill and Toon, 1991). The importance of gravity waves on climate and weather... troposphere to upper stratosphere can those GWs grow into significant strengths. Locations of high occurrence of convectively generated GWs are also...maximum comes in one month later. A close look at the vertical config- uration of the zonal wind reveals that tropospheric westerlies in the SH high

  5. Saturn’s gravitational field induced by its equatorially antisymmetric zonal winds

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-05-01

    The cloud-level zonal winds of Saturn are marked by a substantial equatorially antisymmetric component with a speed of about 50ms‑1 which, if they are sufficiently deep, can produce measurable odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4. This study, based on solutions of the thermal-gravitational wind equation, provides a theoretical basis for interpreting the odd gravitational coefficients of Saturn in terms of its equatorially antisymmetric zonal flow. We adopt a Saturnian model comprising an ice-rock core, a metallic dynamo region and an outer molecular envelope. We use an equatorially antisymmetric zonal flow that is parameterized, confined in the molecular envelope and satisfies the solvability condition required for the thermal-gravitational wind equation. The structure and amplitude of the zonal flow at the cloud level are chosen to be consistent with observations of Saturn. We calculate the odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4 by regarding the depth of the equatorially antisymmetric winds as a parameter. It is found that ΔJ 3 is ‑4.197 × 10‑8 if the zonal winds extend about 13 000 km downward from the cloud tops while it is ‑0.765 × 10‑8 if the depth is about 4000 km. The depth/profile of the equatorially antisymmetric zonal winds can eventually be estimated when the high-precision measurements of the Cassini Grand Finale become available.

  6. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  7. Cutting efficiency of Reciproc and waveOne reciprocating instruments.

    PubMed

    Plotino, Gianluca; Giansiracusa Rubini, Alessio; Grande, Nicola M; Testarelli, Luca; Gambarini, Gianluca

    2014-08-01

    The aim of the present study was to evaluate the cutting efficiency of 2 new reciprocating instruments, Reciproc and WaveOne. Twenty-four new Reciproc R25 and 24 new WaveOne Primary files were activated by using a torque-controlled motor (Silver Reciproc) and divided into 4 groups (n = 12): group 1, Reciproc activated by Reciproc ALL program; group 2, Reciproc activated by WaveOne ALL program; group 3, WaveOne activated by Reciproc ALL program; and group 4, WaveOne activated by WaveOne ALL program. The device used for the cutting test consisted of a main frame to which a mobile plastic support for the handpiece is connected and a stainless steel block containing a Plexiglas block (inPlexiglass, Rome, Italy) against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1 mm. Means and standard deviations of each group were calculated, and data were statistically analyzed with 1-way analysis of variance and Bonferroni test (P < .05). Reciproc R25 displayed greater cutting efficiency than WaveOne Primary for both the movements used (P < .05); in particular, Reciproc instruments used with their proper reciprocating motion presented a statistically significant higher cutting efficiency than WaveOne instruments used with their proper reciprocating motion (P < .05). There was no statistically significant difference between the 2 movements for both instruments (P > .05). Reciproc instruments demonstrated statistically higher cutting efficiency than WaveOne instruments. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Impact of northern Eurasian snow cover in autumn on the warm Arctic-cold Eurasia pattern during the following January and its linkage to stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Xu, Xinping; He, Shengping; Li, Fei; Wang, Huijun

    2018-03-01

    The connection between Eurasian snow cover (SC) in autumn and Eurasian winter mean surface air temperature (SAT) has been identified by many studies. However, some recent observations indicate that early and late winter climate sometimes shows an out-of-phase relationship, suggesting that the winter mean situation might obscure the important relationships that are relevant for scientific research and applications. This study investigates the relationship between October northern Eurasian SC (NESC; 58°-68°N, 30°-90°E) and Eurasian SAT during the winter months and finds a significant relationship only exists in January. Generally, following reduced October NESC, the East Asian trough and Ural high are intensified in January, and anomalous northeasterly winds prevail in mid-latitudes, causing cold anomalies over Eurasia. Meanwhile, anomalous southwesterly winds along the northern fringe of the Ural high favor warm anomalies in the Arctic. The dynamical mechanism for the connection between NESC in October and the warm Arctic-cold Eurasia (WACE) anomaly in January is further investigated from the perspective of quasi-stationary planetary wave activity. It is found that planetary waves with zonal wavenumber-1 (ZWN1) play a dominant role in this process. Specifically, the ZWN1 pattern of planetary-scale waves concurrent with October NESC anomaly extends from the surface to the upper-stratosphere. It persists in the stratosphere through November-December and propagates downward to the surface by the following January, making the connection between October NESC and January climate possible. Additionally, the influence of October NESC on the January WACE pattern has intensified since the early-2000s.

  9. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  10. Variability of quasi-stationary planetary waves

    NASA Technical Reports Server (NTRS)

    Krivolutsky, A. A.; Petushkov, N. D.; Tarasenko, D. A.

    1989-01-01

    The results of the analysis of nonzonal perturbations (m = 1, 2, 3) of the geopotential field at a 30 mb level are presented. A long period modulation of the harmonics' amplitude is discovered. Calculations of eigenfunctions and eigennumbers of the Laplace tidal equation are carried out for a real latitudinal wind profile. The observed first zonal harmonic in different years is caused by the same mode. Thus, the difference in the wave amplitudes could not be accounted for by the difference in stratospheric zonal circulation in different years and should be related to tropospheric processes.

  11. The polarization patterns of skylight reflected off wave water surface.

    PubMed

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

    2013-12-30

    In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.

  12. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  13. Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex, in vitro

    PubMed Central

    Bao, Weili; Wu, Jian-young

    2010-01-01

    Neocortical “theta” oscillation (5- 12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (~8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike”, a “regular” period (with relatively stable frequency and amplitude) and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ~50 mm/sec. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about equal or less than 300 μm wide horizontally. During irregular oscillations the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns. PMID:12612003

  14. Zonal NePhRO scoring system: a superior renal tumor complexity classification model.

    PubMed

    Hakky, Tariq S; Baumgarten, Adam S; Allen, Bryan; Lin, Hui-Yi; Ercole, Cesar E; Sexton, Wade J; Spiess, Philippe E

    2014-02-01

    Since the advent of the first standardized renal tumor complexity system, many subsequent scoring systems have been introduced, many of which are complicated and can make it difficult to accurately measure data end points. In light of these limitations, we introduce the new zonal NePhRO scoring system. The zonal NePhRO score is based on 4 anatomical components that are assigned a score of 1, 2, or 3, and their sum is used to classify renal tumors. The zonal NePhRO scoring system is made up of the (Ne)arness to collecting system, (Ph)ysical location of the tumor in the kidney, (R)adius of the tumor, and (O)rganization of the tumor. In this retrospective study, we evaluated patients exhibiting clinical stage T1a or T1b who underwent open partial nephrectomy performed by 2 genitourinary surgeons. Each renal unit was assigned both a zonal NePhRO score and a RENAL (radius, exophytic/endophytic properties, nearness of tumor to the collecting system or sinus in millimeters, anterior/posterior, location relative to polar lines) score, and a blinded reviewer used the same preoperative imaging study to obtain both scores. Additional data points gathered included age, clamp time, complication rate, urine leak rate, intraoperative blood loss, and pathologic tumor size. One hundred sixty-six patients underwent open partial nephrectomy. There were 37 perioperative complications quantitated using the validated Clavien-Dindo system; their occurrence was predicted by the NePhRO score on both univariate and multivariate analyses (P = .0008). Clinical stage, intraoperative blood loss, and tumor diameter were all correlated with the zonal NePhRO score on univariate analysis only. The zonal NePhRO scoring system is a simpler tool that accurately predicts the surgical complexity of a renal lesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    NASA Astrophysics Data System (ADS)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  16. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging.

    PubMed

    Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J

    2015-11-01

    We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.

  17. Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core

    NASA Astrophysics Data System (ADS)

    Knezek, Nicholas; Buffett, Bruce

    2018-04-01

    We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.

  18. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  19. Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno's first perijove

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.

    2017-05-01

    We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.

  20. Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity

    NASA Astrophysics Data System (ADS)

    Kiladis, G. N.; Biello, J. A.; Straub, K. H.

    2012-12-01

    It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG

  1. Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column

    NASA Astrophysics Data System (ADS)

    Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane

    2017-02-01

    The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.

  2. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves

    PubMed Central

    Collins, David J.; Morahan, Belinda; Garcia-Bustos, Jose; Doerig, Christian; Plebanski, Magdalena; Neild, Adrian

    2015-01-01

    In single-cell analysis, cellular activity and parameters are assayed on an individual, rather than population-average basis. Essential to observing the activity of these cells over time is the ability to trap, pattern and retain them, for which previous single-cell-patterning work has principally made use of mechanical methods. While successful as a long-term cell-patterning strategy, these devices remain essentially single use. Here we introduce a new method for the patterning of multiple spatially separated single particles and cells using high-frequency acoustic fields with one cell per acoustic well. We characterize and demonstrate patterning for both a range of particle sizes and the capture and patterning of cells, including human lymphocytes and red blood cells infected by the malarial parasite Plasmodium falciparum. This ability is made possible by a hitherto unexplored regime where the acoustic wavelength is on the same order as the cell dimensions. PMID:26522429

  3. Spatio-temporal evolutions of non-orthogonal equatorial wave modes derived from observations

    NASA Astrophysics Data System (ADS)

    Barton, Cory

    Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCFs), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. The non-orthogonality of wave modes has yet posed a problem when attempting to separate data into wave fields where the waves project onto the same structure functions. We propose the development and application of a new methodology for equatorial wave expansion of instantaneous flows using the full equatorial wave spectrum. By creating a mapping from the meridional structure function amplitudes to the equatorial wave class amplitudes, we are able to diagnose instantaneous wave fields and determine their evolution. Because all meridional modes are shared by some subset of the wave classes, we require constraints on the wave class amplitudes to yield a closed system with a unique solution for all waves' spatial structures, including IG waves. A synthetic field is analyzed using this method to determine its accuracy for data of a single vertical mode. The wave class spectra diagnosed using this method successfully match the correct dispersion curves even if the incorrect depth is chosen for the spatial decomposition. In the case of more than one depth scale, waves with varying equivalent depth may be similarly identified using the dispersion curves. The primary vertical mode is the 200 m equivalent depth mode, which is that of the peak projection response. A distinct spectral power peak along the Kelvin wave dispersion curve for this value validates our choice of equivalent depth, although the possibility of depth varying with time and height is explored. The wave class spectra diagnosed assuming this depth scale mostly match their expected dispersion curves

  4. Finite-Amplitude Local Wave Activity as a Diagnostic of Anomalous Weather Events

    NASA Astrophysics Data System (ADS)

    Huang, Shao Ying

    Localized large-amplitude Rossby wave phenomena are often associated with adverse weather conditions in the midlatitudes. There has yet been a wave theory that can connect the evolution of extreme weather anomalies with the governing dynamical processes. This thesis provides a quasi-geostrophic framework for understanding the interaction between large-amplitude Rossby waves and the zonal flow on regional scales. Central to the theory is finite-amplitude local wave activity (LWA), a longitude-dependent measure of amplitude and pseudomomentum density of Rossby waves, as a generalization of the finite-amplitude Rossby wave activity (FAWA) developed by Nakamura and collaborators. The budget of LWA preserves the familiar structure of the Transformed Eulerian Mean (TEM) formalism, and it is more succinct and interpretable compared with other existing wave metrics. LWA also captures individual large-amplitude events more faithfully than most other detection methods. The bulk of the thesis concerns how the budget of wave activity may be closed with data when Rossby waves attain large amplitude and break, and how one interprets the budget. This includes the FAWA budget in a numerical simulation of barotropic decay on a sphere and the column budget of LWA in the storm track regions of the winter Northern Hemisphere with reanalysis data. The latter reveals subtle differences in the budget components between the Pacific and Atlantic storm tracks. Spectral analysis of the LWA budget also reveals the importance of the zonal LWA flux convergence and nonconservative LWA sources in synoptic- to intraseasonal timescales. The thesis concludes by introducing a promising recent development on the mechanistic understanding of the onset of atmospheric blocking using the LWA framework.

  5. Identification of Stratospheric Waves in Ozone in the Tropics from OMI High Spectral Resolution Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Liu, X.; Bhartia, P. K.

    2007-01-01

    Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.

  6. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  7. Contribution of zonal harmonics to gravitational moment

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1991-01-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  8. Contribution of zonal harmonics to gravitational moment

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    1991-02-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  9. Equatorial waves in the stratosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  10. Patterns and drivers of daily bed-level dynamics on two tidal flats with contrasting wave exposure.

    PubMed

    Hu, Zhan; Yao, Peng; van der Wal, Daphne; Bouma, Tjeerd J

    2017-08-02

    Short-term bed-level dynamics has been identified as one of the main factors affecting biota establishment or retreat on tidal flats. However, due to a lack of proper instruments and intensive labour involved, the pattern and drivers of daily bed-level dynamics are largely unexplored in a spatiotemporal context. In this study, 12 newly-developed automatic bed-level sensors were deployed for nearly 15 months on two tidal flats with contrasting wave exposure, proving an unique dataset of daily bed-level changes and hydrodynamic forcing. By analysing the data, we show that (1) a general steepening trend exists on both tidal flats, even with contrasting wave exposure and different bed sediment grain size; (2) daily morphodynamics level increases towards the sea; (3) tidal forcing sets the general morphological evolution pattern at both sites; (4) wave forcing induces short-term bed-level fluctuations at the wave-exposed site, but similar effect is not seen at the sheltered site with smaller waves; (5) storms provoke aggravated erosion, but the impact is conditioned by tidal levels. This study provides insights in the pattern and drivers of daily intertidal bed-level dynamics, thereby setting a template for future high-resolution field monitoring programmes and inviting in-depth morphodynamic modelling for improved understanding and predictive capability.

  11. Model of Wave Driven Flow Oscillation for Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.

  12. The quasi 2 day wave response in TIME-GCM nudged with NOGAPS-ALPHA

    NASA Astrophysics Data System (ADS)

    Wang, Jack C.; Chang, Loren C.; Yue, Jia; Wang, Wenbin; Siskind, D. E.

    2017-05-01

    The quasi 2 day wave (QTDW) is a traveling planetary wave that can be enhanced rapidly to large amplitudes in the mesosphere and lower thermosphere (MLT) region during the northern winter postsolstice period. In this study, we present five case studies of QTDW events during January and February 2005, 2006 and 2008-2010 by using the Thermosphere-Ionosphere-Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) nudged with the Navy Operational Global Atmospheric Prediction System-Advanced Level Physics High Altitude (NOGAPS-ALPHA) Weather Forecast Model. With NOGAPS-ALPHA introducing more realistic lower atmospheric forcing in TIME-GCM, the QTDW events have successfully been reproduced in the TIME-GCM. The nudged TIME-GCM simulations show good agreement in zonal mean state with the NOGAPS-ALPHA 6 h reanalysis data and the horizontal wind model below the mesopause; however, it has large discrepancies in the tropics above the mesopause. The zonal mean zonal wind in the mesosphere has sharp vertical gradients in the nudged TIME-GCM. The results suggest that the parameterized gravity wave forcing may need to be retuned in the assimilative TIME-GCM.

  13. Eastern Tropical Pacific Precipitation Response to Zonal SPCZ events

    NASA Astrophysics Data System (ADS)

    Durán-Quesada, A. M.; Lintner, B. R.

    2014-12-01

    Extreme El Niño events and warming conditions in the eastern tropical Pacific have been linked to pronounced spatial displacements of the South Pacific Convergence Zone known as "zonal SPCZ" events.. Using a global dataset of Lagrangian back trajectories computed with the FLEXPART model for the period 1980-2013, comprehensive analysis of the 3D circulation characteristics associated with the SPCZ is undertaken. Ten days history of along-trajectory specific humidity, potential vorticity and temperature are reconstructed for zonal SPCZ events as well as other states,, with differences related to El Niño intensity and development stage as well as the state of the Western Hemisphere Warm Pool. How zonal events influence precipitation over the Eastern Tropical Pacific is examined using back trajectories, reanalysis, TRMM precipitation, and additional satellite derived cloud information. It is found that SPCZ displacements are associated with enhanced convection over the Eastern Tropical Pacific in good agreement with prior work. The connection between intensification of precipitation over the eastern Tropical Pacific during zonal events and suppression of rainfall over the Maritime continent is also described.

  14. Slow waves moving near the openings in highly stressed conditions

    NASA Astrophysics Data System (ADS)

    Guzev, Michail; Makarov, Vladimir

    2017-04-01

    In situ experiments have shown the unusual deformation waves near the openings on high depth of the construction. Process of the wave spreading is beginning after the mining and has two stages of the zonal mesocracking structure formation and development [1]. Extending in a radial direction, the wave poorly fades with distance. For phenomenon modelling the theoretical decision for non-Eucledian models about opening of round cross-section in strongly compressed rock massif is used [2]. The decision qualitatively repeats behaviour of a wave in a rock mass, adjustment of phenomenological parametres is executed. References [1] Vladimir V. Makarov, Mikhail A. Guzev, Vladimir N. Odintsev, Lyudmila S. Ksendzenko (2016) Periodical zonal character of damage near the openings in highly-stressed rock mass conditions. Journal of Rock Mechanics and Geotechnical Engineering. Volume 8, Issue 2, pp. 164-169. [2] M.A. Guzev, V.V. Makarov, 2007. Deforming and failure of the high stressed rocks around the openings, RAS Edit., Vladivostok, 2007, P. 232 (in Russian).

  15. Multifrequency synthesis and extraction using square wave projection patterns for quantitative tissue imaging

    PubMed Central

    Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.

    2015-01-01

    Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682

  16. Self-Organization of Embryonic Genetic Oscillators into Spatiotemporal Wave Patterns

    PubMed Central

    Tsiairis, Charisios D.; Aulehla, Alexander

    2016-01-01

    Summary In vertebrate embryos, somites, the precursor of vertebrae, form from the presomitic mesoderm (PSM), which is composed of cells displaying signaling oscillations. Cellular oscillatory activity leads to periodic wave patterns in the PSM. Here, we address the origin of such complex wave patterns. We employed an in vitro randomization and real-time imaging strategy to probe for the ability of cells to generate order from disorder. We found that, after randomization, PSM cells self-organized into several miniature emergent PSM structures (ePSM). Our results show an ordered macroscopic spatial arrangement of ePSM with evidence of an intrinsic length scale. Furthermore, cells actively synchronize oscillations in a Notch-signaling-dependent manner, re-establishing wave-like patterns of gene activity. We demonstrate that PSM cells self-organize by tuning oscillation dynamics in response to surrounding cells, leading to collective synchronization with an average frequency. These findings reveal emergent properties within an ensemble of coupled genetic oscillators. PMID:26871631

  17. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  18. WaveOne Rotary Instruments after Clinical Use.

    PubMed

    Shen, Ya; Coil, Jeffrey M; Mo, Anthony John; Wang, Zhejun; Hieawy, Ahmed; Yang, Yan; Haapasalo, Markus

    2016-02-01

    The purpose of this study was to evaluate the incidence and mode of WaveOne (Dentsply Tulsa Dental Specialties, Tulsa, OK) instrument defects after single use at different endodontic clinics. A total of 438 WaveOne instruments were collected after clinical use from the 4 specialist clinics over a 12-month period and from 1 graduate program over a 20-month period. The incidence and type of instrument defects were analyzed. The lateral surfaces of part of the defective instruments and fracture surfaces of fractured files were examined using scanning electron microscopy. Unused and clinically used files were examined by a nanoindentation test. Of the 438 WaveOne instruments collected, 42 (9.6%) had defects: 40 (9.1%) were distorted and 2 (0.5%) files had fractured, 1 Small and 1 Primary file. Clear differences in the frequency of defects were found among the 3 file sizes; the occurrence of distortion and fracture were highest with the Small file (21.2% and 0.7%, respectively) followed by the Primary file (4.4% and 0.4%, respectively) (P < .05). No defects were detected on the Large file. The cause of the 2 fractures was shear stress. Instruments from various clinics showed no significantly different occurrence of instrument deformation. Unwinding occurred at 1.2-3.1 mm from the tip. No significant difference in nanohardness was detected among unused and used instruments. The risk of WaveOne fracture is very low when files are singly used by endodontists and residents. Unwinding of the files occurred most frequently in the Small file. The frequency of defects of WaveOne instruments were not influenced by the operator. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Solitary Wave in One-dimensional Buckyball System at Nanoscale

    PubMed Central

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-01-01

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624

  20. Influence of the sudden stratospheric warming on quasi-2-day waves

    NASA Astrophysics Data System (ADS)

    Gu, Sheng-Yang; Liu, Han-Li; Dou, Xiankang; Li, Tao

    2016-04-01

    The influence of the sudden stratospheric warming (SSW) on a quasi-2-day wave (QTDW) with westward zonal wave number 3 (W3) is investigated using the Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The summer easterly jet below 90 km is strengthened during an SSW, which results in a larger refractive index and thus more favorable conditions for the propagation of W3. In the winter hemisphere, the Eliassen-Palm (EP) flux diagnostics indicate that the strong instabilities at middle and high latitudes in the mesopause region are important for the amplification of W3, which is weakened during SSW periods due to the deceleration or even reversal of the winter westerly winds. Nonlinear interactions between the W3 and the wave number 1 stationary planetary wave produce QTDW with westward zonal wave number 2 (W2). The meridional wind perturbations of the W2 peak in the equatorial region, while the zonal wind and temperature components maximize at middle latitudes. The EP flux diagnostics indicate that the W2 is capable of propagating upward in both winter and summer hemispheres, whereas the propagation of W3 is mostly confined to the summer hemisphere. This characteristic is likely due to the fact that the phase speed of W2 is larger, and therefore its waveguide has a broader latitudinal extension. The larger phase speed also makes W2 less vulnerable to dissipation and critical layer filtering by the background wind when propagating upward.

  1. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  2. The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Niezgoda, K.; Noone, D.; Konecky, B.

    2017-12-01

    Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.

  3. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  4. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    PubMed

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  5. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    PubMed Central

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166

  6. The Role of Monsoon-Like Zonally Asymmetric Heating in Interhemispheric Transport

    NASA Technical Reports Server (NTRS)

    Chen, Gang; Orbe, Clara; Waugh, Darryn

    2017-01-01

    While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer, is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values, but also produces an upper-tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative (GMI) Chemistry Transport Model driven with MERRA meteorological fields. These results highlight the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.

  7. One-dimensional wave propagation in particulate suspensions

    NASA Technical Reports Server (NTRS)

    Rochelle, S. G.; Peddieson, J., Jr.

    1976-01-01

    One-dimensional small-amplitude wave motion in a two-phase system consisting of an inviscid gas and a cloud of suspended particles is analyzed using a continuum theory of suspensions. Laplace transform methods are used to obtain several approximate solutions. Properties of acoustic wave motion in particulate suspensions are inferred from these solutions.

  8. Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng

    2017-11-01

    The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.

  9. Spatiotemporal chaos involving wave instability.

    PubMed

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  10. Spatiotemporal chaos involving wave instability

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  11. Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission

    NASA Technical Reports Server (NTRS)

    Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul; hide

    2017-01-01

    We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.

  12. Equatorial waves in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    Equatorially trapped wave modes are very important in the tropical stratospheric momentum balance. Kelvin waves and mixed Rossby-gravity waves are believed to be responsible for the quasi-biennial oscillation of the zonal winds in the equatorial lower stratosphere. Both Kelvin and mixed Rossby-gravity waves have been identified in observations and in numerical models. Kelvin and mixed Rossby-gravity waves are identified in a general circulation model extending from the surface into the mesosphere and looks at the effect on the waves of lowering the top of the model.

  13. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  14. Equatorial Oscillation and Planetary Wave Activity in Saturn's Stratosphere Through the Cassini Epoch

    NASA Astrophysics Data System (ADS)

    Guerlet, S.; Fouchet, T.; Spiga, A.; Flasar, F. M.; Fletcher, L. N.; Hesman, B. E.; Gorius, N.

    2018-01-01

    Thermal infrared spectra acquired by Cassini/Composite InfraRed Spectrometer (CIRS) in limb-viewing geometry in 2015 are used to derive 2-D latitude-pressure temperature and thermal wind maps. These maps are used to study the vertical structure and evolution of Saturn's equatorial oscillation (SEO), a dynamical phenomenon presenting similarities with the Earth's quasi-biennal oscillation (QBO) and semi-annual oscillation (SAO). We report that a new local wind maximum has appeared in 2015 in the upper stratosphere and derive the descent rates of other wind extrema through time. The phase of the oscillation observed in 2015, as compared to 2005 and 2010, remains consistent with a ˜15 year period. The SEO does not propagate downward at a regular rate but exhibits faster descent rate in the upper stratosphere, combined with a greater vertical wind shear, compared to the lower stratosphere. Within the framework of a QBO-type oscillation, we estimate the absorbed wave momentum flux in the stratosphere to be on the order of ˜7 × 10-6 N m-2. On Earth, interactions between vertically propagating waves (both planetary and mesoscale) and the mean zonal flow drive the QBO and SAO. To broaden our knowledge on waves potentially driving Saturn's equatorial oscillation, we searched for thermal signatures of planetary waves in the tropical stratosphere using CIRS nadir spectra. Temperature anomalies of amplitude 1-4 K and zonal wave numbers 1 to 9 are frequently observed, and an equatorial Rossby (n = 1) wave of zonal wave number 3 is tentatively identified in November 2009.

  15. Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.

  16. Interference patterns in the Spacelab 2 plasma wave data - Oblique electrostatic waves generated by the electron beam

    NASA Technical Reports Server (NTRS)

    Feng, Wei; Gurnett, Donald A.; Cairns, Iver H.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies of 0-30 kHz and at distances up to 400 m from the shuttle. Strong low-frequency (below 10 kHz) electric field noise was observed in the wideband data during two periods in which an electron beam was ejected from the shuttle. This noise shows clear evidence of interference patterns caused by the finite (3.89 m) antenna length. The low-frequency noise was the most dominant type of noise produced by the ejected electron beam. Analysis of antenna interference patterns generated by these waves permits a determination of the wavelength, the direction of propagation, and the location of the source region. The observed waves have a linear dispersion relation very similar to that of ion acoustic waves. The waves are believed to be oblique ion acoustic or high-order ion cyclotron waves generated by a current of ambient electrons returning to the shuttle in response to the ejected electron beam.

  17. On the structure of climate variability near the tropopause and its relationship to equatorial planetary waves

    NASA Astrophysics Data System (ADS)

    Grise, Kevin M.

    The tropopause is an important interface in the climate system, separating the unique dynamical, chemical, and radiative regimes of the troposphere and stratosphere. Previous studies have demonstrated that the long-term mean structure and variability of the tropopause results from a complex interaction of stratospheric and tropospheric processes. This project provides new insight into the processes involved in the global tropopause region through two perspectives: (1) a high vertical resolution climatology of static stability and (2) an observational analysis of equatorial planetary waves. High vertical resolution global positioning system radio occultation profiles are used to document fine-scale features of the global static stability field near the tropopause. Consistent with previous studies, a region of enhanced static stability, known as the tropopause inversion layer (TIL), exists in a narrow layer above the extratropical tropopause and is strongest over polar regions during summer. However, in the tropics, the TIL possesses a unique horizontally and vertically varying structure with maxima located at ˜17 and ˜19 km. The upper feature peaks during boreal winter and has its largest magnitude between 10º and 15º latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The spatial structure of both features resembles the equatorial planetary wave response to the climatological distribution of deep convection. Equatorial planetary waves not only dominate the climatological-mean general circulation near the tropical tropopause but also play an important role in its intraseasonal and interannual variability. The structure of the equatorial planetary waves emerges as the leading pattern of variability of the zonally asymmetric tropical atmospheric circulation. Regressions on an index of the equatorial planetary waves reveal that they are associated with a distinct pattern of equatorially symmetric climate

  18. A study of equatorial wave characteristics using rockets, balloons, lidar and radar

    NASA Astrophysics Data System (ADS)

    Sasi, M. N.; Krishna Murthy, B. V.; Ramkumar, Geetha; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S. V.; Nair, Prabha R.; Krishna Moorthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A. R.; Rao, P. B.; Krishnaiah, M.; Prabhakaran Nayars, S. R.; Revathy, K.; Devanarayanan, S.

    2003-09-01

    A co-ordmated experimental campaign was conducted for 40 consecutive days from 21 February to 01 April 2000 using RH-200 rockets, balloons, Rayleigh lidar and MST radar, with the objective of delineating the equatorial waves and estimating momentum fluxes associated with them. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (˜25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and followed by subsequent generation of short period (˜5 days) oscillations lasting for a few cycles in the stratosphere. Slow and fast Kelvin waves and RG wave (˜-17-day and ˜7.2-day and ˜4.2-day periods respectively) have been identified. The mean flow acceleration produced by the divergence of the momentum flux due to the observed Kelvin waves in the 35-60 km height region were compared with the zonal flow accelerations computed from the observed zonal winds. Contribution by the slow and fast Kelvin waves was found to be only ˜25 % of the observed acceleration during the evolution of the westerly phase of the semi-annual oscillation.

  19. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5

    NASA Astrophysics Data System (ADS)

    Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe

    2014-06-01

    The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context

  20. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  1. Future Effects of Southern Hemisphere Stratospheric Zonal Asymmetries on Climate

    NASA Astrophysics Data System (ADS)

    Stone, K.; Solomon, S.; Kinnison, D. E.; Fyfe, J. C.

    2017-12-01

    Stratospheric zonal asymmetries in the Southern Hemisphere have been shown to have significant influences on both stratospheric and tropospheric dynamics and climate. Accurate representation of stratospheric ozone in particular is important for realistic simulation of the polar vortex strength and temperature trends. This is therefore also important for stratospheric ozone change's effect on the troposphere, both through modulation of the Southern Annular Mode (SAM), and more localized climate. Here, we characterization the impact of future changes in Southern Hemisphere zonal asymmetry on tropospheric climate, including changes to future tropospheric temperature, and precipitation. The separate impacts of increasing GHGs and ozone recovery on the zonal asymmetric influence on the surface are also investigated. For this purpose, we use a variety of models, including Chemistry Climate Model Initiative simulations from the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) and the Australian Community Climate and Earth System Simulator-Chemistry Climate Model (ACCESS-CCM). These models have interactive chemistry and can therefore more accurately represent the zonally asymmetric nature of the stratosphere. The CESM1(WACCM) and ACCESS-CCM models are also compared to simulations from the Canadian Can2ESM model and CESM-Large Ensemble Project (LENS) that have prescribed ozone to further investigate the importance of simulating stratospheric zonal asymmetry.

  2. Different Brain Wave Patterns and Cortical Control Abilities in Relation to Different Creative Potentials

    ERIC Educational Resources Information Center

    Li, Ying-Han; Tseng, Chao-Yuan; Tsai, Arthur Chih-Hsin; Huang, Andrew Chih-Wei; Lin, Wei-Lun

    2016-01-01

    Contemporary understanding of brain functions provides a way to probe into the mystery of creativity. However, the prior evidence regarding the relationship between creativity and brain wave patterns reveals inconsistent conclusions. One possible reason might be that the means of selecting creative individuals in the past has varied in each study.…

  3. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  4. Calcium spikes, waves and oscillations in a large, patterned epithelial tissue

    PubMed Central

    Balaji, Ramya; Bielmeier, Christina; Harz, Hartmann; Bates, Jack; Stadler, Cornelia; Hildebrand, Alexander; Classen, Anne-Kathrin

    2017-01-01

    While calcium signaling in excitable cells, such as muscle or neurons, is extensively characterized, calcium signaling in epithelial tissues is little understood. Specifically, the range of intercellular calcium signaling patterns elicited by tightly coupled epithelial cells and their function in the regulation of epithelial characteristics are little explored. We found that in Drosophila imaginal discs, a widely studied epithelial model organ, complex spatiotemporal calcium dynamics occur. We describe patterns that include intercellular waves traversing large tissue domains in striking oscillatory patterns as well as spikes confined to local domains of neighboring cells. The spatiotemporal characteristics of intercellular waves and oscillations arise as emergent properties of calcium mobilization within a sheet of gap-junction coupled cells and are influenced by cell size and environmental history. While the in vivo function of spikes, waves and oscillations requires further characterization, our genetic experiments suggest that core calcium signaling components guide actomyosin organization. Our study thus suggests a possible role for calcium signaling in epithelia but importantly, introduces a model epithelium enabling the dissection of cellular mechanisms supporting the initiation, transmission and regeneration of long-range intercellular calcium waves and the emergence of oscillations in a highly coupled multicellular sheet. PMID:28218282

  5. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  6. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  7. Estimation of the Kelvin wave contribution to the semiannual oscillation

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Leovy, Conway B.

    1988-01-01

    Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.

  8. Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Becker, Erich; Vadas, Sharon L.

    2018-03-01

    This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.

  9. Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residuala)

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Catto, Peter J.; Dorland, William

    2007-05-01

    Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless [M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 (1998)] and collisional [F. Hinton and M. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999)] banana regime plasmas. Recent zonal flow advances are summarized including the evaluation of the effects on the zonal flow residual by plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius, and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief summary of these new developments, the analytic results are compared with GS2 numerical simulations [M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128 (1991)] to demonstrate their value as benchmarks for turbulence codes.

  10. Nongeostrophic theory of zonally averaged circulation. I - Formulation

    NASA Technical Reports Server (NTRS)

    Tung, Ka Kit

    1986-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.

  11. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  12. Stationary waves and slowly moving features in the night upper clouds of Venus

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Hueso, R.; Sánchez-Lavega, A.; Lee, Y. J.; Muñoz, A. García; Kouyama, T.; Sagawa, H.; Sato, T. M.; Piccioni, G.; Tellmann, S.; Imamura, T.; Satoh, T.

    2017-08-01

    At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface—a phenomenon known as superrotation1,2. Whereas on Venus's dayside the cloud top motions are well determined3,4,5,6 and Venus general circulation models predict the mean zonal flow at the upper clouds to be similar on both the day and nightside2, the nightside circulation remains poorly studied except for the polar region7,8. Here, we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 μm obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer-Mapper onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager at the National Aeronautics and Space Administration Infrared Telescope Facility. The zonal motions range from -110 to -60 m s-1, which is consistent with those found for the dayside but with larger dispersion6. Slow motions (-50 to -20 m s-1) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s-1 dominate the night upper clouds and concentrate over the regions of higher surface elevation.

  13. Zones, spots, and planetary-scale waves beating in brown dwarf atmospheres.

    PubMed

    Apai, D; Karalidi, T; Marley, M S; Yang, H; Flateau, D; Metchev, S; Cowan, N B; Buenzli, E; Burgasser, A J; Radigan, J; Artigau, E; Lowrance, P

    2017-08-18

    Brown dwarfs are massive analogs of extrasolar giant planets and may host types of atmospheric circulation not seen in the solar system. We analyzed a long-term Spitzer Space Telescope infrared monitoring campaign of brown dwarfs to constrain cloud cover variations over a total of 192 rotations. The infrared brightness evolution is dominated by beat patterns caused by planetary-scale wave pairs and by a small number of bright spots. The beating waves have similar amplitudes but slightly different apparent periods because of differing velocities or directions. The power spectrum of intermediate-temperature brown dwarfs resembles that of Neptune, indicating the presence of zonal temperature and wind speed variations. Our findings explain three previously puzzling behaviors seen in brown dwarf brightness variations. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Jupiters North Equatorial Belt Expansion and Thermal Wave Activity Ahead of Junos Arrival.

    NASA Technical Reports Server (NTRS)

    Fletcher, L. N.; Orton, G. S.; Sinclair, J. A.; Donnelly, P.; Melin, H.; Rogers, J. H.; Greathouse, T. K.; Kasaba, Y.; Fujiyoshi, T.; Sato, T. M.; hide

    2017-01-01

    The dark colors of Jupiter's North Equatorial Belt (NEB, 7-17degN) appeared to expand northward into the neighboring one in 2015, consistent with a 35 year cycle. Inversions of thermal-IR imaging from the Very Large Telescope revealed a moderate warming and reduction of aerosol opacity at the cloud tops at 17-20degN, suggesting subsidence and drying in the expanded sector. Two new thermal waves were identified during this period: (i) an upper tropospheric thermal wave (wave number 16-17, amplitude 2.5 K at 170 mbar) in the mid-NEB that was anticorrelated with haze reflectivity; and (ii) a stratospheric wave (wave number 13-14, amplitude 7.3 K at 5 mbar) at 20-30degN. Both were quasi-stationary, confined to regions of eastward zonal flow, and are morphologically similar to waves observed during previous expansion events.

  15. Zonal-flow dynamics from a phase-space perspective

    NASA Astrophysics Data System (ADS)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; Dodin, I. Y.

    2017-10-01

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. However, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics (GO) limit. Here we present a new theory that captures both of these effects, while still treating DW quanta (``driftons'') as particles in phase space. In this theory, the drifton dynamics is described by an equation of the Wigner-Moyal type, which is analogous to the phase-space formulation of quantum mechanics. The ``Hamiltonian'' and the ``dissipative'' parts of the DW-ZF interactions are clearly identified. Moreover, this theory can be interpreted as a phase-space representation of the second-order cumulant expansion (CE2). In the GO limit, this formulation features additional terms missing in the traditional WKE that ensure conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the traditional WKE. Numerical simulations are presented to illustrate the importance of these additional terms. Supported by the U.S. DOE through Contract Nos. DE-AC02-09CH11466 and DE-AC52-07NA27344, by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  16. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells

    NASA Astrophysics Data System (ADS)

    Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.

    2006-07-01

    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.

  17. The Influence of Planetary Waves on Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    France, J. A.; Randall, C. E.; Harvey, L.; Siskind, D. E.; Lumpe, J. D.; Bailey, S. M.; Carstens, J. N.; Russell, J. M., III

    2016-12-01

    Polar mesospheric clouds (PMCs) form as a result of low temperatures and enhanced water vapor near the polar summer mesospause. These conditions occur as a result of upwelling associated with the upper branch of the gravity wave-driven global residual circulation, and are sensitive to changes in planetary wave breaking in the winter hemisphere through interhemispheric coupling (IHC). Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite show an anomalous decline in northern hemisphere PMCs in August 2014. The decline is attributed to IHC triggered by planetary wave activity in the Antarctic stratosphere. The results indicate that the IHC in 2014 occurred via a pathway that previous studies have not emphasized. Based on Aura Microwave Limb Sounder data, we suggest that shifts in zonal winds in the summer stratosphere triggered a circulation change that led to the observed PMC decline. We also show that the 5-day planetary wave modulates the response to IHC, in that PMCs persist in the trough when zonal mean temperatures are too high to support PMCs, and are absent in the ridge when mean temperatures are low enough to support PMCs.

  18. Deep Zonal Flow and Time Variation of Jupiter’s Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2017-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will advect the non-axisymmetric component of the magnetic field, at depth with even modest electrical conductivity, and create time variations in the magnetic field.The observed time variations of the geomagnetic field has been used to derive surface flows of the Earth’s outer core. The same principle applies to Jupiter, however, the connection between the time variation of the magnetic field (dB/dt) and deep zonal flow (Uphi) at Jupiter is not well understood due to strong radial variation of electrical conductivity. Here we perform a quantitative analysis of the connection between dB/dt and Uphi for Jupiter adopting realistic interior electrical conductivity profile, taking the likely presence of alkali metals into account. This provides a tool to translate expected measurement of the time variation of Jupiter’s magnetic field to deep zonal flows. We show that the current upper limit on the dipole drift rate of Jupiter (3 degrees per 20 years) is compatible with 10 m/s zonal flows with < 500 km vertical scale height below 0.972 Rj. We further demonstrate that fast drift of resolved magnetic features (e.g. magnetic spots) at Jupiter is a possibility.

  19. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.

  20. Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide

    DTIC Science & Technology

    2011-07-15

    sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to

  1. HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.

    1999-01-01

    Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.

  2. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    PubMed

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  3. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    PubMed Central

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  4. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular

  5. The Network Spinal Wave as a Central Pattern Generator.

    PubMed

    Senzon, Simon A; Epstein, Donald M; Lemberger, Daniel

    2016-07-01

    This article explains the research on a unique spinal wave visibly observed in association with network spinal analysis care. Since 1997, the network wave has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. The authors provide a narrative review of the research and a context for the network wave's development. The sEMG research demonstrates that the movement of the musculature of the spine during the wave phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the wave has the mathematical properties of a central pattern generator (CPG). The network wave may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the wave itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development.

  6. Quasi-biennial oscillation and tropical waves in total ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations with Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.

  7. Computer-aided diagnosis of splenic enlargement using wave pattern of spleen in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong Won

    2006-03-01

    It is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We have examined a wave pattern at the left boundary of spleen on the abdominal CT images having liver cirrhosis, and found that they are different from those on the images having a normal liver. It is noticed that the abdominal CT images of patient with liver cirrhosis shows strong bending in the wave pattern. In the case of normal liver, the images may also have a wave pattern, but its bends are not strong. Therefore, the total waving area of the spleen with liver cirrhosis is found to be greater than that of the spleen with a normal liver. Moreover, we found that the waves of the spleen from the image with liver cirrhosis have the higher degree of circularity compared to the normal liver case. Based on the two observations above, we propose an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images. The proposed automatic method improves the diagnostic performance compared with the conventional process based on the size of spleen.

  8. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values

    NASA Astrophysics Data System (ADS)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Riese, Martin

    2016-10-01

    Based on simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) for the period 1979-2013, with model transport driven by the ECMWF ERA-Interim reanalysis, we discuss the impact of the El Niño Southern Oscillation (ENSO) on the variability of the dynamics, water vapor, ozone, and mean age of air (AoA) in the tropical lower stratosphere during boreal winter. Our zonally resolved analysis at the 390 K potential temperature level reveals that not only (deseasonalized) ENSO-related temperature anomalies are confined to the tropical Pacific (180-300°E) but also anomalous wave propagation and breaking, as quantified in terms of the Eliassen-Palm (EP) flux divergence, with strongest local contribution during the La Niña phase. This anomaly is coherent with respective anomalies of water vapor (±0.5 ppmv) and ozone (±100 ppbv) derived from CLaMS being in excellent agreement with the Aura Microwave Limb Sounder observations. Thus, during El Niño a more zonally symmetric wave forcing drives a deep branch of the Brewer-Dobson (BD) circulation. During La Niña this forcing increases at lower levels (≈390 K) over the tropical Pacific, likely influencing the shallow branch of the BD circulation. In agreement with previous studies, wet (dry) and young (old) tape recorder anomalies propagate upward in the subsequent months following El Niño (La Niña). Using CLaMS, these anomalies are found to be around +0.3 (-0.2) ppmv and -4 (+4) months for water vapor and AoA, respectively. The AoA ENSO anomaly is more strongly affected by the residual circulation (≈2/3) than by eddy mixing (≈1/3).

  9. Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals

    PubMed Central

    Hisano, Kyohei; Aizawa, Miho; Ishizu, Masaki; Kurata, Yosuke; Nakano, Wataru; Akamatsu, Norihisa; Barrett, Christopher J.; Shishido, Atsushi

    2017-01-01

    Hierarchical control of two-dimensional (2D) molecular alignment patterns over large areas is essential for designing high-functional organic materials and devices. However, even by the most powerful current methods, dye molecules that discolor and destabilize the materials need to be doped in, complicating the process. We present a dye-free alignment patterning technique, based on a scanning wave photopolymerization (SWaP) concept, that achieves a spatial light–triggered mass flow to direct molecular order using scanning light to propagate the wavefront. This enables one to generate macroscopic, arbitrary 2D alignment patterns in a wide variety of optically transparent polymer films from various polymerizable mesogens with sufficiently high birefringence (>0.1) merely by single-step photopolymerization, without alignment layers or polarized light sources. A set of 150,000 arrays of a radial alignment pattern with a size of 27.4 μm × 27.4 μm were successfully inscribed by SWaP, in which each individual pattern is smaller by a factor of 104 than that achievable by conventional photoalignment methods. This dye-free inscription of microscopic, complex alignment patterns over large areas provides a new pathway for designing higher-performance optical and mechanical devices. PMID:29152567

  10. Changes in the zonal mean flow, temperature, and planetary waves observed in the Northern Hemisphere mid-winter months during the last decades

    NASA Astrophysics Data System (ADS)

    Rakushina, E. V.; Ermakova, T. S.; Pogoreltsev, A. I.

    2018-06-01

    Four sets of data: the UK Met Office, Modern Era Retrospective-analysis for Research and Applications (MERRA), Japanese 55-year Reanalysis data (JRA-55), and ERA-Interim data (ERA) have been used to estimate the climatic variability of the zonal mean flow, temperature, and Stationary Planetary Waves (SPW1, SPW2) from the troposphere up to the lower mesosphere levels. The composites of the meteorological fields during mid-winter month have been averaged over the first (1995-2005) and second (2006-2016) 11 years intervals and have been compared mainly paying attention to interannual and intraseasonal variability. Results show that changes in the mean fields and SPW2 are weaker and statistical significance of these changes is lower in comparison with the changes observed in the intraseasonal variability of these characteristics. All data sets demonstrate a decrease of SPW1 amplitude at the higher-middle latitudes in the lower stratosphere and opposite effect in the upper stratosphere. However, there is an increase of the intraseasonal variability for all meteorological parameters and this rise is statistically significant. The results obtained show that UK Met Office data demonstrate stronger changes and increase of the intraseasonal variability in comparison with other data sets.

  11. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    PubMed

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  12. Predicting spiral wave patterns from cell properties in a model of biological self-organization

    NASA Astrophysics Data System (ADS)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  13. Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments.

    PubMed

    McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe

    2007-04-01

    Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.

  14. WINDII airglow observations of wave superposition and the possible association with historical "bright nights"

    NASA Astrophysics Data System (ADS)

    Shepherd, G. G.; Cho, Y.-M.

    2017-07-01

    Longitudinal variations of airglow emission rate are prominent in all midlatitude nighttime O(1S) lower thermospheric data obtained with the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS). The pattern generally appears as a combination of zonal waves 1, 2, 3, and 4 whose phases propagate at different rates. Sudden localized enhancements of 2 to 4 days duration are sometimes evident, reaching vertically integrated emission rates of 400 R, a factor of 10 higher than minimum values for the same day. These are found to occur when the four wave components come into the same phase at one longitude. It is shown that these highly localized longitudinal maxima are consistent with the historical phenomena known as "bright nights" in which the surroundings of human dark night observers were seen to be illuminated by this enhanced airglow.Plain Language SummaryFor centuries, going back to the Roman era, people have recorded experiences of brightened skies during the night, called "bright nights." Currently, scientists study airglow, an emission of light from the high atmosphere, 100 km above us. Satellite observations of a green airglow have shown that it consists of <span class="hlt">waves</span> 1, 2, 3, and 4 around the earth. It happens that when the peaks of the different <span class="hlt">waves</span> coincide there is an airglow brightening, and this article demonstrates that this event produces a bright night. The modern data are shown to be entirely consistent with the historical observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870050640&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dplanetary%2Bmotion"><span>Effects of eddy initial conditions on nonlinear forcing of planetary scale <span class="hlt">waves</span> by amplifying baroclinic eddies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Richard E.</p> <p>1986-01-01</p> <p>The previous study of Young and Villere concerning growth of planetary scale <span class="hlt">waves</span> forced by <span class="hlt">wave-wave</span> interactions of amplifying intermediate scale baroclinic eddies is extended to investigate effects of different eddy initial conditions. A global, spectral, primitive equation model is used for the calculations. For every set of eddy initial conditions considered, growth rates of planetary modes are considerably greater than growth rates computed from linear instability theory for a fixed <span class="hlt">zonally</span> independent basic state. However, values of growth rates ranged over a factor of 3 depending on the particular set of eddy initial conditions used. Nonlinear forcing of planetary modes via <span class="hlt">wave-wave</span> coupling becomes more important than baroclinic growth on the basic state at small values of the intermediate-scale modal amplitudes. The relative importance of direct transfer of kinetic energy from intermediate scales of motion to a planetary mode, compared to baroclinic conversion of available potential energy to kinetic energy within that planetary mode, depends on the individual case. In all cases, however, the transfer of either kinetic or available potential energy to the planetary modes was accomplished principally by <span class="hlt">wave-wave</span> transfer from intermediate scale eddies, rather than from the <span class="hlt">zonally</span> averaged state. The <span class="hlt">zonal</span> wavenumber 2 planetary mode was prominent in all solutions, even in those for which eddy initial conditions were such that a different planetary mode was selectively forced at the start. General characteristics of the structural evolution of the planetary <span class="hlt">wave</span> components of total heat and momentum flux, and modal structures themselves, were relatively insensitive to variations in eddy initial conditions, even though quantitative details varied from case to case.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20895130-comparison-analytical-models-zonal-flow-generation-ion-temperature-gradient-mode-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20895130-comparison-analytical-models-zonal-flow-generation-ion-temperature-gradient-mode-turbulence"><span>Comparison of analytical models for <span class="hlt">zonal</span> flow generation in ion-temperature-gradient mode turbulence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anderson, J.; Miki, K.; Uzawa, K.</p> <p>2006-11-30</p> <p>During the past years the understanding of the multi scale interaction problems have increased significantly. However, at present there exists a flora of different analytical models for investigating multi scale interactions and hardly any specific comparisons have been performed among these models. In this work two different models for the generation of <span class="hlt">zonal</span> flows from ion-temperature-gradient (ITG) background turbulence are discussed and compared. The methods used are the coherent mode coupling model and the <span class="hlt">wave</span> kinetic equation model (WKE). It is shown that the two models give qualitatively the same results even though the assumption on the spectral difference ismore » used in the (WKE) approach.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24778509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24778509"><span>Comparative evaluation of the canal curvature modifications after instrumentation with <span class="hlt">One</span> Shape rotary and <span class="hlt">Wave</span> <span class="hlt">One</span> reciprocating files.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dhingra, Anil; Kochar, Rohit; Banerjee, Satyabrat; Srivastava, Punit</p> <p>2014-03-01</p> <p>This study compared the canal curvature modifications after instrumentation with <span class="hlt">One</span> Shape (Micro Mega) rotary file and <span class="hlt">Wave</span> <span class="hlt">One</span> primary reciprocating file (Dentsply Maillefer, Ballaigues, Switzerland). Thirty International Organization for Standardization 15, 0.02 taper, Endo Training Blocks (Dentsply Maillefer) were used. In all specimens working length (WL) was established at the reference point 0. Glide path was achieved with Path-File 1, 2 and 3 (Dentsply Maillefer) at the WL. Group 1 were shaped with <span class="hlt">One</span> Shape file and group 2 with <span class="hlt">Wave</span> <span class="hlt">One</span> files. Pre and post-digital images were superimposed, processed with Corel draw Graphic Suite X5 (Corel Corporation, Ottawa, Canada), Adobe Photoshop CS3 (Adobe Systems Inc., San Jose, CA) and Solid works student Edition software (Dassault Systems Solid Works Corp, S.A., Velizy, France). Mean was more for <span class="hlt">Wave</span> <span class="hlt">One</span> compared with <span class="hlt">One</span> Shape. <span class="hlt">One</span>-way ANOVA and t-test showed a significant difference between <span class="hlt">One</span> Shape and <span class="hlt">Wave</span> <span class="hlt">One</span> at 5% level of significance (P < 0.05). Canals prepared with <span class="hlt">Wave</span> <span class="hlt">One</span> file preserved canal shape, respected the anatomical shape of J-shaped canal and produced a continuously tapered funnel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JKPS...67.1755Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JKPS...67.1755Y"><span>Revisiting the difference between traveling-<span class="hlt">wave</span> and standing-<span class="hlt">wave</span> thermoacoustic engines - A simple analytical model for the standing-<span class="hlt">wave</span> <span class="hlt">one</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasui, Kyuichi; Kozuka, Teruyuki; Yasuoka, Masaki; Kato, Kazumi</p> <p>2015-11-01</p> <p>There are two major categories in a thermoacoustic prime-mover. <span class="hlt">One</span> is the traveling-<span class="hlt">wave</span> type and the other is the standing-<span class="hlt">wave</span> type. A simple analytical model of a standing-<span class="hlt">wave</span> thermoacoustic prime-mover is proposed at relatively low heat-flux for a stack much shorter than the acoustic wavelength, which approximately describes the Brayton cycle. Numerical simulations of Rott's equations have revealed that the work flow (acoustic power) increases by increasing of the amplitude of the particle velocity (| U|) for the traveling-<span class="hlt">wave</span> type and by increasing cosΦ for the standing-<span class="hlt">wave</span> type, where Φ is the phase difference between the particle velocity and the acoustic pressure. In other words, the standing-<span class="hlt">wave</span> type is a phase-dominant type while the traveling-<span class="hlt">wave</span> type is an amplitude-dominant <span class="hlt">one</span>. The ratio of the absolute value of the traveling-<span class="hlt">wave</span> component (| U|cosΦ) to that of the standing-<span class="hlt">wave</span> component (| U|sinΦ) of any thermoacoustic engine roughly equals the ratio of the absolute value of the increasing rate of | U| to that of cosΦ. The different mechanism between the traveling-<span class="hlt">wave</span> and the standing-<span class="hlt">wave</span> type is discussed regarding the dependence of the energy efficiency on the acoustic impedance of a stack as well as that on ωτα, where ω is the angular frequency of an acoustic <span class="hlt">wave</span> and τα is the thermal relaxation time. While the energy efficiency of the traveling-<span class="hlt">wave</span> type at the optimal ωτα is much higher than that of the standing-<span class="hlt">wave</span> type, the energy efficiency of the standing-<span class="hlt">wave</span> type is higher than that of the traveling-<span class="hlt">wave</span> type at much higher ωτα under a fixed temperature difference between the cold and the hot ends of the stack.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22167115-gravoturbulent-planetesimal-formation-positive-effect-long-lived-zonal-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22167115-gravoturbulent-planetesimal-formation-positive-effect-long-lived-zonal-flows"><span>GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED <span class="hlt">ZONAL</span> FLOWS</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de</p> <p>2013-02-15</p> <p>Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These <span class="hlt">zonal</span> flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of <span class="hlt">zonal</span> flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of <span class="hlt">zonal</span> flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that <span class="hlt">zonal</span> flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of <span class="hlt">zonal</span> flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRA..115.0F05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRA..115.0F05A"><span>Diffusion by <span class="hlt">one</span> <span class="hlt">wave</span> and by many <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albert, J. M.</p> <p>2010-03-01</p> <p>Radiation belt electrons and chorus <span class="hlt">waves</span> are an outstanding instance of the important role cyclotron resonant <span class="hlt">wave</span>-particle interactions play in the magnetosphere. Chorus <span class="hlt">waves</span> are particularly complex, often occurring with large amplitude, narrowband but drifting frequency and fine structure. Nevertheless, modeling their effect on radiation belt electrons with bounce-averaged broadband quasi-linear theory seems to yield reasonable results. It is known that coherent interactions with monochromatic <span class="hlt">waves</span> can cause particle diffusion, as well as radically different phase bunching and phase trapping behavior. Here the two formulations of diffusion, while conceptually different, are shown to give identical diffusion coefficients, in the narrowband limit of quasi-linear theory. It is further shown that suitably averaging the monochromatic diffusion coefficients over frequency and <span class="hlt">wave</span> normal angle parameters reproduces the full broadband quasi-linear results. This may account for the rather surprising success of quasi-linear theory in modeling radiation belt electrons undergoing diffusion by chorus <span class="hlt">waves</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4939370','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4939370"><span>The Network Spinal <span class="hlt">Wave</span> as a Central <span class="hlt">Pattern</span> Generator</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Epstein, Donald M.; Lemberger, Daniel</p> <p>2016-01-01</p> <p>Abstract Objectives: This article explains the research on a unique spinal <span class="hlt">wave</span> visibly observed in association with network spinal analysis care. Since 1997, the network <span class="hlt">wave</span> has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. Methods: The authors provide a narrative review of the research and a context for the network <span class="hlt">wave</span>'s development. Results: The sEMG research demonstrates that the movement of the musculature of the spine during the <span class="hlt">wave</span> phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the <span class="hlt">wave</span> has the mathematical properties of a central <span class="hlt">pattern</span> generator (CPG). Conclusions: The network <span class="hlt">wave</span> may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the <span class="hlt">wave</span> itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development. PMID:27243963</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP..94...19Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP..94...19Y"><span>On the fast <span class="hlt">zonal</span> transport of the STS-121 space shuttle exhaust plume in the lower thermosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yue, Jia; Liu, Han-Li; Meier, R. R.; Chang, Loren; Gu, Sheng-Yang; Russell, James, III</p> <p>2013-03-01</p> <p>Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman α images by the GUVI instrument onboard the TIMED satellite. In order to study the mechanism of the rapid <span class="hlt">zonal</span> transport, diagnostic tracer calculations are performed using winds from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulation of July, 2006. It is found that the strong eastward jet at heights of 100-110 km, where the exhaust plume was deposited, results in a persistent eastward tracer motion with an average velocity of 45 m/s. This is generally consistent with, though faster than, the prevailing eastward shuttle plume movement with daily mean velocity of 30 m/s deduced from the STS-121 GUVI observation. The quasi-two-day <span class="hlt">wave</span> (QTDW) was not included in the numerical simulation because it was found not to be large. Its absence, however, might be partially responsible for insufficient meridional transport to move the tracers away from the fast jet in the simulation. The current study and our model results from Yue and Liu (2010) explain two very different shuttle plume transport scenarios (STS-121 and STS-107 (launch: January 16, 2003), respectively): we conclude that lower thermospheric dynamics is sufficient to account for both very fast <span class="hlt">zonal</span> motion (<span class="hlt">zonal</span> jet in the case of STS-121) and very fast meridional motion to polar regions (large QTDW in the case of STS-107).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/409881','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/409881"><span>Two- and three-dimensional natural and mixed convection simulation using modular <span class="hlt">zonal</span> models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wurtz, E.; Nataf, J.M.; Winkelmann, F.</p> <p></p> <p>We demonstrate the use of the <span class="hlt">zonal</span> model approach, which is a simplified method for calculating natural and mixed convection in rooms. <span class="hlt">Zonal</span> models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the <span class="hlt">zonal</span> approach and its modular implementation are discussed. The <span class="hlt">zonal</span> model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PApGe.160..509W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PApGe.160..509W"><span><span class="hlt">Wave</span> Propagation, Scattering and Imaging Using Dual-domain <span class="hlt">One</span>-way and <span class="hlt">One</span>-return Propagators</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, R.-S.</p> <p></p> <p>- Dual-domain <span class="hlt">one</span>-way propagators implement <span class="hlt">wave</span> propagation in heterogeneous media in mixed domains (space-wavenumber domains). <span class="hlt">One</span>-way propagators neglect <span class="hlt">wave</span> reverberations between heterogeneities but correctly handle the forward multiple-scattering including focusing/defocusing, diffraction, refraction and interference of <span class="hlt">waves</span>. The algorithm shuttles between space-domain and wavenumber-domain using FFT, and the operations in the two domains are self-adaptive to the complexity of the media. The method makes the best use of the operations in each domain, resulting in efficient and accurate propagators. Due to recent progress, new versions of dual-domain methods overcame some limitations of the classical dual-domain methods (phase-screen or split-step Fourier methods) and can propagate large-angle <span class="hlt">waves</span> quite accurately in media with strong velocity contrasts. These methods can deliver superior image quality (high resolution/high fidelity) for complex subsurface structures. <span class="hlt">One</span>-way and <span class="hlt">one</span>-return (De Wolf approximation) propagators can be also applied to <span class="hlt">wave</span>-field modeling and simulations for some geophysical problems. In the article, a historical review and theoretical analysis of the Born, Rytov, and De Wolf approximations are given. A review on classical phase-screen or split-step Fourier methods is also given, followed by a summary and analysis of the new dual-domain propagators. The applications of the new propagators to seismic imaging and modeling are reviewed with several examples. For seismic imaging, the advantages and limitations of the traditional Kirchhoff migration and time-space domain finite-difference migration, when applied to 3-D complicated structures, are first analyzed. Then the special features, and applications of the new dual-domain methods are presented. Three versions of GSP (generalized screen propagators), the hybrid pseudo-screen, the wide-angle Padé-screen, and the higher-order generalized screen propagators are discussed. Recent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850041586&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850041586&hterms=wind+monitor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dwind%2Bmonitor"><span>An overview of <span class="hlt">wave</span>-mean flow interactions during the winter of 1978-79 derived from LIMS observations. [Limb Infrared Monitor of Stratosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gille, J. C.; Lyjak, L. V.</p> <p>1984-01-01</p> <p>Gradient winds, Eliassen-Palm (EP) fluxes and flux divergences, and the squared refractive index for planetary <span class="hlt">waves</span> have been calculated from mapped data from the Limb Infrared Monitor of the Stratosphere (LIMS) experiment on Nimbus 7. The changes in the <span class="hlt">zonal</span> mean atmospheric state, from early winter through 3 disturbances, is described. Convergence or divergence of the EP fluxes clearly produces changes in the <span class="hlt">zonal</span> mean wind. The steering of the <span class="hlt">waves</span> by the refractive index structure is not as clear on a daily basis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2940053','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2940053"><span>Transmural Ultrasound-based Visualization of <span class="hlt">Patterns</span> of Action Potential <span class="hlt">Wave</span> Propagation in Cardiac Tissue</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luther, Stefan; Singh, Rupinder; Gilmour, Robert F.</p> <p>2010-01-01</p> <p>The <span class="hlt">pattern</span> of action potential propagation during various tachyarrhythmias is strongly suspected to be composed of multiple re-entrant <span class="hlt">waves</span>, but has never been imaged in detail deep within myocardial tissue. An understanding of the nature and dynamics of these <span class="hlt">waves</span> is important in the development of appropriate electrical or pharmacological treatments for these pathological conditions. We propose a new imaging modality that uses ultrasound to visualize the <span class="hlt">patterns</span> of propagation of these <span class="hlt">waves</span> through the mechanical deformations they induce. The new method would have the distinct advantage of being able to visualize these <span class="hlt">waves</span> deep within cardiac tissue. In this article, we describe <span class="hlt">one</span> step that would be necessary in this imaging process—the conversion of these deformations into the action potential induced active stresses that produced them. We demonstrate that, because the active stress induced by an action potential is, to a good approximation, only nonzero along the local fiber direction, the problem in our case is actually overdetermined, allowing us to obtain a complete solution. Use of two- rather than three-dimensional displacement data, noise in these displacements, and/or errors in the measurements of the fiber orientations all produce substantial but acceptable errors in the solution. We conclude that the reconstruction of action potential-induced active stress from the deformation it causes appears possible, and that, therefore, the path is open to the development of the new imaging modality. PMID:20499183</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPTM9001C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPTM9001C"><span>Simulations of Tokamak Edge Turbulence Including Self-Consistent <span class="hlt">Zonal</span> Flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Bruce; Umansky, Maxim</p> <p>2013-10-01</p> <p>Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent <span class="hlt">zonal</span> flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (<span class="hlt">zonal</span> flow generation). We present simulations with/without <span class="hlt">zonal</span> flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent <span class="hlt">zonal</span> flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/45820-quasi-biennial-oscillation-tropical-waves-total-ozone','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/45820-quasi-biennial-oscillation-tropical-waves-total-ozone"><span>Quasi-biennial oscillation and tropical <span class="hlt">waves</span> in total ozone</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ziemke, J.R.; Stanford, J.L.</p> <p>1994-11-01</p> <p>Westward and eastward propagating tropical <span class="hlt">waves</span> in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) <span class="hlt">zonal</span> winds and the fast (periods less than 15 days) propagating <span class="hlt">waves</span> in tropical TOMS data is detailed. Largest total ozone <span class="hlt">wave</span> amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations withmore » Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin <span class="hlt">waves</span> of <span class="hlt">zonal</span> wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin <span class="hlt">waves</span>. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward <span class="hlt">waves</span>. However, in contrast to the case of eastward (Kelvin) <span class="hlt">waves</span> the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby <span class="hlt">waves</span> 2-6. The events exhibit phase and group speeds characteristic of <span class="hlt">wave</span> dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870013499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870013499"><span>Conservative <span class="hlt">zonal</span> schemes for patched grids in 2 and 3 dimensions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hessenius, Kristin A.</p> <p>1987-01-01</p> <p>The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A <span class="hlt">zonal</span> approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a <span class="hlt">zonal</span> scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the <span class="hlt">zonal</span> borders.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170004367&hterms=Qbo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170004367&hterms=Qbo&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DQbo"><span>QBO Modulation of the Mesopause Gravity <span class="hlt">Wave</span> Momentum Flux over Tierra del Fuego</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.</p> <p>2016-01-01</p> <p>The interannual variability of the mesosphere and lower thermosphere (MLT) gravity <span class="hlt">wave</span> momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of <span class="hlt">zonal</span> as well as meridional momentum. The QBO signal is largest in the <span class="hlt">zonal</span> component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity <span class="hlt">wave</span> forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity <span class="hlt">wave</span> forcing anomalies as hypothesized in the interhemispheric coupling mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPSJ...85i4801S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPSJ...85i4801S"><span>Aggregation Dynamics Using Phase <span class="hlt">Wave</span> Signals and Branching <span class="hlt">Patterns</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakaguchi, Hidetsugu; Kusagaki, Takuma</p> <p>2016-09-01</p> <p>The aggregation dynamics of slime mold is studied using coupled equations of phase ϕ and cell concentration n. Phase <span class="hlt">waves</span> work as tactic signals for aggregation. Branching structures appear during the aggregation. A stationary branching <span class="hlt">pattern</span> appears like a river network, if cells are uniformly supplied into the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27755372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27755372"><span>ULTRA-WIDE-FIELD FUNDUS AUTOFLUORESCENCE FINDINGS IN PATIENTS WITH ACUTE <span class="hlt">ZONAL</span> OCCULT OUTER RETINOPATHY.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe</p> <p>2017-06-01</p> <p>To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute <span class="hlt">zonal</span> occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 <span class="hlt">patterns</span> of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute <span class="hlt">zonal</span> occult outer retinopathy patients.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRA..119.8137L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRA..119.8137L"><span>On an energy-latitude dispersion <span class="hlt">pattern</span> of ion precipitation potentially associated with magnetospheric EMIC <span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun; Donovan, E.; Ni, B.; Yue, C.; Jiang, F.; Angelopoulos, V.</p> <p>2014-10-01</p> <p>Ion precipitation mechanisms are usually energy dependent and contingent upon magnetospheric/ionospheric locations. Therefore, the <span class="hlt">pattern</span> of energy-latitude dependence of ion precipitation boundaries seen by low Earth orbit satellites can be implicative of the mechanism(s) underlying the precipitation. The pitch angle scattering of ions led by the field line curvature, a well-recognized mechanism of ion precipitation in the central plasma sheet (CPS), leads to <span class="hlt">one</span> common <span class="hlt">pattern</span> of energy-latitude dispersion, in that the ion precipitation flux diminishes at higher (lower) latitudes for protons with lower (higher) energies. In this study, we introduce <span class="hlt">one</span> other systematically existing <span class="hlt">pattern</span> of energy-latitude dispersion of ion precipitation, in that the lower energy ion precipitation extends to lower latitude than the higher-energy ion precipitation. Via investigating such a "reversed" energy-latitude dispersion <span class="hlt">pattern</span>, we explore possible mechanisms of ion precipitation other than the field line curvature scattering. We demonstrate via theories and simulations that the H-band electromagnetic ion cyclotron (EMIC) <span class="hlt">wave</span> is capable of preferentially scattering keV protons in the CPS and potentially leads to the reversed energy-latitude dispersion of proton precipitation. We then present detailed event analyses and provide support to a linkage between the EMIC <span class="hlt">waves</span> in the equatorial CPS and ion precipitation events with reversed energy-latitude dispersion. We also discuss the role of ion acceleration in the topside ionosphere which, together with the CPS ion population, may result in a variety of energy-latitude distributions of the overall ion precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DPPCI2006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DPPCI2006L"><span>Effect of Resonant Magnetic Perturbations on secondary structures in Drift-<span class="hlt">Wave</span> turbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leconte, Michael</p> <p>2011-10-01</p> <p>In this work, we study the effects of RMPs on turbulence, flows and confinement, in the framework of two paradigmatic models, resistive ballooning and resistive drift <span class="hlt">waves</span>. For resistive ballooning turbulence, we use 3D global numerical simulations, including RMP fields and (externally-imposed) sheared rotation profile. Without RMPs, relaxation oscillations of the pressure profile occur. With RMPs, results show that long-lived convection cells are generated by the combined effects of pressure modulation and toroidal curvature coupling. These modify the global structure of the turbulence and eliminate relaxation oscillations. This effect is due mainly to a modification of the pressure profile linked to the presence of residual magnetic island chains. Hence convection-cell generation increases for increasing δBr/B0. For RMP effect on <span class="hlt">zonal</span> flows in drift <span class="hlt">wave</span> turbulence, we extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the <span class="hlt">zonal</span> electric field and the <span class="hlt">zonal</span> density gradient, which drives the system to a state of electron radial force balance for large δBr/B0. Both the vorticity flux (Reynolds stress), and particle flux are modulated. We derive an extended predator prey model which couples <span class="hlt">zonal</span> potential and density dynamics to the evolution of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters, and predicts a novel type of transport bifurcation in the presence of RMPs. We find a novel set of system states that are similar to the Hmode-like state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude and low collisionality, both the ambient turbulence and <span class="hlt">zonal</span> flow energy increase with δBr/B0. For larger RMP strength, the turbulence energy increases, but the energy of <span class="hlt">zonal</span> flows decreases with δBr/B0, corresponding to a damping of <span class="hlt">zonal</span> flows. At high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7362N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7362N"><span>Anomalous high-frequency <span class="hlt">wave</span> activity flux preceding anomalous changes in the Northern polar jet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo</p> <p>2010-05-01</p> <p>Anomalous forcing by quasi-geostrophic (QG) <span class="hlt">waves</span> has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG <span class="hlt">wave</span> activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the <span class="hlt">zonal</span> velocity (U), as well as the preceding and following <span class="hlt">wave</span> activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the <span class="hlt">wave</span> forcing fields, we adopted the diagnostic system for the three-dimensional QG transient <span class="hlt">wave</span> activity flux in the <span class="hlt">zonally</span>-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable <span class="hlt">zonal</span> asymmetry, and has a symbiotic relationship with <span class="hlt">waves</span> in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) <span class="hlt">waves</span> with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the <span class="hlt">wave</span> activity flux was then averaged for each month. The <span class="hlt">patterns</span> of composited anomalous dZ and dU clearly</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4550436','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4550436"><span>Refinement and <span class="hlt">Pattern</span> Formation in Neural Circuits by the Interaction of Traveling <span class="hlt">Waves</span> with Spike-Timing Dependent Plasticity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bennett, James E. M.; Bair, Wyeth</p> <p>2015-01-01</p> <p>Traveling <span class="hlt">waves</span> in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity <span class="hlt">patterns</span> into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of <span class="hlt">wave</span> activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling <span class="hlt">waves</span> can build periodic synaptic connectivity <span class="hlt">patterns</span> into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity <span class="hlt">patterns</span> increases with <span class="hlt">wave</span> speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this <span class="hlt">pattern</span> formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological <span class="hlt">pattern</span> formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex <span class="hlt">wave</span> <span class="hlt">patterns</span> in two dimensions and over several orders of magnitude in <span class="hlt">wave</span> speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling <span class="hlt">waves</span> and to <span class="hlt">wave</span>-like activity <span class="hlt">patterns</span> induced by moving stimuli. PMID:26308406</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26308406','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26308406"><span>Refinement and <span class="hlt">Pattern</span> Formation in Neural Circuits by the Interaction of Traveling <span class="hlt">Waves</span> with Spike-Timing Dependent Plasticity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bennett, James E M; Bair, Wyeth</p> <p>2015-08-01</p> <p>Traveling <span class="hlt">waves</span> in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity <span class="hlt">patterns</span> into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of <span class="hlt">wave</span> activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling <span class="hlt">waves</span> can build periodic synaptic connectivity <span class="hlt">patterns</span> into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity <span class="hlt">patterns</span> increases with <span class="hlt">wave</span> speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this <span class="hlt">pattern</span> formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological <span class="hlt">pattern</span> formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex <span class="hlt">wave</span> <span class="hlt">patterns</span> in two dimensions and over several orders of magnitude in <span class="hlt">wave</span> speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling <span class="hlt">waves</span> and to <span class="hlt">wave</span>-like activity <span class="hlt">patterns</span> induced by moving stimuli.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170000975&hterms=climate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate"><span>Tropical <span class="hlt">Waves</span> and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holt, Laura A.; Alexander, M. Joan; Coy, Lawrence; Molod, Andrea; Putman, William; Pawson, Steven</p> <p>2016-01-01</p> <p>This study investigates tropical <span class="hlt">waves</span> and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-year global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated <span class="hlt">waves</span>. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating <span class="hlt">waves</span>. However, even with very high horizontal resolution and a healthy population of resolved <span class="hlt">waves</span>, the <span class="hlt">zonal</span> force provided by the resolved <span class="hlt">waves</span> is still too low in the QBO region and parameterized gravity <span class="hlt">wave</span> drag is the main driver of the NR QBO-like oscillation (NRQBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to analyze the resolved <span class="hlt">wave</span> forcing of the NR-QBO. In agreement with previous studies, large-scale Kelvin and small-scale <span class="hlt">waves</span> contribute to the NRQBO driving in eastward shear zones and small-scale <span class="hlt">waves</span> dominate the NR-QBO driving in westward shear zones. <span class="hlt">Waves</span> with <span class="hlt">zonal</span> wavelength,1000 km account for up to half of the small-scale (,3300 km) resolved <span class="hlt">wave</span> forcing in eastward shear zones and up to 70% of the small-scale resolved <span class="hlt">wave</span> forcing in westward shear zones of the NR-QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9570E..0LH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9570E..0LH"><span><span class="hlt">Wave</span> interference: mechanics of the standing <span class="hlt">wave</span> component and the illusion of "which way" information</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudgins, W. R.; Meulenberg, A.; Penland, R. F.</p> <p>2015-09-01</p> <p>Two adjacent coherent light beams, 180° out of phase and traveling on adjacent, parallel paths, remain visibly separated by the null (dark) zone from their mutual interference <span class="hlt">pattern</span> as they merge. Each half of the <span class="hlt">pattern</span> can be traced to <span class="hlt">one</span> of the beams. Does such an experiment provide both "which way" and momentum knowledge? To answer this question, we demonstrate, by examining behavior of <span class="hlt">wave</span> momentum and energy in a medium, that interfering <span class="hlt">waves</span> interact. Central to the mechanism of interference is a standing <span class="hlt">wave</span> component resulting from the combination of coherent <span class="hlt">waves</span>. We show the mathematics for the formation of the standing <span class="hlt">wave</span> component and for <span class="hlt">wave</span> momentum involved in the <span class="hlt">waves</span>' interaction. In water and in open coaxial cable, we observe that standing <span class="hlt">waves</span> form cells bounded "reflection zones" where <span class="hlt">wave</span> momentum from adjacent cells is reversed, confining oscillating energy to each cell. Applying principles observed in standing <span class="hlt">waves</span> in media to the standing <span class="hlt">wave</span> component of interfering light beams, we identify dark (null) regions to be the reflection zones. Each part of the interference <span class="hlt">pattern</span> is affected by interactions between other parts, obscuring "which-way" information. We demonstrated physical interaction experimentally using two beams interfering slightly with <span class="hlt">one</span> dark zone between them. Blocking <span class="hlt">one</span> beam "downstream" from the interference region removed the null zone and allowed the remaining beam to evolve to a footprint of a single beam.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNG21A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNG21A..01S"><span>On the long-term variability of Jupiter and Saturn <span class="hlt">zonal</span> winds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.</p> <p>2012-12-01</p> <p>We present an analysis of the long-term variability of Jupiter and Saturn <span class="hlt">zonal</span> wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and <span class="hlt">one</span> Saturn years. We study the sensitivity and variability of the <span class="hlt">zonal</span> wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27575133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27575133"><span>Thermal motion of a nonlinear localized <span class="hlt">pattern</span> in a quasi-<span class="hlt">one</span>-dimensional system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dessup, Tommy; Coste, Christophe; Saint Jean, Michel</p> <p>2016-07-01</p> <p>We study the dynamics of localized nonlinear <span class="hlt">patterns</span> in a quasi-<span class="hlt">one</span>-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these <span class="hlt">patterns</span> can be described as solitary-<span class="hlt">wave</span> envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized <span class="hlt">patterns</span> displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized <span class="hlt">pattern</span> may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized <span class="hlt">patterns</span> also evidences free-diffusion behavior at low temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598922-role-zonal-flows-saturation-multi-scale-gyrokinetic-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598922-role-zonal-flows-saturation-multi-scale-gyrokinetic-turbulence"><span>The role of <span class="hlt">zonal</span> flows in the saturation of multi-scale gyrokinetic turbulence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Staebler, G. M.; Candy, J.; Howard, N. T.</p> <p>2016-06-15</p> <p>The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the <span class="hlt">zonal</span> (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the <span class="hlt">zonal</span> ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the <span class="hlt">zonal</span> flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The <span class="hlt">zonal</span> flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by <span class="hlt">zonal</span> flows in ion-scale gyrokinetic simulations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1354781-role-zonal-flows-saturation-multi-scale-gyrokinetic-turbulence','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1354781-role-zonal-flows-saturation-multi-scale-gyrokinetic-turbulence"><span>The role of <span class="hlt">zonal</span> flows in the saturation of multi-scale gyrokinetic turbulence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...</p> <p>2016-06-29</p> <p>The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the <span class="hlt">zonal</span> (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the <span class="hlt">zonal</span> ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the <span class="hlt">zonal</span> flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the <span class="hlt">zonal</span> flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by <span class="hlt">zonal</span> flows in ionscale gyrokinetic simulations.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6916S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6916S"><span>Indian Ocean <span class="hlt">zonal</span> mode activity in 20th century observations and simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sendelbeck, Anja; Mölg, Thomas</p> <p>2016-04-01</p> <p>The Indian Ocean <span class="hlt">zonal</span> mode (IOZM) is a coupled ocean-atmosphere system with anomalous cooling in the east, warming in the west and easterly wind anomalies, resulting in a complete reversal of the climatological <span class="hlt">zonal</span> sea surface temperature (SST) gradient. The IOZM has a strong influence on East African climate by causing anomalously strong October - December (OND) precipitation. Using observational data and historical CMIP5 (Coupled Model Intercomparison Project phase 5) model output, the September - November (SON) dipole mode index (DMI), OND East African precipitation and SON <span class="hlt">zonal</span> wind index (ZWI) are calculated. We pay particular attention to detrending SSTs for calculating the DMI, which seems to have been neglected in some published research. The ZWI is defined as the area-averaged <span class="hlt">zonal</span> wind component at 850 hPa over the central Indian Ocean. Regression analysis is used to evaluate the models' capability to represent the IOZM and its impact on east African climate between 1948 and 2005. Simple correlations are calculated between SST, <span class="hlt">zonal</span> wind and precipitation to show their interdependence. High correlation in models implies a good representation of the influence of IOZM on East African climate variability and our goal is to detect the models with the highest correlation coefficients. In future research, these model data might be used to investigate the impact of IOZM on the East African climate variability in the late 20's century with regard to anthropogenic causes and internal variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860007321','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860007321"><span><span class="hlt">Zonally</span> averaged model of dynamics, chemistry and radiation for the atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tung, K. K.</p> <p>1985-01-01</p> <p>A nongeostrophic theory of <span class="hlt">zonally</span> averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to <span class="hlt">zonal</span> velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean <span class="hlt">zonal</span> flow but reveals that the mean meridional velocity is in general ageostrophic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhR...514..121L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhR...514..121L"><span><span class="hlt">One</span>-dimensional optical <span class="hlt">wave</span> turbulence: Experiment and theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laurie, Jason; Bortolozzo, Umberto; Nazarenko, Sergey; Residori, Stefania</p> <p>2012-05-01</p> <p>We present a review of the latest developments in <span class="hlt">one</span>-dimensional (1D) optical <span class="hlt">wave</span> turbulence (OWT). Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear field up to the point when modulational instability leads to soliton formation. After solitons are formed, further interaction of the solitons among themselves and with incoherent <span class="hlt">waves</span> leads to a final condensate state dominated by a single strong soliton. Motivated by the observations, we develop a theoretical description, showing that the inverse cascade develops through six-<span class="hlt">wave</span> interaction, and that this is the basic mechanism of nonlinear <span class="hlt">wave</span> coupling for 1D OWT. We describe theory, numerics and experimental observations while trying to incorporate all the different aspects into a consistent context. The experimental system is described by two coupled nonlinear equations, which we explore within two <span class="hlt">wave</span> limits allowing for the expression of the evolution of the complex amplitude in a single dynamical equation. The long-<span class="hlt">wave</span> limit corresponds to <span class="hlt">waves</span> with <span class="hlt">wave</span> numbers smaller than the electrical coherence length of the liquid crystal, and the opposite limit, when <span class="hlt">wave</span> numbers are larger. We show that both of these systems are of a dual cascade type, analogous to two-dimensional (2D) turbulence, which can be described by <span class="hlt">wave</span> turbulence (WT) theory, and conclude that the cascades are induced by a six-<span class="hlt">wave</span> resonant interaction process. WT theory predicts several stationary solutions (non-equilibrium and thermodynamic) to both the long- and short-<span class="hlt">wave</span> systems, and we investigate the necessary conditions required for their realization. Interestingly, the long-<span class="hlt">wave</span> system is close to the integrable 1D nonlinear Schrödinger equation (NLSE) (which contains exact nonlinear soliton solutions), and as a result during the inverse cascade, nonlinearity of the system at low <span class="hlt">wave</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918871R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918871R"><span>Impact of viscous boundary layers on the emission of lee-<span class="hlt">waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renaud, Antoine; Venaille, Antoine; Bouchet, Freddy</p> <p>2017-04-01</p> <p>Oceans large-scale structures such as jets and vortices can lose their energy into small-scale turbulence. Understanding the physical mechanisms underlying those energy transfers remains a major theoretical challenge. Here we propose an approach that shed new light on the role of bottom topography in this problem. At a linear level, <span class="hlt">one</span> efficient way of extracting energy and momentum from the mean-flow above topography undulations is the radiation of lee-<span class="hlt">waves</span>. The generated lee-<span class="hlt">waves</span> are well described by inviscid theory which gives a prediction for the energy-loss rate at short time [1]. Using a quasi-linear approach we describe the feedback of <span class="hlt">waves</span> on the mean-flow occurring mostly close to the bottom topography. This can thereafter impact the lee-<span class="hlt">waves</span> radiation and thus modify the energy-loss rate for the mean-flow. In this work, we consider the Boussinesq equations with periodic boundary conditions in the <span class="hlt">zonal</span> direction. Taking advantage of this idealized geometry, we apply <span class="hlt">zonally</span>-symmetric <span class="hlt">wave</span>-mean interaction theory [2,3]. The novelty of our work is to discuss the crucial role of dissipative effects, such as molecular or turbulent viscosities, together with the importance of the boundary conditions (free-slip vs no-slip). We provide explicite computations in the case of the free evolution of an initially barotropic flow above a sinusoidal topography with free-slip bottom boundary condition. We show how the existence of the boundary layer for the <span class="hlt">wave</span>-field can enhance the streaming close to the topography. This leads to the emergence of boundary layer for the mean-flow impacting the energy-loss rate through lee-<span class="hlt">wave</span> emissions. Our results are compared against direct numerical simulations using the MIT general circulation model and are found to be in good agreement. References [1] S.L. Smith, W.R. Young, Conversion of the Barotropic Tide, JPhysOcean 2002 [2] 0. Bühler, <span class="hlt">Waves</span> and Mean Flows, second edition, Cambridge university press 2014 [3] J</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27030771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27030771"><span>Retinal <span class="hlt">Wave</span> <span class="hlt">Patterns</span> Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Hong-Ping; Burbridge, Timothy J; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z Jimmy; Crair, Michael C</p> <p>2016-03-30</p> <p>Retinal <span class="hlt">waves</span> are correlated bursts of spontaneous activity whose spatiotemporal <span class="hlt">patterns</span> are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental <span class="hlt">wave</span> epochs or stages have been described, but the mechanism(s) of <span class="hlt">pattern</span> generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of <span class="hlt">wave</span> initiation and propagation and the role of <span class="hlt">wave</span> <span class="hlt">patterns</span> in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal <span class="hlt">wave</span> propagation, supporting models of <span class="hlt">wave</span> initiation and <span class="hlt">pattern</span> generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal <span class="hlt">wave</span> <span class="hlt">patterns</span>, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal <span class="hlt">waves</span> are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal <span class="hlt">waves</span> dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal <span class="hlt">waves</span> can adequately compensate for Stage III retinal <span class="hlt">wave</span> loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal <span class="hlt">wave</span> propagation and clarify the roles of Stage II and Stage III retinal <span class="hlt">wave</span> <span class="hlt">patterns</span> in visual circuit development. Spontaneous activity drives early mammalian circuit development, but the initiation and <span class="hlt">patterning</span> of activity vary across development and among modalities. Cholinergic "retinal <span class="hlt">waves</span>" are initiated in starburst amacrine cells and propagate to retinal ganglion cells</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22072373-impact-resonant-magnetic-perturbations-nonlinearly-driven-modes-drift-wave-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22072373-impact-resonant-magnetic-perturbations-nonlinearly-driven-modes-drift-wave-turbulence"><span>Impact of resonant magnetic perturbations on nonlinearly driven modes in drift-<span class="hlt">wave</span> turbulence</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leconte, M.; Diamond, P. H.; CMTFO and CASS, UCSD, California 92093</p> <p>2012-05-15</p> <p>In this work, we study the effects of resonant magnetic perturbations (RMPs) on turbulence, flows, and confinement in the framework of resistive drift <span class="hlt">wave</span> turbulence. We extend the Hasegawa-Wakatani model to include RMP fields. The effect of the RMPs is to induce a linear coupling between the <span class="hlt">zonal</span> electric field and the <span class="hlt">zonal</span> density gradient, which drives the system to a state of electron radial force balance for large ({delta}B{sub r}/B{sub 0}). Both the vorticity flux (Reynolds stress) and particle flux are modulated. We derive an extended predator prey model which couples <span class="hlt">zonal</span> potential and density dynamics to the evolutionmore » of turbulence intensity. This model has both turbulence drive and RMP amplitude as control parameters and predicts a novel type of transport bifurcation in the presence of RMPs. We find states that are similar to the ZF-dominated state of the standard predator-prey model, but for which the power threshold is now a function of the RMP strength. For small RMP amplitude, the energy of <span class="hlt">zonal</span> flows decreases and the turbulence energy increases with ({delta}B{sub r}/B{sub 0}), corresponding to a damping of <span class="hlt">zonal</span> flows.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770037434&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DExciter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770037434&hterms=Exciter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DExciter"><span>Antenna radiation <span class="hlt">patterns</span> in the whistler <span class="hlt">wave</span> regime measured in a large laboratory plasma</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stenzel, R. L.</p> <p>1976-01-01</p> <p>Antenna radiation <span class="hlt">patterns</span> of balanced electric dipoles and shielded magnetic loop antennas are obtained by measuring the relative <span class="hlt">wave</span> amplitude with a small receiver antenna scanned around the exciter in a large uniform collisionless magnetized laboratory plasma in the whistler <span class="hlt">wave</span> regime. The boundary effects are assumed to be negligible even for many farfield <span class="hlt">patterns</span>. Characteristic differences are observed between electrically short and long antennas, the former exhibiting resonance cones and the latter showing dipole-like antenna <span class="hlt">patterns</span> along the magnetic field. Resonance cones due to small electric dipoles and magnetic loops are observed in both the near zone and the far zone. A self-focusing process is revealed which produces a pencil-shaped field-aligned radiation <span class="hlt">pattern</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539529','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539529"><span>Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle <span class="hlt">Patterning</span> in Acoustic Standing <span class="hlt">Wave</span> Fields</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong</p> <p>2017-01-01</p> <p>Acoustic standing <span class="hlt">waves</span> have been widely used in trapping, <span class="hlt">patterning</span>, and manipulating particles, whereas <span class="hlt">one</span> barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing <span class="hlt">wave</span> fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and <span class="hlt">patterning</span> were analyzed. It is shown that ARF is dominant in trapping and <span class="hlt">patterning</span> large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different <span class="hlt">patterns</span> with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle <span class="hlt">patterning</span>. PMID:28753955</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4812142','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4812142"><span>Retinal <span class="hlt">Wave</span> <span class="hlt">Patterns</span> Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy</p> <p>2016-01-01</p> <p>Retinal <span class="hlt">waves</span> are correlated bursts of spontaneous activity whose spatiotemporal <span class="hlt">patterns</span> are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental <span class="hlt">wave</span> epochs or stages have been described, but the mechanism(s) of <span class="hlt">pattern</span> generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of <span class="hlt">wave</span> initiation and propagation and the role of <span class="hlt">wave</span> <span class="hlt">patterns</span> in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal <span class="hlt">wave</span> propagation, supporting models of <span class="hlt">wave</span> initiation and <span class="hlt">pattern</span> generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal <span class="hlt">wave</span> <span class="hlt">patterns</span>, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal <span class="hlt">waves</span> are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal <span class="hlt">waves</span> dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal <span class="hlt">waves</span> can adequately compensate for Stage III retinal <span class="hlt">wave</span> loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal <span class="hlt">wave</span> propagation and clarify the roles of Stage II and Stage III retinal <span class="hlt">wave</span> <span class="hlt">patterns</span> in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and <span class="hlt">patterning</span> of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22410308-statistical-properties-charney-hasegawa-mima-zonal-flows','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22410308-statistical-properties-charney-hasegawa-mima-zonal-flows"><span>Statistical properties of Charney-Hasegawa-Mima <span class="hlt">zonal</span> flows</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.</p> <p>2015-05-15</p> <p>A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced <span class="hlt">zonal</span> flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the <span class="hlt">zonal</span> streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22252868-regulation-electron-temperature-gradient-turbulence-zonal-flows-driven-trapped-electron-modes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22252868-regulation-electron-temperature-gradient-turbulence-zonal-flows-driven-trapped-electron-modes"><span>Regulation of electron temperature gradient turbulence by <span class="hlt">zonal</span> flows driven by trapped electron modes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.</p> <p>2014-05-15</p> <p>Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale <span class="hlt">zonal</span> flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The <span class="hlt">zonal</span> flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven <span class="hlt">zonal</span> flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the <span class="hlt">zonal</span> flows.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000073213&hterms=equilibrium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dequilibrium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000073213&hterms=equilibrium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dequilibrium"><span>Ion Layer Separation and Equilibrium <span class="hlt">Zonal</span> Winds in Midlatitude Sporadic E</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.</p> <p>2000-01-01</p> <p>In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the <span class="hlt">zonal</span> wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the <span class="hlt">zonal</span> wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015347"><span>Contradictory Evidence on <span class="hlt">Wave</span> Forcing of Tropical Upwelling in the Brewer-Dobson Circulation - A Suggested Resolution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, Tiehan; Geller, Marvin A.; Lin, Wuyin</p> <p>2011-01-01</p> <p>ERA-40 data are analyzed to demonstrate that <span class="hlt">wave</span> forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer-Dobson circulation. It is shown that subtropical <span class="hlt">wave</span> forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient <span class="hlt">waves</span> are taken into account, and that tropical <span class="hlt">wave</span> forcing exerts its influence on tropical upwelling via its body force on the <span class="hlt">zonal</span> mean flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880062502&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfashion%2Bmodels','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880062502&hterms=fashion+models&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfashion%2Bmodels"><span>Rossby <span class="hlt">wave</span> activity in a two-dimensional model - Closure for <span class="hlt">wave</span> driving and meridional eddy diffusivity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hitchman, Matthew H.; Brasseur, Guy</p> <p>1988-01-01</p> <p>A parameterization of the effects of Rossby <span class="hlt">waves</span> in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby <span class="hlt">wave</span> activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby <span class="hlt">waves</span>. Rossby <span class="hlt">wave</span> activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model <span class="hlt">zonal</span> winds, and is absorbed where it converges. Absorption of Rossby <span class="hlt">wave</span> activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby <span class="hlt">wave</span> driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the <span class="hlt">wave</span> activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby <span class="hlt">wave</span> activity is absorbed in the model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27368769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27368769"><span>Spike-like solitary <span class="hlt">waves</span> in incompressible boundary layers driven by a travelling <span class="hlt">wave</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Peihua; Zhang, Jiazhong; Wang, Wei</p> <p>2016-06-01</p> <p>Nonlinear <span class="hlt">waves</span> produced in an incompressible boundary layer driven by a travelling <span class="hlt">wave</span> are investigated, with damping considered as well. As <span class="hlt">one</span> of the typical nonlinear <span class="hlt">waves</span>, the spike-like <span class="hlt">wave</span> is governed by the driven-damped Benjamin-Ono equation. The <span class="hlt">wave</span> field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving <span class="hlt">wave</span> continuously. On the other hand, the number of spikes of solitary <span class="hlt">waves</span> increases through multiplication of the <span class="hlt">wave</span> <span class="hlt">pattern</span>. The <span class="hlt">wave</span> energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The <span class="hlt">wave</span> energy jumps to different levels with multiplication of the <span class="hlt">wave</span>, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving <span class="hlt">wave</span> as well. Moreover, the nature of the change of <span class="hlt">wave</span> <span class="hlt">pattern</span> and its energy is the stability loss of the <span class="hlt">wave</span> caused by saddle-node bifurcation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/project/misr/gallery/waves_on_ice','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/project/misr/gallery/waves_on_ice"><span><span class="hlt">Waves</span> on Ice</span></a></p> <p><a target="_blank" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2013-04-16</p> <p>article title:  <span class="hlt">Waves</span> on White: Ice or Clouds?     View Larger ... like a wavy cloud <span class="hlt">pattern</span> was actually a wavy <span class="hlt">pattern</span> on the ice surface. <span class="hlt">One</span> of MISR's cloud classification products, the Angular Signature ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25d2113L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25d2113L"><span>Another look at <span class="hlt">zonal</span> flows: Resonance, shearing, and frictionless saturation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, J. C.; Diamond, P. H.</p> <p>2018-04-01</p> <p>We show that shear is not the exclusive parameter that represents all aspects of flow structure effects on turbulence. Rather, <span class="hlt">wave</span>-flow resonance enters turbulence regulation, both linearly and nonlinearly. Resonance suppresses the linear instability by <span class="hlt">wave</span> absorption. Flow shear can weaken the resonance, and thus destabilize drift <span class="hlt">waves</span>, in contrast to the near-universal conventional shear suppression paradigm. Furthermore, consideration of <span class="hlt">wave</span>-flow resonance resolves the long-standing problem of how <span class="hlt">zonal</span> flows (ZFs) saturate in the limit of weak or zero frictional drag, and also determines the ZF scale. We show that resonant vorticity mixing, which conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in an extended 0D predator-prey model of drift-ZF turbulence. This analysis determines the saturated ZF shear and shows that the mesoscopic ZF width scales as LZ F˜f3 /16(1-f ) 1 /8ρs5/8l03 /8 in the (relevant) adiabatic limit (i.e., τckk‖2D‖≫1 ). f is the fraction of turbulence energy coupled to ZF and l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In the frictionless limit, the results differ significantly from conventionally quoted scalings derived for frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence level scales as E ˜(γL/εc) 2 , which indicates the extent of the "near-marginal" regime to be γL<εc , for the case of avalanche-induced profile variability. Here, εc is the rate of dissipation of potential enstrophy and γL is the characteristic linear growth rate of fluctuations. The implications for dynamics near marginality of the strong scaling of saturated E with γL are discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2765534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2765534"><span>Macro and micro rate <span class="hlt">zonal</span> analytical centrifugation of polydisperse and slowly diffusing sedimenting systems in isovolumetric density gradients. Application to cartilage proteoglycans.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Müller, F J; Pezon, C F; Pita, J C</p> <p>1989-06-13</p> <p>A method to study the polydispersity of <span class="hlt">zonally</span> sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the <span class="hlt">zonal</span> profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular <span class="hlt">one</span> and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated <span class="hlt">ones</span>. The <span class="hlt">zonal</span> results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative <span class="hlt">zonal</span> centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5178357','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5178357"><span>Centering Ability of ProTaper Next and <span class="hlt">WaveOne</span> Classic in J-Shape Simulated Root Canals</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dioguardi, Mario; Cocco, Armando; Giuliani, Michele; Fabiani, Cristiano; D'Alessandro, Alfonso; Ciavarella, Domenico</p> <p>2016-01-01</p> <p>Introduction. The aim of this study was to evaluate and compare the shaping and centering ability of ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland) and <span class="hlt">WaveOne</span> Classic systems (Dentsply Maillefer) in simulated root canals. Methods. Forty J-shaped canals in resin blocks were assigned to two groups (n = 20 for each group). Photographic method was used to record pre- and postinstrumentation images. After superimposition, centering and shaping ability were recorded at 9 different levels from the apex using the software Autocad 2013 (Autodesk Inc., San Rafael, USA). Results. Shaping procedures with ProTaper Next resulted in a lower amount of resin removed at each reference point level. In addition, the <span class="hlt">pattern</span> of centering ability improved after the use of ProTaper Next in 8 of 9 measurement points. Conclusions. Within the limitations of this study, shaping procedures with ProTaper Next instruments demonstrated a lower amount of resin removed and a better centering ability than <span class="hlt">WaveOne</span> Classic system. PMID:28054031</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28054031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28054031"><span>Centering Ability of ProTaper Next and <span class="hlt">WaveOne</span> Classic in J-Shape Simulated Root Canals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Troiano, Giuseppe; Dioguardi, Mario; Cocco, Armando; Giuliani, Michele; Fabiani, Cristiano; D'Alessandro, Alfonso; Ciavarella, Domenico; Lo Muzio, Lorenzo</p> <p></p> <p>Introduction . The aim of this study was to evaluate and compare the shaping and centering ability of ProTaper Next (PTN; Dentsply Maillefer, Ballaigues, Switzerland) and <span class="hlt">WaveOne</span> Classic systems (Dentsply Maillefer) in simulated root canals. Methods . Forty J-shaped canals in resin blocks were assigned to two groups ( n = 20 for each group). Photographic method was used to record pre- and postinstrumentation images. After superimposition, centering and shaping ability were recorded at 9 different levels from the apex using the software Autocad 2013 (Autodesk Inc., San Rafael, USA). Results . Shaping procedures with ProTaper Next resulted in a lower amount of resin removed at each reference point level. In addition, the <span class="hlt">pattern</span> of centering ability improved after the use of ProTaper Next in 8 of 9 measurement points. Conclusions . Within the limitations of this study, shaping procedures with ProTaper Next instruments demonstrated a lower amount of resin removed and a better centering ability than <span class="hlt">WaveOne</span> Classic system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GApFD..99..309B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GApFD..99..309B"><span>Non-axisymmetric α2Ω-dynamo <span class="hlt">waves</span> in thin stellar shells</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassom, Andrew P.; Kuzanyan, Kirill M.; Sokoloff, Dmitry; Soward, Andrew M.</p> <p>2005-04-01</p> <p>Linear α2Ω-dynamo <span class="hlt">waves</span> are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified <span class="hlt">one</span>-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo <span class="hlt">waves</span> in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85-133) considered the modulation of dynamo <span class="hlt">waves</span>, linked to a latitudinal-dependent local α-effect and radial gradient of the <span class="hlt">zonal</span> shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers Rαf(θ) and RΩg(θ). The modulated Parker <span class="hlt">wave</span>, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent <span class="hlt">zonal</span> flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo <span class="hlt">waves</span> with azimuthal <span class="hlt">wave</span> number m. We find that the critical dynamo number Dc = RαRΩ is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα ≠ 0 there may exist a band of <span class="hlt">wave</span> numbers 0 < m < m† for which the non-axisymmetric modes have a smaller Dc than in the axisymmetric case. Here m† is regarded as a continuous function of Rα with the property m†→0 as Rα→0 and the band is only non-empty when m† >1, which happens for sufficiently large Rα. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker <span class="hlt">wave</span> of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω*(θp). Since the critical dynamo number Dc = RαRΩ is O (1) for small Rα, the condition m</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890035218&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890035218&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy"><span>An estimate of equatorial <span class="hlt">wave</span> energy flux at 9- to 90-day periods in the Central Pacific</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eriksen, Charles C.; Richman, James G.</p> <p>1988-01-01</p> <p>Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial <span class="hlt">waves</span>. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either <span class="hlt">zonal</span> or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity <span class="hlt">waves</span> is consistent with the observed vertical-<span class="hlt">zonal</span> coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby <span class="hlt">waves</span> at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby <span class="hlt">waves</span> and Rossby-gravity <span class="hlt">waves</span> at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability <span class="hlt">waves</span>. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29691642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29691642"><span>Left atrial pressure <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> in sinus rhythm after cardioversion affects the outcomes after catheter ablation for atrial fibrillation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kishima, Hideyuki; Mine, Takanao; Takahashi, Satoshi; Ashida, Kenki; Ishihara, Masaharu; Masuyama, Tohru</p> <p>2018-04-24</p> <p>The a-<span class="hlt">wave</span> in left atrial pressure (LAP) is often not observed after cardioversion (CV). We hypothesized that repeated atrial fibrillation (AF) occurs in patients who do not show a-<span class="hlt">wave</span> <span class="hlt">pattern</span> after CV. We investigated the impact of "LAP <span class="hlt">pattern</span> without a-<span class="hlt">wave</span>" on the outcome after catheter ablation (CA) for AF. We studied 100 patients (64 males, age 66 ± 8 years, 42 with non-paroxysmal AF) who underwent CA for AF. Sustained- or induced-AF were terminated with internal CV, and LAP was measured during sinus rhythm (SR) after CV. LAP <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> was defined as absence of a-<span class="hlt">wave</span> (the "a-<span class="hlt">wave</span>" was defined as a protruding part by 0.2 mmHg or more from the baseline) in LAP <span class="hlt">wave</span> form. AF was terminated with CV in all patients. Recurrent AF was detected in 35/100 (35%) during the follow-up period (13.1 ± 7.8 month). Univariate analysis revealed higher prevalence of LAP <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> (71 vs. 17%, P < 0.0001), larger left atrial volume, elevated E <span class="hlt">wave</span>, and decreased deceleration time as significant variables. On multivariate analysis, LAP <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> was only independently associated with recurrent AF (P = 0.0014, OR 9.865, 95% CI 2.327-54.861). Moreover, patients with LAP <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> had a higher risk of recurrent AF than patients with a-<span class="hlt">wave</span> (25/36 patients, 69 vs. 10/64 patients, 16%, log-rank P < 0.0001). Left atrial pressure <span class="hlt">pattern</span> without a-<span class="hlt">wave</span> in sinus rhythm after cardioversion could predict recurrence after catheter ablation for AF.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950033288&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950033288&hterms=temperature+variability&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtemperature%2Bvariability"><span>Variability in daily, <span class="hlt">zonal</span> mean lower-stratospheric temperatures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christy, John R.; Drouilhet, S. James, Jr.</p> <p>1994-01-01</p> <p>Satellite data from the microwave sounding unit (MSU) channel 4, when carefully merged, provide daily <span class="hlt">zonal</span> anomalies of lower-stratosphere temperature with a level of precision between 0.01 and 0.08 C per 2.5 deg latitude band. Global averages of these daily <span class="hlt">zonal</span> anomalies reveal the prominent warming events due to volcanic aerosol in 1982 (El Chichon) and 1991 (Mt. Pinatubo), which are on the order of 1 C. The quasibiennial oscillation (QBO) may be extracted from these <span class="hlt">zonal</span> data by applying a spatial filter between 15 deg N and 15 deg S latitude, which resembles the meridional curvature. Previously published relationships between the QBO and the north polar stratospheric temperatures during northern winter are examined but were not found to be reproduced in the MSU4 data. Sudden stratospheric warmings in the north polar region are represented in the MSU4 data for latitudes poleward of 70 deg N. In the Southern Hemisphere, there appears to be a moderate relationship between total ozone concentration and MSU4 temperatures, though it has been less apparent in 1991 and 1992. In terms of empirical modes of variability, the authors find a strong tendency in EOF 1 (39.2% of the variance) for anomalies in the Northern Hemisphere polar regions to be counterbalanced by anomalies equatorward of 40 deg N and 40 deg S latitudes. In addition, most of the modes revealed significant power in the 15-20 day period band.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.118o4501D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.118o4501D"><span>Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged <span class="hlt">Patterns</span> from Traveling Surface Acoustic <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devendran, Citsabehsan; Collins, David J.; Ai, Ye; Neild, Adrian</p> <p>2017-04-01</p> <p>Periodic <span class="hlt">pattern</span> generation using time-averaged acoustic forces conventionally requires the intersection of counterpropagating <span class="hlt">wave</span> fields, where suspended micro-objects in a microfluidic system collect along force potential minimizing nodal or antinodal lines. Whereas this effect typically requires either multiple transducer elements or whole channel resonance, we report the generation of scalable periodic <span class="hlt">patterning</span> positions without either of these conditions. A single propagating surface acoustic <span class="hlt">wave</span> interacts with the proximal channel wall to produce a knife-edge effect according to the Huygens-Fresnel principle, where these cylindrically propagating <span class="hlt">waves</span> interfere with classical <span class="hlt">wave</span> fronts emanating from the substrate. We simulate these conditions and describe a model that accurately predicts the lateral spacing of these positions in a robust and novel approach to acoustic <span class="hlt">patterning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhPl...16e5906E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhPl...16e5906E"><span>Role of <span class="hlt">zonal</span> flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.</p> <p>2009-05-01</p> <p>Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and <span class="hlt">zonal</span> flow physics. This work explores the parametric variation of <span class="hlt">zonal</span> flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, <span class="hlt">zonal</span> flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, <span class="hlt">zonal</span> flows are weak, and TEM transport falls inversely with a power law in ηe. The role of <span class="hlt">zonal</span> flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, <span class="hlt">zonal</span> flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM <span class="hlt">zonal</span> flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1357P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1357P"><span>Thermal <span class="hlt">zonal</span> winds in the Venus mesosphere from the Venus Express temperature soundings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre</p> <p></p> <p>The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde <span class="hlt">zonal</span> winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the <span class="hlt">zonal</span> super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the <span class="hlt">zonal</span> wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.147..166K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.147..166K"><span>Springtime trans-Pacific transport of Asian pollutants characterized by the Western Pacific (WP) <span class="hlt">pattern</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koo, Ja-Ho; Kim, Jaemin; Kim, Jhoon; Lee, Hanlim; Noh, Young Min; Lee, Yun Gon</p> <p>2016-12-01</p> <p>Springtime trans-Pacific transport of Asian air pollutants has been investigated in many ways to figure out its mechanism. Based on the Western Pacific (WP) <span class="hlt">pattern</span>, <span class="hlt">one</span> of climate variabilities in the Northern Hemisphere known to be associated with the <span class="hlt">pattern</span> of atmospheric circulation over the North Pacific Ocean, in this study, we characterize the <span class="hlt">pattern</span> of springtime trans-Pacific transport using long-term satellite measurements and reanalysis datasets. A positive WP <span class="hlt">pattern</span> is characterized by intensification of the dipole structure between the northern Aleutian Low and the southern Pacific High over the North Pacific. The TOMS/OMI Aerosol Index (AI) and MOPITT CO show the enhancement of Asian pollutant transport across the Pacific during periods of positive WP <span class="hlt">pattern</span>, particularly between 40 and 50°N. This enhancement is confirmed by high correlations of WP index with AI and CO between 40 and 50°N. To evaluate the influence of the WP <span class="hlt">pattern</span>, we examine several cases of trans-Pacific transport reported in previous research. Interestingly, most trans-Pacific transport cases are associated with the positive WP <span class="hlt">pattern</span>. During the period of negative WP <span class="hlt">pattern</span>, reinforced cyclonic <span class="hlt">wave</span> breaking is consistently found over the western North Pacific, which obstructs <span class="hlt">zonal</span> advection across the North Pacific. However, some cases show the trans-Pacific transport of CO in the period of negative WP <span class="hlt">pattern</span>, implying that the WP <span class="hlt">pattern</span> is more influential on the transport of particles mostly emitted near ∼40°N. This study reveals that the WP <span class="hlt">pattern</span> can be utilized to diagnose the strength of air pollutant transport from East Asia to North America.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.H1324D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.H1324D"><span>Ultrafast optical measurements of surface <span class="hlt">waves</span> on a <span class="hlt">patterned</span> layered nanostructure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean</p> <p>2015-03-01</p> <p>We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic <span class="hlt">waves</span> (SAWs) on <span class="hlt">patterned</span> layered nanostructures. These very high frequency SAWs were generated and detected on the following <span class="hlt">patterned</span> film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like <span class="hlt">waves</span>, Sezawa <span class="hlt">waves</span>, and leaky or radiative <span class="hlt">waves</span>. This work was supported by NSF Award DMR1206681.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25131664','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25131664"><span>Circadian <span class="hlt">pattern</span> of fibrillatory events in non-Brugada-type idiopathic ventricular fibrillation with a focus on J <span class="hlt">waves</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aizawa, Yoshiyasu; Sato, Masahito; Ohno, Seiko; Horie, Minoru; Takatsuki, Seiji; Fukuda, Keiichi; Chinushi, Masaomi; Usui, Tatsuya; Aonuma, Kazutaka; Hosaka, Yukio; Haissaguerre, Michel; Aizawa, Yoshifusa</p> <p>2014-12-01</p> <p>The circadian <span class="hlt">pattern</span> of ventricular fibrillation (VF) episodes in patients with idiopathic ventricular fibrillation (IVF) is poorly understood. The purpose of this study was to assess the circadian <span class="hlt">pattern</span> of VF occurrence in patients with IVF. Excluding Brugada syndrome and other primary electrical diseases, the circadian <span class="hlt">pattern</span> of VF occurrence was determined in 64 patients with IVF. The clinical and electrocardiographic characteristics were compared among patients with nocturnal (midnight to 6:00 AM) VF and nonnocturnal VF in relation to J <span class="hlt">waves</span>. A J <span class="hlt">wave</span> was defined as either notching or a slur at the QRS terminal >0.1 mV above the isoelectric line in contiguous leads. The overall distribution <span class="hlt">pattern</span> of VF occurrence showed 2 peaks at approximately 6:00 AM and around 8:00 PM. Nocturnal VF was observed in 20 patients (31.3%), and J <span class="hlt">waves</span> were present in 14 of these 20 individuals (70.0%), whereas J <span class="hlt">waves</span> were less frequent in the 44 nonnocturnal patients with VF: 16 (36.4%) (P = .0117). Among patients with J <span class="hlt">waves</span>, nocturnal VF was observed in 46.7% with a peak at approximately 4:00 AM. Nocturnal VF was less common in patients without J <span class="hlt">waves</span>, occurring in only 17.6% (P = .0124). Both the type and location of J <span class="hlt">waves</span> and the <span class="hlt">pattern</span> of the ST segment were similar between the nocturnal and nonnocturnal VF groups. J <span class="hlt">waves</span> were associated with a VF storm and long-term arrhythmia recurrence. In IVF, the presence of J <span class="hlt">waves</span> may characterize a higher nocturnal incidence of VF and a higher acute and chronic risk of recurrence. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JCli...16.3314I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JCli...16.3314I"><span>Atmospheric Response to <span class="hlt">Zonal</span> Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping</p> <p>2003-10-01</p> <p>Midwinter storm track response to <span class="hlt">zonal</span> variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. <span class="hlt">Zonal</span> wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a <span class="hlt">zonally</span> localized storm track, while the storm track becomes nearly <span class="hlt">zonally</span> uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the <span class="hlt">zonal</span> direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that <span class="hlt">zonally</span> localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4764F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4764F"><span>The quasi-6 day <span class="hlt">wave</span> and its interactions with solar tides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Jeffrey M.; Zhang, Xiaoli</p> <p>2017-04-01</p> <p>Thermosphere Ionosphere Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) temperature measurements between 20 and 110 km altitude and ±50° latitude during 2002-2015 are employed to reveal the climatological characteristics of the quasi-6 day <span class="hlt">wave</span> (Q6DW) and evidence for secondary <span class="hlt">waves</span> (SW) resulting from its nonlinear interactions with solar tides. The mean period is 6.14d with a standard deviation (σ) of 0.26d. Multiyear-mean maximum amplitudes (3-5 K, σ ˜ 4 K) occur within the mesosphere-lower thermosphere (MLT) region between 75 and 100 km during day of year (DOY) 60-120 and 180-300 in the Northern Hemisphere and DOY 0-110 and 200-300 in the Southern Hemisphere. Amplitudes approach 10 K in some individual years. At midlatitudes downward phase progression exists from 100 to 35 km with a mean vertical wavelength of about 70 km. Signatures of SW due to Q6DW-tide interactions appear at distinct space-based <span class="hlt">zonal</span> <span class="hlt">wave</span> numbers (ks) in temperature spectra constructed in the reference frame of the TIMED orbit. However, SW produced by several different tides can collapse onto the same (ks) value, rendering their relative contributions indistinguishable. Nevertheless, by determining the space-based <span class="hlt">wave</span> amplitudes attached to these values of (ks), and demonstrating that they are a large fraction of the interacting <span class="hlt">wave</span> amplitudes, we conclude that the aggregate contributions of the SW to the overall <span class="hlt">wave</span> spectrum must be significant. Because the SW have periods, <span class="hlt">zonal</span> <span class="hlt">wave</span> numbers, and latitude-height structures different from those of the primary <span class="hlt">waves</span>, they contribute additionally to the complexity of the <span class="hlt">wave</span> spectrum. This complexity is communicated to the ionosphere through collisions or through the dynamo electric fields generated by the total <span class="hlt">wave</span> spectrum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20940883','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20940883"><span>Broadband <span class="hlt">one</span>-dimensional photonic crystal <span class="hlt">wave</span> plate containing single-negative materials.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Yihang</p> <p>2010-09-13</p> <p>The properties of the phase shift of <span class="hlt">wave</span> reflected from <span class="hlt">one</span>-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE <span class="hlt">wave</span> decreases, while that of TM <span class="hlt">wave</span> increases. The phase shifts of both polarized <span class="hlt">waves</span> vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM <span class="hlt">wave</span> could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design <span class="hlt">wave</span> plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-<span class="hlt">wave</span> plate is proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910034029&hterms=geophysique&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeophysique','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910034029&hterms=geophysique&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeophysique"><span>Parameterization of eddy sensible heat transports in a <span class="hlt">zonally</span> averaged dynamic model of the atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean</p> <p>1990-01-01</p> <p>A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a <span class="hlt">zonally</span> averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a <span class="hlt">zonally</span> averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same <span class="hlt">zonally</span> averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled <span class="hlt">zonal</span>-mean climate and the parameterized meridional eddy transport is identified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19874788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19874788"><span>Spatial-temporal <span class="hlt">patterns</span> of retinal <span class="hlt">waves</span> underlying activity-dependent refinement of retinofugal projections.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stafford, Ben K; Sher, Alexander; Litke, Alan M; Feldheim, David A</p> <p>2009-10-29</p> <p>During development, retinal axons project coarsely within their visual targets before refining to form organized synaptic connections. Spontaneous retinal activity, in the form of acetylcholine-driven retinal <span class="hlt">waves</span>, is proposed to be necessary for establishing these projection <span class="hlt">patterns</span>. In particular, both axonal terminations of retinal ganglion cells (RGCs) and the size of receptive fields of target neurons are larger in mice that lack the beta2 subunit of the nicotinic acetylcholine receptor (beta2KO). Here, using a large-scale, high-density multielectrode array to record activity from hundreds of RGCs simultaneously, we present analysis of early postnatal retinal activity from both wild-type (WT) and beta2KO retinas. We find that beta2KO retinas have correlated <span class="hlt">patterns</span> of activity, but many aspects of these <span class="hlt">patterns</span> differ from those of WT retina. Quantitative analysis suggests that <span class="hlt">wave</span> directionality, coupled with short-range correlated bursting <span class="hlt">patterns</span> of RGCs, work together to refine retinofugal projections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102174"><span>Mesospheric Non-Migrating Tides Generated With Planetary <span class="hlt">Waves</span>: II Influence of Gravity <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We demonstrated that, in our model, non-linear interactions between planetary <span class="hlt">waves</span> (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity <span class="hlt">waves</span> (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and <span class="hlt">zonal</span> circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In <span class="hlt">one</span>, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..35.6804R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..35.6804R"><span>Vertical propagation of information in a middle atmosphere data assimilation system by gravity-<span class="hlt">wave</span> drag feedbacks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.</p> <p>2008-03-01</p> <p>The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-<span class="hlt">wave</span> drag parameterization to the change in <span class="hlt">zonal</span> winds. The basic mechanism is that elucidated by Holton consisting of a net eastward <span class="hlt">wave</span>-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the <span class="hlt">zonal</span>-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-<span class="hlt">wave</span> drag.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPU11025Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPU11025Z"><span>Tertiary instability of <span class="hlt">zonal</span> flows within the Wigner-Moyal formulation of drift turbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Hongxuan; Ruiz, D. E.; Dodin, I. Y.</p> <p>2017-10-01</p> <p>The stability of <span class="hlt">zonal</span> flows (ZFs) is analyzed within the generalized-Hasegawa-Mima model. The necessary and sufficient condition for a ZF instability, which is also known as the tertiary instability, is identified. The qualitative physics behind the tertiary instability is explained using the recently developed Wigner-Moyal formulation and the corresponding <span class="hlt">wave</span> kinetic equation (WKE) in the geometrical-optics (GO) limit. By analyzing the drifton phase space trajectories, we find that the corrections proposed in Ref. to the WKE are critical for capturing the spatial scales characteristic for the tertiary instability. That said, we also find that this instability itself cannot be adequately described within a GO formulation in principle. Using the Wigner-Moyal equations, which capture diffraction, we analytically derive the tertiary-instability growth rate and compare it with numerical simulations. The research was sponsored by the U.S. Department of Energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/51015','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/51015"><span>Stress <span class="hlt">wave</span> velocity <span class="hlt">patterns</span> in the longitudinal-radial plane of trees for defect diagnosis</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng</p> <p>2016-01-01</p> <p>Acoustic tomography for urban tree inspection typically uses stress <span class="hlt">wave</span> data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress <span class="hlt">wave</span> velocity <span class="hlt">patterns</span> along tree height. In this study, we proposed an analytical model for the <span class="hlt">wave</span> velocity in the longitudinal–...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..155....2J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..155....2J"><span>Longitudinal variability in Jupiter's <span class="hlt">zonal</span> winds derived from multi-wavelength HST observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.</p> <p>2018-06-01</p> <p>Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically <span class="hlt">zonally</span> averaged to reduce measurement uncertainties. However, doing this destroys any variations of the <span class="hlt">zonal</span>-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the <span class="hlt">zonal</span> winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002cosp...34E.225S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002cosp...34E.225S"><span>A study of Equartorial <span class="hlt">wave</span> characteristics using rockets, balloons, lidar and radar</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.</p> <p></p> <p>Dynamics of low latitude middle atmosphere is dominated by the <span class="hlt">zonal</span> wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial <span class="hlt">waves</span> play a significant role in the evolution of QBO and SAO through <span class="hlt">wave</span>- mean flow interactions resulting in momentum transfer from the <span class="hlt">waves</span> to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial <span class="hlt">wave</span> characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial <span class="hlt">waves</span> and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a <span class="hlt">zonal</span> wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin <span class="hlt">wave</span> (~18 day period), fast Kelvin <span class="hlt">wave</span> (~8 days) and ultra fast Kelvin <span class="hlt">wave</span> (~3.3 day period) and RG <span class="hlt">wave</span> (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin <span class="hlt">waves</span>, in addition to fast Kelvin <span class="hlt">waves</span>, contributing to the evolution of the westerly phase of the stratopause SAO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018274&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018274&hterms=planetary+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dplanetary%2Bmotion"><span>Planetary <span class="hlt">wave</span>-mean flow interaction in the stratosphere: A comparison between the Northern and Southern Hemispheres</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shiotani, M.; Hirota, I.</p> <p>1985-01-01</p> <p>Based on satellite-derived data supplied by the National Meteorological Center (NMC), the dynamical interaction between planetary <span class="hlt">waves</span> and mean <span class="hlt">zonal</span> winds in the stratosphere is investigated. Special attention is paid to the differences between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). An analysis is made using Eliassen-Palm (E-P) flux diagnostics for the period from June 1981 to May 1982. In a climatological sense, different seasonal evolutions of large-scale motions between the NH and the SH in the stratosphere are demonstrated. Vertical cross-section analysis is presented to show the day-to-day variation in the mean <span class="hlt">zonal</span> wind and <span class="hlt">wave</span> activity, in particular, the following phenomena: (1) the poleward shifting of the westerly jet, and (2) episodes after the shifting of the westerly jet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11519123F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11519123F"><span>Southern Argentina Agile Meteor Radar: Initial assessment of gravity <span class="hlt">wave</span> momentum fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, D. C.; Janches, D.; Hocking, W. K.</p> <p>2010-10-01</p> <p>The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity <span class="hlt">wave</span> momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity <span class="hlt">wave</span> momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity <span class="hlt">wave</span> momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity <span class="hlt">wave</span> momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean <span class="hlt">zonal</span> winds and gravity <span class="hlt">wave</span> momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity <span class="hlt">wave</span> sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity <span class="hlt">wave</span> sources within this “hot spot.” SAAMER measurements of mean <span class="hlt">zonal</span> and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA31C..07D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA31C..07D"><span>Gravity <span class="hlt">Waves</span> in the Presence of Shear during DEEPWAVE</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.</p> <p>2016-12-01</p> <p> an idealized mode initialized with a <span class="hlt">zonally</span> balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the <span class="hlt">waves</span>. The <span class="hlt">zonal</span> momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790025204','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790025204"><span>Effects of refraction by means flow velocity gradients on the standing <span class="hlt">wave</span> <span class="hlt">pattern</span> in three-dimensional, rectangular waveguides</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hersh, A. S.</p> <p>1979-01-01</p> <p>The influence of a mean vortical flow on the connection between the standing <span class="hlt">wave</span> <span class="hlt">pattern</span> in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane <span class="hlt">wave</span> sound frequencies. The results show that deviations of the standing <span class="hlt">wave</span> <span class="hlt">pattern</span> due to refraction by the mean flow gradients are small.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030025379','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030025379"><span>High-Frequency Planetary <span class="hlt">Waves</span> in the Polar Middle Atmosphere as seen in a data Assimilation System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coy, L.; Stajner, I.; DaSilva, A. M.; Joiner, J.; Rood, R. B.; Pawson, S.; Lin, S. J.</p> <p>2003-01-01</p> <p>This study examines the winter southern hemisphere vortex of 1998 using four times daily output from a data assimilation system to focus on the polar 2-day, <span class="hlt">wave</span> number 2 component of the 4-day <span class="hlt">wave</span>. The data assimilation system products are from a test version of the finite volume data assimilation system (fvDAS) being developed at Goddard Space Flight Center (GSFC) and include an ozone assimilation system. Results show that the polar 2-day <span class="hlt">wave</span> dominates during July 1998 at 70 degrees. The period of the quasi 2-day <span class="hlt">wave</span> is somewhat shorter than 2 days (about 1.7 days) during July 1998 with an average perturbation temperature amplitude for the month of over 2.5 K. The 2-day <span class="hlt">wave</span> propagates more slowly than the <span class="hlt">zonal</span> mean <span class="hlt">zonal</span> wind, consistent with Rossby <span class="hlt">wave</span> theory, and has EP flux divergence regions associated with regions of negative horizontal potential vorticity gradients, as expected from linear instability theory. Results for the assimilation-produced ozone mixing ratio show that the 2-day <span class="hlt">wave</span> represents a major source of ozone variation in this region. The ozone <span class="hlt">wave</span> in the assimilation system is in good agreement with the <span class="hlt">wave</span> seen in the POAM (Polar Ozone and Aerosol Measurement) ozone observations for the same time period. Some differences with linear instability theory are noted as well as spectral peaks in the ozone field, not seen in the temperature field, that may be a consequence of advection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010935"><span>Strong Temporal Variation Over <span class="hlt">One</span> Saturnian Year: From Voyager to Cassini</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140010935'); toggleEditAbsImage('author_20140010935_show'); toggleEditAbsImage('author_20140010935_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140010935_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140010935_hide"></p> <p>2013-01-01</p> <p>Here we report the combined spacecraft observations of Saturn acquired over <span class="hlt">one</span> Saturnian year (approximately 29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (approximately 10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (approximately a few Kelvins). We also provide the first estimate of the <span class="hlt">zonal</span> winds at 750 mbar, which is close to the <span class="hlt">zonal</span> winds at 2000 mbar. The quasi-consistency of <span class="hlt">zonal</span> winds between these two levels provides observational support to a numerical suggestion inferring that the <span class="hlt">zonal</span> winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of <span class="hlt">zonal</span> winds decreases its magnitude with depth, implying that the relatively deep <span class="hlt">zonal</span> winds are stable with time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3740281','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3740281"><span>Strong Temporal Variation Over <span class="hlt">One</span> Saturnian Year: From Voyager to Cassini</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Liming; Achterberg, Richard K.; Conrath, Barney J.; Gierasch, Peter J.; Smith, Mark A.; Simon-Miller, Amy A.; Nixon, Conor A.; Orton, Glenn S.; Flasar, F. Michael; Jiang, Xun; Baines, Kevin H.; Morales-Juberías, Raúl; Ingersoll, Andrew P.; Vasavada, Ashwin R.; Del Genio, Anthony D.; West, Robert A.; Ewald, Shawn P.</p> <p>2013-01-01</p> <p>Here we report the combined spacecraft observations of Saturn acquired over <span class="hlt">one</span> Saturnian year (~29.5 Earth years), from the Voyager encounters (1980–81) to the new Cassini reconnaissance (2009–10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.e., 50 mbar), which is stronger than the seasonal variability (~a few Kelvins). We also provide the first estimate of the <span class="hlt">zonal</span> winds at 750 mbar, which is close to the <span class="hlt">zonal</span> winds at 2000 mbar. The quasi-consistency of <span class="hlt">zonal</span> winds between these two levels provides observational support to a numerical suggestion inferring that the <span class="hlt">zonal</span> winds at pressures greater than 500 mbar do not vary significantly with depth. Furthermore, the temporal variation of <span class="hlt">zonal</span> winds decreases its magnitude with depth, implying that the relatively deep <span class="hlt">zonal</span> winds are stable with time. PMID:23934437</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018602','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018602"><span>Southern Ocean monthly <span class="hlt">wave</span> fields for austral winters 1985-1988 by Geosat radar altimeter</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Josberger, E.G.; Mognard, N.M.</p> <p>1996-01-01</p> <p>Four years of monthly averaged <span class="hlt">wave</span> height fields for the austral winters 19851988 derived from the Geosat altimeter data show a spatial variability of the scale of 500-1000 km that varies monthly and annually. This variability is superimposed on the <span class="hlt">zonal</span> <span class="hlt">patterns</span> surrounding the Antarctic continent and characteristic of the climatology derived from the U.S. Navy [1992] Marine Climatic Atlas of the World. The location and the intensity of these large-scale features, which are not found in the climatological fields, exhibit strong monthly and yearly variations. A global underestimation of the climatological mean <span class="hlt">wave</span> heights by more than l m is also found over large regions of the Southern Ocean. The largest monthly averaged significant <span class="hlt">wave</span> heights are above 5 m and are found during August of every year in the Indian Ocean, south of 40??S. The monthly <span class="hlt">wave</span> fields show more variability in the Atlantic and Pacific Oceans than in the Indian Ocean. The Seasat data from 1978 and the Geosat data from 1985 and 1988 show an eastward rotation of the largest <span class="hlt">wave</span> heights. However, this rotation is absent in 1986 and 1987; the former was a year of unusually low sea states, and the latter was a year of unusually high sea states, which suggests a link to the El Nin??o-Southern Oscillation event of 1986. Copyright 1996 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920036997&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920036997&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span>Vertical tilts of tropospheric <span class="hlt">waves</span> - Observations and theory</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ebisuzaki, Wesley</p> <p>1991-01-01</p> <p>Two methods are used to investigate the vertical tilts of planetary <span class="hlt">waves</span> as functions of <span class="hlt">zonal</span> wavenumber and frequency. The vertical tilts are computed by cross-spectral analysis of the geopotential heights at different pressures. In the midlatitude troposphere, the eastward-moving <span class="hlt">waves</span> had a westward tilt with height, as expected, but the westward-moving <span class="hlt">waves</span> with frequencies higher than 0.2/d showed statistically significant eastward vertical tilts. For a free Rossby <span class="hlt">wave</span>, this implies that the Eliassen-Palm flux is downward along with its energy propagation. A downward energy propagation suggests an upper-level source of these <span class="hlt">waves</span>. It is proposed that the eastward-tilting <span class="hlt">waves</span> were forced by the nonlinear interaction of stationary <span class="hlt">waves</span> and baroclinically unstable cyclone-scale <span class="hlt">waves</span>. The predicted vertical tilt and phase speed were consistent with the observations. In addition, simulations of a general circulation model were analyzed. In the control run, eastward-tilting <span class="hlt">waves</span> disappeared when the sources of stationary <span class="hlt">waves</span> were removed. This is consistent with the present theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12081665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12081665"><span>Multiple <span class="hlt">zonal</span> projections of the nucleus reticularis tegmenti pontis to the cerebellar cortex of the rat.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serapide, M F; Parenti, R; Pantò, M R; Zappalà, A; Cicirata, F</p> <p>2002-06-01</p> <p>Compartmentalization (alternating labelled and unlabelled stripes) of mossy fibre terminals was found in the cerebellar cortex after iontophoretic injections of biotinylated dextran amine into discrete regions of the nucleus reticularis tegmenti pontis (NRTP). The <span class="hlt">zonal</span> <span class="hlt">pattern</span> was only observed when volumes of nuclear tissue ranging from 4.5 x 106 to 17.66 x 106 microm3 were impregnated. Up to nine compartments (i.e. up to five stripes separated by four interstripes) were found in crus I and in vermal lobule VI. Up to seven compartments (four stripes and three interstripes) were found in crus II; up to five compartments (three stripes and two interstripes) were identified in the lobulus simplex, the paraflocculus and vermal lobules IV, V and VII; up to three compartments (two stripes and <span class="hlt">one</span> interstripe) were identified in the paramedian lobule and, finally, up to two compartments (<span class="hlt">one</span> stripe and <span class="hlt">one</span> interstripe) were identified in the copula pyramidis, in the flocculus and in vermal lobules II, III, VIII and IX. The projections of the NRTP are arranged according to a divergent/convergent projection <span class="hlt">pattern</span>. From single injections in the NRTP, projections were traced to a set of cortical stripes widely distributed over the cerebellar cortex. The set of stripes labelled from different regions of the NRTP partially overlapped but complete overlap was never found. This finding revealed that the topographic combination of the projections of the NRTP to the cerebellar cortex is specific for each region of the NRTP. Finally, the projections to single cortical areas were arranged according to a <span class="hlt">pattern</span> of compartmentalization that is specific for each cortical area, independent of the site of injection in the NRTP and of the number of stripes evident in the cortex.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..214S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..214S"><span>Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sidorova, L. N.; Filippov, S. V.</p> <p>2018-03-01</p> <p>A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal <span class="hlt">waves</span>. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal <span class="hlt">waves</span> on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the <span class="hlt">zonal</span> thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal <span class="hlt">wave</span> is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the <span class="hlt">zonal</span> wind associated with DE3 tidal <span class="hlt">waves</span> can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AdG....17...13L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AdG....17...13L"><span>Links of the significant <span class="hlt">wave</span> height distribution in the Mediterranean sea with the Northern Hemisphere teleconnection <span class="hlt">patterns</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lionello, P.; Galati, M. B.</p> <p>2008-06-01</p> <p>This study analyzes the link between the SWH (Significant <span class="hlt">Wave</span> Height) distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure) teleconnection <span class="hlt">patterns</span>. The SWH distribution is computed using the WAM (<span class="hlt">WAve</span> Model) forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958-2001. The time series of mid-latitude teleconnection <span class="hlt">patterns</span> are downloaded from the NOAA web site. This study shows that several mid-latitude <span class="hlt">patterns</span> are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic <span class="hlt">Pattern</span> (EA), Scandinavian <span class="hlt">Pattern</span> (SCA), North Atlantic Oscillation (NAO), East Atlantic/West Russia <span class="hlt">Pattern</span> (EA/WR) and East Pacific/ North Pacific <span class="hlt">Pattern</span> (EP/NP). Though the East Atlantic <span class="hlt">pattern</span> exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other <span class="hlt">patterns</span>. Some link results from possibly spurious structures. <span class="hlt">Patterns</span> which have a very different global structure are associated to similar spatial features of the <span class="hlt">wave</span> variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection <span class="hlt">patterns</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPPP8031C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPPP8031C"><span>Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent <span class="hlt">Zonal</span> Flows</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cohen, Bruce; Umansky, Maxim</p> <p>2013-10-01</p> <p>Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent <span class="hlt">zonal</span> flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (<span class="hlt">zonal</span> flow generation). We present simulations with/without <span class="hlt">zonal</span> flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent <span class="hlt">zonal</span> flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950048117&hterms=wave&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthe%2B5%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950048117&hterms=wave&qs=N%3D0%26Ntk%3DTitle%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthe%2B5%2Bwave"><span>Observations of the 5-day <span class="hlt">wave</span> in the mesosphere and lower thermosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, D. L.; Hays, P. B.; Skinner, W. R.</p> <p>1994-01-01</p> <p>The 5-day planetary <span class="hlt">wave</span> has been detected in the winds measured by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) in the mesosphere and lower thermosphere (50-110 km). The appearances of the 5-day <span class="hlt">wave</span> are transient, with a lifetime of 10-20 days in the two-year data set. The structures of selected 5-day <span class="hlt">wave</span> events are in generally good agreement with the (1,1) Rossby normal mode for both <span class="hlt">zonal</span> and meridional components. A climatology of the 5-day <span class="hlt">wave</span> is presented for an altitude of 95 km and latitudes mainly between 40 deg S and 40 deg N.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12541096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12541096"><span>On-line noninvasive <span class="hlt">one</span>-point measurements of pulse <span class="hlt">wave</span> velocity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harada, Akimitsu; Okada, Takashi; Niki, Kiyomi; Chang, Dehua; Sugawara, Motoaki</p> <p>2002-12-01</p> <p>Pulse <span class="hlt">wave</span> velocity (PWV) is a basic parameter in the dynamics of pressure and flow <span class="hlt">waves</span> traveling in arteries. Conventional on-line methods of measuring PWV have mainly been based on "two-point" measurements, i.e., measurements of the time of travel of the <span class="hlt">wave</span> over a known distance. This paper describes two methods by which on-line "<span class="hlt">one</span>-point" measurements can be made, and compares the results obtained by the two methods. The principle of <span class="hlt">one</span> method is to measure blood pressure and velocity at a point, and use the water-hammer equation for forward traveling <span class="hlt">waves</span>. The principle of the other method is to derive PWV from the stiffness parameter of the artery. Both methods were realized by using an ultrasonic system which we specially developed for noninvasive measurements of <span class="hlt">wave</span> intensity. We applied the methods to the common carotid artery in 13 normal humans. The regression line of the PWV (m/s) obtained by the former method on the PWV (m/s) obtained by the latter method was y = 1.03x - 0.899 (R(2) = 0.83). Although regional PWV in the human carotid artery has not been reported so far, the correlation between the PWVs obtained by the present two methods was so high that we are convinced of the validity of these methods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27344032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27344032"><span>Laboratory comparison of cyclic fatigue resistance of <span class="hlt">WaveOne</span> Gold, Reciproc and <span class="hlt">WaveOne</span> files in canals with a double curvature.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Topçuoğlu, H S; Düzgün, S; Aktı, A; Topçuoğlu, G</p> <p>2017-07-01</p> <p>To compare the resistance to cyclic fatigue of <span class="hlt">WaveOne</span> Gold (WOG), Reciproc and <span class="hlt">WaveOne</span> (WO) nickel-titanium files in an artificial root canal with a double (S-shaped) curvature. A total of 120 new WOG primary, Reciproc R25 and WO primary files were tested in an artificial, stainless steel canal with an S-shape (diameter, 1.4 mm and length, 18 mm). Forty files from each system were rotated until fracture to calculate the number of cycles to failure (NCF). The length of each fractured fragment was recorded. Data were analysed using <span class="hlt">one</span>-way analysis of variance and Tukey's post hoc tests. The WOG primary (apical curvature: 928.87 ± 293.69; coronal curvature 1102.32 ±397.39 NCF) had higher cyclic fatigue resistance than Reciproc R25 and WO primary in the apical and coronal curvatures (P < 0.05). The Reciproc R25 file (745.63 ± 253.49 NCF) had significantly greater cyclic fatigue resistance than the WO primary (583.89 ± 183.38 NCF) in the apical curvature (P < 0.05). There was no significant difference in the cyclic fatigue resistance of the Reciproc R25 and WO files in the coronal curvature (883.63 ± 282.56 and 916.53 ± 268.21 NCF, respectively) (P > 0.05). There was no difference in fractured fragment lengths of the WOG primary, Reciproc R25, and WO primary files in either the apical or coronal curvature (P > 0.05). <span class="hlt">WaveOne</span> Gold primary files exhibited greater cyclic fatigue resistance than Reciproc R25 and WO primary in an artificial canal with an S-shape. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950035307&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950035307&hterms=rolando+garcia&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drolando%2Bgarcia"><span>Planetary-scale circulations in the presence of climatological and <span class="hlt">wave</span>-induced heating</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salby, Murry L; Garcia, Rolando R.; Hendon, Harry H.</p> <p>1994-01-01</p> <p>Interaction between the large-scale circulation and the convective <span class="hlt">pattern</span> is investigated in a coupled system governed by the linearized primitive equations. Convection is represented in terms of two components of heating: A 'climatological component' is prescribed stochastically to represent convection that is maintained by fixed distributions of land and sea and sea surface temperature (SST). An 'induced component' is defined in terms of the column-integrated moisture flux convergence to represent convection that is produced through feedback with the circulation. Each component describes the envelope organizing mesoscale convective activity. As SST on the equator is increased, induced heating amplifies in the gravest <span class="hlt">zonal</span> wavenumbers at eastward frequencies, where positive feedback offsets dissipation. Under barotropic stratification, a critical SST of 29.5 C results in positive feedback exactly cancelling dissipation in wavenumber 1 for an eastward phase speed of 6 m/s. Sympathetic interaction between the circulation and the induced heating is the basis for 'frictional <span class="hlt">wave</span>-Conditional Instability of the Second Kind (CISK)', which is distinguished from classical <span class="hlt">wave</span>-CISK by rendering the gravest <span class="hlt">zonal</span> dimensions most unstable. Under baroclinic stratification, the coupled system exhibits similar behavior. The critical SST is only 26.5 C for conditions representative of equinox, but in excess of 30 C for conditions representative of solstice. Having the form of an unsteady Walker circulation, the disturbance produced by frictional <span class="hlt">wave</span>-CISK compares favorably with the observed life cycle of the Madden-Julian oscillation (MJO). SST above the critical value produces an amplifying disturbance in which enhanced convection coincides with upper-tropospheric westerlies and is positively correlated with temperature and surface convergence. Conversely, SST below the critical value produces a decaying disturbance in which enhanced convection coincides with upper</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030093552','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030093552"><span>Inertio Gravity <span class="hlt">Waves</span> in the Upper Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such <span class="hlt">waves</span> are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity <span class="hlt">waves</span> (IGW). Like the planetary <span class="hlt">waves</span> (PW) in the model, the IGWs are generated by instabilities that arise in the mean <span class="hlt">zonal</span> circulation. In addition to stationary <span class="hlt">waves</span> for m = 0, eastward and westward propagating <span class="hlt">waves</span> for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950004267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950004267"><span>Ozone and stratospheric height <span class="hlt">waves</span> for opposite phases of the QBO</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mo, Kingtse C.; Nogues-Paegle, Julia</p> <p>1994-01-01</p> <p>The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced <span class="hlt">wave</span> activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary <span class="hlt">waves</span> 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary <span class="hlt">waves</span> break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone <span class="hlt">patterns</span>, as obtained form satellite observations, appear to be affected by planetary <span class="hlt">wave</span> breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit <span class="hlt">zonal</span> <span class="hlt">wave</span> 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary <span class="hlt">wave</span> advecting a passive tracer. In this paper, the dominant <span class="hlt">patterns</span> of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3460R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3460R"><span><span class="hlt">One</span>-Hertz <span class="hlt">Waves</span> at Mars: MAVEN Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruhunusiri, Suranga; Halekas, J. S.; Espley, J. R.; Eparvier, F.; Brain, D.; Mazelle, C.; Harada, Y.; DiBraccio, G. A.; Thiemann, E. M. B.; Larson, D. E.; Mitchell, D. L.; Jakosky, B. M.; Sulaiman, A. H.</p> <p>2018-05-01</p> <p>We perform a survey of 1-Hz <span class="hlt">waves</span> at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz <span class="hlt">wave</span> occurrence rate shows an apparent variation caused by masking of the <span class="hlt">waves</span> by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select <span class="hlt">waves</span> that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the <span class="hlt">wave</span> occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz <span class="hlt">wave</span> generation. We find that the <span class="hlt">wave</span> occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz <span class="hlt">waves</span> satisfy the group-standing condition, which suggests that a high percentage of the <span class="hlt">waves</span> seen as monochromatic <span class="hlt">waves</span> in the spacecraft frame can be broadband <span class="hlt">waves</span> in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the <span class="hlt">wave</span> occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the <span class="hlt">wave</span> generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz <span class="hlt">waves</span> are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMetR..31..295Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMetR..31..295Z"><span>A special MJO event with a double Kelvin <span class="hlt">wave</span> structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Lili; Li, Tim</p> <p>2017-04-01</p> <p>The second Madden-Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin <span class="hlt">wave</span> component. The <span class="hlt">zonal</span> phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin <span class="hlt">wave</span> phase speeds. The convection and circulation anomalies associated with the Kelvin <span class="hlt">wave</span> component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a <span class="hlt">zonal</span> wind-pressure phase relationship is consistent with the equatorial free-<span class="hlt">wave</span> dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection. The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFMGP23A..04H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFMGP23A..04H"><span>Statistically Assessing Time-Averaged and Paleosecular Variation Field Models Against Paleomagnetic Directional Data Sets. Can Likely non-<span class="hlt">Zonal</span> Features be Detected in a Robust way ?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hulot, G.; Khokhlov, A.</p> <p>2007-12-01</p> <p>We recently introduced a method to rigorously test the statistical compatibility of combined time-averaged (TAF) and paleosecular variation (PSV) field models against any lava flow paleomagnetic database (Khokhlov et al., 2001, 2006). Applying this method to test (TAF+PSV) models against synthetic data produced from those shows that the method is very efficient at discriminating models, and very sensitive, provided those data errors are properly taken into account. This prompted us to test a variety of published combined (TAF+PSV) models against a test Bruhnes stable polarity data set extracted from the Quidelleur et al. (1994) data base. Not surprisingly, ignoring data errors leads all models to be rejected. But taking data errors into account leads to the stimulating conclusion that at least <span class="hlt">one</span> (TAF+PSV) model appears to be compatible with the selected data set, this model being purely axisymmetric. This result shows that in practice also, and with the data bases currently available, the method can discriminate various candidate models and decide which actually best fits a given data set. But it also shows that likely non-<span class="hlt">zonal</span> signatures of non-homogeneous boundary conditions imposed by the mantle are difficult to identify as statistically robust from paleomagnetic directional data sets. In the present paper, we will discuss the possibility that such signatures could eventually be identified as robust with the help of more recent data sets (such as the <span class="hlt">one</span> put together under the collaborative "TAFI" effort, see e.g. Johnson et al. abstract #GP21A-0013, AGU Fall Meeting, 2005) or by taking additional information into account (such as the possible coincidence of non-<span class="hlt">zonal</span> time-averaged field <span class="hlt">patterns</span> with analogous <span class="hlt">patterns</span> in the modern field).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28345645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28345645"><span>Influence of Anthropogenic Climate Change on Planetary <span class="hlt">Wave</span> Resonance and Extreme Weather Events.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim</p> <p>2017-03-27</p> <p>Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby <span class="hlt">waves</span> within a particular wavelength range (<span class="hlt">zonal</span> wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale <span class="hlt">waves</span> with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the <span class="hlt">zonal</span> mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910028506&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910028506&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwave%2Boscillation"><span>Kelvin <span class="hlt">wave</span>-induced trace constituent oscillations in the equatorial stratosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Randel, William J.</p> <p>1990-01-01</p> <p>Kelvin <span class="hlt">wave</span> induced oscillations in ozone (O3), water vapor (H2O), nitric acid (HNO3) and nitrogen dioxide (NO2) in the equatorial stratosphere are analyzed using Limb Infrared Monitor of the Stratosphere (LIMS) data. Power and cross-spectrum analyses reveal coherent eastward propagating <span class="hlt">zonal</span> <span class="hlt">wave</span> 1 and 2 constituent fluctuations, due to the influence of Kelvin <span class="hlt">waves</span> previously documented in the LIMS data. Comparison is made between a preliminary and the archival versions of the LIMS data; significant differences are found, demonstrating the sensitivity of constituent retrievals to derived temperature profiles. Because Kelvin <span class="hlt">waves</span> have vanishing meridional velocity, analysis of tracer transport in the meridional plane is substantially simplified. Kelvin <span class="hlt">wave</span> vertical advection is demonstrated by coherent, in-phase temperature-tracer oscillations, co-located near regions of strong background vertical gradients.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19789740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19789740"><span>Acoustic tweezers: <span class="hlt">patterning</span> cells and microparticles using standing surface acoustic <span class="hlt">waves</span> (SSAW).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun</p> <p>2009-10-21</p> <p>Here we present an active <span class="hlt">patterning</span> technique named "acoustic tweezers" that utilizes standing surface acoustic <span class="hlt">wave</span> (SSAW) to manipulate and <span class="hlt">pattern</span> cells and microparticles. This technique is capable of <span class="hlt">patterning</span> cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active <span class="hlt">patterning</span> methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121..410H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121..410H"><span>The impact of <span class="hlt">wave</span>-induced Coriolis-Stokes forcing on satellite-derived ocean surface currents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hui, Zhenli; Xu, Yongsheng</p> <p>2016-01-01</p> <p>Ocean surface currents estimated from the satellite data consist of two terms: Ekman currents from the wind stress and geostrophic currents from the sea surface height (SSH). But the classical Ekman model does not consider the <span class="hlt">wave</span> effects. By taking the <span class="hlt">wave</span>-induced Coriolis-Stokes forcing into account, the impact of <span class="hlt">waves</span> (primarily the Stokes drift) on ocean surface currents is investigated and the <span class="hlt">wave</span>-modified currents are formed. The products are validated by comparing with OSCAR currents and Lagrangian drifter velocity. The result shows that our products with the Stokes drift are better adapted to the in situ Lagrangian drifter currents. Especially in the Southern Ocean region (40°S-65°S), 90% (91%) of the <span class="hlt">zonal</span> (meridional) currents have been improved compared with currents that do not include Stokes drift. The correlation (RMSE) in the Southern Ocean has also increased (decreased) from 0.78 (13) to 0.81 (10.99) for the <span class="hlt">zonal</span> component and 0.76 (10.87) to 0.79 (10.09) for the meridional component. This finding provides the evidence that <span class="hlt">waves</span> indeed play an important role in the ocean circulation, and need to be represented in numerical simulations of the global ocean circulation. This article was corrected on 10 FEB 2016. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900063522&hterms=moisture+condensation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmoisture%2Bcondensation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900063522&hterms=moisture+condensation&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmoisture%2Bcondensation"><span>Development of a two-dimensional <span class="hlt">zonally</span> averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stone, Peter H.; Yao, Mao-Sung</p> <p>1990-01-01</p> <p>A number of perpetual January simulations are carried out with a two-dimensional <span class="hlt">zonally</span> averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with <span class="hlt">zonally</span> symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic <span class="hlt">wave</span> due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28384671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28384671"><span>Acute <span class="hlt">Zonal</span> Cone Photoreceptor Outer Segment Loss.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A</p> <p>2017-05-01</p> <p>The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute <span class="hlt">zonal</span> occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute <span class="hlt">zonal</span> occult outer retinopathy complex. Acute <span class="hlt">zonal</span> occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29675760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29675760"><span>Comparison of efficiency of the retreatment procedure between <span class="hlt">Wave</span> <span class="hlt">One</span> Gold and <span class="hlt">Wave</span> <span class="hlt">One</span> systems by Micro-CT and confocal microscopy: an in vitro study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Canali, Lyz Cristina Furquim; Duque, Jussaro Alves; Vivan, Rodrigo Ricci; Bramante, Clovis Monteiro; Só, Marcus Vinícius Reis; Duarte, Marco Antonio Hungaro</p> <p>2018-04-19</p> <p>To compare, by Micro-CT and confocal laser scanning microscopy (CLSM), the ability of the <span class="hlt">Wave</span> <span class="hlt">One</span> Gold and <span class="hlt">Wave</span> <span class="hlt">One</span> systems to remove filling material from mesial canals of mandibular molars, effective time spent; quantity of extruded material, and percentage of sealer in the dentinal tubules after retreatment and re-obturation procedures. Ten first mandibular molars (n = 20 mesial canals) were prepared and filled with gutta-percha and Endofill sealer mixed with Rhodamine B dye using the single cone technique. After 7 days, the canals were scanned using a high-definition micro-computer tomography with 19-mm voxel size and divided into two groups (n = 10) according to the system used in retreatment: group 1, <span class="hlt">Wave</span> <span class="hlt">One</span> (WO), and group 2, <span class="hlt">Wave</span> <span class="hlt">One</span> Gold (WG). After removing filling material with the primary file of each system, the WO 40/.08 and WG 35/.06 files were used. After using each file, a new scanning was performed and the residual filling material and extruded filling material were measured. The effective time spent to remove the canal filling was measured after each instrument. After retreatment, the teeth were re-obturated with gutta-percha and AH Plus sealer mixed with fluorescein dye using the single-cone technique. The roots were sectioned at 2, 4 and 6 mm and analysed by CLSM to measure the percentage of remaining sealer and the sealer of the new root canal filling. The data were statistically compared (P < 0.05). Both systems presented a similar volume of filling material remaining in the canals after the use of the two instruments, similar residual and new material in the dentinal tubules, and similar extrusion of material (P > 0.05). When using WO 25, the operator spent significantly less effective time than when using WG 25 (P < 0.05); however, use of WG 35 and WO 40 required a similar time to remove filling material from the canals (P > 0.05). Neither of the two systems removed all the filling material. The WG system</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860019836','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860019836"><span>The effect of breaking gravity <span class="hlt">waves</span> on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garcia, R. R.</p> <p>1986-01-01</p> <p>The influence of breaking gravity <span class="hlt">waves</span> on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity <span class="hlt">wave</span> momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity <span class="hlt">waves</span>. It is found that <span class="hlt">wave</span> momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the <span class="hlt">zonal</span> wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity <span class="hlt">waves</span> play a major role in determining the <span class="hlt">zonally</span>-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShMeS.tmp....6I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShMeS.tmp....6I"><span>Laser Shock <span class="hlt">Wave</span>-Assisted <span class="hlt">Patterning</span> on NiTi Shape Memory Alloy Surfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer</p> <p>2018-01-01</p> <p>Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface <span class="hlt">patterns</span>. <span class="hlt">Patterned</span> microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface <span class="hlt">patterns</span> with tailorable sizes can be obtained. The depth of the <span class="hlt">patterns</span> increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress <span class="hlt">wave</span> closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress <span class="hlt">wave</span> were found in our simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ShMeS...4..146I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ShMeS...4..146I"><span>Laser Shock <span class="hlt">Wave</span>-Assisted <span class="hlt">Patterning</span> on NiTi Shape Memory Alloy Surfaces</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer</p> <p>2018-03-01</p> <p>Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface <span class="hlt">patterns</span>. <span class="hlt">Patterned</span> microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface <span class="hlt">patterns</span> with tailorable sizes can be obtained. The depth of the <span class="hlt">patterns</span> increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress <span class="hlt">wave</span> closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress <span class="hlt">wave</span> were found in our simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15..635A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15..635A"><span>Statistics of extreme <span class="hlt">waves</span> in the framework of <span class="hlt">one</span>-dimensional Nonlinear Schrodinger Equation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agafontsev, Dmitry; Zakharov, Vladimir</p> <p>2013-04-01</p> <p>We examine the statistics of extreme <span class="hlt">waves</span> for <span class="hlt">one</span>-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-<span class="hlt">wave</span> interactions - on the statistics of <span class="hlt">waves</span> in the framework of generalized NLS equation accounting for six-<span class="hlt">wave</span> interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal <span class="hlt">wave</span> for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of <span class="hlt">one</span>-dimensional <span class="hlt">wave</span> turbulence. In the integrable case the turbulence is called integrable and relaxes to <span class="hlt">one</span> of infinite possible stationary states. Addition of six-<span class="hlt">wave</span> interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for <span class="hlt">waves</span> amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large <span class="hlt">waves</span> and a "breathing region" for middle <span class="hlt">waves</span> with oscillations of the frequency of <span class="hlt">waves</span> appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-<span class="hlt">wave</span> interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P44A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P44A..03K"><span>Periodical oscillation of <span class="hlt">zonal</span> wind velocities at the cloud top of Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y.</p> <p>2010-12-01</p> <p><span class="hlt">Zonal</span> wind velocity of Venus increases with height and reaches about 100 m s-1 at the cloud top level (~70km). The speed is approximately 60 times faster than the rotation speed of the solid body of Venus (~1.6 m s-1, at the equator) and this phenomenon is called a "super-rotation". From previous observations, it is known that the super-rotation changes on a long timescale. At the cloud top level, it was suggested that the super-rotation has a few years period oscillation based on observations made by Pioneer Venus orbiter of USA from 1979 to 1985 (Del Genio et al.,1990). However, the period, the amplitude, the spatial structure and the mechanism of the long period oscillation have not been understood well. Venus Express (VEX) of European Space Agency has been observing Venus since its orbital insertion in April 2006. Venus Monitoring Camera (VMC) onboard VEX has an ultra violet (UV) filter (365 nm), and VMC has taken day-side cloud images at the cloud top level with this filter. Such images exhibit various cloud features made by unknown UV absorber in the atmosphere. For investigating the characteristics of long-timescale variations of the super-rotation, we analyzed <span class="hlt">zonal</span> velocity fields derived from UV cloud images from May 2006 to January 2010 using a cloud tracking method. UV imaging of VMC is done when the spacecraft is in the ascending portion of its elongated polar orbit. Since the orbital plane is nearly fixed in the inertial space, the local time of VMC/UV observation changes with a periodicity of <span class="hlt">one</span> Venus year. As a result, periods when VMC observation covered day-side areas of Venus, large enough for cloud trackings, are not continuous. For deriving wind velocities we were able to use cloud images taken in 280 orbits during this period. The derived <span class="hlt">zonal</span> wind velocity from 10°S to 40°S latitude shows a prominent year-to-year variation, and the variation is well fitted by a periodical oscillation with a period of about 260 Earth days, although not all</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922183','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4922183"><span>Role of quasiresonant planetary <span class="hlt">wave</span> dynamics in recent boreal spring-to-autumn extreme events</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Petoukhov, Vladimir; Petri, Stefan; Rahmstorf, Stefan; Coumou, Dim; Kornhuber, Kai; Schellnhuber, Hans Joachim</p> <p>2016-01-01</p> <p>In boreal spring-to-autumn (May-to-September) 2012 and 2013, the Northern Hemisphere (NH) has experienced a large number of severe midlatitude regional weather extremes. Here we show that a considerable part of these extremes were accompanied by highly magnified quasistationary midlatitude planetary <span class="hlt">waves</span> with <span class="hlt">zonal</span> <span class="hlt">wave</span> numbers m = 6, 7, and 8. We further show that resonance conditions for these planetary <span class="hlt">waves</span> were, in many cases, present before the onset of high-amplitude <span class="hlt">wave</span> events, with a lead time up to 2 wk, suggesting that quasiresonant amplification (QRA) of these <span class="hlt">waves</span> had occurred. Our results support earlier findings of an important role of the QRA mechanism in amplifying planetary <span class="hlt">waves</span>, favoring recent NH weather extremes. PMID:27274064</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49..113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49..113C"><span>Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere <span class="hlt">zonal</span>-mean circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clem, Kyle R.; Renwick, James A.; McGregor, James</p> <p>2017-07-01</p> <p>During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive <span class="hlt">zonal</span>-mean <span class="hlt">zonal</span> wind trend between 50 and 60°S during DJF ( 35 % of the interannual variability), and around half of the observed positive <span class="hlt">zonal</span>-mean <span class="hlt">zonal</span> wind trend during MAM ( 15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when <span class="hlt">zonal</span> wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing <span class="hlt">zonal</span> wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900052613&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900052613&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>Air motions accompanying the development of a planetary <span class="hlt">wave</span> critical layer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salby, Murry L.; O'Sullivan, Donal; Callaghan, Patrick; Garcia, Rolando R.</p> <p>1990-01-01</p> <p>The horizontal air motions accompanying the development of a planetary <span class="hlt">wave</span> critical layer are presently investigated on the sphere, in terms of <span class="hlt">wave</span> amplitude, the characteristics of the <span class="hlt">zonal</span> flow, and dissipation. While attention is given to adiabatic motions, which should furnish an upper bound on the redistribution of conserved quantities by eddy stirring, nonconservative processes may be important in determining how large a role eddy stirring actually plays in the redistribution of atmospheric constituents. Nonconservative processes may also influence tracer distributions by directly affecting dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25920861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25920861"><span>Exploring the resonant vibration of thin plates: Reconstruction of Chladni <span class="hlt">patterns</span> and determination of resonant <span class="hlt">wave</span> numbers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F</p> <p>2015-04-01</p> <p>The Chladni nodal line <span class="hlt">patterns</span> and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving <span class="hlt">wave</span> number for reconstructing experimental Chladni <span class="hlt">patterns</span>. The resonant <span class="hlt">wave</span> numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant <span class="hlt">wave</span> numbers into the derived response function, all experimental Chladni <span class="hlt">patterns</span> can be excellently reconstructed. More importantly, the dispersion relationship for the flexural <span class="hlt">wave</span> of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant <span class="hlt">wave</span> numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095901','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4095901"><span>High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of <span class="hlt">zonal</span> detached eddy simulation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua</p> <p>2014-01-01</p> <p>This paper provides an up-to-date survey of the use of <span class="hlt">zonal</span> detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of <span class="hlt">zonal</span> or non-<span class="hlt">zonal</span> treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent <span class="hlt">zonalization</span> is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3496E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3496E"><span>A climatology of gravity <span class="hlt">wave</span> parameters based on satellite limb soundings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin</p> <p>2017-04-01</p> <p>Gravity <span class="hlt">waves</span> are <span class="hlt">one</span> of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity <span class="hlt">waves</span>. Horizontal scales of gravity <span class="hlt">waves</span> are in the range of tens to a few thousand kilometers. Gravity <span class="hlt">wave</span> source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity <span class="hlt">waves</span> on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity <span class="hlt">waves</span> are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity <span class="hlt">wave</span> distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity <span class="hlt">wave</span> parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity <span class="hlt">wave</span> distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only <span class="hlt">one</span> of those parameters. We present a climatology of typical average global distributions and of <span class="hlt">zonal</span> averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity <span class="hlt">waves</span>, as well as limitations of our method of deriving gravity <span class="hlt">wave</span> parameters from satellite data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JAtS...42.1873D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JAtS...42.1873D"><span>Rocket Observations of Kelvin <span class="hlt">Waves</span> in the Upper Stratosphere over India.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devarajan, M.; Reddy, C. A.; Ragrava Reddi, C.</p> <p>1985-09-01</p> <p>The upper atmospheric winds (20-40 km) at two Indian stations, Sriharikota Range (SHAR 13.7°N, 80.2°E) and Balasore (2 1.5°N, 86.93°E) during the years 1979-80 were analyzed for short scale vertical variations (6-16 km) of the <span class="hlt">zonal</span> wind. The analysis involves high-pass filtering of the wind profiles to extract the short-scale wavelike perturbations and Fourier analysis of the <span class="hlt">wave</span> disturbances.The results of the analysis are presented. The dominant vertical wavelengths are in the 6-12 km range in 67% of the observed cases, and the amplitudes are significantly larger during the easterly background wind. The amplitudes are systematically larger by about a factor of 2 at Sriharikota (13.7°N) than at 1Wasore (21.5°N). Corresponding <span class="hlt">wave</span> perturbations are absent in the meridional wind in as much as 70% of the observations. These characteristics lead to the conclusion that the observed wavelike disturbances are the manifestation of Kelvin <span class="hlt">waves</span> in the upper stratosphere. In some cases, the periods of the <span class="hlt">waves</span> are inferred to be in the range of 4-8 days. The short vertical wavelengths, together with the shorter periods, indicate the possible dominance of <span class="hlt">zonal</span> wavenumber 2 during many disturbance events.The observations of the <span class="hlt">wave</span> activity in relation to the semiannual oscillation (SAO) and the annual oscillation (AO) show that 1) the more active periods correspond to the easterly phase of the SAO in the middle stratosphere and that 2) the <span class="hlt">wave</span> activity persists for a longer duration when both the AO and SAO are in easterly phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/924607','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/924607"><span>Diffusion of <span class="hlt">Zonal</span> Variables Using Node-Centered Diffusion Solver</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, T B</p> <p>2007-08-06</p> <p>Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of <span class="hlt">zonal</span> variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor <span class="hlt">zonal</span> sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25f2306H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25f2306H"><span>Dynamics of <span class="hlt">zonal</span> shear collapse with hydrodynamic electrons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.</p> <p>2018-06-01</p> <p>This paper presents a theory for the collapse of the edge <span class="hlt">zonal</span> shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to <span class="hlt">zonal</span> flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of <span class="hlt">zonal</span> flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α < 1), the particle flux Γn is enhanced and the turbulent viscosity χy increases. However, the residual flux Πres—which drives the flow—drops with α. As a result, the mean vorticity gradient ∇2v¯ y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000118274&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000118274&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter"><span>Modeling the Dynamics of the Middle Atmosphere and Lower Thermosphere Under the Influence of Gravity <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>Our Numerical Spectral Model (NSM), which extends from the ground up into the thermosphere, is non-linear, time-dependent and has been employed for 2D and 3D applications. The standard version of the NSM incorporates Hines' Doppler Spread Parameterization for small scale gravity <span class="hlt">waves</span> (GW), but planetary <span class="hlt">waves</span> generated in the troposphere have also been incorporated. The NSM has been applied to describe: (1) the anomalous seasonal variations of the <span class="hlt">zonal</span> circulation and temperature in the upper mesosphere, (2) the equatorial oscillations (quasi-biennial and semi-annual oscillations (QBO and SAO)) extending from the stratosphere into the upper mesosphere, (3) the diurnal and semi-diurnal tides, and (4) the planetary <span class="hlt">waves</span> that are excited in the mesosphere. With the emphasis to provide understanding, we present here results from numerical experiments with the NSM that shed light on the GW processes that are of central importance in the mesosphere and lower thermosphere. These are our conclusions: (1) The large semiannual variations in the diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary <span class="hlt">waves</span>. The DT, like planetary <span class="hlt">waves</span>, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength, but variations in eddy viscosity associated with GW interactions are also important. (2) The semidiurnal tide (SDT) and its phase in particular, is strongly influenced by the mean <span class="hlt">zonal</span> circulation. The SDT, individually, is also amplified by GW. But the DT filters out GW such that the GW interaction effectively reduces the amplitude of the SDT, producing a strong nonlinear interaction between the DT and SDT. (3) Without external time dependent energy or momentum sources, planetary <span class="hlt">waves</span> (PW) are generated in the model for <span class="hlt">zonal</span> wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 40 m/s and periods between 50 and 2 days. The <span class="hlt">waves</span> are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28478764','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28478764"><span>Stability and change in dietary scores and <span class="hlt">patterns</span> across six <span class="hlt">waves</span> of the Longitudinal Study of Australian Children.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gasser, Constantine E; Kerr, Jessica A; Mensah, Fiona K; Wake, Melissa</p> <p>2017-04-01</p> <p>This study aimed to derive and compare longitudinal trajectories of dietary scores and <span class="hlt">patterns</span> from 2-3 to 10-11 years and from 4-5 to 14-15 years of age. In <span class="hlt">waves</span> two to six of the Baby (B) Cohort and <span class="hlt">one</span> to six of the Kindergarten (K) Cohort of the population-based Longitudinal Study of Australian Children, parents or children reported biennially on the study child's consumption of twelve to sixteen healthy and less healthy food or drink items for the previous 24 h. For each <span class="hlt">wave</span>, we derived a dietary score from 0 to 14, based on the 2013 Australian Dietary Guidelines (higher scores indicating healthier diet). We then used factor analyses to empirically derive dietary <span class="hlt">patterns</span> for separate <span class="hlt">waves</span>. Using group-based trajectory modelling, we generated trajectories of dietary scores and empirical <span class="hlt">patterns</span> in 4504 B and 4640 K Cohort children. Four similar trajectories of dietary scores emerged for the B and K Cohorts, containing comparable proportions of children in each cohort: 'never healthy' (8·8 and 11·9 %, respectively), 'moderately healthy' (24·0 and 20·7 %), 'becoming less healthy' (16·6 and 27·3 %) and 'always healthy' (50·7 and 40·2 %). Deriving trajectories based on dietary <span class="hlt">patterns</span>, rather than dietary scores, produced similar findings. For 'becoming less healthy' trajectories, dietary quality appeared to worsen from 7 years of age in both cohorts. In conclusion, a brief dietary measure administered repeatedly across childhood generated robust, nuanced dietary trajectories that were replicable across two cohorts and two methodologies. These trajectories appear ideal for future research into dietary determinants and health outcomes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA13C4018C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA13C4018C"><span>On the Longitudinal Morphology of <span class="hlt">Zonal</span> Irregularity Drift Measured using Networks of GPS Scintillation Monitors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.</p> <p>2014-12-01</p> <p>A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of <span class="hlt">zonal</span> irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly <span class="hlt">zonal</span> and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the <span class="hlt">zonal</span> irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the <span class="hlt">zonal</span> drift, and hence the <span class="hlt">zonal</span> drift can be estimated with reasonable accuracy. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2084H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2084H"><span>Numerical simulation of phenomenon on <span class="hlt">zonal</span> disintegration in deep underground mining in case of unsupported roadway</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang</p> <p>2018-02-01</p> <p><span class="hlt">Zonal</span> disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for <span class="hlt">Zonal</span> disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, <span class="hlt">Zonal</span> disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce <span class="hlt">Zonal</span> disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.170...35K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.170...35K"><span>Effect of geomagnetic storms on the daytime low-latitude thermospheric <span class="hlt">wave</span> dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karan, Deepak K.; Pallamraju, Duggirala</p> <p>2018-05-01</p> <p>The equatorial- and low-latitude thermospheric dynamics is affected by both equatorial electrodynamics and neutral <span class="hlt">wave</span> dynamics, the relative variation of which is dependent on the prevalent background conditions, which in turn has a seasonal dependence. Depending on the ambient thermospheric conditions, varying effects of the geomagnetic disturbances on the equatorial- and low-latitude thermosphere are observed. To investigate the effect of these disturbances on the equatorial- and low-latitude neutral <span class="hlt">wave</span> dynamics, daytime airglow emission intensities at OI 557.7 nm, OI 630.0 nm, and OI 777.4 nm are used. These emissions from over a large field-of-view (FOV∼1000) have been obtained using a high resolution slit spectrograph, MISE (Multiwavelength Imaging Spectrograph using Echelle grating), from a low-latitude location, Hyderabad (17.50N, 78.40E; 8.90N MLAT), in India. Variations of the dayglow emission intensities are investigated during three geomagnetic disturbance events that occurred in different seasons. It is seen that the neutral dayglow emission intensities at all the three wavelengths showed different type of variations with the disturbance storm time (Dst) index in different seasons. Even though the dayglow emission intensities over low-latitude regions are sensitive to the variation in the equatorial electric fields, during periods of geomagnetic disturbances, especially in solstices, these are dependent on thermospheric O/N2 values. This shows the dominance of neutral dynamics over electrodynamics in the low-latitude upper atmosphere during geomagnetic disturbances. Further, spectral analyses have been carried out to obtain the <span class="hlt">zonal</span> scale sizes in the gravity <span class="hlt">wave</span> regime and their diurnal distributions are compared for geomagnetic quiet and disturbed days. Broadly, the <span class="hlt">zonal</span> scales seem to be breaking into various scale sizes on days of geomagnetic disturbances when compared to those on quiet days. This contrast in the diurnal distribution of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMM%26M..15b1206S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMM%26M..15b1206S"><span>Theoretical study for aerial image intensity in resist in high numerical aperture projection optics and experimental verification with <span class="hlt">one</span>-dimensional <span class="hlt">patterns</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shibuya, Masato; Takada, Akira; Nakashima, Toshiharu</p> <p>2016-04-01</p> <p>In optical lithography, high-performance exposure tools are indispensable to obtain not only fine <span class="hlt">patterns</span> but also preciseness in <span class="hlt">pattern</span> width. Since an accurate theoretical method is necessary to predict these values, some pioneer and valuable studies have been proposed. However, there might be some ambiguity or lack of consensus regarding the treatment of diffraction by object, incoming inclination factor onto image plane in scalar imaging theory, and paradoxical phenomenon of the inclined entrance plane <span class="hlt">wave</span> onto image in vector imaging theory. We have reconsidered imaging theory in detail and also phenomenologically resolved the paradox. By comparing theoretical aerial image intensity with experimental <span class="hlt">pattern</span> width for <span class="hlt">one</span>-dimensional <span class="hlt">pattern</span>, we have validated our theoretical consideration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P33A2126V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P33A2126V"><span>Internal <span class="hlt">Waves</span> and <span class="hlt">Wave</span> Attractors in Enceladus' Subsurface Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.</p> <p>2016-12-01</p> <p><span class="hlt">One</span> of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe <span class="hlt">pattern</span> at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this <span class="hlt">pattern</span> are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe <span class="hlt">pattern</span> is formed and maintained by induced, tidally and rotationally driven, <span class="hlt">wave</span>-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such <span class="hlt">wave</span>-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of <span class="hlt">wave</span> attractors for a range of ocean shapes and stratifications. The intensification of the <span class="hlt">wave</span> field near the location of the surface reflections of <span class="hlt">wave</span> attractors has been numerically and experimentally confirmed. We measured the forces a <span class="hlt">wave</span> attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) <span class="hlt">wave</span> attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the <span class="hlt">wave</span> attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the <span class="hlt">wave</span> attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080007137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080007137"><span>A Link between Variability of the Semidiurnal Tide and Planetary <span class="hlt">Waves</span> in the Opposite Hemisphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Anne K.; Pancheva, Dora V.; Mitchell, Nicholas J.; Marsh, Daniel R.; Russell, James M., III; Mlynczak, Martin G.</p> <p>2007-01-01</p> <p>Horizontal wind observations over four years from the meteor radar at Esrange (68 deg N) are analyzed to determine the variability of the semidiurnal tide. Simultaneous global observations of temperature and geopotential from the SABER satellite instrument are used to construct time series of planetary <span class="hlt">wave</span> amplitudes and geostrophic mean <span class="hlt">zonal</span> wind. During NH summer and fall, the temporal variability of the semidiurnal tide at Esrange is found to be well correlated with the amplitude of planetary wavenumber 1 in the stratosphere in high southern latitudes (i.e., in the opposite hemisphere). The correlations indicate that a significant part of the tidal variations at Esrange is due to dynamical interactions in the Southern Hemisphere. Other times of the year do not indicate a corresponding robust correlation <span class="hlt">pattern</span> for the Esrange tides over multiple years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34010C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34010C"><span>Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity <span class="hlt">wave</span> field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael</p> <p>2017-11-01</p> <p>We investigate via direct numerical simulations the spontaneous generation and reversals of mean <span class="hlt">zonal</span> flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal <span class="hlt">waves</span>, the emergence of a mean flow in a convectively-generated internal gravity <span class="hlt">wave</span> field is not always possible because nonlinear interactions of <span class="hlt">waves</span> of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal <span class="hlt">waves</span> produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean <span class="hlt">zonal</span> flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NPGeo..12..671C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NPGeo..12..671C"><span>Statistical properties of nonlinear <span class="hlt">one</span>-dimensional <span class="hlt">wave</span> fields</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chalikov, D.</p> <p>2005-06-01</p> <p>A numerical model for long-term simulation of gravity surface <span class="hlt">waves</span> is described. The model is designed as a component of a coupled <span class="hlt">Wave</span> Boundary Layer/Sea <span class="hlt">Waves</span> model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear <span class="hlt">wave</span> fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface <span class="hlt">waves</span>. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential <span class="hlt">waves</span> to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes <span class="hlt">waves</span> for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of <span class="hlt">wave</span> fields with large number of modes for many periods of dominant <span class="hlt">waves</span>. The statistical characteristics of nonlinear <span class="hlt">wave</span> fields for <span class="hlt">waves</span> of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that <span class="hlt">wave</span> field may be presented as a superposition of linear <span class="hlt">waves</span> is valid only for small amplitudes. It is shown as well, that nonlinear <span class="hlt">wave</span> fields are rather a superposition of Stokes <span class="hlt">waves</span> not linear <span class="hlt">waves</span>. Potential flow, free surface, conformal mapping, numerical modeling of <span class="hlt">waves</span>, gravity <span class="hlt">waves</span>, Stokes <span class="hlt">waves</span>, breaking <span class="hlt">waves</span>, freak <span class="hlt">waves</span>, wind-<span class="hlt">wave</span> interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.381R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.381R"><span>Circulation <span class="hlt">patterns</span> and <span class="hlt">wave</span> climate along the coast of the Iberian Peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasilla Álvarez, D.; García Codrán, J. C.</p> <p>2010-09-01</p> <p>Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the <span class="hlt">wave</span> climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation <span class="hlt">patterns</span> and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the <span class="hlt">wave</span> variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher <span class="hlt">wave</span> climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ApJ...697.1269J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ApJ...697.1269J"><span><span class="hlt">Zonal</span> Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johansen, A.; Youdin, A.; Klahr, H.</p> <p>2009-06-01</p> <p>We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a <span class="hlt">zonal</span> flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of <span class="hlt">zonal</span> flows, in which stochastic forcing by the magnetic tension on short timescales creates <span class="hlt">zonal</span> flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919208M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919208M"><span>The relationship between African easterly <span class="hlt">waves</span> and equatorial <span class="hlt">waves</span> and the influence from the Southern Hemisphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Methven, John; Guiying, Yang; Hodges, Kevin; Woolnough, Steve</p> <p>2017-04-01</p> <p>There is strong intraseasonal and interannual variability in African easterly <span class="hlt">waves</span> (AEWs). AEWs are crucial to precipitation across West Africa, but also generate positive vorticity centres that sometimes develop into tropical storms which can in turn spin-up into hurricanes in the easterlies across the North Atlantic. In this paper we show that there are connections between African easterly <span class="hlt">waves</span> (AEWs), equatorial Rossby (R1 and R2) <span class="hlt">waves</span> and westward-moving mixed Rossby gravity (WMRG) <span class="hlt">waves</span> and that the conditions for propagation of equatorial <span class="hlt">waves</span> may have a major influence on AEW and hence tropical cyclone variability. Two analysis approaches are taken using ERA-Interim data from 1979-2010: i) positive vorticity centres within AEWs are tracked at 600 hPa over West Africa to the Atlantic region and ii) the re-analysis data is filtered using a broad frequency and <span class="hlt">zonal</span> wavenumber band and the filtered meridional wind is projected onto the horizontal structure functions derived from equatorial <span class="hlt">wave</span> theory. The tracked vorticity centres are part of AEWs and are found to move along with features in the meridional wind projecting onto R1 and R2 <span class="hlt">waves</span>. In contrast, the structures projecting onto WMRG <span class="hlt">waves</span> move westwards at a faster rate. The projection is calculated independently on each pressure level to create composite cross-sections of each <span class="hlt">wave</span> mode in the <span class="hlt">zonal</span>-height plane, shown relative to the 600 hPa vorticity centres. The R2 <span class="hlt">waves</span> tilt in the sense necessary for baroclinic growth and amplify from east to west, indicating that R2 horizontal structure captures the baroclinic <span class="hlt">wave</span> component of AEWs. The composites show that the R2 structures have a wavelength matching the spacing between vorticity centres, while R1 and WMRG <span class="hlt">waves</span> are longer. Intriguingly, the WMRG component has very strong cross-equatorial flow immediately to the east of positive vorticity centres developing on the AEJ. Although the WMRG propagates faster to the west and gets ahead of the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2580Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2580Z"><span>Persistent gravity <span class="hlt">wave</span> coupling from the stratosphere to the MLT versus secondary <span class="hlt">wave</span> generation in Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, J.; Geraghty, I.; Chu, X.; Vadas, S.; Becker, E.; Harvey, V. L.; Jones, R. M.; Chen, C.; Lu, X.</p> <p>2017-12-01</p> <p>After Antarctic persistent gravity <span class="hlt">waves</span> (GWs) in the Mesosphere and Lower Thermosphere (MLT) were discovered from lidar observations [Chen et al., 2013, 2016], secondary <span class="hlt">wave</span> generation theory was proposed to explain the source. Here we perform a source investigation of such persistent GWs through analyzing both stratospheric and MLT GWs at McMurdo using temperature measurements (30 - 50 km, year 2011 - 2015) obtained by Fe Boltzmann lidar. In the stratosphere, GW vertical wavelengths (λ) and periods exhibit seasonal cycles with winter maxima and summer minima, which linearly correlated with mean <span class="hlt">zonal</span> wind velocities. GWs dissipate more in winter than in summer due to larger <span class="hlt">wave</span> amplitudes. The potential energy density (Ep) are anti-correlated with wind rotation angles but positively correlated with surface and stratospheric winds. Critical level filtering, in-situ generation of GWs, and <span class="hlt">wave</span> saturation changes play roles in Ep seasonal variations (winter maxima and summer minima). The large increase of Ep from summer to winter possibly results from the decrease in critical level filtering. The gradual variations of Ep from Mar to Oct are likely related both to the increased λ towards winter, allowing larger <span class="hlt">wave</span> amplitudes before saturation, and to in-situ GW generation via geostrophic adjustment, secondary GW generation. Large Ep occur when McMurdo is inside the jet stream core 5-24º poleward from vortex edge. In winter MLT, the persistent GWs cause larger temperature perturbations (± 30 K, compared to ± 10 K in the stratosphere) with longer λ (23.5 km) and larger vertical phase speeds (1.8 m/s). More <span class="hlt">waves</span> (95.4%) show downward phase progression compared to the stratospheric GWs (70.4%). Since the inferred horizontal wavelength of stratospheric GWs (350 - 450 km) are much shorter than those of the persistent GWs in the MLT (1000 - 2000 km), the dominant stratospheric GWs are not the direct source of the MLT persistent GWs. Secondary <span class="hlt">wave</span> generation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120.3941G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120.3941G"><span>Ionospheric vertical plasma drift perturbations due to the quasi 2 day <span class="hlt">wave</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang</p> <p>2015-05-01</p> <p>The thermosphere-ionosphere-mesosphere-electrodynamics-general circulation model is utilized to study the vertical E × B drift perturbations due to the westward quasi 2 day <span class="hlt">wave</span> with <span class="hlt">zonal</span> <span class="hlt">wave</span> numbers 2 and 3 (W2 and W3). The simulations show that both wind components contribute directly and significantly to the vertical drift, which is not merely confined to low latitudes. The vertical drifts at the equator induced by the total wind perturbations of W2 are comparable with that at middle latitudes, while the vertical drifts from W3 are much stronger at middle latitudes than at the equator. The ion drift perturbations induced by the <span class="hlt">zonal</span> and meridional wind perturbations of W2 are nearly in-phase with each other, whereas the phase discrepancies of the ion drift induced by the individual wind component of W3 are much larger. This is because the wind perturbations of W2 and W3 have different latitudinal structures and phases, which result in different ionospheric responses through wind dynamo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JDE...264.5527J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JDE...264.5527J"><span>Periodic solutions for <span class="hlt">one</span> dimensional <span class="hlt">wave</span> equation with bounded nonlinearity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Shuguan</p> <p>2018-05-01</p> <p>This paper is concerned with the periodic solutions for the <span class="hlt">one</span> dimensional nonlinear <span class="hlt">wave</span> equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical <span class="hlt">wave</span> equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic <span class="hlt">waves</span> in nonisotropic media. For finding the periodic solutions of variable coefficient <span class="hlt">wave</span> equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the <span class="hlt">wave</span> operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding <span class="hlt">wave</span> operator. In particular, we do not require the condition ess infηu (x) > 0.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990115470&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990115470&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo"><span>Modeling the QBO and SAO Driven by Gravity <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.</p> <p>1999-01-01</p> <p>Hines' Doppler spread parameterization (DSP) for small scale gravity <span class="hlt">waves</span> (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by <span class="hlt">wave</span> mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean <span class="hlt">zonal</span> and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through <span class="hlt">wave</span> filtering by the solar driven annual oscillation in the <span class="hlt">zonal</span> circulation. (4) In a 3D version of the model, <span class="hlt">wave</span> momentum is absorbed and dissipated by tides and planetary <span class="hlt">waves</span>. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007Chaos..17a5109D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007Chaos..17a5109D"><span><span class="hlt">Patterns</span> of spiral <span class="hlt">wave</span> attenuation by low-frequency periodic planar fronts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Casa, Miguel A.; de la Rubia, F. Javier; Ivanov, Plamen Ch.</p> <p>2007-03-01</p> <p>There is evidence that spiral <span class="hlt">waves</span> and their breakup underlie mechanisms related to a wide spectrum of phenomena ranging from spatially extended chemical reactions to fatal cardiac arrhythmias [A. T. Winfree, The Geometry of Biological Time (Springer-Verlag, New York, 2001); J. Schutze, O. Steinbock, and S. C. Muller, Nature 356, 45 (1992); S. Sawai, P. A. Thomason, and E. C. Cox, Nature 433, 323 (2005); L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988); R. A. Gray et al., Science 270, 1222 (1995); F. X. Witkowski et al., Nature 392, 78 (1998)]. Once initiated, spiral <span class="hlt">waves</span> cannot be suppressed by periodic planar fronts, since the domains of the spiral <span class="hlt">waves</span> grow at the expense of the fronts [A. N. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970); A. T. Stamp, G. V. Osipov, and J. J. Collins, Chaos 12, 931 (2002); I. Aranson, H. Levine, and L. Tsimring, Phys. Rev. Lett. 76, 1170 (1996); K. J. Lee, Phys. Rev. Lett. 79, 2907 (1997); F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel, Phys. Rev. E 59, 2203 (1999)]. Here, we show that introducing periodic planar <span class="hlt">waves</span> with long excitation duration and a period longer than the rotational period of the spiral can lead to spiral attenuation. The attenuation is not due to spiral drift and occurs periodically over cycles of several fronts, forming a variety of complex spatiotemporal <span class="hlt">patterns</span>, which fall into two distinct general classes. Further, we find that these attenuation <span class="hlt">patterns</span> only occur at specific phases of the descending fronts relative to the rotational phase of the spiral. We demonstrate these dynamics of phase-dependent spiral attenuation by performing numerical simulations of <span class="hlt">wave</span> propagation in the excitable medium of myocardial cells. The effect of phase-dependent spiral attenuation we observe can lead to a general approach to spiral control in physical and biological systems with relevance for medical applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA499435','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA499435"><span>Transient Stress <span class="hlt">Wave</span> Propagation in <span class="hlt">One</span>-Dimensional Micropolar Bodies</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>based on Biot’s theory of poro- elasticity. Two compressional <span class="hlt">waves</span> were then observed in the resulting <span class="hlt">one</span>-dimensional model of a poroelastic column...Lisina, S., Potapov, A., Nesterenko, V., 2001. A nonlinear granular medium with particle rotation: a <span class="hlt">one</span>-dimensional model . Acoustical Physics 47 (5...zones in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees of freedom beyond the scope of classical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25024411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25024411"><span>High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of <span class="hlt">zonal</span> detached eddy simulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua</p> <p>2014-08-13</p> <p>This paper provides an up-to-date survey of the use of <span class="hlt">zonal</span> detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of <span class="hlt">zonal</span> or non-<span class="hlt">zonal</span> treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent <span class="hlt">zonalization</span> is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......141G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......141G"><span><span class="hlt">Wave</span> Coupling between the Lower and Middle Thermosphere as Viewed from Quasi-Sun-Synchronous Satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gasperini, Federico</p> <p></p> <p>In a society increasingly dependent on space technology, space weather has become a prominent scientific paradigm. In the last decade evidence has shown that terrestrial weather significantly influences space weather. Periodic absorption of solar radiation in local time and longitude by tropospheric water vapor and stratospheric ozone as well as latent heat release in clouds generate a spatially- and temporally-evolving spectrum of global-scale atmospheric <span class="hlt">waves</span> (i.e., tides, planetary <span class="hlt">waves</span> and Kelvin <span class="hlt">waves</span>). A subset of these <span class="hlt">waves</span> propagates vertically, evolving with height due to <span class="hlt">wave</span>-mean flow, <span class="hlt">wave-wave</span>, and <span class="hlt">wave</span>-plasma interactions, and driving electric fields of tidal origin in the dynamo region. While considerable improvements have been made on the understanding of MLT dynamics, driven in part by the development and deployment of new instruments and techniques, relatively little is known about the coupling of <span class="hlt">waves</span> in the 120-300 km `thermospheric gap' between satellite remote-sensing and in-situ <span class="hlt">wave</span> diagnostics. The dissertation herein reveals vertical <span class="hlt">wave</span> coupling in this height region and quantifies its role in determining thermospheric variability. This objective is accomplished employing quasi-Sun-synchronous satellite measurements (i.e., TIMED, CHAMP, and GOCE) and state-of-the-art numerical modeling simulations (i.e., TIME-GCM/MERRA). Evidence is found for the vertical propagation from the lower to the middle thermosphere of the eastward propagating diurnal tide with <span class="hlt">zonal</span> <span class="hlt">wave</span> number 3 (DE3) and the 3-day ultra-fast Kelvin <span class="hlt">wave</span> (UFKW), two major global-scale atmospheric oscillations of tropospheric origin. These <span class="hlt">waves</span> are shown to nonlinearly interact and produce secondary <span class="hlt">waves</span> responsible for significant longitudinal and day-to-day variability. For solar and geomagnetic quiet conditions, atmospheric <span class="hlt">waves</span> are found to be responsible for up to 60% of the total variability, demonstrating lower atmosphere coupling as a key contributor to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4188424','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4188424"><span><span class="hlt">Waves</span> and <span class="hlt">patterning</span> in developmental biology: vertebrate segmentation and feather bud formation as case studies</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.</p> <p>2014-01-01</p> <p>In this article we will discuss the integration of developmental <span class="hlt">patterning</span> mechanisms with <span class="hlt">waves</span> of competency that control the ability of a homogeneous field of cells to react to <span class="hlt">pattern</span> forming cues and generate spatially heterogeneous <span class="hlt">patterns</span>. We base our discussion around two well known <span class="hlt">patterning</span> events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each <span class="hlt">patterning</span> mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example <span class="hlt">patterning</span> processes. PMID:19557684</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22373031','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22373031"><span>Combining <span class="hlt">zonal</span> refractive and diffractive aspheric multifocal intraocular lenses.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Muñoz, Gonzalo; Albarrán-Diego, César; Javaloy, Jaime; Sakla, Hani F; Cerviño, Alejandro</p> <p>2012-03-01</p> <p>To assess visual performance with the combination of a <span class="hlt">zonal</span> refractive aspheric multifocal intraocular lens (MIOL) (Lentis Mplus, Oculentis GmbH) and a diffractive aspheric MIOL (Acri.Lisa 366, Acri.Tech GmbH). This prospective interventional cohort study comprised 80 eyes from 40 cataract patients (mean age: 65.5±7.3 years) who underwent implantation of the Lentis Mplus MIOL in <span class="hlt">one</span> eye and Acri.Lisa 366 MIOL in the fellow eye. The main outcome measures were refraction; monocular and binocular uncorrected and corrected distance, intermediate, and near visual acuities; monocular and binocular defocus curves; binocular photopic contrast sensitivity function compared to a monofocal intraocular lens (IOL) control group (40 age-matched pseudophakic patients implanted with the AR-40e [Abbott Medical Optics]); and quality of vision questionnaire. Binocular uncorrected visual acuities were 0.12 logMAR (0.76 decimal) or better at all distances measured between 6 m and 33 cm. The Lentis Mplus provided statistically significant better vision than the Acri.Lisa at distances between 2 m and 40 cm, and the Acri.Lisa provided statistically significant better vision than the Lentis Mplus at 33 cm. Binocular defocus curve showed little drop-off at intermediate distances. Photopic contrast sensitivity function for distance and near were similar to the monofocal IOL control group except for higher frequencies. Moderate glare (15%), night vision problems (12.5%), and halos (10%) were reported. Complete independence of spectacles was achieved by 92.5% of patients. The combination of <span class="hlt">zonal</span> refractive aspheric and diffractive aspheric MIOLs resulted in excellent uncorrected binocular distance, intermediate, and near vision, with low incidence of significant photic phenomena and high patient satisfaction. Copyright 2012, SLACK Incorporated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040171651','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040171651"><span>Intra-seasonal Oscillations (ISO) of <span class="hlt">Zonal</span>-Mean Meridional Winds and Temperatures as Measured by UARS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.</p> <p>2004-01-01</p> <p>Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI) on the UARS spacecraft in the upper mesosphere (95 km), persistent and regular intra-seasonal oscillations (ISO) with periods of about 2 to 4 months have recently been reported in the <span class="hlt">zonal</span>-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to <span class="hlt">wave</span>-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here an analysis of concurrent temperature measurements on UARS, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55 km), their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910058435&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910058435&hterms=rolando+garcia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Drolando%2Bgarcia"><span>Parameterization of planetary <span class="hlt">wave</span> breaking in the middle atmosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garcia, Rolando R.</p> <p>1991-01-01</p> <p>A parameterization of planetary <span class="hlt">wave</span> breaking in the middle atmosphere has been developed and tested in a numerical model which includes governing equations for a single <span class="hlt">wave</span> and the <span class="hlt">zonal</span>-mean state. The parameterization is based on the assumption that <span class="hlt">wave</span> breaking represents a steady-state equilibrium between the flux of <span class="hlt">wave</span> activity and its dissipation by nonlinear processes, and that the latter can be represented as linear damping of the primary <span class="hlt">wave</span>. With this and the additional assumption that the effect of breaking is to prevent further amplitude growth, the required dissipation rate is readily obtained from the steady-state equation for <span class="hlt">wave</span> activity; diffusivity coefficients then follow from the dissipation rate. The assumptions made in the derivation are equivalent to those commonly used in parameterizations for gravity <span class="hlt">wave</span> breaking, but the formulation in terms of <span class="hlt">wave</span> activity helps highlight the central role of the <span class="hlt">wave</span> group velocity in determining the dissipation rate. Comparison of model results with nonlinear calculations of <span class="hlt">wave</span> breaking and with diagnostic determinations of stratospheric diffusion coefficients reveals remarkably good agreement, and suggests that the parameterization could be useful for simulating inexpensively, but realistically, the effects of planetary <span class="hlt">wave</span> transport.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AdSpR..38.2610A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AdSpR..38.2610A"><span>Theoretical and experimental <span class="hlt">zonal</span> drift velocities of the ionospheric plasma bubbles over the Brazilian region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.</p> <p>2006-01-01</p> <p>This work presents equatorial ionospheric plasma bubble <span class="hlt">zonal</span> drift velocity observations and their comparison with model calculations. The bubble <span class="hlt">zonal</span> velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral <span class="hlt">zonal</span> winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P < 24+) and were grouped according to season. During the early night hours, the calculated <span class="hlt">zonal</span> drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed <span class="hlt">zonal</span> velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4840806S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4840806S"><span>Shape, <span class="hlt">zonal</span> winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schubert, Gerald; Kong, Dali; Zhang, Keke</p> <p>2016-10-01</p> <p>We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian <span class="hlt">zonal</span> winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the <span class="hlt">zonal</span> winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known <span class="hlt">zonal</span> gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the <span class="hlt">zonal</span> winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the <span class="hlt">zonal</span> gravitational coefficients expected from the Juno mission are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21364692-triple-cascade-behavior-quasigeostrophic-drift-turbulence-generation-zonal-jets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21364692-triple-cascade-behavior-quasigeostrophic-drift-turbulence-generation-zonal-jets"><span>Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of <span class="hlt">Zonal</span> Jets</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nazarenko, Sergey; Quinn, Brenda</p> <p>2009-09-11</p> <p>We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of <span class="hlt">zonal</span> jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large <span class="hlt">zonal</span> scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS62D..10R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS62D..10R"><span>Trends in the <span class="hlt">Zonal</span> Winds over the Southern Ocean from the NCEP/NCAR Reanalysis and Scatterometers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richman, J. G.</p> <p>2002-12-01</p> <p>The winds over the Southern Ocean for the entire 54-year (1948-2001) period of the NCEP/NCAR Reanalysis have been decomposed into Principal Components (Empirical Orthogonal Functions). The first EOF describes 83 percent of the variance in the <span class="hlt">zonal</span> wind. The loading of the EOF shows the predominately westerly surface flow with strongest winds in the Indian sector of the Southern Ocean. The structure of this EOF is similar to the Southern Annular Mode (SAM) identified by Thompson, et al 2000. The amplitude of this EOF reveals a large trend of 4.42 cm/s/yr in the strength of the <span class="hlt">zonal</span> wind corresponding to a nearly 50 percent increase in the wind stress over the Southern Ocean. Such a trend, if real, would be important in the dynamics of the Antarctic Circumpolar Current (ACC). Recent studies by Gille, et al. (2001), Olbers and Ivchenko (2001) and Gent et al. (2001) have shown that the transport of the ACC is correlated to the variability in the <span class="hlt">zonal</span> wind with a monotonic increase in the transport with increasing <span class="hlt">zonal</span> wind strength. However, errors in the data assimilation scheme for surface pressure observations on the Antarctic continent appears to have caused a spurious trend in the sea level pressure south of 40S of -0.2 hPa/yr (Hines, et al. 2000 and Marshall, 2002). The sea level pressure difference between 40S and 60S has risen by 8 hPa over the same period. This sea level pressure difference is used as a proxy for the strength of the <span class="hlt">zonal</span> winds. Thus, the trend in the <span class="hlt">zonal</span> wind EOF amplitude may be an artifact of model errors in the NCEP Reanalysis. To check this trend, we analyzed scatterometer winds over the Southern Ocean from the SEASAT, ERS (1 and 2), NSCAT and QuikScat satellites. The scatterometer data is not used in the NCEP Reanalysis and, thus, is an independent estimate of the winds. The SEASAT Scatterometer (SASS) operated for 90 days in July-September, 1978, while the ERS, NSCAT and QuikScat scatterometers provide a continuous dataset from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMFM..tmp....2S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMFM..tmp....2S"><span>On Liapunov and Exponential Stability of Rossby-Haurwitz <span class="hlt">Waves</span> in Invariant Sets of Perturbations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skiba, Yuri N.</p> <p>2018-01-01</p> <p>In this work, the stability of the Rossby-Haurwitz (RH) <span class="hlt">waves</span> from the subspace H1\\oplus Hn is considered (n≥2 ) where Hk is the subspace of the homogeneous spherical polynomials of degree k. A conservation law for arbitrary perturbations of the RH <span class="hlt">wave</span> is derived, and all perturbations are divided into three invariant sets M-n , M0n and M+n in which the mean spectral number χ (ψ ^' }) of any perturbation ψ ^' } is less than, equal to or greater than n(n+1) , respectively. In turn, the set M0n is divided into the invariant subsets Hn and M0n{\\setminus } Hn . Quotient spaces and norms of the perturbations are introduced, a hyperbolic law for the perturbations belonging to the sets M-n and M+n is derived, and a geometric interpretation of variations in the kinetic energy of perturbations is given. It is proved that any non-<span class="hlt">zonal</span> RH <span class="hlt">wave</span> from H1\\oplus Hn (n≥2 ) is Liapunov unstable in the invariant set M-n . Also, it is shown that a stationary RH <span class="hlt">wave</span> from H1\\oplus Hn may be exponentially unstable only in the invariant set M0n{\\setminus } Hn , while any perturbation of the invariant set Hn conserves its form with time and hence is neutral. Since a Legendre polynomial flow aPn(μ ) and <span class="hlt">zonal</span> RH <span class="hlt">wave</span> - ω μ +aPn(μ ) are particular cases of the RH <span class="hlt">waves</span> of H1\\oplus Hn , the major part of the stability results obtained here is also true for them.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5847106','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5847106"><span>Acute <span class="hlt">Zonal</span> Cone Photoreceptor Outer Segment Loss</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sandhu, Harpal S.; Serrano, Leona W.; Traband, Anastasia; Lau, Marisa K.; Adamus, Grazyna; Avery, Robert A.</p> <p>2017-01-01</p> <p>Importance The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. Objective To describe the structural and functional associations found in a patient with acute <span class="hlt">zonal</span> occult photoreceptor loss. Design, Setting, and Participants A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Main Outcomes and Measures Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). Results The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Conclusions and Relevance Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute <span class="hlt">zonal</span> occult outer retinopathy complex. Acute <span class="hlt">zonal</span> occult outer retinopathy</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChPhB..24e9201R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChPhB..24e9201R"><span>A pseudoenergy <span class="hlt">wave</span>-activity relation for ageostrophic and non-hydrostatic moist atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ran, Ling-Kun; Ping, Fan</p> <p>2015-05-01</p> <p>By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy <span class="hlt">wave</span>-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived <span class="hlt">wave</span>-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous <span class="hlt">zonal</span> momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily <span class="hlt">zonally</span> symmetric. The derived <span class="hlt">wave</span>-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real cases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy <span class="hlt">wave</span>-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region. Project supported by the National Basic Research Program of China (Grant No. 2013CB430105), the Key Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05), the National Natural Science Foundation of China (Grant No. 41175060), and the Project of CAMS, China (Grant No. 2011LASW-B15).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25353861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25353861"><span><span class="hlt">Wave</span> reflection in a reaction-diffusion system: breathing <span class="hlt">patterns</span> and attenuation of the echo.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsyganov, M A; Ivanitsky, G R; Zemskov, E P</p> <p>2014-05-01</p> <p>Formation and interaction of the <span class="hlt">one</span>-dimensional excitation <span class="hlt">waves</span> in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of <span class="hlt">wave</span> propagation depends on initial conditions. <span class="hlt">Wave</span> phenomena with a complex behavior are found: (i) the reflection of <span class="hlt">waves</span> at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of <span class="hlt">waves</span> with the jumping from <span class="hlt">one</span> regime of <span class="hlt">wave</span> propagation to another (the periodic trigger <span class="hlt">wave</span>).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvE..89e2907T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvE..89e2907T"><span><span class="hlt">Wave</span> reflection in a reaction-diffusion system: Breathing <span class="hlt">patterns</span> and attenuation of the echo</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsyganov, M. A.; Ivanitsky, G. R.; Zemskov, E. P.</p> <p>2014-05-01</p> <p>Formation and interaction of the <span class="hlt">one</span>-dimensional excitation <span class="hlt">waves</span> in a reaction-diffusion system with the piecewise linear reaction functions of the Tonnelier-Gerstner type are studied. We show that there exists a parameter region where the established regime of <span class="hlt">wave</span> propagation depends on initial conditions. <span class="hlt">Wave</span> phenomena with a complex behavior are found: (i) the reflection of <span class="hlt">waves</span> at a growing distance (the remote reflection) upon their collision with each other or with no-flux boundaries and (ii) the periodic transformation of <span class="hlt">waves</span> with the jumping from <span class="hlt">one</span> regime of <span class="hlt">wave</span> propagation to another (the periodic trigger <span class="hlt">wave</span>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8831G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8831G"><span>Short-term variability in the ionosphere due to the nonlinear interaction between the 6 day <span class="hlt">wave</span> and migrating tides</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gan, Quan; Oberheide, Jens; Yue, Jia; Wang, Wenbin</p> <p>2017-08-01</p> <p>Using the thermosphere-ionosphere-mesosphere electrodynamics general circulation model simulations, we investigate the short-term ionospheric variability due to the child <span class="hlt">waves</span> and altered tides produced by the nonlinear interaction between the 6 day <span class="hlt">wave</span> and migrating tides. Via the Fourier spectral diagnostics and least squares fittings, the [21 h, W2] and [13 h, W1] child <span class="hlt">waves</span>, generated by the interaction of the 6 day <span class="hlt">wave</span> with the DW1 and SW2, respectively, are found to play the leading roles on the subdiurnal variability (e.g., ±10 m/s in the ion drift and 50% in the NmF2) in the F region vertical ion drift changes through the dynamo modulation induced by the low-latitude <span class="hlt">zonal</span> wind and the meridional wind at higher latitudes. The relatively minor contribution of the [11 h, W3] child <span class="hlt">wave</span> is explicit as well. Although the [29 h, W0] child <span class="hlt">wave</span> has the largest magnitude in the E region, its effect is totally absent in the vertical ion drift due to the <span class="hlt">zonally</span> uniform structure. But the [29 h, W0] child <span class="hlt">wave</span> shows up in the NmF2. It is found that the NmF2 short-term variability is attributed to the <span class="hlt">wave</span> modulations on both E region dynamo and in situ F region composition. Also, the altered migrating tides due to the interaction will not contribute to the ionospheric changes significantly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e5901M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e5901M"><span>Nonlinear saturation of the slab ITG instability and <span class="hlt">zonal</span> flow generation with fully kinetic ions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.</p> <p>2018-05-01</p> <p>Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including <span class="hlt">zonal</span> flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated <span class="hlt">zonal</span> flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and <span class="hlt">zonal</span> flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830042566&hterms=asphalt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dasphalt','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830042566&hterms=asphalt&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dasphalt"><span>Coherent scattering of a spherical <span class="hlt">wave</span> from an irregular surface. [antenna <span class="hlt">pattern</span> effects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fung, A. K.</p> <p>1983-01-01</p> <p>The scattering of a spherical <span class="hlt">wave</span> from a rough surface using the Kirchhoff approximation is considered. An expression representing the measured coherent scattering coefficient is derived. It is shown that the sphericity of the wavefront and the antenna <span class="hlt">pattern</span> can become an important factor in the interpretation of ground-based measurements. The condition under which the coherent scattering-coefficient expression reduces to that corresponding to a plane <span class="hlt">wave</span> incidence is given. The condition under which the result reduces to the standard image solution is also derived. In general, the consideration of antenna <span class="hlt">pattern</span> and sphericity is unimportant unless the surface-height standard deviation is small, i.e., unless the coherent scattering component is significant. An application of the derived coherent backscattering coefficient together with the existing incoherent scattering coefficient to interpret measurements from concrete and asphalt surfaces is shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19823718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19823718"><span>Dynamic <span class="hlt">patterns</span> in a supported lipid bilayer driven by standing surface acoustic <span class="hlt">waves</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hennig, Martin; Neumann, Jürgen; Wixforth, Achim; Rädler, Joachim O; Schneider, Matthias F</p> <p>2009-11-07</p> <p>In the past decades supported lipid bilayers (SLBs) have been an important tool in order to study the physical properties of biological membranes and cells. So far, controlled manipulation of SLBs is very limited. Here we present a new technology to create lateral <span class="hlt">patterns</span> in lipid membranes controllable in both space and time. Surface acoustic <span class="hlt">waves</span> (SAWs) are used to generate lateral standing <span class="hlt">waves</span> on a piezoelectric substrate which create local "traps" in the lipid bilayer and lead to a lateral modulation in lipid concentration. We demonstrate that <span class="hlt">pattern</span> formation is reversible and does not affect the integrity of the lipid bilayer as shown by extracting the diffusion constant of fluid membranes. The described method could possibly be used to design switchable interfaces for the lateral transport and organization of membrane bound macromolecules to create dynamic bioarrays and control biofilm formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JATP...56.1753R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JATP...56.1753R"><span>DYANA campaign results on long-period atmospheric <span class="hlt">waves</span> over Thumba and Balasore</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reddi, C. Raghava; Rajeev, K.; Nair, S. Muraleedharan; Subbaraya, B. H.; Rama, G. V.; Appu, K. S.; Narayanan, V.; Apparao, B. V.; Chakravarty, S. C.; Nagpal, O. P.; Perov, S. P.; Kokin, G. A.</p> <p>1994-12-01</p> <p>The variation with altitude of the spectral amplitudes of the long period <span class="hlt">waves</span> in the middle atmospheric <span class="hlt">zonal</span> and meridional wind over Thumba (8.5°N, 76.9°E) and Balasore (21.5°N, 86.9°E) have shown clearly the enhanced dissipation of the atmospheric <span class="hlt">waves</span> in the lower stratosphere and near the stratopause. The amplitudes are, in general, large for the lower frequency ( <0.1 cycles/day) <span class="hlt">waves</span> in the troposphere. While propagating through the tropopause into the stratosphere and above, <span class="hlt">waves</span> with periods in the range of 5-10 days suffer less attenuation. The dissipation of the atmospheric <span class="hlt">waves</span> is found to be relatively large for frequencies below 0.1 cycles/day. The results are compared with earlier observational studies and theoretical computations on the propagation of equatorial <span class="hlt">waves</span> through the middle atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820052841&hterms=attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820052841&hterms=attention&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention"><span>The latitude dependence of the variance of <span class="hlt">zonally</span> averaged quantities. [in polar meteorology with attention to geometrical effects of earth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.</p> <p>1982-01-01</p> <p>Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of <span class="hlt">zonally</span> averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on <span class="hlt">zonal</span> averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a <span class="hlt">zonally</span> averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the <span class="hlt">zonally</span> averaged grid-point variance, weighted by the cosine of the latitude, yields the <span class="hlt">zonal</span> correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010521','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010521"><span>New Gravity <span class="hlt">Wave</span> Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2011-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity <span class="hlt">wave</span> interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity <span class="hlt">waves</span> that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity <span class="hlt">waves</span> and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity <span class="hlt">wave</span> parameterization; with only orographic gravity <span class="hlt">wave</span> parameterization; and with both orographic and nonorographic gravity <span class="hlt">wave</span> parameterizations are shown to illustrate how the <span class="hlt">zonal</span> mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity <span class="hlt">waves</span> must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity <span class="hlt">wave</span> sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032912','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032912"><span>New Gravity <span class="hlt">Wave</span> Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2010-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity <span class="hlt">wave</span> interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity <span class="hlt">waves</span> that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity <span class="hlt">waves</span> and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity <span class="hlt">wave</span> parametrization; with only orographic gravity <span class="hlt">wave</span> parameterization; and with both orographic and non-orographic gravity <span class="hlt">wave</span> parameterizations to illustrate how the <span class="hlt">zonal</span> mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity <span class="hlt">waves</span> must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity <span class="hlt">wave</span> sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35...52H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35...52H"><span>Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall <span class="hlt">patterns</span> in August</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei</p> <p>2018-01-01</p> <p>In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall <span class="hlt">pattern</span>, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall <span class="hlt">pattern</span>, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning <span class="hlt">wave</span>-like <span class="hlt">pattern</span> extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces <span class="hlt">zonally</span> oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby <span class="hlt">wave</span> train known as the Silk Road <span class="hlt">pattern</span>. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road <span class="hlt">pattern</span> to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan <span class="hlt">pattern</span>. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly <span class="hlt">pattern</span> is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2275H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2275H"><span>Teleconnection between Sea Ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian Rainfall <span class="hlt">Patterns</span> in August</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.</p> <p>2017-12-01</p> <p>In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall <span class="hlt">pattern</span>, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall <span class="hlt">pattern</span>, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning <span class="hlt">wave</span>-like <span class="hlt">pattern</span> extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces <span class="hlt">zonally</span> oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby <span class="hlt">wave</span> train known as the Silk Road <span class="hlt">pattern</span>. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road <span class="hlt">pattern</span> to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan <span class="hlt">pattern</span>. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly <span class="hlt">pattern</span> is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28950590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28950590"><span>Generation mechanisms of fundamental rogue <span class="hlt">wave</span> spatial-temporal structure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ling, Liming; Zhao, Li-Chen; Yang, Zhan-Ying; Guo, Boling</p> <p>2017-08-01</p> <p>We discuss the generation mechanism of fundamental rogue <span class="hlt">wave</span> structures in N-component coupled systems, based on analytical solutions of the nonlinear Schrödinger equation and modulational instability analysis. Our analysis discloses that the <span class="hlt">pattern</span> of a fundamental rogue <span class="hlt">wave</span> is determined by the evolution energy and growth rate of the resonant perturbation that is responsible for forming the rogue <span class="hlt">wave</span>. This finding allows <span class="hlt">one</span> to predict the rogue <span class="hlt">wave</span> <span class="hlt">pattern</span> without the need to solve the N-component coupled nonlinear Schrödinger equation. Furthermore, our results show that N-component coupled nonlinear Schrödinger systems may possess N different fundamental rogue <span class="hlt">wave</span> <span class="hlt">patterns</span> at most. These results can be extended to evaluate the type and number of fundamental rogue <span class="hlt">wave</span> structure in other coupled nonlinear systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5366916','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5366916"><span>Influence of Anthropogenic Climate Change on Planetary <span class="hlt">Wave</span> Resonance and Extreme Weather Events</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim</p> <p>2017-01-01</p> <p>Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby <span class="hlt">waves</span> within a particular wavelength range (<span class="hlt">zonal</span> wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale <span class="hlt">waves</span> with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the <span class="hlt">zonal</span> mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.2937W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.2937W"><span>Derivation of gravity <span class="hlt">wave</span> intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III</p> <p>2018-05-01</p> <p>For the first time, we present an approach to derive <span class="hlt">zonal</span>, meridional, and vertical wavelengths as well as periods of gravity <span class="hlt">waves</span> based on only <span class="hlt">one</span> OH* spectrometer, addressing <span class="hlt">one</span> vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the <span class="hlt">wave</span> group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity <span class="hlt">wave</span> ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity <span class="hlt">waves</span> of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvF...3e3201K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvF...3e3201K"><span>Evolution of <span class="hlt">wave</span> <span class="hlt">patterns</span> and temperature field in shock-tube flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiverin, A. D.; Yakovenko, I. S.</p> <p>2018-05-01</p> <p>The paper is devoted to the numerical analysis of <span class="hlt">wave</span> <span class="hlt">patterns</span> behind a shock <span class="hlt">wave</span> propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock <span class="hlt">wave</span> is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock <span class="hlt">wave</span> and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting <span class="hlt">waves</span>. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyD..318...58A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyD..318...58A"><span>Oscillations and uniaxial mechanochemical <span class="hlt">waves</span> in a model of an active poroelastic medium: Application to deformation <span class="hlt">patterns</span> in protoplasmic droplets of Physarum polycephalum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alonso, Sergio; Strachauer, Ulrike; Radszuweit, Markus; Bär, Markus; Hauser, Marcus J. B.</p> <p>2016-04-01</p> <p>Self-organization in cells often manifests itself in oscillations and <span class="hlt">waves</span>. Here, we address deformation <span class="hlt">waves</span> in protoplasmic droplets of the plasmodial slime mould Physarum polycephalum by modelling and experiments. In particular, we extend a <span class="hlt">one</span>-dimensional model that considered the cell as a poroelastic medium, where active tension caused mechanochemical <span class="hlt">waves</span> that were regulated by an inhibitor (Radszuweit et al., 2013). Our extension consists of a simple, qualitative chemical reaction-diffusion model (Brusselator) that describes the regulation of the inhibitor by another biochemical species. The biochemical reaction enhances the formation of mechanochemical <span class="hlt">waves</span> if the reaction rates and input concentrations are near or inside an oscillatory regime. The period of the <span class="hlt">waves</span> is found to be controlled by the characteristic oscillation period, whereas their wavelength is set by mechanical parameters. The model also allows for a systematic study of the chemical activity at the onset of mechanochemical <span class="hlt">waves</span>. We also present examples for <span class="hlt">pattern</span> formation in protoplasmic droplets of Physarum polycephalum including global oscillations where the central region of the droplets is in antiphase to the boundary zone, as well as travelling and standing <span class="hlt">wave</span>-like uniaxial <span class="hlt">patterns</span>. Finally, we apply our model to reproduce these experimental results by identifying the active tension inhibitor with the intracellular calcium concentration in the Physarum droplets and by using parameter values from mechanical experiments, respectively knowledge about the properties of calcium oscillations in Physarum. The simulation results are then found to be in good agreement with the experimental observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3155598','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3155598"><span>Two-dimensional shear <span class="hlt">wave</span> speed and crawling <span class="hlt">wave</span> speed recoveries from in vitro prostate data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Kui; McLaughlin, Joyce R.; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J.</p> <p>2011-01-01</p> <p>The crawling <span class="hlt">wave</span> experiment was developed to capture a shear <span class="hlt">wave</span> induced moving interference <span class="hlt">pattern</span> that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference <span class="hlt">pattern</span>. It has been shown that the speed of the moving interference <span class="hlt">pattern</span>, i.e., the crawling <span class="hlt">wave</span> speed, is proportional to the shear <span class="hlt">wave</span> speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling <span class="hlt">wave</span> speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling <span class="hlt">wave</span> speed and the shear <span class="hlt">wave</span> speed using the phases of the crawling <span class="hlt">wave</span> and the shear <span class="hlt">wave</span>. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a <span class="hlt">wave</span> moving in only <span class="hlt">one</span> direction; and (2) an L1 minimization technique with physics inspired constraints is employed to calculate the phase of the crawling <span class="hlt">wave</span> and to eliminate jump discontinuities from the phase of the shear <span class="hlt">wave</span>. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear <span class="hlt">wave</span> speed images can have less artifacts than the crawling <span class="hlt">wave</span> images. Examples are presented where the shear <span class="hlt">wave</span> speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands. PMID:21786924</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1261P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1261P"><span>Surfing the Pacific Island chains: linking internal <span class="hlt">wave</span> energetics to coral reef benthic community <span class="hlt">patterns</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Painter Jones, Matilda; Green, Mattias; Gove, Jamison; Williams, Gareth</p> <p>2017-04-01</p> <p>The ocean is saturated with internal <span class="hlt">waves</span> at tidal frequency. The energy associated with conversion from barotropic to baroclinic can enhance mixing and upwelling at sites of generation and dissipation, which in turn can drive primary production. Hotspots of internal <span class="hlt">wave</span> generation are located at sudden changes in topography with the Hawaiian archipelago identified as an area of intense internal <span class="hlt">wave</span> activity. The role of internal <span class="hlt">waves</span> as a driver of benthic reef community is unexplored and could be key to coral reefs survival in the unknown future. Using a Pacific wide map of internal <span class="hlt">wave</span> flux and barotropic-to-baroclinic conversion at an unprecedented 1/30th degree resolution, energy budgets were developed for four islands to evaluate dissipation and generation of internal <span class="hlt">waves</span>. Spatiotemporal variations in benthic community structure were plotted around each island and related to changes in internal <span class="hlt">wave</span> energetics using a boosted regression tree. Contrasting spatial <span class="hlt">patterns</span> and species assemblages were seen around islands with distinct internal <span class="hlt">wave</span> regimes. The relative importance and influence of internal <span class="hlt">waves</span> on coral reef ecosystems is evaluated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4842101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4842101J"><span>Investigating <span class="hlt">Wave</span> Structures in Jupiter's Atmosphere using HST Images</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Perianne; Morales-Juberias, Raul; Simon, Amy A.; Wong, Michael H.; Tollefson, Joshua</p> <p>2016-10-01</p> <p>Hubble Space Telescope images taken in 2015 and 2016 as part of the Outer Planet Atmosphere Legacy (OPAL) program are used to create <span class="hlt">zonal</span> wind profiles for Jupiter's atmosphere. These jet profiles are then analyzed for longitudinal variations in latitude or velocity, which can be indicators of <span class="hlt">wave</span> features in the atmosphere. To create the <span class="hlt">zonal</span> wind profiles, two image sections, separated in time by Δt (typically about <span class="hlt">one</span> jovian rotation), are correlated at every latitude from -80° to +80°, and the physical displacement Δx between features in each image is found. This yields a velocity for each latitude. The image sections have dimensions of 80° latitude by 80° longitude, but smaller longitude bins were used in the correlations. That allows each velocity profile to be specific to <span class="hlt">one</span> longitudinal region on the planet. Variations between profiles thus represent variations in the jet's velocity with longitude. This analysis was performed on images taken in visible wavelengths with HST. Here, we focus on two latitudinal regions, ~17°N and ~7°S, which are locations of prominent westward and eastward jets, respectively. At ~17°N, we find a dichotomy in wind speeds: from 165° to 300°W the wind speeds are roughly -13 m/s, in stark contrast with the -23 m/s velocities measured at all other longitudes. In the 7°S jet, we observe quasi-periodic behavior, with longitude regions alternating between ~148 m/s and ~154 m/s, which is possibly related to chevron activity in the region. With a velocity resolution of a few m/s, we argue that the variations in both jets are significant, and suggest possible <span class="hlt">wave</span>-related explanations for their existence. This research was supported by the NASA EPSCoR JIVE in NM project awarded to NMSU and NMT and a New Mexico Space Grant awarded to NMT.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020108','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020108"><span>North-South precipitation <span class="hlt">patterns</span> in western North America on interannual-to-decadal timescales</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.</p> <p>1998-01-01</p> <p>The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic <span class="hlt">patterns</span>. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of <span class="hlt">zonally</span> averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. <span class="hlt">Zonal</span> EOFs of the interannual and decadal filtered versions of the <span class="hlt">zonal</span>-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation <span class="hlt">patterns</span>; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820028605&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820028605&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves"><span>Turbulence and stress owing to gravity <span class="hlt">wave</span> and tidal breakdown</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindzen, R. S.</p> <p>1981-01-01</p> <p>For some years it has been accepted that tides and gravity <span class="hlt">waves</span> propagating into the upper mesosphere from below are the major source of turbulence in the upper mesosphere. The considered investigation has the objective to examine the implications of such a situation in some detail. The main propagating diurnal mode seems to be the primary contributor at tropical latitudes. Because of the high phase speed of this mode, it is only slightly affected by the mean <span class="hlt">zonal</span> flow of the atmosphere. Wavebreaking appears to occur around 85 km, leading to a layer of enhanced eddy diffusion and <span class="hlt">wave</span> induced acceleration extending between 85 km and about 108 km. Above 108 km molecular transport dominates. Gravity <span class="hlt">waves</span> appear to be dominant at middle and high latitudes. The flow distribution will effectively determine which gravity <span class="hlt">waves</span> (depending on phase speed) can reach the mesosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000011650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000011650"><span>A Three-<span class="hlt">Wave</span> Model of the Stratosphere with Coupled Dynamics, Radiation and Photochemistry. Appendix M</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen</p> <p>1997-01-01</p> <p>A <span class="hlt">zonal</span> mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The <span class="hlt">zonal</span>-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized <span class="hlt">wave</span> transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical <span class="hlt">waves</span>; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying <span class="hlt">wave</span> amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest <span class="hlt">waves</span> are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JPhD...43z4004K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JPhD...43z4004K"><span>Micromagnetic computer simulations of spin <span class="hlt">waves</span> in nanometre-scale <span class="hlt">patterned</span> magnetic elements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sang-Koog</p> <p>2010-07-01</p> <p>Current needs for further advances in the nanotechnologies of information-storage and -processing devices have attracted a great deal of interest in spin (magnetization) dynamics in nanometre-scale <span class="hlt">patterned</span> magnetic elements. For instance, the unique dynamic characteristics of non-uniform magnetic microstructures such as various types of domain walls, magnetic vortices and antivortices, as well as spin <span class="hlt">wave</span> dynamics in laterally restricted thin-film geometries, have been at the centre of extensive and intensive researches. Understanding the fundamentals of their unique spin structure as well as their robust and novel dynamic properties allows us to implement new functionalities into existing or future devices. Although experimental tools and theoretical approaches are effective means of understanding the fundamentals of spin dynamics and of gaining new insights into them, the limitations of those same tools and approaches have left gaps of unresolved questions in the pertinent physics. As an alternative, however, micromagnetic modelling and numerical simulation has recently emerged as a powerful tool for the study of a variety of phenomena related to spin dynamics of nanometre-scale magnetic elements. In this review paper, I summarize the recent results of simulations of the excitation and propagation and other novel <span class="hlt">wave</span> characteristics of spin <span class="hlt">waves</span>, highlighting how the micromagnetic computer simulation approach contributes to an understanding of spin dynamics of nanomagnetism and considering some of the merits of numerical simulation studies. Many examples of micromagnetic modelling for numerical calculations, employing various dimensions and shapes of <span class="hlt">patterned</span> magnetic elements, are given. The current limitations of continuum micromagnetic modelling and of simulations based on the Landau-Lifshitz-Gilbert equation of motion of magnetization are also discussed, along with further research directions for spin-<span class="hlt">wave</span> studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K"><span>Propagation of Stationary Planetary <span class="hlt">Waves</span> in the Upper Atmosphere under Different Solar Activity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.</p> <p>2018-03-01</p> <p>Numerical modeling of changes in the <span class="hlt">zonal</span> circulation and amplitudes of stationary planetary <span class="hlt">waves</span> are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the <span class="hlt">zonal</span> wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary <span class="hlt">waves</span> at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary <span class="hlt">waves</span> and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary <span class="hlt">waves</span> in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.1961K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.1961K"><span>Evidence for <span class="hlt">wave</span> resonance as a key mechanism for generating high-amplitude quasi-stationary <span class="hlt">waves</span> in boreal summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kornhuber, K.; Petoukhov, V.; Petri, S.; Rahmstorf, S.; Coumou, D.</p> <p>2017-09-01</p> <p>Several recent northern hemisphere summer extremes have been linked to persistent high-amplitude <span class="hlt">wave</span> <span class="hlt">patterns</span> (e.g. heat <span class="hlt">waves</span> in Europe 2003, Russia 2010 and in the US 2011, Floods in Pakistan 2010 and Europe 2013). Recently quasi-resonant amplification (QRA) was proposed as a mechanism that, when certain dynamical conditions are fulfilled, can lead to such high-amplitude <span class="hlt">wave</span> events. Based on these resonance conditions a detection scheme to scan reanalysis data for QRA events in boreal summer months was implemented. With this objective detection scheme we analyzed the occurrence and duration of QRA events and the associated atmospheric flow <span class="hlt">patterns</span> in 1979-2015 reanalysis data. We detect a total number of 178 events for <span class="hlt">wave</span> 6, 7 and 8 and find that during roughly <span class="hlt">one</span>-third of all high amplitude events QRA conditions were met for respective <span class="hlt">waves</span>. Our analysis reveals a significant shift for quasi-stationary <span class="hlt">waves</span> 6 and 7 towards high amplitudes during QRA events, lagging first QRA-detection by typically <span class="hlt">one</span> week. The results provide further evidence for the validity of the QRA hypothesis and its important role in generating high amplitude <span class="hlt">waves</span> in boreal summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6637S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6637S"><span>Radiative effects of ozone <span class="hlt">waves</span> on the Northern Hemisphere polar vortex and its modulation by the QBO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian</p> <p>2018-05-01</p> <p>The radiative effects induced by the <span class="hlt">zonally</span> asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone <span class="hlt">waves</span> affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-<span class="hlt">wave</span> effects are removed. The influence of ozone <span class="hlt">waves</span> on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric <span class="hlt">waves</span> are weakest. Using a novel diagnostic of <span class="hlt">wave</span> 1 temperature amplitude tendencies and a synoptic analysis of upward planetary <span class="hlt">wave</span> pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary <span class="hlt">waves</span> to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual <span class="hlt">wave</span> life cycles, which accumulate during fall and early winter, before being amplified by <span class="hlt">wave</span>-mean flow feedbacks. We find that the evolution of these early winter upward planetary <span class="hlt">wave</span> pulses and their induced stratospheric <span class="hlt">zonal</span> mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-<span class="hlt">wave</span> effects between east and west QBOs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1178768','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1178768"><span>Subcellular fractionation by <span class="hlt">zonal</span> centrifugation of glucose-repressed anaerobically grown Saccharomyces carlsbergensis</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cartledge, T. G.; Lloyd, D.</p> <p>1972-01-01</p> <p>1. Homogenates were prepared from sphaeroplasts of anaerobically grown, glucoserepressed Saccharomyces carlsbergensis, and the distributions of marker enzymes investigated after <span class="hlt">zonal</span> centrifugation on sucrose gradients containing 2mm-MgCl2. 2. These homogenates contained no detectable cytochrome c oxidase, succinate–cytochrome c oxidoreductase, succinate–ferricyanide oxidoreductase, l(+)-lactate–cytochrome c oxidoreductase or catalase. Cytochromes a+a3 and c were not detected. 3. <span class="hlt">Zonal</span> centrifugation of whole homogenates indicated complex density distributions of the sedimentable portions of NADH– and NADPH–cytochrome c oxidoreductases, adenosine triphosphatases (ATPases), adenosine pyrophosphatase (ADPase), pyrophosphatase and acid p-nitrophenyl phosphatase. Several different ATPases were distinguished on the basis of their sensitivities to oligomycin and ouabain. 4. Differential centrifugation of whole homogenates at 105g-min left 80–90% of the protein, dithionite-reducible cytochrome b, acid hydrolases and pyrophosphatase in a supernatant (S1) together with 65 and 56% of the NADH– and NADPH–cytochrome c oxidoreductases respectively, 25% of the ATPases and 71% of the adenosine monophosphatase. 5. Further analysis of supernatant S1 revealed the presence of a class of small particles containing NADPH–cytochrome c oxidoreductases and ATPases. 6. At least four different populations of large particles were distinguished. 7. Electron microscopy indicated that <span class="hlt">one</span> of these corresponded to `promitochondria' as described by other workers. ImagesPLATE 1PLATE 2PLATE 3 PMID:4405573</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486430-self-generated-zonal-flows-plasma-turbulence-driven-trapped-ion-trapped-electron-instabilities','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486430-self-generated-zonal-flows-plasma-turbulence-driven-trapped-ion-trapped-electron-instabilities"><span>Self-generated <span class="hlt">zonal</span> flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Drouot, T.; Gravier, E.; Reveille, T.</p> <p></p> <p>This paper presents a study of <span class="hlt">zonal</span> flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of <span class="hlt">zonal</span> flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of <span class="hlt">zonal</span> flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of <span class="hlt">zonal</span> flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997DPS....29.2407H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997DPS....29.2407H"><span>Jovian Planetary <span class="hlt">Waves</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harrington, J.; Deming, D.</p> <p>1997-07-01</p> <p>We have found over two dozen discrete, linearly-propagating, periodic features in 5-{\\micron} images of Jovian cloud opacities (J. Harrington et al. 1996, Icarus 124, 32--44). Numerous spatially-sinusoidal temperature oscillations also appear in several passbands between 7 and 19 {\\microns} (D. Deming et al. 1997, Icarus 126, 301--312). Both types of Jovian planetary-scale features are <span class="hlt">zonally</span>-oriented. They have always been detected when sought (1989, '91, '92, '93), and some individual features persist 100 Earth days or longer. These features are superficially consistent with Rossby <span class="hlt">waves</span>, but they do not follow a simplistic dispersion relation based on cloud-top wind speeds. Planetary wavenumbers are never larger than 15, consistent with predictions based on the Rhines scale for Jupiter. There are many outstanding phenomenological questions: Where and how are the <span class="hlt">waves</span> driven? How are <span class="hlt">waves</span> at different atmospheric levels related? What are their true dispersion properties? How long do they last? We are continuing observations and will conduct a search of the Hubble Space Telescope archive for the \\sim 1{°ee} meridional cloud-belt deviations expected for Rossby <span class="hlt">waves</span>. We are in the process of correlating <span class="hlt">wave</span> detections of various types, times, and wavelengths with each other. Our goal is to constrain atmospheric stratification and vertical energy transport. Because Rossby <span class="hlt">waves</span> propagate vertically, these features may probe conditions at the interface between the meteorological atmosphere and the planetary interior. Work supported by NASA Planetary Astronomy RTOP 196-41-54. Work performed while J. H. held a National Research Council - NASA Goddard Space Flight Center Research Associateship.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1620...86P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1620...86P"><span><span class="hlt">Zonal</span> wavefront estimation using an array of hexagonal grating <span class="hlt">patterns</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pathak, Biswajit; Boruah, Bosanta R.</p> <p>2014-10-01</p> <p>Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or <span class="hlt">pattern</span> can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating <span class="hlt">patterns</span>, eliminating the possibility of leakage of wavefront during the estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA593157','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA593157"><span>Solar-QBO Interaction and Its Impact on Stratospheric Ozone in a <span class="hlt">Zonally</span> Averaged Photochemical Transport Model of the Middle Atmosphere</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-08-28</p> <p>Solar- QBO interaction and its impact on stratospheric ozone in a <span class="hlt">zonally</span> averaged photochemical transport model of the middle atmosphere J. P...investigate the solar cycle modulation of the quasi-biennial oscillation ( QBO ) in stratospheric <span class="hlt">zonal</span> winds and its impact on stratospheric ozone with an...updated version of the <span class="hlt">zonally</span> averaged CHEM2D middle atmosphere model. We find that the duration of the westerly QBO phase at solar maximum is 3 months</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...786..118I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...786..118I"><span>Parametric Study of Flow <span class="hlt">Patterns</span> behind the Standing Accretion Shock <span class="hlt">Wave</span> for Core-Collapse Supernovae</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi</p> <p>2014-05-01</p> <p>In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow <span class="hlt">patterns</span> behind the accretion shock <span class="hlt">waves</span> that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow <span class="hlt">pattern</span> emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow <span class="hlt">patterns</span> are indeed realized. We classify them into three basic <span class="hlt">patterns</span> and two intermediate <span class="hlt">ones</span>; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the <span class="hlt">pattern</span> realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant <span class="hlt">pattern</span> is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow <span class="hlt">pattern</span> is robust in most cases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356928-parametric-study-flow-patterns-behind-standing-accretion-shock-wave-core-collapse-supernovae','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356928-parametric-study-flow-patterns-behind-standing-accretion-shock-wave-core-collapse-supernovae"><span>Parametric study of flow <span class="hlt">patterns</span> behind the standing accretion shock <span class="hlt">wave</span> for core-collapse supernovae</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp</p> <p>2014-05-10</p> <p>In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow <span class="hlt">patterns</span> behind the accretion shock <span class="hlt">waves</span> that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow <span class="hlt">pattern</span> emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow <span class="hlt">patterns</span> are indeed realized. We classify them into three basic <span class="hlt">patterns</span> and two intermediate <span class="hlt">ones</span>; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the <span class="hlt">pattern</span> realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant <span class="hlt">pattern</span> is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow <span class="hlt">pattern</span> is robust in most cases.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10322911A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10322911A"><span>The Galileo probe Doppler wind experiment: Measurement of the deep <span class="hlt">zonal</span> winds on Jupiter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, David H.; Pollack, James B.; Seiff, Alvin</p> <p>1998-09-01</p> <p>During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's <span class="hlt">zonal</span> winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the <span class="hlt">zonal</span> horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep <span class="hlt">zonal</span> winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the <span class="hlt">zonal</span> wind profile in the deeper regions explored by the Galileo probe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPlPh..83e9004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPlPh..83e9004S"><span>On non-local energy transfer via <span class="hlt">zonal</span> flow in the Dimits shift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>St-Onge, Denis A.</p> <p>2017-10-01</p> <p>The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of <span class="hlt">zonal/drift-wave</span> interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1412673-non-local-energy-transfer-via-zonal-flow-dimits-shift','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1412673-non-local-energy-transfer-via-zonal-flow-dimits-shift"><span>On non-local energy transfer via <span class="hlt">zonal</span> flow in the Dimits shift</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>St-Onge, Denis A.</p> <p>2017-10-10</p> <p>The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of <span class="hlt">zonal/drift-wave</span> interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in anmore » $$\\boldsymbol{E}\\times \\boldsymbol{B}$$ nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28065370','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28065370"><span>A new qualitative <span class="hlt">pattern</span> classification of shear <span class="hlt">wave</span> elastograghy for solid breast mass evaluation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cong, Rui; Li, Jing; Guo, Song</p> <p>2017-02-01</p> <p>To examine the efficacy of qualitative shear <span class="hlt">wave</span> elastography (SWE) in the classification and evaluation of solid breast masses, and to compare this method with conventional ultrasonograghy (US), quantitative SWE parameters and qualitative SWE classification proposed before. From April 2015 to March 2016, 314 consecutive females with 325 breast masses who decided to undergo core needle biopsy and/or surgical biopsy were enrolled. Conventional US and SWE were previously performed in all enrolled subjects. Each mass was classified by two different qualitative classifications. <span class="hlt">One</span> was established in our study, herein named the Qual1. Qual1 could classify the SWE images into five color <span class="hlt">patterns</span> by the visual evaluations: Color <span class="hlt">pattern</span> 1 (homogeneous <span class="hlt">pattern</span>); Color <span class="hlt">pattern</span> 2 (comparative homogeneous <span class="hlt">pattern</span>); Color <span class="hlt">pattern</span> 3 (irregularly heterogeneous <span class="hlt">pattern</span>); Color <span class="hlt">pattern</span> 4 (intralesional echo <span class="hlt">pattern</span>); and Color <span class="hlt">pattern</span> 5 (the stiff rim sign <span class="hlt">pattern</span>). The second qualitative classification was named Qual2 here, and included a four-color overlay <span class="hlt">pattern</span> classification (Tozaki and Fukuma, Acta Radiologica, 2011). The Breast Imaging Reporting and Data System (BI-RADS) assessment and quantitative SWE parameters were recorded. Diagnostic performances of conventional US, SWE parameters, and combinations of US and SWE parameters were compared. With pathological results as the gold standard, of the 325 examined breast masses, 139 (42.77%) samples were malignant and 186 (57.23%) were benign. The Qual1 showed a higher Az value than the Qual2 and quantitative SWE parameters (all P<0.05). When applying Qual1=Color <span class="hlt">pattern</span> 1 for downgrading and Qual1=Color <span class="hlt">pattern</span> 5 for upgrading the BI-RADS categories, we obtained the highest Az value (0.951), and achieved a significantly higher specificity (86.56%, P=0.002) than that of the US (81.18%) with the same sensitivity (94.96%). The qualitative classification proposed in this study may be representative of SWE parameters and has</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308048-zonal-wavefront-estimation-using-array-hexagonal-grating-patterns','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308048-zonal-wavefront-estimation-using-array-hexagonal-grating-patterns"><span><span class="hlt">Zonal</span> wavefront estimation using an array of hexagonal grating <span class="hlt">patterns</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pathak, Biswajit, E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in; Boruah, Bosanta R., E-mail: b.pathak@iitg.ernet.in, E-mail: brboruah@iitg.ernet.in</p> <p>2014-10-15</p> <p>Accuracy of Shack-Hartmann type wavefront sensors depends on the shape and layout of the lenslet array that samples the incoming wavefront. It has been shown that an array of gratings followed by a focusing lens provide a substitution for the lensslet array. Taking advantage of the computer generated holography technique, any arbitrary diffraction grating aperture shape, size or <span class="hlt">pattern</span> can be designed with little penalty for complexity. In the present work, such a holographic technique is implemented to design regular hexagonal grating array to have zero dead space between grating <span class="hlt">patterns</span>, eliminating the possibility of leakage of wavefront during themore » estimation of the wavefront. Tessellation of regular hexagonal shape, unlike other commonly used shapes, also reduces the estimation error by incorporating more number of neighboring slope values at an equal separation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20649204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20649204"><span>Shear <span class="hlt">wave</span> speed recovery in sonoelastography using crawling <span class="hlt">wave</span> data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley</p> <p>2010-07-01</p> <p>The crawling <span class="hlt">wave</span> experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear <span class="hlt">wave</span> interference <span class="hlt">patterns</span>. Previously the crawling <span class="hlt">wave</span> speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling <span class="hlt">wave</span> speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear <span class="hlt">wave</span> speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling <span class="hlt">wave</span> phase from the spectral variance data; (2) calculate the crawling <span class="hlt">wave</span> phase <span class="hlt">wave</span> speed; (3) solve a first-order PDE for the phase of the <span class="hlt">wave</span> emanating from <span class="hlt">one</span> of the sources; and (4) compute and image the shear <span class="hlt">wave</span> speed on a grid in the image plane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2921425','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2921425"><span>Shear <span class="hlt">wave</span> speed recovery in sonoelastography using crawling <span class="hlt">wave</span> data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley</p> <p>2010-01-01</p> <p>The crawling <span class="hlt">wave</span> experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear <span class="hlt">wave</span> interference <span class="hlt">patterns</span>. Previously the crawling <span class="hlt">wave</span> speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling <span class="hlt">wave</span> speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear <span class="hlt">wave</span> speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling <span class="hlt">wave</span> phase from the spectral variance data; (2) calculate the crawling <span class="hlt">wave</span> phase <span class="hlt">wave</span> speed; (3) solve a first-order PDE for the phase of the <span class="hlt">wave</span> emanating from <span class="hlt">one</span> of the sources; and (4) compute and image the shear <span class="hlt">wave</span> speed on a grid in the image plane. PMID:20649204</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AnGeo..35.1219S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AnGeo..35.1219S"><span>Unusual behavior of quiet-time <span class="hlt">zonal</span> and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.</p> <p>2017-11-01</p> <p>The influence of the recent deep and prolonged solar minimum on the daytime <span class="hlt">zonal</span> and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the <span class="hlt">zonal</span> plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the <span class="hlt">zonal</span> drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low <span class="hlt">zonal</span> wind was mainly responsible for the observed anomalous behavior in the <span class="hlt">zonal</span> drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the <span class="hlt">zonal</span> plasma drift is significantly smaller than that arising from the anomalously low <span class="hlt">zonal</span> wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8a5134W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8a5134W"><span>Grating-<span class="hlt">patterned</span> FeCo coated surface acoustic <span class="hlt">wave</span> device for sensing magnetic field</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu</p> <p>2018-01-01</p> <p>This study addresses the theoretical and experimental investigations of grating-<span class="hlt">patterned</span> magnetostrictive FeCo coated surface acoustic <span class="hlt">wave</span> (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the <span class="hlt">wave</span> propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-<span class="hlt">patterned</span> FeCo coated sensor successfully.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23606563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23606563"><span>Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of <span class="hlt">zonal</span> characteristics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J</p> <p>2016-04-01</p> <p>Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using <span class="hlt">zonal</span> chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking <span class="hlt">zonal</span> architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of <span class="hlt">zonal</span> chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), <span class="hlt">zonal</span> population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for <span class="hlt">zonal</span> markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original <span class="hlt">zonal</span> phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604666','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4604666"><span>Variations in <span class="hlt">zonal</span> fruit starch concentrations of apples – a developmental phenomenon or an indication of ripening?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Doerflinger, Franziska C; Miller, William B; Nock, Jacqueline F; Watkins, Christopher B</p> <p>2015-01-01</p> <p><span class="hlt">Patterns</span> of starch hydrolysis in stem, equatorial, and calyx zones of ‘Honeycrisp’ and ‘Empire’ apples (Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.) during maturation and ripening, and in ‘Gala’ apples in response to propylene or 1-methylcyclopropene (1-MCP) treatments after harvest, were studied. Differences in <span class="hlt">zonal</span> starch concentrations were found for ‘Empire’ and ‘Gala’ fruits, but not for ‘Honeycrisp’. During maturation and ripening of ‘Empire’, the concentration of starch was highest in the calyx end and lowest in the stem region. Differences in rates of starch hydrolysis among zones were not detected. ‘Honeycrisp’ and ‘Empire’ had the highest concentration of sorbitol in the calyx region, whereas it was highest in the stem-end region in ‘Gala’. The distribution differences of glucose, fructose, and sucrose were similar in all three cultivars; higher fructose and glucose concentrations in the stem region, and higher sucrose concentrations in the calyx end of the fruit. Postharvest treatment of ‘Gala’ with propylene did not affect the internal ethylene concentration of the fruit but 1-MCP markedly inhibited it. Starch concentrations were highest in the calyx end but gradients of starch among zones were not changed by postharvest treatment. The rate of hydrolysis was slowed by 1-MCP treatment, but was unaffected by propylene. Postharvest treatments influenced sorbitol, glucose, and fructose concentrations. Patterns of starch concentration among the zones did not confirm differences in ripening, but reflected its uneven distribution throughout the fruit during development. Therefore, measured differences in zonal starch are most likely related to starch accumulation during fruit development, rather than differences in rates of starch degradation during ripening. PMID:26504584

  15. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  16. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  17. Simulation of pattern and defect detection in periodic amplitude and phase structures using photorefractive four-wave mixing

    NASA Astrophysics Data System (ADS)

    Nehmetallah, Georges; Banerjee, Partha; Khoury, Jed

    2015-03-01

    The nonlinearity inherent in four-wave mixing in photorefractive (PR) materials is used for adaptive filtering. Examples include script enhancement on a periodic pattern, scratch and defect cluster enhancement, periodic pattern dislocation enhancement, etc. through intensity filtering image manipulation. Organic PR materials have large space-bandwidth product, which makes them useful in adaptive filtering techniques in quality control systems. For instance, in the case of edge enhancement, phase conjugation via four-wave mixing suppresses the low spatial frequencies of the Fourier spectrum of an aperiodic image and consequently leads to image edge enhancement. In this work, we model, numerically verify, and simulate the performance of a four wave mixing setup used for edge, defect and pattern detection in periodic amplitude and phase structures. The results show that this technique successfully detects the slightest defects clearly even with no enhancement. This technique should facilitate improvements in applications such as image display sharpness utilizing edge enhancement, production line defect inspection of fabrics, textiles, e-beam lithography masks, surface inspection, and materials characterization.

  18. Stationary Waves of the Ice Age Climate.

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Held, Isaac M.

    1988-08-01

    A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.

  19. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    NASA Astrophysics Data System (ADS)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  20. Internal inertia-gravity waves in the tropical lower stratosphere observed by the Arecibo radar

    NASA Technical Reports Server (NTRS)

    Maekawa, Y.; Kato, S.; Fukao, S.; Sato, T.; Woodman, R. F.

    1984-01-01

    A quasi-periodic wind oscillation with an apparent 20-50 hour period was observed at between 16 and 20 km in every experiment conducted during three periods from 1979 to 1981 with the Arecibo UHF radar. The wave disappeared near 20 km, where the mean zonal flow had easterly shear with height. This phenomenon is discussed in terms of wave absorption at a critical level, and it is suggested that the wave had a westward horizontal phase speed of 10-20 m/sec. On the basis of a relationship from f-plane theory in which the Doppler-shifted wave frequency approaches the Coriolis frequency at the critical level, an intrinsic period and horizontal wavelength at the wave-generated height of 20-30 hours and about 2000 km, respectively, are inferred.

  21. Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection

    Treesearch

    Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross

    2013-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  22. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection

    Treesearch

    Guanghui Li; Xiping Wang; Hailin Feng; Jan Wiedenbeck; Robert J. Ross

    2014-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  23. Why the stratospheric zonal and meridional wind changes trend in the mid -1990s?

    NASA Astrophysics Data System (ADS)

    Krizan, P.

    2016-12-01

    This poster tries to explain the reasons for trend change of the stratospheric zonal and meridional wind in the mid-1990s. In the areas of negative (positive) wind speed trend before 1995 the positive (negative) trend is observed after this point Similar change is observed also for total ozone where we observe negative trend before 1995 and positive one after. We use MERRA reanalysis data especially monthly mean of geopotential from January to March. We suppose the position and strength of polar vortex and Aleutian high plays here very important role..

  24. Interdecadal Change in the Tropical Pacific Precipitation Anomaly Pattern around the Late 1990s during Boreal Spring

    NASA Astrophysics Data System (ADS)

    Wen, Zhiping; Guo, Yuanyuan; Wu, Renguang

    2017-04-01

    The leading mode of boreal spring precipitation variability over the tropical Pacific experienced a pronounced interdecadal change around the late 1990s. The pattern before 1998 features positive precipitation anomalies over the equatorial eastern Pacific (EP) with positive principle component years. The counterpart after 1998 exhibits a westward shift of the positive center to the equatorial central Pacific (CP). Observational evidence shows that this interdecadal change in the leading mode of precipitation variability is closely associated with a distinctive sea surface temperature (SST) anomaly pattern. The westward shift of the anomalous precipitation center after 1998 is in tandem with a similar shift of maximum warming from the EP to CP. Diagnostic analyses based on a linear equation of the mixed layer temperature anomaly exhibit that an interdecadal enhancement of zonal advection (ZA) feedback process plays a vital role in the shift in the leading mode of both the tropical Pacific SST and the precipitation anomaly during spring. Moreover, the variability of the anomalous zonal current at the upper ocean dominates the ZA feedback change, while the mean zonal SST gradient associated with a La Niña-like pattern of the mean state only accounts for a relatively trivial proportion of the ZA feedback change. It was found that both the relatively rapid decaying of the SST anomalies in the EP and the La Niña-like mean state make it conceivable that the shift of the leading mode of the tropical precipitation anomaly only occurs in spring. In addition, the largest variance of the anomalous zonal current in spring might contribute to the unique interdecadal change in the tropical spring precipitation anomaly pattern.

  25. Wave-driven dynamo action in spherical magnetohydrodynamic systems.

    PubMed

    Reuter, K; Jenko, F; Tilgner, A; Forest, C B

    2009-11-01

    Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence, where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo, although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of nonorthogonal eigenstates of the time-dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.

  26. LETTERS AND COMMENTS: Energy in one-dimensional linear waves in a string

    NASA Astrophysics Data System (ADS)

    Burko, Lior M.

    2010-09-01

    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus-based physics course.

  27. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  28. Wave energy patterns of counterpulsation: a novel approach with wave intensity analysis.

    PubMed

    Lu, Pong-Jeu; Yang, Chi-Fu Jeffrey; Wu, Meng-Yu; Hung, Chun-Hao; Chan, Ming-Yao; Hsu, Tzu-Cheng

    2011-11-01

    In counterpulsation, diastolic augmentation increases coronary blood flow and systolic unloading reduces left ventricular afterload. We present a new approach with wave intensity analysis to revisit and explain counterpulsation principles. In an acute porcine model, a standard intra-aortic balloon pump was placed in descending aorta in 4 pigs. We measured pressure and velocity with probes in left anterior descending artery and aorta during and without intra-aortic balloon pump assistance. Wave intensities of aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction. We identified predominating waves in counterpulsation. In the aorta, during diastolic augmentation, intra-aortic balloon inflation generated a backward compression wave, with a "pushing" effect toward the aortic root that translated to a forward compression wave into coronary circulation. During systolic unloading, intra-aortic balloon pump deflation generated a backward expansion wave that "sucked" blood from left coronary bed into the aorta. While this backward expansion wave translated to reduced left ventricular afterload, the "sucking" effect resulted in left coronary blood steal, as demonstrated by a forward expansion wave in left anterior descending coronary flow. The waves were sensitive to inflation and deflation timing, with just 25 ms delay from standard deflation timing leading to weaker forward expansion wave and less coronary regurgitation. Intra-aortic balloon pumps generate backward-traveling waves that predominantly drive aortic and coronary blood flow during counterpulsation. Wave intensity analysis of arterial circulations may provide a mechanism to explain diastolic augmentation and systolic unloading of intra-aortic balloon pump counterpulsation. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  29. Standing wave contributions to the linear interference effect in stratosphere-troposphere coupling

    NASA Astrophysics Data System (ADS)

    Watt-Meyer, Oliver; Kushner, Paul

    2014-05-01

    A body of literature by Hayashi and others [Hayashi 1973, 1977, 1979; Pratt, 1976] developed a decomposition of the wavenumber-frequency spectrum into standing and travelling waves. These techniques directly decompose the power spectrum—that is, the amplitudes squared—into standing and travelling parts. This, incorrectly, does not allow for a term representing the covariance between these waves. We propose a simple decomposition based on the 2D Fourier transform which allows one to directly compute the variance of the standing and travelling waves, as well as the covariance between them. Applying this decomposition to geopotential height anomalies in the Northern Hemisphere winter, we show the dominance of standing waves for planetary wavenumbers 1 through 3, especially in the stratosphere, and that wave-1 anomalies have a significant westward travelling component in the high-latitude (60N to 80N) troposphere. Variations in the relative zonal phasing between a wave anomaly and the background climatological wave pattern—the "linear interference" effect—are known to explain a large part of the planetary wave driving of the polar stratosphere in both hemispheres. While the linear interference effect is robust across observations, models of varying degrees of complexity, and in response to various types of perturbations, it is not well understood dynamically. We use the above-described decomposition into standing and travelling waves to investigate the drivers of linear interference. We find that the linear part of the wave activity flux is primarily driven by the standing waves, at all vertical levels. This can be understood by noting that the longitudinal positions of the antinodes of the standing waves are typically close to being aligned with the maximum and minimum of the background climatology. We discuss implications for predictability of wave activity flux, and hence polar vortex strength variability.

  30. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify

  1. Intelligent feature selection techniques for pattern classification of Lamb wave signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinders, Mark K.; Miller, Corey A.

    2014-02-18

    Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less

  2. Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking

    PubMed Central

    Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng

    2016-01-01

    One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking. PMID:27387438

  3. Processed Movie of Zonal Jets

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This movie is a manipulated sequence showing motions in Jupiter's atmosphere over the course of five days beginning Oct. 1, 2000, as seen by a camera on NASA's Cassini spacecraft, using a blue filter.

    Beginning with seven images taken at uneven time intervals, this sequence was made by using information on wind speeds derived from actual Jupiter images to create evenly spaced time steps throughout. The final result is a smooth movie sequence consisting of both real and false frames.

    The view is of the opposite side of the planet from Jupiter's Great Red Spot. The region shown reaches from 50 degrees north to 50 degrees south of Jupiter's equator, and extends 100 degrees east-to-west, about one-quarter of Jupiter's circumference. The smallest features are about 500 kilometers (about 300 miles) across.

    Towards the end of the sequence, a shadow appears from one of Jupiter's moons, Europa.

    The movie shows the remains of a historic merger that began several years ago, when three white oval storms that had existed for 60 years merged into two, then one. The resulting oval is visible in the lower left portion of the movie.

    The movie also shows zonal jets that circle the planet on constant latitudes. Winds seen moving toward the left (westward) correspond to features that are rotating a little slower than Jupiter's magnetic field, and winds moving the opposite direction correspond to features that are rotating a little faster than the magnetic field. Since Jupiter has no solid surface, the rotation of the magnetic field is the point of reference for the rotation of the planet.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  4. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  5. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  6. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  7. Temporal Variability and Latitudinal Jets in Venus's Zonal Wind Profiles

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Bullock, M. A.; Tavenner, T.; Coyote, S.; Murphy, J. R.

    2008-09-01

    We have observed Venus's night hemisphere from NASA's IRTF (Infrared Telescope Facility) during each inferior conjunction since 2001 to quantify the motion of features in Venus's lower and middle cloud decks. We now present latitudinal profiles from 11 nights, obtained in May and July 2004, February 2006 and September 2007. In about 7 of the 11 nights there are zonal jets near 45N and/or -50S, with speed differentials of 5 to 15 m/s relative to the adjacent equatorward latitude bands. These jets may be evidence of episodic Hadley cell-type circulation. About half of the nights show relatively constant velocity profiles between the latitudes of 50N to 50S, suggesting that considerable mixing is taking place between latitudes. Our most remarkable result is the temporal variability in the median zonal speeds from day to day. For example, the median velocity near the equator increases from 53 to 65 m/s over the period from July 11 - 13, 2004, and increases from 65 to 82 m/s over the period from Sept. 9 - 11, 2007. These velocity changes are too great to be due to the tracking of clouds that are in the middle vs. lower cloud deck, nor can they be caused by clouds that occupy different altitudes; a velocity variation of 25% corresponds to an altitude difference of 15 km, based on vertical profiles of zonal windspeeds from tracking of Pioneer Venus and Venera descent probes. Fifteen km is greater than the expected variation in either cloud base. VIRTIS observations of Venus's southern hemisphere were also obtained in September 2007 and should be able to corroborate or contradict the observed variations. This work was supported by NASA's Planetary Astronomy and Atmospheres programs.

  8. An assessment of satellite temperature distributions used to derive the net diabatic transport for zonally averaged models of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.; Bhatt, Praful P.; Miles, Thomas

    1994-01-01

    Determinations of the zonally averaged and diabatically derived residual mean circulation (RMC) are particularly sensitive to the assumed zonal mean temperature distribution used as input. Several different middle atmosphere satellite temperature distributions have been employed in models and are compared here: a 4-year (late 1978 to early 1982) National Meteorological Center (NMC) climatology, the Barnett and Corney (or BC) climatology, and the 7 months of Nimbus 7 limb infrared monitor of the stratosphere (LIMS) temperatures. All three climatologies are generally accurate below the 10 hPa level, but there are systematic differences between them of up to +/-5 K in the upper stratosphere and lower mesosphere. The NMC/LIMS differences are evaluated using time series of rocketsonde and reconstructed satellite temperatures at station locations. Much of those biases can be explained by the differing vertical resolutions for the satellite-derived temperatures; the time series of reconstructed LIMS profiles have higher resolution and are more accurate. Because the LIMS temperatures are limited to just two full seasons, one cannot obtain monthly RMCs from them for an annual model calculation. Two alternate monthly climatologies are examined briefly: the 4-year Nimbus 7 stratospheric and mesospheric sounder (SAMS) temperatures and for the mesosphere the distribution from the Solar Mesosphere Explorer (SME), both of which are limb viewers of medium vertical resolution. There are also differences of the order of +/-5 K for those data sets. It is concluded that a major source of error in the determination of diabatic RMCs is a persistent pattern of temperature bias whose characteristics vary according to the vertical resolution of each individual climatology.

  9. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  10. Three-in-One Resonance Tube for Harmonic Series Sound Wave Experiments

    ERIC Educational Resources Information Center

    Jaafar, Rosly; Nazihah Mat Daud, Anis; Ali, Shaharudin; Kadri Ayop, Shahrul

    2017-01-01

    In this study we constructed a special three-in-one resonance tube for a harmonic series sound waves experiment. It is designed for three different experiments: both-open-end, one-closed-end and both-closed-end tubes. The resonance tube consists of a PVC conduit with a rectangular hole, rubber tube, plastic stopper with an embedded microphone and…

  11. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  12. Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less

  13. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    NASA Technical Reports Server (NTRS)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  14. Decomposition method for zonal resource allocation problems in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Konnov, I. V.; Kashuba, A. Yu

    2016-11-01

    We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.

  15. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region

  16. Classical reconstruction of interference patterns of position-wave-vector-entangled photon pairs by the time-reversal method

    NASA Astrophysics Data System (ADS)

    Ogawa, Kazuhisa; Kobayashi, Hirokazu; Tomita, Akihisa

    2018-02-01

    The quantum interference of entangled photons forms a key phenomenon underlying various quantum-optical technologies. It is known that the quantum interference patterns of entangled photon pairs can be reconstructed classically by the time-reversal method; however, the time-reversal method has been applied only to time-frequency-entangled two-photon systems in previous experiments. Here, we apply the time-reversal method to the position-wave-vector-entangled two-photon systems: the two-photon Young interferometer and the two-photon beam focusing system. We experimentally demonstrate that the time-reversed systems classically reconstruct the same interference patterns as the position-wave-vector-entangled two-photon systems.

  17. Local reduction of certain wave operators to one-dimensional form

    NASA Technical Reports Server (NTRS)

    Roe, Philip

    1994-01-01

    It is noted that certain common linear wave operators have the property that linear variation of the initial data gives rise to one-dimensional evolution in a plane defined by time and some direction in space. The analysis is given For operators arising in acoustics, electromagnetics, elastodynamics, and an abstract system.

  18. A comprehensive analysis of coherent rainfall patterns in China and potential drivers. Part I: Interannual variability

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas Pappas; Vidale, Pier Luigi; Turner, Andrew George; Demory, Marie-Estelle; Guo, Liang

    2018-06-01

    Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. To improve its understanding and prediction, many studies have associated precipitation variability with particular causes for specific seasons and regions. Here, a consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to 1951-2007 high-resolution precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. The EOT method is validated by the reproduction of known relationships to the El Niño Southern Oscillation (ENSO): high positive correlations with ENSO are found in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that wintertime rainfall variability along the southeast coast is associated with anomalous convection over the tropical eastern Atlantic and communicated to China through a zonal wavenumber-three Rossby wave. Furthermore, spring rainfall variability in the Yangtze valley is related to upper-tropospheric midlatitude perturbations that are part of a Rossby wave pattern with its origin in the North Atlantic. A circumglobal wave pattern in the northern hemisphere is also associated with autumn precipitation variability in eastern areas. The analysis is objective, comprehensive, and produces timeseries that are tied to specific locations in China. This facilitates the interpretation of associated dynamical processes, is useful for understanding the regional hydrological cycle, and allows the results to serve as a benchmark for assessing general circulation models.

  19. Saturn's North Polar Vortex Revealed by Cassini/VIMS: Zonal Wind Structure and Constraints on Cloud Distributions

    NASA Astrophysics Data System (ADS)

    Baines, Kevin H.; Momary, T. W.; Fletcher, L. N.; Buratti, B. J.; Roos-Serote, M.; Showman, A. P.; Brown, R. H.; Clark, R. N.; Nicholson, P. D.

    2008-09-01

    We present the first high-spatial resolution, near-nadir imagery and movies of Saturn's north polar region that reveal the wind structure of a north polar vortex. Obtained by Cassini/VIMS on June 15, 2008 from high over Saturn's polar region (sub-spacecraft latitude of 65 degrees N. lat) at an altitude of 0.42 million km during the long polar night, these 210-per-pixel images of the polar region north of 73 degrees N. latitude show several concentric cloud rings and hundreds of individual cloud features in silhouette against the 5-micron background thermal glow of Saturn's deep atmosphere. In contrast to the clear eye of the south polar vortex, the north polar vortex sports a central cloud feature about 650-km in diameter. Zonal winds reach a maximum of 150 m/s near 88 degrees N. latitude (planetocentric) - comparable to the south polar vortex maximum of 190 m/s near 88 degrees S. latitude - and fall off nearly monotonically to 10 m/s near 80 degrees N. latitude. At slightly greater distance from the pole, inside the north polar hexagon in the 75-77 degree N. latitude region, zonal winds increase dramatically to 130 m/s, as silhouetted clouds are seen speeding aroud the "race track” of the hexagonal feature. VIMS 5-micron thermal observations over a 1.6-year period from October 29, 2006 to June 15, 2008 are consistent with the polar hexagon structure itself remaining fixed in the Voyager-era radio rotation rate (Desch and Kaiser, Geophys. Res. Lett, 8, 253-256, 1981) to within an accuracy of 3 seconds per rotational period. This agrees with the stationary nature of the wave in this rotation system found by Godfrey (Icarus 76, 335-356, 1988), but is inconsistent with rotation rates found during the current Cassini era.

  20. Comments on "extended zonal dislocations mediating ? ? twinning in titanium"

    NASA Astrophysics Data System (ADS)

    El Kadiri, Haitham; Barrett, Christopher D.

    2013-09-01

    In a recent paper, Li et al. (Philos. Mag. 92 (2012) p.1006) used results of atomistic simulations to advance a growth mechanism of ? ? twinning in titanium based on the concept of two elementary twinning dislocations which nucleate and glide in pairs but separately and sequentially on two neighbouring planes. This new Comment was stimulated after A. Serra, D.J. Bacon and R.C. Pond privately raised concerns on this growth model to one of the present authors, H. El Kadiri, who This was a co-author of the original paper (Philos. Mag. 92 (2012) p.1006). We repeated the simulations and obtained nearly the same simulations results as Li et al. However, after re-analysing these results, we have concluded that the extended extrinsic zonal dislocation mechanism claimed to be that for twin growth in titanium is in fact false, confirming the accuracy of the Comment by Serra et al that results of Li and co-authors were misinterpreted.

  1. Computational Modeling of Bloch Surface Waves in One-Dimensional Periodic and Aperiodic Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Koju, Vijay

    Photonic crystals and their use in exciting Bloch surface waves have received immense attention over the past few decades. This interest is mainly due to their applications in bio-sensing, wave-guiding, and other optical phenomena such as surface field enhanced Raman spectroscopy. Improvement in numerical modeling techniques, state of the art computing resources, and advances in fabrication techniques have also assisted in growing interest in this field. The ability to model photonic crystals computationally has benefited both the theoretical as well as experimental communities. It helps the theoretical physicists in solving complex problems which cannot be solved analytically and helps to acquire useful insights that cannot be obtained otherwise. Experimentalists, on the other hand, can test different variants of their devices by changing device parameters to optimize performance before fabrication. In this dissertation, we develop two commonly used numerical techniques, namely transfer matrix method, and rigorous coupled wave analysis, in C++ and MATLAB, and use two additional software packages, one open-source and another commercial, to model one-dimensional photonic crystals. Different variants of one-dimensional multilayered structures such as perfectly periodic dielectric multilayers, quasicrystals, aperiodic multilayer are modeled, along with one-dimensional photonic crystals with gratings on the top layer. Applications of Bloch surface waves, along with new and novel aperiodic dielectric multilayer structures that support Bloch surface waves are explored in this dissertation. We demonstrate a slow light configuration that makes use of Bloch Surface Waves as an intermediate excitation in a double-prism tunneling configuration. This method is simple compared to the more usual techniques for slowing light using the phenomenon of electromagnetically induced transparency in atomic gases or doped ionic crystals operated at temperatures below 4K. Using a semi

  2. Tidal-Induced Internal Ocean Waves as an Explanation for Enceladus' Tiger Stripe Pattern and Hotspot Activity

    NASA Astrophysics Data System (ADS)

    Vermeersen, B. L. A.; Maas, L. R.; van Oers, S.; Rabitti, A.; Jara-Orue, H.

    2014-12-01

    One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. Indeed, later Cassini observations have shown that salty water jets originate from the tiger stripes [e.g., Hansen et al., Science, 311, 1422-1425, 2006; Postberg et al., Nature, 474, 620-622, 2011]. More recently, Porco et al. [Astron. J., 148:45, Sep. 2014] and Nimmo et al. [Astron. J., 148:46, Sep. 2014] have reported strong evidence that the geysers are not caused by frictional heating at the surface, but that geysers must originate deeper in Enceladus' interior. Tidal flexing models, like those of Hurford et al., Nature, 447, 292-294, 2007, give a good match for the brightness variations Cassini observes, but they seem to fail to reproduce the exact timing of plume brightening. Although jet activity is thus strongly connected to tidal forcing, another mechanism must be involved as well. Last year, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. The latest observations by Porco et al. and Nimmo et al. seem to be in agreement with this tidal-induced wave attractor phenomenon, both with respect to tiger stripe pattern and with respect to timing of hotspot activity. However, in

  3. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    NASA Astrophysics Data System (ADS)

    Nagpal, O. P.; Kumar, S.

    1985-12-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  4. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    NASA Technical Reports Server (NTRS)

    Nagpal, O. P.; Kumar, S.

    1985-01-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  5. Neurobehavioral consequences of continuous spike and waves during slow sleep (CSWS) in a pediatric population: A pattern of developmental hindrance.

    PubMed

    De Giorgis, Valentina; Filippini, Melissa; Macasaet, Joyce Ann; Masnada, Silvia; Veggiotti, Pierangelo

    2017-09-01

    Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond

  6. The role of planetary waves in the tropospheric jet response to stratospheric cooling

    NASA Astrophysics Data System (ADS)

    Smith, Karen L.; Scott, Richard K.

    2016-03-01

    An idealized general circulation model is used to assess the importance of planetary-scale waves in determining the position of the tropospheric jet, specifically its tendency to shift poleward as winter stratospheric cooling is increased. Full model integrations are compared against integrations in which planetary waves are truncated in the zonal direction, and only synoptic-scale waves are retained. Two series of truncated integrations are considered, using (i) a modified radiative equilibrium temperature or (ii) a nudged-bias correction technique. Both produce tropospheric climatologies that are similar to the full model when stratospheric cooling is weak. When stratospheric cooling is increased, the results indicate that the interaction between planetary- and synoptic-scale waves plays an important role in determining the structure of the tropospheric mean flow and rule out the possibility that the jet shift occurs purely as a response to changes in the planetary- or synoptic-scale wave fields alone.

  7. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  8. Field patterns without blow up

    NASA Astrophysics Data System (ADS)

    Mattei, Ornella; Milton, Graeme W.

    2017-09-01

    Field patterns, first proposed by the authors in Milton and Mattei (2017 Proc. R. Soc. A 473 20160819), are a new type of wave propagating along orderly patterns of characteristic lines which arise in specific space-time microstructures whose geometry in one spatial dimension plus time is somehow commensurate with the slope of the characteristic lines. In particular, in Milton and Mattei (2017 Proc. R. Soc. A 473 20160819) the authors propose two examples of space-time geometries in which field patterns occur: they are two-phase microstructures in which rectangular space-time inclusions of one material are embedded in another material. After a sufficiently long interval of time, field patterns have local periodicity both in time and space. This allows one to focus only on solving the problem on the discrete network on which a field pattern lives and to define a suitable transfer matrix that, given the solution at a certain time, provides the solution after one time period. For the aforementioned microstructures, many of the eigenvalues of this { P }{ T }-symmetric transfer matrix have unit norm and hence the corresponding eigenvectors correspond to propagating modes. However, there are also modes that blow up exponentially with time coupled with modes that decrease exponentially with time. The question arises as to whether there are space-time microstructures such that the transfer matrix only has eigenvalues on the unit circle, so that there are no growing modes (modes that blow-up)? The answer is found here, where we see that certain space-time checkerboards have the property that all the modes are propagating modes, within a certain range of the material parameters. Interestingly, when there is no blow-up, the waves generated by an instantaneous disturbance at a point look like shocks with a wake of oscillatory waves, whose amplitude, very remarkably, does not tend to zero away from the wave front.

  9. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    NASA Astrophysics Data System (ADS)

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  10. Scalable patterning using laser-induced shock waves

    NASA Astrophysics Data System (ADS)

    Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.

    2018-04-01

    An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.

  11. Rossby-gravity waves in tropical total ozone data

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Ziemke, J. R.

    1993-01-01

    Evidence for Rossby-gravity waves in tropical data fields produced by the European Center for Medium Range Weather Forecasts (ECMWF) was recently reported. Similar features are observable in fields of total column ozone from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument. The observed features are episodic, have zonal (east-west) wavelengths of 6,000-10,000 km, and oscillate with periods of 5-10 days. In accord with simple linear theory, the modes exhibit westward phase progression and eastward group velocity. The significance of finding Rossby-gravity waves in total ozone fields is that (1) the report of similar features in ECMWF tropical fields is corroborated with an independent data set and (2) the TOMS data set is demonstrated to possess surprising versatility and sensitivity to relatively smaller scale tropical phenomena.

  12. Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core

    NASA Astrophysics Data System (ADS)

    Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.

    2016-12-01

    A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.

  13. Controlled-source seismic interferometry with one way wave fields

    NASA Astrophysics Data System (ADS)

    van der Neut, J.; Wapenaar, K.; Thorbecke, J. W.

    2008-12-01

    In Seismic Interferometry we generally cross-correlate registrations at two receiver locations and sum over an array of sources to retrieve a Green's function as if one of the receiver locations hosts a (virtual) source and the other receiver location hosts an actual receiver. One application of this concept is to redatum an area of surface sources to a downhole receiver location, without requiring information about the medium between the sources and receivers, thus providing an effective tool for imaging below complex overburden, which is also known as the Virtual Source method. We demonstrate how elastic wavefield decomposition can be effectively combined with controlled-source Seismic Interferometry to generate virtual sources in a downhole receiver array that radiate only down- or upgoing P- or S-waves with receivers sensing only down- or upgoing P- or S- waves. For this purpose we derive exact Green's matrix representations from a reciprocity theorem for decomposed wavefields. Required is the deployment of multi-component sources at the surface and multi- component receivers in a horizontal borehole. The theory is supported with a synthetic elastic model, where redatumed traces are compared with those of a directly modeled reflection response, generated by placing active sources at the virtual source locations and applying elastic wavefield decomposition on both source and receiver side.

  14. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.

    PubMed

    Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P

    2011-09-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives. © 2011 Acoustical Society of America

  15. Characteristics of Quasi-Biennial Oscillation simulation in the Meteorological Research Institute earth system model

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Naoe, H.

    2016-12-01

    Whether climate models drive Quasi-Biennial Oscillation (QBO) appropriately is important to assess QBO impact on climate change such as global warming and solar related variation. However, there were few models generating QBO in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This study focuses on dynamical structure of the QBO and its sensitivity to background wind pattern and model configuration. We present preliminary results of experiments designed by "Towards Improving the QBO in Global Climate Models (QBOi)", which is derived from the Stratosphere-troposphere processes and their role in climate (SPARC), in the Meteorological Research Institute earth system model, MRI-ESM2. The simulations were performed in present-day climate condition, repeated annual cycle condition with various CO2 level and sea surface temperatures, and QBO hindcast. In the present climate simulation, zonal wind in the equatorial stratosphere generally exhibits realistic behavior of the QBO. Equatorial zonal wind variability associated with QBO is overestimated in upper stratosphere and underestimated in lower stratosphere. In the MRI-ESM2, the QBO behavior is mainly driven by gravity wave drag parametrization (GWDP) introduced in Hines (1997). Comparing to reanalyses, shortage of resolved wave forcing is found especially in equatorial lower stratosphere. These discrepancies can be attributed to difference in wave forcing, background wind pattern and model configuration. We intend to show results of additional sensitivity experiments to examine how model configuration and background wind pattern affect resolved wave source, wave propagation characteristics, and QBO behavior.

  16. Prenatal thalamic waves regulate cortical area size prior to sensory processing.

    PubMed

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M; López-Bendito, Guillermina

    2017-02-03

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing.

  17. Prenatal thalamic waves regulate cortical area size prior to sensory processing

    PubMed Central

    Moreno-Juan, Verónica; Filipchuk, Anton; Antón-Bolaños, Noelia; Mezzera, Cecilia; Gezelius, Henrik; Andrés, Belen; Rodríguez-Malmierca, Luis; Susín, Rafael; Schaad, Olivier; Iwasato, Takuji; Schüle, Roland; Rutlin, Michael; Nelson, Sacha; Ducret, Sebastien; Valdeolmillos, Miguel; Rijli, Filippo M.; López-Bendito, Guillermina

    2017-01-01

    The cerebral cortex is organized into specialized sensory areas, whose initial territory is determined by intracortical molecular determinants. Yet, sensory cortical area size appears to be fine tuned during development to respond to functional adaptations. Here we demonstrate the existence of a prenatal sub-cortical mechanism that regulates the cortical areas size in mice. This mechanism is mediated by spontaneous thalamic calcium waves that propagate among sensory-modality thalamic nuclei up to the cortex and that provide a means of communication among sensory systems. Wave pattern alterations in one nucleus lead to changes in the pattern of the remaining ones, triggering changes in thalamic gene expression and cortical area size. Thus, silencing calcium waves in the auditory thalamus induces Rorβ upregulation in a neighbouring somatosensory nucleus preluding the enlargement of the barrel-field. These findings reveal that embryonic thalamic calcium waves coordinate cortical sensory area patterning and plasticity prior to sensory information processing. PMID:28155854

  18. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference.

    PubMed

    Halas, Dominik; Simons, Andrew M

    2014-01-01

    Mitochondrial and nuclear introgression among closely related taxa can greatly complicate the process of determining their phylogenetic relationships. In the Central Highlands of North America, many fish taxa have undergone introgression; in this study, we demonstrate the existence of an unusual introgression event in the Etheostoma zonale species group. We used one mitochondrial and seven nuclear loci to determine the relationships of the taxa within the E. zonale group, and their degree of differentiation. We found evidence of multiple divergent populations within each species; much of the divergence within species has taken place during the Pleistocene. We also found evidence of a previously unknown cryptic species in the Upper Tennessee River which diverged from the remainder of the group during the Pliocene, and has undergone mitochondrial and nuclear introgression with E. zonale, in an apparent process of speciation reversal. We examined the effects that using varying types of recombination tests to eliminate the signal of recombination from nuclear loci would have on the phylogenetic placement of this introgressed lineage in our species tree analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Submillimeter-Wave Phasor Beam-Pattern Measurement Based on Two-Stage Heterodyne Mixing With Unitary Harmonic Difference

    NASA Astrophysics Data System (ADS)

    Hwang, Yuh-Jing; Rao, Ramprasad; Christensen, Rob; Chen, Ming-Tang; Chu, Tah-Hsiung

    2007-06-01

    A near-field phasor beam measurement system is developed for the characterization of heterodyne receiver optics at submillimeter-wave frequencies. The system synthesizes a pair of submillimeter-wave signals as the RF and local oscillator (LO) sources from common reference sources. The synthesized harmonic numbers of the RF and LO sources are arranged with difference by one, which makes this a new configuration with a unitary harmonic difference. The coherent RF and LO signal are down-converted by the receiver under test, then mixed with the microwave-frequency common reference signal to generate the second-order IF signal around 100 MHz for amplitude and phase comparison. The amplitude and phase fluctuation of the measurement system at 683 GHz is within +-0.2 dB and +-4deg in a 1-h period, respectively. The system dynamic range at 683 and 250 GHz can be as high as 43 and 47 dB, respectively. The system is then used to measure the receiver beam patterns at 683 and 250 GHz with different RF transmitting probe antennas.

  20. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.