Sample records for zonally integrated meridional

  1. Subsurface Zonal and Meridional Flows from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Howe, Rachel; Hill, Frank

    2016-10-01

    We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.

  2. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  3. Evidence for wavelike anomalies with short meridional and large zonal scales in the lower stratospheric temperature field

    NASA Technical Reports Server (NTRS)

    Stanford, J. L.; Short, D. A.

    1981-01-01

    Global microwave brightness temperature measurements are analyzed to investigate the range of meridional wavelengths 2000-3000 km where spectral studies reveal larger than expected variance. The data, from the TIROS-N Microwave Sounding Unit, are sensitive to lower stratospheric temperatures (30-150 mb). The results reveal striking temperature anomalies with short meridional wavelengths (2000-3000 km) and long zonal wavelengths (zonal wavenumbers 1-4). The anomalies, with amplitudes approximately 1-2 K, extend from the equatorial region to at least as high as 70 deg N and 70 deg S during January 1979. The features exhibit slow eastward movement or else are nearly stationary for several days. In the Northern Hemisphere, comparison with NMC data reveals that the strongest features tend to be associated with major jet streams.

  4. Intra-seasonal Oscillations (ISO) of Zonal-Mean Meridional Winds and Temperatures as Measured by UARS

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.

    2004-01-01

    Based on an empirical analysis of measurements with the High Resolution Doppler Imager (HRDI) on the UARS spacecraft in the upper mesosphere (95 km), persistent and regular intra-seasonal oscillations (ISO) with periods of about 2 to 4 months have recently been reported in the zonal-mean meridional winds. Similar oscillations have also been discussed independently in a modeling study, and they were attributed to wave-mean-flow interactions. The observed and modeled meridional wind ISOs were largely confined to low latitudes. We report here an analysis of concurrent temperature measurements on UARS, which produces oscillations similar to those seen in the meridional winds. Although the temperature oscillations are observed at lower altitudes (55 km), their phase variations with latitude are qualitatively consistent with the inferred properties seen in the meridional winds and thus provide independent evidence for the existence of ISOs in the mesosphere.

  5. Zonal and meridional patterns of phytoplankton biomass and carbon fixation in the Equatorial Pacific Ocean, between 110°W and 140°W

    NASA Astrophysics Data System (ADS)

    Balch, W. M.; Poulton, A. J.; Drapeau, D. T.; Bowler, B. C.; Windecker, L. A.; Booth, E. S.

    2011-03-01

    Primary production (P prim) and calcification (C calc) were measured in the eastern and central Equatorial Pacific during December 2004 and September 2005, between 110°W and 140°W. The design of the field sampling allowed partitioning of P prim and total chlorophyll a (B) between large (>3 μm) and small (0.45-3 μm) phytoplankton cells. The station locations allowed discrimination of meridional and zonal patterns. The cruises coincided with a warm El Niño Southern Oscillation (ENSO) phase and ENSO-neutral phase, respectively, which proved to be the major factors relating to the patterns of productivity. Production and biomass of large phytoplankton generally covaried with that of small cells; large cells typically accounted for 20-30% of B and 20% of P prim. Elevated biomass and primary production of all size fractions were highest along the equator as well as at the convergence zone between the North Equatorial Counter Current and the South Equatorial Current. C calc by >0.4 μm cells was 2-3% of P prim by the same size fraction, for both cruises. Biomass-normalized P prim values were, on average, slightly higher during the warm-phase ENSO period, inconsistent with a "bottom-up" control mechanism (such as nutrient supply). Another source of variability along the equator was Tropical Instability Waves (TIWs). Zonal variance in integrated phytoplankton biomass (along the equator, between 110° and 140°) was almost the same as the meridional variance across it (between 4° N and 4° S). However, the zonal variance in integrated P prim was half the variance observed meridionally. The variance in integrated C calc along the equator was half that seen meridionally during the warm ENSO phase cruise whereas during the ENSO-neutral period, it was identical. No relation could be observed between the patterns of integrated carbon fixation (P prim or C calc) and integrated nutrients (nitrate, ammonium, silicate or dissolved iron). This suggests that the factors

  6. Why the stratospheric zonal and meridional wind changes trend in the mid -1990s?

    NASA Astrophysics Data System (ADS)

    Krizan, P.

    2016-12-01

    This poster tries to explain the reasons for trend change of the stratospheric zonal and meridional wind in the mid-1990s. In the areas of negative (positive) wind speed trend before 1995 the positive (negative) trend is observed after this point Similar change is observed also for total ozone where we observe negative trend before 1995 and positive one after. We use MERRA reanalysis data especially monthly mean of geopotential from January to March. We suppose the position and strength of polar vortex and Aleutian high plays here very important role..

  7. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    NASA Astrophysics Data System (ADS)

    Nagpal, O. P.; Kumar, S.

    1985-12-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  8. Some studies of zonal and meridional wind characteristics at low latitude Indian stations

    NASA Technical Reports Server (NTRS)

    Nagpal, O. P.; Kumar, S.

    1985-01-01

    At the beginning of the Indian Middle Atmosphere Programme (IMAP), it was decided that the preparation of consolidation reports of already available parameters for the middle atmosphere would be useful. Atmospheric wind data obtained by rockets and balloons constituted one such parameter which had to be consolidated. The present paper summaries the results of this consolidation study. Both zonal and meridional components of winds at four low latitude Indian stations namely Thumba, Shar, Hyderabad, and Balasore, have been analyzed to yield reference wind profiles for each month. The montly mean values have been used to bring out the amplitudes and phases of the annual, semiannual and quasi-biennial oscillations.

  9. Zonally averaged model of dynamics, chemistry and radiation for the atmosphere

    NASA Technical Reports Server (NTRS)

    Tung, K. K.

    1985-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations on a sphere, taking advantage of the more direct relationship between the mean meridional circulation and diabatic heating rate which is available in isentropic coordinates. Possible differences between results of nongeostrophic theory and the commonly used geostrophic formulation are discussed concerning: (1) the role of eddy forcing of the diabatic circulation, and (2) the nonlinear nearly inviscid limit vs the geostrophic limit. Problems associated with the traditional Rossby number scaling in quasi-geostrophic formulations are pointed out and an alternate, more general scaling based on the smallness of mean meridional to zonal velocities for a rotating planet is suggested. Such a scaling recovers the geostrophic balanced wind relationship for the mean zonal flow but reveals that the mean meridional velocity is in general ageostrophic.

  10. Detection of the secondary meridional circulation associated with the quasi-biennial oscillation

    NASA Astrophysics Data System (ADS)

    Ribera, P.; PeñA-Ortiz, C.; Garcia-Herrera, R.; Gallego, D.; Gimeno, L.; HernáNdez, E.

    2004-09-01

    The quasi-biennial oscillation (QBO) signal in stratospheric zonal and meridional wind, temperature, and geopotential height fields is analyzed based on the use of the National Centers for Environmental Prediction (NCEP) reanalysis (1958-2001). The multitaper method-singular value decomposition (MTM-SVD), a multivariate frequency domain analysis method, is used to detect significant and spatially coherent narrowband oscillations. The QBO is found as the most intense signal in the stratospheric zonal wind. Then, the MTM-SVD method is used to determine the patterns induced by the QBO at every stratospheric level and data field. The secondary meridional circulation associated with the QBO is identified in the obtained patterns. This circulation can be characterized by negative (positive) temperature anomalies associated with adiabatic rising (sinking) motions over zones of easterly (westerly) wind shear and over the subtropics and midlatitudes, while meridional convergence and divergence levels are found separated by a level of maximum zonal wind shear. These vertical and meridional motions form quasi-symmetric circulation cells over both hemispheres, though less intense in the Southern Hemisphere.

  11. SOLAR MERIDIONAL FLOW IN THE SHALLOW INTERIOR DURING THE RISING PHASE OF CYCLE 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junwei; Bogart, R. S.; Kosovichev, A. G.

    2014-07-01

    Solar subsurface zonal- and meridional-flow profiles during the rising phase of solar cycle 24 are studied using the time-distance helioseismology technique. The faster zonal bands in the torsional-oscillation pattern show strong hemispheric asymmetries and temporal variations in both width and speed. The faster band in the northern hemisphere is located closer to the equator than the band in the southern hemisphere and migrates past the equator when the magnetic activity in the southern hemisphere is reaching maximum. The meridional-flow speed decreases substantially with the increase of magnetic activity, and the flow profile shows two zonal structures in each hemisphere. Themore » residual meridional flow, after subtracting a mean meridional-flow profile, converges toward the activity belts and shows faster and slower bands like the torsional-oscillation pattern. More interestingly, the meridional-flow speed above latitude 30° shows an anti-correlation with the poleward-transporting magnetic flux, slower when the following-polarity flux is transported and faster when the leading-polarity flux is transported. It is expected that this phenomenon slows the process of magnetic cancellation and polarity reversal in high-latitude areas.« less

  12. SUPERGRANULES AS PROBES OF THE SUN'S MERIDIONAL CIRCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, David H., E-mail: david.hathaway@nasa.gov

    2012-11-20

    Recent analysis revealed that supergranules (convection cells seen at the Sun's surface) are advected by the zonal flows at depths equal to the widths of the cells themselves. Here we probe the structure of the meridional circulation by cross-correlating maps of the Doppler velocity signal using a series of successively longer time lags between maps. We find that the poleward meridional flow decreases in amplitude with time lag and reverses direction to become an equatorward return flow at time lags >24 hr. These cross-correlation results are dominated by larger and deeper cells at longer time lags. (The smaller cells havemore » shorter lifetimes and do not contribute to the correlated signal at longer time lags.) We determine the characteristic cell size associated with each time lag by comparing the equatorial zonal flows measured at different time lags with the zonal flows associated with different cell sizes from a Fourier analysis. This association gives a characteristic cell size of {approx}50 Mm at a 24 hr time lag. This indicates that the poleward meridional flow returns equatorward at depths >50 Mm-just below the base of the surface shear layer. A substantial and highly significant equatorward flow (4.6 {+-} 0.4 m s{sup -1}) is found at a time lag of 28 hr corresponding to a depth of {approx}70 Mm. This represents one of the first positive detections of the Sun's meridional return flow and illustrates the power of using supergranules to probe the Sun's internal dynamics.« less

  13. Zonal flow generation and its feedback on turbulence production in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, Andrey V.; Bos, Wouter J. T.; Nazarenko, Sergey V.

    2013-04-15

    Plasma turbulence described by the Hasegawa-Wakatani equations is simulated numerically for different models and values of the adiabaticity parameter C. It is found that for low values of C turbulence remains isotropic, zonal flows are not generated and there is no suppression of the meridional drift waves and particle transport. For high values of C, turbulence evolves towards highly anisotropic states with a dominant contribution of the zonal sector to the kinetic energy. This anisotropic flow leads to a decrease of turbulence production in the meridional sector and limits the particle transport across the mean isopycnal surfaces. This behavior allowsmore » to consider the Hasegawa-Wakatani equations a minimal PDE model, which contains the drift-wave/zonal-flow feedback loop mechanism.« less

  14. The Deep Meridional Overturning Circulation in the Indian Ocean Inferred from the GECCO Synthesis

    NASA Astrophysics Data System (ADS)

    Wang, W.; Koehl, A.; Stammer, D.

    2012-04-01

    The meridional overturning circulation in the Indian Ocean and its temporal variability in the GECCO ocean synthesis are being investigated. An analysis of the integrated circulation in different layers suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ significantly from those obtained by box inverse models, which, being based on individual hydrographic sections, are susceptible to aliasing. The GECCO solution has a large seasonal variation in its meridional overturning caused by the seasonal reversal of monsoon-related wind stress forcing. Associated seasonal variations of the deep meridional overturning range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differ before and after 1980. Notably, our analysis shows a rather stable trend for the period 1960-1979 and significant changes in the upper and bottom layer for the period 1980-2001. By means of a multivariate EOF analysis, the importance of Ekman dynamics as driving forces of the deep meridional overturning of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress off the Sumatra-Java coast

  15. Cloud Effects on Meridional Atmospheric Energy Budget Estimated from Clouds and the Earth's Radiant Energy System (CERES) Data

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Rose, Fred G.; Rutan, David A.; Charlock, Thomas P.

    2008-01-01

    The zonal mean atmospheric cloud radiative effect, defined as the difference of the top-of-atmosphere (TOA) and surface cloud radiative effects, is estimated from three years of Clouds and the Earth's Radiant Energy System (CERES) data. The zonal mean shortwave effect is small, though it tends to be positive (warming). This indicates that clouds increase shortwave absorption in the atmosphere, especially in midlatitudes. The zonal mean atmospheric cloud radiative effect is, however, dominated by the longwave effect. The zonal mean longwave effect is positive in the tropics and decreases with latitude to negative values (cooling) in polar regions. The meridional gradient of cloud effect between midlatitude and polar regions exists even when uncertainties in the cloud effect on the surface enthalpy flux and in the modeled irradiances are taken into account. This indicates that clouds increase the rate of generation of mean zonal available potential energy. Because the atmospheric cooling effect in polar regions is predominately caused by low level clouds, which tend to be stationary, we postulate that the meridional and vertical gradients of cloud effect increase the rate of meridional energy transport by dynamics in the atmosphere from midlatitude to polar region, especially in fall and winter. Clouds then warm the surface in polar regions except in the Arctic in summer. Clouds, therefore, contribute in increasing the rate of meridional energy transport from midlatitude to polar regions through the atmosphere.

  16. The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Hu, Z. Z.; Huang, B.; Sui, C. H.

    2016-02-01

    In this study, we demonstrate that a sudden reversal of anomalous equatorial zonal current at the peaking ENSO phase triggers the rapid termination of an ENSO event. Throughout an ENSO cycle, the anomalous equatorial zonal current is strongly controlled by the concavity of the anomalous thermocline meridional structure near the equator. During the ENSO developing phase, the anomalous zonal current in the central and eastern Pacific generally enhances the ENSO growth through its zonal SST advection. In the mature phase of ENSO, however, the equatorial thermocline depth anomalies are reflected in the eastern Pacific and slowly propagate westward off the equator in both hemispheres. As a result, the concavity of the thermocline anomalies near the equator is reversed, i.e., the off-equatorial thermocline depth anomalies become higher than that on the equator for El Niño events and lower for La Niño events. This meridional change of thermocline structure reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, which weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal mass transport weakens the existing zonal tilting of equatorial thermocline and suppresses the thermocline feedback. Both processes are concentrated in the eastern equatorial Pacific and can be effective on subseasonal time scales. These current reversal effects are built-in to the ENSO peak phase and independent of the zonal wind effect on thermocline slope. It functions as an oceanic control on ENSO evolution during both El Niño and La Niña events.

  17. Nongeostrophic theory of zonally averaged circulation. I - Formulation

    NASA Technical Reports Server (NTRS)

    Tung, Ka Kit

    1986-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.

  18. Rossby waves and two-dimensional turbulence in a large-scale zonal jet

    NASA Technical Reports Server (NTRS)

    Shepherd, Theodor G.

    1987-01-01

    Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.

  19. CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i

    2010-07-01

    We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less

  20. Zonal-Mean Temperature Variations Inferred from SABER Measurements on TIMED Compared with UARS Observations

    NASA Technical Reports Server (NTRS)

    Huang, Frank T.; Mayr, Hans; Russell, James; Mlynczak, Marty; Reber, Carl A.

    2005-01-01

    In the Numerical Spectral Model (NSM, Mayr et al., 2003), small-scale gravity waves propagating in the north/south direction can generate zonal mean (m = 0) meridional wind oscillations with periods between 2 and 4 months. These oscillations tend to be confined to low latitudes and have been interpreted to be the meridional counterpart of the wave-driven Quasi Biennial Oscillation in the zonal circulation. Wave driven meridional winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. We have analyzed SABER temperature measurements in the altitude range between 55 and 95 km to investigate the existence such variations. Because there are also strong tidal signatures (up to approximately 20 K) in the data, our algorithm estimates both mean values and tides together from the data. Based on SABER temperature data, the intra-annual variations with periods between 2 and 4 months can have amplitudes up to 5 K or more, depending on the altitude. Their amplitudes are in qualitative agreement with those inferred Erom UARS data (from different years). The SABER temperature variations also reveal pronounced hemispherical asymmetries, which are qualitatively consistent with wave driven meridional wind oscillations across the equator. Oscillations with similar periods have been seen in the meridional winds based on UARS data (Huang and Reber, 2003).

  1. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double

  2. The deep meridional overturning circulation in the Indian Ocean inferred from the GECCO synthesis

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Köhl, Armin; Stammer, Detlef

    2012-11-01

    The deep time-varying meridional overturning circulation (MOC) in the Indian Ocean in the German “Estimating the Circulation and Climate of the Ocean” consortium efforts (GECCO) ocean synthesis is being investigated. An analysis of the integrated circulation suggests that, on time average, 2.1 Sv enter the Indian Ocean in the bottom layer (>3200 m) from the south and that 12.3 Sv leave the Indian Ocean in the upper and intermediate layers (<1500 m), composed of the up-welled bottom layer inflow water, augmented by 9.6 Sv Indonesian Throughflow (ITF) water. The GECCO time-mean results differ substantially from those obtained by inverse box models, which being based on individual hydrographic sections and due to the strong seasonal cycle are susceptible to aliasing. The GECCO solution shows a large seasonal variation in its deep MOC caused by the seasonal reversal of monsoon-related wind stress forcing. The associated seasonal variations of the deep MOC range from -7 Sv in boreal winter to 3 Sv in summer. In addition, the upper and bottom transports across the 34°S section show pronounced interannual variability with roughly biennial variations superimposed by strong anomalies during each La Niña phase as well as the ITF, which mainly affect the upper layer transports. On decadal and longer timescale, the meridional overturning variability as well as long-term trends differs before and after 1980. GECCO shows a stable trend for the period 1960-1979 and substantial changes in the upper and bottom layer for the period 1980-2001. By means of an extended EOF analysis, the importance of Ekman dynamics as driving forces of the deep MOC of the Indian Ocean on the interannual timescale is highlighted. The leading modes of the zonal and meridional wind stress favour a basin-wide meridional overturning mode via Ekman upwelling or downwelling mostly in the central and eastern Indian Ocean. Moreover, tropical zonal wind stress along the equator and alongshore wind stress

  3. Parameterization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere

    NASA Technical Reports Server (NTRS)

    Genthon, Christophe; Le Treut, Herve; Sadourny, Robert; Jouzel, Jean

    1990-01-01

    A Charney-Branscome based parameterization has been tested as a way of representing the eddy sensible heat transports missing in a zonally averaged dynamic model (ZADM) of the atmosphere. The ZADM used is a zonally averaged version of a general circulation model (GCM). The parameterized transports in the ZADM are gaged against the corresponding fluxes explicitly simulated in the GCM, using the same zonally averaged boundary conditions in both models. The Charney-Branscome approach neglects stationary eddies and transient barotropic disturbances and relies on a set of simplifying assumptions, including the linear appoximation, to describe growing transient baroclinic eddies. Nevertheless, fairly satisfactory results are obtained when the parameterization is performed interactively with the model. Compared with noninteractive tests, a very efficient restoring feedback effect between the modeled zonal-mean climate and the parameterized meridional eddy transport is identified.

  4. Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao

    2018-05-01

    In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.

  5. The Thermal Structure, Dust Loading, and Meridional Transport in the Martian Atmosphere during Late Southern Summer.

    NASA Astrophysics Data System (ADS)

    Santee, Michelle

    The thermal structure, dust loading, and meridional transport in the Martian atmosphere are investigated using thermal emission spectra recorded by the Mariner 9 infrared interferometer spectrometer (IRIS). The analysis is restricted to a subset of the IRIS data consisting of approximately 2400 spectra spanning L_{S} = 343^circ-348^ circ, corresponding to late southern summer on Mars. Simultaneous retrieval of the vertical distribution of both atmospheric temperature and dust optical depth is accomplished through an iterative procedure which is performed on each spectrum. Although atmospheric temperatures decrease from equator to pole at lower altitudes, both dayside and nightside temperatures above about 0.1 mbar (~40 km) are warmer over the winter (north) polar region than over the equator or the summer (south) polar region. Zonal-mean zonal winds are derived from the atmospheric temperatures assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense mid-latitude westerly jets (with velocities of 80-90 m/s near 50 km); in the southern tropics the winds are strongly easterly (with velocities of 100 m/s near 50 km). A comprehensive radiative transfer model (Crisp, 1990) is used to compute solar heating and thermal cooling rates from the retrieved IRIS temperature and dust distributions. There are large net heating rates (up to 8 K/day) in the equatorial region and large net cooling rates (up to 20 K/day) in the polar regions. These net heating rates are used in a diagnostic stream function model which solves for the meridional and vertical components of the diabatic circulation simultaneously. The results show a vigorous two-cell circulation, with rising motion over the equatorial region ( ~1.5 cm/s), poleward flow in both hemispheres (~2 m/s), sinking motion over both polar regions (1-2 cm/s), and return flow in the lowest atmospheric levels. The meridional transport time scale is ~13 days. Water vapor desorbed from the low

  6. Zonal average earth radiation budget measurements from satellites for climate studies

    NASA Technical Reports Server (NTRS)

    Ellis, J. S.; Haar, T. H. V.

    1976-01-01

    Data from 29 months of satellite radiation budget measurements, taken intermittently over the period 1964 through 1971, are composited into mean month, season and annual zonally averaged meridional profiles. Individual months, which comprise the 29 month set, were selected as representing the best available total flux data for compositing into large scale statistics for climate studies. A discussion of spatial resolution of the measurements along with an error analysis, including both the uncertainty and standard error of the mean, are presented.

  7. Lunar Tidal Modulation of Periodic Meridional Movement of Equatorial Ionization Anomaly Crest During Sudden Stratospheric Warming

    NASA Astrophysics Data System (ADS)

    Mo, X. H.; Zhang, D. H.

    2018-02-01

    Using the location of equatorial ionization anomaly (EIA) crest derived from GPS observations in China and Brazilian sector, we investigated the longitudinal dependence of periodic meridional movement of EIA crest during sudden stratospheric warming events in 2003, 2006, and 2009. The solar activity was from high to low for the three events. Results show that the locations of EIA crests in both China and Brazilian sectors exhibit obvious and constant 14- to 15-day periodic oscillation being in-phase in two sectors, which coincide with the half of the lunar revolution period (29.53 days) and the lunar phase. The temporal extent of wave power at 14-15 days is consistent with the temporal extent of stratospheric zonal wind, indicating that 14- to 15-day periodic meridional movement of EIA crest is due to enhanced lunar tide modulated by zonal wind. In addition, it is also found that the amplitude of 14- to 15-day periodic oscillation of EIA crest in China sector is larger than that in Brazilian sector, which may be caused by the longitudinal variation of tides and neutral wind pattern.

  8. Jet and storm track variability and change: adiabatic QG zonal averages and beyond... (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, W. A.

    2013-12-01

    The zonally averaged structures of extratropical jets and stormtracks, their slow variations, and their responses to climate change are all tightly constrained on the one hand by thermal wind balance and the necessary application of eddy torques to produce zonally averaged meridional motion, and, on the other hand, by the necessity that eddies propagate upshear to extract energy from the mean flow. Combining these constraints with the well developed theory of linear Rossby-wave propagation on zonally symmetric basic states has led to a large and growing number of plausible mechanisms to explain observed and modeled jet/storm track variability and responses to climate change and idealized forcing. Hidden within zonal averages is the reality that most baroclinic eddy activity is destroyed at the same latitude at which is generated: from one end to another of the fixed stormtracks in the Northern Hemisphere and baroclinic wave packets in the Southern Hemisphere. Ignored within adiabatic QG theory is the reality that baroclinic eddies gain significant energy from latent heating that involves sub-syntopic scale structures and dynamics. Here we use results from high-resolution regional and global simulations of the Northern Hemisphere storm tracks to explore the importance of non-zonal and diabatic dynamics in influencing jet change and variability and their influences on the much-studied zonal means.

  9. Global variations of zonal mean ozone during stratospheric warming events

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1993-01-01

    Eight years of Solar Backscatter Ultraviolet (SBUV) ozone data are examined to study zonal mean variations associated with stratospheric planetary wave (warming) events. These fluctuations are found to be nearly global in extent, with relatively large variations in the tropics, and coherent signatures reaching up to 50 deg in the opposite (summer) hemisphere. These ozone variations are a manifestation of the global circulation cells associated with stratospheric warming events; the ozone responds dynamically in the lower stratosphere to transport, and photochemically in the upper stratosphere to the circulation-induced temperature changes. The observed ozone variations in the tropics are of particular interest because transport is dominated by zonal-mean vertical motions (eddy flux divergences and mean meridional transports are negligible), and hence, substantial simplifications to the governing equations occur. The response of the atmosphere to these impulsive circulation changes provides a situation for robust estimates of the ozone-temperature sensitivity in the upper stratosphere.

  10. Variability in daily, zonal mean lower-stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Christy, John R.; Drouilhet, S. James, Jr.

    1994-01-01

    Satellite data from the microwave sounding unit (MSU) channel 4, when carefully merged, provide daily zonal anomalies of lower-stratosphere temperature with a level of precision between 0.01 and 0.08 C per 2.5 deg latitude band. Global averages of these daily zonal anomalies reveal the prominent warming events due to volcanic aerosol in 1982 (El Chichon) and 1991 (Mt. Pinatubo), which are on the order of 1 C. The quasibiennial oscillation (QBO) may be extracted from these zonal data by applying a spatial filter between 15 deg N and 15 deg S latitude, which resembles the meridional curvature. Previously published relationships between the QBO and the north polar stratospheric temperatures during northern winter are examined but were not found to be reproduced in the MSU4 data. Sudden stratospheric warmings in the north polar region are represented in the MSU4 data for latitudes poleward of 70 deg N. In the Southern Hemisphere, there appears to be a moderate relationship between total ozone concentration and MSU4 temperatures, though it has been less apparent in 1991 and 1992. In terms of empirical modes of variability, the authors find a strong tendency in EOF 1 (39.2% of the variance) for anomalies in the Northern Hemisphere polar regions to be counterbalanced by anomalies equatorward of 40 deg N and 40 deg S latitudes. In addition, most of the modes revealed significant power in the 15-20 day period band.

  11. Rossby wave activity in a two-dimensional model - Closure for wave driving and meridional eddy diffusivity

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Brasseur, Guy

    1988-01-01

    A parameterization of the effects of Rossby waves in the middle atmosphere is proposed for use in two-dimensional models. By adding an equation for conservation of Rossby wave activity, closure is obtained for the meridional eddy fluxes and body force due to Rossby waves. Rossby wave activity is produced in a climatological fashion at the tropopause, is advected by a group velocity which is determined solely by model zonal winds, and is absorbed where it converges. Absorption of Rossby wave activity causes both an easterly torque and an irreversible mixing of potential vorticity, represented by the meridional eddy diffusivity, K(yy). The distribution of Rossby wave driving determines the distribution of K(yy), which is applied to all of the chemical constituents. This provides a self-consistent coupling of the wave activity with the winds, tracer distributions and the radiative field. Typical winter stratospheric values for K(yy) of 2 million sq m/sec are obtained. Poleward tracer advection is enhanced and meridional tracer gradients are reduced where Rossby wave activity is absorbed in the model.

  12. Atmospheric Response to Zonal Variations in Midlatitude SST: Transient and Stationary Eddies and Their Feedback(.

    NASA Astrophysics Data System (ADS)

    Inatsu, Masaru; Mukougawa, Hitoshi; Xie, Shang-Ping

    2003-10-01

    Midwinter storm track response to zonal variations in midlatitude sea surface temperatures (SSTs) has been investigated using an atmospheric general circulation model under aquaplanet and perpetual-January conditions. Zonal wavenumber-1 SST variations with a meridionally confined structure are placed at various latitudes. Having these SST variations centered at 30°N leads to a zonally localized storm track, while the storm track becomes nearly zonally uniform when the same SST forcing is moved farther north at 40° and 50°N. Large (small) baroclinic energy conversion north of the warm (cold) SST anomaly near the axis of the storm track (near 40°N) is responsible for the large (small) storm growth. The equatorward transfer of eddy kinetic energy by the ageostrophic motion and the mechanical damping are important to diminish the storm track activity in the zonal direction.Significant stationary eddies form in the upper troposphere, with a ridge (trough) northeast of the warm (cold) SST anomaly at 30°N. Heat and vorticity budget analyses indicate that zonally localized condensational heating in the storm track is the major cause for these stationary eddies, which in turn exert a positive feedback to maintain the localized storm track by strengthening the vertical shear near the surface. These results indicate an active role of synoptic eddies in inducing deep, tropospheric-scale response to midlatitude SST variations. Finally, the application of the model results to the real atmosphere is discussed.

  13. On the fast zonal transport of the STS-121 space shuttle exhaust plume in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Liu, Han-Li; Meier, R. R.; Chang, Loren; Gu, Sheng-Yang; Russell, James, III

    2013-03-01

    Meier et al. (2011) reported rapid eastward transport of the STS-121 space shuttle (launch: July 4, 2006) main engine plume in the lower thermosphere, observed in hydrogen Lyman α images by the GUVI instrument onboard the TIMED satellite. In order to study the mechanism of the rapid zonal transport, diagnostic tracer calculations are performed using winds from the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) simulation of July, 2006. It is found that the strong eastward jet at heights of 100-110 km, where the exhaust plume was deposited, results in a persistent eastward tracer motion with an average velocity of 45 m/s. This is generally consistent with, though faster than, the prevailing eastward shuttle plume movement with daily mean velocity of 30 m/s deduced from the STS-121 GUVI observation. The quasi-two-day wave (QTDW) was not included in the numerical simulation because it was found not to be large. Its absence, however, might be partially responsible for insufficient meridional transport to move the tracers away from the fast jet in the simulation. The current study and our model results from Yue and Liu (2010) explain two very different shuttle plume transport scenarios (STS-121 and STS-107 (launch: January 16, 2003), respectively): we conclude that lower thermospheric dynamics is sufficient to account for both very fast zonal motion (zonal jet in the case of STS-121) and very fast meridional motion to polar regions (large QTDW in the case of STS-107).

  14. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  15. Tropical Meridional Overturning Circulation Observed by Subsurface Moorings in the Western Pacific.

    PubMed

    Song, Lina; Li, Yuanlong; Wang, Jianing; Wang, Fan; Hu, Shijian; Liu, Chuanyu; Diao, Xinyuan; Guan, Cong

    2018-05-16

    Meridional ocean current in the northwestern Pacific was documented by seven subsurface moorings deployed at 142°E during August 2014-October 2015. A sandwich structure of the tropical meridional overturning circulation (TMOC) was revealed between 0-6°N that consists of a surface northward flow (0-80 m), a thermocline southward flow (80-260 m; 22.6-26.5 σ θ ), and a subthermocline northward flow (260-500 m; 26.5-26.9 σ θ ). Based on mooring data, along with satellite and reanalysis data, prominent seasonal-to-interannual variations were observed in all three layers, and the equatorial zonal winds were found to be a dominant cause of the variations. The TMOC is generally stronger in boreal winter and weaker in summer. During 2014-2015, the TMOC was greatly weakened by westerly wind anomalies associated with the El Niño condition. Further analysis suggests that the TMOC can affect equatorial surface temperature in the western Pacific through anomalous upwelling/downwelling and likely plays a vital role in the El Niño-Southern Oscillation (ENSO).

  16. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  17. Meridional displacement of the Antarctic Circumpolar Current

    PubMed Central

    Gille, Sarah T.

    2014-01-01

    Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation. PMID:24891396

  18. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  19. 'Downward control' of the mean meridional circulation and temperature distribution of the polar winter stratosphere

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Boville, Byron A.

    1994-01-01

    According to the 'downward control' principle, the extratropical mean vertical velocity on a given pressure level is approximately proportional to the meridional gradient of the vertically integrated zonal force per unit mass exerted by waves above that level. In this paper, a simple numerical model that includes parameterizations of both planetary and gravity wave breaking is used to explore the influence of gravity wave breaking in the mesosphere on the mean meridional circulation and temperature distribution at lower levels in the polar winter stratosphere. The results of these calculations suggest that gravity wave drag in the mesosphere can affect the state of the polar winter stratosphere down to altitudes below 30 km. The effect is most important when planetary wave driving is relatively weak: that is, during southern winter and in early northern winter. In southern winter, downwelling weakens by a factor of 2 near the stratospause and by 20% at 30 km when gravity wave drag is not included in the calculations. As a consequence, temperatures decrease considerably throughout the polar winter stratosphere (over 20 K above 40 km and as much as 8 K at 30 km, where the effect is enhanced by the long radiative relaxation timescale). The polar winter states obtained when gravity wave drag is omitted in this simple model resemble the results of simulations with some general circulation models and suggest that some of the shortcomings of the latter may be due to a deficit in mesospheric momentum deposition by small-scale gravity waves.

  20. Mechanisms of Interannual Variations of the Meridional Overturning Circulation of the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng

    2008-01-01

    The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).

  1. Zero potential vorticity envelopes for the zonal-mean velocity of the Venus/Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Del Genio, Anthony D.; Zhou, Wei

    1994-01-01

    The diagnostic analysis of numerical simulations of the Venus/Titan wind regime reveals an overlooked constraint upon the latitudinal structure of their zonal-mean angular momentum. The numerical experiments, as well as the limited planetary observations, are approximately consistent with the hypothesis that within the latitudes bounded by the wind maxima the total Ertel potential vorticity associated with the zonal-mean motion is approximately well mixed with respect to the neutral equatorial value for a stable circulation. The implied latitudinal profile of angular momentum is of the form M equal to or less than M(sub e)(cos lambda)(exp 2/Ri), where lambda is the latitude and Ri the local Richardson number, generally intermediate between the two extremes of uniform angular momentum (Ri approaches infinity) and uniform angular velocity (Ri = 1). The full range of angular momentum profile variation appears to be realized within the observed meridional - vertical structure of the Venus atmosphere, at least crudely approaching the implied relationship between stratification and zonal velocity there. While not itself indicative of a particular eddy mechanism or specific to atmospheric superrotation, the zero potential vorticity (ZPV) constraint represents a limiting bound for the eddy - mean flow adjustment of a neutrally stable baroclinic circulation and may be usefully applied to the diagnostic analysis of future remote sounding and in situ measurements from planetary spacecraft.

  2. Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N.

    PubMed

    Matei, Daniela; Baehr, Johanna; Jungclaus, Johann H; Haak, Helmuth; Müller, Wolfgang A; Marotzke, Jochem

    2012-01-06

    Attempts to predict changes in Atlantic Meridional Overturning Circulation (AMOC) have yielded little success to date. Here, we demonstrate predictability for monthly mean AMOC strength at 26.5°N for up to 4 years in advance. This AMOC predictive skill arises predominantly from the basin-wide upper-mid-ocean geostrophic transport, which in turn can be predicted because we have skill in predicting the upper-ocean zonal density difference. Ensemble forecasts initialized between January 2008 and January 2011 indicate a stable AMOC at 26.5°N until at least 2014, despite a brief wind-induced weakening in 2010. Because AMOC influences many aspects of climate, our results establish AMOC as an important potential carrier of climate predictability.

  3. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability.

  4. DETECTION OF EQUATORWARD MERIDIONAL FLOW AND EVIDENCE OF DOUBLE-CELL MERIDIONAL CIRCULATION INSIDE THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Junwei; Bogart, R. S.; Kosovichev, A. G.

    2013-09-10

    Meridional flow in the solar interior plays an important role in redistributing angular momentum and transporting magnetic flux inside the Sun. Although it has long been recognized that the meridional flow is predominantly poleward at the Sun's surface and in its shallow interior, the location of the equatorward return flow and the meridional flow profile in the deeper interior remain unclear. Using the first 2 yr of continuous helioseismology observations from the Solar Dynamics Observatory/Helioseismic Magnetic Imager, we analyze travel times of acoustic waves that propagate through different depths of the solar interior carrying information about the solar interior dynamics.more » After removing a systematic center-to-limb effect in the helioseismic measurements and performing inversions for flow speed, we find that the poleward meridional flow of a speed of 15 m s{sup -1} extends in depth from the photosphere to about 0.91 R{sub Sun }. An equatorward flow of a speed of 10 m s{sup -1} is found between 0.82 and 0.91 R{sub Sun} in the middle of the convection zone. Our analysis also shows evidence of that the meridional flow turns poleward again below 0.82 R{sub Sun }, indicating an existence of a second meridional circulation cell below the shallower one. This double-cell meridional circulation profile with an equatorward flow shallower than previously thought suggests a rethinking of how magnetic field is generated and redistributed inside the Sun.« less

  5. Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Xue, Junpeng; Gao, Bo

    2017-06-14

    There are wide applications for zonal reconstruction methods in slope-based metrology due to its good capability of reconstructing the local details on surface profile. It was noticed in the literature that large reconstruction errors occur when using zonal reconstruction methods designed for rectangular geometry to process slopes in a quadrilateral geometry, which is a more general geometry with phase measuring deflectometry. In this paper, we present a new idea for the zonal methods for quadrilateral geometry. Instead of employing the intermediate slopes to set up height-slope equations, we consider the height increment as a more general connector to establish themore » height-slope relations for least-squares regression. The classical zonal methods and interpolation-assisted zonal methods are compared with our proposal. Results of both simulation and experiment demonstrate the effectiveness of the proposed idea. In implementation, the modification on the classical zonal methods is addressed. Finally, the new methods preserve many good aspects of the classical ones, such as the ability to handle a large incomplete slope dataset in an arbitrary aperture, and the low computational complexity comparable with the classical zonal method. Of course, the accuracy of the new methods is much higher when integrating the slopes in quadrilateral geometry.« less

  6. A zonally averaged, three-basin ocean circulation model for climate studies

    NASA Astrophysics Data System (ADS)

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70°N at a rate of about 17 Sv (1 Sv=106 m3 s-1) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions (i.e., a restoring condition on sea-surface temperature and flux condition on sea-surface salinity) are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake Passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.

  7. Atlantic meridional heat transports computed from balancing Earth's energy locally: AMOC and Ocean Meridional Heat Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenberth, Kevin E.; Fasullo, John T.

    The Atlantic Meridional Overturning Circulation plays a major role in moving heat and carbon around in the ocean. A new estimate of ocean heat transports for 2000 through 2013 throughout the Atlantic is derived. Top-of-atmosphere radiation is combined with atmospheric reanalyses to estimate surface heat fluxes and combined with vertically integrated ocean heat content to estimate ocean heat transport divergence as a residual. Atlantic peak northward ocean heat transports average 1.18 ± 0.13PW (1 sigma) at 15°N but vary considerably in latitude and time. Results agree well with observational estimates at 26.5°N from the RAPID array, but for 2004–2013 themore » meridional heat transport is 1.00 ± 0.11PW versus 1.23 ± 0.11PW for RAPID. In addition, these results have no hint of a trend, unlike the RAPID results. Finally, strong westerlies north of a meridian drive ocean currents and an ocean heat loss into the atmosphere that is exacerbated by a decrease in ocean heat transport northward.« less

  8. Atlantic meridional heat transports computed from balancing Earth's energy locally: AMOC and Ocean Meridional Heat Transport

    DOE PAGES

    Trenberth, Kevin E.; Fasullo, John T.

    2017-02-18

    The Atlantic Meridional Overturning Circulation plays a major role in moving heat and carbon around in the ocean. A new estimate of ocean heat transports for 2000 through 2013 throughout the Atlantic is derived. Top-of-atmosphere radiation is combined with atmospheric reanalyses to estimate surface heat fluxes and combined with vertically integrated ocean heat content to estimate ocean heat transport divergence as a residual. Atlantic peak northward ocean heat transports average 1.18 ± 0.13PW (1 sigma) at 15°N but vary considerably in latitude and time. Results agree well with observational estimates at 26.5°N from the RAPID array, but for 2004–2013 themore » meridional heat transport is 1.00 ± 0.11PW versus 1.23 ± 0.11PW for RAPID. In addition, these results have no hint of a trend, unlike the RAPID results. Finally, strong westerlies north of a meridian drive ocean currents and an ocean heat loss into the atmosphere that is exacerbated by a decrease in ocean heat transport northward.« less

  9. Results of the horizontal and meridional thermospheric winds in the cachoeira paulista (22.5s; 45w), a low latitude station in Brazilian region

    NASA Astrophysics Data System (ADS)

    Castilho, V. M.; Sobral, J. H. A.; Abdu, M. A.; Takahashi, H.; Arruda, D. C. S.

    At this point, 74 nights have been observed during the period of May 2002 to March 2003, high to low solar activity period, by Fabry-Perot Interferometer operating at Cachoeira Paulista - CP (22.5S; 45W). This study focuses the monthly and seasonal analysis of the horizontal and meridional components of the thermospheric winds at CP. For the studied region, the zonal component of the thermospheric winds is predominantly eastward during the nocturnal hours and the meridional component is southward in the initial nocturnal hours and northward in the end of the night. Undesturbed F-region e-filds at low latitudes are primarily generated by the thermospheric winds. Ionosphere plasma drifts and thermospheric winds are important transport mechanisms that affect the electron density distribution. The results observed are compared with HWM93 model. KEY WORDS: Fabry Perot Interferometer, Thermospheric Winds, OI 630nm.

  10. A New Look at Titan's Zonal Winds from Cassini Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schinder, P. J.

    2012-01-01

    We use the existing thirteen Cassini radio'occultation soundings to construct a meridional cross section of geopotential height vs. pressure and latitude. The assumption of balanced flow permits the construction of a similar cross section of zonal winds, from near the surface to the 0.1'mbar level. In the lower troposphere, the winds are approx.10 m/s, except within 20deg of the equator, where they are much smaller. The winds increase higher up in the troposphere to nearly 40 m/s in the tropopause region, but then decay rapidly in the lower stratosphere to near'zero values at 20 mbar (approx.80 km), reminiscent of the Huygens Doppler Wind Experiment result. This null zone extends over most latitudes, except for limited bands at mid'latitudes. Higher up in the stratosphere, the winds become larger. They are highest in the northern (winter) hemisphere. We compare the occultation results with the DWE and CIRS retrievals and discuss the similarities and differences among the data sets.

  11. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  12. On the Variation of Zonal Gravity Coefficients of a Giant Planet Caused by Its Deep Zonal Flows

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2012-04-01

    Rapidly rotating giant planets are usually marked by the existence of strong zonal flows at the cloud level. If the zonal flow is sufficiently deep and strong, it can produce hydrostatic-related gravitational anomalies through distortion of the planet's shape. This paper determines the zonal gravity coefficients, J 2n , n = 1, 2, 3, ..., via an analytical method taking into account rotation-induced shape changes by assuming that a planet has an effective uniform density and that the zonal flows arise from deep convection and extend along cylinders parallel to the rotation axis. Two different but related hydrostatic models are considered. When a giant planet is in rigid-body rotation, the exact solution of the problem using oblate spheroidal coordinates is derived, allowing us to compute the value of its zonal gravity coefficients \\bar{J}_{2n}, n=1,2,3, \\dots, without making any approximation. When the deep zonal flow is sufficiently strong, we develop a general perturbation theory for estimating the variation of the zonal gravity coefficients, \\Delta {J}_{2n}={J}_{2n}-\\bar{J}_{2n}, n=1,2,3, \\dots, caused by the effect of the deep zonal flows for an arbitrarily rapidly rotating planet. Applying the general theory to Jupiter, we find that the deep zonal flow could contribute up to 0.3% of the J 2 coefficient and 0.7% of J 4. It is also found that the shape-driven harmonics at the 10th zonal gravity coefficient become dominant, i.e., \\Delta {J}_{2n} \\,{\\ge}\\, \\bar{J}_{2n} for n >= 5.

  13. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.

    PubMed

    Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-05-06

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.

  14. A PV view of the zonal mean distribution of temperature and wind in the extratropical troposphere

    NASA Technical Reports Server (NTRS)

    Sun, De-Zheng; Lindzen, Richard S.

    1994-01-01

    The dependence of the temperature and wind distribution of the zonal mean flow in the extratropical troposphere on the gradient of pontential vorticity along isentropes is examined. The extratropics here refer to the region outside the Hadley circulation. Of particular interest is whether the distribution of temperature and wind corresponding to a constant potential vorticity (PV) along isentropes resembles the observed, and the implications of PV homogenization along isentropes for the role of the tropics. With the assumption that PV is homogenized along isentropes, it is found that the temperature distribution in the extratropical troposphere may be determined by a linear, first-order partial differential equation. When the observed surface temperature distribution and tropical lapse rate are used as the boundary conditions, the solution of the equation is close to the observed temperature distribution except in the upper troposphere adjacent to the Hadley circulation, where the troposphere with no PV gradient is considerably colder. Consequently, the jet is also stronger. It is also found that the meridional distribution of the balanced zonal wind is very sensitive to the meridional distribution of the tropopause temperature. The result may suggest that the requirement of the global momentum balance has no practical role in determining the extratropical temperature distribution. The authors further investigated the sensitivity of the extratropical troposphere with constant PV along isentropes to changes in conditions at the tropical boundary (the edge of the Hadley circulation). It is found that the temperature and wind distributions in the extratropical troposphere are sensitive to the vertical distribution of PV at the tropical boundary. With a surface distribution of temperature that decreases linearly with latitude, the jet maximum occurs at the tropical boundary and moves with it. The overall pattern of wind distribution is not sensitive to the change of

  15. The Sensitivity of Atlantic Meridional Overturning Circulation to Dynamical Framework in an Ocean General Circulation Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Yu, Y.

    2016-12-01

    The horizontal coordinate systems commonly used in most global ocean models are the sphere latitude-longitude grid and displaced poles such as tripolar grid. The effect of the horizontal coordinate system on Atlantic Meridional Overturning Circulation (AMOC) is evaluated using an oceanic general circulation model (OGCM). Two experiments are conducted with the model using latitude-longitude grid (Lat_1) and tripolar grid (Tri). Results show that Tri simulates a stronger NADW than Lat_1, as more saline water masses enter into the GIN Seas in Tri. Two reasons can be attributed to the stronger NADW. One is the removal of zonal filter in Tri, which leads to an increasing of zonal gradient of temperature and salinity, thus strengthens the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because the realistic topography is applied in tripolar grid and the longitude-latitude grid employs an artificial island around the North Pole. In order to evaluate the effect of filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, enhanced filter can also increase the NADW, for more saline water is suppressed to go north and accumulated in the Labrador Sea, especially in the experiment with enhanced filter on salinity (Lat_2_S).

  16. Long term variabilities and tendencies of mesospheric lunar semidiurnal tide over Tirunelveli (8.7°N, 77.8°E)

    NASA Astrophysics Data System (ADS)

    Sathishkumar, S.; Sridharan, S.; Muhammed Kutty, P. V.; Gurubaran, S.

    2017-10-01

    The medium frequency radar deployed at Tirunelveli (8.7°N, 77.8°E), which is located near the southmost tip of peninsular India, have been providing continuous data from the year 1993 to the year 2012 that helped to study the long term tendencies in the lunar tidal variabilities over this geographic location. In the present paper we present the results of seasonal, interannual and long-term variabilities of lunar semi-diurnal tides in the upper mesosphere over Tirunelveli. The present study also includes comparison with model values. The study shows that the tidal amplitudes are larger in the meridional components of the mesospheric winds than the zonal winds. The seasonal variations of the tides are similar in both the components. The tides show maximum amplitudes of about ∼5 m/s in February/March, secondary maximum amplitudes of about ∼3 m/s in September and minimum amplitudes during summer months (May-August). The observed seasonal variation of the lunar tides do not compare well with Vial and Forbes (1994) model values, though it is consistent with earlier observations. The lunar tidal phase in meridional winds leads that in zonal winds from January to June and from September to November, while the latter leads the former during July/August. The lunar tides show large interannual variability. There are unusual amplitude enhancements in the lunar tide in meridional winds during the winters of 2006 and 2009, when major sudden stratospheric warmings (SSW) occurred at high latitude northern hemisphere, whereas zonal lunar tide does not show any clear association with the SSW. Vertical wavelengths of lunar tides in zonal and meridional wind are in the range of 20-90 km. The vertical wavelengths of lunar tides in both zonal and meridional component are smaller in June and larger in November and December. The monthly mean zonal and meridional winds are subjected to regression analysis to study the tidal response to long-period oscillations, namely, quasi

  17. Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures

    PubMed Central

    Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark

    2014-01-01

    Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570

  18. Zonal flow as pattern formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  19. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  20. A thickness-weighted average perspective of force balance in an idealized circumpolar current

    DOE PAGES

    Ringler, Todd Darwin; Saenz, Juan Antonio; Wolfram, Jr., Phillip Justin; ...

    2016-11-22

    The exact, three-dimensional thickness-weighted averaged (TWA) Boussinesq equations are used to diagnose eddy-mean flow interaction in an idealized circumpolar current (ICC). The force exerted by mesoscale eddies on the TWA velocity is expressed as the divergence of the Eliassen-Palm flux tensor. Consistent with previous findings, the analysis indicates that the dynamically relevant definition of the ocean surface layer is comprised of the set of buoyancy coordinates that ever reside at the ocean surface at a given horizontal position. The surface layer is found to be a physically distinct object with a diabatic- and force-balance that is largely isolated from themore » underlying adiabatic region in the interior. Within the ICC surface layer, the TWA meridional velocity is southward/northward in the top/bottom half, and has a value near zero at the bottom. In the top half of the surface layer, the zonal forces due to wind stress and meridional advection of potential vorticity act to accelerate the TWA zonal velocity; equilibrium is obtained by eddies decelerating the zonal flow via a downward flux of eastward momentum that increases with depth. In the bottom half of the surface layer, the accelerating force of the wind stress is balanced by the eddy force and meridional advection of potential vorticity. The bottom of the surface layer coincides with the location where the zonal eddy force, meridional advection of potential vorticity and zonal wind stress force are all zero. The net meridional transport, S f, within the surface layer is a small residual of its southward and northward TWA meridional flows. Furthermore, the mean meridional gradient of surface-layer buoyancy is advected by S f to balance the surface buoyancy fluxs.« less

  1. Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development

    NASA Astrophysics Data System (ADS)

    Wu, Yi-Kai; Chen, Lin; Hong, Chi-Cherng; Li, Tim; Chen, Cheng-Ta; Wang, Lu

    2018-03-01

    In the boreal spring of 2014, the oceanic and atmospheric conditions were favorable for an El Niño's development. It was predicted that in 2014, a super El Niño or at least a regular El Niño with normal magnitude, would initiate. However, the growth rate of the sea surface temperature anomaly (SSTA) in the equatorial eastern Pacific suddenly declined in the boreal summer. The physical processes responsible for the termination of the 2014 El Niño were addressed in this study. We hypothesized that a meridional dipole of SSTA, characterized by a pronounced warm SSTA over the eastern North Pacific (ENP) and cold SSTA over the eastern South Pacific (ESP), played a crucial role in blocking the 2014 El Niño's development. The observational analysis revealed that the meridional dipole of SSTA and the relevant anomalous cross-equatorial flow in the tropical eastern Pacific, induced anomalous westward ({u^' }<0) and upwelling ({w^' }>0) currents in the equatorial eastern Pacific, leading to negative anomalous zonal advection term (- {u^' }partial \\overline T /partial x<0) and anomalous upwelling advection term (- {w^' }partial \\overline T /partial z<0). Additionally, the anomalous cross-equatorial flow also induced northward meridional current anomalies that transported subtropical cold water to the equator. All the changes of the oceanic dynamic terms collectively caused negative SSTA tendency in the boreal summer, and thus killed off the budding 2014 El Niño. The idealized numerical experiments further confirmed that the 2014 El Niño's development could be suppressed by the meridional dipole of SSTA, and both the ENP pole and ESP pole make a contribution.

  2. Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoai; Hu, Xiong; Guo, Wenjie; Guo, Shangyong; Cheng, Yongqiang; Gong, Jiancun; Yue, Jia

    2017-02-01

    A mobile Doppler lidar system has been developed to simultaneously measure zonal and meridional winds and temperature from 30 to 70 km. Each of the two zonal and meridional wind subsystems employs a 15 W power, 532 nm laser and a 1 m diameter telescope. Iodine vapor filters are used to stabilize laser frequency and to detect the Doppler shift of backscattered signal. The integration method is used for temperature measurement. Experiments were carried out using the mobile Doppler lidar in August 2014 at Qinghai, China (91°E, 38°N). The zonal wind was measured from 20 to 70 km at a 3 km spatial resolution and 2 h temporal resolution. The measurement error is about 0.5 m/s at 30 km, and 10 m/s at 70 km. In addition, the temperature was measured from 30 to 70 km at 1 km spatial resolution and 1 h temporal resolution. The temperature measurement error is about 0.4 K at 30 km, and 8.0 K at 70 km. Comparison of the lidar results with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the zonal wind of the Modern-Era Retrospective Analysis for Re-search and Applications (MERRA), and radiosonde zonal wind shows good agreement, indicating that the Doppler lidar results are reliable.

  3. Meridional circulation and CNO anomalies in red giant stars

    NASA Technical Reports Server (NTRS)

    Sweigart, A. V.; Mengel, J. G.

    1979-01-01

    The possibility is investigated that meridional circulation driven by internal rotation might lead to the mixing of CNO-processed material from the vicinity of the hydrogen shell into the envelope of a red giant star. This theory of meridional mixing is found to be generally consistent with available data and to be capable of explaining a number of observational results without invoking a radical departure from the standard physics of stellar interiors. It is suggested that meridional circulation must be a normal characteristic of a rotating star and that meridional mixing provides a reasonable framework for understanding many of the CNO anomalies exhibited by weak-G-band and CN-strong stars as well as the low C-12/C-13 ratios measured among field red giants.

  4. Dynamics of zonal flows in helical systems.

    PubMed

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  5. The Sun's Meridional Circulation - not so Deep

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2011-05-01

    The Sun's global meridional circulation is evident as a slow poleward flow at its surface. This flow is observed to carry magnetic elements poleward - producing the Sun's polar magnetic fields as a key part of the 11-year sunspot cycle. Flux Transport Dynamo models for the sunspot cycle are predicated on the belief that this surface flow is part of a circulation which sinks inward at the poles and returns to the equator in the bottom half of the convection zone - at depths between 100 and 200 Mm. Here I use the advection of the supergranule cells by the meridional flow to map the flow velocity in latitude and depth. My measurements show that the equatorward return flow begins at a depth of only 35 Mm - the base of the Sun's surface shear layer. This is the first clear (10 sigma) detection of the meridional return flow. While the shallow depth of the return flow indicates a false foundation for Flux Transport Dynamo models it helps to explain the different meridional flow rates seen for different features and provides a mechanism for selecting the characteristic size of supergranules.

  6. Sensitivity of idealised baroclinic waves to mean atmospheric temperature and meridional temperature gradient changes

    NASA Astrophysics Data System (ADS)

    Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki

    2018-06-01

    The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.

  7. On the relative role of meridional convergence and downwelling motion during the heat buildup leading to El Niño events

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Bordoni, Simona; Petrova, Desislava; Rodó, Xavier

    2015-04-01

    Despite steady progress in the understanding of El Niño-Southern Oscillation (ENSO) in the past decades, questions remain on the exact mechanisms leading to the onset of El Niño (EN) events. Several authors have highlighted how the subsurface heat buildup in the western tropical Pacific and the recharged phase in equatorial heat content are intrinsic elements of ENSO variability, leading to those changes in zonal wind stress, sea surface temperature and thermocline tilt that characterize the growing and mature phases of EN. Here we use an ensemble of ocean and atmosphere assimilation products to identify the mechanisms contributing to the heat buildup that precedes EN events by about 18-24 months on average. Anomalous equatorward subsurface mass convergence due to meridional Sverdrup transport is found to be an important mechanism of thermocline deepening near and to the east of the dateline. In the warm pool, instead, surface horizontal convergence and downwelling motion have a leading role in subsurface warming, since equatorward mass convergence is weaker and counterbalanced by subsurface zonal divergence. The picture emerging from our results highlights the complexity of the three dimensional dynamic and thermodynamic structure of the tropical Pacific during the heat buildup leading to EN events.

  8. Cloud motions on Venus - Global structure and organization

    NASA Technical Reports Server (NTRS)

    Limaye, S. S.; Suomi, V. E.

    1981-01-01

    Results on cloud motions on Venus obtained over a period of 3.5 days from Mariner 10 television images are presented. The implied atmosphere flow is almost zonal everywhere on the visible disk, and is in the same retrograde sense as the solid planet. Objective analysis of motions suggests the presence of jet cores (-130 m/s) and organized atmospheric waves. The longitudinal mean meridional profile of the zonal component of motion of the ultraviolet features shows presence of a midlatitude jet stream (-110 m/s). The mean zonal component is -97 m/s at the equator. The mean meridional motion at most latitudes is directed toward the pole in either hemisphere and is at least an order of magnitude smaller so that the flow is nearly zonal. A tentative conclusion from the limited coverage available from Mariner 10 is that at the level of ultraviolet features mean meridional circulation is the dominant mode of poleward angular momentum transfer as opposed to the eddy circulation.

  9. Venus' superrotation, mixing length theory and eddy diffusion - A parametric study

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Schatten, K. H.; Stevens-Rayburn, D. R.; Chan, K. L.

    1988-01-01

    The concept of the Hadley mechanism is adopted to describe the axisymmetric circulation of the Venus atmosphere. It is shown that, for the atmosphere of a slowly rotating planet such as Venus, a form of the nonliner 'closure' (self-consistent solution) of the fluid dynamics system which constrains the magnitude of the eddy diffusion coefficients can be postulated. A nonlinear one-layer spectral model of the zonally symmetric circulation was then used to establish the relationship between the heat source, the meridional circulation, and the eddy diffusion coefficients, yielding large zonal velocities. Computer experiments indicated that proportional changes in the heat source and eddy diffusion coefficients do not significantly change the zonal velocities. It was also found that, for large eddy diffusion coefficients, the meridional velocity is virtually constant; below a threshold in the diffusion rate, the meridional velocity decreases; and, for large eddy diffusion and small heating rates, the zonal velocities decrease with decreasing planetary rotation rates.

  10. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  11. The role of horizontal thermal advection in regulating wintertime mean and extreme temperatures over the central United States during the past and future

    NASA Astrophysics Data System (ADS)

    Wang, F.; Vavrus, S. J.

    2017-12-01

    Horizontal temperature advection plays an especially prominent role in affecting winter climate over continental interiors, where both climatological conditions and extreme weather are strongly regulated by transport of remote air masses. Central North America is one such region, and it experienced a major cold-air outbreak (CAO) a few years ago that some have related to amplified Arctic warming. Despite the known importance of dynamics in shaping the winter climate of this sector and the potential for climate change to modify heat transport, limited attention has been paid to the regional impact of thermal advection. Here, we use a reanalysis product and output from the Community Earth System Model's Large Ensemble to quantify the roles of zonal and meridional temperature advection over the central U. S. during winter, both in the late 20th and 21st centuries. We frame our findings as a "tug of war" between opposing influences of the two advection components and between these dynamical forcings vs. thermodynamic changes under greenhouse warming. For example, Arctic amplification leads to much warmer polar air masses, causing a moderation of cold-air advection into the central U. S., yet the model also simulates a wavier mean circulation and stronger northerly flow during CAOs, favoring lower regional temperatures. We also compare the predominant warming effect of zonal advection and overall cooling effect of meridional temperature advection as an additional tug of war. During both historical and future periods, zonal temperature advection is stronger than meridional advection over the Central U. S. The model simulates a future weakening of both zonal and meridional temperature advection, such that westerly flow provides less warming and northerly flow less cooling. On the most extreme warm days in the past and future, both zonal and meridional temperature advection have positive (warming) contributions. On the most extreme cold days, meridional cold air advection

  12. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases

    NASA Astrophysics Data System (ADS)

    Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.

    2016-03-01

    In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind

  13. Characteristics of Southern Hemisphere 200 mb flow as determined from satellite data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.

    1976-01-01

    Characteristics of Southern Hemisphere 200 mb flow are examined using geopotential height fields constructed with the aid of satellite based thermal structure. Similar Northern Hemisphere, satellite based fields are developed in order to make interhemispheric comparisons. Results indicate that both the zonal and meridional components of the S.H. eddy kinetic energy are as large as their N.H. counterparts. In winter the principal interhemispheric difference with respect to eddy kinetic energy is that the S.H. standing eddies are much less important only to the meridional component. Zonal component standing energy is about equal in the two hemispheres. In summer the S.H. has larger zonal eddy kinetic energy than the N.H. and smaller standing eddy contributions in both components. The meridional spectra show a preference for intermediate size transient waves.

  14. Meridional Distribution of Aerosol Optical Thickness over the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Kishcha, P.; Silva, Arlindo M.; Starobinets, B.; Long, C. N.; Kalashnikova, O.; Alpert, P.

    2015-01-01

    Previous studies showed that, over the global ocean, there is hemispheric asymmetry in aerosols and no noticeable asymmetry in cloud fraction (CF). In the current study, we focus on the tropical Atlantic (30 Deg N 30 Deg S) which is characterized by significant amounts of Saharan dust dominating other aerosol species over the North Atlantic. We found that, by contrast to the global ocean, over a limited area such as the tropical Atlantic, strong meridional asymmetry in dust aerosols was accompanied by meridional CF asymmetry. During the 10-year study period (July 2002 June 2012), NASA Aerosol Reanalysis (aka MERRAero) showed that, when the meridional asymmetry in dust aerosol optical thickness (AOT) was the most pronounced (particularly in July), dust AOT averaged separately over the tropical North Atlantic was one order of magnitude higher than dust AOT averaged over the tropical South Atlantic. In the presence of such strong meridional asymmetry in dust AOT in July, CF averaged separately over the tropical North Atlantic exceeded CF averaged over the tropical South Atlantic by 20%. Our study showed significant cloud cover, up to 0.8 - 0.9, in July along the Saharan Air Layer which contributed to above-mentioned meridional CF asymmetry. Both Multi-Angle Imaging SpectroRadiometer (MISR) measurements and MERRAero data were in agreement on seasonal variations in meridional aerosol asymmetry. Meridional asymmetry in total AOT over the Atlantic was the most pronounced between March and July, when dust presence over the North Atlantic was maximal. In September and October, there was no noticeable meridional asymmetry in total AOT and meridional CF distribution over the tropical Atlantic was almost symmetrical.

  15. Effects of meridional flow variations on solar cycles 23 and 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upton, Lisa; Hathaway, David H., E-mail: lisa.a.upton@vanderbilt.edu, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov

    2014-09-10

    The faster meridional flow that preceded the solar cycle 23/24 minimum is thought to have led to weaker polar field strengths, producing the extended solar minimum and the unusually weak cycle 24. To determine the impact of meridional flow variations on the sunspot cycle, we have simulated the Sun's surface magnetic field evolution with our newly developed surface flux transport model. We investigate three different cases: a constant average meridional flow, the observed time-varying meridional flow, and a time-varying meridional flow in which the observed variations from the average have been doubled. Comparison of these simulations shows that the variationsmore » in the meridional flow over cycle 23 have a significant impact (∼20%) on the polar fields. However, the variations produced polar fields that were stronger than they would have been otherwise. We propose that the primary cause of the extended cycle 23/24 minimum and weak cycle 24 was the weakness of cycle 23 itself—with fewer sunspots, there was insufficient flux to build a big cycle. We also find that any polar counter-cells in the meridional flow (equatorward flow at high latitudes) produce flux concentrations at mid-to-high latitudes that are not consistent with observations.« less

  16. Sensitivity of Atlantic meridional overturning circulation to the dynamical framework in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Yu, Yongqiang; Liu, Hailong; Lin, Pengfei

    2017-06-01

    The horizontal coordinate systems commonly used in most global ocean models are the spherical latitude-longitude grid and displaced poles, such as a tripolar grid. The effect of the horizontal coordinate system on Atlantic meridional overturning circulation (AMOC) is evaluated by using an OGCM (ocean general circulation model). Two experiments are conducted with the model—one using a latitude-longitude grid (referred to as Lat_1) and the other using a tripolar grid (referred to as Tri). The results show that Tri simulates a stronger North Atlantic deep water (NADW) than Lat_1, as more saline water masses enter the Greenland-Iceland-Norwegian (GIN) seas in Tri. The stronger NADW can be attributed to two factors. One is the removal of the zonal filter in Tri, which leads to an increasing of the zonal gradient of temperature and salinity, thus strengthening the north geostrophic flow. In turn, it decreases the positive subsurface temperature and salinity biases in the subtropical regions. The other may be associated with topography at the North Pole, because realistic topography is applied in the tripolar grid while the latitude-longitude grid employs an artificial island around the North Pole. In order to evaluate the effect of the filter on AMOC, three enhanced filter experiments are carried out. Compared to Lat_1, an enhanced filter can also augment NADW formation, since more saline water is suppressed in the GIN seas, but accumulated in the Labrador Sea, especially in experiment Lat_2_S, which is the experiment with an enhanced filter on salinity.

  17. Equatorial superrotation in a thermally driven zonally symmetric circulation

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.

    1981-01-01

    Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.

  18. Baseline predictability of daily east Asian summer monsoon circulation indices

    NASA Astrophysics Data System (ADS)

    Ai, Shucong; Chen, Quanliang; Li, Jianping; Ding, Ruiqiang; Zhong, Quanjia

    2017-05-01

    The nonlinear local Lyapunov exponent (NLLE) method is adopted to quantitatively determine the predictability limit of East Asian summer monsoon (EASM) intensity indices on a synoptic timescale. The predictability limit of EASM indices varies widely according to the definitions of indices. EASM indices defined by zonal shear have a limit of around 7 days, which is higher than the predictability limit of EASM indices defined by sea level pressure (SLP) difference and meridional wind shear (about 5 days). The initial error of EASM indices defined by SLP difference and meridional wind shear shows a faster growth than indices defined by zonal wind shear. Furthermore, the indices defined by zonal wind shear appear to fluctuate at lower frequencies, whereas the indices defined by SLP difference and meridional wind shear generally fluctuate at higher frequencies. This result may explain why the daily variability of the EASM indices defined by zonal wind shear tends be more predictable than those defined by SLP difference and meridional wind shear. Analysis of the temporal correlation coefficient (TCC) skill for EASM indices obtained from observations and from NCEP's Global Ensemble Forecasting System (GEFS) historical weather forecast dataset shows that GEFS has a higher forecast skill for the EASM indices defined by zonal wind shear than for indices defined by SLP difference and meridional wind shear. The predictability limit estimated by the NLLE method is shorter than that in GEFS. In addition, the June-September average TCC skill for different daily EASM indices shows significant interannual variations from 1985 to 2015 in GEFS. However, the TCC for different types of EASM indices does not show coherent interannual fluctuations.

  19. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    NASA Astrophysics Data System (ADS)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  20. Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign

    NASA Technical Reports Server (NTRS)

    Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.

    1990-01-01

    The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.

  1. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-11-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved which makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen which makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the techniques used for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using Monte Carlo simulations. Finally, a time series of 11 months of zonal wind measurements over Bern (46°57' N

  2. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-07-01

    We report on the wind radiometer WIRA, a new ground-based microwave Doppler-spectro-radiometer specifically designed for the measurement of middle-atmospheric horizontal wind by observing ozone emission spectra at 142.17504 GHz. Currently, wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument able to continuously measure horizontal wind in this altitude range. For an integration time of one day the measurement error on each level lies at around 25 m s-1. With a planned upgrade this value is expected to be reduced by a factor of 2 in the near future. On the altitude levels where our measurement can be compared to wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) very good agreement in the long-term statistics as well as in short time structures with a duration of a few days has been found. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. In the present paper, a description of the instrument is given, and the used techniques for the wind retrieval based on the determination of the Doppler shift of the measured atmospheric ozone emission spectra are outlined. Their reliability was tested using MonteCarlo simulations. Finally, a first time series of 11 months of zonal wind measurements over Bern (46°57

  3. Zonal Flows and Turbulence in Fluids and Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey

    2014-09-01

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetricmore » coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type Is instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the

  4. Zonal flows and turbulence in fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey Bok-Cheung

    In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking 'zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type I s instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear

  5. Can tree-ring isotopes (δ18O and δ13C) improve our understanding of hydroclimate variability in the Columbia River Basin?

    NASA Astrophysics Data System (ADS)

    Csank, A. Z.; Wise, E.; McAfee, S. A.

    2015-12-01

    The trajectory of incoming storms from the Pacific Ocean has a strong impact on hydroclimate in the Pacific Northwest. Shifts between zonal and meridional flow are a key influence on drought and pluvial regimes in both the PNW and the western United States as a whole. Circulation-dependent variability in the isotopic composition of precipitation can be recorded and potentially reconstructed using δ18O records derived from tree-rings. Here we present isotopic records of δ18O and δ13C from ponderosa pine (Pinus ponderosa) for the period 1950-2013 from six sites located in the lee of the Cascades in eastern Washington. Because of the orientation of the Cascades, zonal flow will result in an intensified rain shadow whereas meridional flow allows moisture to penetrate at a lower elevation leading to a lower rainout effect. This means zonal flow results in drier conditions in eastern Washington and the converse for meridional flow. We hypothesized that more depleted precipitation δ18O values will occur with periods of more zonal flow across the PNW and will be recorded by trees at our sites. Results show a strong relationship between our δ18O chronologies and winter precipitation (R = -0.50; p<0.001). δ13C chronologies from the same trees showed a relationship to prior fall/winter (pOct-pDec) precipitation (R = -0.46; p<0.005) suggesting a possible link to antecedent moisture conditions. With a focus on years with clear zonal and meridional flow regimes, we regressed the tree-ring δ18O anomaly against the instrumental record of total precipitation and compared the residual series to records of storm track for the period 1978-2008, and we found a detectable signal where the most depleted δ18O was generally associated with zonal flow and the most enriched δ18O with meridional flow. However, there are still some years where the relationship is unclear. Further work is aimed at understanding these anomalous years and extending our record beyond the instrumental

  6. Transport in zonal flows in analogous geophysical and plasma systems

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, Diego

    1999-11-01

    Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.

  7. Zonal subdivision of marine sequences: achievements and discrepancies

    NASA Astrophysics Data System (ADS)

    Gladenkov, Yuri

    2010-05-01

    . Therefore, in Russian Stratigraphic Code biostratigraphic zones are regarded as special units and chronozones as general units of integrated substantiation. Now it becomes clear that unlike chronozones, biostratigraphic zones often have diachronous boundaries and provincial but not global distribution. This is not frequently taken into account at practical correlations. A special attention should be paid to a scale of these occurrences when refining stratigraphic scales. It should not be forgotten that magneto-, litho-, and cyclostratigraphic markers should be used to assess isochronism of zonal boundaries. Many zonal reconstructions do not look faultless without such a control. If we consider zonal stratigraphy not only in applied aspect but in a wide scientific one, it fits in with the geohistorical concept of stratigraphy, which is now reflected in "dynamic", or "ecosystem", or biosphere stratigraphy (Gladenkov, 2004). Establishment of stages of geological development of the Earth and its separate parts, reconstructions of changes in the organic world at the biogeocoenotic and biospheric levels, complex study of paleobiotic assemblages are thought to be one of principal lines of stratigraphic investigations. At present discussions are being organized and experience of zonal stratigraphy is being summarized in Russia. In particular, a large book titled "Biozonal stratigraphy of the Phanerozoic in Russia" and devoted to this problem has been published recently (Koren, 2006). References 1. Gladenkov, Yu.B., 2004. Biosphere Stratigraphy (Stratigraphic Problems in the Early XXI Century). Moscow: GEOS, 120 pp. (in Russian). 2. Koren, T.N., ed., 2006. Biozonal stratigraphy of the Phanerozoic in Russia. Saint-Petersburg: VSEGEI Press, 256 рp. (in Russian). 3. Murphy, M.A., and Salvador, A., eds., 1999. International Stratigraphic Guide: An abridged version. Episodes, 22 (4): 255-271. 4. Zhamoida. A.I., ed., 2006. Russian Stratigraphic Guide (3rd Edition). Saint

  8. The role of zonal flows in disc gravito-turbulence

    NASA Astrophysics Data System (ADS)

    Vanon, R.

    2018-07-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling time-scale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  9. The role of zonal flows in disc gravito-turbulence

    NASA Astrophysics Data System (ADS)

    Vanon, R.

    2018-04-01

    The work presented here focuses on the role of zonal flows in the self-sustenance of gravito-turbulence in accretion discs. The numerical analysis is conducted using a bespoke pseudo-spectral code in fully compressible, non-linear conditions. The disc in question, which is modelled using the shearing sheet approximation, is assumed to be self-gravitating, viscous, and thermally diffusive; a constant cooling timescale is also considered. Zonal flows are found to emerge at the onset of gravito-turbulence and they remain closely linked to the turbulent state. A cycle of zonal flow formation and destruction is established, mediated by a slow mode instability (which allows zonal flows to grow) and a non-axisymmetric instability (which disrupts the zonal flow), which is found to repeat numerous times. It is in fact the disruptive action of the non-axisymmetric instability to form new leading and trailing shearing waves, allowing energy to be extracted from the background flow and ensuring the self-sustenance of the gravito-turbulent regime.

  10. Inferences of the deep solar meridional flow

    NASA Astrophysics Data System (ADS)

    Böning, Vincent G. A.

    2017-10-01

    Understanding the solar meridional flow is important for uncovering the origin of the solar activity cycle. Yet, recent helioseismic estimates of this flow have come to conflicting conclusions in deeper layers of the solar interior, i.e., at depths below about 0.9 solar radii. The aim of this thesis is to contribute to a better understanding of the deep solar meridional flow. Time-distance helioseismology is the major method for investigating this flow. In this method, travel times of waves propagating between pairs of locations on the solar surface are measured. Until now, the travel-time measurements have been modeled using the ray approximation, which assumes that waves travel along infinitely thin ray paths between these locations. In contrast, the scattering of the full wave field in the solar interior due to the flow is modeled in first order by the Born approximation. It is in general a more accurate model of the physics in the solar interior. In a first step, an existing model for calculating the sensitivity of travel-time measurements to solar interior flows using the Born approximation is extended from Cartesian to spherical geometry. The results are succesfully compared to the Cartesian ones and are tested for self-consistency. In a second step, the newly developed model is validated using an existing numerical simulation of linear wave propagation in the Sun. An inversion of artificial travel times for meridional flow shows excellent agreement for noiseless data and reproduces many features in the input flow profile in the case of noisy data. Finally, the new method is used to infer the deep meridional flow. I used Global Oscillation Network Group (GONG) data that were earlier analyzed using the ray approximation and I employed the same Substractive Optimized Local Averaging (SOLA) inversion technique as in the earlier study. Using an existing formula for the covariance of travel-time measurements, it is shown that the assumption of uncorrelated errors

  11. Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.

    1992-01-01

    Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.

  12. TRANSPORT BY MERIDIONAL CIRCULATIONS IN SOLAR-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, T. S.; Brummell, N. H., E-mail: tsw25@soe.ucsc.edu

    2012-08-20

    Transport by meridional flows has significant consequences for stellar evolution, but is difficult to capture in global-scale numerical simulations because of the wide range of timescales involved. Stellar evolution models therefore usually adopt parameterizations for such transport based on idealized laminar or mean-field models. Unfortunately, recent attempts to model this transport in global simulations have produced results that are not consistent with any of these idealized models. In an effort to explain the discrepancies between global simulations and idealized models, here we use three-dimensional local Cartesian simulations of compressible convection to study the efficiency of transport by meridional flows belowmore » a convection zone in several parameter regimes of relevance to the Sun and solar-type stars. In these local simulations we are able to establish the correct ordering of dynamical timescales, although the separation of the timescales remains unrealistic. We find that, even though the generation of internal waves by convective overshoot produces a high degree of time dependence in the meridional flow field, the mean flow has the qualitative behavior predicted by laminar, 'balanced' models. In particular, we observe a progressive deepening, or 'burrowing', of the mean circulation if the local Eddington-Sweet timescale is shorter than the viscous diffusion timescale. Such burrowing is a robust prediction of laminar models in this parameter regime, but has never been observed in any previous numerical simulation. We argue that previous simulations therefore underestimate the transport by meridional flows.« less

  13. Gravitational Anomalies Caused by Zonal Winds in Jupiter

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Kong, D.; Zhang, K.

    2012-12-01

    We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal winds in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal winds are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of density and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal winds extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the wind-related density anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal winds.

  14. Rethinking wave-kinetic theory applied to zonal flows

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey

    2017-10-01

    Over the past two decades, a number of studies have employed a wave-kinetic theory to describe fluctuations interacting with zonal flows. Recent work has uncovered a defect in this wave-kinetic formulation: the system is dominated by the growth of (arbitrarily) small-scale zonal structures. Theoretical calculations of linear growth rates suggest, and nonlinear simulations confirm, that this system leads to the concentration of zonal flow energy in the smallest resolved scales, irrespective of the numerical resolution. This behavior results from the assumption that zonal flows are extremely long wavelength, leading to the neglect of key terms responsible for conservation of enstrophy. A corrected theory, CE2-GO, is presented; it is free of these errors yet preserves the intuitive phase-space mathematical structure. CE2-GO properly conserves enstrophy as well as energy, and yields accurate growth rates of zonal flow. Numerical simulations are shown to be well-behaved and not dependent on box size. The steady-state limit simplifies into an exact wave-kinetic form which offers the promise of deeper insight into the behavior of wavepackets. The CE2-GO theory takes its place in a hierarchy of models as the geometrical-optics reduction of the more complete cumulant-expansion statistical theory CE2. The new theory represents the minimal statistical description, enabling an intuitive phase-space formulation and an accurate description of turbulence-zonal flow dynamics. This work was supported by an NSF Graduate Research Fellowship, a US DOE Fusion Energy Sciences Fellowship, and US DOE Contract Nos. DE-AC52-07NA27344 and DE-AC02-09CH11466.

  15. The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean

    DTIC Science & Technology

    2008-09-01

    Atlantic . Figure 4a shows that the center of meridional overturning circulation occurs at a level of about one kilometer. Circulation is weak at...maintenance of the meridional overturning circulation in the Atlantic Ocean. 5. Global Simulation The most exciting experiment would be to fully model the...mechanisms responsible for the strength and maintenance of the meridional overturning circulation in the Atlantic Ocean are not

  16. Theoretical and experimental zonal drift velocities of the ionospheric plasma bubbles over the Brazilian region

    NASA Astrophysics Data System (ADS)

    Arruda, Daniela C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, Vivian M.; Takahashi, H.; Medeiros, A. F.; Buriti, R. A.

    2006-01-01

    This work presents equatorial ionospheric plasma bubble zonal drift velocity observations and their comparison with model calculations. The bubble zonal velocities were measured using airglow OI630 nm all-sky digital images and the model calculations were performed taking into account flux-tube integrated Pedersen conductivity and conductivity weighted neutral zonal winds. The digital images were obtained from an all-sky imaging system operated over the low-latitude station Cachoeira Paulista (Geogr. 22.5S, 45W, dip angle 31.5S) during the period from October 1998 to August 2000. Out of the 138 nights of imager observation, 29 nights with the presence of plasma bubbles are used in this study. These 29 nights correspond to geomagnetically rather quiet days (∑K P < 24+) and were grouped according to season. During the early night hours, the calculated zonal drift velocities were found to be larger than the experimental values. The best matching between the calculated and observed zonal velocities were seen to be for a few hours around midnight. The model calculation showed two humps around 20 LT and 24 LT that were not present in the data. Average decelerations obtained from linear regression between 20 LT and 24 LT were found to be: (a) Spring 1998, -8.61 ms -1 h -1; (b) Summer 1999, -0.59 ms -1 h -1; (c) Spring 1999, -11.72 ms -1 h -1; and (d) Summer 2000, -8.59 ms -1 h -1. Notice that Summer and Winter here correspond to southern hemisphere Summer and Winter, not northern hemisphere.

  17. MEASUREMENTS OF THE SUN'S HIGH-LATITUDE MERIDIONAL CIRCULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rightmire-Upton, Lisa; Hathaway, David H.; Kosak, Katie, E-mail: lar0009@uah.edu, E-mail: david.hathaway@nasa.gov, E-mail: mkosak2011@my.fit.edu

    2012-12-10

    The meridional circulation at high latitudes is crucial to the buildup and reversal of the Sun's polar magnetic fields. Here, we characterize the axisymmetric flows by applying a magnetic feature cross-correlation procedure to high-resolution magnetograms obtained by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We focus on Carrington rotations 2096-2107 (2010 April to 2011 March)-the overlap interval between HMI and the Michelson Doppler Imager (MDI). HMI magnetograms averaged over 720 s are first mapped into heliographic coordinates. Strips from these maps are then cross-correlated to determine the distances in latitude and longitude that the magneticmore » element pattern has moved, thus providing meridional flow and differential rotation velocities for each rotation of the Sun. Flow velocities were averaged for the overlap interval and compared to results obtained from MDI data. This comparison indicates that these HMI images are rotated counterclockwise by 0.{sup 0}075 with respect to the Sun's rotation axis. The profiles indicate that HMI data can be used to reliably measure these axisymmetric flow velocities to at least within 5 Degree-Sign of the poles. Unlike the noisier MDI measurements, no evidence of a meridional flow counter-cell is seen in either hemisphere with the HMI measurements: poleward flow continues all the way to the poles. Slight north-south asymmetries are observed in the meridional flow. These asymmetries should contribute to the observed asymmetries in the polar fields and the timing of their reversals.« less

  18. Saturn’s gravitational field induced by its equatorially antisymmetric zonal winds

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-05-01

    The cloud-level zonal winds of Saturn are marked by a substantial equatorially antisymmetric component with a speed of about 50ms‑1 which, if they are sufficiently deep, can produce measurable odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4. This study, based on solutions of the thermal-gravitational wind equation, provides a theoretical basis for interpreting the odd gravitational coefficients of Saturn in terms of its equatorially antisymmetric zonal flow. We adopt a Saturnian model comprising an ice-rock core, a metallic dynamo region and an outer molecular envelope. We use an equatorially antisymmetric zonal flow that is parameterized, confined in the molecular envelope and satisfies the solvability condition required for the thermal-gravitational wind equation. The structure and amplitude of the zonal flow at the cloud level are chosen to be consistent with observations of Saturn. We calculate the odd zonal gravitational coefficients ΔJ 2k+1, k = 1, 2, 3, 4 by regarding the depth of the equatorially antisymmetric winds as a parameter. It is found that ΔJ 3 is ‑4.197 × 10‑8 if the zonal winds extend about 13 000 km downward from the cloud tops while it is ‑0.765 × 10‑8 if the depth is about 4000 km. The depth/profile of the equatorially antisymmetric zonal winds can eventually be estimated when the high-precision measurements of the Cassini Grand Finale become available.

  19. An comprehensive time-distance measurement of deep meridional flow and its temporal variation

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-10-01

    We report our latest results on the Sun's deep solar meridional-flow measurements by time-distance helioseismology technique using 6 years of SDO/HMI Doppler-velocity data. Determination of the meridional flow by time-distance helioseismology depends on a precise measurement of the flow-induced travel-time shifts of acoustic waves traveling in the solar interior. To resolve the weak travel-time-shift signals due to deep meridional flow, we need a high signal-to-noise ratio and a robust removal of the center-to-limb (CtoL) effect, which dominates the travel-time shifts. Here we perform an ultimately comprehensive measurement that tracks acoustic waves between any two points on solar surface. The travel-time shifts are composed of CtoL effect, which is a function of disk-centric distances, and contribution from the flow component parallel to wave traveling direction, which is a function of latitude and orientation. Assuming these two effects are independent, we can derive the CtoL effect and meridional-flow contributions by solving a set of linear equations in a least-square sense. We show the solved CtoL effect and the inversion results for the solar meridional flow, and analyze the annual variation of meridional flow from May 2010 to Apr 2016.

  20. Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings

    NASA Astrophysics Data System (ADS)

    Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre

    ., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability

  1. On the tertiary instability formalism of zonal flows in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.

    2018-05-01

    This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZFzonal temperature perturbations on the tertiary instability is examined. Although temperature perturbations favor instability, the realistic values of gradient-driven gyro-kinetic simulations still lie deeply in the stable parameter regime. Therefore, the relevance of the tertiary instability as a saturation mechanism to the zonal flow amplitude is questioned, as most of the zonal flow intensity is concentrated in modes satisfying kZF≪kZF,c as well as ωE×B≪ωE×B,c .

  2. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography

    DTIC Science & Technology

    2009-02-01

    the largest zonal current in the world, which links the Atlantic , Indian and Pacific Oceans. The associated Meridional Overturning Circulation (MOC...formed in polar regions (Wunsch and Ferrari, 2004). Mixing is especially important in the Southern Ocean where the Meridional Overturning Circulation ...general circulation of the ocean and an important driver of the lower cell of the Meridional Overturning Circulation . Wunsch (1998) estimated that the

  3. Sensitivity of the Meridional Overturning Circulation to the Pattern of the Surface Density Flux

    DTIC Science & Technology

    2010-09-01

    Atlantic alone, the Atlantic Meridional Overturning Circulation (AMOC) transports over 1015 W of heat (Ganachaud and Wunsch 2000) poleward...Phys. Oceanogr., 17, 970–985. Bryden, H. L., H. Longworth, and S. Cunningham, 2005: Slowing of the Atlantic meridional overturning circulation at 25...Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation . Rev. Geophys., 45, RG2001, doi:

  4. THEORY OF SOLAR MERIDIONAL CIRCULATION AT HIGH LATITUDES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dikpati, Mausumi; Gilman, Peter A., E-mail: dikpati@ucar.edu, E-mail: gilman@ucar.edu

    2012-02-10

    We build a hydrodynamic model for computing and understanding the Sun's large-scale high-latitude flows, including Coriolis forces, turbulent diffusion of momentum, and gyroscopic pumping. Side boundaries of the spherical 'polar cap', our computational domain, are located at latitudes {>=} 60 Degree-Sign . Implementing observed low-latitude flows as side boundary conditions, we solve the flow equations for a Cartesian analog of the polar cap. The key parameter that determines whether there are nodes in the high-latitude meridional flow is {epsilon} = 2{Omega}n{pi}H{sup 2}/{nu}, where {Omega} is the interior rotation rate, n is the radial wavenumber of the meridional flow, H ismore » the depth of the convection zone, and {nu} is the turbulent viscosity. The smaller the {epsilon} (larger turbulent viscosity), the fewer the number of nodes in high latitudes. For all latitudes within the polar cap, we find three nodes for {nu} = 10{sup 12} cm{sup 2} s{sup -1}, two for 10{sup 13}, and one or none for 10{sup 15} or higher. For {nu} near 10{sup 14} our model exhibits 'node merging': as the meridional flow speed is increased, two nodes cancel each other, leaving no nodes. On the other hand, for fixed flow speed at the boundary, as {nu} is increased the poleward-most node migrates to the pole and disappears, ultimately for high enough {nu} leaving no nodes. These results suggest that primary poleward surface meridional flow can extend from 60 Degree-Sign to the pole either by node merging or by node migration and disappearance.« less

  5. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes.

    PubMed

    McManus, J F; Francois, R; Gherardi, J-M; Keigwin, L D; Brown-Leger, S

    2004-04-22

    The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.

  6. Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Khatuntsev, I. V.; Patsaeva, M. V.; Titov, D. V.; Ignatiev, N. I.; Turin, A. V.; Fedorova, A. A.; Markiewicz, W. J.

    2017-11-01

    For more than 8 years the Venus Monitoring Camera (VMC) onboard the Venus Express orbiter performed continuous imaging of the Venus cloud layer in UV, visible and near-IR filters. We applied the correlation approach to sequences of the near-IR images at 965 nm to track cloud features and determine the wind field in the middle and lower cloud (49-57 km). From the VMC images that spanned from December of 2006 through August of 2013 we derived zonal and meridional components of the wind field. In low-to-middle latitudes (5-65°S) the velocity of the retrograde zonal wind was found to be 68-70 m/s. The meridional wind velocity slowly decreases from peak value of +5.8 ± 1.2 m/s at 15°S to 0 at 65-70°S. The mean meridional speed has a positive sign at 5-65°S suggesting equatorward flow. This result, together with the earlier measurements of the poleward flow at the cloud tops, indicates the presence of a closed Hadley cell in the altitude range 55-65 km. Long-term variations of zonal and meridional velocity components were found during 1,200 Earth days of observation. At 20° ± 5°S the zonal wind speed increases from -67.18 ± 1.81 m/s to -77.30 ± 2.49 m/s. The meridional wind gradually increases from +1.30 ± 1.82 m/s to +8.53 ± 2.14 m/s. Following Bertaux et al. (2016) we attribute this long-term trend to the influence from the surface topography on the dynamical process in the atmosphere via the upward propagation of gravity waves that became apparent in the VMC observations due to slow drift of the Venus Express orbit over Aphrodite Terra.

  7. Long period perturbations of earth satellite orbits. [Von Zeipel method and zonal harmonics

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1979-01-01

    All the equations involved in extending the PS phi solution to include the long periodic and second order secular effects of the zonal harmonics are presented. Topics covered include DSphi elements and relations for their conconical transformation into the PS phi elements; the solution algorithm based on the Von Zeipel method; and the elimination of long periodic terms and analytical integration of primed variables. The equations were entered into the ASOP program, checked out, and verified. Comparisons with numerical integrations show the long period theory to be accurate within several meters after 800 revolutions.

  8. A theoretical model of the variation of the meridional circulation with the solar cycle

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal; Choudhuri, Arnab Rai

    2017-12-01

    Observations of the meridional circulation of the Sun, which plays a key role in the operation of the solar dynamo, indicate that its speed varies with the solar cycle, becoming faster during the solar minima and slower during the solar maxima. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the ϕ component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the subadiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis on how the observed inward flow towards the active regions may be produced.

  9. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  10. Multiscale Asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical-Extratropical Interactions (Open Access)

    DTIC Science & Technology

    2015-11-30

    equatorial baroclinic dynamics, and (iii) the interactive effects of moisture and convection. More specifically, the model integrates the dry...interactions 5 Par. Derivation Dim. val. Description β 2.3× 10−11 m−1s−1 Variation of Coriolis parameter with latitude θ0 300 K Potential temperature...tropical Coriolis force, and x and y denote the zonal and meridional coordinates. Without the moisture q and convection envelope a, system (1) is the two

  11. The stratospheric quasi-biennial oscillation in the NCEP reanalyses: Climatological structures

    NASA Astrophysics Data System (ADS)

    Huesmann, Amihan S.; Hitchman, Matthew H.

    2001-06-01

    Global quasi-biennial variation in the lower stratosphere and tropopause region is studied using 41 years (1958-1998) of reanalyses from the National Centers for Environmental Prediction (NCEP). Horizontal wind, temperature, geopotential height, tropopause temperature and pressure fields are used. A new quasi-biennial oscillation (QBO) indexing method is presented, which is based on the zonal mean zonal wind shear anomaly at the equator and is compared to the Singapore index. A phase difference composting technique provides ``snapshots'' of the QBO meridional-vertical structure as it descends, and ``composite phases'' provide a look at its time progression. Via binning large amounts of data, the first observation-based estimate of the QBO meridional circulation is obtained. High-latitude QBO variability supports previous studies that invoke planetary wave-mean flow interaction as an explanation. The meridional distribution of the range in QBO zonal wind is compared with the stratospheric annual cycle, with the annual cycle dominating poleward of ~12° latitude but still being significant in the deep tropics. The issues of temporal shear zone asymmetries and phase locking with the annual cycle are critically examined. Subtracting the time mean and annual cycle removes ~2/3 of the asymmetry in wind (and wind shear) zone descent rate. The NCEP data validate previous findings that both the easterly and westerly QBO anomalous wind regimes in the lower stratosphere change sign preferentially during northern summer. It is noteworthy that the NCEP QBO amplitude and the relationships among the reanalysed zonal wind, temperature, and meridional circulation undergo a substantial change around 1978.

  12. Meridional Flow Measurements: Comparisons Between Ring Diagram Analysis and Fourier-Hankel Analysis

    NASA Astrophysics Data System (ADS)

    Zaatri, A.; Roth, M.

    2008-09-01

    The meridional circulation is a weak flow with amplitude in the order of 10 m/s on the solar surface. As this flow could be responsible for the transport of magnetic flux during the solar cycle it has become a crucial ingredient in some dynamo models. However, only less is known about the overall structure of the meridional circulation. Helioseismology is able to provide information on the structure of this flow in the solar interior. One widely used helioseismic technique for measuring frequency shifts due to horizontal flows in the subsurface layers of the sun is the ring diagram analyis (Corbard et al. 2003). It is based on the analysis of frequency shifts in the solar oscillation power spectrum as a function of the orientation of the wave vector. This then allows drawing conclusions on the strength of meridional flow, too. Ring diagram analysis is currently limited to the analysis of the wave field in only a small region on the solar surface. Consequently, information on the solar interior can only be inferred down to a depth of about 16 Mm. Another helioseismology method that promises to estimate the meridional flow strength down to greater depths is the Fourier-Hankel analysis (Krieger et al. 2007). This technique is based on a decomposition of the wave field in poleward and equatorward propagating waves. A possible frequency shift between them is then due to the meridional flow. We have been motivated for carrying out a comparative study between the two techniques to measure the meridional flow. We investigate the degree of coherence between the two methods by analyzing the same data sets recorded by the SOHO-MDI and GONG instruments.

  13. The momentum constraints on the shallow meridional circulation associated with the marine ITCZ

    NASA Astrophysics Data System (ADS)

    Dixit, Vishal; Srinivasan, J.

    2017-12-01

    Recent studies have shown that the shallow meridional circulation (SMC) coexists with the deep circulation in the marine ITCZ. The SMC has been assumed to be forced by strong meridional gradients of Sea Surface Temperature (SST) which affect the atmosphere under hydrostatic balance. In this paper, we present a new viewpoint that the shallow meridional circulation is a part of circulation that forms when the marine ITCZ is located away from the equator. To support this view, we have used reanalysis data over east Pacific ocean to show that the shallow meridional circulation is absent when the ITCZ is located near the equator while it is strong to the south of the ITCZ when the ITCZ is located away from the equator. To further support this view, we have conducted idealized aquaplanet experiments by shifting SST maximum polewards to simulate the observed contrast in the meridional circulation associated with near equatorial and off-equatorial ITCZ. The detailed momentum budget of the flow above the boundary layer shows that, to the south of an off-equatorial ITCZ, the dominant balance between the Coriolis force and the advection of relative vorticity by the mean flow leads to cancellation of the planetary rotational effects. As a result, the net rotational effects experienced by the diverging flow above the boundary layer are negligible and a shallow meridional flow along the pressure gradients is generated. This dominant balance does not occur in the aquaplanet GCM when the ITCZ forms near the equator.

  14. Cloud level winds from UV and IR images obtained by VMC onboard Venus Express

    NASA Astrophysics Data System (ADS)

    Khatuntsev, Igor; Patsaeva, Marina; Titov, Dmitri; Ignatiev, Nikolay; Turin, Alexander; Bertaux, Jean-Loup

    2017-04-01

    During eight years Venus Monitoring Camera (VMC) [1] onboard the Venus Express orbiter has observed the upper cloud layer of Venus. The largest set of images was obtained in the UV (365 nm), visible (513 nm) and two infrared channels - 965 nm and 1010 nm. The UV dayside images were used to study the atmospheric circulation at the Venus cloud tops [2], [3]. Mean zonal and meridional profiles of winds and their variability were derived from cloud tracking of UV images. In low latitudes the mean retrograde zonal wind at the cloud top (67±2 km) is about 95 m/s with a maximum of about 102 m/s at 40-50°S. Poleward from 50°S the zonal wind quickly fades out with latitude. The mean poleward meridional wind slowly increases from zero value at the equator to about 10 m/s at 50°S. Poleward from this latitude, the absolute value of the meridional component monotonically decreases to zero at the pole. The VMC observations suggest clear diurnal signature in the wind field. They also indicate a long term trend for the zonal wind speed at low latitudes to increase from 85 m/s in the beginning of the mission to 110 m/s by the middle of 2012. The trend was explained by influence of the surface topography on the zonal flow [4]. Cloud features tracking in the IR images provided information about winds in the middle cloud deck (55±4 km). In the low and middle latitudes (5-65°S) the IR mean retrograde zonal velocity is about 68-70 m/s. In contrast to poleward flow at the cloud tops, equatorward motions dominate in the middle cloud with maximum speed of 5.8±1.2 m/s at latitude 15°S. The meridional speed slowly decreases to 0 at 65-70°S. At low latitudes the zonal and meridional speed demonstrate long term variations. Following [4] we explain the observed long term trend of zonal and meridional components by the influence of surface topography of highland region Aphrodite Terra on dynamic processes in the middle cloud deck through gravity waves. Acknowledgements: I.V. Khatuntsev

  15. Contribution of zonal harmonics to gravitational moment

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.

    1991-01-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  16. Contribution of zonal harmonics to gravitational moment

    NASA Astrophysics Data System (ADS)

    Roithmayr, Carlos M.

    1991-02-01

    It is presently demonstrated that a recursive vector-dyadic expression for the contribution of a zonal harmonic of degree n to the gravitational moment about a small body's center-of-mass is obtainable with a procedure that involves twice differentiating a celestial body's gravitational potential with respect to a vector. The recursive property proceeds from taking advantage of a recursion relation for Legendre polynomials which appear in the gravitational potential. The contribution of the zonal harmonic of degree 2 is consistent with the gravitational moment exerted by an oblate spheroid.

  17. Sources of Meridional Heat and Freshwater Transport Anomalies in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Kelly, K. A.; Thompson, L.; Drushka, K.

    2016-02-01

    Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean for 1993-2014. A Kalman filter extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content in each of eight regions. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding an integration constant derived from updated MHT estimates at 41N (Willis 2010). MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. Anomalies in MHT are comparable to those observed at the RAPID/MOCHA line at 26.5N and show a continued recovery from the minimum in 2010 throughout the Atlantic. MHT anomalies resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates are also insensitive to choice of flux products. Interannual anomalies of FWC integrated from 67N to 35S resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009), whereas the trend is consistent with estimates of freshwater input from Greenland. Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.

  18. Eastern Tropical Pacific Precipitation Response to Zonal SPCZ events

    NASA Astrophysics Data System (ADS)

    Durán-Quesada, A. M.; Lintner, B. R.

    2014-12-01

    Extreme El Niño events and warming conditions in the eastern tropical Pacific have been linked to pronounced spatial displacements of the South Pacific Convergence Zone known as "zonal SPCZ" events.. Using a global dataset of Lagrangian back trajectories computed with the FLEXPART model for the period 1980-2013, comprehensive analysis of the 3D circulation characteristics associated with the SPCZ is undertaken. Ten days history of along-trajectory specific humidity, potential vorticity and temperature are reconstructed for zonal SPCZ events as well as other states,, with differences related to El Niño intensity and development stage as well as the state of the Western Hemisphere Warm Pool. How zonal events influence precipitation over the Eastern Tropical Pacific is examined using back trajectories, reanalysis, TRMM precipitation, and additional satellite derived cloud information. It is found that SPCZ displacements are associated with enhanced convection over the Eastern Tropical Pacific in good agreement with prior work. The connection between intensification of precipitation over the eastern Tropical Pacific during zonal events and suppression of rainfall over the Maritime continent is also described.

  19. Decadal slowdown in global air temperature rise triggered by variability in the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    England, Matthew H.

    2015-04-01

    Various explanations have been proposed for the recent slowdown in global surface air temperature (SAT) rise, either involving enhanced ocean heat uptake or reduced radiation reaching Earth's surface. Among the mechanisms postulated involving enhanced ocean heat uptake, past work has argued for both a Pacific and Atlantic origin, with additional contributions from the Southern Ocean. Here we examine the mechanisms driving 'hiatus' periods originating out of the Atlantic Ocean. We show that while Atlantic-driven hiatuses are entirely plausible and consistent with known climate feedbacks associated with variability in the Atlantic Meridional Overturning Circulation (AMOC), the present climate state is configured to enhance global-average SAT, not reduce it. We show that Atlantic hiatuses are instead characterised by anomalously cool fresh oceanic conditions in the North Atlantic, with the atmosphere advecting the cool temperature signature zonally. Compared to the 1980s and 1990s, however, the mean climate since 2001 has been characterised by a warm saline North Atlantic, suggesting the AMOC cannot be implicated as a direct driver of the current hiatus. We further discuss the impacts of a warm tropical Atlantic on the unprecedented trade wind acceleration in the Pacific Ocean, and propose that this is the main way that the Atlantic has contributed to the present "false pause" in global warming.

  20. Design for and efficient dynamic climate model with realistic geography

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Abeles, J.

    1984-01-01

    The long term climate sensitivity which include realistic atmospheric dynamics are severely restricted by the expense of integrating atmospheric general circulation models are discussed. Taking as an example models used at GSFC for this dynamic model is an alternative which is of much lower horizontal or vertical resolution. The model of Heid and Suarez uses only two levels in the vertical and, although it has conventional grid resolution in the meridional direction, horizontal resolution is reduced by keeping only a few degrees of freedom in the zonal wavenumber spectrum. Without zonally asymmetric forcing this model simulates a day in roughly 1/2 second on a CRAY. The model under discussion is a fully finite differenced, zonally asymmetric version of the Heid-Suarez model. It is anticipated that speeds can be obtained a few seconds a day roughly 50 times faster than moderate resolution, multilayer GCM's.

  1. A zonal method for modeling powered-lift aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Roberts, D. W.

    1989-01-01

    A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.

  2. An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific

    NASA Technical Reports Server (NTRS)

    Eriksen, Charles C.; Richman, James G.

    1988-01-01

    Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.

  3. Numerical simulation on zonal disintegration in deep surrounding rock mass.

    PubMed

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks.

  4. Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

    PubMed Central

    Chen, Xuguang; Wang, Yuan; Mei, Yu; Zhang, Xin

    2014-01-01

    Zonal disintegration have been discovered in many underground tunnels with the increasing of embedded depth. The formation mechanism of such phenomenon is difficult to explain under the framework of traditional rock mechanics, and the fractured shape and forming conditions are unclear. The numerical simulation was carried out to research the generating condition and forming process of zonal disintegration. Via comparing the results with the geomechanical model test, the zonal disintegration phenomenon was confirmed and its mechanism is revealed. It is found to be the result of circular fracture which develops within surrounding rock mass under the high geostress. The fractured shape of zonal disintegration was determined, and the radii of the fractured zones were found to fulfill the relationship of geometric progression. The numerical results were in accordance with the model test findings. The mechanism of the zonal disintegration was revealed by theoretical analysis based on fracture mechanics. The fractured zones are reportedly circular and concentric to the cavern. Each fracture zone ruptured at the elastic-plastic boundary of the surrounding rocks and then coalesced into the circular form. The geometric progression ratio was found to be related to the mechanical parameters and the ground stress of the surrounding rocks. PMID:24592166

  5. FPI observations of nighttime mesospheric and thermospheric winds in China and their comparisons with HWM07

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    2015-04-01

    We analyzed the nighttime horizontal neutral winds in the middle atmosphere (˜87 and ˜98 km) and thermosphere (˜250 km) derived from a Fabry-Perot interferometer (FPI), which was installed at Xinglong station (40.2◦ N, 117.4◦ E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ˜87 km, ˜98 km and ˜250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ˜ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ˜98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ˜250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ˜87 and ˜98 km than that at ˜250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ˜87 and ˜98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ˜87 km and ˜98 km. (3) At ˜250 km, model zonal wind compares well with the observation in the winter. For spring and autumn

  6. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Yao, K.; Taketa, C.; Zhang, X.; Liang, M. C.; Jiang, X.; Newman, C. E.; Tung, K. K.; Yung, Y. L.

    2015-12-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As examples, we apply this model to Titan and Venus. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss the application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  7. A cyclostrophic transformed Eulerian zonal mean model for the middle atmosphere of slowly rotating planets

    NASA Astrophysics Data System (ADS)

    Li, King-Fai; Yao, Kaixuan; Taketa, Cameron; Zhang, Xi; Liang, Mao-Chang; Jiang, Xun; Newman, Claire; Tung, Ka-Kit; Yung, Yuk L.

    2016-04-01

    With the advance of modern computers, studies of planetary atmospheres have heavily relied on general circulation models (GCMs). Because these GCMs are usually very complicated, the simulations are sometimes difficult to understand. Here we develop a semi-analytic zonally averaged, cyclostrophic residual Eulerian model to illustrate how some of the large-scale structures of the middle atmospheric circulation can be explained qualitatively in terms of simple thermal (e.g. solar heating) and mechanical (the Eliassen-Palm flux divergence) forcings. This model is a generalization of that for fast rotating planets such as the Earth, where geostrophy dominates (Andrews and McIntyre 1987). The solution to this semi-analytic model consists of a set of modified Hough functions of the generalized Laplace's tidal equation with the cyclostrohpic terms. As an example, we apply this model to Titan. We show that the seasonal variations of the temperature and the circulation of these slowly-rotating planets can be well reproduced by adjusting only three parameters in the model: the Brunt-Väisälä bouyancy frequency, the Newtonian radiative cooling rate, and the Rayleigh friction damping rate. We will also discuss an application of this model to study the meridional transport of photochemically produced tracers that can be observed by space instruments.

  8. The Role of Monsoon-Like Zonally Asymmetric Heating in Interhemispheric Transport

    NASA Technical Reports Server (NTRS)

    Chen, Gang; Orbe, Clara; Waugh, Darryn

    2017-01-01

    While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer, is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values, but also produces an upper-tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative (GMI) Chemistry Transport Model driven with MERRA meteorological fields. These results highlight the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.

  9. Time-varying zonal asymmetries in stratospheric nitrous oxide and methane

    NASA Technical Reports Server (NTRS)

    Gao, H.; Stanford, J. L.

    1993-01-01

    Previously analyses of Stratospheric And Mesospheric Sounder (SAMS) data of atmospheric constituent gases have dealt almost exclusively with zonal means (and mostly monthly means), owing perhaps to concern over data quality. The purpose of this note is to show that, with care, time-dependent zonally-asymmetric features may be recovered from the SAMS nitrous oxide and methane data. As an example, we demonstrate the existence of zonal wave-1 constituent perturbations with periods of a few weeks in the middle and upper stratosphere. When the perturbations are normalized by the constituent zonal-mean mixing ratio to compensate for the slowly varying (in both space and time) background concentration of constituents, wavepacket-like features are found over all latitudes and seasons in the three-year SAMS record. One specific low-latitude case discussed had features which appear to be consistent with constituent oscillations induced by episodic equatorial Kelvin waves. Further studies are needed to better identify the nature of the plethora of observed wave-like phenomena.

  10. Changes in Jupiter's Zonal Wind Profile Preceding and During the Juno Mission

    NASA Technical Reports Server (NTRS)

    Tollefson, Joshua; Wong, Michael H.; de Pater, Imke; Simon, Amy A.; Orton, Glenn S.; Rogers, John H.; Atreya, Sushil K.; Cosentino, Richard G.; Januszewski, William; Morales-Juberias, Raul; hide

    2017-01-01

    We present five epochs of WFC3 HST Jupiter observations taken between 2009-2016 and extract global zonal wind profiles for each epoch. Jupiter's zonal wind field is globally stable throughout these years, but significant variations in certain latitude regions persist. We find that the largest uncertainties in the wind field are due to vortices or hot-spots, and show residual maps which identify the strongest vortex flows. The strongest year-to-year variation in the zonal wind profiles is the 24 deg N jet peak. Numerous plume outbreaks have been observed in the Northern Temperate Belt and are associated with decreases in the zonal velocity and brightness. We show that the 24 deg N jet peak velocity and brightness decreased in 2012 and again in late 2016, following outbreaks during these years. Our February 2016 zonal wind profile was the last highly spatially resolved measurement prior to Juno s first science observations. The final 2016 data were taken in conjunction with Juno's perijove 3 pass on 11 December 2016, and show the zonal wind profile following the plume outbreak at 24 deg N in October 2016.

  11. South Atlantic meridional transports from NEMO-based simulations and reanalyses

    NASA Astrophysics Data System (ADS)

    Mignac, Davi; Ferreira, David; Haines, Keith

    2018-02-01

    The meridional heat transport (MHT) of the South Atlantic plays a key role in the global heat budget: it is the only equatorward basin-scale ocean heat transport and it sets the northward direction of the global cross-equatorial transport. Its strength and variability, however, are not well known. The South Atlantic transports are evaluated for four state-of-the-art global ocean reanalyses (ORAs) and two free-running models (FRMs) in the period 1997-2010. All products employ the Nucleus for European Modelling of the Oceans (NEMO) model, and the ORAs share very similar configurations. Very few previous works have looked at ocean circulation patterns in reanalysis products, but here we show that the ORA basin interior transports are consistently improved by the assimilated in situ and satellite observations relative to the FRMs, especially in the Argo period. The ORAs also exhibit systematically higher meridional transports than the FRMs, which is in closer agreement with observational estimates at 35 and 11° S. However, the data assimilation impact on the meridional transports still greatly varies among the ORAs, leading to differences up to ˜ 8 Sv and 0.4 PW in the South Atlantic Meridional Overturning Circulation and the MHTs, respectively. We narrow this down to large inter-product discrepancies in the western boundary currents (WBCs) at both upper and deep levels explaining up to ˜ 85 % of the inter-product differences in MHT. We show that meridional velocity differences, rather than temperature differences, in the WBCs drive ˜ 83 % of this MHT spread. These findings show that the present ocean observation network and data assimilation schemes can be used to consistently constrain the South Atlantic interior circulation but not the overturning component, which is dominated by the narrow western boundary currents. This will likely limit the effectiveness of ORA products for climate or decadal prediction studies.

  12. Progress Towards a Time-Dependent Theory of Solar Meridional Flows

    NASA Astrophysics Data System (ADS)

    Shirley, James H.

    2017-08-01

    Large-scale meridional motions of solar materials play an important role in flux transport dynamo models. Meridional flows transport surface magnetic flux to polar regions of the Sun, where it may later be subducted and conveyed back towards the equatorial region by a deep return flow in the convection zone. The transported flux may thereafter lead to the generation of new toroidal fields, thereby completing the dynamo cycle. More than two decades of observations have revealed that meridional flow speeds vary substantially with time. Further, a complex morphological variability of meridional flow cells is now recognized, with multiple cell structures detected both in latitude and in depth. ‘Countercells’ with reversed flow directions have been detected at various times. Flow speeds are apparently influenced by the proximity of flows to active regions. This complexity represents a considerable challenge to dynamo modeling efforts. Flows morphology and speed changes may be arbitrarily prescribed in models, but physical realism of model outputs may be questionable, and elusive: The models are ‘trying to hit a moving target.’ Considerations such as these led Belucz et al. (2013; Ap. J. 806:169) to call for “time-dependent theories that can tell us theoretically how this circulation may change its amplitude and form in each hemisphere.” Such a theory now exists for planetary atmospheres (Shirley, 2017; Plan. Sp. Sci. 141, 1-16). Proof of concept for the non-tidal orbit-spin coupling hypothesis of Shirley (2017) was obtained through numerical modeling of the atmospheric circulation of Mars (Mischna & Shirley, 2017; Plan. Sp. Sci. 141, 45-72). Much-improved correspondence of numerical modeling outcomes with observations was demonstrated. In this presentation we will briefly review the physical hypothesis and some prior evidence of its possible role in solar dynamo excitation. We show a strong correlation between observed meridional flow speeds of magnetic

  13. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  14. Studies of velocity fluctuations in the lower atmosphere using the MU radar. I - Azimuthal anisotropy. II - Momentum fluxes and energy densities

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Smith, S. A.; Tsuda, T.; Sato, T.; Fritts, D. C.

    1990-01-01

    Results are presented from a six-day campaign to observe velocity fluctuations in the lower atmosphere using the MU radar (Fukao et al., 1985) in Shigaraki, Japan in March, 1986. Consideration is given to the azimuthal anisotropy, the frequency spectra, the vertical profiles of energy density, and the momentum flux of the motion field. It is found that all of the observed azimuthal variations are probably caused by a gravity wave field whose parameters vary with time. The results show significant differences between the mean zonal and meridional frequency spectra and different profiles of mean energy density with height for different frequency bands and for zonal and meridional components.

  15. MERIDIONAL TILT OF THE STELLAR VELOCITY ELLIPSOID DURING BAR BUCKLING INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kanak; Pfenniger, Daniel; Taam, Ronald E., E-mail: saha@mpe.mpg.de

    2013-02-20

    The structure and evolution of the stellar velocity ellipsoid play an important role in shaping galaxies undergoing bar-driven secular evolution and the eventual formation of a boxy/peanut bulge such as is present in the Milky Way. Using collisionless N-body simulations, we show that during the formation of such a boxy/peanut bulge, the meridional shear stress of stars, which can be measured by the meridional tilt of the velocity ellipsoid, reaches a characteristic peak in its time evolution. It is shown that the onset of a bar buckling instability is closely connected to the maximum meridional tilt of the stellar velocitymore » ellipsoid. Our findings bring a new insight to this complex gravitational instability of the bar which complements the buckling instability studies based on orbital models. We briefly discuss the observed diagnostics of the stellar velocity ellipsoid during such a phenomenon.« less

  16. Future Effects of Southern Hemisphere Stratospheric Zonal Asymmetries on Climate

    NASA Astrophysics Data System (ADS)

    Stone, K.; Solomon, S.; Kinnison, D. E.; Fyfe, J. C.

    2017-12-01

    Stratospheric zonal asymmetries in the Southern Hemisphere have been shown to have significant influences on both stratospheric and tropospheric dynamics and climate. Accurate representation of stratospheric ozone in particular is important for realistic simulation of the polar vortex strength and temperature trends. This is therefore also important for stratospheric ozone change's effect on the troposphere, both through modulation of the Southern Annular Mode (SAM), and more localized climate. Here, we characterization the impact of future changes in Southern Hemisphere zonal asymmetry on tropospheric climate, including changes to future tropospheric temperature, and precipitation. The separate impacts of increasing GHGs and ozone recovery on the zonal asymmetric influence on the surface are also investigated. For this purpose, we use a variety of models, including Chemistry Climate Model Initiative simulations from the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) and the Australian Community Climate and Earth System Simulator-Chemistry Climate Model (ACCESS-CCM). These models have interactive chemistry and can therefore more accurately represent the zonally asymmetric nature of the stratosphere. The CESM1(WACCM) and ACCESS-CCM models are also compared to simulations from the Canadian Can2ESM model and CESM-Large Ensemble Project (LENS) that have prescribed ozone to further investigate the importance of simulating stratospheric zonal asymmetry.

  17. Minimal modeling of the extratropical general circulation

    NASA Technical Reports Server (NTRS)

    O'Brien, Enda; Branscome, Lee E.

    1989-01-01

    The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.

  18. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-12-01

    instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46°57' N, 7°26' E) before the instrument was moved to Sodankylä (67°22' N, 26°38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a technical upgrade (integration of a pre-amplifier and a sideband filter) aiming to increase the instruments sensitivity a new measurement campaign at the site of the Observatoire de Haute-Provence for data intercomparison with the NDACC Rayleigh-Mie Doppler wind lidar is planned during the winter 2011/2012. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.

  19. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel

    2013-04-01

    wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46° 57' N, 7° 26' E) before the instrument was moved to Sodankylä (67° 22' N, 26° 38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a substantial technical upgrade (integration of a pre-amplifier and sideband filter) increasing the instruments signal to noise ratio by a factor of 2.4 the measurement campaign of the ARISE project at the site of the Observatoire de Haute-Provence was joined where among others data intercomparison with a newly operational Rayleigh-Mie Doppler wind lidar is planned. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.

  20. Meridional overturning and large-scale circulation of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ganachaud, Alexandre; Wunsch, Carl; Marotzke, Jochem; Toole, John

    2000-11-01

    The large scale Indian Ocean circulation is estimated from a global hydrographic inverse geostrophic box model with a focus on the meridional overturning circulation (MOC). The global model is based on selected recent World Ocean Circulation Experiment (WOCE) sections which in the Indian Basin consist of zonal sections at 32°S, 20°S and 8°S, and a section between Bali and Australia from the Java-Australia Dynamic Experiment (JADE). The circulation is required to conserve mass, salinity, heat, silica and "PO" (170PO4+O2). Near-conservation is imposed within layers bounded by neutral surfaces, while permitting advective and diffusive exchanges between the layers. Conceptually, the derived circulation is an estimate of the average circulation for the period 1987-1995. A deep inflow into the Indian Basin of 11±4 Sv is found, which is in the lower range of previous estimates, but consistent with conservation requirements and the global data set. The Indonesian Throughflow (ITF) is estimated at 15±5 Sv. The flow in the Mozambique Channel is of the same magnitude, implying a weak net flow between Madagascar and Australia. A net evaporation of -0.6±0.4 Sv is found between 32°S and 8°S, consistent with independent estimates. No net heat gain is found over the Indian Basin (0.1 ± 0.2PW north of 32°S) as a consequence of the large warm water influx from the ITF. Through the use of anomaly equations, the average dianeutral upwelling and diffusion between the sections are required and resolved, with values in the range 1-3×10-5 cm s-1 for the upwelling and 2-10 cm2 s-1 for the diffusivity.

  1. Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residuala)

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Catto, Peter J.; Dorland, William

    2007-05-01

    Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless [M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 (1998)] and collisional [F. Hinton and M. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999)] banana regime plasmas. Recent zonal flow advances are summarized including the evaluation of the effects on the zonal flow residual by plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius, and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief summary of these new developments, the analytic results are compared with GS2 numerical simulations [M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128 (1991)] to demonstrate their value as benchmarks for turbulence codes.

  2. A preliminary study of thermosphere and mesosphere wind observed by Fabry-Perot over Kelan, China

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Huang, Cong; Zhao, Guangxin; Mao, Tian; Wang, Yungang; Zeng, Zhongcao; Wang, Jingsong; Xia, Chunliang

    2014-06-01

    A Fabry-Perot interferometer (FPI) system was deployed in Kelan (38.7°N, 111.6°E), center China in November 2011, which observes the airglows at wavelengths of 892.0 nm, 557.7 nm, and 630.0 nm from OH and OI emissions in the upper atmosphere, to derive the wind and temperature at heights around 87 km, 97 km, and 250 km, respectively. From late 2011 through 2013 a series of more than 4500 measurements at each height are validated according to manufacture data quality criteria. By using these data, the morphology of wind in the mesosphere and thermosphere is investigated in this study. Preliminary results are as follows: (1) As for the diurnal variation, meridional and zonal winds at heights of 87 km and 97 km, which are derived through 892.0 nm and 557.7 nm airglows, usually range from -50 m/s to 30 m/s and -50 m/s to 50 m/s, respectively, with typical random errors of about 6-10 m/s at 87 km and 2-3 m/s at 97 km. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, westward at middle night, and back to eastward at dawn. The monthly mean winds are in good agreement with those of HWM93 results. Meridional and zonal winds at a height of 250 km, which are derived through 630.0 nm nightglow, range from -110 m/s to 80 m/s with typical random errors of about 8-10 m/s. Meridional winds usually are northward at dusk, southward at middle night, and back to northward at dawn; and zonal winds usually are eastward at dusk, zero at middle night, and westward at dawn; and they are also well consistent with HWM93 results. (2) As for the seasonal variation, meridional winds at the heights of 87 km and 97 km have a visible annual variation at 12-17 LT and with a little semiannual variation at all other hours, but the zonal winds at the heights of 87 km and 97 km have a semiannual variation all night. The seasonal dependence of the winds, both meridional and zonal winds, at the height

  3. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  4. MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark, E-mail: dariopassos@ist.utl.pt

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone atmore » mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.« less

  5. Meridional Circulation Dynamics from 3D Magnetohydrodynamic Global Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Passos, Dário; Charbonneau, Paul; Miesch, Mark

    2015-02-01

    The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 {{R}⊙ }). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

  6. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  7. Interseasonal Variations in the Middle Atmosphere Forced by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Chan, K. L.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations in the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric (m = 0) meridional circulation. A distinct but variable meridional wind oscillation (MWO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MWO through momentum deposition of GWs propagating in the north/south direction. The resulting momentum source represents a third (generally odd) order non-linear function of the meridional winds, and this enables the oscillation, as in the case of the QBO for the zonal winds. Since the meridional winds are relatively small compared to the zonal winds, however, the vertical wavelength that maintains the MWO is much smaller, i.e., only about 10 km instead of 40 km for the QBO. Consistent with the associated increase of the viscous stress, the period of the MWO is then short compared with that of the QBO, i.e., only about two to four months. Depending on the strength of the GW forcing, the computed amplitudes of the MWO are typically 4 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D (two-dimensional) and 3D (three-dimensional) reveal that the MWO is modulated by and in turn influences the QBO.

  8. Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean Models

    DTIC Science & Technology

    2009-06-30

    Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean

  9. Deep Zonal Flow and Time Variation of Jupiter’s Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cao, Hao; Stevenson, David J.

    2017-10-01

    All four giant planets in the Solar System feature zonal flows on the order of 100 m/s in the cloud deck, and large-scale intrinsic magnetic fields on the order of 1 Gauss near the surface. The vertical structure of the zonal flows remains obscure. The end-member scenarios are shallow flows confined in the radiative atmosphere and deep flows throughout the entire planet. The electrical conductivity increases rapidly yet smoothly as a function of depth inside Jupiter and Saturn. Deep zonal flows will advect the non-axisymmetric component of the magnetic field, at depth with even modest electrical conductivity, and create time variations in the magnetic field.The observed time variations of the geomagnetic field has been used to derive surface flows of the Earth’s outer core. The same principle applies to Jupiter, however, the connection between the time variation of the magnetic field (dB/dt) and deep zonal flow (Uphi) at Jupiter is not well understood due to strong radial variation of electrical conductivity. Here we perform a quantitative analysis of the connection between dB/dt and Uphi for Jupiter adopting realistic interior electrical conductivity profile, taking the likely presence of alkali metals into account. This provides a tool to translate expected measurement of the time variation of Jupiter’s magnetic field to deep zonal flows. We show that the current upper limit on the dipole drift rate of Jupiter (3 degrees per 20 years) is compatible with 10 m/s zonal flows with < 500 km vertical scale height below 0.972 Rj. We further demonstrate that fast drift of resolved magnetic features (e.g. magnetic spots) at Jupiter is a possibility.

  10. Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.

    2010-02-15

    Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less

  11. Relativistic satellite orbits: central body with higher zonal harmonics

    NASA Astrophysics Data System (ADS)

    Schanner, Maximilian; Soffel, Michael

    2018-06-01

    Satellite orbits around a central body with arbitrary zonal harmonics are considered in a relativistic framework. Our starting point is the relativistic Celestial Mechanics based upon the first post-Newtonian approximation to Einstein's theory of gravity as it has been formulated by Damour et al. (Phys Rev D 43:3273-3307, 1991; 45:1017-1044, 1992; 47:3124-3135, 1993; 49:618-635, 1994). Since effects of order (GM/c^2R) × J_k with k ≥ 2 for the Earth are very small (of order 7 × 10^{-10} × J_k) we consider an axially symmetric body with arbitrary zonal harmonics and a static external gravitational field. In such a field the explicit J_k/c^2-terms (direct terms) in the equations of motion for the coordinate acceleration of a satellite are treated first with first-order perturbation theory. The derived perturbation theoretical results of first order have been checked by purely numerical integrations of the equations of motion. Additional terms of the same order result from the interaction of the Newtonian J_k-terms with the post-Newtonian Schwarzschild terms (relativistic terms related to the mass of the central body). These `mixed terms' are treated by means of second-order perturbation theory based on the Lie-series method (Hori-Deprit method). Here we concentrate on the secular drifts of the ascending node <{\\dot{Ω }}> and argument of the pericenter <{\\dot{ω }}>. Finally orders of magnitude are given and discussed.

  12. Cloud-top meridional momentum transports on Saturn and Jupiter

    NASA Technical Reports Server (NTRS)

    Stromovsky, L. A.; Revercomb, H. E.; Krauss, R. J.

    1986-01-01

    Cloud-tracked wind measurements reported by Sromovsky et al. were analyzed to determine meridional momentum transports in Saturn's northern middle latitudes. Results are expressed in terms of eastward and northward velocity components (u and v), and eddy components u and v. At most latitudes between 13 and 44 deg N (planetocentric), the transport by the mean flow () is measurably southward, tending to support Saturn's large equatorial jet, and completely dominating the eddy transport. Meridional velocities are near zero at the peak of the relatively weak westward jet; along the flanks of that jet, measurements indicate divergent flow out of the jet. In this region the dominant eddy transport () is northward on the north side of the jet, but not resolvable on the south side. Eddy transports at most other latitudes are not significantly different from measurement error. The conversion of eddy kinetic energy to mean kinetic energy, indicated by the correlation between and d/dy (where y is meridional distance) is clearly smaller than various values reported for Jupiter, and not significantly different from zero. Both Jovian and Saturnian results may be biased by the tendency for cloud tracking to favor high contrast features, and thus may not be entirely representative of the cloud level motions as a whole.

  13. Zonally Asymmetric Ozone and the Morphology of the Planetary Waveguide

    DTIC Science & Technology

    2011-07-15

    sections for the 271 troposphere , J. Atmos. Sci., 37, 2600-2616. 272 Eyring, V., et al. (2007), Multimodel projections of stratospheric ozone ...GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, JULY 15, 2011 Zonally asymmetric ozone and the morphology of the 1 planetary waveguide...that zonally asymmetric 6 ozone (ZAO) profoundly changes the morphology of the Northern Hemisphere planetary 7 waveguide (PWG). ZAO causes the PWG to

  14. Global energy transports and the influence of clouds on transport requirements - A satellite analysis

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    This report investigates the impact of differential net radiative heating on 2D energy transports within the atmosphere ocean system and the role of clouds on this process. The 2D mean energy transports, in answer to zonal and meridional gradients in the net radiation field, show an east-west coupled dipole structure in which the Pacific acts as the major energy source and North Africa as the major energy sink. It is demonstrated that the dipole is embedded in the secondary energy transports arising mainly from the differential heating between land and oceans in the tropics in which the tropical east-west (zonal) transports are up to 30 percent of the tropical north-south (meridional) transports.

  15. Model test of anchoring effect on zonal disintegration in deep surrounding rock masses.

    PubMed

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration.

  16. Model Test of Anchoring Effect on Zonal Disintegration in Deep Surrounding Rock Masses

    PubMed Central

    Chen, Xu-Guang; Zhang, Qiang-Yong; Wang, Yuan; Liu, De-Jun; Zhang, Ning

    2013-01-01

    The deep rock masses show a different mechanical behavior compared with the shallow rock masses. They are classified into alternating fractured and intact zones during the excavation, which is known as zonal disintegration. Such phenomenon is a great disaster and will induce the different excavation and anchoring methodology. In this study, a 3D geomechanics model test was conducted to research the anchoring effect of zonal disintegration. The model was constructed with anchoring in a half and nonanchoring in the other half, to compare with each other. The optical extensometer and optical sensor were adopted to measure the displacement and strain changing law in the model test. The displacement laws of the deep surrounding rocks were obtained and found to be nonmonotonic versus the distance to the periphery. Zonal disintegration occurs in the area without anchoring and did not occur in the model under anchoring condition. By contrasting the phenomenon, the anchor effect of restraining zonal disintegration was revealed. And the formation condition of zonal disintegration was decided. In the procedure of tunnel excavation, the anchor strain was found to be alternation in tension and compression. It indicates that anchor will show the nonmonotonic law during suppressing the zonal disintegration. PMID:23997683

  17. Radar studies of midlatitude ionospheric plasma drifts

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.

    2001-02-01

    We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional E×B drifts over these stations. We discuss, for the first time, the Saint Santin drift patterns during solar maximum. We have used these quiet time models to extract the geomagnetic perturbation drifts which were modeled as a function of the time history of the auroral electrojet indices. Our results illustrate the evolution of the disturbance drifts driven by the combined effects of prompt penetration and longer lasting perturbation electric fields. The meridional electrodynamic disturbance drifts have largest amplitudes in the midnight-noon sector. The zonal drifts are predominantly westward, with largest amplitudes in the dusk-midnight sector and, following a decrease in the high-latitude convection, they decay more slowly than the meridional drifts. The prompt penetration and steady state zonal disturbance drifts derived from radar measurements are in good agreement with results obtained from both the ion drift meter data on board the Dynamics Explorer 2 (DE 2) satellite and from the Rice Convection Model.

  18. Prototyping of ultra micro centrifugal compressor-influence of meridional configuration

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Muto, Tadataka; Tsujita, Hoshio

    2011-08-01

    In order to investigate the design method for a micro centrifugal compressor, which is the most important component of an ultra micro gas turbine, two types of centrifugal impeller with 2-dimensional blade were designed, manufactured and tested. These impellers have different shapes of hub on the meridional plane with each other. Moreover, these types of impeller were made for the 5 times and the 6 times size of the final target centrifugal impeller with the outer diameter of 4mm in order to assess the similitude for the impellers. The comparison among the performance characteristics of the impellers revealed the influence of the meridional configuration on the performance and the similitude of the compressors.

  19. Jupiter: New estimates of mean zonal flow at the cloud level

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1986-01-01

    In order to reexamine the magnitude differences of the Jovian atmosphere's jets, as determined by Voyager 1 and 2 images, a novel approach is used to ascertain the zonal mean east-west component of motion. This technique is based on digital pattern matching, and is applied on pairs of mapped images to yield a profile of the mean zonal component that reproduces the exact locations of the easterly and westerly jets between + and 60 deg latitude. Results were obtained for all of the Voyager 1 and 2 cylindrical mosaics; the correlation coefficient between Voyagers 1 and 2 in mean zonal flow between + and - 60 deg latitude, determined from violet filter mosaics, is 0.998.

  20. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Wang and T.S. Hahm

    Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarizationmore » shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.« less

  1. Comparative analysis of zonal systems for macro-level crash modeling.

    PubMed

    Cai, Qing; Abdel-Aty, Mohamed; Lee, Jaeyoung; Eluru, Naveen

    2017-06-01

    Macro-level traffic safety analysis has been undertaken at different spatial configurations. However, clear guidelines for the appropriate zonal system selection for safety analysis are unavailable. In this study, a comparative analysis was conducted to determine the optimal zonal system for macroscopic crash modeling considering census tracts (CTs), state-wide traffic analysis zones (STAZs), and a newly developed traffic-related zone system labeled traffic analysis districts (TADs). Poisson lognormal models for three crash types (i.e., total, severe, and non-motorized mode crashes) are developed based on the three zonal systems without and with consideration of spatial autocorrelation. The study proposes a method to compare the modeling performance of the three types of geographic units at different spatial configurations through a grid based framework. Specifically, the study region is partitioned to grids of various sizes and the model prediction accuracy of the various macro models is considered within these grids of various sizes. These model comparison results for all crash types indicated that the models based on TADs consistently offer a better performance compared to the others. Besides, the models considering spatial autocorrelation outperform the ones that do not consider it. Based on the modeling results and motivation for developing the different zonal systems, it is recommended using CTs for socio-demographic data collection, employing TAZs for transportation demand forecasting, and adopting TADs for transportation safety planning. The findings from this study can help practitioners select appropriate zonal systems for traffic crash modeling, which leads to develop more efficient policies to enhance transportation safety. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  2. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  3. Wind structure and small-scale wind variability in the stratosphere and mesosphere during the November 1980 Energy Budget Campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1982-01-01

    Rocket observations made from two sites in northern Scandinavia between November 6 and December 1, 1980, as part of the Energy Budget Campaign are discussed. It was found that significant vertical and temporal changes in the wind structure were present and that they coincided with different geomagnetic conditions, that is, quiet and enhanced. Before November 16, the meridional wind component above 60 km was found to be positive (southerly), whereas the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly), and the magnitude of the zonal wind component was observed to decrease with altitude. Time sections of the perturbations of the zonal wind reveal the presence of vertically propagating waves, suggesting gravity wave activity. The waves are found to increase in wavelength from 3-4 km near 40 km to more than 12 km near 80 km. The observational techniques made use of chaff foil, chemical trails, inflatable spheres, and parachutes.

  4. GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de

    2013-02-15

    Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less

  5. Two- and three-dimensional natural and mixed convection simulation using modular zonal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtz, E.; Nataf, J.M.; Winkelmann, F.

    We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less

  6. Kinematic solar dynamo models with a deep meridional flow

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.

    2004-05-01

    We develop two different solar dynamo models to verify the hypothesis that a deep meridional flow can restrict the appearance of sunspots below 45°, proposed recently by Nandy & Choudhuri. In the first one, a single polytropic approximation for the density profile was taken, for both radiative and convective zones. In the second one, that of Pinzon & Calvo-Mozo, two polytropes were used to distinguish between both zones. The magnetic buoyancy mechanism proposed by Dikpati & Charbonneau was chosen in both models. We have in fact obtained that a deep meridional flow pushes the maxima of toroidal magnetic field towards the solar equator, but, in contrast to Nandy & Choudhuri, a second zone of maximal fields remains at the poles. The second model, although closely resembling the solar standard model of Bahcall et al., gives solar cycles three times longer than observed.

  7. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  8. The contrasting response of Hadley circulation to different meridional structure of sea surface temperature in CMIP5

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Zhu, Jianlei; Li, Yang; Li, Fei

    2018-02-01

    The response of the Hadley circulation (HC) to the sea surface temperature (SST) is determined by the meridional structure of SST and varies according to the changing nature of this meridional structure. The capability of the models from the phase 5 of the Coupled Model Intercomparison Project (CMIP5) is utilized to represent the contrast response of the HC to different meridional SST structures. To evaluate the responses, the variations of HC and SST were linearly decomposed into two components: the equatorially asymmetric (HEA for HC, and SEA for SST) and equatorially symmetric (HES for HC, and SES for SST) components. The result shows that the climatological features of HC and tropical SST (including the spatial structures and amplitude) are reasonably simulated in all the models. However, the response contrast of HC to different SST meridional structures shows uncertainties among models. This may be due to the fact that the long-term temporal variabilities of HEA, HES, and SEA are limited reproduced in the models, although the spatial structures of their long-term variabilities are relatively reasonably simulated. These results indicate that the performance of the CMIP5 models to simulate long-term temporal variability of different meridional SST structures and related HC variations plays a fundamental role in the successful reproduction of the response of HC to different meridional SST structures.

  9. Striations and preferred eddy tracks triggered by topographic steering of the background flow in the eastern South Pacific

    NASA Astrophysics Data System (ADS)

    Belmadani, Ali; Concha, Emilio; Donoso, David; Chaigneau, Alexis; Colas, François; Maximenko, Nikolai; Di Lorenzo, Emanuele

    2017-04-01

    In recent years, persistent quasi-zonal jets or striations have been ubiquitously detected in the world ocean using satellite and in situ data as well as numerical models. This study aims at determining the role of mesoscale eddies in the generation and persistence of striations off Chile in the eastern South Pacific. A 50 year climatological integration of an eddy-resolving numerical ocean model is used to assess the long-term persistence of striations. Automated eddy tracking algorithms are applied to the model outputs and altimetry data. Results reveal that striations coincide with both polarized eddy tracks and the offshore formation of new eddies in the subtropical front and coastal transition zone, without any significant decay over time that discards random eddies as a primary driver of the striations. Localized patches of vortex stretching and relative vorticity advection, alternating meridionally near the eastern edge of the subtropical front, are associated with topographic steering of the background flow in the presence of steep topography, and with baroclinically and barotropically unstable meridional flow. These sinks and sources of vorticity are suggested to generate the banded structure further west, consistently with a β-plume mechanism. On the other hand, zonal/meridional eddy advection of relative vorticity and the associated Reynolds stress covariance are consistent with eddy deformation over rough topography and participate to sustain the striations in the far field. Shear instability of mean striations is proposed to feedback onto the eddy field, acting to maintain the subtropical front eddy streets and thus the striations.

  10. MENTAT: A New Magnetic Meridional Neutral Wind Model for Earth's Thermosphere

    NASA Astrophysics Data System (ADS)

    Dandenault, P. B.

    2017-12-01

    We present a new model of thermosphere winds in the F region obtained from variations in the altitude of the peak density of the ionosphere (hmF2). The new Magnetic mEridional NeuTrAl Thermospheric (MENTAT) wind model produces magnetic-meridional neutral winds as a function of year, day of year, solar local time, solar flux, geographic latitude, and geographic longitude. The winds compare well with Fabry-Pérot Interferometer (FPI) wind observations and are shown to provide accurate specifications in regions outside of the observational database such as the midnight collapse of hmF2 at Arecibo, Puerto Rico. The model winds are shown to exhibit the expected seasonal, diurnal, and hourly behavior based on geophysical conditions. The magnetic meridional winds are similar to those from the well-known HWM14 model but there are important differences. For example, Townsville, Australia has a strong midnight collapse similar to that at Arecibo, but winds from HWM14 do not reproduce it. Also, the winds from hmF2 exhibit a moderate solar cycle dependence under certain conditions, whereas, HWM14 has no solar activity dependence. For more information, please visit http://www.mentatwinds.net/.

  11. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 1. Comparison of wind measurements with MF spaced antenna radar system

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Ramkumar, Geetha; Shelbi, S. T.

    2007-12-01

    In the present communication, initial results from the allSKy interferometric METeor (SKiYMET) radar installed at Thumba (8.5°N, 77°E) are presented. The meteor radar system provides hourly zonal and meridional winds in the mesosphere lower thermosphere (MLT) region. The meteor radar measured zonal and meridional winds are compared with nearby MF radar at Tirunalveli (8.7°N, 77.8°E). The present study provided an opportunity to compare the winds measured by the two different techniques, namely, interferometry and spaced antenna drift methods. Simultaneous wind measurements for a total number of 273 days during September 2004 to May 2005 are compared. The comparison showed a very good agreement between these two techniques in the height region 82-90 km and poor agreement above this height region. In general, the zonal winds compare very well as compared to the meridional winds. The observed discrepancies in the wind comparison above 90 km are discussed in the light of existing limitations of both the radars. The detailed analysis revealed the consistency of the measured winds by both the techniques. However, the discrepancies are observed at higher altitudes and are attributed to the contamination of MF radar neutral wind measurements with Equatorial Electro Jet (EEJ) induced inospheric drifts rather than the limitations of the spaced antenna technique. The comparison of diurnal variation of zonal winds above 90 km measured by both the radars is in reasonably good agreement in the absence of EEJ (during local nighttime). It is also been noted that the difference in the zonal wind measurements by both the radars is directly related to the strength of EEJ, which is a noteworthy result from the present study.

  12. Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability

    NASA Astrophysics Data System (ADS)

    Sheshadri, A.; Plumb, R. A.

    2016-12-01

    Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.

  13. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  14. Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  15. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu; Sugama, Hideo

    2016-03-01

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  16. Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo

    Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.

  17. FORTRAN program for calculating velocities in the meridional plane of a turbomachine 1: Centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Vanco, M. R.

    1972-01-01

    The program will determine the velocities in the meridional plane of a backward-swept impeller, a radial impeller, and a vaned diffuser. The velocity gradient equation with the assumption of a hub-to-shroud mean stream surface is solved along arbitrary quasi-orthogonals in the meridional plane. These quasi-orthogonals are fixed straight lines.

  18. GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, A.; Roth, M.; Timmer, J., E-mail: ariane.schad@kis.uni-freiburg.de

    2013-12-01

    We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solarmore » surface, our results are in good agreement with flow measurements from local helioseismology.« less

  19. Conservative zonal schemes for patched grids in 2 and 3 dimensions

    NASA Technical Reports Server (NTRS)

    Hessenius, Kristin A.

    1987-01-01

    The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.

  20. MEAN-FIELD SOLAR DYNAMO MODELS WITH A STRONG MERIDIONAL FLOW AT THE BOTTOM OF THE CONVECTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2011-09-01

    This paper presents a study of kinematic axisymmetric mean-field dynamo models for the case of meridional circulation with a deep-seated stagnation point and a strong return flow at the bottom of the convection zone. This kind of circulation follows from mean-field models of the angular momentum balance in the solar convection zone. The dynamo models include turbulent sources of the large-scale poloidal magnetic field production due to kinetic helicity and a combined effect due to the Coriolis force and large-scale electric current. In these models the toroidal magnetic field, which is responsible for sunspot production, is concentrated at the bottommore » of the convection zone and is transported to low-latitude regions by a meridional flow. The meridional component of the poloidal field is also concentrated at the bottom of the convection zone, while the radial component is concentrated in near-polar regions. We show that it is possible for this type of meridional circulation to construct kinematic dynamo models that resemble in some aspects the sunspot magnetic activity cycle. However, in the near-equatorial regions the phase relation between the toroidal and poloidal components disagrees with observations. We also show that the period of the magnetic cycle may not always monotonically decrease with the increase of the meridional flow speed. Thus, for further progress it is important to determine the structure of the meridional circulation, which is one of the critical properties, from helioseismology observations.« less

  1. Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun

    2017-04-01

    The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.

  2. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    PubMed Central

    Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.

    2012-01-01

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542

  4. Surface changes in the North Atlantic meridional overturning circulation during the last millennium.

    PubMed

    Wanamaker, Alan D; Butler, Paul G; Scourse, James D; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A

    2012-06-12

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.

  5. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  6. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  7. Indian Ocean zonal mode activity in 20th century observations and simulations

    NASA Astrophysics Data System (ADS)

    Sendelbeck, Anja; Mölg, Thomas

    2016-04-01

    The Indian Ocean zonal mode (IOZM) is a coupled ocean-atmosphere system with anomalous cooling in the east, warming in the west and easterly wind anomalies, resulting in a complete reversal of the climatological zonal sea surface temperature (SST) gradient. The IOZM has a strong influence on East African climate by causing anomalously strong October - December (OND) precipitation. Using observational data and historical CMIP5 (Coupled Model Intercomparison Project phase 5) model output, the September - November (SON) dipole mode index (DMI), OND East African precipitation and SON zonal wind index (ZWI) are calculated. We pay particular attention to detrending SSTs for calculating the DMI, which seems to have been neglected in some published research. The ZWI is defined as the area-averaged zonal wind component at 850 hPa over the central Indian Ocean. Regression analysis is used to evaluate the models' capability to represent the IOZM and its impact on east African climate between 1948 and 2005. Simple correlations are calculated between SST, zonal wind and precipitation to show their interdependence. High correlation in models implies a good representation of the influence of IOZM on East African climate variability and our goal is to detect the models with the highest correlation coefficients. In future research, these model data might be used to investigate the impact of IOZM on the East African climate variability in the late 20's century with regard to anthropogenic causes and internal variability.

  8. Rossby Wave Propagation into the Northern Hemisphere Stratosphere: The Role of Zonal Phase Speed

    NASA Astrophysics Data System (ADS)

    Domeisen, Daniela I. V.; Martius, Olivia; Jiménez-Esteve, Bernat

    2018-02-01

    Sudden stratospheric warming (SSW) events are to a dominant part induced by upward propagating planetary waves. While theory predicts that the zonal phase speed of a tropospheric wave forcing affects wave propagation into the stratosphere, its relevance for SSW events has so far not been considered. This study shows in a linear wave diagnostic and in reanalysis data that phase speeds tend eastward as waves propagate upward, indicating that the stratosphere preselects eastward phase speeds for propagation, especially for zonal wave number 2. This also affects SSW events: Split SSW events tend to be preceded by anomalously eastward zonal phase speeds. Zonal phase speed may indeed explain part of the increased wave flux observed during the preconditioning of SSW events, as, for example, for the record 2009 SSW event.

  9. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean

    PubMed Central

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-01-01

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634

  10. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean.

    PubMed

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-12-16

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  11. Storm-Time Meridional Wind Perturbations in the Equatorial Thermosphere

    NASA Astrophysics Data System (ADS)

    Haaser, R. A.; Davidson, R.; Heelis, R. A.; Earle, G. D.; Venkatraman, S.; Klenzing, J.

    2013-12-01

    We present observations from the Coupled Ion Neutral Dynamics Investigation (CINDI) of storm-time modifications to the neutral atmosphere at equatorial latitudes near the magnetic equator at 400 km altitude during the active period near solar maximum in 2011 and 2012. Perturbations in the neutral temperature on the dayside and the nightside are consistent with observed increases in the neutral density in accord with hydrostatic equilibrium. In the evening and midnight sectors these modifications are additionally accompanied by perturbations in the meridional neutral wind, which are the focus of the work. The observations are made in the southern hemisphere near the magnetic equator, usually dominated by energy inputs from the southern polar regions that produce south to north (northward) wind perturbations to accompany perturbations in the neutral density and temperature. In one exceptional case when observations are made near midnight and the north magnetic pole rotates through the midnight sector, north to south (southward) meridional wind perturbations are observed.

  12. The strength of the meridional overturning circulation of the stratosphere

    PubMed Central

    Linz, Marianna; Plumb, R. Alan; Gerber, Edwin P.; Haenel, Florian J.; Stiller, Gabriele; Kinnison, Douglas E.; Ming, Alison; Neu, Jessica L.

    2017-01-01

    The distribution of gases such as ozone and water vapour in the stratosphere — which affect surface climate — is influenced by the meridional overturning of mass in the stratosphere, the Brewer–Dobson circulation. However, observation-based estimates of its global strength are difficult to obtain. Here we present two calculations of the mean strength of the meridional overturning of the stratosphere. We analyze satellite data that document the global diabatic circulation between 2007– 2011, and compare these to three re-analysis data sets and to simulations with a state-of-the-art chemistry-climate model. Using measurements of sulfur hexafluoride (SF6) and nitrous oxide, we calculate the global mean diabatic overturning mass flux throughout the stratosphere. In the lower stratosphere, these two estimates agree, and at a potential temperature level of 460 K (about 20 km or 60 hPa in tropics), the global circulation strength is 6.3–7.6 × 109 kg/s. Higher in the atmosphere, only the SF6-based estimate is available, and it diverges from the re-analysis data and simulations. Interpretation of the SF6 data-based estimate is limited because of a mesospheric sink of SF6; however, the reanalyses also differ substantially from each other. We conclude that the uncertainty in the mean meridional overturning circulation strength at upper levels of the stratosphere amounts to at least 100 %. PMID:28966661

  13. Statistical properties of Charney-Hasegawa-Mima zonal flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Botha, G. J. J.

    2015-05-15

    A theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent plasma transport events in unforced zonal flows is provided within the Charney-Hasegawa-Mima (CHM) model. The governing equation is solved numerically with various prescribed density gradients that are designed to produce different configurations of parallel and anti-parallel streams. Long-lasting vortices form whose flow is governed by the zonal streams. It is found that the numerically generated PDFs can be matched with analytical predictions of PDFs based on the instanton method by removing the autocorrelations from the time series. In many instances, the statistics generated by the CHM dynamics relaxesmore » to Gaussian distributions for both the electrostatic and vorticity perturbations, whereas in areas with strong nonlinear interactions it is found that the PDFs are exponentially distributed.« less

  14. Meridional flow in the solar convection zone. I. Measurements from gong data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J., E-mail: kholikov@noao.edu

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-timemore » differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.« less

  15. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less

  16. A UNIFIED APPROACH TO THE HELIOSEISMIC INVERSION PROBLEM OF THE SOLAR MERIDIONAL FLOW FROM GLOBAL OSCILLATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schad, A.; Timmer, J.; Roth, M.

    2011-06-20

    Measurements from tracers and local helioseismology indicate the existence of a meridional flow in the Sun with strength in the order of 15 m s{sup -1} near the solar surface. Different attempts were made to obtain information on the flow profile at depths up to 20 Mm below the solar surface. We propose a method using global helioseismic Doppler measurements with the prospect of inferring the meridional flow profile at greater depths. Our approach is based on the perturbation of the p-mode eigenfunctions of a solar model due to the presence of a flow. The distortion of the oscillation eigenfunctionsmore » is manifested in the mixing of p-modes, which may be measured from global solar oscillation time series. As a new helioseismic measurement quantity, we propose amplitude ratios between oscillations in the Fourier domain. We relate this quantity to the meridional flow and unify the concepts presented here for an inversion procedure to infer the meridional flow from global solar oscillations.« less

  17. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  18. Ion Layer Separation and Equilibrium Zonal Winds in Midlatitude Sporadic E

    NASA Technical Reports Server (NTRS)

    Earle, G. D.; Kane, T. J.; Pfaff, R. F.; Bounds, S. R.

    2000-01-01

    In-situ observations of a moderately strong mid-latitude sporadic-E layer show a separation in altitude between distinct sublayers composed of Fe(+), Mg(+), and NO(+). From these observations it is possible to estimate the zonal wind field consistent with diffusive equilibrium near the altitude of the layer. The amplitude of the zonal wind necessary to sustain the layer against diffusive effects is less than 10 meters per second, and the vertical wavelength is less than 10 km.

  19. Rossby and drift wave turbulence and zonal flows: The Charney-Hasegawa-Mima model and its extensions

    NASA Astrophysics Data System (ADS)

    Connaughton, Colm; Nazarenko, Sergey; Quinn, Brenda

    2015-12-01

    A detailed study of the Charney-Hasegawa-Mima model and its extensions is presented. These simple nonlinear partial differential equations suggested for both Rossby waves in the atmosphere and drift waves in a magnetically-confined plasma, exhibit some remarkable and nontrivial properties, which in their qualitative form, survive in more realistic and complicated models. As such, they form a conceptual basis for understanding the turbulence and zonal flow dynamics in real plasma and geophysical systems. Two idealised scenarios of generation of zonal flows by small-scale turbulence are explored: a modulational instability and turbulent cascades. A detailed study of the generation of zonal flows by the modulational instability reveals that the dynamics of this zonal flow generation mechanism differ widely depending on the initial degree of nonlinearity. The jets in the strongly nonlinear case further roll up into vortex streets and saturate, while for the weaker nonlinearities, the growth of the unstable mode reverses and the system oscillates between a dominant jet, which is slightly inclined to the zonal direction, and a dominant primary wave. A numerical proof is provided for the extra invariant in Rossby and drift wave turbulence-zonostrophy. While the theoretical derivations of this invariant stem from the wave kinetic equation which assumes weak wave amplitudes, it is shown to be relatively well-conserved for higher nonlinearities also. Together with the energy and enstrophy, these three invariants cascade into anisotropic sectors in the k-space as predicted by the Fjørtoft argument. The cascades are characterised by the zonostrophy pushing the energy to the zonal scales. A small scale instability forcing applied to the model has demonstrated the well-known drift wave-zonal flow feedback loop. The drift wave turbulence is generated from this primary instability. The zonal flows are then excited by either one of the generation mechanisms, extracting energy from

  20. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  1. Amplification of warming due to intensification of zonal circulation in the mid-latitudes

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana

    2015-04-01

    We propose a new index to evaluate the impact of atmospheric zonal transport oscillations on inter-annual variability and trends of average air temperature in mid-latitudes, Northern Hemisphere and globe. A simple model of mid-latitude channel "ocean-land-atmosphere" was used to produce the analytic relationship between the zonal circulation and the land-ocean temperature contrast which was used as a basis for index. An inverse relationship was found between indexes and average mid-latitude, hemisphere and global temperatures during the cold half of year and opposite one in summer. These relationships keep under 400 mb height. In winter relationship describes up to 70, 50 and 40 % of surface air temperature inter-annual variability of these averages, respectively. The contribution of zonal circulation to the increase in the average surface air temperature during warming period 1969-2008 reaches 75% in the mid-latitudes and 40% in the Northern Hemisphere. Proposed mid-latitude index correlates negatively with surface air temperature in the Arctic except summer. ECHAM4 projections with the A1B scenario show that increase of zonal circulation defines more than 74% of the warming in the Northern Hemisphere for 2001-2100. Our analysis confirms that the proposed index is an effective indicator of the climate change caused by variations of the zonal circulation that arise due to anthropogenic and/or natural global forcing mechanisms.

  2. Wind regime peculiarities in the lower thermosphere in the winter of 1983/84

    NASA Technical Reports Server (NTRS)

    Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.

    1987-01-01

    Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.

  3. New observations of Yanai waves and equatorial inertia-gravity waves in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Farrar, J. T.; Durland, T.

    2011-12-01

    In the 1970's and 1980's, there was a great deal of research activity on near-equatorial variability at periods of days to weeks associated with oceanic equatorial inertia-gravity waves and Yanai waves. At that time, the measurements available for studying these waves were much more limited than today: most of the available observations were from island tide gauges and a handful of short mooring records. We use more than a decade of the extensive modern data record from the TAO/TRITON mooring array in the Pacific Ocean to re-examine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-wavenumber/frequency spectrum of surface dynamic height relative to 500-m depth. Many equatorial-wave meridional modes can be identified, for both the first and second baroclinic mode. We also estimated zonal-wavenumber/frequency spectra for the zonal and meridional wind stress components. The location and extent of spectral peaks in dynamic height is readily rationalized using basic, linear theory of forced equatorial waves and the observed wind stress spectrum.

  4. On the seasonal variability of the Canary Current and the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Vélez-Belchí, Pedro; Pérez-Hernández, M. Dolores; Casanova-Masjoan, María.; Cana, Luis; Hernández-Guerra, Alonso

    2017-06-01

    The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of -4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.

  5. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  6. Global structure and seasonal variability of the migrating terdiurnal tide in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Yue, Jia; Xu, Jiyao; Chang, Loren C.; Wu, Qian; Liu, Han-Li; Lu, Xian; Russell, James

    2013-12-01

    The morphology of the migrating terdiurnal tide with zonal wavenumber 3 (TW3) in the mesosphere and lower thermosphere (MLT) is revealed using the TIMED satellite datasets from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and the TIMED Doppler Interferometer (TIDI) instruments from 2002 to 2009, as well as the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The annual mean structures of the TW3 from the TIME-GCM clearly resemble the first real symmetric (3,3) Hough mode. The TW3 temperature and zonal wind components have three peaks at midlatitudes and near the equator, while the TW3 meridional wind components show four peaks at mid and low latitudes. These features are consistent with those resolved in SABER temperature and TIDI zonal wind above ~95 km. TW3 components in the TIME-GCM are stronger during winter and spring months at midlatitudes, which is in agreement with previous ground-based radar measurements. On the other hand, TW3 components of temperature, zonal and meridional winds from SABER and TIDI display different seasonal variations at different altitudes and latitudes. The results presented in this paper will provide an observational basis for further modeling study of terdiurnal tide impacts on the thermosphere and ionosphere.

  7. Zonal NePhRO scoring system: a superior renal tumor complexity classification model.

    PubMed

    Hakky, Tariq S; Baumgarten, Adam S; Allen, Bryan; Lin, Hui-Yi; Ercole, Cesar E; Sexton, Wade J; Spiess, Philippe E

    2014-02-01

    Since the advent of the first standardized renal tumor complexity system, many subsequent scoring systems have been introduced, many of which are complicated and can make it difficult to accurately measure data end points. In light of these limitations, we introduce the new zonal NePhRO scoring system. The zonal NePhRO score is based on 4 anatomical components that are assigned a score of 1, 2, or 3, and their sum is used to classify renal tumors. The zonal NePhRO scoring system is made up of the (Ne)arness to collecting system, (Ph)ysical location of the tumor in the kidney, (R)adius of the tumor, and (O)rganization of the tumor. In this retrospective study, we evaluated patients exhibiting clinical stage T1a or T1b who underwent open partial nephrectomy performed by 2 genitourinary surgeons. Each renal unit was assigned both a zonal NePhRO score and a RENAL (radius, exophytic/endophytic properties, nearness of tumor to the collecting system or sinus in millimeters, anterior/posterior, location relative to polar lines) score, and a blinded reviewer used the same preoperative imaging study to obtain both scores. Additional data points gathered included age, clamp time, complication rate, urine leak rate, intraoperative blood loss, and pathologic tumor size. One hundred sixty-six patients underwent open partial nephrectomy. There were 37 perioperative complications quantitated using the validated Clavien-Dindo system; their occurrence was predicted by the NePhRO score on both univariate and multivariate analyses (P = .0008). Clinical stage, intraoperative blood loss, and tumor diameter were all correlated with the zonal NePhRO score on univariate analysis only. The zonal NePhRO scoring system is a simpler tool that accurately predicts the surgical complexity of a renal lesion. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  9. Thermophysical Fluid Dynamics: the Key to the Structures of Fluid Objects

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2013-12-01

    It has become customary to model the hydrodynamics of fluid planets like Jupiter and Saturn by spinning up general circulation models until they reach a statistical steady state. This approach is physically sound, based on the thermodynamic expectation that the system will eventually achieve a state of maximum entropy, but the models have not been specifically designed for this purpose. Over the course of long integrations, numerical artifacts can drive the system to a state that does not correspond to the physically realistic end state. A different formulation of the governing equations promises better results. The equations of motion are recast as scalar conservation laws in which the diabatic and irreversible terms (both entropy-changing) are clearly identified. The balance between these terms defines the steady state of the system analytically, without the need for any temporal integrations. The conservation of mass in this system is trivial. Conservation of angular momentum replaces the zonal momentum equation and determines the zonal wind from a balance between the tidal torque and frictional dissipation. The principle of wave-mean flow non-interaction is preserved. Bernoulli's Theorem replaces the energy equation. The potential temperature structure is determined by the balance between work done against friction and heat transfer by convection and radiation. An equation of state and the traditional momentum equations in the meridional plane are sufficient to complete the model. Based on the assumption that the final state vertical and meridional winds are small compared to the zonal wind (in any case they are impossible to predict ab initio as they are driven by wave flux convergences), these last equations determine the pressure and density (and hence gravity) fields of the basic state. The thermal wind relation (in its most general form with the axial derivative of the zonal wind balancing the baroclinicity) is preserved. The model is not hydrostatic (in

  10. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE PAGES

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; ...

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E r. We observe fine-scale spatial structures in the edge E r well with a wave number k rρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-modemore » transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  11. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  12. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene.

    PubMed

    Burls, Natalie J; Fedorov, Alexey V; Sigman, Daniel M; Jaccard, Samuel L; Tiedemann, Ralf; Haug, Gerald H

    2017-09-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world's largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400-ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.

  13. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    PubMed Central

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; Jaccard, Samuel L.; Tiedemann, Ralf; Haug, Gerald H.

    2017-01-01

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming. PMID:28924606

  14. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene

    DOE PAGES

    Burls, Natalie J.; Fedorov, Alexey V.; Sigman, Daniel M.; ...

    2017-09-13

    An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, theworld’s largest ocean,where relatively fresh surface waters inhibitNorth Pacific deep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv (parts per million by volume) CO 2 world of the Pliocene supported subarctic North Pacific deep-water formation and a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we report orbitally paced maxima in calcium carbonate accumulation rate, with accompanyingmore » pigment and total organic carbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with high accumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surface waters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redoxsensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma (million years) transition. This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implications for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of the Pacific to global warming.« less

  15. Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma

    PubMed Central

    Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.

    2016-01-01

    Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894

  16. Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Krizan, Peter; Kozubek, Michal

    2018-01-01

    One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.

  17. Predictability of Zonal Means During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Suarez, Max J.; Pegion, Philip J.; Kistler, Michael A.; Kumar, Arun; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study examines the predictability of seasonal means during boreal summer. The results are based on ensembles of June-July-August (JJA) simulations (started in mid May) carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTS) and sea ice for the years 1980-1999. We find that the predictability of the JJA extra-tropical height field is primarily in the zonal mean component of the response to the SST anomalies. This contrasts with the cold season (January-February-March) when the predictability of seasonal means in the boreal extratropics is primarily in the wave component of the El Nino/Southern Oscillation (ENSO) response. Two patterns dominate the interannual variability of the ensemble mean JJA zonal mean height field. One has maximum variance in the tropical/subtropical upper troposphere, while the other has substantial variance in middle latitudes of both hemispheres. Both are symmetric with respect to the equator. A regression analysis suggests that the tropical/subtropical pattern is associated with SST anomalies in the far eastern tropical Pacific and the Indian Ocean, while the middle latitude pattern is forced by SST anomalies in the tropical Pacific just east of the dateline. The two leading zonal height patterns are reproduced in model runs forced with the two leading JJA SST patterns of variability. A comparison with observations shows a signature of the middle latitude pattern that is consistent with the occurrence of dry and wet summers over the United States. We hypothesize that both patterns, while imposing only weak constraints on extratropical warm season continental-scale climates, may play a role in the predilection for drought or pluvial conditions.

  18. Zonal wind observations during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Spencer, N. W.

    1986-01-01

    In situ measurements taken by the Wind and Temperature Spectrometer (WATS) onboard the Dynamics Explorer 2 spacecraft during a geomagnetic storm display zonal wind velocities that are reduced in the corotational direction as the storm intensifies. The data were taken within the altitudes 275 to 475 km in the dusk local time sector equatorward of the auroral region. Characteristic variations in the value of the Dst index of horizontal geomagnetic field strength are used to monitor the storm evolution. The detected global rise in atmospheric gas temperature indicates the development of thermospheric heating. Concurrent with that heating, reductions in corotational wind velocities were measured equatorward of the auroral region. Just after the sudden commencement, while thermospheric heating is intense in both hemispheres, eastward wind velocities in the northern hemisphere show reductions ranging from 500 m/s over high latitudes to 30 m/s over the geomagnetic equator. After 10 hours storm time, while northern thermospheric heating is diminishing, wind velocity reductions, distinct from those initially observed, begin to develop over southern latitudes. In the latter case, velocity reductions range from 300 m/s over the highest southern latitudes to 150 m/s over the geomagnetic equator and extend into the Northern Hemisphere. The observations highlight the interhemispheric asymmetry in the development of storm effects detected as enhanced gas temperatures and reduced eastward wind velocities. Zonal wind reductions over high latitudes can be attributed to the storm induced equatorward spread of westward polar cap plasma convection and the resulting plasma-neutral collisions. However, those collisions are less significant over low latitudes; so zonal wind reductions over low latitudes must be attributed to an equatorward extension of a thermospheric circulation pattern disrupted by high latitude collisions between neutrals transported via eastward winds and ions

  19. HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.

    1999-01-01

    Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.

  20. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lyle

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mudmore » losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability

  1. Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations

    NASA Astrophysics Data System (ADS)

    Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.

    2018-06-01

    Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.

  2. An Assessment of Research Gaps Related to Deep Water Wellbore Integrity

    NASA Astrophysics Data System (ADS)

    Tkach, M. K.; Radonjic, M.; Kutchko, B. G.

    2017-12-01

    In order for a deep-water wellbore to uphold its integrity under high pressure - high temperature conditions, the wellbore must possess complete zonal isolation while surrounded in an extreme environment. Highly variable temperature and pressure ranges, shallow flow zones, as well as potentially corrosive fluids and gasses all present unique challenges to the job of the cement which maintains that zonal isolation. As such, alternative options to mainstream choices often present themselves as attractive avenues of discovery. As it is of utmost importance to maintain structural integrity under HPHT conditions, cement slurries are pumped downhole to provide zonal isolation and structural support to offshore wells. The wellbore system potentially faces a variety of temperature and pressure fluctuations from the immediate onset. These fluctuations may affect the hydration properties of the cement. It is also important to consider the chemical interactions that the cement may have at the rock-cement interface where potential degradation or annulus gaps may occur further risking a decrease in zonal isolation. This presentation intends to review some of the important issues regarding zonal isolation in HPHT conditions and to highlight critical knowledge gaps in order to generate important research questions.

  3. The Relationship Between the Zonal Mean ITCZ and Regional Precipitation during the mid-Holocene

    NASA Astrophysics Data System (ADS)

    Niezgoda, K.; Noone, D.; Konecky, B.

    2017-12-01

    Characteristics of the zonal mean Tropical Rain Belt (TRB, i.e. the ITCZ + the land-based monsoons) are often inferred from individual proxy records of precipitation or other hydroclimatic variables. However, these inferences can be misleading. Here, an isotope-enabled climate model simulation is used to evaluate metrics of the zonal mean ITCZ vs. regional hydrological characteristics during the mid-Holocene (MH, 6 kya). The MH provides a unique perspective on the relationship between the ITCZ and regional hydrology because of large, orbitally-driven shifts in tropical precipitation as well as a critical mass of proxy records. By using a climate model with simulated water isotopes, characteristics of atmospheric circulation and water transport processes can be inferred, and comparison with isotope proxies can be made more directly. We find that estimations of the zonal-mean ITCZ are insufficient for evaluating regional responses of hydrological cycles to forcing changes. For example, one approximation of a 1.5-degree northward shift in the zonal-mean ITCZ position during the MH corresponded well with northward shifts in maximum rainfall in tropical Africa, but did not match southward shifts in the tropical Pacific or longitudinal shifts in the Indian monsoon region. In many regions, the spatial distribution of water vapor isotopes suggests that changes in moisture source and atmospheric circulation were a greater influence on precipitation distribution, intensity, and isotope ratio than the average northward shift in ITCZ latitude. These findings reinforce the idea that using tropical hydrological proxy records to infer zonal-mean characteristics of the ITCZ may be misleading. Rather, tropical proxy records of precipitation, particularly those that record precipitation isotopes, serve as a guideline for regional hydrological changes while model simulations can put them in the context of zonal mean tropical convergence.

  4. IMPORTANCE OF MERIDIONAL CIRCULATION IN FLUX TRANSPORT DYNAMO: THE POSSIBILITY OF A MAUNDER-LIKE GRAND MINIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i

    2010-12-01

    Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less

  5. Introduction to: Atlantic Meridional Overturning Circulation(AMOC)

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Carton, James A.

    2011-01-01

    A striking conclusion of the Intergovernmental Panel on Climate Change 2007 report is the crucial role that the Atlantic Meridional Overturning Circulation (AMOC) may play in anthropogenic climate change. However, these IPCC coupled climate simulations show a broad range of uncertainty in the magnitude and timing of AMOC transport change ranging from none to nearly complete collapse within the 21st century. The potential consequences of large changes in the characteristics of AMOC have motivated the creation in the United States of an interagency program and implementation plan to develop monitoring and prediction capabilities for the AMOC This program parallels the development of substantial monitoring efforts by European, South American and African countries -- notably the UK Rapid and Rapid-Watch programs. The papers contained in this volume are derived from presentations at the First U.S. Atlantic Meridional Overturning Circulation (AMOC) Meeting held 4 - 6 May, 2009 to review the US implementation plan and its coordination with other monitoring activities. The Atlantic Meridional Overturning Circulation consists of multiple components illustrated in an attached figure. Water enters the South Atlantic at upper and intermediate depths through both western and eastern routes (where eddy transport is especially important) and is transported northward across the equator, where it recirculates within the northern subtropical and subpolar gyres. The northern end is defined by the sinking regions of the Nordic Seas and the Labrador Sea where the waters that eventually form the upper and lower branches of North Atlantic Deep Water are conditioned. High surface salinities, the result of high net evaporation in the tropics and subtropics (including the Mediterranean Sea), and presence of regions of the Arctic Ocean that remain ice-free even in winter allow for the rapid cooling and thus densification of surface water. This dense surface water becomes the source of deep

  6. South Polar Ar Enhancement as a Tracer for Southern Winter Horizontal Meridional Mixing

    NASA Technical Reports Server (NTRS)

    Sprague, A. L.; Boynton, W. V.; Kim, K.; Reedy, R.; Kerry, K.; Janes, D.

    2004-01-01

    Measurements made by the Gamma Ray Spectrometer (GRS) on Mars Odyssey during 2002 and 2003 show an obvious increase in the gamma flux of 1294 keV gamma rays resulting from the decay of (41)Ar. (41)Ar is made by the capture of thermal neutrons by atmospheric (40)Ar. The increase measured above the southern polar region has permitted calculation of the increase in mixing ratio of Ar from L(sub s) 8 to 100 between latitudes 75 S and 90 S. The peak in Ar enhancement occurs about 200 Earth days after CO2 freeze-out has begun, indicating that up to this time equatorward meridional mixing is rapid enough to move enhanced Ar from the polar regions northward. Although the CO2 frost depth continues to increase from L(sub s) 110 deg to 190 deg, the Ar enhancement steadily decreases to its baseline value reached at about L(sub s) 200 deg. Our data permit an estimate of the horizontal eddy mixing coefficient useful for constraining equatorward meridional mixing during southern winter and a characteristic mixing time for the polar southern winter atmosphere. Also, using the drop in excess Ar measured by the GRS from L(sub s) 110 deg to 200 deg, we estimate an eddy coefficient appropriate for meridional mixing of the entire Ar excess back to the baseline value. The horizontal eddy mixing coefficients are derived using Ar as a tracer much as the vertical eddy mixing coefficient for the Earth's troposphere is derived using CH4 as a minor constituent tracer. The estimation of meridional mixing for high latitudes at Mars is important for constraining parameters used in atmospheric modeling and predicting seasonal and daily behavior. The calculations are order of magnitude estimates that should improve as the data set becomes more robust and improves our models.

  7. Zonal structure and variability of the Western Pacific dynamic warm pool edge in CMIP5

    NASA Astrophysics Data System (ADS)

    Brown, Jaclyn N.; Langlais, Clothilde; Maes, Christophe

    2014-06-01

    The equatorial edge of the Western Pacific Warm Pool is operationally identified by one isotherm ranging between 28° and 29 °C, chosen to align with the interannual variability of strong zonal salinity gradients and the convergence of zonal ocean currents. The simulation of this edge is examined in 19 models from the World Climate Research Program Coupled Model Intercomparison Project Phase 5 (CMIP5), over the historical period from 1950 to 2000. The dynamic warm pool edge (DWPE), where the zonal currents converge, is difficult to determine from limited observations and biased models. A new analysis technique is introduced where a proxy for DWPE is determined by the isotherm that most closely correlates with the movements of the strong salinity gradient. It can therefore be a different isotherm in each model. The DWPE is simulated much closer to observations than if a direct temperature-only comparison is made. Aspects of the DWPE remain difficult for coupled models to simulate including the mean longitude, the interannual excursions, and the zonal convergence of ocean currents. Some models have only very weak salinity gradients trapped to the western side of the basin making it difficult to even identify a DWPE. The model's DWPE are generally 1-2 °C cooler than observed. In line with theory, the magnitude of the zonal migrations of the DWPE are strongly related to the amplitudes of the Nino3.4 SST index. Nevertheless, a better simulation of the mean location of the DWPE does not necessarily improve the amplitude of a model's ENSO. It is also found that in a few models (CSIROMk3.6, inmcm and inmcm4-esm) the warm pool displacements result from a net heating or cooling rather than a zonal advection of warm water. The simulation of the DWPE has implications for ENSO dynamics when considering ENSO paradigms such as the delayed action oscillator mechanism, the Advective-Reflective oscillator, and the zonal-advective feedback. These are also discussed in the context

  8. Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim

    2013-10-01

    Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.

  9. Meridional lenticular astigmatism associated with bilateral concurrent uveal metastases in renal cell carcinoma.

    PubMed

    Priluck, Joshua C; Grover, Sandeep; Chalam, Kv

    2012-01-01

    To demonstrate a case illustrating meridional lenticular astigmatism as a result of renal cell carcinoma uveal metastases. Case report with images. Clinical findings and diagnostic testing of a patient with acquired meridional lenticular astigmatism are described. The refraction revealed best-corrected visual acuity of 20/20-1 OD (-2.50 + 0.25 × 090) and 20/50 OS (-8.25 + 3.25 × 075). Bilateral concurrent renal cell carcinoma metastases to the choroid and ciliary body are demonstrated by utilizing ultrasonography, ultrawidefield fluorescein angiography, and unique spectral-domain optical coherence tomography. Metastatic disease should be included in the differential of acquired astigmatism. Spectral-domain optical coherence tomography, ultrawidefield fluorescein angiography, and ultrasonography have roles in delineating choroidal metastases.

  10. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  11. Wind structure and variability in the middle atmosphere during the November 1980 energy budget campaign

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Carlson, M.; Rees, D.; Offermann, D.; Philbrick, C. R.; Widdel, H. U.

    1985-01-01

    Between November 6 and December 1, 1980 series of rocket observations were obtained from two sites in northern Scandinavia (68 deg N) as part of the Energy Budget Campaign, revealing the presence of significant vertical and temporal changes in the wind structure. These changes coincided with different geomagnetic conditions, i.e. quiet and enhanced. Large amounts of rocket data were gathered from high latitudes over such a short interval of time. Prior to November 16 the meridional wind component above 60 km was found to be positive (southerly), while the magnitude of the zonal wind component incresed with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves, which suggest gravity wave activity. These waves increase in length from 1 km near 30 km to over 12 km near 80 km. The observational techniques employed Andoya (69 deg N), Norway, and Esrange (67.9 deg N), Sweden, consisted of chaff foil, instrumented rigid spheres, chemical trails, inflatable spheres and parachutes.

  12. Acute Zonal Cone Photoreceptor Outer Segment Loss.

    PubMed

    Aleman, Tomas S; Sandhu, Harpal S; Serrano, Leona W; Traband, Anastasia; Lau, Marisa K; Adamus, Grazyna; Avery, Robert A

    2017-05-01

    The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy should be considered in patients with acute vision loss and abnormalities on NIR-REF imaging, especially if

  13. SOLAR WAVE-FIELD SIMULATION FOR TESTING PROSPECTS OF HELIOSEISMIC MEASUREMENTS OF DEEP MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartlep, T.; Zhao, J.; Kosovichev, A. G.

    2013-01-10

    The meridional flow in the Sun is an axisymmetric flow that is generally directed poleward at the surface, and is presumed to be of fundamental importance in the generation and transport of magnetic fields. Its true shape and strength, however, are debated. We present a numerical simulation of helioseismic wave propagation in the whole solar interior in the presence of a prescribed, stationary, single-cell, deep meridional circulation serving as synthetic data for helioseismic measurement techniques. A deep-focusing time-distance helioseismology technique is applied to the synthetic data, showing that it can in fact be used to measure the effects of themore » meridional flow very deep in the solar convection zone. It is shown that the ray approximation that is commonly used for interpretation of helioseismology measurements remains a reasonable approximation even for very long distances between 12 Degree-Sign and 42 Degree-Sign corresponding to depths between 52 and 195 Mm. From the measurement noise, we extrapolate that time-resolved observations on the order of a full solar cycle may be needed to probe the flow all the way to the base of the convection zone.« less

  14. Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874

    NASA Astrophysics Data System (ADS)

    Hathaway, D. H.; Wilson, R. M.

    2005-05-01

    Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle (Dikpati & Charbonneau 1999, ApJ, 518, 508 and Charbonneau & Dikpati 2000, ApJ, 543, 1027). We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view (Hathaway et al. 2003, ApJ, 589, 665 and Hathaway et al. 2004, ApJ, 602, 543). In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/USAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by-rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models -- some of which have predictive capabilities.

  15. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  16. Characteristics and Mechanisms of Zonal Oscillation of Western Pacific Subtropical High in Summer

    NASA Astrophysics Data System (ADS)

    Guan, W.; Ren, X.; Hu, H.

    2017-12-01

    The zonal oscillation of the western Pacific subtropical high (WPSH) influences the weather and climate over East Asia significantly. This study investigates the features and mechanisms of the zonal oscillation of the WPSH during summer on subseasonal time scales. The zonal oscillation index of the WPSH is defined by normalized subseasonal geopotential height anomaly at 500hPa averaged over the WPSH's western edge (110° - 140°E, 10° - 30°N). The index shows a predominant oscillation with a period of 10-40 days. Large positive index indicates a strong anticyclonic anomaly over East Asia and its coastal region south of 30°N at both 850hPa and 500hPa. The WPSH stretches more westward accompanied by warmer SST anomalies beneath the western edge of the WPSH. Meanwhile, above-normal precipitation is seen over the Yangtze-Huaihe river basin and below-normal precipitation over the south of the Yangtze River. Negative index suggests a more eastward position of WPSH. The anomalies in circulation and SST for negative index are almost the mirror image of those for the positive index. In early summer, the zonal shift of the WPSH is affected by both the East Asia/Pacific (EAP) teleconnection pattern and the Silk road pattern (SRP). The positive (negative) phase of the EAP pattern is characterized by a low-level anticyclonic (cyclonic) anomaly over the subtropical western Pacific, indicating the western extension (eastward retreat) of the WPSH. Comparing with the EAP pattern, the SRP forms an upper-level anticyclonic (cyclonic) anomaly in mid-latitudes of East Asia, and then leads to the westward (eastward) movement of the WPSH. In late summer, the zonal shift of the WPSH is mainly affected by the EAP pattern, because the EAP pattern in late summer is stronger than that in early summer. The zonal shift of the WPSH is also influenced by the subseasonal air-sea interaction locally. During the early stage of WPSH's westward stretch, the local SST anomaly in late summer is

  17. Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation

    NASA Astrophysics Data System (ADS)

    Clem, Kyle R.; Renwick, James A.; McGregor, James

    2017-07-01

    During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive zonal-mean zonal wind trend between 50 and 60°S during DJF ( 35 % of the interannual variability), and around half of the observed positive zonal-mean zonal wind trend during MAM ( 15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when zonal wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing zonal wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.

  18. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation

    PubMed Central

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-01-01

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  19. CHANGES OF THE SOLAR MERIDIONAL VELOCITY PROFILE DURING CYCLE 23 EXPLAINED BY FLOWS TOWARD THE ACTIVITY BELTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, R. H.; Schuessler, M., E-mail: cameron@mps.mpg.d

    The solar meridional flow is an important ingredient in Babcock-Leighton type models of the solar dynamo. Global variations of this flow have been suggested to explain the variations in the amplitudes and lengths of the activity cycles. Recently, cycle-related variations in the amplitude of the P{sup 1}{sub 2} term in the Legendre decomposition of the observed meridional flow have been reported. The result is often interpreted in terms of an overall variation in the flow amplitude during the activity cycle. Using a semi-empirical model based upon the observed distribution of magnetic flux on the solar surface, we show that themore » reported variations of the P{sup 1}{sub 2} term can be explained by the observed localized inflows into the active region belts. No variation of the overall meridional flow amplitude is required.« less

  20. Meridional lenticular astigmatism associated with bilateral concurrent uveal metastases in renal cell carcinoma

    PubMed Central

    Priluck, Joshua C; Grover, Sandeep; Chalam, KV

    2012-01-01

    Purpose To demonstrate a case illustrating meridional lenticular astigmatism as a result of renal cell carcinoma uveal metastases. Methods Case report with images. Results Clinical findings and diagnostic testing of a patient with acquired meridional lenticular astigmatism are described. The refraction revealed best-corrected visual acuity of 20/20–1 OD (−2.50 + 0.25 × 090) and 20/50 OS (−8.25 + 3.25 × 075). Bilateral concurrent renal cell carcinoma metastases to the choroid and ciliary body are demonstrated by utilizing ultrasonography, ultrawidefield fluorescein angiography, and unique spectral-domain optical coherence tomography. Conclusions Metastatic disease should be included in the differential of acquired astigmatism. Spectral-domain optical coherence tomography, ultrawidefield fluorescein angiography, and ultrasonography have roles in delineating choroidal metastases. PMID:23152663

  1. Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Keeling, R. F.; Stephens, B. B.; Bent, J. D.; Jacobson, A.; Rödenbeck, C.; Khatiwala, S.

    2016-11-01

    Despite its importance to the climate system, the ocean meridional heat transport is still poorly quantified. We identify a strong link between the northern hemisphere deficit in atmospheric potential oxygen (APO = O_2 + 1.1 × CO_2) and the asymmetry in meridional heat transport between northern and southern hemispheres. The recent aircraft observations from the HIPPO campaign reveal a northern APO deficit in the tropospheric column of -10.4 ± 1.0 per meg, double the value at the surface and more representative of large-scale air-sea fluxes. The global northward ocean heat transport asymmetry necessary to explain the observed APO deficit is about 0.7-1.1 PW, which corresponds to the upper range of estimates from hydrographic sections and atmospheric reanalyses.

  2. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirablemore » to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.« less

  3. Dynamics of zonal shear collapse with hydrodynamic electrons

    NASA Astrophysics Data System (ADS)

    Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.

    2018-06-01

    This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to zonal flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α < 1), the particle flux Γn is enhanced and the turbulent viscosity χy increases. However, the residual flux Πres—which drives the flow—drops with α. As a result, the mean vorticity gradient ∇2v¯ y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.

  4. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    NASA Astrophysics Data System (ADS)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  5. Venus winds at cloud level from VIRTIS during the Venus Express mission

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  6. Convectively driven decadal zonal accelerations in Earth's fluid core

    NASA Astrophysics Data System (ADS)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  7. On the Longitudinal Morphology of Zonal Irregularity Drift Measured using Networks of GPS Scintillation Monitors

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.

    2014-12-01

    A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of zonal irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly zonal and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the zonal irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the zonal drift, and hence the zonal drift can be estimated with reasonable accuracy. In

  8. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway

    NASA Astrophysics Data System (ADS)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang

    2018-02-01

    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  9. Equinoctial asymmetry in the zonal distribution of scintillation as observed by GPS receivers in Indonesia

    NASA Astrophysics Data System (ADS)

    Abadi, P.; Otsuka, Y.; Shiokawa, K.; Husin, A.; Liu, Huixin; Saito, S.

    2017-08-01

    We investigate the azimuthal distribution of amplitude scintillation observed by Global Positioning System (GPS) ground receivers at Pontianak (0.0°S, 109.3°E; magnetic latitude: 9.8°S) and Bandung (6.9°S, 107.6°E; magnetic latitude: 16.7°S) in Indonesia in March and September from 2011 to 2015. The scintillation is found to occur more to the west than to the east in March at both stations, whereas no such zonal difference is found in September. We also analyze the zonal scintillation drift as estimated using three closely spaced single-frequency GPS receivers at Kototabang (0.2°S, 100.3°E; magnetic latitude: 9.9°S) in Indonesia during 2003-2015 and the zonal thermospheric neutral wind as measured by the CHAMP satellite at longitudes of 90°-120°E during 2001-2008. We find that the velocities of both the zonal scintillation drift and the neutral wind decrease with increasing latitudes. Interestingly, the latitudinal gradients of both the zonal scintillation drift and the neutral wind are steeper in March than in September. These steeper March gradients may be responsible for the increased westward altitudinal and latitudinal tilting of plasma bubbles in March. This equinoctial asymmetry could be responsible for the observed westward bias in scintillation in March, because the scintillation is more likely to occur when radio waves pass through longer lengths of plasma irregularities in the plasma bubbles.

  10. On the wave forcing of the semi-annual zonal wind oscillation

    NASA Technical Reports Server (NTRS)

    Nagpal, O. P.; Raghavarao, R.

    1991-01-01

    Observational evidence of rather large period waves (23-60 d) in the troposphere/stratosphere, particularly during the winter months, is presented. Wind data collected on a regular basis employing high-altitude balloons and meteorological rockets over the past few years are used. Maximum entropy methods applied to the time series of zonal wind data indicate the presence of 23-60-waves more prominently than shorter-period waves. The waves have substantial amplitudes in the stratosphere and lower mesosphere, often larger than those noted in the troposphere. The mean zonal wind in the troposphere (5-15 km altitude) during December, January, and February exhibits the presence of strong westerlies at latitudes between 8 and 21 deg N.

  11. Zonal Flows and Long-lived Axisymmetric Pressure Bumps in Magnetorotational Turbulence

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Youdin, A.; Klahr, H.

    2009-06-01

    We study the behavior of magnetorotational turbulence in shearing box simulations with a radial and azimuthal extent up to 10 scale heights. Maxwell and Reynolds stresses are found to increase by more than a factor of 2 when increasing the box size beyond two scale heights in the radial direction. Further increase of the box size has little or no effect on the statistical properties of the turbulence. An inverse cascade excites magnetic field structures at the largest scales of the box. The corresponding 10% variation in the Maxwell stress launches a zonal flow of alternating sub- and super-Keplerian velocity. This, in turn, generates a banded density structure in geostrophic balance between pressure and Coriolis forces. We present a simplified model for the appearance of zonal flows, in which stochastic forcing by the magnetic tension on short timescales creates zonal flow structures with lifetimes of several tens of orbits. We experiment with various improved shearing box algorithms to reduce the numerical diffusivity introduced by the supersonic shear flow. While a standard finite difference advection scheme shows signs of a suppression of turbulent activity near the edges of the box, this problem is eliminated by a new method where the Keplerian shear advection is advanced in time by interpolation in Fourier space.

  12. Hadley cell dynamics of a cold and virtually dry Snowball Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Held, Isaac; Marotzke, Jochem

    2010-05-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate a cold and virtually dry Snowball Earth atmosphere that results from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2. The aim of this study is the investigation of the zonal-mean circulation of a Snowball Earth atmosphere, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. To ease comparison with theories, incoming solar insolation follows permanent equinox conditions with disabled diurnal cycle. The meridional circulation consists of a thermally direct cell extending from the equator to 45 N/S with ascent in the equatorial region, and a weak thermally indirect cell with descent between 45 and 65 N/S and ascent in the polar region. The former cell corresponds to the present-day Earth's Hadley cell, while the latter can be viewed as an eddy-driven Ferrell cell; the present-day Earth's direct polar cell is missing. The Hadley cell itself is subdivided into a vigorous cell confined to the troposphere and a weak deep cell reaching well into the stratosphere. The dynamics of the vigorous Snowball Earth Hadley cell differ substantially from the dynamics of the present-day Hadley cell. The zonal momentum balance shows that in the poleward branch of the vigorous Hadley cell, mean flow meridional advection of absolute vorticity is not only balanced by eddy momentum flux convergence but also by vertical diffusion. Inside the poleward branch, eddies are more important in the upper part and vertical diffusion is more important in the lower part. Vertical diffusion also contributes to the meridional momentum balance as it decelerates the vigorous Hadley cell by downgradient momentum mixing between its poleward and equatorward branch. Zonal winds, therefore, are not in thermal wind balance in

  13. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  14. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review

    NASA Astrophysics Data System (ADS)

    Buckley, Martha W.; Marshall, John

    2016-03-01

    This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.

  15. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  17. Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model

    NASA Astrophysics Data System (ADS)

    Schubert, Gerald; Kong, Dali; Zhang, Keke

    2016-10-01

    We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.

  18. Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazarenko, Sergey; Quinn, Brenda

    2009-09-11

    We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.

  19. Trends in the Zonal Winds over the Southern Ocean from the NCEP/NCAR Reanalysis and Scatterometers

    NASA Astrophysics Data System (ADS)

    Richman, J. G.

    2002-12-01

    The winds over the Southern Ocean for the entire 54-year (1948-2001) period of the NCEP/NCAR Reanalysis have been decomposed into Principal Components (Empirical Orthogonal Functions). The first EOF describes 83 percent of the variance in the zonal wind. The loading of the EOF shows the predominately westerly surface flow with strongest winds in the Indian sector of the Southern Ocean. The structure of this EOF is similar to the Southern Annular Mode (SAM) identified by Thompson, et al 2000. The amplitude of this EOF reveals a large trend of 4.42 cm/s/yr in the strength of the zonal wind corresponding to a nearly 50 percent increase in the wind stress over the Southern Ocean. Such a trend, if real, would be important in the dynamics of the Antarctic Circumpolar Current (ACC). Recent studies by Gille, et al. (2001), Olbers and Ivchenko (2001) and Gent et al. (2001) have shown that the transport of the ACC is correlated to the variability in the zonal wind with a monotonic increase in the transport with increasing zonal wind strength. However, errors in the data assimilation scheme for surface pressure observations on the Antarctic continent appears to have caused a spurious trend in the sea level pressure south of 40S of -0.2 hPa/yr (Hines, et al. 2000 and Marshall, 2002). The sea level pressure difference between 40S and 60S has risen by 8 hPa over the same period. This sea level pressure difference is used as a proxy for the strength of the zonal winds. Thus, the trend in the zonal wind EOF amplitude may be an artifact of model errors in the NCEP Reanalysis. To check this trend, we analyzed scatterometer winds over the Southern Ocean from the SEASAT, ERS (1 and 2), NSCAT and QuikScat satellites. The scatterometer data is not used in the NCEP Reanalysis and, thus, is an independent estimate of the winds. The SEASAT Scatterometer (SASS) operated for 90 days in July-September, 1978, while the ERS, NSCAT and QuikScat scatterometers provide a continuous dataset from

  20. Acute Zonal Cone Photoreceptor Outer Segment Loss

    PubMed Central

    Sandhu, Harpal S.; Serrano, Leona W.; Traband, Anastasia; Lau, Marisa K.; Adamus, Grazyna; Avery, Robert A.

    2017-01-01

    Importance The diagnostic path presented narrows down the cause of acute vision loss to the cone photoreceptor outer segment and will refocus the search for the cause of similar currently idiopathic conditions. Objective To describe the structural and functional associations found in a patient with acute zonal occult photoreceptor loss. Design, Setting, and Participants A case report of an adolescent boy with acute visual field loss despite a normal fundus examination performed at a university teaching hospital. Main Outcomes and Measures Results of a complete ophthalmic examination, full-field flash electroretinography (ERG) and multifocal ERG, light-adapted achromatic and 2-color dark-adapted perimetry, and microperimetry. Imaging was performed with spectral-domain optical coherence tomography (SD-OCT), near-infrared (NIR) and short-wavelength (SW) fundus autofluorescence (FAF), and NIR reflectance (REF). Results The patient was evaluated within a week of the onset of a scotoma in the nasal field of his left eye. Visual acuity was 20/20 OU, and color vision was normal in both eyes. Results of the fundus examination and of SW-FAF and NIR-FAF imaging were normal in both eyes, whereas NIR-REF imaging showed a region of hyporeflectance temporal to the fovea that corresponded with a dense relative scotoma noted on light-adapted static perimetry in the left eye. Loss in the photoreceptor outer segment detected by SD-OCT co-localized with an area of dense cone dysfunction detected on light-adapted perimetry and multifocal ERG but with near-normal rod-mediated vision according to results of 2-color dark-adapted perimetry. Full-field flash ERG findings were normal in both eyes. The outer nuclear layer and inner retinal thicknesses were normal. Conclusions and Relevance Localized, isolated cone dysfunction may represent the earliest photoreceptor abnormality or a distinct entity within the acute zonal occult outer retinopathy complex. Acute zonal occult outer retinopathy

  1. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  2. Monthly mean forecast experiments with the GISS model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R. M.; Kuo, E.

    1976-01-01

    The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.

  3. Empirical wind model for the middle and lower atmosphere. Part 1: Local time average

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Fleming, E. L.; Manson, A. H.; Schmidlin, F. J.; Avery, S. K.; Franke, S. J.

    1993-01-01

    The HWM90 thermospheric wind model was revised in the lower thermosphere and extended into the mesosphere and lower atmosphere to provide a single analytic model for calculating zonal and meridional wind profiles representative of the climatological average for various geophysical conditions. Gradient winds from CIRA-86 plus rocket soundings, incoherent scatter radar, MF radar, and meteor radar provide the data base and are supplemented by previous data driven model summaries. Low-order spherical harmonics and Fourier series are used to describe the major variations throughout the atmosphere including latitude, annual, semiannual, and longitude (stationary wave 1). The model represents a smoothed compromise between the data sources. Although agreement between various data sources is generally good, some systematic differences are noted, particularly near the mesopause. Root mean square differences between data and model are on the order of 15 m/s in the mesosphere and 10 m/s in the stratosphere for zonal wind, and 10 m/s and 4 m/s, respectively, for meridional wind.

  4. A new numerical model of the middle atmosphere. I - Dynamics and transport of tropospheric source gases

    NASA Technical Reports Server (NTRS)

    Garcia, Rolando R.; Stordal, Frode; Solomon, Susan; Kiehl, Jeffrey T.

    1992-01-01

    Attention is given to a new model of the middle atmosphere which includes, in addition to the equations governing the zonal mean state, a potential vorticity equation for a single planetary-scale Rossby wave, and an IR radiative transfer code for the stratosphere and lower mesosphere, which replaces the Newtonian cooling parameterization used previously. It is shown that explicit computation of the planetary-scale wave field yields a more realistic representation of the zonal mean dynamics and the distribution of trace chemical species. Wave breaking produces a well-mixed 'surf zone' equatorward of the polar night vortex and drives a meridional circulation with downwelling on the poleward side of the vortex. This combination of mixing and downwelling produces shallow meridional gradients of trace gases in the subtropics and middle latitudes, and very steep gradients at the edge of the polar vortex. Computed distributions of methane and nitrous oxide are shown to agree well with observations.

  5. A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic Part II: Meridional transports and seasonal variability

    NASA Astrophysics Data System (ADS)

    Marchesiello, P.; Barnier, B.; de Miranda, A. P.

    1998-04-01

    The mean and seasonal variability of the circulation and meridional heat transport in the South Atlantic are investigated using a set of numerical experiments. The primitive equation model uses a topography-following (sigma) coordinate. The model domain is limited to the South Atlantic basin. Artificial boundaries at Drake Passage, between Brazil and Angola, and between South Africa and Antarctica are treated as open boundaries. Finally, recent and self-consistent estimates of seasonal fluxes are used to define a model-dependent atmospheric forcing. Quasi-diagnostic simulations forced by constant climatological winds are first conducted to determine the sensitivity of model solutions to bottom topography smoothing, and to diagnose meridional fluxes from a mass field that is relaxed to the annual climatology of Levitus (1982). Model results show good agreement with known climatological circulation features in this basin, especially in the Confluence Region, where coarse resolution models usually give smooth structures. Sensitivity studies show that the more detailed features of the circulation are influenced by the model bathymetry. The model simulates a meridional circulation whose upper branch (the return flow that balances the southward flow of North Atlantic Deep Water) is composed of Intermediate (IW) and Thermocline (TW) Waters. The transport of IW is found to be predominant, and the value of meridional heat transport consequently falls within the low estimates. We notice that the meridional heat balance is sensitive to the position of the Confluence. When this region occurs too far south, the amount of IW contributing to the return flow of the overturning cell is reduced. Prognostic simulations forced by seasonal winds and heat fluxes are studied to quantify the impact of wind forcing on the circulation in the South Atlantic. Particular attention is focused on meridional transports at 30°S. Analysis of the mean annual circulation confirms that the upper

  6. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular

  7. A zonal wavefront sensor with multiple detector planes

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2018-03-01

    A conventional zonal wavefront sensor estimates the wavefront from the data captured in a single detector plane using a single camera. In this paper, we introduce a zonal wavefront sensor which comprises multiple detector planes instead of a single detector plane. The proposed sensor is based on an array of custom designed plane diffraction gratings followed by a single focusing lens. The laser beam whose wavefront is to be estimated is incident on the grating array and one of the diffracted orders from each grating is focused on the detector plane. The setup, by employing a beam splitter arrangement, facilitates focusing of the diffracted beams on multiple detector planes where multiple cameras can be placed. The use of multiple cameras in the sensor can offer several advantages in the wavefront estimation. For instance, the proposed sensor can provide superior inherent centroid detection accuracy that can not be achieved by the conventional system. It can also provide enhanced dynamic range and reduced crosstalk performance. We present here the results from a proof of principle experimental arrangement that demonstrate the advantages of the proposed wavefront sensing scheme.

  8. The latitude dependence of the variance of zonally averaged quantities. [in polar meteorology with attention to geometrical effects of earth

    NASA Technical Reports Server (NTRS)

    North, G. R.; Bell, T. L.; Cahalan, R. F.; Moeng, F. J.

    1982-01-01

    Geometric characteristics of the spherical earth are shown to be responsible for the increase of variance with latitude of zonally averaged meteorological statistics. An analytic model is constructed to display the effect of a spherical geometry on zonal averages, employing a sphere labeled with radial unit vectors in a real, stochastic field expanded in complex spherical harmonics. The variance of a zonally averaged field is found to be expressible in terms of the spectrum of the vector field of the spherical harmonics. A maximum variance is then located at the poles, and the ratio of the variance to the zonally averaged grid-point variance, weighted by the cosine of the latitude, yields the zonal correlation typical of the latitude. An example is provided for the 500 mb level in the Northern Hemisphere compared to 15 years of data. Variance is determined to increase north of 60 deg latitude.

  9. On the Pathways of the Return Flow of the Meridional Overturning Circulation in the Tropical Atlantic

    NASA Technical Reports Server (NTRS)

    Jochum, Markus

    2002-01-01

    A numerical model of the tropical Atlantic ocean is used to investigate the upper layer pathways of the Meridional Overturning Circulation (MOC) in the tropical Atlantic. The main focus of this thesis is on those parts of the tropical circulation that are thought to be important for the MOC return flow, but whose dynamics have not been understood yet. It is shown how the particular structure of the tropical gyre and the MOO act to inhibit the flow of North Atlantic water into the equatorial thermocline. As a result, the upper layers of the tropical Atlantic are mainly fed by water from the South Atlantic. The processes that carry the South Atlantic water across the tropical Atlantic into the North Atlantic as part of the MOO are described here, and three processes that were hitherto not understood are explained as follows: The North Brazil Current rings are created as the result of the reflection of Rossby waves at the South American coast. These Rossby waves are generated by the barotropically unstable North Equatorial Countercurrent. The deep structure of the rings can be explained by merger of the wave's anticyclones with the deeper intermediate eddies that are generated as the intermediate western boundary current crosses the equator. The bands of strong zonal velocity in intermediate depths along the equator have hitherto been explained as intermediate currents. Here, an alternative interpretation of the observations is offered: The Eulerian mean flow along the equator is negligible and the observations are the signature of strong seasonal Rossby waves. The previous interpretation of the observations can then be explained as aliasing of the tropical wave field. The Tsuchyia Jets are driven by the Eliassen-Palm flux of the tropical instability waves. The equatorial current system with its strong shears is unstable and generates tropical instability waves.

  10. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  11. Observations of planetary mixed Rossby-gravity waves in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Boville, Byron A.; Gille, John C.

    1990-01-01

    Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.

  12. Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2.

    PubMed

    Coy, Lawrence; Wargan, Krzysztof; Molod, Andrea M; McCarty, William R; Pawson, Steven

    2016-07-01

    The structure, dynamics, and ozone signal of the Quasi-Biennial Oscillation produced by the 35-year NASA MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) reanalysis are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag, and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that the MERRA-2 reanalysis produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980-2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50 hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments.

  13. Mean winds and momemtum fluxes over Jicamarca, Peru, during June and August 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitchman, M.H.; Bywaters, K.W.; Fritts, D.C.

    1992-12-15

    Data from the mesophere-stratosphere-troposphere (MST) radar at Jicamarca, Peru, together with other available data, are used to diagnose the mean structure of winds and gravity-wave momentum fluxes from the surface to 90 km during two ten-day campaigns in June and August of 1987. In the stratosphere a layer of maximum eastward flow associated with the quasi-biennial oscillation (QBO) was seen to strengthen and descend rapidly from June to August, overlying persitent westward flow. A layer of enhanced signal return, suggestive of a turbulent layer, was observed just above the descending QBO eastward maximum. Notable zonal asymmetries were present during thismore » transition and the local meridional circulation departed form zonal-mean QBO theory. A substantial northeastward momentum flux was found below 25 km, which may be related to topographic gravity waves excited by southeastward flow across the Andes. In the lower mesosphere a relatively weak second mesopause semiannual oxcillation is confirmed. Gravity-wave zonal and meridional momentum fluxes usually opposed the flow, yielding body forces of [approximately]10-100 ms[sup [minus]1] day [sup [minus]1]. In both the lower stratosphere and mesosphere, body forces were comparable in magnitude to inferred Coriolis torques. 52 refs., 9 figs.« less

  14. Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2

    PubMed Central

    Coy, Lawrence; Wargan, Krzysztof; Molod, Andrea M.; McCarty, William R.; Pawson, Steven

    2018-01-01

    The structure, dynamics, and ozone signal of the Quasi-Biennial Oscillation produced by the 35-year NASA MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) reanalysis are examined based on monthly mean output. Along with the analysis of the QBO in assimilation winds and ozone, the QBO forcings created by assimilated observations, dynamics, parameterized gravity wave drag, and ozone chemistry parameterization are examined and compared with the original MERRA system. Results show that the MERRA-2 reanalysis produces a realistic QBO in the zonal winds, mean meridional circulation, and ozone over the 1980–2015 time period. In particular, the MERRA-2 zonal winds show improved representation of the QBO 50 hPa westerly phase amplitude at Singapore when compared to MERRA. The use of limb ozone observations creates improved vertical structure and realistic downward propagation of the ozone QBO signal during times when the MLS ozone limb observations are available (October 2004 to present). The increased equatorial GWD in MERRA-2 has reduced the zonal wind data analysis contribution compared to MERRA so that the QBO mean meridional circulation can be expected to be more physically forced and therefore more physically consistent. This can be important for applications in which MERRA-2 winds are used to drive transport experiments. PMID:29551854

  15. Using a zonal atmospheric model to test biogeophysical feedback-caused drought in the subtropical desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, G.L.; MacCracken, M.C.; Ellsaesser, H.W.

    1975-08-01

    Recent interest in the cause of the sub-Sahara drought has initiated several investigations implying possible anthropogenic origin through increased surface albedo due to reduced plant cover from overgrazing. Results of two integrations of the Zonal Atmospheric Model (ZAM2) are presented, differing only in the prescribed surface albedo for the subtropical land masses of the northern hemisphere. These studies were initiated to determine whether an albedo change alone can bring about such dramatic impacts on local precipitation rates as have been implied. Preliminary results indicate that an albedo change can affect the climate, not just at the latitude of change butmore » also at other latitudes due to various atmospheric feedback mechanisms. (auth)« less

  16. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  17. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  18. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  19. Venus winds from ultraviolet, visible and near infrared images from the VIRTIS instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Garate-Lopez, I.; Peralta, J.; Bandos, T.; Sánchez-Lavega, A.

    2013-10-01

    After more than 6 years orbiting Venus the Venus Express mission has provided the largest database of observations of Venus atmosphere at different cloud layers with the combination of VMC and VIRTIS instruments. We present measurements of cloud motions in the South hemisphere of Venus analyzing images from the VIRTIS-M visible channel at different wavelengths sensitive to the upper cloud haze at 65-70 km height (dayside ultraviolet images) and the middle cloud deck (dayside visible and near infrared images around 1 μm) about 5-8 km deeper in the atmosphere. We combine VIRTIS images in nearby wavelengths to increase the contrast of atmospheric details and measurements were obtained with a semi-automatic cloud correlation algorithm. Both cloud layers are studied simultaneously to infer similarities and differences in these vertical levels in terms of cloud morphologies and winds. For both levels we present global mean zonal and meridional winds, latitudinal distribution of winds with local time and the wind shear between both altitudes. The upper branch of the Hadley cell circulation is well resolved in UV images with an acceleration of the meridional circulation at mid-latitudes with increasing local time peaking at 14-16h. This organized meridional circulation is almost absent in NIR images. Long-term variability of zonal winds is also found in UV images with increasing winds over time during the VEX mission. This is in agreement with current analysis of VMC images (Kathuntsev et al. 2013). The possible long-term acceleration of zonal winds is also examined for NIR images. References Khatuntsev et al. Icarus 226, 140-158 (2013)

  20. Results of a zonally truncated three-dimensional model of the Venus middle atmosphere

    NASA Technical Reports Server (NTRS)

    Newman, M.

    1992-01-01

    Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to

  1. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouot, T.; Gravier, E.; Reveille, T.

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less

  2. Transonic Navier-Stokes wing solutions using a zonal approach. Part 2: High angle-of-attack simulation

    NASA Technical Reports Server (NTRS)

    Chaderjian, N. M.

    1986-01-01

    A computer code is under development whereby the thin-layer Reynolds-averaged Navier-Stokes equations are to be applied to realistic fighter-aircraft configurations. This transonic Navier-Stokes code (TNS) utilizes a zonal approach in order to treat complex geometries and satisfy in-core computer memory constraints. The zonal approach has been applied to isolated wing geometries in order to facilitate code development. Part 1 of this paper addresses the TNS finite-difference algorithm, zonal methodology, and code validation with experimental data. Part 2 of this paper addresses some numerical issues such as code robustness, efficiency, and accuracy at high angles of attack. Special free-stream-preserving metrics proved an effective way to treat H-mesh singularities over a large range of severe flow conditions, including strong leading-edge flow gradients, massive shock-induced separation, and stall. Furthermore, lift and drag coefficients have been computed for a wing up through CLmax. Numerical oil flow patterns and particle trajectories are presented both for subcritical and transonic flow. These flow simulations are rich with complex separated flow physics and demonstrate the efficiency and robustness of the zonal approach.

  3. Solar-QBO Interaction and Its Impact on Stratospheric Ozone in a Zonally Averaged Photochemical Transport Model of the Middle Atmosphere

    DTIC Science & Technology

    2007-08-28

    Solar- QBO interaction and its impact on stratospheric ozone in a zonally averaged photochemical transport model of the middle atmosphere J. P...investigate the solar cycle modulation of the quasi-biennial oscillation ( QBO ) in stratospheric zonal winds and its impact on stratospheric ozone with an...updated version of the zonally averaged CHEM2D middle atmosphere model. We find that the duration of the westerly QBO phase at solar maximum is 3 months

  4. Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Nelson, Norman B.; Siegel, David A.; Carlson, Craig A.; Swan, Chantal M.

    2010-02-01

    Basin-scale distributions of light absorption by chromophoric dissolved organic matter (CDOM) are positively correlated (R2 > 0.8) with apparent oxygen utilization (AOU) within the top kilometer of the Pacific and Indian Oceans. However, a much weaker correspondence is found for the Atlantic (R2 < 0.05). Strong correlation between CDOM and AOU indicates that CDOM is created as a byproduct of the oxidation of organic matter from sinking particles. The observed meridional-depth sections of CDOM result from a balance between biogeochemical processes (autochthonous production and solar bleaching) and the meridional overturning circulation. Rapid mixing in the Atlantic dilutes CDOM in the interior and implies that the time scale for CDOM accumulation is greater than ˜50 years. CDOM emerges as a unique tracer for diagnosing changes in biogeochemistry and the overturning circulation, similar to dissolved oxygen, with the additional feature that it can be quantified from satellite observation.

  5. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, Peiyun; Manucharyan, Georgy E.; Thompson, Andrew F.; Goodman, Jason C.; Vance, Steven D.

    2017-06-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  6. The influence of meridional ice transport on Europa's ocean stratification and heat content

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Manucharyan, G.; Thompson, A. F.; Goodman, J. C.; Vance, S.

    2017-12-01

    Jupiter's moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess thepreviously unconstrained influence of ocean-ice coupling on Europa's ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice-ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer's characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.

  7. The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Pollack, James B.; Seiff, Alvin

    1998-09-01

    During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.

  8. The role of boundary layer momentum advection in the mean location of the ITCZ

    NASA Astrophysics Data System (ADS)

    Dixit, Vishal; Srinivasan, J.

    2017-08-01

    The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.

  9. Linear simulation of the stationary eddies in a GCM. II - The 'Mountain' model

    NASA Technical Reports Server (NTRS)

    Nigam, Sumant; Held, Isaac M.; Lyons, Steven W.

    1988-01-01

    Linear stationary wave theory is used to account for zonal asymmetries of the winter-averaged tropospheric circulation obtained in a GCM. The eddy zonal velocity field in the upper troposphere indicates that the orographic and thermal plus transient contributions are nearly equal in amplitude, while the eddy meridional velocity field (which is dominated by shorter zonal scales) shows the orographic contribution to be dominant. The two contributions are found to be roughly in phase over the east Asian coast, and they contribute roughly equal amounts to the low level Siberian high. Results indicate that the 300 mb extratropical response to tropical forcing reaches 50 gpm over Alaska, and that the responses to sensible heating and lower tropospheric transients are strongly anticorrelated.

  10. A Babcock-Leighton solar dynamo model with multi-cellular meridional circulation in advection- and diffusion-dominated regimes

    NASA Astrophysics Data System (ADS)

    Belucz, B.; Dikpati, M.; Forgacs-Dajka, E.

    2014-12-01

    Babcock-Leighton type solar dynamo models with single cell meridional circulation are successful in reproducing many solarcycle features, and recently such a model was applied for solarcycle 24 amplitude prediction. It seems that cycle 24 amplitudeforecast may not be validated. One of the reasons is the assumption of a single cell meridional circulation. Recent observations andtheoretical models of meridional circulation do not indicate a single-celledflow pattern. So it is nessecary to examine the role of complexmulti-cellular circulation patterns in a Babcock-Leighton solar dynamo model in the advection and diffusion dominated regimes.By simulating a Babcock-Leighton solar dynamo model with multi-cellularflow, we show that the presence of a weak, second, high-latitudereverse cell speeds up the cycle and slighty enhances the poleward branch in the butterfly diagram, whereas the presence of a second cellin depth reverses the tilt of the butterfly wing and leads to ananti-solar type feature. If, instead, the butterfly diagram isconstructed from the middle of the convection zone in that case, a solar-like pattern can be retrieved. All the above cases behavequalitatively similar in advection and diffusion-dominated regimes.However, our dynamo with a meridional circulation containing fourcells in latitude behaves distinctly different in the two regimes, producing a solar-like butterfly diagram with fast cycles indiffusion-dominated regime, and a complex branches in the butterflydiagram in the advection-dominated regime. Another interestingfinding from our studies is that a four-celled flow pattern containing two in radius and two in latitude always producesquadrupolar parity as the relaxed solution.

  11. Unusual behavior of quiet-time zonal and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008

    NASA Astrophysics Data System (ADS)

    Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.

    2017-11-01

    The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.

  12. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    PubMed

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Zonal wavefront sensing using a grating array printed on a polyester film

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Kumar, Suraj; Boruah, Bosanta R.

    2015-12-01

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing frame rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.

  14. Zonal wavefront sensing using a grating array printed on a polyester film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, Biswajit; Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in; Kumar, Suraj

    2015-12-15

    In this paper, we describe the development of a zonal wavefront sensor that comprises an array of binary diffraction gratings realized on a transparent sheet (i.e., polyester film) followed by a focusing lens and a camera. The sensor works in a manner similar to that of a Shack-Hartmann wavefront sensor. The fabrication of the array of gratings is immune to certain issues associated with the fabrication of the lenslet array which is commonly used in zonal wavefront sensing. Besides the sensing method offers several important advantages such as flexible dynamic range, easy configurability, and option to enhance the sensing framemore » rate. Here, we have demonstrated the working of the proposed sensor using a proof-of-principle experimental arrangement.« less

  15. The transformation of vegetation vertical zonality affected by anthropogenic impact in East Fennoscandia (Russia)

    NASA Astrophysics Data System (ADS)

    Sidorik, Vadim; Miulgauzen, Daria

    2017-04-01

    Ecosystems of East Fennoscandia have been affected by intensive anthropogenic influence that resulted in their significant transformation. Study of ecosystems in the framework of vegetation vertical zonality disturbance as well as its recovery allows to understand the trends of anthropogenically induced changes. The aim of the present research is the comparative analysis of vegetation vertical zonality of the two uplands in East Fennoscandia which may be considered as unaffected and affected by anthropogenic impact. The objects of key studies carried out in the north-west of Kola Peninsula in the vicinity of the Pechenganikel Mining and Metallurgical Plant are represented by ecosystems of Kalkupya (h 357 m) and Hangaslachdenvara (h 284 m) uplands. They are characterized by the similarity in sequence of altitudinal belts due to the position on the northern taiga - forest-tundra boundary. Plant communities of Kalkupya upland have no visible signs of anthropogenic influence, therefore, they can be considered as model ecosystems of the area. The sequence of altitudinal belts is the following: - up to 200 m - pine subshrub and green moss ("zonal") forest replaced by mixed pine and birch forest near the upper boundary; - 200-300 m - birch crooked subshrub wood; - above 300 m - tundra subshrub and lichen communities. Ecosystems of Hangaslachdenvara upland have been damaged by air pollution (SO2, Ni, Cu emissions) of the Pechenganikel Plant. This impact has led to plant community suppression and formation of barren lands. Besides the soil cover was significantly disturbed, especially upper horizons. Burying of soil profiles, represented by Podzols (WRB, 2015), also manifested itself in the exploited part of the area. The vegetation cover of Hangaslachdenvara upland is the following: - up to 130 m - birch and aspen subshrub and grass forest instead of pine forest ("zonal"); - 130-200 m - barren lands instead of pine forest ("zonal"); - above 200 m - barren lands instead of

  16. Synthetic thermosphere winds based on CHAMP neutral and plasma density measurements

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Forbes, J. M.; Doornbos, E. N.; Bruinsma, S. L.

    2016-04-01

    Meridional winds in the thermosphere are key to understanding latitudinal coupling and thermosphere-ionosphere coupling, and yet global measurements of this wind component are scarce. In this work, neutral and electron densities measured by the Challenging Minisatellite Payload (CHAMP) satellite at solar low and geomagnetically quiet conditions are converted to pressure gradient and ion drag forces, which are then used to solve the horizontal momentum equation to estimate low latitude to midlatitude zonal and meridional "synthetic" winds. We validate the method by showing that neutral and electron densities output from National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model (TIME-GCM) can be used to derive solutions to the momentum equations that replicate reasonably well (over 85% of the variance) the winds self-consistently calculated within the TIME-GCM. CHAMP cross-track winds are found to share over 65% of the variance with the synthetic zonal winds, providing further reassurance that this wind product should provide credible results. Comparisons with the Horizontal Wind Model 14 (HWM14) show that the empirical model largely underestimates wind speeds and does not reproduce much of the observed variability. Additionally, in this work we reveal the longitude, latitude, local time, and seasonal variability in the winds; show evidence of ionosphere-thermosphere (IT) coupling, with enhanced postsunset eastward winds due to depleted ion drag; demonstrate superrotation speeds of ˜27 m/s at the equator; discuss vertical wave coupling due the diurnal eastward propagating tide with zonal wave number 3 and the semidiurnal eastward propagating tide with zonal wave number 2.

  17. A theory of self-organized zonal flow with fine radial structure in tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  18. A new paradigm for predicting zonal-mean climate and climate change

    NASA Astrophysics Data System (ADS)

    Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.

    2016-12-01

    How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.

  19. Observing Equatorial Thermospheric Winds and Temperatures with a New Mapping Technique

    NASA Astrophysics Data System (ADS)

    Faivre, M. W.; Meriwether, J. W.; Sherwood, P.; Veliz, O.

    2005-12-01

    Application of the Fabry-Perot interferometer (FPI) at Arequipa, Peru (16.4S, 71.4 W) to measure the Doppler shifts and Doppler broadenings in the equatorial O(1D) 630-nm nightglow has resulted in numerous detections of a large-scale thermospheric phenomenon called the Midnight Temperature Maximum (MTM). A recent detector upgrade with a CCD camera has improved the accuracy of these measurements by a factor of 5. Temperature increases of 50 to 150K have been measured during nights in April and July, 2005, with error bars less than 10K after averaging in all directions. Moreover, the meridional wind measurements show evidence for a flow reversal from equatorward to poleward near local midnight for such events. A new observing strategy based upon the pioneering work of Burnside et al.[1981] maps the equatorial wind and temperature fields by observing in eight equally-spaced azimuth directions, each with a zenith angle of 60 degrees. Analysis of the data obtained with this technique gives the mean wind velocities in the meridional and zonal directions as well as the horizontal gradients of the wind field for these directions. Significant horizontal wind gradients are found for the meridional direction but not for the zonal direction. The zonal wind blows eastward throughout the night with a maximum speed of ~150 m/s near the middle of the night and then decreases towards zero just before dawn. In general, the fastest poleward meridional wind is observed near mid-evening. By the end of the night, the meridional flow tends to be more equatorward at speeds of about 50 m/s. Using the assumption that local time and longitude are equivalent over a period of 30 minutes, a map of the horizontal wind field vector field is constructed over a range of 12 degrees latitude centered at 16.5 S. Comparison between MTM nights and quiet nights (no MTM) revealed significant differences in the horizontal wind fields. Using the method of Fourier decomposition of the line-of-sight winds

  20. Seasonal meridional energy balance and thermal structure of the atmosphere of Uranus - A radiative-convective-dynamical model

    NASA Technical Reports Server (NTRS)

    Friedson, James; Ingersoll, Andrew P.

    1987-01-01

    A model is presented for the thermodynamics of the seasonal meridional energy balance and thermal structure of the Uranian atmosphere. The model considers radiation and small-scale convection, and dynamical heat fluxes due to large-scale baroclinic eddies. Phase oscillations with a period of 0.5 Uranian year are discerned in the total internal power and global enthalpy storage. The variations in the identity of the main transport agent with the magnitude of the internal heat source are discussed. It is shown that meridional heat transport in the atmosphere is sufficient to lower seasonal horizontal temperature contrasts below those predicted with radiative-convection models.

  1. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  2. Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach

    NASA Technical Reports Server (NTRS)

    Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.

    1986-01-01

    A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.

  3. Magnetic flux concentration and zonal flows in magnetorotational instability turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue-Ning; Stone, James M., E-mail: xbai@cfa.harvard.edu

    2014-11-20

    Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few diskmore » scale heights. In the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet formation.« less

  4. Temporal Variability and Latitudinal Jets in Venus's Zonal Wind Profiles

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Bullock, M. A.; Tavenner, T.; Coyote, S.; Murphy, J. R.

    2008-09-01

    We have observed Venus's night hemisphere from NASA's IRTF (Infrared Telescope Facility) during each inferior conjunction since 2001 to quantify the motion of features in Venus's lower and middle cloud decks. We now present latitudinal profiles from 11 nights, obtained in May and July 2004, February 2006 and September 2007. In about 7 of the 11 nights there are zonal jets near 45N and/or -50S, with speed differentials of 5 to 15 m/s relative to the adjacent equatorward latitude bands. These jets may be evidence of episodic Hadley cell-type circulation. About half of the nights show relatively constant velocity profiles between the latitudes of 50N to 50S, suggesting that considerable mixing is taking place between latitudes. Our most remarkable result is the temporal variability in the median zonal speeds from day to day. For example, the median velocity near the equator increases from 53 to 65 m/s over the period from July 11 - 13, 2004, and increases from 65 to 82 m/s over the period from Sept. 9 - 11, 2007. These velocity changes are too great to be due to the tracking of clouds that are in the middle vs. lower cloud deck, nor can they be caused by clouds that occupy different altitudes; a velocity variation of 25% corresponds to an altitude difference of 15 km, based on vertical profiles of zonal windspeeds from tracking of Pioneer Venus and Venera descent probes. Fifteen km is greater than the expected variation in either cloud base. VIRTIS observations of Venus's southern hemisphere were also obtained in September 2007 and should be able to corroborate or contradict the observed variations. This work was supported by NASA's Planetary Astronomy and Atmospheres programs.

  5. Intra-seasonal Oscillations Inferred from SABER (TIMED) and MLS (UARS) Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Huang, F. T.; Mayr, H. G.; Russell, J.; Mlynczak, M.; Reber, C. A.; Mengel, J. G.

    2006-01-01

    In the zonal mean meridional winds of the upper mesosphere, intra-seasonal oscillations with periods between 1 and 4 months have been inferred from UARS measurements and independently predicted with the Numerical Spectral Model WSM). The wind oscillations tend to be confined to low latitudes and appear to be driven, at least in part, by small-scale gravity waves propagating in the meridional direction. Winds across the equator should generate, due to dynamical heating and cooling, temperature oscillations with opposite phase in the two hemispheres. Investigating this phenomenon, we have analyzed SABER temperatures from TIMED in the altitude range between 55 and 95 km to delineate with an empirical model, the year-long variability of the migrating tides and zonal mean components. The inferred seasonal variations of the diurnal tide, characterized by amplitude maxima near equinox, are in substantial agreement with UARS observations and results from the NSM. For the zonal mean, the dominant seasonal variations in the SABER temperatures, with annual (12 months) and semiannual (6 months) periodicities, agree well with those derived from UARS measurements. The intra-seasonal variations with periods between 2 and 4 months have amplitudes close to 2 K, almost half as large as those for the dominant seasonal variations. Their amplitudes are in qualitative agreement with the corresponding values inferred from UARS during different years. The SABER and UARS temperature variations reveal pronounced hemispherical asymmetries, consistent with meridional wind oscillations across the equator. The phase of the semi-annual temperature oscillations from the NSM agrees with the observations from UARS and SABER. But the amplitudes are systematically smaller, which may indicate that planetary waves are more important than is allowed for in the model. For the shorter-period intra-seasonal variations, which can be generated by gravity wave drag, the model results are generally in better

  6. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  7. Slowing of the Atlantic meridional overturning circulation at 25 degrees N.

    PubMed

    Bryden, Harry L; Longworth, Hannah R; Cunningham, Stuart A

    2005-12-01

    The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.

  8. Atlantic meridional overturning circulation during the Last Glacial Maximum.

    PubMed

    Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer

    2007-04-06

    The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.

  9. Lenticular meridional astigmatism secondary to iris mesectodermal leiomyoma.

    PubMed

    Chalam, K V; Cutler Peck, Carolee M; Grover, Sandeep; Radhakrishnan, Ravi

    2012-01-01

    A 61-year-old African American man presented with decreased vision of 2 months duration. Examination revealed a significant lenticular astigmatism and sectoral cataract as a result of an amelanotic iris lesion. Slitlamp optical coherence tomography (OCT) revealed angle crowding. An excisional biopsy was performed along with phacoemulsification in the right eye, with intraocular lens implantation for meridional lenticular astigmatism. Histopathology and histoimmunochemistry confirmed a diagnosis of uveal mesectodermal leiomyoma. Lenticular astigmatism may be a subtle sign of an anterior segment tumor. Anterior segment slitlamp OCT is an effective tool in diagnosing as well as monitoring small interval changes in these types of tumors. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. The Correlation Between Tropical Convection and Upper Tropospheric Momentum Flux Convergence

    NASA Technical Reports Server (NTRS)

    O'CStarr, David; Boehm, Matthew T.

    2003-01-01

    In this study, the relationship between tropical convection and the meridional convergence of zonal momentum flux in the tropical upper troposphere is investigated using NOAA interpolated outgoing longwave radiation data and NCEP-NCAR reanalysis wind data. In particular, a variety of correlation coefficients are calculated between the data sets, both of which are filtered to isolate disturbances with frequencies and wavenumbers consistent with the Madden-Julian oscillation. The results show regions of significant correlation during each season, with the magnitude and area covered by significant correlation coefficients varying with season. Furthermore, it is found that the correlation structures look very similar to theoretical calculations of the atmospheric response to a region of tropical heating. This result suggests that tropical waves, in particular mixed Rossby-gravity waves, play an important role in the meridional transport zonal momentum into the deep tropical upper troposphere. Finally, these findings have implications to the generation of rising motion near the tropical tropopause, which in turn has ramifications for vertical moisture transport and tropopause cirrus formation.

  11. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    NASA Astrophysics Data System (ADS)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  12. Stability of the Atlantic meridional overturning circulation: A model intercomparison

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew J.; Sedláček, Jan; Eby, Michael; Alexander, Kaitlin; Crespin, Elisabeth; Fichefet, Thierry; Philippon-Berthier, Gwenaëlle; Joos, Fortunat; Kawamiya, Michio; Matsumoto, Katsumi; Steinacher, Marco; Tachiiri, Kaoru; Tokos, Kathy; Yoshimori, Masakazu; Zickfeld, Kirsten

    2012-10-01

    The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25% 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°-32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.

  13. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  14. A zonal computational procedure adapted to the optimization of two-dimensional thrust augmentor inlets

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Tavella, D. A.; Roberts, L.

    1985-01-01

    A viscous-inviscid interaction methodology based on a zonal description of the flowfield is developed as a mean of predicting the performance of two-dimensional thrust augmenting ejectors. An inviscid zone comprising the irrotational flow about the device is patched together with a viscous zone containing the turbulent mixing flow. The inviscid region is computed by a higher order panel method, while an integral method is used for the description of the viscous part. A non-linear, constrained optimization study is undertaken for the design of the inlet region. In this study, the viscous-inviscid analysis is complemented with a boundary layer calculation to account for flow separation from the walls of the inlet region. The thrust-based Reynolds number as well as the free stream velocity are shown to be important parameters in the design of a thrust augmentor inlet.

  15. Dependence of wind speed and UV albedo at Venus top cloud layer on topography and local time revealed from VMC images

    NASA Astrophysics Data System (ADS)

    Patsaeva, Marina; Khatuntsev, Igor; Turin, Alexander; Zasova, Ludmila; Bertaux, Jean-loup

    2017-04-01

    A set of UV (365 nm) and IR (965 nm) images obtained by the Venus Monitoring Camera (VMC) was used to study the circulation of the mesosphere at two altitude levels. Displacement vectors were obtained by wind tracking in automated mode for observation period from 2006 to 2014 for UV images [1,2] and from 2006 to 2012 for IR images. The long observation period and good longitude-latitude coverage by single measurements allowed us to focus on the study of the slow-periodic component. The influence of the underlying surface topography on the change of speed of the average zonal wind at UV level at low latitudes, discovered by visual methods has been described in [3]. Analysis of the longitude-latitude distribution of the zonal and meridional components for 172000 (257 orbits) digital individual wind measurements at UV level and for 32,000 (150 orbits) digital individual wind measurements at IR level allows us to compare the influence of Venus topography on the change of the zonal and meridional components at both cloud levels. At the UV level (67±2 km) longitudinal profiles of the zonal speed for different latitude bins in low latitudes correlate with surface profiles. These correlations are most noticeable in the region of Aphrodite Terra. The correlation shift depends on the surface height. Albedo profiles correlate with surface profiles also at high latitudes. Zonal speed profiles at low latitude (5-15°S) depend not only on altitude, but also on local time. Minimum of the zonal speed is observed over Aphrodite Terra (90-100°E) at about 12 LT. A diurnal harmonic with an extremum over Aphrodite Terra was found. It can be considered as a superposition of a solar-synchronous tide and a stationary wave caused by interaction of the windstream with the surface. At the IR level (55±4 km) a correlation between surface topography and meridional speed was found in the region 10-30°S. The average meridional flow is equatorward at the IR level, but in the region Aphrodite

  16. Exploring a deep meridional flow hypothesis for a circulation dominated solar dynamo model

    NASA Astrophysics Data System (ADS)

    Guerrero, G. A.; Muñoz, J. D.; de Gouveia dal Pino, E. M.

    2005-09-01

    Circulation-dominated solar dynamo models, which employ a helioseismic rotation profile and a fixed meridional flow, give a good approximation to the large scale solar magnetic phenomena, such as the 11-year cycle or the so called Hale's law of polarities. Nevertheless, the larger amplitude of the radial shear ∂Ω/∂r at the high latitudes makes the dynamo to produce a strong toroidal magnetic field at high latitudes, in contradiction with the observations of the sunspots (Sporer's Law). A possible solution was proposed by Nandy and Choudhuri in which a deep meridional flow can conduct the magnetic field inside of a stable layer (the radiative core) and then allow that it erupts just at lower latitudes. Although they obtain good results, this hypothesis generates new problems like the mixture of elements in the radiative core (that alters the abundance of the elements) and the transfer of angular momentum. We have recently explored this hypothesis in a different approximation, using the magnetic buoyancy mechanism proposed by Dikpati and Charbonneau (1999) and found that a deep meridional flow pushes the maximum of the toroidal magnetic field towards the solar equator, but, in contrast to Nandy and Choudhuri (2002 ), a second zone of maximum fields remains at the poles. In that work, we have also introduced a bipolytropic density profile in order to better reproduce the stratification in the radiative zone. We here review these results and also discuss a new possible scenario where the tachocline has an ellipsoidal shape, following early helioseismologic observations, and find that the modification of the geometry of the tachocline can lead to results which are in good agreement with observations and opens the possibility to explore in more detail, through the dynamo model, the place where the magnetic field could be really stored.

  17. Direct phase measurement in zonal wavefront reconstruction using multidither coherent optical adaptive technique.

    PubMed

    Liu, Rui; Milkie, Daniel E; Kerlin, Aaron; MacLennan, Bryan; Ji, Na

    2014-01-27

    In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.

  18. A Method for Optimal Load Dispatch of a Multi-zone Power System with Zonal Exchange Constraints

    NASA Astrophysics Data System (ADS)

    Hazarika, Durlav; Das, Ranjay

    2018-04-01

    This paper presented a method for economic generation scheduling of a multi-zone power system having inter zonal operational constraints. For this purpose, the generator rescheduling for a multi area power system having inter zonal operational constraints has been represented as a two step optimal generation scheduling problem. At first, the optimal generation scheduling has been carried out for the zone having surplus or deficient generation with proper spinning reserve using co-ordination equation. The power exchange required for the deficit zones and zones having no generation are estimated based on load demand and generation for the zone. The incremental transmission loss formulas for the transmission lines participating in the power transfer process among the zones are formulated. Using these, incremental transmission loss expression in co-ordination equation, the optimal generation scheduling for the zonal exchange has been determined. Simulation is carried out on IEEE 118 bus test system to examine the applicability and validity of the method.

  19. Newton vs. Munchhausen in upper-troposphere dynamics

    NASA Astrophysics Data System (ADS)

    Bergmann, Juan Carlos

    2010-05-01

    Atmospheric angular momentum (AM) balance depends crucially on the existence and magnitude of the planetary-scale AM transport by 'eddies' in the upper troposphere. Its divergence has to provide the torque, which is necessary to realise the upper-troposphere branch of meridional circulation. (In the boundary layer, the torque is provided by surface-friction.) The torques in neighbouring circulation cells are opposed, so that the AM transport mediates a torque-interaction between the circulation cells. This interaction corresponds to a clear requirement of Newton's Third Law: torques (forces) exist only in interaction with other bodies, and their sum is equal to zero. In Münchhausen's physics, force (and torque) exists without interaction: In a famous tale, Münchhausen saves himself (and his horse!) from drowning in a swamp-hole by pulling himself up at his hair. Münchhausen-physics situations arise in the dynamical analysis of the torque exerted by a single eddy and in analysis of the cause for the AM transport of the single eddy. The local AM transport of the single eddy is defined by the difference in zonal velocity between the pole-ward and equator-ward branches (Δu) multiplied with meridional velocity-magnitude (¦v¦). For the average over many eddies, it transforms to the average product of the deviations of zonal and meridional velocities from their local averages (, eddy-correlation; the complete formulations include the local radius of rotation but it is omitted here for simplicity reasons). This definition is phenomenological but not dynamical. In dynamical analysis it turns out that the torque-related zonal equation of motion of an AM-transporting single eddy can be formulated without torque-interaction with other bodies (torque-free eddy). Newton III implies also the phenomenological torque (transport divergence -δ(¦v¦Δu)/δy) to be zero for this case because there is no partner of torque-interaction. However, the dynamically torque-free single

  20. On the Origin of the Double-cell Meridional Circulation in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Kosovichev, A. G.

    2018-02-01

    Recent advances in helioseismology, numerical simulations and mean-field theory of solar differential rotation have shown that the meridional circulation pattern may consist of two or more cells in each hemisphere of the convection zone. According to the mean-field theory the double-cell circulation pattern can result from the sign inversion of a nondiffusive part of the radial angular momentum transport (the so-called Λ-effect) in the lower part of the solar convection zone. Here, we show that this phenomenon can result from the radial inhomogeneity of the Coriolis number, which depends on the convective turnover time. We demonstrate that if this effect is taken into account then the solar-like differential rotation and the double-cell meridional circulation are both reproduced by the mean-field model. The model is consistent with the distribution of turbulent velocity correlations determined from observations by tracing motions of sunspots and large-scale magnetic fields, indicating that these tracers are rooted just below the shear layer.

  1. THE EFFECT OF ACTIVITY-RELATED MERIDIONAL FLOW MODULATION ON THE STRENGTH OF THE SOLAR POLAR MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schmitt, D.

    We studied the effect of the perturbation of the meridional flow in the activity belts detected by local helioseismology on the development and strength of the surface magnetic field at the polar caps. We carried out simulations of synthetic solar cycles with a flux transport model, which follows the cyclic evolution of the surface field determined by flux emergence and advective transport by near-surface flows. In each hemisphere, an axisymmetric band of latitudinal flows converging toward the central latitude of the activity belt was superposed onto the background poleward meridional flow. The overall effect of the flow perturbation is tomore » reduce the latitudinal separation of the magnetic polarities of a bipolar magnetic region and thus diminish its contribution to the polar field. As a result, the polar field maximum reached around cycle activity minimum is weakened by the presence of the meridional flow perturbation. For a flow perturbation consistent with helioseismic observations, the polar field is reduced by about 18% compared to the case without inflows. If the amplitude of the flow perturbation depends on the cycle strength, its effect on the polar field provides a nonlinearity that could contribute to limiting the amplitude of a Babcock-Leighton type dynamo.« less

  2. REVIEWS OF TOPICAL PROBLEMS: Generation of large-scale eddies and zonal winds in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Onishchenko, O. G.; Pokhotelov, O. A.; Astafieva, N. M.

    2008-06-01

    The review deals with a theoretical description of the generation of zonal winds and vortices in a turbulent barotropic atmosphere. These large-scale structures largely determine the dynamics and transport processes in planetary atmospheres. The role of nonlinear effects on the formation of mesoscale vortical structures (cyclones and anticyclones) is examined. A new mechanism for zonal wind generation in planetary atmospheres is discussed. It is based on the parametric generation of convective cells by finite-amplitude Rossby waves. Weakly turbulent spectra of Rossby waves are considered. The theoretical results are compared to the results of satellite microwave monitoring of the Earth's atmosphere.

  3. Chapter 13. Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.

    2009-01-01

    Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete

  4. Ockham's Razorblade Shaving Wind-Induced Circulation

    NASA Astrophysics Data System (ADS)

    Bergmann, Juan Carlos

    2010-05-01

    Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that

  5. Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere

    NASA Astrophysics Data System (ADS)

    Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert

    2017-01-01

    Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.

  6. The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field

    NASA Astrophysics Data System (ADS)

    Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.

    2018-04-01

    The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.

  7. Comparison of acoustic travel-time measurements of solar meridional circulation from SDO/HMI and SOHO/MDI

    NASA Astrophysics Data System (ADS)

    Liang, Zhi-Chao; Birch, Aaron C.; Duvall, Thomas L., Jr.; Gizon, Laurent; Schou, Jesper

    2017-05-01

    Context. Time-distance helioseismology is one of the primary tools for studying the solar meridional circulation, especially in the lower convection zone. However, travel-time measurements of the subsurface meridional flow suffer from a variety of systematic errors, such as a center-to-limb variation and an offset due to the position angle (P-angle) uncertainty of solar images. It has been suggested that the center-to-limb variation can be removed by subtracting east-west from south-north travel-time measurements. This ad hoc method for the removal of the center-to-limb effect has been adopted widely but not tested for travel distances corresponding to the lower convection zone. Aims: We explore the effects of two major sources of the systematic errors, the P-angle error arising from the instrumental misalignment and the center-to-limb variation, on the acoustic travel-time measurements in the south-north direction. Methods: We apply the time-distance technique to contemporaneous medium-degree Dopplergrams produced by SOHO/MDI and SDO/HMI to obtain the travel-time difference caused by meridional circulation throughout the solar convection zone. The P-angle offset in MDI images is measured by cross-correlating MDI and HMI images. The travel-time measurements in the south-north and east-west directions are averaged over the same observation period (May 2010 to Apr. 2011) for the two data sets and then compared to examine the consistency of MDI and HMI travel times after applying the above-mentioned corrections. Results: The offsets in the south-north travel-time difference from MDI data induced by the P-angle error gradually diminish with increasing travel distance. However, these offsets become noisy for travel distances corresponding to waves that reach the base of the convection zone. This suggests that a careful treatment of the P-angle problem is required when studying a deep meridional flow. After correcting the P-angle and the removal of the center

  8. Instability of meridional axial system in f( R) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Yousaf, Z.

    2015-05-01

    We analyze the dynamical instability of a non-static reflection axial stellar structure by taking into account the generalized Euler equation in metric f( R) gravity. Such an equation is obtained by contracting the Bianchi identities of the usual anisotropic and effective stress-energy tensors, which after using a radial perturbation technique gives a modified collapse equation. In the realm of the gravity model, we investigate instability constraints at Newtonian and post-Newtonian approximations. We find that the instability of a meridional axial self-gravitating system depends upon the static profile of the structure coefficients, while f( R) extra curvature terms induce the stability of the evolving celestial body.

  9. Shear-flow trapped-ion-mode interaction revisited. II. Intermittent transport associated with low-frequency zonal flow dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.

    We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less

  10. New results on equatorial thermospheric winds and temperatures from Ethiopia, Africa

    NASA Astrophysics Data System (ADS)

    Tesema, Fasil; Mesquita, Rafael; Meriwether, John; Damtie, Baylie; Nigussie, Melessew; Makela, Jonathan; Fisher, Daniel; Harding, Brian; Yizengaw, Endawoke; Sanders, Samuel

    2017-03-01

    Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry-Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms-1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms-1 poleward during the winter months and 10 to 25 ms-1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was ˜ 110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the

  11. A simple inertial model for Neptune's zonal circulation

    NASA Technical Reports Server (NTRS)

    Allison, Michael; Lumetta, James T.

    1990-01-01

    Voyager imaging observations of zonal cloud-tracked winds on Neptune revealed a strongly subrotational equatorial jet with a speed approaching 500 m/s and generally decreasing retrograde motion toward the poles. The wind data are interpreted with a speculative but revealingly simple model based on steady gradient flow balance and an assumed global homogenization of potential vorticity for shallow layer motion. The prescribed model flow profile relates the equatorial velocity to the mid-latitude shear, in reasonable agreement with the available data, and implies a global horizontal deformation scale L(D) of about 3000 km.

  12. CALL FOR PAPERS: Special cluster issue on `Experimental studies of zonal flow and turbulence'

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.

    2005-07-01

    Plasma Physics and Controlled Fusion (PPCF) invites submissions on the topic of `Experimental studies of zonal flow and turbulence', for consideration for a special topical cluster of articles to be published early in 2006. The topical cluster will be published in an issue of PPCF, combined with regular articles. The Guest Editor for the special cluster will be S-I Itoh, Kyushu University, Japan. There has been remarkable progress in the area of structure formation by turbulence. One of the highlights has been the physics of zonal flow and drift wave turbulence in toroidal plasmas. Extensive theoretical as well as computational studies have revealed the various mechanisms in turbulence and zonal flows. At the same time, experimental research on the zonal flow, geodesic acoustic modes and generation of global electric field by turbulence has evolved rapidly. Fast growth in reports of experimental results has stimulated further efforts to develop increased knowledge and systematic understanding. Each paper considered for the special cluster should describe the present research status and new scientific knowledge/results from the authors on experimental studies of zonal flow, geodesic acoustic modes and generation of electric field by turbulence (including studies of Reynolds-Maxwell stresses, etc). Manuscripts submitted to this special cluster in Plasma Physics and Controlled Fusion will be refereed according to the normal criteria and procedures of the journal. The Guest Editor guides the progress of the cluster from the initial open call, through the standard refereeing process, to publication. To be considered for inclusion in the special cluster, articles must be submitted by 2 September 2005 and must clearly state `for inclusion in the Turbulent Plasma Cluster'. Articles submitted after this deadline may not be included in the cluster issue but may be published in a later issue of the journal. Please submit your manuscript electronically via our web site at www

  13. Temporal Variability of North Atlantic Carbon Fluxes and their Sensitivity to the Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Brown, P.; McDonagh, E.; Sanders, R.; King, B.; Watson, A. J.; Schuster, U.; Henson, S.

    2016-02-01

    The North Atlantic plays a critical role in the global carbon cycle both as a region of substantial air-sea carbon dioxide uptake and as a location for the transfer of CO2 to depth on climatically-important timescales. While the magnitude of surface fluxes is relatively well constrained, our understanding of the processes that drive variability in ocean-atmosphere exchange and subsequent subsurface carbon accumulation is not as well defined. Here we present observation-derived high-resolution estimates of short-term 10-day meridional ocean carbon transport variability across the subtropical North Atlantic for 2004-2012. Substantial seasonal, sub-annual and interannual transport variability is observed that is highly sensitive to the strength of the Atlantic Meridional Overturning Circulation. While the recently identified multi-year decrease in AMOC strength similarly impacts carbon transports, its full effect is masked by the northwards transport of increasing surface CO2 levels. A 30% slowdown in the meridional circulation in 2009-2010 and the anomalous effects it had on the transport, storage and divergence of heat and freshwater in the subtropical and subpolar gyres and local wind regimes are investigated for their impact on local air-sea CO2 fluxes. Temperature and salt content anomalies identified in each gyre are found to drive (subtropics) or hinder (subpolar) additional carbon uptake from the atmosphere by affecting the physical solubility pump for CO2. Additionally their simultaneous effect on mixed layer depth and the vertical supply of nutrients to the surface is shown to magnify the CO2 flux observed by driving anomalous primary production rates.

  14. Self-Organization of Zonal Jets in Outer Planet Atmospheres: Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1997-01-01

    The statistical mechnical theory of a two-dimensional Euler fluid is appleid for the first time to explore the spontaneous self-oganization of zonal jets in outer planet atmospheres. Globally conserved integralls of motion are found to play a central role in defining jet structure.

  15. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2017-08-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  16. The nature of large-scale turbulence in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.

    1982-01-01

    The energetics and spectral characteristis of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements momentum transports associated with zonally symmetric stresses and turbulent stresses are quantified. Though a strong up-gradient flux of momentum by eddies was observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. An Oort energy budget for Jupiter's upper troposphere is formulated.

  17. Isolation of Intact Chloroplasts from Euglena gracilis by Zonal Centrifugation 1

    PubMed Central

    Vasconcelos, Aurea; Pollack, Marilyn; Mendiola, Leticia R.; Hoffmann, H.-P.; Brown, D. H.; Price, C. A.

    1971-01-01

    Chloroplasts were separated from Euglena gracilis by zonal centrifugation at low speed in density gradients of Ficoll or dextran. The chloroplasts were intact by the criteria of ultrastructure and their content of ribulose diphosphate carboxylase and soluble protein. The chloroplasts also contained ribosomes and ribosomal RNA uncontaminated by the corresponding cytoplasmic particles. Images PMID:16657599

  18. On the long-term variability of Jupiter and Saturn zonal winds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, A.; Garcia-Melendo, E.; Hueso, R.; Barrado-Izagirre, N.; Legarreta, J.; Rojas, J. F.

    2012-12-01

    We present an analysis of the long-term variability of Jupiter and Saturn zonal wind profiles at their upper cloud level as retrieved from cloud motion tracking on images obtained at ground-based observatories and with different spacecraft missions since 1979, encompassing about three Jovian and one Saturn years. We study the sensitivity and variability of the zonal wind profile in both planets to major planetary-scale disturbances and to seasonal forcing. We finally discuss the implications that these results have for current model efforts to explain the global tropospheric circulation in these planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] Sánchez-Lavega A., et al., Icarus, 147, 405-420 (2000). [2] García-Melendo E., Sánchez LavegaA., Icarus, 152, 316-330 (2001) [3] Sánchez-Lavega A., et al., Nature, 423, 623-625 (2003). [4] García-Melendo E., et al., Geophysical Research Letters, 37, L22204 (2010).

  19. Laboratory modeling of multiple zonal jets on the polar beta-plane

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y.

    2011-12-01

    Zonal jets observed in the oceans and atmospheres of planets are studied in a laboratory rotating tank. The fluid layer in the rotating tank has parabolic free surface and dynamically simulates the polar beta-plane where the Coriolis parameter varies quadratically with distance from the pole. Velocity and surface elevation fields are measured with an optical altimetry method (Afanasyev et al., Exps Fluids 2009). The flows are induced by a localized buoyancy source along radial direction. The baroclinic flow consisting of a field of eddies propagates away from the source due West and forms zonal jets (Fig. 1). Barotropic jets ahead of the baroclinic flow are formed by radiation of beta plumes. Inside the baroclinic flow the jets flow between the chains of eddies. Experimental evidence of so-called noodles (baroclinic instability mode with motions in the radial, North-South direction) theoretically predicted by Berloff et al. (JFM, JPO 2009) was found in our experiments. Beta plume radiation mechanism and the mechanism associated with the instability of noodles are likely to contribute to formation of jets in the baroclinic flow.

  20. The biological activity of chernozems in the Central Caucasus Mountains (Terskii variant of altitudinal zonality), Kabardino-Balkaria

    NASA Astrophysics Data System (ADS)

    Gedgafova, F. V.; Uligova, T. S.; Gorobtsova, O. N.; Tembotov, R. Kh.

    2015-12-01

    Some parameters of the biological activity (humus content; activity of hydrolytic enzymes invertase, phosphatase, urease; and the intensity of carbon dioxide emission) were studied in the chernozems of agrocenoses and native biogeocenoses in the foothills of the Caucasus Mountains representing the Terskii variant of the altitudinal zonality. The statistically significant differences were revealed between the relevant characteristics of the soils of the agrocenoses and of the native biogeocenoses. The integral index of the ecological-biological state of the soils was used to estimate changes in the biological activity of the arable chernozems. The 40-60% decrease of this index in the cultivated chernozems testified to their degradation with a decrease in fertility and the disturbance of ecological functions as compared to these characteristics in the virgin chernozems.

  1. Meridional Propagation of the MJO/ISO and Asian Monsoon Variability

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Suarez, Max; Pegion, Phil; Waliser, D.

    2003-01-01

    In this study we examine the links between tropical heating, the Madden Julian Oscillation (MJO)/Intraseasonal Oscillation (ISO), and the Asian monsoon. We are particularly interested in isolating the nature of the poleward propagation of the ISO/MJO in the monsoon region. We examine both observations and idealized "MJO heating" experiments employing the NASA Seasonal-Interannual Prediction Project (NSIPP) atmospheric general circulation model (AGCM). In the idealized 10-member ensemble simulations, the model is forced by climatological SST and an idealized eastward propagating heating profile that is meant to mimic the canonical heating associated with the MJO in the Indian Ocean and western Pacific. In order to understand the impact of SST on the off equatorial convection (or Rossby-wave response), a second set of 10-member ensemble simulations is carried out with the climatological SSTs shifted in time by 6-months. The observational analysis highlights the strong link between the Indian summer monsoon and the tropical ISO/MJO activity and heating. This includes the well-known meridional propagation that affects the summer monsoons of both hemispheres. The AGCM experiments with the idealized eastward propagating MJO-like heating reproduce the observed meridional propagation including the observed seasonal differences. The impact of the SSTs are to enhance the magnitude of the propagation into the summer hemispheres. The results suggest that the winter/summer differences associated with the MJO/ISO are auxiliary features that depend on the MJO's environment (basic state and boundary conditions) and are not the result of fundamental differences in the MJO itself.

  2. Direct evidence of stationary zonal flows and critical gradient behavior for Er during formation of the edge pedestal in JET

    NASA Astrophysics Data System (ADS)

    Hillesheim, Jon

    2015-11-01

    High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  3. Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales

    NASA Astrophysics Data System (ADS)

    Kurowski, M.; Smolarkiewicz, P. K.; Grabowski, W.

    2015-12-01

    Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained applying a consistent numerical framework for dis- crete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate bench- mark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible so- lutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they di- minish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.

  4. North Pacific Meridional Mode over the Common Era

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Charles, C. D.; Amaya, D. J.; Miller, A. J.

    2016-12-01

    The Pacific Meridional Mode (PMM) has been increasingly recognized as an influential mode of variability for channeling extratropical anomalies to the equatorial ocean-atmosphere system. The PMM has been identified as an important precursor for ENSO, a source of much decadal power in the tropical Pacific, and is potentially intensifying. It is still unknown why the Pacific Meridional Mode might be intensifying; most arguments center around the changing mean state associated with anthropogenic global warming. There are a number of processes by which the background state could influence the PMM: altering the location of trade winds, the characteristics of stochastic forcing, the sensitivity of latent heat flux to surface wind anomalies, the wind response to SST anomalies, or changing the Intertropical Convergence Zone (ITCZ) structure. Recent work has found that the PMM is particularly sensitive to ITCZ shifts in intensity and location (using a simple linear coupled model, [Martinez-Villalobos and Vimont 2016]). Over the last millennium the ITCZ has experienced epochs of notable latitudinal shifts to balance the cross equatorial energy transport. Here we investigate how the strength of the PMM may have varied with these shifts in the ITCZ over the Common Era using the CESM-Last Millennium Ensemble (LME). We assess the strength of the PMM pathway by the degree of air-sea coupling and the amplitude of tropical decadal variability. We expect the ITCZ location and the degree of air-sea coupling (WES feedback) to play a critical role in determining the effectiveness and intensity of the PMM pathway. We verify our inferences in the LME with coral paleoproxy records from the central tropical Pacific. Chiefly we target records from the Line Islands (spanning 1°N to 6°N) to infer variations in the location of the ITCZ and the amplitude of decadal variability. This work enables us to discuss the idea of an intensifying PMM in a more historical context.

  5. Three-dimensional baroclinic instability of a Hadley cell for small Richardson number

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Fowlis, W. W.

    1983-01-01

    For the case of a baroclinic flow whose Richardson number, Ri, is of order unity, a three-dimensional linear stability analysis is conducted on the basis of a model for a thin, horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The Hadley cell basic state and stability analysis are both based on the Navier-Stokes and energy equations, and perturbations possessing zonal, meridional, and vertical structures are considered. An attempt is made to extend the previous theoretical work on three-dimensional baroclinic instability for small Ri to a more realistic model involving the Prandtl and Ekman numbers, as well as to finite growth rates and a wider range of the zonal wavenumber. In general, it is found that the symmetric modes of maximum growth are not purely symmetric, but have a weak zonal structure.

  6. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removingmore » the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.« less

  7. Systematic Center-To-Limb Variation in Measured Helioseismic Travel Times and Its Effect on Inferences of Solar Interior Meridional Flows

    NASA Technical Reports Server (NTRS)

    Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  8. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  9. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  10. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE PAGES

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...

    2018-05-29

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  11. Numerical analysis of flow in ultra micro centrifugal compressor -influence of meridional configuration

    NASA Astrophysics Data System (ADS)

    Kaneko, Masanao; Tsujita, Hoshio; Hirano, Toshiyuki

    2013-04-01

    A single stage ultra micro centrifugal compressor constituting ultra micro gas turbine is required to operate at high rotational speed in order to achieve the pressure ratio which establishes the gas turbine cycle. As a consequence, the aerodynamic losses can be increased by the interaction of a shock wave with the boundary layer on the blade surface. Moreover, the centrifugal force which exceeds the allowable stress of the impeller material can act on the root of blades. On the other hand, the restrictions of processing technology for the downsizing of impeller not only relatively enlarge the size of tip clearance but also make it difficult to shape the impeller with the three-dimensional blade. Therefore, it is important to establish the design technology for the impeller with the two-dimensional blade which possesses the sufficient aerodynamic performance and enough strength to bear the centrifugal force caused by the high rotational speed. In this study, the flow in two types of impeller with the two-dimensional blade which have different meridional configuration was analyzed numerically. The computed results clarified the influence of the meridional configuration on the loss generations in the impeller passage.

  12. Middle Atmosphere Program. Handbook for MAP, Volume 5

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    The variability of the stratosphere during the winter in the Northern Hemisphere is considered. Long term monthly mean 30-mbar maps are presented that include geopotential heights, temperatures, and standard deviations of 15 year averages. Latitudinal profiles of mean zonal winds and temperatures are given along with meridional time sections of derived quantities for the winters 1965/66 to 1980/81.

  13. Dynamic Stall Computations Using a Zonal Navier-Stokes Model

    DTIC Science & Technology

    1988-06-01

    NAVAL POSTGRADUATE SCHOOL lotMonterey ,California CD Lj STATF ,-S THESIS DYNAMIC STALL CALCULATIONS USING A ZONAL.-,_ % 0 NVETESISDE by Jack H...Conroyd, Jr. June 1988 Thesis Co-advisors: M.F. Platzer Lawrence W. Carr Approved for public release; distribution is unlimitedDOTIC , ~~~~~~~~ELECT...OINT %, Master s Thesis OM To June 212 6 SLP;’LEENTARY NOTATION ri The views expressed in this thesis are those of the author and do not reflect the

  14. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  15. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  16. Zonal flow generation in inertial confinement fusion implosions

    DOE PAGES

    Peterson, J. L.; Humbird, K. D.; Field, J. E.; ...

    2017-03-06

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  17. Zonal flow generation in inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, J. L.; Humbird, K. D.; Field, J. E.

    A supervised machine learning algorithm trained on a multi-petabyte dataset of inertial confinement fusion simulations has identified a class of implosions that robustly achieve high yield, even in the presence of drive variations and hydrodynamic perturbations. These implosions are purposefully driven with a time-varying asymmetry, such that coherent flow generation during hotspot stagnation forces the capsule to self-organize into an ovoid, a shape that appears to be more resilient to shell perturbations than spherical designs. Here this new class of implosions, whose configurations are reminiscent of zonal flows in magnetic fusion devices, may offer a path to robust inertial fusion.

  18. Drug policing assemblages: Repressive drug policies and the zonal banning of drug users in Denmark's club land.

    PubMed

    Søgaard, Thomas F; Houborg, Esben; Pedersen, Michael M

    2017-03-01

    Zonal banning of disorderly and intoxicated young people has moved to centre stage in debates about nightlife governance. Whereas existing research has primarily focused on the use of zonal banning orders to address problems of alcohol-related harm and disorder, this article highlights how zonal banning is also used to target drug-using clubbers in Denmark. Based on ethnographic observations and interviews with nightlife control agents in two Danish cities, the article aims to provide new insights into how the enforcement of national drug policies on drug-using clubbers, is shaped by plural nightlife policing complexes. The paper demonstrates how the policing of drug-using clubbers is a growing priority for both police and private security agents. The article also demonstrates how the enforcement of zonal bans on drug-using clubbers involves complex collaborative relations between police, venue owners and private security agents. The paper argues that a third-party policing perspective combined with assemblage theory is useful for highlighting how the enforcement of national drug policies and nightlife banning systems is shaped by their embeddedness in local 'drug policing assemblages' characterized by inter-agency relation-building, the creative combination of public and private (legal) resources and internal power struggles. It also provides evidence of how drug policing assemblages give rise to many different, and often surprising, forms of jurisdiction involving divergent performances of spaces-, objects- and authorities of governance. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dynamics of the global meridional ice flow of Europa's icy shell

    NASA Astrophysics Data System (ADS)

    Ashkenazy, Yosef; Sayag, Roiy; Tziperman, Eli

    2018-01-01

    Europa is one of the most probable places in the solar system to find extra-terrestrial life1,2, motivating the study of its deep ( 100 km) ocean3-6 and thick icy shell3,7-11. The chaotic terrain patterns on Europa's surface12-15 have been associated with vertical convective motions within the ice8,10. Horizontal gradients of ice thickness16,17 are expected due to the large equator-to-pole gradient of surface temperature and can drive a global horizontal ice flow, yet such a flow and its observable implications have not been studied. We present a global ice flow model for Europa composed of warm, soft ice flowing beneath a cold brittle rigid ice crust3. The model is coupled to an underlying (diffusive) ocean and includes the effect of tidal heating and convection within the ice. We show that Europa's ice can flow meridionally due to pressure gradients associated with equator-to-pole ice thickness differences, which can be up to a few km and can be reduced both by ice flow and due to ocean heat transport. The ice thickness and meridional flow direction depend on whether the ice convects or not; multiple (convecting and non-convecting) equilibria are found. Measurements of the ice thickness and surface temperature from future Europa missions18,19 can be used with our model to deduce whether Europa's icy shell convects and to constrain the effectiveness of ocean heat transport.

  20. Structure and Dynamics of Fluid Planets

    NASA Astrophysics Data System (ADS)

    Houben, H.

    2014-12-01

    Attention to conservation laws gives a comprehensive picture of the structure and dynamics of gas giants: Atmospheric differential rotation is generated by tidal torques (dependent on tropospheric static stability) and is dragged into the interior by turbulent viscosity. The consequent heat dissipation generates baroclinicity and approximate thermal wind balance, not Taylor-Proudman conditions. Magnetic Lorentz forces have no effect on the zonal wind, but generate a meridional wind approximately parallel to field lines. Thus, magnetic field generation in the interior is dominated by the ω-effect (zonal field wound up by differential rotation), with the α-effect (meridional field generated by turbulence) severely limited by the β-effect (turbulence-enhanced resistivity). The meridional circulation quenches the ω-effect so that a steady state is reached and also limits the magnitude of the non-axisymmetric field under certain circumstances. The stability of the steady state requires further study. The magnetic field travels with the E X B drift, rather than the fluid velocity. Work by the fluid on the magnetic field balances work by the magnetic field on the fluid, so the global heat flux is little changed. In conducting regions the meridional density distribution (and gravity field) is most sensitive to the total pressure (gas + magnetic) and the ω-effect. In nonconducting regions, the gas pressure, centrifugal force, and differential rotation dominate. The differential rotation varies at least as fast as r³, so the gravitational signal is small compared to that for differential rotation on cylinders. The entropy minimum near the tropopause allows meteorology to be dominated by (relatively) long-lived, closed potential temperature surfaces, usually called spots, which conserve potential vorticity. All of the above must be taken into account to properly assimilate any available observational data to further specify the interior properties of fluid planets.

  1. Secular variations in zonal harmonics of Earth's geopotential and their implications for mantle viscosity and Antarctic melting history due to the last deglaciation

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi

    2017-06-01

    Secular variations in zonal harmonics of Earth's geopotential based on the satellite laser ranging observations, {\\dot{J}_n}, contain important information about the Earth's deformation due to the glacial isostatic adjustment (GIA) and recent melting of glaciers and the Greenland and Antarctic ice sheets. Here, we examine the GIA-induced {\\dot{J}_n}, \\dot{J}_n^{GIA} (2 ≤ n ≤ 6), derived from the available geopotential zonal secular rate and recent melting taken from the IPCC 2013 Report (AR5) to explore the possibility of additional information on the depth-dependent lower-mantle viscosity and GIA ice model inferred from the analyses of the \\dot{J}_2^{GIA} and relative sea level changes. The sensitivities of the \\dot{J}_n^{GIA} to lower-mantle viscosity and GIA ice model with a global averaged eustatic sea level (ESL) of ∼130 m indicate that the secular rates for n = 3 and 4 are mainly caused by the viscous response of the lower mantle to the melting of the Antarctic ice sheet regardless of GIA ice models adopted in this study. Also, the analyses of the \\dot{J}_n^{GIA} based on the available geopotential zonal secular rates indicate that permissible lower-mantle viscosity structure satisfying even zonal secular rates of n = 2, 4 and 6 is obtained for the GIA ice model with an Antarctic ESL component of ∼20 or ∼30 m, but there is no viscosity solution satisfying \\dot{J}_3^{GIA} and \\dot{J}_5^{GIA} values. Moreover, the inference model for the lower-mantle viscosity and GIA ice model from each odd zonal secular rate is distinctly different from that satisfying GIA-induced even zonal secular rate. The discrepancy between the inference models for the even and odd zonal secular rates may partly be attributed to uncertainties of the geopotential zonal secular rates for n > 2 and particularly those for odd zonal secular rates due to weakness in the orbital geometry. If this problem is overcome at least for the secular rates of n < 5, then the analyses of

  2. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  3. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    NASA Astrophysics Data System (ADS)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  4. Evolution of stationary wave patterns in mesospheric water vapor due to climate change

    NASA Astrophysics Data System (ADS)

    Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur

    2016-07-01

    The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.

  5. The role of the meridional sea surface temperature gradient in controlling the Caribbean low-level jet

    NASA Astrophysics Data System (ADS)

    Maldonado, Tito; Rutgersson, Anna; Caballero, Rodrigo; Pausata, Francesco S. R.; Alfaro, Eric; Amador, Jorge

    2017-06-01

    The Caribbean low-level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one-way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region.

  6. Geometrical constraint on the localization of deep water formation

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  7. Mesospheric circulation at the cloud top level of Venus according to Venus Monitoring Camera images

    NASA Astrophysics Data System (ADS)

    Khatuntsev, Igor; Patsaeva, Marina; Ignatiev, Nikolay; Titov, Dmitri; Markiewicz, Wojciech; Turin, Alexander

    We present results of wind speed measurements at the cloud top level of Venus derived from manual cloud tracking in the UV (365 nm) and IR (965 nm) channels of the Venus Monitoring Camera Experiment (VMC) [1] on board the Venus Express mission. Cloud details have a maximal contrast in the UV range. More then 90 orbits have been processed. 30000 manual vectors were obtained. The period of the observations covers more than 4 venusian year. Zonal wind speed demonstrates the local solar time dependence. Possible diurnal and semidiurnal components are observed [2]. According to averaged latitude profile of winds at level of the upper clouds: -The zonal speed is slightly increasing by absolute values from 90 on the equator to 105 m/s at latitudes —47 degrees; -The period of zonal rotation has the maximum at the equator (5 earth days). It has the minimum (3 days) at altitudes —50 degrees. After minimum periods are slightly increasing toward the South pole; -The meridional speed has a value 0 on the equator, and then it is linear increasing up to 10 m/s (by absolute value) at 50 degrees latitude. "-" denotes movement from the equator to the pole. -From 50 to 80 degrees the meridional speed is again decreasing by absolute value up to 0. IR (965+10 nm) day side images can be used for wind tracking. The obtained speed of the zonal wind in the low and middle latitudes are systematically less than the wind speed derived from the UV images. The average zonal speed obtained from IR day side images in the low and average latitudes is about 65-70 m/s. The given fact can be interpreted as observation of deeper layers of mesosphere in the IR range in comparison with UV. References [1] Markiewicz W. J. et al. (2007) Planet. Space Set V55(12). P.1701-1711. [2] Moissl R., et al. (2008) J. Geophys. Res. 2008. doi:10.1029/2008JE003117. V.113.

  8. Post World War II trends in tropical Pacific surface trades

    NASA Technical Reports Server (NTRS)

    Harrison, D. E.

    1989-01-01

    Multidecadal time series of surface winds from central tropical Pacific islands are used to compute trends in the trade winds between the end of WWII and 1985. Over this period, averaged over the whole region, there is no statistically significant trend in speed or zonal or meridional wind (or pseudostress). However, there is some tendency, within a few degrees of the equator, toward weakening of the easterlies and increased meridional flow toward the equator. Anomalous conditions subsequent to the 1972-73 ENSO event make a considerable contribution to the long-term trends. The period 1974-80 has been noted previously to have been anomalous, and trends over that period are sharply greater than those over the longer records.

  9. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully

  10. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    NASA Astrophysics Data System (ADS)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  11. The climatology of low-latitude ionospheric densities and zonal drifts from IMAGE-FUV.

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Sagawa, E.; Frey, H. U.; Mende, S. B.; Patel, J.

    2004-12-01

    The IMAGE satellite was the first dedicated to magnetospheric imaging, but has also provided numerous images of the nightside ionosphere with its Far-Ultraviolet (FUV) spectrographic imager. Nightside emissions of O I at 135.6-nm originating away from the aurora are due to recombination of ionospheric O+, and vary in intensity with (O+)2. IMAGE-FUV, operating in a highly elliptical orbit with apogee at middle latitudes and >7 Re altitude, measures this emission globally with 100-km resolution. During each 14.5 hour orbit, IMAGE-FUV is able to monitor nightside ionospheric densities for up to 6-7 hours. Hundreds of low-latitude ionospheric bubbles, their development and drift speed, and a variety of other dynamical variations in brightness and morphology of the equatorial anomalies have been observed during this mission. Furthermore, the average global distribution of low-latitude ionospheric plasma densities can be determined in 3 days. Imaging data collected from February through June of 2002 are used to compile a dataset containing a variety of parameters (e.g., latitude and brightness of peak plasma density, zonal bubble drift speed) which can be drawn from for climatological studies. Recent results indicate that the average ground speed of low-latitude zonal plasma drifts vary with longitude by up to 50%, and that a periodic variation in ionospheric densities with longitude suggests the influence of a lower-thermospheric non-migrating tide with wave number = 4 on ionospheric densities. An excellent correlation between zonal drift speed and the magnetic storm index Dst is also found.

  12. Meridional Motions and Reynolds Stress Determined by Using Kanzelhöhe Drawings and White Light Solar Images from 1964 to 2016

    NASA Astrophysics Data System (ADS)

    Ruždjak, Domagoj; Sudar, Davor; Brajša, Roman; Skokić, Ivica; Poljančić Beljan, Ivana; Jurdana-Šepić, Rajka; Hanslmeier, Arnold; Veronig, Astrid; Pötzi, Werner

    2018-04-01

    Sunspot position data obtained from Kanzelhöhe Observatory for Solar and Environmental Research (KSO) sunspot drawings and white light images in the period 1964 to 2016 were used to calculate the rotational and meridional velocities of the solar plasma. Velocities were calculated from daily shifts of sunspot groups and an iterative process of calculation of the differential rotation profiles was used to discard outliers. We found a differential rotation profile and meridional motions in agreement with previous studies using sunspots as tracers and conclude that the quality of the KSO data is appropriate for analysis of solar velocity patterns. By analyzing the correlation and covariance of meridional velocities and rotation rate residuals we found that the angular momentum is transported towards the solar equator. The magnitude and latitudinal dependence of the horizontal component of the Reynolds stress tensor calculated is sufficient to maintain the observed solar differential rotation profile. Therefore, our results confirm that the Reynolds stress is the dominant mechanism responsible for transport of angular momentum towards the solar equator.

  13. A Babcock-Leighton Solar Dynamo Model with Multi-cellular Meridional Circulation in Advection- and Diffusion-dominated Regimes

    NASA Astrophysics Data System (ADS)

    Belucz, Bernadett; Dikpati, Mausumi; Forgács-Dajka, Emese

    2015-06-01

    Babcock-Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterfly diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.

  14. A BABCOCK–LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belucz, Bernadett; Forgács-Dajka, Emese; Dikpati, Mausumi, E-mail: bbelucz@astro.elte.hu, E-mail: dikpati@ucar.edu

    Babcock–Leighton type-solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock–Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that the presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in the butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of the butterfly wing to an antisolar type. A butterflymore » diagram constructed from the middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow speed is strong enough, of similar order of magnitude as the surface flow speed.« less

  15. The mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex: an activity-dependent developmental model.

    PubMed

    Philips, Ryan T; Chakravarthy, V Srinivasa

    2015-01-01

    Primate vision research has shown that in the retinotopic map of the primary visual cortex, eccentricity and meridional angle are mapped onto two orthogonal axes: whereas the eccentricity is mapped onto the nasotemporal axis, the meridional angle is mapped onto the dorsoventral axis. Theoretically such a map has been approximated by a complex log map. Neural models with correlational learning have explained the development of other visual maps like orientation maps and ocular-dominance maps. In this paper it is demonstrated that activity based mechanisms can drive a self-organizing map (SOM) into such a configuration that dilations and rotations of a particular image (in this case a rectangular bar) are mapped onto orthogonal axes. We further demonstrate using the Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model, with an appropriate boundary and realistic initial conditions, that a retinotopic map which maps eccentricity and meridional angle to the horizontal and vertical axes respectively can be developed. This developed map bears a strong resemblance to the complex log map. We also simulated lesion studies which indicate that the lateral excitatory connections play a crucial role in development of the retinotopic map.

  16. A Zonal Climate Model for the 1-D Mars Evolution Code: Explaining Meridiani Planum.

    NASA Astrophysics Data System (ADS)

    Manning, C. V.; McKay, C. P.; Zahnle, K. J.

    2005-12-01

    Recent MER Opportunity observations suggest there existed an extensive body of shallow water in the present Meridiani Planum during the late Noachian [1]. Observations of roughly contemporaneous valley networks show little net erosion [2]. Hypsometric analysis [3] finds that martian drainage basins are similar to terrestrial drainage basins in very arid regions. The immaturity of martian drainage basins suggests they were formed by infrequent fluvial action. If similar fluvial discharges are responsible for the laminations in the salt-bearing outcrops of Meridiani Planum, their explanation may require a climate model based on surface thermal equilibrium with diurnally averaged temperatures greater than freezing. In the context of Mars' chaotic obliquity, invoking a moderately thick atmosphere with seasonal insolation patterns may uncover the conditions under which the outcrops formed. We compounded a 1-D model of the evolution of Mars' inventories of CO2 over its lifetime called the Mars Evolution Code (MEC) [4]. We are assembling a zonal climate model that includes meridional heat transport, heat conduction to/from the regolith, latent heat deposition, and an albedo distribution based on the depositional patterns of ices. Since water vapor is an important greenhouse gas, and whose ice affects the albedo, we must install a full hydrological cycle. This requires a thermal model of the regolith to model diffusion of water vapor to/from a permafrost layer. Our model carries obliquity and eccentricity distributions consistent with Laskar et al. [5], so we will be able to model the movement of the ice cap with changes in obliquity. The climate model will be used to investigate the conditions under which ponded water could have occurred in the late Noachian, thus supplying a constraint on the free inventory of CO2 at that time. Our evolution code can then investigate Hesperian and Amazonian climates. The model could also be used to understand evidence of recent climate

  17. Diurnal and Semidiurnal Tides in the Middle Atmosphere over Balasore (21.5°N, 86.9°E).

    NASA Astrophysics Data System (ADS)

    Sasi, M. N.; Krishna Murthy, B. V.

    1990-09-01

    Using rocket wind data at a tropical station, Balasore (21.5°N, 86.9°E), the diurnal and semidiurnal tidal amplitudes and phases of the zonal and meridional components have been obtained over an altitude range of 20-65 km for equinox, summer and winter seasons. Comparison with the theoretical values revealed some important differences between the two and the implications of these are discussed.

  18. Thermodynamic and Kinematic Flow Characteristics of Some Developing and Non-Developing Disturbances in Predict

    DTIC Science & Technology

    2014-12-01

    normal ( 1S ) and parallel ( 2S ) strain rates squared. U and V are the zonal and meridional velocities and the x and y subscripts indicate partial...between developing and non-developing tropical disturbances appears to lie with the kinematic flow boundary structure and thermodynamic properties ...tropical disturbances appears to lie with the kinematic flow boundary structure and thermodynamic properties hypothesized in the marsupial paradigm

  19. Are Strong Zonal Winds in Giant Planets Caused by Density-Stratification?

    NASA Astrophysics Data System (ADS)

    Verhoeven, J.; Stellmach, S.

    2012-12-01

    One of the most striking features of giant planets like Jupiter and Saturn are the zonal wind patterns observed on their surfaces. The mechanism that drives this differential rotation is still not clearly identified and is currently strongly debated in the astro- and geophysics community. Different mechanisms have been proposed over the last decades. Here, a recently discovered mechanism based on background density stratification (Glatzmaier et al., 2009) is investigated. This mechanism has the potential to overcome known difficulties of previous explanations and its efficiency has been demonstrated in 2-d simulations covering equatorial planes. By performing highly resolved numerical simulations in a local Cartesian geometry, we are able to test the efficiency and functionality of this mechanism in turbulent, rotating convection in three spatial dimensions. The choice of a Cartesian model geometry naturally excludes other known mechanisms capable of producing differential rotation, thus allowing us to investigate the role of density stratification in isolation. Typically, the dynamics can be classified into two main regimes: A regime exhibiting strong zonal winds for weak to moderate thermal driving and a regime where zonal winds are largely absent in the case of a strong thermal forcing. Our results indicate that previous 2-d results must be handled with care and can only explain parts of the full 3-d behavior. We show that the density-stratification mechanism tends to operate in a more narrow parameter range in 3-d as compared to 2-d simulations. The dynamics of the regime transition is shown to differ in both cases, which renders scaling laws derived from two-dimensional studies questionable. Based on our results, we provide estimates for the importance of the density-stratification mechanism for giant planets like Jupiter (strong density stratification), for systems like the Earth's core (weak density stratification) and compare its efficiency with other

  20. Zonal flow dynamics and control of turbulent transport in stellarators.

    PubMed

    Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H

    2011-12-09

    The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.

  1. Intensification of the meridional temperature gradient in the Great Barrier Reef following the Last Glacial Maximum.

    PubMed

    Felis, Thomas; McGregor, Helen V; Linsley, Braddock K; Tudhope, Alexander W; Gagan, Michael K; Suzuki, Atsushi; Inoue, Mayuri; Thomas, Alexander L; Esat, Tezer M; Thompson, William G; Tiwari, Manish; Potts, Donald C; Mudelsee, Manfred; Yokoyama, Yusuke; Webster, Jody M

    2014-06-17

    Tropical south-western Pacific temperatures are of vital importance to the Great Barrier Reef (GBR), but the role of sea surface temperatures (SSTs) in the growth of the GBR since the Last Glacial Maximum remains largely unknown. Here we present records of Sr/Ca and δ(18)O for Last Glacial Maximum and deglacial corals that show a considerably steeper meridional SST gradient than the present day in the central GBR. We find a 1-2 °C larger temperature decrease between 17° and 20°S about 20,000 to 13,000 years ago. The result is best explained by the northward expansion of cooler subtropical waters due to a weakening of the South Pacific gyre and East Australian Current. Our findings indicate that the GBR experienced substantial meridional temperature change during the last deglaciation, and serve to explain anomalous deglacial drying of northeastern Australia. Overall, the GBR developed through significant SST change and may be more resilient than previously thought.

  2. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, T. D.; Malyuto, V. D.

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for 333 stars in four areas. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre and the main meridional section of the Galaxy. The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  3. Mapping potential vorticity dynamics on saturn: Zonal mean circulation from Cassini and Voyager data

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Conrath, B. J.; Fletcher, L. N.; Gierasch, P. J.; Simon-Miller, A. A.; Zuchowski, L. C.

    2009-12-01

    Maps of Ertel potential vorticity on isentropic surfaces (IPV) and quasi-geostrophic potential vorticity (QGPV) are well established in dynamical meteorology as powerful sources of insight into dynamical processes involving 'balanced' flow (i.e. geostrophic or similar). Here we derive maps of zonal mean IPV and QGPV in Saturn's upper troposphere and lower stratosphere by making use of a combination of velocity measurements, derived from the combined tracking of cloud features in images from the Voyager and Cassini missions, and thermal measurements from the Cassini Composite Infrared Spectrometer (CIRS) instrument. IPV and QGPV are mapped and compared for the entire globe between latitudes 89∘S-82∘N. As on Jupiter, profiles of zonally averaged PV show evidence for a step-like "stair-case" pattern suggestive of local PV homogenisation, separated by strong PV gradients in association with eastward jets. The northward gradient of PV (IPV or QGPV) is found to change sign in several places in each hemisphere, however, even when baroclinic contributions are taken into account. The stability criterion with respect to Arnol'd's second stability theorem may be violated near the peaks of westward jets. Visible, near-IR and thermal-IR Cassini observations have shown that these regions exhibit many prominent, large-scale eddies and waves, e.g. including 'storm alley'. This suggests the possibility that at least some of these features originate from instabilities of the background zonal flow.

  4. An electrical analogy relating the Atlantic multidecadal oscillation to the Atlantic meridional overturning circulation.

    PubMed

    Kurtz, Bruce E

    2014-01-01

    The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.

  5. An Electrical Analogy Relating the Atlantic Multidecadal Oscillation to the Atlantic Meridional Overturning Circulation

    PubMed Central

    Kurtz, Bruce E.

    2014-01-01

    The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60–80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values. PMID:24940739

  6. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  7. Gravity waves, Tides and Planetary wave characteristics revealed by network of MLT radars over Indian region

    NASA Astrophysics Data System (ADS)

    Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Sunkara, Eswaraiah; Vijaya Bhaskara Rao, S.; Subrahmanyam, K. V.; Ramanjaneyulu, L.

    2016-07-01

    Mesosphere and Lower Thermosphere (MLT) mean winds, gravity waves, tidal and planetary wave characteristics are investigated using two years (2013-2015) of advanced meteor radar installed at Tirupathi (13.63oN, 79.4oE), India. The observations reveal the presence of high frequency gravity waves (30-120 minutes), atmospheric tides (diurnal, semi-diurnal and terr-diurnal) along with long period oscillations in both zonal and meridional winds. Background mean zonal winds show clear semi-annual oscillation in the mesosphere, whereas meridional winds are characterized by annual oscillation as expected. Diurnal tide amplitudes are significantly larger (60-80 m/s) than semi-diurnal (10-20 m/s) and terr-diurnal (5-8 m/s) tides and larger in meridional than zonal winds. The measured meridional components are in good agreement with Global Scale Wave Model (GSWM-09) predictions than zonal up to ~90 km in all the seasons, except fall equinox. Diurnal tidal phase matches well than the amplitudes between observations and model predictions. However, no similarity is being found in the semi-diurnal tides between observations and model. The measurements are further compared with nearby Thumba meteor radar (8.5oN, 77oE) observations. Some differences do exist between the measurements from Tirupati and Thumba meteor radar and model outputs at greater heights and the possible reasons are discussed. SVU meteor radar observations clearly showed the dominance of well-known ultra-fast kelvin waves (3.5 days), 5-8 day, 16 day, 27 day, and 30-40 day oscillations. Due to higher meteor count extending up to 110 km, we could investigate the variability of these PWs and oscillations covering wider range (70-110 km) for the first time. Significant change above 100 km is noticed in all the above mentioned PW activity and oscillations. We also used ERA-Interim reanalysis data sets available at 0.125x0.125 degree grids for investigating the characteristics of these PW right from surface to 1 h

  8. Biohazards Assessment in Large-Scale Zonal Centrifugation

    PubMed Central

    Baldwin, C. L.; Lemp, J. F.; Barbeito, M. S.

    1975-01-01

    A study was conducted to determine the biohazards associated with use of the large-scale zonal centrifuge for purification of moderate risk oncogenic viruses. To safely and conveniently assess the hazard, coliphage T3 was substituted for the virus in a typical processing procedure performed in a National Cancer Institute contract laboratory. Risk of personnel exposure was found to be minimal during optimal operation but definite potential for virus release from a number of centrifuge components during mechanical malfunction was shown by assay of surface, liquid, and air samples collected during the processing. High concentration of phage was detected in the turbine air exhaust and the seal coolant system when faulty seals were employed. The simulant virus was also found on both centrifuge chamber interior and rotor surfaces. Images PMID:1124921

  9. Quasi-biennial oscillation and tropical waves in total ozone

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Stanford, J. L.

    1994-01-01

    Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations with Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.

  10. Erratum: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Nandy, Dibyendu; Wilson, Robert M.; Reichmann, Edwin J.

    2004-01-01

    An error was made in entering the data. This changes the results concerning the length of the time lag between the variations in the meridional flow speed and those in the cycle amplitude. The final paragraph on page 667 should read: Finally, we study the relationship between the drift velocities and the amplitudes of the hemisphere/cycles. We compare the drift velocity at the maximum of the cycle to the amplitude of that cycle for that hemisphere. There is a positive (0.5) and significant (95%) correlation between the two. However, an even stronger relationship is found between the drift velocity and the amplitude of the N + 2 cycle. The correlation is stronger (0.7) and more significant (99%), as shown. This relationship is suggestive of a "memory" in the solar cycle, again a property of dynamo models that use meridional circulation. Indeed, the two-cycle lag is precisely the relationship found by Charbonneau & Dikpati. This behavior is, however, more difficult to interpret, and we elaborate on this in the next section. In either case, these correlations only explain part of the variance in cycle amplitude (25% for the current cycle and 50% for the N + 2 cycle). Obviously, other mechanisms, such as variations in the gradient in the rotation rate, also contribute to the cycle amplitude variations. Our investigation of possible connections between drift rates and the amplitudes of the N + 1 and N + 3 cycles gives no significant correlations at these alternative time lags.

  11. A Zonal Approach for Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Shih, S. H.; Hixon, D. R.; Mankbadi, Reda R.

    1995-01-01

    A zonal approach for direct computation of sound generation and propagation from a supersonic jet is investigated. The present work splits the computational domain into a nonlinear, acoustic-source regime and a linear acoustic wave propagation regime. In the nonlinear regime, the unsteady flow is governed by the large-scale equations, which are the filtered compressible Navier-Stokes equations. In the linear acoustic regime, the sound wave propagation is described by the linearized Euler equations. Computational results are presented for a supersonic jet at M = 2. 1. It is demonstrated that no spurious modes are generated in the matching region and the computational expense is reduced substantially as opposed to fully large-scale simulation.

  12. Examining cross-equatorial precipitation variability in the western Indian Ocean using stalagmites from Madagascar

    NASA Astrophysics Data System (ADS)

    Scroxton, N.; Burns, S. J.; McGee, D.; Hardt, B. F.; Godfrey, L.; Ranivoharimanana, L.; Faina, P.

    2017-12-01

    The behavior of the world's monsoon systems and the position of the Inter Tropical Convergence Zone (ITCZ) resulting from large global climatic changes is reasonably well understood at orbital and millennial timescales. However, under the boundary conditions and relatively modest forcing of the last 2000 years it is not yet clear how tropical monsoon systems changed and why. The traditional schema of north-south translation of the ITCZ is being challenged by new theories relating to meridional expansion and contraction of the tropical rain belt, and/or to changes in zonal circulation patterns resembling modern El-Niño Southern Oscillation end members. Located at a hotspot of zonal and meridional climate forcing, stalagmites from the western Indian Ocean can provide new insights into past rainfall variability and uncover the driving mechanisms. Here, we present results from a new southern hemisphere speleothem record from Anjohibe cave, northwestern Madagascar, covering the last 1,700 years. We demonstrate that our quasi-annual, precisely dated, stable oxygen isotope record serves as a proxy for the strength of the northwestern Madagascan monsoon. The record shows a multi-decadal, in-phase relationship with its northern hemisphere monsoon counterpart from Oman - contrary to the expected antiphase relationship that would result from north-south ITCZ translation. At the centennial scale, the Madagascan record correlates well with precipitation records from Eastern Africa. We discuss the potential causes of western Indian Ocean precipitation coherency, and how it relates to either symmetrical changes in continental sensible heating, or to a low frequency zonal sea-surface temperature mode.

  13. On th meridional surface profile of the Gulf Stream at 55 deg W

    NASA Technical Reports Server (NTRS)

    Hallock, Zachariah R.; Teague, William J.

    1995-01-01

    Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.

  14. A seasonal study on the role of h'F/meridional winds in influencing the development of ESF irregularities over Indian sector

    NASA Astrophysics Data System (ADS)

    Sreekumar, Sreeba; Sripathi, S.

    2017-08-01

    In this paper, we present the seasonal variation of nighttime thermospheric meridional winds over Hyderabad as derived using dual ionosonde observations located at Tirunelveli (8.7°N, 77.7°E, Dip Lat = 0.3°N), an equatorial station and Hyderabad (17.38°N, 78.45°E, Dip Lat = 12°N), a low latitude station, respectively, over the period of April-December 2013 using h'F data as discussed in (Sreekumar and Sripathi, 2016). The calculated winds has been compared with HWM14 wind model. The results show that trends of the derived winds from the ionosonde h'F data matches well with model wind near to midnight hours in all the seasons. However, some dissimilarities were observed during early night hours. Especially, the poleward winds during early night hours for different seasons were not well reproduced by the model. Later, the study is extended to understand the role of meridional winds in causing the variability of ESF occurrence vis a vis h'F. The histogram analysis of h'F vs wind values just before ESF onset reveals that the most probable combination of wind and h'F on the ESF days are centered around 350 km and 50 m/s. Additionally, we also performed Superposed Epoch Analysis (SEA) based on longer and shorter duration ESF events. The analysis reveals the distinct differences in the longer and shorter duration ESF events of Summer and Autumn equinox where the values of h'F as well as meridional winds where such that a steep change in reduction of poleward winds prior to ESF onset supported the longer duration ESF events in both seasons. However, this steep reduction is not so significant for the shorter duration ESF events indicating that meridional winds could play a crucial role in extending the spread F durations in longer duration events. The observations clearly demonstrate the reduction of poleward wind velocities during vernal equinox as compared to Autumn equinox, where larger poleward winds were present around ESF onset times. These observations are

  15. Role of asymmetric meridional circulation in producing north-south asymmetry in a solar cycle dynamo model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belucz, Bernadett; Dikpati, Mausumi

    2013-12-10

    Solar cycles in the north and south hemispheres differ in cycle length, amplitude, profile, polar fields, and coronal structure. To show what role differences in meridional flow could play in producing these differences, we present the results of three sets of numerical simulations from a flux transport dynamo in which one property of meridional circulation has been changed in the south only. The changes are in amplitude and the presence of a second cell in latitude or in depth. An ascending phase speedup causes weakening of polar and toroidal fields; a speed decrease in a late descending phase does notmore » change amplitudes. A long-duration speed increase leads to lower toroidal field peaks but unchanged polar field peaks. A second high-latitude circulation cell in an ascending phase weakens the next polar and toroidal field peaks, and the ascending phase is lengthened. A second cell in a late descending phase speeds up the cycle. A long-duration second cell leads to a poleward branch of the butterfly diagram and weaker polar fields. A second cell in depth reverses the tilt of the butterfly wing, decreasing polar fields when added during an ascending phase and increasing them during a late descending phase. A long-duration presence of a second cell in radius evolves the butterfly diagram far away from the observed one, with different dynamo periods in low and high latitudes. Thus, a second cell in depth is unlikely to persist more than a few years if the solar dynamo is advection-dominated. Our results show the importance of time variation and north-south asymmetry in meridional circulation in producing differing cycles in the north and south.« less

  16. A technique for inferring zonal irregularity drift from single-station GNSS measurements of intensity (S4) and phase (σφ) scintillations

    NASA Astrophysics Data System (ADS)

    Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.

    2016-08-01

    The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.

  17. Feedback process responsible for intermodel diversity of ENSO variability

    NASA Astrophysics Data System (ADS)

    An, Soon-Il; Heo, Eun Sook; Kim, Seon Tae

    2017-05-01

    The origin of the intermodel diversity of the El Niño-Southern Oscillation (ENSO) variability is investigated by applying a singular value decomposition (SVD) analysis between the intermodel tropical Pacific sea surface temperature anomalies (SSTA) variance and the intermodel ENSO stability index (BJ index). The first SVD mode features an ENSO-like pattern for the intermodel SSTA variance (74% of total variance) and the dominant thermocline feedback (TH) for the BJ index (51%). Intermodel TH is mainly modified by the intermodel sensitivity of the zonal thermocline gradient response to zonal winds over the equatorial Pacific (βh), and the intermodel βh is correlated higher with the intermodel off-equatorial wind stress curl anomalies than the equatorial zonal wind stress anomalies. Finally, the intermodel off-equatorial wind stress curl is associated with the meridional shape and intensity of ENSO-related wind patterns, which may cause a model-to-model difference in ENSO variability by influencing the off-equatorial oceanic Rossby wave response.

  18. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  19. Atlantic Meridional Overturning Circulation Influence on North Atlantic Sector Surface Air Temperature and its Predictability in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Latif, M.

    2017-12-01

    We investigate the influence of the Atlantic Meridional Overturning Circulation (AMOC) on the North Atlantic sector surface air temperature (SAT) in two multi-millennial control integrations of the Kiel Climate Model (KCM). One model version employs a freshwater flux correction over the North Atlantic, while the other does not. A clear influence of the AMOC on North Atlantic sector SAT only is simulated in the corrected model that depicts much reduced upper ocean salinity and temperature biases in comparison to the uncorrected model. Further, the model with much reduced biases depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector relative to the uncorrected model. The enhanced SAT predictability in the corrected model is due to a stronger and more variable AMOC and its enhanced influence on North Atlantic sea surface temperature (SST). Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SST and exhibit a smaller SAT predictability over the North Atlantic sector.

  20. Nonlinear growth of zonal flows by secondary instability in general magnetic geometry

    DOE PAGES

    Plunk, G. G.; Navarro, A. Banon

    2017-02-23

    Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.

  1. Combining zonal refractive and diffractive aspheric multifocal intraocular lenses.

    PubMed

    Muñoz, Gonzalo; Albarrán-Diego, César; Javaloy, Jaime; Sakla, Hani F; Cerviño, Alejandro

    2012-03-01

    To assess visual performance with the combination of a zonal refractive aspheric multifocal intraocular lens (MIOL) (Lentis Mplus, Oculentis GmbH) and a diffractive aspheric MIOL (Acri.Lisa 366, Acri.Tech GmbH). This prospective interventional cohort study comprised 80 eyes from 40 cataract patients (mean age: 65.5±7.3 years) who underwent implantation of the Lentis Mplus MIOL in one eye and Acri.Lisa 366 MIOL in the fellow eye. The main outcome measures were refraction; monocular and binocular uncorrected and corrected distance, intermediate, and near visual acuities; monocular and binocular defocus curves; binocular photopic contrast sensitivity function compared to a monofocal intraocular lens (IOL) control group (40 age-matched pseudophakic patients implanted with the AR-40e [Abbott Medical Optics]); and quality of vision questionnaire. Binocular uncorrected visual acuities were 0.12 logMAR (0.76 decimal) or better at all distances measured between 6 m and 33 cm. The Lentis Mplus provided statistically significant better vision than the Acri.Lisa at distances between 2 m and 40 cm, and the Acri.Lisa provided statistically significant better vision than the Lentis Mplus at 33 cm. Binocular defocus curve showed little drop-off at intermediate distances. Photopic contrast sensitivity function for distance and near were similar to the monofocal IOL control group except for higher frequencies. Moderate glare (15%), night vision problems (12.5%), and halos (10%) were reported. Complete independence of spectacles was achieved by 92.5% of patients. The combination of zonal refractive aspheric and diffractive aspheric MIOLs resulted in excellent uncorrected binocular distance, intermediate, and near vision, with low incidence of significant photic phenomena and high patient satisfaction. Copyright 2012, SLACK Incorporated.

  2. The role of clouds in early Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Burls, N.; Fedorov, A. V.

    2013-12-01

    The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the

  3. The 10-30-day oscillation of winter zonal wind in the entrance region of the East Asian subtropical jet and its relationship with precipitation in southern China

    NASA Astrophysics Data System (ADS)

    Yao, Chenyu; Huang, Qian; Zhu, Bin; Liu, Fei

    2018-06-01

    Using ECMWF ERA-Interim 6-h reanalysis data, zonal wind intra-seasonal oscillations (ISOs) in the entrance region of the East Asian subtropical westerly jet (EASWJ) in winter from 1979/1980 to 2012/2013 are studied. The results first show that there is an area with large ISO strength in the northwest of the EASWJ; in the key region, zonal wind has a dominant period of 10-30 days. The composite analysis reveals that zonal wind at 200 hPa in this key region has 10-30-day oscillation characteristics. On the 10-30-day time scale, the center of zonal wind anomaly moves eastward. The propagation of zonal wind oscillation relates to temperature tendencies at different latitudes. The remarkable increase (or decrease) in zonal wind in the key region is mostly determined by temperature anomalies to the north. The 10-30-day filtered temperature advection to the north of the key region leads to either a decrease or an increase in temperature; on the other hand, temperature variations south of the key region have trends opposite of the northern trends, which changes the temperature gradient. On the 10-30-day time scale, zonal wind anomalies are associated with precipitation in southern China. When there are easterly wind anomalies over the key region, precipitation occurs over the Yangtze River basin and its south. Diabatic heating during precipitation corresponds with warming to the south of the key region, which combines with the temperature advection to weaken the easterly wind and strengths the westerly wind. Then, the intra-seasonal precipitation moves to southwest China with warm advection and the enhanced westerly wind, which brings the positive relative vorticity advection there.

  4. Periodical oscillation of zonal wind velocities at the cloud top of Venus

    NASA Astrophysics Data System (ADS)

    Kouyama, T.; Imamura, T.; Nakamura, M.; Satoh, T.; Futaana, Y.

    2010-12-01

    Zonal wind velocity of Venus increases with height and reaches about 100 m s-1 at the cloud top level (~70km). The speed is approximately 60 times faster than the rotation speed of the solid body of Venus (~1.6 m s-1, at the equator) and this phenomenon is called a "super-rotation". From previous observations, it is known that the super-rotation changes on a long timescale. At the cloud top level, it was suggested that the super-rotation has a few years period oscillation based on observations made by Pioneer Venus orbiter of USA from 1979 to 1985 (Del Genio et al.,1990). However, the period, the amplitude, the spatial structure and the mechanism of the long period oscillation have not been understood well. Venus Express (VEX) of European Space Agency has been observing Venus since its orbital insertion in April 2006. Venus Monitoring Camera (VMC) onboard VEX has an ultra violet (UV) filter (365 nm), and VMC has taken day-side cloud images at the cloud top level with this filter. Such images exhibit various cloud features made by unknown UV absorber in the atmosphere. For investigating the characteristics of long-timescale variations of the super-rotation, we analyzed zonal velocity fields derived from UV cloud images from May 2006 to January 2010 using a cloud tracking method. UV imaging of VMC is done when the spacecraft is in the ascending portion of its elongated polar orbit. Since the orbital plane is nearly fixed in the inertial space, the local time of VMC/UV observation changes with a periodicity of one Venus year. As a result, periods when VMC observation covered day-side areas of Venus, large enough for cloud trackings, are not continuous. For deriving wind velocities we were able to use cloud images taken in 280 orbits during this period. The derived zonal wind velocity from 10°S to 40°S latitude shows a prominent year-to-year variation, and the variation is well fitted by a periodical oscillation with a period of about 260 Earth days, although not all

  5. Optimizing zonal advection of the Advanced Research WRF (ARW) dynamics for Intel MIC

    NASA Astrophysics Data System (ADS)

    Mielikainen, Jarno; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecast (WRF) model is the most widely used community weather forecast and research model in the world. There are two distinct varieties of WRF. The Advanced Research WRF (ARW) is an experimental, advanced research version featuring very high resolution. The WRF Nonhydrostatic Mesoscale Model (WRF-NMM) has been designed for forecasting operations. WRF consists of dynamics code and several physics modules. The WRF-ARW core is based on an Eulerian solver for the fully compressible nonhydrostatic equations. In the paper, we will use Intel Intel Many Integrated Core (MIC) architecture to substantially increase the performance of a zonal advection subroutine for optimization. It is of the most time consuming routines in the ARW dynamics core. Advection advances the explicit perturbation horizontal momentum equations by adding in the large-timestep tendency along with the small timestep pressure gradient tendency. We will describe the challenges we met during the development of a high-speed dynamics code subroutine for MIC architecture. Furthermore, lessons learned from the code optimization process will be discussed. The results show that the optimizations improved performance of the original code on Xeon Phi 5110P by a factor of 2.4x.

  6. Bjerknes Compensation in Meridional Heat Transport under Freshwater Forcing and the Role of Climate Feedback

    NASA Astrophysics Data System (ADS)

    Wen, Qin

    2017-04-01

    Using a coupled Earth climate model, freshwater experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley Cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley Cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change compensates the OHT change very well in the extratropics, while the former overcompensates the latter in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of Earth system. Our coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change in the model, the BJC is well established when the ocean heat storage is slowly varying and its change is weaker than the net heat flux changes at the ocean surface and the top of the atmosphere. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics (undercompensation in the extratropics) is mainly caused by the positive longwave feedback related to cloud (negative longwave feedback related to surface temperature change). Different dominant feedbacks determine different BJC scenarios in different regions

  7. Residual-Mean Analysis of the Air-Sea Fluxes and Associated Oceanic Meridional Overturning

    DTIC Science & Technology

    2006-12-01

    the adiabatic component of the MOC which is based entirely on the sea surface data . The coordinate system introduced in this study is somewhat...heat capacity of water. The technique utilizes the observational data based on meteorological re- analysis (density flux at the sea surface) and...Figure 8. Annual mean and temporal standard deviation of the zonally-averaged mixed- layer depth. The plotted data are based on Levitus 94 climatology

  8. Mars' South Polar Ar Enhancement: A Tracer for South Polar Seasonal Meridional Mixing

    NASA Astrophysics Data System (ADS)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Janes, D. M.; Hunten, D. M.; Kim, K. J.; Reedy, R. C.; Metzger, A. E.

    2004-11-01

    The gamma ray spectrometer on the Mars Odyssey spacecraft measured an enhancement of atmospheric argon over southern high latitudes during autumn followed by dissipation during winter and spring. Argon does not freeze at temperatures normal for southern winter (~145 kelvin) and is left in the atmosphere, enriched relative to carbon dioxide (CO2), as the southern seasonal cap of CO2 frost accumulates. Calculations of seasonal transport of argon into and out of southern high latitudes point to meridional (north-south) mixing throughout southern winter and spring.

  9. Rare excitatory amino acid from flowers of zonal geranium responsible for paralyzing the Japanese beetle.

    PubMed

    Ranger, Christopher M; Winter, Rudolph E; Singh, Ajay P; Reding, Michael E; Frantz, Jonathan M; Locke, James C; Krause, Charles R

    2011-01-25

    The Japanese beetle (JB), Popillia japonica, exhibits rapid paralysis after consuming flower petals of zonal geranium, Pelargonium x hortorum. Activity-guided fractionations were conducted with polar flower petal extracts from P. x hortorum cv. Nittany Lion Red, which led to the isolation of a paralysis-inducing compound. High-resolution-MS and NMR ((1)H, (13)C, COSY, heteronuclear sequential quantum correlation, heteronuclear multiple bond correlation) analysis identified the paralytic compound as quisqualic acid (C(5)H(7)N(3)O(5)), a known but rare agonist of excitatory amino acid receptors. Optical rotation measurements and chiral HPLC analysis determined an L-configuration. Geranium-derived and synthetic L-quisqualic acid demonstrated the same positive paralytic dose-response. Isolation of a neurotoxic, excitatory amino acid from zonal geranium establishes the phytochemical basis for induced paralysis of the JB, which had remained uncharacterized since the phenomenon was first described in 1920.

  10. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean.

    PubMed

    Perez, Fiz F; Fontela, Marcos; García-Ibáñez, Maribel I; Mercier, Herlé; Velo, Anton; Lherminier, Pascale; Zunino, Patricia; de la Paz, Mercedes; Alonso-Pérez, Fernando; Guallart, Elisa F; Padin, Xose A

    2018-02-22

    Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO 2 ) and experiencing ocean acidification, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the 'aragonite saturation horizon'-below which waters are undersaturated with respect to a particular calcium carbonate, aragonite-to move to shallower depths (to shoal), exposing corals to corrosive waters. Here we use a database analysis to show that the present rate of supply of acidified waters to the deep Atlantic could cause the aragonite saturation horizon to shoal by 1,000-1,700 metres in the subpolar North Atlantic within the next three decades. We find that, during 1991-2016, a decrease in the concentration of carbonate ions in the Irminger Sea caused the aragonite saturation horizon to shoal by about 10-15 metres per year, and the volume of aragonite-saturated waters to reduce concomitantly. Our determination of the transport of the excess of carbonate over aragonite saturation ( xc [CO 3 2- ])-an indicator of the availability of aragonite to organisms-by the Atlantic meridional overturning circulation shows that the present-day transport of carbonate ions towards the deep ocean is about 44 per cent lower than it was in preindustrial times. We infer that a doubling of atmospheric anthropogenic CO 2 levels-which could occur within three decades according to a 'business-as-usual scenario' for climate change-could reduce the transport of xc [CO 3 2- ] by 64-79 per cent of that in preindustrial times, which could severely endanger cold-water coral habitats. The Atlantic meridional overturning circulation would also export this acidified deep water southwards, spreading corrosive waters to the world ocean.

  11. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Perez, Fiz F.; Fontela, Marcos; García-Ibáñez, Maribel I.; Mercier, Herlé; Velo, Anton; Lherminier, Pascale; Zunino, Patricia; de La Paz, Mercedes; Alonso-Pérez, Fernando; Guallart, Elisa F.; Padin, Xose A.

    2018-02-01

    Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. Here we use a database analysis to show that the present rate of supply of acidified waters to the deep Atlantic could cause the aragonite saturation horizon to shoal by 1,000-1,700 metres in the subpolar North Atlantic within the next three decades. We find that, during 1991-2016, a decrease in the concentration of carbonate ions in the Irminger Sea caused the aragonite saturation horizon to shoal by about 10-15 metres per year, and the volume of aragonite-saturated waters to reduce concomitantly. Our determination of the transport of the excess of carbonate over aragonite saturation (xc[CO32-])—an indicator of the availability of aragonite to organisms—by the Atlantic meridional overturning circulation shows that the present-day transport of carbonate ions towards the deep ocean is about 44 per cent lower than it was in preindustrial times. We infer that a doubling of atmospheric anthropogenic CO2 levels—which could occur within three decades according to a ‘business-as-usual scenario’ for climate change—could reduce the transport of xc[CO32-] by 64-79 per cent of that in preindustrial times, which could severely endanger cold-water coral habitats. The Atlantic meridional overturning circulation would also export this acidified deep water southwards, spreading corrosive waters to the world ocean.

  12. Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1999-01-01

    The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.

  13. Macro and micro rate zonal analytical centrifugation of polydisperse and slowly diffusing sedimenting systems in isovolumetric density gradients. Application to cartilage proteoglycans.

    PubMed

    Müller, F J; Pezon, C F; Pita, J C

    1989-06-13

    A method to study the polydispersity of zonally sedimenting and slowly diffusing macromolecules or particles in isokinetic or isovolumetric density gradients is presented. First, a brief theory is given for predicting the zonal profile after a "triangular" (or "inverse") zone is centrifuged. This type of zone is essential to preserve hydrodynamic stability of the very slowly diffusing polydisperse solutes. It is proven, both by semitheoretical considerations and by computer calculations, that the resulting concentration profile of macrosolute is almost identical with that obtainable with a rectangular zone coextensive with the triangular one and carrying the same total mass. Next, practical procedures are described for the convectionless layering of very small triangular zones (50 microL or less). The linearity and stability of the zones are experimentally tested and verified. Finally, the method is applied to cartilage proteoglycan preparations that included either the monomeric molecules only or both the monomeric and the aggregated ones. The zonal results are compared with those obtained by using conventional boundary sedimentation. The two sets of results are seen to coincide fairly well, thus proving that the present technique can add to preparative zonal centrifugation the analytical precision of boundary sedimentation. A multimodal polydisperse system is suggested to describe the aggregated proteoglycan macromolecules.

  14. Comment on "Multiyear prediction of monthly mean Atlantic Meridional Overturning Circulation at 26.5°N".

    PubMed

    Vecchi, Gabriel A; Msadek, Rym; Delworth, Thomas L; Dixon, Keith W; Guilyardi, Eric; Hawkins, Ed; Karspeck, Alicia R; Mignot, Juliette; Robson, Jon; Rosati, Anthony; Zhang, Rong

    2012-11-02

    Matei et al. (Reports, 6 January 2012, p. 76) claim to show skillful multiyear predictions of the Atlantic Meridional Overturning Circulation (AMOC). However, these claims are not justified, primarily because the predictions of AMOC transport do not outperform simple reference forecasts based on climatological annual cycles. Accordingly, there is no justification for the "confident" prediction of a stable AMOC through 2014.

  15. The Atlantic Meridional Overturning Circulation and Abrupt Climate Change.

    PubMed

    Lynch-Stieglitz, Jean

    2017-01-03

    Abrupt changes in climate have occurred in many locations around the globe over the last glacial cycle, with pronounced temperature swings on timescales of decades or less in the North Atlantic. The global pattern of these changes suggests that they reflect variability in the Atlantic meridional overturning circulation (AMOC). This review examines the evidence from ocean sediments for ocean circulation change over these abrupt events. The evidence for changes in the strength and structure of the AMOC associated with the Younger Dryas and many of the Heinrich events is strong. Although it has been difficult to directly document changes in the AMOC over the relatively short Dansgaard-Oeschger events, there is recent evidence supporting AMOC changes over most of these oscillations as well. The lack of direct evidence for circulation changes over the shortest events leaves open the possibility of other driving mechanisms for millennial-scale climate variability.

  16. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-05-31

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  17. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  18. Quasi-biennial oscillation and tropical waves in total ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemke, J.R.; Stanford, J.L.

    1994-11-01

    Westward and eastward propagating tropical waves in total ozone are investigated in 13 years (1979-1991) of version 6 total column ozone data from the Nimbus 7 total ozone mapping spectrometer (TOMS) satellite instrument. A clear synchronization between the stratospheric quasi-biennial osciallation (QBO) zonal winds and the fast (periods less than 15 days) propagating waves in tropical TOMS data is detailed. Largest total ozone wave amplitudes (about 3-6 Dobson units) occur when their phase propagation direction is primarily opposite the Singapore QBO lower-stratospheric winds. This effect is most apparent in meridionally symmetric components. Examination of specific episodes, including cross-spectral calculations withmore » Singapore rawinsonde wind data (10-70 hPa), reveals signatures of tropically confined eastward propagating Kelvin waves of zonal wavenumbers 1-2 during the descending eastward QBO phase, consistent with acceleration of that QBO phase by Kelvin waves. The TOMS results are also consistent with possible forcing of the westward QBO wind phase by episodes of both meridionally symmetric and asymmetric westward waves. However, in contrast to the case of eastward (Kelvin) waves the strongest westward events appear to be filtered by, rather than forcing, the westward phase of the stratospheric QBO wind. These dominant westward episodes are interpreted as meridionally symmetric westward global normal modes and tropically confined equatorial-Rossby waves 2-6. The events exhibit phase and group speeds characteristic of wave dynamics rather than simple wind advection. These results underscore the utility of the long time series and excellent horizontal coverage of TOMS data for dynamical investigations in the relatively observation-poor tropical stratosphere.« less

  19. Parameterized and resolved Southern Ocean eddy compensation

    NASA Astrophysics Data System (ADS)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  20. Shallow water simulations of Saturn's giant storms at different latitudes

    NASA Astrophysics Data System (ADS)

    García-Melendo, E.; Sánchez-Lavega, A.

    2017-04-01

    Shallow water simulations are used to present a unified study of three major storms on Saturn (nicknamed as Great White Spots, GWS) at different latitudes, polar (1960), equatorial (1990), and mid-latitude (2010) (Sánchez-Lavega, 2004; Sánchez-Lavega et al., 2011). In our model, the three GWS are initiated by introducing a Gaussian function pulse at the latitude of the observed phenomena with controlled horizontal size and amplitude. This function represents the convective source that has been observed to trigger the storm. A growing disturbance forms when the pulse reacts to ambient winds, expanding zonally along the latitude band of the considered domain. We then compare the modeled potential vorticity with the cloud field, adjusting the model parameters to visually get the closest aspect between simulations and observations. Simulations of the 2010 GWS (planetographic latitude ∼+40º, zonal velocity of the source ∼-30 m s-1) indicate that the Coriolis forces and the wind profile structure shape the disturbance generating, as observed, a long region to the east of the convective source with a high speed peripheral anticyclonic circulation, and a long-lived anticyclonic compact vortex accompanied by strong zonal advection on the southern part of the storm forming a turbulent region. Simulations of the equatorial 1990 GWS (planetographic latitude +12º-+5º, zonal velocity of the source 365-400 m s-1) show a different behavior because of the intense eastward jet, meridional shear at the equatorial region, and low latitude dynamics. A round shaped source forms as observed, with the rapid growth of a Kelvin-Helmholtz instability on the north side of the source due to advection and to the strong meridional wind shear, whereas at the storm latitude the disturbance grows and propagates eastward. The storm nucleus is the manifestation of a Rossby wave, while the eastward propagating planetary-scale disturbance is a gravity-Rossby wave trapped around the equator

  1. C/NOFS Satellite Electric Field and Plasma Density Observations of Plasma Instabilities Below the Equatorial F-Peak -- Evidence for Approximately 500 km-Scale Spread-F "Precursor" Waves Driven by Zonal Shear Flow and km-Scale, Narrow-Banded Irregularities

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Freudenreich, H.; Klenzing, J.; Liebrecht, C.; Valladares, C.

    2011-01-01

    As solar activity has increased, the ionosphere F-peak has been elevated on numerous occasions above the C/NOFS satellite perigee of 400km. In particular, during the month of April, 2011, the satellite consistently journeyed below the F-peak whenever the orbit was in the region of the South Atlantic anomaly after sunset. During these passes, data from the electric field and plasma density probes on the satellite have revealed two types of instabilities which had not previously been observed in the C/NOFS data set (to our knowledge): The first is evidence for 400-500km-scale bottomside "undulations" that appear in the density and electric field data. In one case, these large scale waves are associated with a strong shear in the zonal E x B flow, as evidenced by variations in the meridional (outward) electric fields observed above and below the F-peak. These undulations are devoid of smaller scale structures in the early evening, yet appear at later local times along the same orbit associated with fully-developed spread-F with smaller scale structures. This suggests that they may be precursor waves for spread-F, driven by a collisional shear instability, following ideas advanced previously by researchers using data from the Jicamarca radar. A second new result (for C/NOFS) is the appearance of km-scale irregularities that are a common feature in the electric field and plasma density data that also appear when the satellite is below the F -peak at night. The vector electric field instrument on C/NOFS clearly shows that the electric field component of these waves is strongest in the zonal direction. These waves are strongly correlated with simultaneous observations of plasma density oscillations and appear both with, and without, evidence of larger-scale spread-F depletions. These km-scale, quasi-coherent waves strongly resemble the bottomside, sinusoidal irregularities reported in the Atmosphere Explorer satellite data set by Valladares et al. [JGR, 88, 8025, 1983

  2. On radiating baroclinic instability of zonally varying flow

    NASA Technical Reports Server (NTRS)

    Finley, Catherine A.; Nathan, Terrence R.

    1993-01-01

    A quasi-geostrophic, two-layer, beta-plane model is used to study the baroclinic instability characteristics of a zonally inhomogeneous flow. It is assumed that the disturbance varied slowly in the cross-stream direction, and the stability problem was formulated as a 1D initial value problem. Emphasis is placed on determining how the vertically averaged wind, local maximum in vertical wind shear, and length of the locally supercritical region combine to yield local instabilities. Analysis of the local disturbance energetics reveals that, for slowly varying basic states, the baroclinic energy conversion predominates within the locally unstable region. Using calculations of the basic state tendencies, it is shown that the net effect of the local instabilities is to redistribute energy from the baroclinic to the barotropic component of the basic state flow.

  3. The Mass and Angular Momentum Balance of the Zonally-Averaged Global Circulation.

    DTIC Science & Technology

    1981-01-01

    2 2SFSf F SO~ ABSTRACT (0m-l n oerse~e side Ht moeoeei md fdeutly’ by Week now"*ee Li ATTACHED hO u 47 EDI TIo OP 1 NOV6 Ies OBSOLETE UNCLASS 82 09 28...eddies, and transient circulat.@ns, respec tively. rigeree 12 and 13 displa the vertical sad meridional distribution of relat’.ve angular momentum trass...the transient component is the dominant mode of angular momentum transport in January. It is poleward at virtually all latitudes in each hemisphere

  4. Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.

    DTIC Science & Technology

    1984-02-01

    a r-re complete set of equations is used, but their effect is imposed by means of a right hand side forcing function, not by means of a zonal boundary...modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and are discussed. Computational tests in two dimensions...used to simplify the task of grid generation without an adverse achieve computational efficiency. More recently, effect on flow-field algorithms and

  5. The Brown Alga Stypopodium zonale (Dictyotaceae): A Potential Source of Anti-Leishmania Drugs

    PubMed Central

    Soares, Deivid Costa; Szlachta, Marcella Macedo; Teixeira, Valéria Laneuville; Soares, Angelica Ribeiro; Saraiva, Elvira Maria

    2016-01-01

    This study evaluated the anti-Leishmania amazonensis activity of a lipophilic extract from the brown alga Stypopodium zonale and atomaric acid, its major compound. Our initial results revealed high inhibitory activity for intracellular amastigotes in a dose-dependent manner and an IC50 of 0.27 μg/mL. Due to its high anti-Leishmania activity and low toxicity toward host cells, we fractionated the lipophilic extract. A major meroditerpene in this extract, atomaric acid, and its methyl ester derivative, which was obtained by a methylation procedure, were identified by nuclear magnetic resonance (NMR) spectroscopy. Both compounds inhibited intracellular amastigotes, with IC50 values of 20.2 μM (9 μg/mL) and 22.9 μM (10 μg/mL), and selectivity indexes of 8.4 μM and 11.5 μM. The leishmanicidal activity of both meroditerpenes was independent of nitric oxide (NO) production, but the generation of reactive oxygen species (ROS) may be at least partially responsible for the amastigote killing. Our results suggest that the lipophilic extract of S. zonale may represent an important source of compounds for the development of anti-Leishmania drugs. PMID:27618071

  6. Zonal drift velocities of the ionospheric plasma bubbles over brazilian region using oi630nm airglow digital images

    NASA Astrophysics Data System (ADS)

    Arruda, D. C. S.; Sobral, J. H. A.; Abdu, M. A.; Castilho, V. M.; Takahashi, H.

    The zonal drift velocities of the ionospheric plasma bubbles over the Brazilian region are analyzed in this study that is based on OI630nm airglow digital images. These digital images were obtained by an all-sky imager system between October 1998 and August 2000, at Cachoeira Paulista (22.5°S, 45°W), a low latitude region. In this period, 138 nights of OI 630 nm airglow experiments were carried out of which 30 nights detected the ionospheric plasma bubbles. These 30 nights correspond to magnetically quiet days (ΣK_P<24+) and were grouped according approximately to their season. KEY WORDS: Imager System, Ionospheric Plasma Bubbles, Zonal drift velocities, OI630nm.

  7. Modeling the zonal disintegration of rocks near deep level tunnels by gradient internal variable continuous phase transition theory

    NASA Astrophysics Data System (ADS)

    Haoxiang, Chen; Qi, Chengzhi; Peng, Liu; Kairui, Li; Aifantis, Elias C.

    2015-12-01

    The occurrence of alternating damage zones surrounding underground openings (commonly known as zonal disintegration) is treated as a "far from thermodynamic equilibrium" dynamical process or a nonlinear continuous phase transition phenomenon. The approach of internal variable gradient theory with diffusive transport, which may be viewed as a subclass of Landau's phase transition theory, is adopted. The order parameter is identified with an irreversible strain quantity, the gradient of which enters into the expression for the free energy of the rock system. The gradient term stabilizes the material behavior in the post-softening regime, where zonal disintegration occurs. The results of a simplified linearized analysis are confirmed by the numerical solution of the nonlinear problem.

  8. Zonal wind indices to reconstruct United States winter precipitation during El Niño

    NASA Astrophysics Data System (ADS)

    Farnham, D. J.; Steinschneider, S.; Lall, U.

    2017-12-01

    The highly discussed 2015/16 El Niño event, which many likened to the similarly strong 1997/98 El Niño event, led to precipitation impacts over the continental United States (CONUS) inconsistent with general expectations given past events and model-based forecasts. This presents a challenge for regional water managers and others who use seasonal precipitation forecasts who previously viewed El Niño events as times of enhanced confidence in seasonal water availability and flood risk forecasts. It is therefore useful to understand the extent to which wintertime CONUS precipitation during El Niño events can be explained by seasonal sea surface temperature heating patterns and the extent to which the precipitation is a product of natural variability. In this work, we define two seasonal indices based on the zonal wind field spanning from the eastern Pacific to the western Atlantic over CONUS that can explain El Niño precipitation variation spatially throughout CONUS over 11 historic El Niño events from 1950 to 2016. The indices reconstruct El Niño event wintertime (Jan-Mar) gridded precipitation over CONUS through cross-validated regression much better than the traditional ENSO sea surface temperature indices or other known modes of variability. Lastly, we show strong relationships between sea surface temperature patterns and the phases of the zonal wind indices, which in turn suggests that some of the disparate CONUS precipitation during El Niño events can be explained by different heating patterns. The primary contribution of this work is the identification of intermediate variables (in the form of zonal wind indices) that can facilitate further studies into the distinct hydroclimatic response to specific El Niño events.

  9. Zonal and tesseral harmonic coefficients for the geopotential function, from zero to 18th order

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. C.

    1976-01-01

    Zonal and tesseral harmonic coefficients for the geopotential function are usually tabulated in normalized form to provide immediate information as to the relative significance of the coefficients in the gravity model. The normalized form of the geopotential coefficients cannot be used for computational purposes unless the gravity model has been modified to receive them. This modification is usually not done because the absolute or unnormalized form of the coefficients can be obtained from the simple mathematical relationship that relates the two forms. This computation can be quite tedious for hand calculation, especially for the higher order terms, and can be costly in terms of storage and execution time for machine computation. In this report, zonal and tesseral harmonic coefficients for the geopotential function are tabulated in absolute or unnormalized form. The report is designed to be used as a ready reference for both hand and machine calculation to save the user time and effort.

  10. SPCZ zonal events and downstream influence on surface ocean conditions in the Indonesian Throughflow region

    NASA Astrophysics Data System (ADS)

    Linsley, Braddock K.; Wu, Henry C.; Rixen, Tim; Charles, Christopher D.; Gordon, Arnold L.; Moore, Michael D.

    2017-01-01

    Seasonal surface freshening of the Makassar Strait, the main conduit of the Indonesian Throughflow (ITF), is a key factor controlling the ITF. Here we present a 262 year reconstruction of seasonal sea-surface-salinity variability from 1742 to 2004 Common Era by using coral δ18O records from the central Makassar Strait. Our record reveals persistent seasonal freshening and also years with significant truncations of seasonal freshening that correlate exactly with South Pacific Convergence Zone (SPCZ) zonal events >4000 km to the east. During these events, the SPCZ dramatically rotates 15° north to near the equator and stronger westward flowing South Pacific boundary currents force higher-salinity water through the Makassar Strait in February-May halting the normal seasonal freshening in the strait. By these teleconnections, our Makassar coral δ18O series provides the first record of the recurrence interval of these zonal SPCZ events and demonstrates that they have occurred on a semiregular basis since the mid-1700s.

  11. The possible physical mechanism for the EAP-SR co-action

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Feng, Guolin; Dogar, Muhammad Mubashar; Huang, Gang

    2017-11-01

    The anomalous characteristics of summer precipitation and atmospheric circulation in the East Asia-West Pacific Region (EA-WP) associated with the co-action of East Asia/Pacific teleconnection-Silk Road teleconnection (EAP-SR) are investigated in this study. The compositions of EAP-SR phase anomalies can be expressed as pattern I (+ +), pattern II (+ -), pattern III (- -), and pattern IV (- +) using EAP and SR indices. It is found that the spatial distribution of summer precipitation anomalies in EA-WP corresponding to pattern I (III) shows a tripole structure in the meridional direction and a zonal dipole structure in the subtropical region, while pattern II (IV) presents a tripole pattern in meridional direction with compressed and continuous anomalies in the zonal direction over the subtropical region. The similar meridional and zonal structures are also found in the geopotential height anomalies at 500-hPa, as well as wind anomalies and moisture convergence at 850-hPa. Finally, a schematic mechanism for the EAP-SR co-action upon the summer precipitation in EA-WP is built: (1) Pattern I (III) exhibits that the negative (positive) sea surface temperature (SST) anomalies over tropical East Pacific may cause the enhanced (weakened) convective activity dominating the West Pacific, trigger the positive (negative) EAP teleconnection and produce more (less) precipitation. Besides, the negative (positive) SST anomalies over the Indonesia Maritime Continent (IMC) may further weaken (strengthen) anomalous downward (upward) motion over the South China Sea (SCS), cause negative (positive) geopotential height anomalies at the middle troposphere and surrounding regions through the function of the tropical Hadley circulation. Then the negative (positive) geopotential height anomalies could motivate the positive (negative) EAP teleconnection through the northward propagation of wave-activity perturbation. Meanwhile, a positive (negative) geopotential height anomalous pattern

  12. WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons

    NASA Astrophysics Data System (ADS)

    Amaya, Dillon J.; DeFlorio, Michael J.; Miller, Arthur J.; Xie, Shang-Ping

    2017-09-01

    The Atlantic Meridional Mode (AMM) is the dominant mode of tropical SST/wind coupled variability. Modeling studies have implicated wind-evaporation-SST (WES) feedback as the primary driver of the AMM's evolution across the Atlantic basin; however, a robust coupling of the SST and winds has not been shown in observations. This study examines observed AMM growth, propagation, and decay as a result of WES interactions. Investigation of an extended maximum covariance analysis shows that boreal wintertime atmospheric forcing generates positive SST anomalies (SSTA) through a reduction of surface evaporative cooling. When the AMM peaks in magnitude during spring and summer, upward latent heat flux anomalies occur over the warmest SSTs and act to dampen the initial forcing. In contrast, on the southwestern edge of the SSTA, SST-forced cross-equatorial flow reduces the strength of the climatological trade winds and provides an anomalous latent heat flux into the ocean, which causes southwestward propagation of the initial atmosphere-forced SSTA through WES dynamics. Additionally, the lead-lag relationship of the ocean and atmosphere indicates a transition from an atmosphere-forcing-ocean regime in the northern subtropics to a highly coupled regime in the northern tropics that is not observed in the southern hemisphere. CMIP5 models poorly simulate the latitudinal transition from a one-way interaction to a two-way feedback, which may explain why they also struggle to reproduce spatially coherent interactions between tropical Atlantic SST and winds. This analysis provides valuable insight on how meridional modes act as links between extratropical and tropical variability and focuses future research aimed at improving climate model simulations.

  13. Kelvin wave-induced trace constituent oscillations in the equatorial stratosphere

    NASA Technical Reports Server (NTRS)

    Randel, William J.

    1990-01-01

    Kelvin wave induced oscillations in ozone (O3), water vapor (H2O), nitric acid (HNO3) and nitrogen dioxide (NO2) in the equatorial stratosphere are analyzed using Limb Infrared Monitor of the Stratosphere (LIMS) data. Power and cross-spectrum analyses reveal coherent eastward propagating zonal wave 1 and 2 constituent fluctuations, due to the influence of Kelvin waves previously documented in the LIMS data. Comparison is made between a preliminary and the archival versions of the LIMS data; significant differences are found, demonstrating the sensitivity of constituent retrievals to derived temperature profiles. Because Kelvin waves have vanishing meridional velocity, analysis of tracer transport in the meridional plane is substantially simplified. Kelvin wave vertical advection is demonstrated by coherent, in-phase temperature-tracer oscillations, co-located near regions of strong background vertical gradients.

  14. A three-dimensional model simulation of atmospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Blackshear, W. T.; Grose, W. L.; Eckman, R. S.; Pierce, R. B.; Fairlie, T. D. A.

    1992-01-01

    The NASA Langley 3D GCM chemical transport model is used to investigate the distribution of atmospheric N2O up to 60 km altitude. The transport characteristics of the model is evaluated without the complications of a detailed chemical formulation for all of the relevant stratospheric minor constituents. Interpretation of the yearly average zonal mean N2O distribution in terms of transport by the yearly averaged meridional circulation and stratospheric photochemical loss indicates large regions in the Northern Hemisphere stratosphere where dynamical mixing apparently plays a large role in maintaining the N2O distribution. In these regions, slopes of the N2O mixing ratio isopleths are maintained by competition between advection by the meridional circulation acting to steepen and dynamical mixing acting to flatten the slopes.

  15. Alternative experiments using the geophysical fluid flow cell

    NASA Technical Reports Server (NTRS)

    Hart, J. E.

    1984-01-01

    This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.

  16. Diurnal, monthly and seasonal variation of mean winds in the MLT region observed over Kolhapur using MF radar

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Gaikwad, H. P.; Ratnam, M. Venkat; Gurav, O. B.; Ramanjaneyulu, L.; Chavan, G. A.; Sathishkumar, S.

    2018-04-01

    Medium Frequency (MF) radar located at Kolhapur (16.8°N, 74.2°E) has been upgraded in August 2013. Since then continuous measurements of zonal and meridional winds are obtained covering larger altitudes from the Mesosphere and Lower Thermosphere (MLT) region. Diurnal, monthly and seasonal variation of these mean winds is presented in this study using four years (2013-2017) of observations. The percentage occurrence of radar echoes show maximum between 80 and 105 km. The mean meridional wind shows Annual Oscillation (AO) between 80 and 90 km altitudes with pole-ward motion during December solstice and equatorial motion during June solstice. Quasi-biennial oscillation (QBO) with weaker amplitudes are also observed between 90 and 104 km. Zonal winds show semi-annual oscillation (SAO) with westward winds during equinoxes and eastward winds during solstices between 80 and 90 km. AO with eastward winds during December solstice and westward wind in the June solstice is also observed in the mean zonal wind between 100 and 110 km. These results match well with that reported from other latitudes within Indian region between 80 and 90 km. However, above 90 km the results presented here provide true mean background winds for the first time over Indian low latitude region as the present station is away from equatorial electro-jet and are not contaminated by ionospheric processes. Further, the results presented earlier with an old version of this radar are found contaminated due to unknown reasons and are corrected in the present work. This upgraded MF radar together with other MLT radars in the Indian region forms unique network to investigate the vertical and lateral coupling.

  17. Drift-wave turbulence and zonal flow generation.

    PubMed

    Balescu, R

    2003-10-01

    Drift-wave turbulence in a plasma is analyzed on the basis of the wave Liouville equation, describing the evolution of the distribution function of wave packets (quasiparticles) characterized by position x and wave vector k. A closed kinetic equation is derived for the ensemble-averaged part of this function by the methods of nonequilibrium statistical mechanics. It has the form of a non-Markovian advection-diffusion equation describing coupled diffusion processes in x and k spaces. General forms of the diffusion coefficients are obtained in terms of Lagrangian velocity correlations. The latter are calculated in the decorrelation trajectory approximation, a method recently developed for an accurate measure of the important trapping phenomena of particles in the rugged electrostatic potential. The analysis of individual decorrelation trajectories provides an illustration of the fragmentation of drift-wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows.

  18. Dynamical analysis of a satellite-observed anticyclonic eddy in the northern Bering Sea

    NASA Astrophysics Data System (ADS)

    Li, Yineng; Li, Xiaofeng; Wang, Jia; Peng, Shiqiu

    2016-05-01

    The characteristics and evolution of a satellite-observed anticyclonic eddy in the northern Bering Sea during March and April 1999 are investigated using a three-dimensional Princeton Ocean Model (POM). The anticyclonic-like current pattern and asymmetric feature of the eddy were clearly seen in the synthetic aperture radar (SAR), sea surface temperature, and ocean color images in April 1999. The results from model simulation reveal the three-dimensional structure of the anticyclonic eddy, its movement, and dissipation. Energy analysis indicates that the barotropic instability (BTI) is the main energy source for the growth of the anticyclonic eddy. The momentum analysis further reveals that the larger magnitude of the barotropic pressure gradient in the meridional direction causes the asymmetry of the anticyclonic eddy in the zonal and meridional directions, while the different magnitudes of the meridional baroclinic pressure gradient are responsible for the different intensity of currents between the northern and southern parts of the anticyclonic eddy. This article was corrected on 23 JUL 2016. See the end of the full text for details.

  19. Diagnostic calculations of the circulation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Santee, Michelle L.; Crisp, David

    1995-01-01

    The circulation of the Martian atmosphere during late southern summer is derived from atmospheric temperature and dust distributions retrieved from a subset of the Mariner 9 infrared interferometer spectrometer (IRIS) thermal emission spectra (L(sub s) = 343-348 deg). Zonal-mean zonal winds are calculated by assuming gradient wind balance and zero surface zonal wind. Both hemispheres have intense midlatitude westerly jets with velocities of 80-90 m/s near 50 km; in the southern tropics the winds are easterly with velocities of 40 m/s near 50 km. The net effect of the zonal mean meridional circulation and large-scale waves can be approximated by the diabatic circulation, which is defined from the atmospheric thermal structure and net radiative heating rates. The radiative transfer model described by Crisp (1990) and Santee (1993) is used to compute solar heating and thermal cooling rates from diurnal averages of the retrieved IRIS temperature and dust distributions. At pressures below 4 mbar, there are large net radiative heating rates (up to 5 K/d) in the equatorial region and large net radiative cooling rates (up to 12 K/d) in the polar regions. These net radiative heating rates are used in a diagnostic stream function model which solves for the meridional and vertical components of the diabatic circulation simultaneously. We find a two-cell circulation, with rising motion over the equator, poleward flow in both hemispheres, sinking motion over both polar regions, and return flow in the lowest atmospheric levels. The maximum poleward velocity is 3 m/s in the tropics at approx. 55 km altitude, and the maximum vertical velocity is 2.5 cm/s downward over the north pole at approx. 60 km altitude. If these large transport rates are sustained for an entire season, the Martian atmosphere above the 1-mbar level is overturned in about 38 days. This diabatic circulation is qualitatively similar to the terrestrial diabatic circulation at the comparable season, but is more

  20. On the stability of the Atlantic meridional overturning circulation.

    PubMed

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-12-08

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC.

  1. On the stability of the Atlantic meridional overturning circulation

    PubMed Central

    Hofmann, Matthias; Rahmstorf, Stefan

    2009-01-01

    One of the most important large-scale ocean current systems for Earth's climate is the Atlantic meridional overturning circulation (AMOC). Here we review its stability properties and present new model simulations to study the AMOC's hysteresis response to freshwater perturbations. We employ seven different versions of an Ocean General Circulation Model by using a highly accurate tracer advection scheme, which minimizes the problem of numerical diffusion. We find that a characteristic freshwater hysteresis also exists in the predominantly wind-driven, low-diffusion limit of the AMOC. However, the shape of the hysteresis changes, indicating that a convective instability rather than the advective Stommel feedback plays a dominant role. We show that model errors in the mean climate can make the hysteresis disappear, and we investigate how model innovations over the past two decades, like new parameterizations and mixing schemes, affect the AMOC stability. Finally, we discuss evidence that current climate models systematically overestimate the stability of the AMOC. PMID:19897722

  2. Mid-Pliocene Atlantic Meridional Overturning Circulation Not Unlike Modern

    NASA Technical Reports Server (NTRS)

    Zhang, Z.-S.; Nisancioglu, K. H.; Chandler, M. A.; Haywood, A. M.; Otto-Bliesner, B. L.; Ramstein, G.; Stepanek, C.; Abe-Ouchi, A.; Chan, W. -L.; Sohl, L. E.

    2013-01-01

    In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.

  3. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    PubMed

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  4. Continuous versus discontinuous albedo representations in a simple diffusive climate model

    NASA Astrophysics Data System (ADS)

    Simmons, P. A.; Griffel, D. H.

    1988-07-01

    A one-dimensional annually and zonally averaged energy-balance model, with diffusive meridional heat transport and including icealbedo feedback, is considered. This type of model is found to be very sensitive to the form of albedo used. The solutions for a discontinuous step-function albedo are compared to those for a more realistic smoothly varying albedo. The smooth albedo gives a closer fit to present conditions, but the discontinuous form gives a better representation of climates in earlier epochs.

  5. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    DTIC Science & Technology

    2015-04-09

    where u is the zonal momentum per unit mass, v is the meridional momentum per unit mass, h is the fluid depth, and f is the Coriolis parameter. An...from each cyclone advects the other116 creating a net cyclonic motion (the Fujiwhara effect ; Fujiwhara 1921) (case 2 idealization).117 In Fig. 2c, the...the interaction of the two136 vortices cause a net cyclonic motion (the Fujiwhara effect ).137 The initial condition for the binary vortex interaction

  6. Performance of a transonic fan stage designed for a low meridional velocity ratio

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Lewis, G. W., Jr.; Osborn, W. M.

    1978-01-01

    The aerodynamic performance and design parameters of a transonic fan stage are presented. The fan stage was designed for a meridional velocity ratio of 0.8 across the tip of the stage, a pressure ratio of 1.57, a flow of 29.5 kilograms per second, and a tip speed of 426 meters per second. Radial surveys were obtained over the stable operating range from 50 to 100 percent of design speed. The measured, peak efficiency (0.81) of the stage occurred at a pressure ratio of 1.58 and a flow of 28.7 kilograms per second.

  7. Subcellular fractionation by zonal centrifugation of glucose-repressed anaerobically grown Saccharomyces carlsbergensis

    PubMed Central

    Cartledge, T. G.; Lloyd, D.

    1972-01-01

    1. Homogenates were prepared from sphaeroplasts of anaerobically grown, glucoserepressed Saccharomyces carlsbergensis, and the distributions of marker enzymes investigated after zonal centrifugation on sucrose gradients containing 2mm-MgCl2. 2. These homogenates contained no detectable cytochrome c oxidase, succinate–cytochrome c oxidoreductase, succinate–ferricyanide oxidoreductase, l(+)-lactate–cytochrome c oxidoreductase or catalase. Cytochromes a+a3 and c were not detected. 3. Zonal centrifugation of whole homogenates indicated complex density distributions of the sedimentable portions of NADH– and NADPH–cytochrome c oxidoreductases, adenosine triphosphatases (ATPases), adenosine pyrophosphatase (ADPase), pyrophosphatase and acid p-nitrophenyl phosphatase. Several different ATPases were distinguished on the basis of their sensitivities to oligomycin and ouabain. 4. Differential centrifugation of whole homogenates at 105g-min left 80–90% of the protein, dithionite-reducible cytochrome b, acid hydrolases and pyrophosphatase in a supernatant (S1) together with 65 and 56% of the NADH– and NADPH–cytochrome c oxidoreductases respectively, 25% of the ATPases and 71% of the adenosine monophosphatase. 5. Further analysis of supernatant S1 revealed the presence of a class of small particles containing NADPH–cytochrome c oxidoreductases and ATPases. 6. At least four different populations of large particles were distinguished. 7. Electron microscopy indicated that one of these corresponded to `promitochondria' as described by other workers. ImagesPLATE 1PLATE 2PLATE 3 PMID:4405573

  8. Long-Term Evolution of the Aerosol Debris Cloud Produced by the 2009 Impact on Jupiter

    NASA Technical Reports Server (NTRS)

    Sanchez-Lavega, A.; Orton, G. S.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L. N.; Garcia-Melendo, E.; Gomez-Forrellad, J. M.; de Pater, I.; Wong, M.; Hammel. H. B.; hide

    2011-01-01

    We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009. The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 micron. The impact cloud expanded zonally from approximately 5000 km (July 19) to 225,000 km (29 October, about 180 deg in longitude), remaining meridionally localized within a latitude band from 53.5 deg S to 61.5 deg S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 deg S latitude increases its eastward velocity with altitude above the tropopause by 5- 10 m/s. The corresponding vertical wind shear is low, about 1 m/s per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m/s. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased

  9. On the evolution of Atlantic Meridional Overturning Circulation Fingerprint and implications for decadal predictability in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhang, Jinting; Zhang, Rong

    2015-07-01

    It has been suggested previously that the Atlantic Meridional Overturning Circulation (AMOC) anomaly associated with changes in the North Atlantic Deep Water formation propagates southward with an advection speed north of 34°N. In this study, using Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 (GFDL CM2.1), we show that this slow southward propagation of the AMOC anomaly is crucial for the evolution and the enhanced decadal predictability of the AMOC fingerprint—the leading mode of upper ocean heat content (UOHC) in the extratropical North Atlantic. A positive AMOC anomaly in northern high latitudes leads to a convergence/divergence of the Atlantic meridional heat transport (MHT) anomaly in the subpolar/Gulf Stream region, thus warming in the subpolar gyre (SPG) and cooling in the Gulf Stream region after several years. Recent decadal prediction studies successfully predicted the observed warm shift in the SPG in the mid-1990s. Our results here provide the physical mechanism for the enhanced decadal prediction skills in the SPG UOHC.

  10. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-01

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  11. Global ozone observations from the UARS MLS: An overview of zonal-mean results

    NASA Technical Reports Server (NTRS)

    Froidevaux, Lucien; Waters, Joe W.; Read, William G.; Elson, Lee S.; Flower, Dennis A.; Jarnot, Robert F.

    1994-01-01

    Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the low ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30 deg S to 30 deg N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. The most striking ozone changes have occurred at northern midlatitudes, with the October 1992 to July 1993 column values significantly lower than during the prior year. The zonal-mean changes manifest themselves as a slower rate of increase during the 1992/93 winter, and there is some evidence for a lower fall minimum. A recovery occurs during late summer of 1993; early 1994 values are significantly larger than during the two previous winters. The timing and latitudinal extent of the northern midlatitude decreases appear to rule out observed ClO enhancements in the Arctic vortex, with related chemical processing and ozone dilution effects, as a unique cause. Local depletion from ClO-related chemical mechanisms alone is also not sufficient, based

  12. Technical Report Series on Global Modeling and Data Assimilation. Volume 20; The Climate of the FVCCM-3 Model

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen

    2001-01-01

    This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.

  13. A possible explanation for the divergent projection of ENSO amplitude change under global warming

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Li, Tim; Yu, Yongqiang; Behera, Swadhin K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) is the greatest climate variability on interannual time scale, yet what controls ENSO amplitude changes under global warming (GW) is uncertain. Here we show that the fundamental factor that controls the divergent projections of ENSO amplitude change within 20 coupled general circulation models that participated in the Coupled Model Intercomparison Project phase-5 is the change of climatologic mean Pacific subtropical cell (STC), whose strength determines the meridional structure of ENSO perturbations and thus the anomalous thermocline response to the wind forcing. The change of the thermocline response is a key factor regulating the strength of Bjerknes thermocline and zonal advective feedbacks, which ultimately lead to the divergent changes in ENSO amplitude. Furthermore, by forcing an ocean general circulation mode with the change of zonal mean zonal wind stress estimated by a simple theoretical model, a weakening of the STC in future is obtained. Such a change implies that ENSO variability might strengthen under GW, which could have a profound socio-economic consequence.

  14. Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno's first perijove

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J. M.; Go, C.; Peach, D.; Colas, F.; Vedovato, M.

    2017-05-01

    We analyze Jupiter observations between December 2015 and August 2016 in the 0.38-1.7 μm wavelength range from the PlanetCam instrument at the 2.2 m telescope at Calar Alto Observatory and in the optical range by amateur observers contributing to the Planetary Virtual Observatory Laboratory. Over this time Jupiter was in a quiescent state without notable disturbances. Analysis of ground-based images and Hubble Space Telescope observations in February 2016 allowed the retrieval of mean zonal winds from -74.5° to +73.2°. These winds did not change over 2016 or when compared with winds from previous years with the sole exception of intense zonal winds at the North Temperate Belt. We also present results concerning the major wave systems in the North Equatorial Belt and in the upper polar hazes visible in methane absorption bands, a description of the planet's overall cloud morphology and observations of Jupiter hours before Juno's orbit insertion.

  15. ULTRA-WIDE-FIELD FUNDUS AUTOFLUORESCENCE FINDINGS IN PATIENTS WITH ACUTE ZONAL OCCULT OUTER RETINOPATHY.

    PubMed

    Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe

    2017-06-01

    To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.

  16. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.; Liu, Wei

    2017-08-01

    The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal flux perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to sea-ice decline. It is found that on decadal timescales, flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), flux anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward heat transport. Therefore, the Arctic sea-ice decline may explain the suggested slow-down of the AMOC and the `Warming Hole’ persisting in the subpolar North Atlantic.

  17. A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yanyan; Wang, Bin; Huang, Wenyu

    Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less

  18. Investigating the polar ionosphere during the development of neutral density enhancements on 24-25 September 2000

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2017-04-01

    We focus on the well-known northern daytime neutral density spikes detected by CHAMP on 25 September 2000 and related coupled magnetospheric-ionospheric-thermospheric processes. We investigate the underlying magnetic events and resultant thermospheric variations plus the state of the ionospheric polar region by employing multi-instrument CHAMP and DMSP data. Results show the unfolding of a weak (SYM-HMin ≈ -27 nT; 0345 UT) magnetic storm during which these northern density spikes occurred. Some smaller southern daytime density spikes were also detected prior to this storm on the previous day. All these density spikes were detected in or near polar convection flow channels (FCs). Each FC was characterized by strong antisunward zonal ion drifts that excited the zonal and meridional neutral winds leaving the signature of FC in the CHAMP neutral wind measurements and thus providing direct observational evidence of FC underlying the density spike. Additional to the small-scale field-aligned current (SS-FAC) filaments, the sudden intensifications of ionospheric closure current in the FC fueled the thermosphere and contributed to the development of upwelling and density spike. Some smaller density increases occurred due to the weak intensification of ionospheric closure currents. Equatorward (poleward) directed meridional neutral winds strengthened (weakened) the density spike by moving the neutral density up and along (down and against) the upwelling fueled by the ionospheric closure current and SS-FAC filaments.

  19. The impact of wave-induced Coriolis-Stokes forcing on satellite-derived ocean surface currents

    NASA Astrophysics Data System (ADS)

    Hui, Zhenli; Xu, Yongsheng

    2016-01-01

    Ocean surface currents estimated from the satellite data consist of two terms: Ekman currents from the wind stress and geostrophic currents from the sea surface height (SSH). But the classical Ekman model does not consider the wave effects. By taking the wave-induced Coriolis-Stokes forcing into account, the impact of waves (primarily the Stokes drift) on ocean surface currents is investigated and the wave-modified currents are formed. The products are validated by comparing with OSCAR currents and Lagrangian drifter velocity. The result shows that our products with the Stokes drift are better adapted to the in situ Lagrangian drifter currents. Especially in the Southern Ocean region (40°S-65°S), 90% (91%) of the zonal (meridional) currents have been improved compared with currents that do not include Stokes drift. The correlation (RMSE) in the Southern Ocean has also increased (decreased) from 0.78 (13) to 0.81 (10.99) for the zonal component and 0.76 (10.87) to 0.79 (10.09) for the meridional component. This finding provides the evidence that waves indeed play an important role in the ocean circulation, and need to be represented in numerical simulations of the global ocean circulation. This article was corrected on 10 FEB 2016. See the end of the full text for details.

  20. A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue

    DOE PAGES

    Shi, Yanyan; Wang, Bin; Huang, Wenyu

    2017-01-20

    Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less

  1. Understanding The Behavior Of The Sun'S Large Scale Magnetic Field And Its Relation With The Meridional Flow

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal

    2018-02-01

    In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., sunspot number, sunspot area and 10.7 cm radio flux) from various observatory including the sunspot area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.

  2. The role of zonal flows in reactive fluid closures

    NASA Astrophysics Data System (ADS)

    Jan, WEILAND

    2018-07-01

    We will give an overview of results obtained by our reactive fluid model. It is characterised as a fluid model where all moments with sources in the experiment are kept. Furthermore, full account is taken for the highest moments appearing in unexpanded denominators also including full toroidicity. It has been demonstrated that the strength of zonal flows is dramatically larger in reactive fluid closures than in those which involve dissipation. This gives a direct connection between the fluid closure and the level of excitation of turbulence. This is because zonal flows are needed to absorb the inverse cascade in quasi 2D turbulence. This also explains the similarity in structure of the transport coefficients in our model with a reactive closure in the energy equation and models which have a reactive closure because of zero ion temperature such as the Hasegawa–Wakatani model. Our exact reactive closure unifies several well-known features of tokamak experiments such as the L–H transition, internal transport barriers and the nonlinear Dimits upshift of the critical gradient for onset of transport. It also gives transport of the same level as that in nonlinear gyrokinetic codes. Since these include the kinetic resonance this confirms the validity of the thermodynamic properties of our model. Furthermore, we can show that while a strongly nonlinear model is needed in kinetic theory a quasilinear model is sufficient in the fluid description. Thus our quasilinear fluid model will be adequate for treating all relevant problems in bulk transport. This is finally confirmed by the reproduction by the model of the experimental power scaling of the confinement time τ E ∼ P ‑2/3. This confirms the validity of our reactive fluid model. This also gives credibility to our ITER simulations including the H-mode barrier. A new result is here, that alpha heating strongly reduces the slope of the H-mode barrier. This should significantly reduce the effects of ELM’s.

  3. Saturn Ring Mass and Zonal Gravitational Harmonics Estimate at the End of the Cassini "Grand Finale"

    NASA Astrophysics Data System (ADS)

    Brozovic, M.; Jacobson, R. A.; Roth, D. C.

    2015-12-01

    "Solstice" mission is the 7-year extension of the Cassini-Huygens spacecraft exploration of the Saturn system that will culminate with the "Grand Finale". Beginning in mid-2017, the spacecraft is scheduled to execute 22 orbits that have their periapses between the innermost D-ring and the upper layers of Saturn's atmosphere. These orbits will be perturbed by the gravitational field of Saturn as well as by the rings. We present an analysis of simulated "Grand Finale" radiometric data, and we investigate their sensitivity to the ring mass and higher zonal gravitational harmonics of the planet. We model the data quantity with respect to the available coverage of the tracking stations on Earth, and we account for the times when the spacecraft is occulted either by Saturn or the rings. We also use different data weights to simulate changes in the data quality. The dynamical model of the spacecraft motion includes both gravitational and non-gravitational forces, such as the daily momentum management due to Reaction Wheel Assembly and radioisotope thermo-electric generator accelerations. We solve the equations of motion and use a weighted-least squares fit to obtain spacecraft's state vector, mass(es) of the ring or the individual rings, zonal harmonics, and non-gravitational accelerations. We also investigate some a-priori values of the A- and B-ring masses from Tiscareno et al. (2007) and Hedman et al. (2015) analyses. The preliminary results suggest that the "Grand Finale" orbits should remain sensitive to the ring mass even for GMring<2 km3/s2 and that they will also provide high accuracy estimates of the zonal harmonics J8, J10, and J12.

  4. On the global circulation and the hurricane system of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Meada, K.; Harris, I.

    1981-01-01

    An argument is made to support the proposal that Jupiter's red spot and the white and brown ovals are hurricanes or cyclones. Against the background of a convectively unstable troposphere, the general condition exists for the formation of hurricanes. The energy Jupiter emits must be transported upwards through the troposphere. If that transport is accelerated by the prevailing upward motions in the solar driven multicellular meridional circulation, eastward jets develop such as observed in the l region. But if that vertical transport is impeded by the prevailing downward motions in the meridional circulation, the atmosphere reacts and tends to maintain the process through the development of hurricanes. Dynamically induced by solar differential heating, an ordered latitudinal structure with alternating stability and instability is impressed on the troposphere to form alternating zonal strata where hurricanes are forbidden and permitted, respectively.

  5. Zonal characterization of hillslope erosion processes in a semi-arid high mountain catchment

    NASA Astrophysics Data System (ADS)

    Torres, Raquel; Millares, Agustín; Aguilar, Cristina; Moñino, Antonio; Ángel Losada, Miguel; José Polo, María

    2013-04-01

    Mediterranean and semi-arid catchments, generally suffer heterogeneous erosive processes at different spatio-temporal scales which produce, in a synergistic manner, a large amount of sediment supply. In mountainous catchments, the influence of pluvio-nival hydrological regime leads to a clear subdivision into homogeneous zones regarding the nature of hillslope processes. Here, a distinction could be addressed with 1) subsurface erosion due to saturated soil by intense snowmelt pulses and 2) steepest mid-mountain soil loss with rill/interrill, small-scale landslides and ephemeral or permanent gullying. Furthermore, the associated channels in these areas are formed by wide alluvial floodplains with important bedload contributions. This complexity conditions the evaluation of erosion and monitoring at catchment scale with elevated costs in time, devices and staff. The catchment of the Guadalfeo river encloses 1200 km², with important presence of snow in the summits height on its right margin, and semiarid low range hills with very erodible soils on its left margin. Gully erosion, landslides and stream bed-load processes, extremely actives in this area, are responsible of a real problem of soil loss and desertification with a high associated cost. This work suggests a methodology for the zonal assessment of different erosive processes taking into account the described heterogeneity and the reduction of research costs. To do this, high resolution bathymetric and topographic surveys supported in a reservoir (110 hm3) allowed the differentiation of bedload and suspended sediments as both are deposited in different locations and hence the validation of the hillslope sediment yield. In parallel, measurements in homogeneous areas were selected in order to obtain zonal results to achieve the representative processes involved. The use of portable samplers allows the remote changing of sampling routines, and thus to capture the temporal scale of the processes and the

  6. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  7. Titan's stratospheric temperatures - A case for dynamical inertia?

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Conrath, B. J.

    1990-01-01

    Voyager IRIS spectral radiances in the nu4-band of CH4 for the Titan atmosphere exhibit a hemispheric asymmetry. While asymmetry in the meridional distribution of opacity about the equator cannot be discounted, attention is given to the need for angular momentum transport concurrent with seasonally varying temperatures in the Titan stratosphere, which would maintain the cyclostrophic thermal wind relation between zonal winds and temperatures. The adiabatic heating and cooling associated with these motions can produce the observed temperature asymmetry.

  8. The South American Meridional B-field Array (SAMBA) and Pc4-5 Wave Studies

    NASA Astrophysics Data System (ADS)

    Sterner, Lt. Nathan; Zesta, Eftyhia; Boudouridis, Athanasios; Moldwin, Mark; Yizengaw, Endawoke; Chi, Peter

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic lat-itudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarc-tica peninsula, and one auroral station along the same meridian. SAMBA is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. In particular, we study asymmetries in the power of ULF waves and the role of the ionosphere in such observed asymmetries. Utilizing conjugate magnetometer stations at L=1.7 and L=2.3, we previously demonstrated that the northern hemisphere consistently shows higher ULF wave power. One possible reason for the asymmetry is solar zenith angles differences with the northern hemisphere station being closer to the ecliptic plain and having a higher power ratio. These hemispheric differences were also observed with TEC measurements indicating that the north and south conjugate ionospheres are similarly asymmetric. The initial study was done with Pc3 waves, which include the resonance frequencies for the flux tubes of our conjugate stations. We now extend the study to Pc4 and Pc5 waves that reach the lower latitudes via different mechanisms and compare these waves to the resonant Pc3 waves.

  9. The South American Meridional B-field Array (SAMBA) and Pc4-5 Wave Studies

    NASA Astrophysics Data System (ADS)

    Sterner, N. L.; Zesta, E.; Boudouridis, A.; Moldwin, M.; Yizengaw, E.; Chi, P. J.

    2010-12-01

    The Antarctic continent, the only landmass in the southern polar region, offers the unique opportunity for observations that geomagnetically range from polar latitudes to well into the inner magnetosphere, thus enabling conjugate observations in a wide range of geomagnetic latitudes. The SAMBA (South American Meridional B-field Array) chain is a meridional chain of 12 magnetometers, 11 of them at L=1.1 to L=2.5 along the coast of Chile and in the Antarctica peninsula, and one auroral station along the same meridian. SAMBA is conjugate to the northern hemisphere MEASURE and McMAC chains, offering unique opportunities for inter-hemispheric studies. In particular, we study asymmetries in the power of ULF waves and the role of the ionosphere in such observed asymmetries. Utilizing conjugate magnetometer stations at L=1.7 and L=2.3, we previously demonstrated that the northern hemisphere consistently shows higher ULF wave power. One possible reason for the asymmetry is solar zenith angles differences with the northern hemisphere station being closer to the ecliptic plain and having a higher power ratio. These hemispheric differences were also observed with TEC measurements indicating that the north and south conjugate ionospheres are similarly asymmetric. The initial study was done with Pc3 waves, which include the resonance frequencies for the flux tubes of our conjugate stations. We now extend the study to Pc4 and Pc5 waves that reach the lower latitudes via different mechanisms and compare these waves to the resonant Pc3 waves.

  10. Wind circulation regimes at Venus' cloud tops: Ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February 2011

    NASA Astrophysics Data System (ADS)

    Machado, Pedro; Widemann, Thomas; Luz, David; Peralta, Javier

    2014-11-01

    We present new results based on ground-based Doppler spectroscopic measurements, obtained with the ESPaDOnS spectrograph at Canada-France-Hawaii telescope (CFHT) and simultaneous observations of velocity fields, obtained from space by the VIRTIS-M instrument on board the Venus Express spacecraft. These measurements are based on high-resolution spectra of Fraunhofer lines in the visible to NIR range (0.37-1.05 μm) acquired on February 19-21, 2011 at a resolution of about 80,000, measuring Venus' winds at 70 km, using incoming solar radiation scattered by cloud top particles in the observer's direction (Widemann, T., et al., [2007]. Planet. Space Sci. 55, 1741-1756; Widemann, T., et al., [2008]. Planet. Space Sci. 56, 1320-1334). The zonal wind field has been characterized by latitudinal bands, at a phase angle Φ = (68.7 ± 0.3) ° , between +10°N and 60°S, by steps of 10°, and from [ ϕ -ϕE ] = - 50 ° to sub-Earth longitude ϕE = 0 ° , by steps of 12°. From space, VIRTIS-M UV (0.38 μm) imaging exposures on the dayside were acquired simultaneously in orbit 1786, providing the first simultaneous cloud-tracking measurements with Doppler velocimetry. From the ground, we measured a zonal mean background velocity of v‾z = (117.3 ± 18.0) ms-1 on February 19, and v‾z = (117.5 ± 14.5) ms-1 on February 21. We detect an unambiguous poleward meridional flow on the morning dayside hemisphere of (18.8 ± 12.3) m s-1 on February 19/21. Latitudinal variations of the zonal and meridional winds are further compared with the simultaneous VIRTIS data. We discuss temporal variability as well as its statistical significance.

  11. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar

    2015-01-01

    Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.

  12. The Atlantic Meridional Transect: Spatially Extensive Calibration and Validation of Optical Properties and Remotely Sensed Measurements of Ocean Colour

    NASA Technical Reports Server (NTRS)

    Aiken, James; Hooker, Stanford

    1997-01-01

    Twice a year, the Royal Research Ship (RRS) James Clark Ross (JCR) steams a meridional transect of the atlantic Ocean between Grimsly (UK) and Stanley (Falkland Islands) with a port call in Montevideo (Uruguay), as part of the annual research activities of the British Antarctic Survey (BAS). In September, the JCR sails from the UK, and the following April it makes the return trip. The ship is operated by the BAS for the Natural Environment Research Council (NERC). The Atlantic Meridional Transect (AMT) Program exploits the passage of the JCR from approximately 50 deg. N to 50 deg. S with a primary objective to investigate physical and biological processes, as well as to measure the mesi-to-basin-scale bio-optical properties of the atlantic Ocean. The calibration and validation of remotely sensed observations of ocean colour is an inherent objective of these studies: first, by relating in situ measurements of water leaving radiance to satellite measurement, and second, by measuring the bio-optically active constituents of the water.

  13. Educational Change Leadership through a New Zonal Theory Lens: Using Mathematics Curriculum Change as the Example

    ERIC Educational Resources Information Center

    Lamb, Janeen; Branson, Christopher M.

    2015-01-01

    This paper outlines actions that educational change leaders can take to better meet their curriculum change obligations and responsibilities. In order to do this we extend Vygotsky's (1978) zonal theory and its many extensions and elaborations by positioning educational change leadership within this theory. We rename the zones to Zone of Principal…

  14. Impact of Greenland orography on the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Davini, P.; Hardenberg, J.; Filippi, L.; Provenzale, A.

    2015-02-01

    We show that the absence of the Greenland ice sheet would have important consequences on the North Atlantic Ocean circulation, even without taking into account the effect of the freshwater input to the ocean from ice melting. These effects are investigated in a 600year long coupled ocean-atmosphere simulation with the high-resolution global climate model EC-Earth 3.0.1. Once a new equilibrium is established, a cooling of Eurasia and of the North Atlantic and a poleward shift of the subtropical jet are observed. These hemispheric changes are ascribed to a weakening of the Atlantic Meridional Overturning Circulation (AMOC) by about 12%. We attribute this slowdown to a reduction in salinity of the Arctic basin and to the related change of the mass and salt transport through the Fram Strait—a consequence of the new surface wind pattern over the lower orography. This idealized experiment illustrates the sensitivity of the AMOC to local surface winds.

  15. Impact of Greenland orography on the Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Filippi, Luca; Provenzale, Antonello

    2015-04-01

    We show that the absence of the Greenland Ice Sheet would have important consequences on the North Atlantic Ocean circulation, even without taking into account the effect of the freshwater input from ice melting. These effects are investigated in a 200-year long coupled ocean-atmosphere simulation with the high-resolution global climate model EC-Earth 3.0.1. Once a new equilibrium is established, cooling of Eurasia and of the North Atlantic and poleward shift of the subtropical jet are observed. These hemispheric changes are ascribed to a weakening of the Atlantic Meridional Overturning Circulation (AMOC) by about 20%. Such slowdown is associated to the freshening of the Arctic basin and to the related reduction in the freshwater export through the Fram Strait, as a result of the new wind pattern generated by the lower orography. This idealized experiment reveals the possibility of decreasing the AMOC by locally changing the surface winds.

  16. Meridional Modes and Increasing Pacific Decadal Variability Under Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    Liguori, Giovanni; Di Lorenzo, Emanuele

    2018-01-01

    Pacific decadal variability has strong impacts on the statistics of weather, atmosphere extremes, droughts, hurricanes, marine heatwaves, and marine ecosystems. Sea surface temperature (SST) observations show that the variance of the El Niño-like decadal variability has increased by 30% (1920-2015) with a stronger coupling between the major Pacific climate modes. Although we cannot attribute these trends to global climate change, the examination of 30 members of the Community Earth System Model Large Ensemble (LENS) forced with the RCP8.5 radiative forcing scenario (1920-2100) suggests that significant anthropogenic trends in Pacific decadal variance will emerge by 2020 in response to a more energetic North Pacific Meridional Mode (PMM)—a well-known El Niño precursor. The PMM is a key mechanism for energizing and coupling tropical and extratropical decadal variability. In the LENS, the increase in PMM variance is consistent with an intensification of the winds-evaporation-SST thermodynamic feedback that results from a warmer mean climate.

  17. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  18. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  19. Simulated variability of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Bentsen, M.; Drange, H.; Furevik, T.; Zhou, T.

    To examine the multi-annual to decadal scale variability of the Atlantic Meridional Overturning Circulation (AMOC) we conducted a four-member ensemble with a daily reanalysis forced, medium-resolution global version of the isopycnic coordinate ocean model MICOM, and a 300-years integration with the fully coupled Bergen Climate Model (BCM). The simulations of the AMOC with both model systems yield a long-term mean value of 18 Sv and decadal variability with an amplitude of 1-3 Sv. The power spectrum of the inter-annual to decadal scale variability of the AMOC in BCM generally follows the theoretical red noise spectrum, with indications of increased power near the 20-years period. Comparison with observational proxy indices for the AMOC, e.g. the thickness of the Labrador Sea Water, the strength of the baroclinic gyre circulation in the North Atlantic Ocean, and the surface temperature anomalies along the mean path of the Gulf Stream, shows similar trends and phasing of the variability, indicating that the simulated AMOC variability is robust and real. Mixing indices have been constructed for the Labrador, the Irminger and the Greenland-Iceland-Norwegian (GIN) seas. While convective mixing in the Labrador and the GIN seas are in opposite phase, and linked to the NAO as observations suggest, the convective mixing in the Irminger Sea is in phase with or leads the Labrador Sea. Newly formed deep water is seen as a slow, anomalous cold and fresh, plume flowing southward along the western continental slope of the Atlantic Ocean, with a return flow of warm and saline water on the surface. In addition, fast-travelling topographically trapped waves propagate southward along the continental slope towards equator, where they go east and continue along the eastern rim of the Atlantic. For both types of experiments, the Northern Hemisphere sea level pressure and 2 m temperature anomaly patterns computed based on the difference between climate states with strong and weak AMOC

  20. MERIDIONAL FLOW IN THE SOLAR CONVECTION ZONE. II. HELIOSEISMIC INVERSIONS OF GONG DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackiewicz, J.; Serebryanskiy, A.; Kholikov, S., E-mail: jasonj@nmsu.edu

    2015-06-01

    Meridional flow is thought to play a very important role in the dynamics of the solar convection zone; however, because of its relatively small amplitude, precisely measuring it poses a significant challenge. Here we present a complete time–distance helioseismic analysis of about 2 years of ground-based Global Oscillation Network Group (GONG) Doppler data to retrieve the meridional circulation profile for modest latitudes in an attempt to corroborate results from other studies. We use an empirical correction to the travel times due to an unknown center-to-limb systematic effect. The helioseismic inversion procedure is first tested and reasonably validated on artificial datamore » from a large-scale numerical simulation followed by a test to broadly recover the solar differential rotation found from global seismology. From GONG data, we measure poleward photospheric flows at all latitudes with properties that are comparable with earlier studies and a shallow equatorward flow about 65 Mm beneath the surface, in agreement with recent findings from Helioseismic and Magnetic Imager (HMI) data. No strong evidence of multiple circulation cells in depth or latitude is found, yet the whole phase space has not yet been explored. Tests of mass flux conservation are then carried out on the inferred GONG and HMI flows and compared to a fiducial numerical baseline from models, and we find that the continuity equation is poorly satisfied. While the two disparate data sets do give similar results for about the outer 15% of the interior radius, the total inverted circulation pattern appears to be unphysical in terms of mass conservation when interpreted over modest time scales. We can likely attribute this to both the influence of realization noise and subtle effects in the data and measurement procedure.« less

  1. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the

  2. Selection for production-related traits in Pelargonium zonale: improved design and analysis make all the difference

    PubMed Central

    Molenaar, Heike; Glawe, Martin; Boehm, Robert; Piepho, Hans-Peter

    2017-01-01

    Ornamental plant variety improvement is limited by current phenotyping approaches and neglected use of experimental designs. The present study was conducted to show the benefits of using an experimental design and corresponding analysis in ornamental breeding regarding simulated response to selection in Pelargonium zonale for production-related traits. This required establishment of phenotyping protocols for root formation and stem cutting counts, with which 974 genotypes were assessed in a two-phase experimental design. The present paper evaluates this protocol. The possibility of varietal improvement through indirect selection on secondary traits such as branch count and flower count was assessed by genetic correlations. Simulated response to selection varied greatly, depending on the genotypic variances of the breeding population and traits. A varietal improvement of over 20% is possible for stem cutting count, root formation, branch count and flower count. In contrast, indirect selection of stem cutting count by branch count or flower count was found to be ineffective. The established phenotypic protocols and two-phase experimental designs are valuable tools for breeding of P. zonale. PMID:28243453

  3. Selection for production-related traits in Pelargonium zonale: improved design and analysis make all the difference.

    PubMed

    Molenaar, Heike; Glawe, Martin; Boehm, Robert; Piepho, Hans-Peter

    2017-01-01

    Ornamental plant variety improvement is limited by current phenotyping approaches and neglected use of experimental designs. The present study was conducted to show the benefits of using an experimental design and corresponding analysis in ornamental breeding regarding simulated response to selection in Pelargonium zonale for production-related traits. This required establishment of phenotyping protocols for root formation and stem cutting counts, with which 974 genotypes were assessed in a two-phase experimental design. The present paper evaluates this protocol. The possibility of varietal improvement through indirect selection on secondary traits such as branch count and flower count was assessed by genetic correlations. Simulated response to selection varied greatly, depending on the genotypic variances of the breeding population and traits. A varietal improvement of over 20% is possible for stem cutting count, root formation, branch count and flower count. In contrast, indirect selection of stem cutting count by branch count or flower count was found to be ineffective. The established phenotypic protocols and two-phase experimental designs are valuable tools for breeding of P. zonale .

  4. Transonic Navier-Stokes wing solution using a zonal approach. Part 1: Solution methodology and code validation

    NASA Technical Reports Server (NTRS)

    Flores, J.; Gundy, K.; Gundy, K.; Gundy, K.; Gundy, K.; Gundy, K.

    1986-01-01

    A fast diagonalized Beam-Warming algorithm is coupled with a zonal approach to solve the three-dimensional Euler/Navier-Stokes equations. The computer code, called Transonic Navier-Stokes (TNS), uses a total of four zones for wing configurations (or can be extended to complete aircraft configurations by adding zones). In the inner blocks near the wing surface, the thin-layer Navier-Stokes equations are solved, while in the outer two blocks the Euler equations are solved. The diagonal algorithm yields a speedup of as much as a factor of 40 over the original algorithm/zonal method code. The TNS code, in addition, has the capability to model wind tunnel walls. Transonic viscous solutions are obtained on a 150,000-point mesh for a NACA 0012 wing. A three-order-of-magnitude drop in the L2-norm of the residual requires approximately 500 iterations, which takes about 45 min of CPU time on a Cray-XMP processor. Simulations are also conducted for a different geometrical wing called WING C. All cases show good agreement with experimental data.

  5. A new solar cycle model including meridional circulation

    NASA Technical Reports Server (NTRS)

    Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.

    1991-01-01

    A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.

  6. Mesospheric Temperatures and Winds measured by a VHF Meteor Radar at King Sejong Station (62.2S, 58.8W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Yongha; Kim, Jeong-Han; Jee, Geonwha; Lee, Chang-Sup

    2010-05-01

    A VHF radar at King Sejong Station, Antarctica has been measuring meteor echoes since March 2007. Temperatures near the mesopause are derived from meteor decay times with an improved method of selecting meteor echo samples, and compared with airglow temperatures simultaneously observed by a spectral airglow temperature imager (SATI). The temperatures derived from meteor decay times are mostly consistent with the rotational temperatures of SATI OH(6-2) and O2(0-1) emissions from March through October. During southern summer when SATI cannot be operated due to brief night time, the meteor radar observation shows cold mesospheric temperatures, significantly lower than the CIRA86 model. The meteor radar observation also provides wind field information between 80 and 100 km of altitude. The measured meridional winds seem to follow the summer pole to winter pole circulation, and thus are correlated with the measured seasonal temperature change. However, the correlation between meridional winds and temperatures is not found in day by day base, as a previous study reported. Tidal characteristics of both zonal and meridional winds will also be compared with those of other Antarctic stations.

  7. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    NASA Astrophysics Data System (ADS)

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and

  8. Oceanic eddy detection and lifetime forecast using machine learning methods

    NASA Astrophysics Data System (ADS)

    Ashkezari, Mohammad D.; Hill, Christopher N.; Follett, Christopher N.; Forget, Gaël.; Follows, Michael J.

    2016-12-01

    We report a novel altimetry-based machine learning approach for eddy identification and characterization. The machine learning models use daily maps of geostrophic velocity anomalies and are trained according to the phase angle between the zonal and meridional components at each grid point. The trained models are then used to identify the corresponding eddy phase patterns and to predict the lifetime of a detected eddy structure. The performance of the proposed method is examined at two dynamically different regions to demonstrate its robust behavior and region independency.

  9. Generalization of the quasi-geostrophic Eliassen-Palm flux to include eddy forcing of condensation heating

    NASA Technical Reports Server (NTRS)

    Stone, P. H.; Salustri, G.

    1984-01-01

    A modified Eulerian form of the Eliassen-Palm flux which includes the effect of eddy forcing on condensation heating is defined. With the two-dimensional vector flux in the meridional plane which is a function of the zonal mean eddy fluxes replaced by the modified flux, both the Eliassen-Palm theorem and a modified but more general form of the nonacceleration theorem for quasi-geostrophic motion still hold. Calculations of the divergence of the modified flux and of the eddy forcing of the moisture field are presented.

  10. Global Analysis of Climate Change Projection Effects on Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Espinoza, Vicky; Waliser, Duane E.; Guan, Bin; Lavers, David A.; Ralph, F. Martin

    2018-05-01

    A uniform, global approach is used to quantify how atmospheric rivers (ARs) change between Coupled Model Intercomparison Project Phase 5 historical simulations and future projections under the Representative Concentration Pathway (RCP) 4.5 and RCP8.5 warming scenarios. The projections indicate that while there will be 10% fewer ARs in the future, the ARs will be 25% longer, 25% wider, and exhibit stronger integrated water vapor transports (IVTs) under RCP8.5. These changes result in pronounced increases in the frequency (IVT strength) of AR conditions under RCP8.5: 50% (25%) globally, 50% (20%) in the northern midlatitudes, and 60% (20%) in the southern midlatitudes. The models exhibit systematic low biases across the midlatitudes in replicating historical AR frequency ( 10%), zonal IVT ( 15%), and meridional IVT ( 25%), with sizable intermodel differences. A more detailed examination of six regions strongly impacted by ARs suggests that the western United States, northwestern Europe, and southwestern South America exhibit considerable intermodel differences in projected changes in ARs.

  11. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Moreno-Chamarro, E.; Lohmann, K.; Zanchettin, D.

    2016-02-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  12. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  13. Application of a planetary wave breaking parameterization to stratospheric circulation statistics

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Garcia, Rolando R.

    1994-01-01

    The planetary wave parameterization scheme developed recently by Garcia is applied to statospheric circulation statistics derived from 12 years of National Meteorological Center operational stratospheric analyses. From the data a planetary wave breaking criterion (based on the ratio of the eddy to zonal mean meridional potential vorticity (PV) gradients), a wave damping rate, and a meridional diffusion coefficient are calculated. The equatorward flank of the polar night jet during winter is identified as a wave breaking region from the observed PV gradients; the region moves poleward with season, covering all high latitudes in spring. Derived damping rates maximize in the subtropical upper stratosphere (the 'surf zone'), with damping time scales of 3-4 days. Maximum diffusion coefficients follow the spatial patterns of the wave breaking criterion, with magnitudes comparable to prior published estimates. Overall, the observed results agree well with the parameterized calculations of Garcia.

  14. Configuration-specific synthesis of the facial and meridional isomers of tris(8-hydroxyquinolinate)aluminum (Alq3).

    PubMed

    Katakura, Ryo; Koide, Yoshihiro

    2006-07-24

    Treatment of AlO(OH) with 3 equiv of 8-hydroxyquinolinol in refluxing deionized water provided the meridional and facial isomers of tris(8-hydroxyquinolinate)aluminum (Alq3) with good yields as solid deposits after 1 and 90 h, respectively. X-ray diffraction and solid-state 13C NMR studies revealed that mer-Alq3 is formed in the early stage of the reaction and then gradually converts to fac-Alq3, which is thermodynamically less stable, although no existence of a catalyst substance is implied.

  15. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    PubMed

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics

  16. Present-day secular variations in the zonal harmonics of earth's geopotential

    NASA Technical Reports Server (NTRS)

    Mitrovica, J. X.; Peltier, W. R.

    1993-01-01

    The mathematical formulation required for predicting secular variation in the geopotential is developed for the case of a spherically symmetric, self-gravitating, viscoelastic earth model and an arbitrary surface load which can include a gravitational self-consistent ocean loading component. The theory is specifically applied to predict the present-day secular variation in the zonal harmonics of the geopotenial arising from the surface mass loading associated with the late Pleistocene glacial cycles. A procedure is outlined in which predictions of the present-day geopotential signal due to the late Pleistocene glacial cycles may be used to derive bounds on the net present-day mass flux from the Antarctic and Greenland ice sheets to the local oceans.

  17. Automated Quantitative Spectral Classification of Stars in Areas of the main Meridional Section of the Galaxy

    NASA Astrophysics Data System (ADS)

    Shvelidze, Teimuraz; Malyuto, Valeri

    2015-08-01

    Quantitative spectral classification of F, G and K stars with the 70-cm telescope of the Ambastumani Astrophysical Observatory in areas of the main meridional section of the Galaxy, and for which proper motion data are available, has been performed. Fundamental parameters have been obtained for several hundred stars. Space densities of stars of different spectral types, the stellar luminosity function and the relationships between the kinematics and metallicity of stars have been studied. The results have confirmed and completed the conclusions made on the basis of some previous spectroscopic and photometric surveys. Many plates have been obtained for other important directions in the sky: the Kapteyn areas, the Galactic anticentre, the main meridional section of the Galaxy and etc. Very rich collection of photographic objective spectral plates (30,000 were accumulated during last 60 years) is available at Abastumani Observatory-wavelength range 3900-4900 A, about 2A resolution. Availability of new devices for automatic registration of spectra from photographic plates as well as some recently developed classification techniques may allow now to create a modern system of automatic spectral classification and with expension of classification techniques to additional types (B-A, M spectral classes). The data can be treated with the same quantitative method applied here. This method may also be applied to other available and future spectroscopic data of similar resolution, notably that obtained with large format CCD detectors on Schmidt-type telescopes.

  18. Jovian Vortices and Barges: HST observations 1994-1998

    NASA Astrophysics Data System (ADS)

    Morales, R.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 to study the zonal and meridional distributions, long-term motions, lifetimes, interactions and other properties of the vortices larger than 2 degrees. The latitude range covered spans from +75 to -75 degrees. High-resolution images obtained with the 890nm, 410nm and 953nm wavelength filters allowed us to make a morphological classification based on their appearance in each filter. The vortices are anticyclones, and their long-term motions have been completed with ground-based images and are compared to the mean Jovian zonal wind profile. Significant differences are found between the vortex velocities and the mean zonal winds. Some vortices exhibited important drift changes in short period times. We analyze a possible correlation between their size and zonal wind velocity. On the other hand, the "barges" lie in the cyclone domains of the wind-profile and have been identified in several latitudes. Their latitudinal size is similar in all of them (typically 1.6 degrees) but their longitudinal size ranges from 1 to 32 degrees. We discuss the temporal evolution of some of these cyclonic regions. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." RM acknowledges a fellowship from Universidad Pais Vasco.

  19. Zonal-flow dynamics from a phase-space perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  20. Zonal-flow dynamics from a phase-space perspective

    DOE PAGES

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...

    2016-12-16

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less