Science.gov

Sample records for zone color scanner

  1. Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Johnson, B.

    1988-01-01

    The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.

  2. Coastal Zone Color Scanner studies

    NASA Technical Reports Server (NTRS)

    Elrod, J.

    1988-01-01

    Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.

  3. Ocean color imagery: Coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1975-01-01

    Investigations into the feasibility of sensing ocean color from high altitude for determination of chlorophyll and sediment distributions were carried out using sensors on NASA aircraft, coordinated with surface measurements carried out by oceanographic vessels. Spectrometer measurements in 1971 and 1972 led to development of an imaging sensor now flying on a NASA U-2 and the Coastal Zone Color Scanner to fly on Nimbus G in 1978. Results of the U-2 effort show the imaging sensor to be of great value in sensing pollutants in the ocean.

  4. Algorithms for Coastal-Zone Color-Scanner Data

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Software for Nimbus-7 Coastal-Zone Color-Scanner (CZCS) derived products consists of set of scientific algorithms for extracting information from CZCS-gathered data. Software uses CZCS-generated Calibrated RadianceTemperature (CRT) tape as input and outputs computer-compatible tape and film product.

  5. Coastal Zone Color Scanner data of rich coastal waters

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Klooster, S. A.

    1983-01-01

    Comparisons of chlorophyll concentrations and diffuse attenuation coefficients measured from ships off the central California coast were made with satellite derived estimates of the same parameters using data from the Coastal Zone Color Scanner. Very high chlorophyll concentrations were encountered in Monterey Bay. Although lower chlorophyll values acquired off Pt. Sur agreed satisfactorily with the satellite data, the high chlorophyll values departed markedly from agreement. Two possible causes for the disagreement are suggested. Comparison of diffuse attenuation coefficients from the same data sets showed closer agreement.

  6. Applications of the Coastal Zone Color Scanner in oceanography

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1988-01-01

    Research activity has continued to be focused on the applications of the Coastal Zone Color Scanner (CZCS) imagery in oceanography. A number of regional studies were completed including investigations of temporal and spatial variability of phytoplankton populations in the South Atlantic Bight, Northwest Spain, Weddell Sea, Bering Sea, Caribbean Sea and in tropical Atlantic Ocean. In addition to the regional studies, much work was dedicated to developing ancillary global scale meteorological and hydrographic data sets to complement the global CZCS processing products. To accomplish this, SEAPAK's image analysis capability was complemented with an interface to GEMPAK (Severe Storm Branch's meteorological analysis software package) for the analysis and graphical display of gridded data fields. Plans are being made to develop a similar interface to SEAPAK for hydrographic data using EPIC (a hydrographic data analysis package developed by NOAA/PMEL).

  7. NOAA-NASA Coastal Zone Color Scanner reanalysis effort.

    PubMed

    Gregg, Watson W; Conkright, Margarita E; O'Reilly, John E; Patt, Frederick S; Wang, Menghua H; Yoder, James A; Casey, Nancy W

    2002-03-20

    Satellite observations of global ocean chlorophyll span more than two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the National Oceanic and Atmospheric Administration and National Aeronautics and Space Administration (NOAA-NASA) CZCS reanalysis (NCR) effort. NCR consisted of (1) algorithm improvement (AI), where CZCS processing algorithms were improved with modernized atmospheric correction and bio-optical algorithms and (2) blending where in situ data were incorporated into the CZCS AI to minimize residual errors. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.

  8. Cloud screening Coastal Zone Color Scanner images using channel 5

    NASA Technical Reports Server (NTRS)

    Eckstein, B. A.; Simpson, J. J.

    1991-01-01

    Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.

  9. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  10. Coastal zone color scanner 'system calibration': A retrospective examination

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.; Gordon, Howard R.

    1994-01-01

    During its lifetime the Coastal Zone Color Scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of 'raw' radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the 'system calibration' for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provided evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggested the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however our methodology cannot be used to study the other bands. Thus, after these fluctuations began, the actual values of CZCS - estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentrations should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.r., from moored buoyes or drifters, had been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS that is, the requirement of good radiometric calibration and stability and the necessity of 'sea truth

  11. Coastal zone color scanner ``system calibration'': A retrospective examination

    NASA Astrophysics Data System (ADS)

    Evans, Robert H.; Gordon, Howard R.

    1994-04-01

    During its lifetime the coastal zone color scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of "raw" radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the "system calibration" for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provide evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggest the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however, our methodology cannot be used to study the other bands. Thus after these fluctuations began, the actual values of CZCS-estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentration should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.g., from moored buoys or drifters, been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS, that is, the requirement of good radiometric calibration and stability and the necessity of "sea truth" stations

  12. Color banding on Georges Bank as viewed by coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.; Phinney, D. A.; Campbell, J. W.

    1994-01-01

    Observations of Georges Bank by coastal zone color scanner (CZCS) show bandlike patterns that appear to be related to the large sand dunes and ridges which dominate the bottom topography there. Ship measurements of temperature and chlorophyll on Georges Bank in July 1979 also reflect the influence of the underwater dune fields. The cause of the banding in the CZCS data is unknown but is speculated to be the creation of alternating zones of divergence and convergence by tidal currents as the water flows over the underwater dune-trough configuration. The banding observed by CZCS appears to be seasonal, following the sequence of primary production in the Gulf of Maine, and is believed to be important to biological processes as a site of new production and/or as an effective transport mechanism. Any future models that attempt to interrelate tidal mixing and primary production must consider bottom topography and secondary flows.

  13. Description of algorithms for processing Coastal Zone Color Scanner (CZCS) data

    NASA Technical Reports Server (NTRS)

    Zion, P. M.

    1983-01-01

    The algorithms for processing coastal zone color scanner (CZCS) data to geophysical units (pigment concentration) are described. Current public domain information for processing these data is summarized. Calibration, atmospheric correction, and bio-optical algorithms are presented. Three CZCS data processing implementations are compared.

  14. Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 1 data product users' guide

    NASA Technical Reports Server (NTRS)

    Williams, S. P.; Szajna, E. F.; Hovis, W. A.

    1985-01-01

    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed specifically for the remote sensing of Ocean Color parameters from an Earth orbiting space platform. A technical manual which is intended for users of NIMBUS 7 CZCS Level 1 data products is presented. It contains information needed by investigators and data processing personnel to operate on the data using digital computers and related equipment.

  15. Nimbus 7 Coastal Zone Color Scanner (CZCS). Level 2 data product users' guide

    NASA Technical Reports Server (NTRS)

    Williams, S. P.; Szajna, E. F.; Hovis, W. A.

    1985-01-01

    The coastal zone color scanner (CZCS) is a scanning multispectral radiometer designed for the remote sensing of ocean color parameters from an earth orbiting space platform. A Technical Manual was designed for users of NIMBUS 7 CZCS Level 2 data products. It contains information which describes how the Level 1 data was process to obtain the Level 2 (derived) product. It contains information needed to operate on the data using digital computers and related equipment.

  16. Development of Great Lakes algorithms for the Nimbus-G coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    A series of experiments in the Great Lakes designed to evaluate the application of the Nimbus G satellite Coastal Zone Color Scanner (CZCS) were conducted. Absorption and scattering measurement data were reduced to obtain a preliminary optical model for the Great Lakes. Available optical models were used in turn to calculate subsurface reflectances for expected concentrations of chlorophyll-a pigment and suspended minerals. Multiple nonlinear regression techniques were used to derive CZCS water quality prediction equations from Great Lakes simulation data. An existing atmospheric model was combined with a water model to provide the necessary simulation data for evaluation of the preliminary CZCS algorithms. A CZCS scanner model was developed which accounts for image distorting scanner and satellite motions. This model was used in turn to generate mapping polynomials that define the transformation from the original image to one configured in a polyconic projection. Four computer programs (FORTRAN IV) for image transformation are presented.

  17. Comparison of atmospheric correction algorithms for the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Jain, S. C.

    1984-01-01

    Before Nimbus-7 Costal Zone Color Scanner (CZC) data can be used to distinguish between coastal water types, methods must be developed for the removal of spatial variations in aerosol path radiance. These can dominate radiance measurements made by the satellite. An assessment is presently made of the ability of four different algorithms to quantitatively remove haze effects; each was adapted for the extraction of the required scene-dependent parameters during an initial pass through the data set The CZCS correction algorithms considered are (1) the Gordon (1981, 1983) algorithm; (2) the Smith and Wilson (1981) iterative algorityhm; (3) the pseudooptical depth method; and (4) the residual component algorithm.

  18. Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Tindale, N. W.

    1999-01-01

    Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity

  19. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  20. Clear water radiances for atmospheric correction of coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1981-01-01

    The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.

  1. Interpretation of the coastal zone color scanner signature of the Orinoco River plume

    NASA Technical Reports Server (NTRS)

    Hochman, Herschel T.; Mueller-Karger, F. E.; Walsh, John J.

    1994-01-01

    The Caribbean Sea is an area that traditionally has been considered oligotrophic, even though the Orinoco River contributes large quantities of fresh water, nutrients, and other dissolved material to this region during the wet boreal (fall) season. Little is known about the impact of this seasonal river plume, which extends from Venezuela to Puetro Rico shortly after maximum discharge. Here, we present results from a study of the bio-optical characteristics of the Orinoco River plume during the rainy season. The objective was to determine whether the coastal zone color scanner (CZCS) and the follow-on sea-viewing wide-field-of-view sensor (SeaWiFS) satellite instrument can be used to assess the concentrations of substances in large river plumes. Recent in situ shipboard measurements were compared to values from representative historical CZCS images using established bio-optical models. Our goal was to deconvolve the signatures of colored dissolved organic carbon and phytoplankton pigments within satellite images of the Orinoco River plume. We conclude that the models may be used for case 2 waters and that as much as 50 percent of the remotely sensored chlorophyll biomass within the plume is an artifact due to the presence of dissolved organic carbon. Dissolved organic carbon originates from a number of sources, including decay of dead organisms, humic materials from the soil, and gelbstoff.

  2. Remote sensing of the diffuse attenuation coefficient of ocean water. [coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Austin, R. W.

    1981-01-01

    A technique was devised which uses remotely sensed spectral radiances from the sea to assess the optical diffuse attenuation coefficient, K (lambda) of near-surface ocean water. With spectral image data from a sensor such as the coastal zone color scanner (CZCS) carried on NIMBUS-7, it is possible to rapidly compute the K (lambda) fields for large ocean areas and obtain K "images" which show synoptic, spatial distribution of this attenuation coefficient. The technique utilizes a relationship that has been determined between the value of K and the ratio of the upwelling radiances leaving the sea surface at two wavelengths. The relationship was developed to provide an algorithm for inferring K from the radiance images obtained by the CZCS, thus the wavelengths were selected from those used by this sensor, viz., 443, 520, 550 and 670 nm. The majority of the radiance arriving at the spacecraft is the result of scattering in the atmospheric and is unrelated to the radiance signal generated by the water. A necessary step in the processing of the data received by the sensor is, therefore, the effective removal of these atmospheric path radiance signals before the K algorithm is applied. Examples of the efficacy of these removal techniques are given together with examples of the spatial distributions of K in several ocean areas.

  3. Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Ramapriyan, H. K.

    1989-01-01

    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.

  4. Aerosol anomalies in Nimbus-7 coastal zone color scanner data obtained in Japan area

    NASA Technical Reports Server (NTRS)

    Fukushima, Hajime; Sugimori, Yasuhiro; Toratani, Mitsuhiro; Smith, Raymond C.; Yasuda, Yoshizumi

    1989-01-01

    About 400 CZCS (coastal zone color scanner) scenes covering the Japan area in November 1978-May 1982 were processed to study the applicability of the Gordon-Clark atmospheric correction scheme which produces water-leaving radiances Lw at 443 nm, 520 nm, and 550 nm as well as phytoplankton pigment maps. Typical spring-fall aerosol radiance in the images was found to be 0.8-1.5 micro-W/sq cm-nm-sr, which is about 50 percent more than reported for the US eastern coastal images. The correction for about half the data resulted in negative Lw (443) values, implying overestimation of the aerosol effect for this channel. Several possible reasons for this are considered, including deviation of the aerosol optical thickness tau(a) at 443 nm from that estimated by Angstrom's exponential law, which the algorithm assumes. The analysis shows that, assuming the use of the Gordon-Clark algorithm, and for a pigment concentration of about 1 microgram/l, -40 percent to +100 percent error in satellite estimates is common. Although this does not fully explain the negative Lw (443) in the satellite data, it seems to contribute to the problem significantly, together with other error sources, including one in the sensor calibration.

  5. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    NASA Astrophysics Data System (ADS)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  6. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner.

    PubMed

    Gordon, H R; Brown, J W; Evans, R H

    1988-03-01

    For improved analysis of Coastal Zone Color Scanner (CZCS) imagery, the radiance reflected from a planeparallel atmosphere and flat sea surface in the absence of aerosols (Rayleigh radiance) has been computed with an exact multiple scattering code, i.e., including polarization. The results indicate that the single scattering approximation normally used to compute this radiance can cause errors of up to 5% for small and moderate solar zenith angles. At large solar zenith angles, such as encountered in the analysis of high-latitude imagery, the errors can become much larger, e.g.,>10% in the blue band. The single scattering error also varies along individual scan lines. Comparison with multiple scattering computations using scalar transfer theory, i.e., ignoring polarization, show that scalar theory can yield errors of approximately the same magnitude as single scattering when compared with exact computations at small to moderate values of the solar zenith angle. The exact computations can be easily incorporated into CZCS processing algorithms, and, for application to future instruments with higher radiometric sensitivity, a scheme is developed with which the effect of variations in the surface pressure could be easily and accurately included in the exact computation of the Rayleigh radiance. Direct application of these computations to CZCS imagery indicates that accurate atmospheric corrections can be made with solar zenith angles at least as large as 65 degrees and probably up to at least 70 degrees with a more sensitive instrument. This suggests that the new Rayleigh radiance algorithm should produce more consistent pigment retrievals, particularly at high latitudes.

  7. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    NASA Technical Reports Server (NTRS)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  8. Coastal zone color scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface features

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.; McClain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-02-01

    The spatial and seasonal distributions of phytoplankton pigment concentration over the entire southern ocean have been studied for the first time using the coastal zone color scanner historical data set (from October 1978 through June 1986). Enhanced pigment concentrations are observed between 35°S and 55°S throughout the year, with such enhanced regions being more confined to the south in the austral summer and extending further north in the winter. North and south of the polar front, phytoplankton blooms (>1 mg/m3) are not uniformly distributed around the circumpolar region. Instead, blooms appear to be located in regions of ice retreat (or high melt areas) such as the Scotia Sea and the Ross Sea, in relatively shallow areas (e.g., the Patagonian and the New Zealand shelves), in some regions of Ekman upwelling like the Tasman Sea, and near areas of high eddy kinetic energy such as the Agulhas retroflection. Among all features examined by regression analysis, bathymetry appears to be the one most consistently correlated with pigments (correlation coefficient being about -0.3 for the entire region). The cause of negative correlation with bathymetry is unknown but is consistent with the observed abundance of iron in shallow areas in the Antarctic region. It is also consistent with resuspension of phytoplankton cells by wind-induced mixing, especially in shallow waters. On the other hand, in the deep ocean (especially at latitudes <45°S where surface nutrients may be limiting), upwelling induced by topographic features may cause resupply of nutrients to the surface and shoaling of the subsurface chlorophyll maximum. Low pigment values are common at low latitudes and in regions of high wind stress, where deep mixing and net loss of surface pigment occur. Nutrients (phosphate, nitrate, and silicate) are found to correlate significantly with pigments when the entire southern ocean is considered, but south of 55°S the correlation is poor, probably because the

  9. Gulf of California biogeographic regions based on coastal zone color scanner imagery

    NASA Astrophysics Data System (ADS)

    SantamaríA-Del-Angel, Eduardo; Alvarez-Borrego, Saúl; Müller-Karger, Frank E.

    1994-04-01

    Topographically, the Gulf of California is divided into a series of basins and trenches that deepen to the south. Maximum depth at the mouth is greater than 3000 m. Most of the northern gulf is less than 200 m deep. The gulf has hydrographic features conducive to high primary productivity. Upwelling events have been described on the basis of temperature distributions at the eastern coast during winter and spring and at the western coast during summer. Tidal amplitude may be as high as 9 m in the upper gulf. On the basis of discrete phytoplankton sampling, the gulf was previously divided into four geographic regions. This division took into consideration only the space distribution, taxonomic composition, and abundance of microphytoplankton. With the availability of the coastal zone color scanner (CZCS) imagery, we were able to include the time variability of pigments to make a more detailed biogeographic division of the gulf. With weekly composites of the imagery, we generated time series of pigment concentrations for 33 locations throughout the gulf and for the whole life span of the CZCS. The time series show a clear seasonal variation, with maxima in winter and spring and minima in summer. The effect of upwelling at the eastern coast is clearly evident, with high pigment concentrations. The effect of the summer upwelling off the Baja California coast is not evident in these time series. Time series from locations on the western side of the gulf also show maxima in winter and spring that are due to the eddy circulation that brings upwelled water from the eastern side. Principal-component analysis was applied to define 14 regions. Ballenas Channel, between Angel de la Guarda and Baja California, and the upper gulf always appeared as very distinct regions. Some of these 14 regions relate to the geographic distributions of important faunal groups, including the benthos, or their life cycles. For example, the upper gulf is a place for reproduction and the nursery of

  10. PC-SEAPAK - ANALYSIS OF COASTAL ZONE COLOR SCANNER AND ADVANCED VERY HIGH RESOLUTION RADIOMETER DATA

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.

    1994-01-01

    PC-SEAPAK is a user-interactive satellite data analysis software package specifically developed for oceanographic research. The program is used to process and interpret data obtained from the Nimbus-7/Coastal Zone Color Scanner (CZCS), and the NOAA Advanced Very High Resolution Radiometer (AVHRR). PC-SEAPAK is a set of independent microcomputer-based image analysis programs that provide the user with a flexible, user-friendly, standardized interface, and facilitates relatively low-cost analysis of oceanographic satellite data. Version 4.0 includes 114 programs. PC-SEAPAK programs are organized into categories which include CZCS and AVHRR level-1 ingest, level-2 analyses, statistical analyses, data extraction, remapping to standard projections, graphics manipulation, image board memory manipulation, hardcopy output support and general utilities. Most programs allow user interaction through menu and command modes and also by the use of a mouse. Most programs also provide for ASCII file generation for further analysis in spreadsheets, graphics packages, etc. The CZCS scanning radiometer aboard the NIMBUS-7 satellite was designed to measure the concentration of photosynthetic pigments and their degradation products in the ocean. AVHRR data is used to compute sea surface temperatures and is supported for the NOAA 6, 7, 8, 9, 10, 11, and 12 satellites. The CZCS operated from November 1978 to June 1986. CZCS data may be obtained free of charge from the CZCS archive at NASA/Goddard Space Flight Center. AVHRR data may be purchased through NOAA's Satellite Data Service Division. Ordering information is included in the PC-SEAPAK documentation. Although PC-SEAPAK was developed on a COMPAQ Deskpro 386/20, it can be run on most 386-compatible computers with an AT bus, EGA controller, Intel 80387 coprocessor, and MS-DOS 3.3 or higher. A Matrox MVP-AT image board with appropriate monitor and cables is also required. Note that the authors have received some reports of

  11. Development of the Coastal Zone Color Scanner for NIMBUS 7. Volume 2: Test and performance data, revision A

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of the Coastal Zone Color Scanner protoflight tests are examined in detail while some of the test results are evaluated with respect to expected performance. Performance characteristics examined include spectral response, signal to noise ratio as a function of radiance input, radiance response, the modulation transfer function, and the field of view and coregistration. The results of orbital sequence tests are also included. The in orbit performance or return of radiometric data in the six spectral bands is evaluated along with the data processing sequence necessary to derive the final data products. Examples of the raw data are given and the housekeeping or diagnostic data which provides information on the day to day health or status of the instrument are discussed.

  12. Estimation of time averages from irregularly spaced observations - With application to coastal zone color scanner estimates of chlorophyll concentration

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1991-01-01

    The sampling error of an arbitrary linear estimate of a time-averaged quantity constructed from a time series of irregularly spaced observations at a fixed located is quantified through a formalism. The method is applied to satellite observations of chlorophyll from the coastal zone color scanner. The two specific linear estimates under consideration are the composite average formed from the simple average of all observations within the averaging period and the optimal estimate formed by minimizing the mean squared error of the temporal average based on all the observations in the time series. The resulting suboptimal estimates are shown to be more accurate than composite averages. Suboptimal estimates are also found to be nearly as accurate as optimal estimates using the correct signal and measurement error variances and correlation functions for realistic ranges of these parameters, which makes it a viable practical alternative to the composite average method generally employed at present.

  13. Evaluation of coastal zone color scanner diffuse attenuation coefficient algorithms for application to coastal waters

    NASA Astrophysics Data System (ADS)

    Mueller, James L.; Trees, Charles C.; Arnone, Robert A.

    1990-09-01

    The Coastal Zone Color Scannez (ZCS) and associated atmospheric and in-water algorithms have allowed synoptic analyses of regional and large scale variability of bio-optical properties [phytoplankton pigments and diffuse auenuation coefficient K(490)}. Austin and Petzold (1981) developed a robust in-water K(490) algorithm which related the diffuse attenuation coefficient at one optical depth [1/K(490)] to the ratio of the water-leaving radiances at 443 and 550 nm. Their regression analysis included diffuse attenuation coefficients K(490) up to 0.40 nm, but excluded data from estuarine areas, and other Case II waters, where the optical properties are not predominantly determined by phytoplankton. In these areas, errors are induced in the retrieval of remote sensing K(490) by extremely low water-leaving radiance at 443 nm [Lw(443) as viewed at the sensor may only be 1 or 2 digital counts], and improved cury can be realized using algorithms based on wavelengths where Lw(λ) is larger. Using ocean optical profiles quired by the Visibility Laboratory, algorithms are developed to predict K(490) from ratios of water leaving radiances at 520 and 670, as well as 443 and 550 nm.

  14. Phytoplankton pigment concentrations in the Middle Atlantic Bight - Comparison of ship determinations and CZCS estimates. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Brown, J. W.; Clark, D. K.; Brown, O. B.; Evans, R. H.; Broenkow, W. W.

    1983-01-01

    The processing algorithms used for relating the apparent color of the ocean observed with the Coastal-Zone Color Scanner on Nimbus-7 to the concentration of phytoplankton pigments (principally the pigment responsible for photosynthesis, chlorophyll-a) are developed and discussed in detail. These algorithms are applied to the shelf and slope waters of the Middle Atlantic Bight and also to Sargasso Sea waters. In all, four images are examined, and the resulting pigment concentrations are compared to continuous measurements made along ship tracks. The results suggest that over the 0.08-1.5 mg/cu m range, the error in the retrieved pigment concentration is of the order of 30-40% for a variety of atmospheric turbidities. In three direct comparisons between ship-measured and satellite-retrieved values of the water-leaving radiance, the atmospheric correction algorithm retrieved the water-leaving radiance with an average error of about 10%. This atmospheric correction algorithm does not require any surface measurements for its application.

  15. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  16. A comparison of ship and Coastal Zone Color Scanner mapped distribution of phytoplankton in the southeastern Bering Sea

    NASA Technical Reports Server (NTRS)

    Mcclain, C. R.; Sambrotto, R. N.; Ray, G. C.; Muller-Karger, F. E.

    1990-01-01

    Twenty-one Coastal Zone Color Scanner (CZCS) images of the southeastern Bering Sea are examined in order to map the near-surface distribution of phytoplankton during 1979 and 1980. The information is compared with the mesoscale (100-1000 km) distribution of phytoplankton inferred from pooled ship sampling obtained during the Processes and Resources of the Bering Shelf (PROBES) intensive field study during the late 1970s and early 1980s. The imagery indicates that open-water phytoplankton blooms occur first in late April in coastal waters, peak in early May over the middle shelf, and decay rapidly afterwards, reaching concentration minima in June in both regions. These patterns show that the earlier ship observations are valid for most of the eastern Bering shelf. A very tight correlation is found between the PROBES surface chlorophyll a concentrations and mean mixed-layer chlorophyll concentrations. The significant discrepancies between CZCS and ship-based chlorophyll estimates may be due to aliasing in time by the CZCS. It is concluded that neither satellite nor ship alone can do an adequate job of characterizing the physics or biological dynamics of the ocean.

  17. Minimizing systematic errors from atmospheric multiple scattering and satellite viewing geometry in coastal zone color scanner level IIA imagery

    NASA Technical Reports Server (NTRS)

    Martin, D. L.; Perry, M. J.

    1994-01-01

    Water-leaving radiances and phytoplankton pigment concentrations are calculated from coastal zone color scanner (CZCS) radiance measurements by removing atmospheric Rayleigh and aerosol radiances from the total radiance signal measured at the satellite. The single greatest source of error in CZCS atmospheric correction algorithms in the assumption that these Rayleigh and aerosol radiances are separable. Multiple-scattering interactions between Rayleigh and aerosol components cause systematic errors in calculated aerosol radiances, and the magnitude of these errors is dependent on aerosol type and optical depth and on satellite viewing geometry. A technique was developed which extends the results of previous radiative transfer modeling by Gordon and Castano to predict the magnitude of these systematic errors for simulated CZCS orbital passes in which the ocean is viewed through a modeled, physically realistic atmosphere. The simulated image mathematically duplicates the exact satellite, Sun, and pixel locations of an actual CZCS image. Errors in the aerosol radiance at 443 nm are calculated for a range of aerosol optical depths. When pixels in the simulated image exceed an error threshhold, the corresponding pixels in the actual CZCS image are flagged and excluded from further analysis or from use in image compositing or compilation of pigment concentration databases. Studies based on time series analyses or compositing of CZCS imagery which do not address Rayleigh-aerosol multiple scattering should be interpreted cautiously, since the fundamental assumption used in their atmospheric correction algorithm is flawed.

  18. Near-Surface Phytoplankton Pigment from the Coastal Zone Color Scanner in the Subantarctic Region Southeast of New Zealand

    NASA Technical Reports Server (NTRS)

    Banse, Karl; English, David C.

    1997-01-01

    Primarily based on satellite images, the phytoplankton concentration southeast (down- stream) of New Zealand in the High Nitrate - Low Chlorophyll (HNLC) Subantarctic water between the Subtropical Convergence (STC) and the Polar Front (PF) is believed to be higher than in the remainder of the Pacific Sector. Iron enrichment is assumed to be the reason, To study the question, near-surface phytoplankton pigment estimates from the Coastal Zone Color Scanner for up to 7 yr were reprocessed with particular attention to interference by clouds. Monthly mean images were created for the U,S. JGOFS Box along 170 deg W and means for individual dates calculated for 7 large areas between 170 deg E and 160 deg W, 45 deg and 58 deg S, well offshore of New Zealand and principally between and away from the STC and PF. The areal means are about as low as in other HNLC regions (most values between 0.1 and 0.4 or 0.5 mg/ sq m, with very few winter images; median of seasonal means, 0.26 mg/sq m) except at times near the STC, The higher means tend to occur in late summer and autumn, However, contrary to expectations, neither the PF nor the environs of the Subantarctic Front are distinguished by a zone of increased pigment. Also, of 24 spring-summer images of oceanic islands in mostly pigment-poor water, 17 yielded no recognizable elevated pigment; islands were 5 times surrounded by approximately doubled concentrations (ca 100 km in diameter), and 2 cases may have been associated with an extensive bloom. Inspection of offshore images showed concentrations of 1 greater than or equal to(up to 5) mg/sq m in rare patches of 65 to 200 km size on approximately one-tenth of the dates; such patches were not seen in Sub-antarctic waters of the eastern Pacific Sector. A case is made for Australian airborne iron supply being the cause that, presumably, would enhance large-celled phytoplankton. Since, however, the putative iron supply from the seabed around the oceanic islands or the near

  19. NIMBUS-7 CZCS. Coastal Zone Color Scanner Imagery for Selected Coastal Regions. North America - Europe. South America - Africa - Antarctica. Level 2 Photographic Product

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nimbus-7 Coastal Zone Color Scanner (CZCS) is the first spacecraft instrument devoted to the measurement of ocean color. Although instruments on other satellites have sensed ocean color, their spectral bands, spatial resolution, and dynamic range were optimized for geographical or meteorological use. In the CZCS, every parameter is optimized for use over water to the exclusion of any other type of sensing. The signal-to-noise ratios in the spectral channels sensing reflected solar radiance are higher than those required in the past. These ratios need to be high because the ocean is such a poor reflecting surface that the majority of the signal seen by the reflected energy channels at spacecraft altitudes is backscattered solar radiation from the atmosphere rather than reflected solar energy from the ocean. The CZCS is a conventional multichannel scanning radiometer utilizing a rotating plane mirror at a 45 deg angle to the optic axis of a Cassegrain telescope. The mirror scans 360 deg; however, only 80 deg of data centered on the spacecraft nadir is collected for ocean color measurements. Spatial resolution at spacecraft nadir is 825x825 m with some degradation at the edges of the scan swath. The useful swath width from a spacecraft altitude of 955 km is 1600 km.

  20. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  1. A numerical analysis of shipboard and coastal zone color scanner time series of new production within Gulf Stream cyclonic eddies in the South Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Pribble, J. Raymond; Walsh, John J.; Dieterle, Dwight A.; Mueller-Karger, Frank E.

    1994-01-01

    Eddy-induced upwelling occurs along the western edge of the Gulf Stream between Cape Canaveral, Florida, and Cape Hatteras, North Carolina, in the South Atlantic Bight (SAB). Coastal zone color scanner images of 1-km resolution spanning the period April 13-21, 1979, were processed to examine these eddy features in relation to concurrent shipboard and current/temperature measurements at moored arrays. A quasi-one-dimensional (z), time dependent biological model, using only nitrate as a nutrient source, has been combined with a three-dimensional physical model in an attempt to replicate the observed phytoplankton field at the northward edge of an eddy. The model is applicable only to the SAB south of the Charleston Bump, at approximately 31.5 deg N, since no feature analogous to the bump exists in the model bathymetry. The modeled chlorophyll, nitrate, and primary production fields of the euphotic zone are very similar to those obtained from the satellite and shipboard data at the leading edges of the observed eddies south of the Charleston Bump. The horizontal and vertical simulated fluxes of nitrate and chlorophyll show that only approximately 10% of the upwelled nitrate is utilized by the phytoplankton of the modeled grid box on the northern edge of the cyclone, while approximately 75% is lost horizontally, with the remainder still in the euphotic zone after the 10-day period of the model. Loss of chlorophyll due to sinking is very small in this strong upwelling region of the cyclone. The model is relatively insensitive to variations in the sinking parameterization and the external nitrate and chlorophyll fields but is very sensitive to a reduction of the maximum potential growth rate to half that measured. Given the success of this model in simulating the new production of the selcted upwelling region, other upwelling regions for which measurements or successful models of physical and biological quantities and rates exist could be modeled similarly.

  2. Variability in pigment concentration in warm-core rings as determined by coastal zone color scanner satellite imagery from the Mid-Atlantic Bight

    NASA Technical Reports Server (NTRS)

    Garcia-Moliner, Graciela; Yoder, James A.

    1994-01-01

    A time series of coastal zone color scanner (CZCS) derived chlorophyll (CZCS-chl) and sea surface temperature (SST) satellite imagery was developed for the Mid-Atlantic Bight (MAB). Warm-core rings (WCR) were identified by both the warmer SST signal as well as the low pigment concentrations of their cores. The variation in pigment concentrations and SST observed in satellite imagery over the geographic range and life span of four WCRs is investigated. The hypotheses are that pigment concentration increase during the lifetime of the WCR is a response to processes such as convective overturn, upwelling, edge enhancement due to increased vertical mixing, active convergence, or lateral exchange. Empirical orthogonal function analysis (EOF) is used to investigate the relationship between SST and pigment patterns observed in the presence of a WCR. The first two EOF modes explain more than 80% of the variability observed in all four WCRs and in both (SST and pigment) data sets. The results of this study show that, at the synoptic scales of staellite data, the variability observed in the WCRs is greater at the periphery of the rings. These results show that advective entrainment, rather than processes at ring center (e.g., shoaling of the pycnocline/nutricline in response to frictional decay) or at the periphery due to other processes such as vertical mixing, is the mechanism responsible for the observed variability.

  3. Time scales of pattern evolution from cross-spectrum analysis of advanced very high resolution radiometer and coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1994-01-01

    We have selected square subareas (110 km on a side) from coastal zone color scanner (CZCS) and advanced very high resolution radiometer (AVHRR) images for 1981 in the California Current region off northern California for which we could identify sequences of cloud-free data over periods of days to weeks. We applied a two-dimensional fast Fourier transformation to images after median filtering, (x, y) plane removal, and cosine tapering. We formed autospectra and coherence spectra as functions of a scalar wavenumber. Coherence estimates between pairs of images were plotted against time separation between images for several wide wavenumber bands to provide a temporal lagged coherence function. The temporal rate of loss of correlation (decorrelation time scale) in surface patterns provides a measure of the rate of pattern change or evolution as a function of spatial dimension. We found that patterns evolved (or lost correlation) approximately twice as rapidly in upwelling jets as in the 'quieter' regions between jets. The rapid evolution of pigment patterns (lifetime of about 1 week or less for scales of 50-100 km) ought to hinder biomass transfer to zooplankton predators compared with phytoplankton patches that persist for longer times. We found no significant differences between the statistics of CZCS and AVHRR images (spectral shape or rate of decorrelation). In addition, in two of the three areas studied, the peak correlation between AVHRR and CZCS images from the same area occurred at zero lag, indicating that the patterns evolved simutaneously. In the third area, maximum coherence between thermal and pigment patterns occurred when pigment images lagged thermal images by 1-2 days, mirroring the expected lag of high pigment behind low temperatures (and high nutrients) in recently upwelled water. We conclude that in dynamic areas such as coastal upwelling systems, the phytoplankton cells (identified by pigment color patterns) behave largely as passive scalars at the

  4. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  5. Biomedical applications of a real-time terahertz color scanner

    PubMed Central

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  6. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  7. Parts Color Matching Scanner for Edge Gluing - Research That Works

    Treesearch

    Richard W. Conners; D.Earl Kline; Philip A. Araman

    1996-01-01

    This paper presents an automatic color sorting system for hardwood edge-glued panel parts. The color sorting system simultaneously examines both faces of a panel part and then determines which face has the "best" color given specified color uniformity and priority defined by management. The real-time color sorting system hardware and color matching hardware...

  8. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern U.S. continental shelf ecosystem. I - CZCS data description and Lagrangian particle tracing experiments. II - An Eulerian model. III - Nutrient and phytoplankton fluxes and CZCS data assimilation

    NASA Technical Reports Server (NTRS)

    Ishizaka, Joji

    1990-01-01

    Surface phytoplankton biomass of the southeastern U.S. continental shelf area is discussed based on coastal zone color scanner (CZCS) images obtained in April 1980. Data of chlorophyll distributions are analyzed in conjunction with concurrent flow and temperature fields. Lagrangian particle tracing experiments show that the particles move consistently with the evolution of the chlorophyll patterns. A four-component physical-biological model for a horizontal plane at a nominal depth of 17 m is presented. Model simulations using various physical-biological dynamics and boundary conditions show that the variability of chlorophyll distributions is controlled by horizontal advection. Phytoplankton and nutrient fluxes, calculated using the model, show considerable variability with time. The chlorophyll distributions obtained from the CZCS images are assimilated into the model to improve the phytoplankton flux estimates.

  9. Comment on 'Aerosol and Rayleigh radiance contributions to Coastal Zone Colour Scanner images' by Eckstein and Simpson

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Evans, R. H.

    1993-01-01

    In a recent paper Eckstein and Simpson describe what they believe to be serious difficulties and/or errors with the CZCS (Coastal Zone Color Scanner) processing algorithms based on their analysis of seven images. Here we point out that portions of their analysis, particularly those dealing with multiple scattered Rayleigh radiance, are incorrect. We also argue that other problems they discuss have already been addressed in the literature. Finally, we suggest that many apparent artifacts in CZCS-derived pigment fields are likely to be due to inadequacies in the sensor band set or to poor radiometric stability, both of which will be remedied with the next generation of ocean color sensors.

  10. Evaluation of Ocean Color Scanner (OCS) photographic and digital data: Santa Barbara Channel test site, 29 October 1975 overflight

    NASA Technical Reports Server (NTRS)

    Kraus, S. P.; Estes, J. E.; Kronenberg, M. R.; Hajic, E. J.

    1977-01-01

    A summary of Ocean Color Scanner data was examined to evaluate detection and discrimination capabilities of the system for marine resources, oil pollution and man-made sea surface targets of opportunity in the Santa Barbara Channel. Assessment of the utility of OCS for the determination of sediment transport patterns along the coastal zone was a secondary goal. Data products provided 1975 overflight were in digital and analog formats. In evaluating the OCS data, automated and manual procedures were employed. A total of four channels of data in digital format were analyzed, as well as three channels of color combined imagery, and four channels of black and white imagery. In addition, 1:120,000 scale color infrared imagery acquired simultaneously with the OCS data were provided for comparative analysis purposes.

  11. Coastal Zone Color Scanner atmospheric correction - Influence of El Chichon

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1988-01-01

    The addition of an El Chichon-like aerosol layer in the stratosphere is shown to have very little effect on the basic CZCS atmospheric correction algorithm. The additional stratospheric aerosol is found to increase the total radiance exiting the atmosphere, thereby increasing the probability that the sensor will saturate. It is suggested that in the absence of saturation the correction algorithm should perform as well as in the absence of the stratospheric layer.

  12. A design study for an advanced ocean color scanner system. [spaceborne equipment

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Fraser, R. S.; Thompson, L. L.; Bahethi, O.

    1980-01-01

    Along with a colorimetric data analysis scheme, the instrumental parameters which need to be optimized in future spaceborne ocean color scanner systems are outlined. With regard to assessing atmospheric effects from ocean colorimetry, attention is given to computing size parameters of the aerosols in the atmosphere, total optical depth measurement, and the aerosol optical thickness. It is suggested that sensors based on the use of linear array technology will meet hardware objectives.

  13. A Study on Possibility of Clinical Application for Color Measurements of Shade Guides Using an Intraoral Digital Scanner.

    PubMed

    Yoon, Hyung-In; Bae, Ji-Won; Park, Ji-Man; Chun, Youn-Sic; Kim, Mi-Ae; Kim, Minji

    2016-11-07

    To assess if color measurement with intraoral scanner correlates with digital colorimeter and to evaluate the possibility of application of a digital scanner for shade selection. The L*a*b* values of the five shade tabs (A1, A2, A3, A3.5, and A4) were obtained with an intraoral scanner (TRIOS Pod) and a colorimeter (ShadeEye). Both devices were calibrated according to the manufacturer's instructions before measurements. Color measurement values were compared with paired t-test, and a Pearson's correlation analysis was performed to evaluate the relationship of two methods. The L*a*b* values of the colorimeter were significantly different from those of the digital scanner (p < 0.001). The L* and b* values of both methods were strongly correlated with each other (both p < 0.05). The device repeatability in both methods were reported to be excellent (p < 0.05). Within the limitations of this study, color measurements with digital intraoral scanners and computer-assisted image analysis were in accordance with those of the colorimeter with respect to L* and b* values; however, all the coordinates of shade tabs were significantly different between two methods. The digital intraoral scanner may not be used as the primary method of color selection in clinical practices, considering significant differences in color parameters with colorimeter. The scanner's capability in shade selection should be further evaluated. © 2016 by the American College of Prosthodontists.

  14. High-resolution mobile optical 3D scanner with color mapping

    NASA Astrophysics Data System (ADS)

    Ramm, Roland; Bräuer-Burchardt, Christian; Kühmstedt, Peter; Notni, Gunther

    2017-07-01

    A high-resolution mobile handheld scanning device suitable for 3D data acquisition and analysis for forensic investigations, rapid prototyping, design, quality management, and archaeology with a measurement volume of approximately 325 mm x 200 mm x 100mm and a lateral object resolution of 170 µm developed at our institute is introduced. The scanners weight is 4.4 kg with an optional color DLSR camera. The PC for measurement control and point calculation is included inside the housing. Power supply is realized by rechargeable batteries. Possible operation time is between 30 and 60 minutes. The object distance is between 400 and 500 mm, and the scan time for one 3D shot may vary between 0.1 and 0.5 seconds. The complete 3D result is obtained a few seconds after starting the scan. For higher quality 3D and color images the scanner is attachable to tripod use. Measurement objects larger than the measurement volume must be acquired partly. The different resulting datasets are merged using a suitable software module. The scanner has been successfully used in various applications.

  15. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  16. Measurement of luminance and color uniformity of displays using the large-format scanner

    NASA Astrophysics Data System (ADS)

    Mazikowski, Adam

    2017-08-01

    Uniformity of display luminance and color is important for comfort and good perception of the information presented on the display. Although display technology has developed and improved a lot over the past years, different types of displays still present a challenge in selected applications, e.g. in medical use or in case of multi-screen installations. A simplified 9-point method of determining uniformity does not always produce satisfactory results, so a different solution is proposed in the paper. The developed system consists of the large-format X-Y-Z ISEL scanner (isel Germany AG), Konica Minolta high sensitivity spot photometer-colorimeter (e.g. CS-200, Konica Minolta, Inc.) and PC computer. Dedicated software in LabView environment for control of the scanner, transfer the measured data to the computer, and visualization of measurement results was also prepared. Based on the developed setup measurements of plasma display and LCD-LED display were performed. A heavily wornout plasma TV unit, with several artifacts visible was selected. These tests show the advantages and drawbacks of described scanning method with comparison with 9-point simplified uniformity determining method.

  17. Radiometric Measurement Comparison Using the Ocean Color Temperature Scanner (OCTS) Visible and Near Infrared Integrating Sphere

    PubMed Central

    Johnson, B. Carol; Sakuma, F.; Butler, J. J.; Biggar, S. F.; Cooper, J. W.; Ishida, J.; Suzuki, K.

    1997-01-01

    As a part of the pre-flight calibration and validation activities for the Ocean Color and Temperature Scanner (OCTS) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color satellite instruments, a radiometric measurement comparison was held in February 1995 at the NEC Corporation in Yokohama, Japan. Researchers from the National Institute of Standards and Technology (NIST), the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the University of Arizona Optical Sciences Center (UA), and the National Research Laboratory of Metrology (NRLM) in Tsukuba, Japan used their portable radiometers to measure the spectral radiance of the OCTS visible and near-infrared integrating sphere at four radiance levels. These four levels corresponded to the configuration of the OCTS integrating sphere when the calibration coefficients for five of the eight spectral channels, or bands, of the OCTS instrument were determined. The measurements of the four radiometers differed by −2.7 % to 3.9 % when compared to the NEC calibration of the sphere and the overall agreement was within the combined measurement uncertainties. A comparison of the measurements from the participating radiometers also resulted in agreement within the combined measurement uncertainties. These results are encouraging and demonstrate the utility of comparisons using laboratory calibration integrating sphere sources. Other comparisons will focus on instruments that are scheduled for spacecraft in the NASA study of climate change, the Earth Observing System (EOS). PMID:27805113

  18. Mapping of terrain by computer clustering techniques using multispectral scanner data and using color aerial film

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.; Linnerud, H. J.; Woolaver, L. B.; Su, M. Y.; Jayroe, R. R.

    1972-01-01

    Two clustering techniques were used for terrain mapping by computer of test sites in Yellowstone National Park. One test was made with multispectral scanner data using a composite technique which consists of (1) a strictly sequential statistical clustering which is a sequential variance analysis, and (2) a generalized K-means clustering. In this composite technique, the output of (1) is a first approximation of the cluster centers. This is the input to (2) which consists of steps to improve the determination of cluster centers by iterative procedures. Another test was made using the three emulsion layers of color-infrared aerial film as a three-band spectrometer. Relative film densities were analyzed using a simple clustering technique in three-color space. Important advantages of the clustering technique over conventional supervised computer programs are (1) human intervention, preparation time, and manipulation of data are reduced, (2) the computer map, gives unbiased indication of where best to select the reference ground control data, (3) use of easy to obtain inexpensive film, and (4) the geometric distortions can be easily rectified by simple standard photogrammetric techniques.

  19. False Color Mosaic of Jupiter Belt-Zone Boundary

    NASA Image and Video Library

    1997-12-18

    This false color mosaic shows a belt-zone boundary near Jupiter equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. These images were taken on Nov. 5, 1996 by NASA Galileo orbiter.

  20. Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

    PubMed Central

    Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani

    2012-01-01

    Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947

  1. High sensitivity radiochromic film dosimetry using an optical common-mode rejection and a reflective-mode flatbed color scanner.

    PubMed

    Ohuchi, Hiroko

    2007-11-01

    A novel method that can greatly improve the dosimetric sensitivity limit of a radiochromic film (RCF) through use of a set of color components, e.g., red and green, outputs from a RGB color scanner has been developed. RCFs are known to have microscopic and macroscopic nonuniformities, which come from the thickness variations in the film's active radiochromic layer and coating. These variations in the response make the optical signal-to-noise ratio lower, resulting in lower film sensitivity. To mitigate the effects of RCF nonuniform response, an optical common-mode rejection (CMR) was developed. The CMR compensates nonuniform response by creating a ratio of the two signals where the factors common to both numerator and denominator cancel out. The CMR scheme was applied to the mathematical operation of creating a ratio using two components, red and green outputs from a scanner. The two light component lights are neighboring wavebands about 100 nm apart and suffer a common fate, with the exception of wavelength-dependent events, having passed together along common attenuation paths. Two types of dose-response curves as a function of delivered dose ranging from 3.7 mGy to 8.1 Gy for 100 kV x-ray beams were obtained with the optical CMR scheme and the conventional analysis method using red component, respectively. In the range of 3.7 mGy to 81 mGy, the optical densities obtained with the optical CMR showed a good consistency among eight measured samples and an improved consistency with a linear fit within 1 standard deviation of each measured optical densities, while those with the conventional analysis exhibited a large discrepancy among eight samples and did not show a consistency with a linear fit.

  2. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color mosaic shows a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here in the visible colors red, green and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    The edge of the planet runs along the right side of the mosaic. North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 280 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on Nov. 5, 1996, at a range of 1.2 million kilometers by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on Dec. 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo.

  3. False Color Mosaic of Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    False-color mosaic of a belt-zone boundary near Jupiter's equator. The images that make up the four quadrants of this mosaic were taken within a few minutes of each other. Light at each of Galileo's three near-infrared wavelengths is displayed here mapped to the visible colors red, green, and blue. Light at 886 nanometers, strongly absorbed by atmospheric methane and scattered from clouds high in the atmosphere, is shown in red. Light at 732 nanometers, moderately absorbed by atmospheric methane, is shown in green. Light at 757 nanometers, scattered mostly from Jupiter's lower visible cloud deck, is shown in blue. The lower cloud deck appears bluish white, while the higher layer appears pinkish. The holes in the upper layer and their relationships to features in the lower cloud deck can be studied in the lower half of the mosaic. Galileo is the first spacecraft to image different layers in Jupiter's atmosphere.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  4. Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects.

    PubMed

    Gordon, H R; Castaño, D J

    1989-04-01

    For measurement of aerosols over the ocean, the total radiance L(t) backscattered from the top of a stratified atmosphere which contains both stratospheric and tropospheric aerosols of various types has been computed. A similar computation is carried out for an aerosol-free atmosphere yielding the Rayleigh scattered radiance L(r). The difference L(t) - L(r) is shown to be linearly related to the radiance L(as), which the aerosol would produce in the single scattering approximation. This greatly simplifies the application of aerosol models to aerosol analysis by satellite since adding to, or in some way changing, the aerosol model requires no additional multiple scattering computations. In fact, the only multiple computations required for aerosol analysis are those for determining L(r), which can be performed once and for all. The computations are explicitly applied to Band 4 of the CZCS, which, because of its high radiometric sensitivity and excellent calibration, is ideal for studying aerosols over the ocean. Specifically, the constant A in the relationship L(as) = A(-1)(L(t) - L(r)) is given as a function of position along the scan for four typical orbital-solar position scenarios. The computations show that L(as) can be retrieved from L(t) - L(r) with an average error of no more than 5-7% except at the very edges of the scan.

  5. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  6. Aerosol analysis with the Coastal Zone Color Scanner - A simple method for including multiple scattering effects

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1989-01-01

    A method for studying aerosols over the ocean using Nimbus-7 CZCS data is proposed which circumvents having to perform radiative transfer computations involving the aerosol properties. The method is applied to the CZCS band 4 at 670 nm, and yields the total radiance (L sub t) backscattered from the top of a stratified atmosphere containing both stratospheric and tropospheric aerosols and the the Rayleigh scattered radiance (L sub r). The radiance which the aerosol would produce in the single scattering approximation is retrieved from (L sub t) - (L sub r) with an error of not greater than 5-7 percent.

  7. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  8. Seasonality of coastal zone scanner phytoplankton pigment in the offshore oceans

    NASA Technical Reports Server (NTRS)

    Banse, K.; English, D. C.

    1994-01-01

    The NASA Global Ocean Data Set of plant pigment concentrations in the upper euphotic zone is evaluated for diserning geographical and temporal patterns of seasonality in the open sea. Monthly medians of pigment concentrations for all available years are generated for fields of approximately 77,000 sq km. For the climatological year, highest and lowest medians, month of occurence of the highest median, ratio of highest to lowest medians, and absolute range between the highest and lowest medians are mapped ocean-wide between 62.5 deg N and 62.5 deg S. Seasonal cycles are depicted for 48 sites. In much of the offshore ocean, seasonality of pigment is inferred to be driven almost equally by the interaction of the abiotic environment with phytoplankton physiology and the loss of cells from grazing. Special emphasis among natural domains or provinces is given to the Subantarctic water ring, with no seasonality in its low chlorophyll concentrations in spite of strong environmental forcing, and the narrow Transition Zones, a few degrees of latitude on the equatorial sides of the Subtropical Convergences of the southern hemisphere and their homologs in the northern hemisphere, which have late winter blooms caused by nutrient injection into the upper layers.

  9. Studying monogenetic volcanoes with Terrestrial Laser Scanner: Case study at Croscat volcano (Garrotxa Volcanic Zone, Spain)

    NASA Astrophysics Data System (ADS)

    Geyer Traver, A.; Garcia-Selles, D.; Peddrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J.

    2013-12-01

    Monogenetic basaltic zones are common in many volcanic environments and may develop under very different geodynamic conditions. Despite existing clear similarities between the eruptive activity of different monogenetic volcanic fields, important distinctions may arise when investigating in detail the individual eruptive sequences. Interpretation of the deposits and consequently, the reconstruction and characterization of these eruptive sequences is crucial to evaluate the potential hazard in case of active areas. In diverse occasions, erosional processes (natural and/or anthropogenic) may partly destroy these relatively small-sized volcanic edifices exposing their internal parts. Furthermore, despite human activity in volcanic areas is sometimes unimportant due to the remote location of the monogenetic cones, there are places where this form of erosion is significant, e.g. Croscat volcano (Catalan Volcanic Field, Spain). In any case, when studying monogenetic volcanism, it is usual to find outcrops where the internal structure of the edifices is, for one or other reason, well exposed. However, the access to these outcrops may be extremely difficult or even impossible. During the last years, it has been demonstrated that the study of outcrops with problematic or completely restricted access can be carried out by means of digital representations of the outcrop surface. Digital outcrops make possible the study of those areas with natural access limitations or safety issues and may facilitate visualization of the features of interest over the entire outcrop, as long as the digital outcrop can be analysed while navigated in real- time, with optional displays for perspective, scale distortions, and attribute filtering. In particular, Terrestrial Laser Scanning (TSL) instruments using Light Detection And Ranging technology (LIDAR) are capable of capturing topographic details and achieve modelling accuracy within a few centimetres. The data obtained enables the creation of

  10. Ocean color - Availability of the global data set

    NASA Technical Reports Server (NTRS)

    Feldman, Gene; Kuring, Norman; Ng, Carolyn; Esaias, Wayne; Mcclain, Chuck; Elrod, Jane; Maynard, Nancy; Endres, Dan

    1989-01-01

    The use of satellite observations of ocean color to provide reliable estimates of marine phytoplankton biomass on synoptic scales is examined. An overview is given of the Coastal Zone Color Scanner data processing system. The archiving and distribution of ocean color data are discussed, and NASA-sponsored archive sites are listed.

  11. A technique for the determination of Louisiana marsh salinity zone from vegetation mapped by multispectral scanner data: A comparison of satellite and aircraft data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1977-01-01

    Vegetation in selected study areas on the Louisiana coast was mapped using low altitude aircraft and satellite (LANDSAT) multispectral scanner data. Fresh, brackish, and saline marshes were then determined from the remotely sensed presence of dominant indicator plant associations. Such vegetational classifications were achieved from data processed through a standard pattern recognition computer program. The marsh salinity zone maps from the aircraft and satellite data compared favorably within the broad salinity regimes. The salinity zone boundaries determined by remote sensing compared favorably with those interpolated from line-transect field observations from an earlier year.

  12. Secure information display with limited viewing zone by use of multi-color visual cryptography.

    PubMed

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2004-04-05

    We propose a display technique that ensures security of visual information by use of visual cryptography. A displayed image appears as a completely random pattern unless viewed through a decoding mask. The display has a limited viewing zone with the decoding mask. We have developed a multi-color encryption code set. Eight colors are represented in combinations of a displayed image composed of red, green, blue, and black subpixels and a decoding mask composed of transparent and opaque subpixels. Furthermore, we have demonstrated secure information display by use of an LCD panel.

  13. Color Fundus Photography versus Fluorescein Angiography in Identification of the Macular Center and Zone in Retinopathy of Prematurity

    PubMed Central

    Patel, Samir N.; Klufas, Michael A.; Ryan, Michael C.; Jonas, Karyn E.; Ostmo, Susan; Martinez-Castellanos, Maria Ana; Berrocal, Audina M.; Chiang, Michael F.; Chan, R.V. Paul

    2016-01-01

    Purpose To examine the utility of fluorescein angiography (FA) in identification of the macular center and the diagnosis of zone in patients with retinopathy of prematurity (ROP). Design Validity and reliability analysis of diagnostic tools Methods 32 sets (16 color fundus photographs; 16 color fundus photographs paired with the corresponding FA) of wide-angle retinal images obtained from 16 eyes of eight infants with ROP were compiled on a secure web site. 9 ROP experts (3 pediatric ophthalmologists; 6 vitreoretinal surgeons) participated in the study. For each image set, experts identified the macular center and provided a diagnosis of zone. Main Outcome Measures (1) Sensitivity and specificity of zone diagnosis (2) “Computer facilitated diagnosis of zone,” based on precise measurement of the macular center, optic disc center, and peripheral ROP. Results Computer facilitated diagnosis of zone agreed with the expert’s diagnosis of zone in 28/45 (62%) cases using color fundus photographs and in 31/45 (69%) cases using FA. Mean (95% CI) sensitivity for detection of zone I by experts as compared to a consensus reference standard diagnosis when interpreting the color fundus images alone versus interpreting the color fundus photographs and FA was 47% (35.3% – 59.3%) and 61.1% (48.9% – 72.4%), respectively, (t(9) ≥ (2.063), p = 0.073). Conclusions There is a marginally significant difference in zone diagnosis when using color fundus photographs compared to using color fundus photographs and the corresponding fluorescein angiograms. There is inconsistency between traditional zone diagnosis (based on ophthalmoscopic exam and image review) compared to a computer-facilitated diagnosis of zone. PMID:25637180

  14. Color fundus photography versus fluorescein angiography in identification of the macular center and zone in retinopathy of prematurity.

    PubMed

    Patel, Samir N; Klufas, Michael A; Ryan, Michael C; Jonas, Karyn E; Ostmo, Susan; Martinez-Castellanos, Maria Ana; Berrocal, Audina M; Chiang, Michael F; Chan, R V Paul

    2015-05-01

    To examine the usefulness of fluorescein angiography (FA) in identifying the macular center and diagnosis of zone in patients with retinopathy of prematurity (ROP). Validity and reliability analysis of diagnostic tools. Thirty-two sets (16 color fundus photographs and 16 color fundus photographs paired with the corresponding FA images) of wide-angle retinal images obtained from 16 eyes of 8 infants with ROP were compiled on a secure web site. Nine ROP experts (3 pediatric ophthalmologists and 6 vitreoretinal surgeons) participated in the study. For each image set, experts identified the macular center and provided a diagnosis of zone. (1) Sensitivity and specificity of zone diagnosis and (2) computer-facilitated diagnosis of zone, based on precise measurement of the macular center, optic disc center, and peripheral ROP. Computer-facilitated diagnosis of zone agreed with the expert's diagnosis of zone in 28 (62%) of 45 cases using color fundus photographs and in 31 (69%) of 45 cases using FA images. Mean (95% confidence interval) sensitivity for detection of zone I by experts compared with a consensus reference standard diagnosis when interpreting the color fundus images alone versus interpreting the color fundus photographs and FA images was 47% (range, 35.3% to 59.3%) and 61.1% (range, 48.9% to 72.4%), respectively (t(9) ≥ (2.063); P = .073). There is a marginally significant difference in zone diagnosis when using color fundus photographs compared with using color fundus photographs and the corresponding FA images. There is inconsistency between traditional zone diagnosis (based on ophthalmoscopic examination and image review) compared with a computer-facilitated diagnosis of zone. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Comparison of digital intraoral scanners by single-image capture system and full-color movie system.

    PubMed

    Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi

    2017-01-01

    The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.

  16. Development of the coastal zone color scanner for NIMBUS 7. Volume 1: Mission objectives and instrument description

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An Earth scanning six channel (detector) radiometer using a classical Cassegrain telescope and a Wadsworth type grating spectrometer was launched aboard Nimbus 7 in order to determine the abundance or density of chlorophyll at or near the sea surface in coastal waters. The instrument also measures the sediment or gelbstroffe (yellow stuff) in coastal waters, detects surface vegetation, and measures sea surface temperature. Block diagrams and schematics are presented, design features are discussed and each subsystem of the instrument is described. A mission overview is included.

  17. Empirical orthogonal function analysis of cloud-containing coastal zone color scanner images of northeastern North American coastal waters

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; O'Brien, James J.; Iverson, Richard L.

    1989-01-01

    Empirical-orthogonal-function (EOF) analyses were carried out on 36 images of the Mid-Atlantic Bight and the Gulf of Maine, obtained by the CZCS aboard Nimbus 7 for the time period from February 28 through July 9, 1979, with the purpose of determining pigment concentrations in coastal waters. The EOF procedure was modified so as to include images with significant portions of data missing due to cloud obstruction, making it possible to estimate pigment values in areas beneath clouds. The results of image analyses explained observed variances in pigment concentrations and showed a south-to-north pattern corresponding to an April Mid-Atlantic Bight bloom and a June bloom over Nantucket Shoals and Platts Bank.

  18. A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1981-01-01

    For an estimation of the concentration of phytoplankton pigments in the oceans on the basis of Nimbus-7 CZCS imagery, it is necessary to remove the effects of the intervening atmosphere from the satellite imagery. The principle effect of the atmosphere is a loss in contrast caused by the addition of a substantial amount of radiance (path radiance) to that scatttered out of the water. Gordon (1978) has developed a technique which shows considerable promise for removal of these atmospheric effects. Attention is given to the correction algorithm, and its application to CZCS imagery. An alternate method under study for affecting the atmospheric correction requires a knowledge of 'clear water' subsurface upwelled radiance as a function of solar angle and pigment concentration.

  19. Ocean color measurements

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Austin, R. W.; Clark, D. K.; Hovis, W. A.; Yentsch, C. S.

    1985-01-01

    Ocean color observations by the Coastal Zone color scanner (CZCS) aboard the Nimbus-7 satellite are discussed, together with the factors contributing to the 'apparent' color of the ocean. The CZCS optical systems and the tecniques for extraction of the phytoplankton pigment concentration and the diffuse attenuation coefficient K from the 'apparent' water color are described in detail. Special consideration is given to the use of biooptical algorithms and the development of the K algorithm for the CZCS imagery. It is shown that under typical atmospheric conditions, the pigment concentration can be extracted from the satellite imagery to within + or - 30 percent over concentration ranges from 0 to 5 mg/cu m for the Morel case 1 water (Morel and Prieur, 1977), to which the oceanic waters belong as a rule.

  20. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  1. Complete-arch accuracy of intraoral scanners.

    PubMed

    Treesh, Joshua C; Liacouras, Peter C; Taft, Robert M; Brooks, Daniel I; Raiciulescu, Sorana; Ellert, Daniel O; Grant, Gerald T; Ye, Ling

    2018-04-30

    Intraoral scanners have shown varied results in complete-arch applications. The purpose of this in vitro study was to evaluate the complete-arch accuracy of 4 intraoral scanners based on trueness and precision measurements compared with a known reference (trueness) and with each other (precision). Four intraoral scanners were evaluated: CEREC Bluecam, CEREC Omnicam, TRIOS Color, and Carestream CS 3500. A complete-arch reference cast was created and printed using a 3-dimensional dental cast printer with photopolymer resin. The reference cast was digitized using a laboratory-based white light 3-dimensional scanner. The printed reference cast was scanned 10 times with each intraoral scanner. The digital standard tessellation language (STL) files from each scanner were then registered to the reference file and compared with differences in trueness and precision using a 3-dimensional modeling software. Additionally, scanning time was recorded for each scan performed. The Wilcoxon signed rank, Kruskal-Wallis, and Dunn tests were used to detect differences for trueness, precision, and scanning time (α=.05). Carestream CS 3500 had the lowest overall trueness and precision compared with Bluecam and TRIOS Color. The fourth scanner, Omnicam, had intermediate trueness and precision. All of the scanners tended to underestimate the size of the reference file, with exception of the Carestream CS 3500, which was more variable. Based on visual inspection of the color rendering of signed differences, the greatest amount of error tended to be in the posterior aspects of the arch, with local errors exceeding 100 μm for all scans. The single capture scanner Carestream CS 3500 had the overall longest scan times and was significantly slower than the continuous capture scanners TRIOS Color and Omnicam. Significant differences in both trueness and precision were found among the scanners. Scan times of the continuous capture scanners were faster than the single capture scanners

  2. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  3. Color-tunable and high-efficiency organic light-emitting diode by adjusting exciton bilateral migration zone

    NASA Astrophysics Data System (ADS)

    Liu, Shengqiang; Wu, Ruofan; Huang, Jiang; Yu, Junsheng

    2013-09-01

    A voltage-controlled color-tunable and high-efficiency organic light-emitting diode (OLED) by inserting 16-nm N,N'-dicarbazolyl-3,5-benzene (mCP) interlayer between two complementary emitting layers (EMLs) was fabricated. The OLED emitted multicolor ranging from blue (77.4 cd/A @ 6 V), white (70.4 cd/A @ 7 V), to yellow (33.7 cd/A @ 9 V) with voltage variation. An equivalent model was proposed to reveal the color-tunable and high-efficiency emission of OLEDs, resulting from the swing of exciton bilateral migration zone near mCP/blue-EML interface. Also, the model was verified with a theoretical arithmetic using single-EML OLEDs to disclose the crucial role of mCP exciton adjusting layer.

  4. Device-independent color scanning

    NASA Astrophysics Data System (ADS)

    Burger, Rudolph E.

    1993-08-01

    Color calibration technology is being incorporated into both Apple and Microsoft's operating systems. These color savvy operating systems will produce a market pull towards 'smart color' scanners and printers which, in turn, will lead towards a distributed architecture for color management systems (CMS). Today's desktop scanners produce red-green-blue color signals that do not accurately describe the color of the object being scanned. Future scanners will be self-calibrating and communicate their own 'device profile' to the operating system based CMS. This paper describes some of the key technologies required for this next generation of smart color scanners. Topics covered include a comparison of colorimetric and conventional scanning technologies, and the impact of metamerism, dye fluorescence and chromatic adaptation on device independent color scanning.

  5. The influence of ozone and aerosols on the brightness and color of the twilight zone

    NASA Technical Reports Server (NTRS)

    Adams, C. N.; Plass, G. N.; Kattawar, G. W.

    1973-01-01

    The radiance and color of the twilight sky are calculated for single scattered radiation with the use of spherically symmetric models of the earth's atmosphere. Spherical geometry is used throughout the calculations with no plane parallel approximations. Refraction effects are taken into account through fine subdivision of the atmosphere into spherical shells of fixed index of refraction. Shell's law of refraction is used to calculate a direction of travel each time that a photon traverses the interface between layers. Five different models of the atmosphere were used: a pure molecular scattering atmosphere; molecular atmosphere plus ozone absorption; and three models with aerosol concentrations of 1, 3, and 10 times normal together with molecular scattering and ozone absorption. The results of the calculations are shown for various observation positions and local viewing angles in the solar plane for wavelengths in the range of 0.40 microns to 0.75 microns.

  6. Spectral, electron microscopic and chemical investigations of gamma-induced purple color zonings in amethyst crystals from the Dursunbey-Balıkesir region of Turkey

    NASA Astrophysics Data System (ADS)

    Hatipoğlu, Murat; Kibar, Rana; Çetin, Ahmet; Can, Nurdoğan; Helvacı, Cahit; Derin, H.

    2011-07-01

    Amethyst crystals on matrix specimens from the Dursunbey-Balıkesir region in Turkey have five representative purple color zonings: dark purple, light purple, lilac, orchid, and violet. The purple color zonings have been analyzed with optical absorption spectra in the visible wavelength region, chemical full trace element analyses (inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectroscopy), and scanning electron microscopic images with high magnification. It can be proposed that the production of the purple color in amethyst crystals is due to three dominant absorption bands centered at 375, 530, and 675 nm, respectively. In addition, the purple color zonings are also due to four minor absorption bands centered at 435, 480, 620, and 760 nm. X-ray diffraction graphics of the investigated amethyst crystals indicate that these crystals are composed of a nearly pure alpha-quartz phase and do not include any moganite silica phase and/or other mineral implications. Trace element analyses of the amethyst crystals show five representative purple color zonings, suggesting that the absorption bands can be mainly attributed to extrinsic defects (chemical impurities). However, another important factor that influences all structural defects in amethyst is likely to be the gamma irradiation that exists during amethyst crystallization and its inclusion in host materials. This gamma irradiation originates from the large underlying intrusive granitoid body in the region of amethyst formation. Irradiation modifies the valence values of the impurity elements in the amethyst crystals. It is observed that the violet-colored amethyst crystals have the most stable and the least reversible coloration when exposed to strong light sources. This situation can be related to the higher impurity content of Fe (2.50 ppm), Co (3.1 ppm), Ni (38 ppm), Cu (17.9 ppm), Zn (10 ppm), Zr (3.9 ppm), and Mo (21.8 ppm).

  7. An interactive method for digitizing zone maps

    NASA Technical Reports Server (NTRS)

    Giddings, L. E.; Thompson, E. J.

    1975-01-01

    A method is presented for digitizing maps that consist of zones, such as contour or climatic zone maps. A color-coded map is prepared by any convenient process. The map is then read into memory of an Image 100 computer by means of its table scanner, using colored filters. Zones are separated and stored in themes, using standard classification procedures. Thematic data are written on magnetic tape and these data, appropriately coded, are combined to make a digitized image on tape. Step-by-step procedures are given for digitization of crop moisture index maps with this procedure. In addition, a complete example of the digitization of a climatic zone map is given.

  8. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  9. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice.

    PubMed

    Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro

    2016-06-20

    Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.

  10. Scanner imaging systems, aircraft

    NASA Technical Reports Server (NTRS)

    Ungar, S. G.

    1982-01-01

    The causes and effects of distortion in aircraft scanner data are reviewed and an approach to reduce distortions by modelling the effect of aircraft motion on the scanner scene is discussed. With the advent of advanced satellite borne scanner systems, the geometric and radiometric correction of aircraft scanner data has become increasingly important. Corrections are needed to reliably simulate observations obtained by such systems for purposes of evaluation. It is found that if sufficient navigational information is available, aircraft scanner coordinates may be related very precisely to planimetric ground coordinates. However, the potential for a multivalue remapping transformation (i.e., scan lines crossing each other), adds an inherent uncertainty, to any radiometric resampling scheme, which is dependent on the precise geometry of the scan and ground pattern.

  11. Introduction to Color Imaging Science

    NASA Astrophysics Data System (ADS)

    Lee, Hsien-Che

    2005-04-01

    Color imaging technology has become almost ubiquitous in modern life in the form of monitors, liquid crystal screens, color printers, scanners, and digital cameras. This book is a comprehensive guide to the scientific and engineering principles of color imaging. It covers the physics of light and color, how the eye and physical devices capture color images, how color is measured and calibrated, and how images are processed. It stresses physical principles and includes a wealth of real-world examples. The book will be of value to scientists and engineers in the color imaging industry and, with homework problems, can also be used as a text for graduate courses on color imaging.

  12. Use of satellite ocean color observations to refine understanding of global geochemical cycles

    NASA Technical Reports Server (NTRS)

    Walsh, J. J.; Dieterle, D. A.

    1985-01-01

    In October 1978, the first satellite-borne color sensor, the Coastal Zone Color Scanner (CZCS), was launched aboard Nimbus-7 with four visible and two infrared bands, permitting a sensitivity about 60 times that of the Landsat-1 multispectral scanner. The CZCS radiance data can be utilized to estimate ocean chlorophyll concentrations by detecting shifts in sea color, particularly in oceanic waters. The obtained data can be used in studies regarding problems of overfishing, and, in addition, in investigations concerning the consequences of man's accelerated extraction of nitrogen from the atmosphere and addition of carbon to the atmosphere. The satellite data base is considered along with a simulation analysis, and ships providing ground-truth chlorophyll measurements in the ocean.

  13. Forensics for flatbed scanners

    NASA Astrophysics Data System (ADS)

    Gloe, Thomas; Franz, Elke; Winkler, Antje

    2007-02-01

    Within this article, we investigate possibilities for identifying the origin of images acquired with flatbed scanners. A current method for the identification of digital cameras takes advantage of image sensor noise, strictly speaking, the spatial noise. Since flatbed scanners and digital cameras use similar technologies, the utilization of image sensor noise for identifying the origin of scanned images seems to be possible. As characterization of flatbed scanner noise, we considered array reference patterns and sensor line reference patterns. However, there are particularities of flatbed scanners which we expect to influence the identification. This was confirmed by extensive tests: Identification was possible to a certain degree, but less reliable than digital camera identification. In additional tests, we simulated the influence of flatfielding and down scaling as examples for such particularities of flatbed scanners on digital camera identification. One can conclude from the results achieved so far that identifying flatbed scanners is possible. However, since the analyzed methods are not able to determine the image origin in all cases, further investigations are necessary.

  14. Satellite Ocean Color: Present Status, Future Challenges

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; McClain, Charles R.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.

  15. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  16. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  17. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  18. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  19. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  20. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  1. High throughput optical scanner

    DOEpatents

    Basiji, David A.; van den Engh, Gerrit J.

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  2. Laser color recording unit

    NASA Astrophysics Data System (ADS)

    Jung, E.

    1984-05-01

    A color recording unit was designed for output and control of digitized picture data within computer controlled reproduction and picture processing systems. In order to get a color proof picture of high quality similar to a color print, together with reduced time and material consumption, a photographic color film material was exposed pixelwise by modulated laser beams of three wavelengths for red, green and blue light. Components of different manufacturers for lasers, acousto-optic modulators and polygon mirrors were tested, also different recording methods as (continuous tone mode or screened mode and with a drum or flatbed recording principle). Besides the application for the graphic arts - the proof recorder CPR 403 with continuous tone color recording with a drum scanner - such a color hardcopy peripheral unit with large picture formats and high resolution can be used in medicine, communication, and satellite picture processing.

  3. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  4. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. Helicopter- and ship-based measurements of mesoscale ocean color and thermal features in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Tanis, Fred J.; Manley, Thomas O.; Mitchell, Brian G.

    1990-09-01

    Eddies along the Polar Front/Marginal Ice Zone (MIZ) in Fram Strait are thought to make important contributions to nutrient flux and stimulation of primary productivity. During the Coordinated Eastern Arctic Regional Experiment (CEAREX) helicopter-based measurements of upwelling radiance were made in four visible spectral bands and in the thermal IR across mesoscale features associated with the MIZ. These structures were mapped by flying a grid pattern over the ocean surface to define eddy boundaries. Subsequently, the area was also sampled vertically with CTD and spectral radiometer profilers. Data obtained from a single structure were integrated to construct a three dimensional picture of physical and optical properties. Volume modeling of temperature, salinity, and density fields obtained from CTD survey define the subsurface eddy structure and are in good agreement with infrared derived characteristics. Maximum temperature in the core was found to be four degrees higher than the surrounding water. Volume modeling further indicates that a subsurface layer of Arctic Intermediate Water is intrinsically associated with the surface expression of the eddy. The ratio of upwelling radiances, L(44l)/L(565), was found to be correlated to surface chlorophyll, particulate absorption coefficient, and in water determinations of L using the optical profiling system. The remote sensing reflectance ratio along with the IR sea surface temperature were found to be useful to detect the surface expression of the eddy and to indicate near surface biological and physical processes.

  6. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  7. Color standardization in whole slide imaging using a color calibration slide

    PubMed Central

    Bautista, Pinky A.; Hashimoto, Noriaki; Yagi, Yukako

    2014-01-01

    Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels’ colors to their target colors. Results: There was a significant reduction in the CIELAB color difference, between images of the same H & E histological slide produced by two different whole slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color variations in histological images brought about by whole slide scanning can be effectively normalized with the use of the color calibration slide. PMID:24672739

  8. Real-time three-dimensional color doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: Validation experimental animal study and initial clinical experience

    NASA Technical Reports Server (NTRS)

    Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.; hide

    2003-01-01

    BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.

  9. A character string scanner

    NASA Technical Reports Server (NTRS)

    Enison, R. L.

    1971-01-01

    A computer program called Character String Scanner (CSS), is presented. It is designed to search a data set for any specified group of characters and then to flag this group. The output of the CSS program is a listing of the data set being searched with the specified group of characters being flagged by asterisks. Therefore, one may readily identify specific keywords, groups of keywords or specified lines of code internal to a computer program, in a program output, or in any other specific data set. Possible applications of this program include the automatic scan of an output data set for pertinent keyword data, the editing of a program to change the appearance of a certain word or group of words, and the conversion of a set of code to a different set of code.

  10. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (Inventor)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  11. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  12. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss.

  13. A Decade of Satellite Ocean Color Observations

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2009-01-01

    After the successful Coastal Zone Color Scanner (CZCS, 1978-1986), demonstration that quantitative estimations of geophysical variables such as chlorophyll a and diffuse attenuation coefficient could be derived from top of the atmosphere radiances, a number of international missions with ocean color capabilities were launched beginning in the late 1990s. Most notable were those with global data acquisition capabilities, i.e., the Ocean Color and Temperature Sensor (OCTS 1996-1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, United States, 1997-present), two Moderate Resolution Imaging Spectroradiometers, (MODIS, United States, Terra/2000-present and Aqua/2002-present), the Global Imager (GLI, Japan, 2002-2003), and the Medium Resolution Imaging Spectrometer (MERIS, European Space Agency, 2002-present). These missions have provided data of exceptional quality and continuity, allowing for scientific inquiries into a wide variety of marine research topics not possible with the CZCS. This review focuses on the scientific advances made over the past decade using these data sets.

  14. Multi-spectral Line Scanner image of Northern California

    NASA Image and Video Library

    1973-06-22

    S73-34295B (June 1973) --- A vertical view of a portion of northern California reproduced from data taken from the Skylab Multispectral Scanner, experiment S192, in the Skylab space station in Earth orbit. This view is the most westerly one-third of Frame No. 001, Roll No. 518, S192, Skylab 2. Frame No. 001 extends from the Pacific coast at the Eureka area southeasterly 175 nautical miles to the Feather River drainage basin. Included in this view are Lake Shasta, Sacramento River Valley, Redding and Red Bluff. This non-photographic image is a color composite of channels 2 (visible), 7, and 12 (infrared) from the Earth Resources Experiments Package (EREP) S192 scanner. The scanner techniques assist with spectral signature identification and mapping of ground truth targets in agriculture, forestry, geology, hydrology and oceanography. Photo credit: NASA

  15. Determining density of maize canopy. 2: Airborne multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Cipra, J. E.

    1971-01-01

    Multispectral scanner data were collected in two flights over a light colored soil background cover plot at an altitude of 305 m. Energy in eleven reflective wavelength band from 0.45 to 2.6 microns was recorded. Four growth stages of maize (Zea mays L.) gave a wide range of canopy densities for each flight date. Leaf area index measurements were taken from the twelve subplots and were used as a measure of canopy density. Ratio techniques were used to relate uncalibrated scanner response to leaf area index. The ratios of scanner data values for the 0.72 to 0.92 micron wavelength band over the 0.61 to 0.70 micron wavelength band were calculated for each plot. The ratios related very well to leaf area index for a given flight date. The results indicated that spectral data from maize canopies could be of value in determining canopy density.

  16. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  17. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  18. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    NASA Technical Reports Server (NTRS)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  19. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    PubMed Central

    Buchmann, Stephen L.

    2011-01-01

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale. PMID:26467835

  20. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  1. Colorism/Neo-Colorism

    ERIC Educational Resources Information Center

    Snell, Joel

    2017-01-01

    There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…

  2. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  3. Color blindness

    MedlinePlus

    Color deficiency; Blindness - color ... Color blindness occurs when there is a problem with the pigments in certain nerve cells of the eye that sense color. These cells are called cones. They are found ...

  4. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  5. Digitizing zone maps, using modified LARSYS program. [computer graphics and computer techniques for mapping

    NASA Technical Reports Server (NTRS)

    Giddings, L.; Boston, S.

    1976-01-01

    A method for digitizing zone maps is presented, starting with colored images and producing a final one-channel digitized tape. This method automates the work previously done interactively on the Image-100 and Data Analysis System computers of the Johnson Space Center (JSC) Earth Observations Division (EOD). A color-coded map was digitized through color filters on a scanner to form a digital tape in LARSYS-2 or JSC Universal format. The taped image was classified by the EOD LARSYS program on the basis of training fields included in the image. Numerical values were assigned to all pixels in a given class, and the resulting coded zone map was written on a LARSYS or Universal tape. A unique spatial filter option permitted zones to be made homogeneous and edges of zones to be abrupt transitions from one zone to the next. A zoom option allowed the output image to have arbitrary dimensions in terms of number of lines and number of samples on a line. Printouts of the computer program are given and the images that were digitized are shown.

  6. Automated color classification of urine dipstick image in urine examination

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Royananda; Muchtar, M. A.; Taqiuddin, R.; Adnan, S.; Anugrahwaty, R.; Budiarto, R.

    2018-03-01

    Urine examination using urine dipstick has long been used to determine the health status of a person. The economical and convenient use of urine dipstick is one of the reasons urine dipstick is still used to check people health status. The real-life implementation of urine dipstick is done manually, in general, that is by comparing it with the reference color visually. This resulted perception differences in the color reading of the examination results. In this research, authors used a scanner to obtain the urine dipstick color image. The use of scanner can be one of the solutions in reading the result of urine dipstick because the light produced is consistent. A method is required to overcome the problems of urine dipstick color matching and the test reference color that have been conducted manually. The method proposed by authors is Euclidean Distance, Otsu along with RGB color feature extraction method to match the colors on the urine dipstick with the standard reference color of urine examination. The result shows that the proposed approach was able to classify the colors on a urine dipstick with an accuracy of 95.45%. The accuracy of color classification on urine dipstick against the standard reference color is influenced by the level of scanner resolution used, the higher the scanner resolution level, the higher the accuracy.

  7. People counting and re-identification using fusion of video camera and laser scanner

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Olivera, Santiago; Wagley, Raj

    2016-05-01

    We present a system for people counting and re-identification. It can be used by transit and homeland security agencies. Under FTA SBIR program, we have developed a preliminary system for transit passenger counting and re-identification using a laser scanner and video camera. The laser scanner is used to identify the locations of passenger's head and shoulder in an image, a challenging task in crowed environment. It can also estimate the passenger height without prior calibration. Various color models have been applied to form color signatures. Finally, using a statistical fusion and classification scheme, passengers are counted and re-identified.

  8. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  9. What Scanner products are available?

    Atmospheric Science Data Center

    2014-12-08

    ... not provide the full diurnal coverage, which can affect the quality of the shortwave and longwave estimate. ERBS covers all 24-hour local ... algorithm. Because of these differences, it is best to work with these two data sets separately. ERBE/ERBS scanner operated ...

  10. Oceanographic scanner system design study, volume 1

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design is reported of a dual mode multispectral scanner, capable of satisfying both overland and oceanographic requirements. A complete system description and performance summary of the scanner are given. In addition, subsystem and component descriptions and performance analyses are treated in individual sections. The design of the scanner, with minimum modifications, interfaces to the ERTS spacecraft and the ground data handling system.

  11. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  12. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  13. Color universal design: analysis of color category dependency on color vision type (4)

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomohiro; Ichihara, Yasuyo G.; Kojima, Natsuki; Tanaka, Hisaya; Ito, Kei

    2013-02-01

    This report is af ollow-up to SPIE-IS+T / Vol. 7528 7528051-8, SPIE-IS+T / Vol. 7866 78660J-1-8 and SPIE-IS+T / Vol. 8292 829206-1-8. Colors are used to communicate information in various situations, not just for design and apparel. However, visual information given only by color may be perceived differently by individuals with different color vision types. Human color vision is non-uniform and the variation in most cases is genetically linked to L-cones and M-cones. Therefore, color appearance is not the same for all color vision types. Color Universal Design is an easy-to-understand system that was created to convey color-coded information accurately to most people, taking color vision types into consideration. In the present research, we studied trichromat (C-type), prolan (P-type), and deutan (D-type) forms of color vision. We here report the result of two experiments. The first was the validation of the confusion colors using the color chart on CIELAB uniform color space. We made an experimental color chart (total of color cells is 622, the color difference between color cells is 2.5) for fhis experiment, and subjects have P-type or D-type color vision. From the data we were able to determine "the limits with high probability of confusion" and "the limits with possible confusion" around various basing points. The direction of the former matched with the theoretical confusion locus, but the range did not extend across the entire a* range. The latter formed a belt-like zone above and below the theoretical confusion locus. This way we re-analyzed a part of the theoretical confusion locus suggested by Pitt-Judd. The second was an experiment in color classification of the subjects with C-type, P-type, or D-type color vision. The color caps of fhe 100 Hue Test were classified into seven categories for each color vision type. The common and different points of color sensation were compared for each color vision type, and we were able to find a group of color caps

  14. Colorful Chemistry.

    ERIC Educational Resources Information Center

    Williams, Suzanne

    1991-01-01

    Described is an color-making activity where students use food coloring, eyedroppers, and water to make various colored solutions. Included are the needed materials and procedures. Students are asked to write up the formulas for making their favorite color. (KR)

  15. Scanner K-line photometry of Orion stars

    NASA Technical Reports Server (NTRS)

    Hesser, J. E.; Mcclintock, W.; Henry, R. C.

    1977-01-01

    Results are presented for two-channel scanner measurements of calcium K-line strengths in 39 Orion sword and belt stars. Values of the calcium k index and its associated standard error are given for each observed star, and the K-line strengths are compared with those of K-line standard stars and Hyades stars. Plots of k index against reddening-corrected color and of k-index deviation against metal-strength index deviation are provided which show that the Orion sword and belt stars do not differ significantly in their calcium and metal abundances from general field stars.

  16. Oil slick studies using photographic and multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Macintyre, W. G.; Penney, M. E.; Oberholtzer, J. D.

    1971-01-01

    Field studies of spills of Nos. 6 (Bunker C), 4, and 2 fuel oils and menhaden fish oil in the southern Chesapeake Bay have been supplemented with aerial photographic and multispectral scanner data. Thin films showed best in ultraviolet and blue bands and thick films in the green. Color film was effective for all thicknesses. Thermal infrared imagery provided clear detection, but required field temperature and thickness data to distinguish thickness/emissivity variations from temperature variations. Slick spreading rates agree with the theory of Fay (1969); further study of spreading is in progress.

  17. Advanced optical 3D scanners using DMD technology

    NASA Astrophysics Data System (ADS)

    Muenstermann, P.; Godding, R.; Hermstein, M.

    2017-02-01

    Optical 3D measurement techniques are state-of-the-art for highly precise, non-contact surface scanners - not only in industrial development, but also in near-production and even in-line configurations. The need for automated systems with very high accuracy and clear implementation of national precision standards is growing extremely due to expanding international quality guidelines, increasing production transparency and new concepts related to the demands of the fourth industrial revolution. The presentation gives an overview about the present technical concepts for optical 3D scanners and their benefit for customers and various different applications - not only in quality control, but also in design centers or in medical applications. The advantages of DMD-based systems will be discussed and compared to other approaches. Looking at today's 3D scanner market, there is a confusing amount of solutions varying from lowprice solutions to high end systems. Many of them are linked to a very special target group or to special applications. The article will clarify the differences of the approaches and will discuss some key features which are necessary to render optical measurement systems suitable for industrial environments. The paper will be completed by examples for DMDbased systems, e. g. RGB true-color systems with very high accuracy like the StereoScan neo of AICON 3D Systems. Typical applications and the benefits for customers using such systems are described.

  18. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  19. Color Facsimile.

    DTIC Science & Technology

    1995-02-01

    modification of existing JPEG compression and decompression software available from Independent JPEG Users Group to process CIELAB color images and to use...externally specificed Huffman tables. In addition a conversion program was written to convert CIELAB color space images to red, green, blue color space

  20. Color Algebras

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. We would like it to match the well-defined algebra of spectral functions describing lights and surface reflectances, but an exact correspondence is impossible after the spectra have been projected to a three-dimensional color space, because of metamerism physically different spectra can produce the same color sensation. Metameric spectra are interchangeable for the purposes of addition, but not multiplication, so any color algebra is necessarily an approximation to physical reality. Nevertheless, because the majority of naturally-occurring spectra are well-behaved (e.g., continuous and slowly-varying), color algebras can be formulated that are largely accurate and agree well with human intuition. Here we explore the family of algebras that result from associating each color with a member of a three-dimensional manifold of spectra. This association can be used to construct a color product, defined as the color of the spectrum of the wavelength-wise product of the spectra associated with the two input colors. The choice of the spectral manifold determines the behavior of the resulting system, and certain special subspaces allow computational efficiencies. The resulting systems can be used to improve computer graphic rendering techniques, and to model various perceptual phenomena such as color constancy.

  1. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  2. Ocean Color Data at the Goddard Earth Sciences (GES) DAAC: CZCS, SeaWiFS, OCTS, MODIS-Terra, MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Goddard Earth Sciences Distributed Active Archive Center (DAAC) is the designated archive for all of the ocean color data produced by NASA satellite missions. The DAAC is a long-term, high volume, secure repository for many different kinds of environmental data. With respect to ocean color, the Goddard DAAC holds all the data obtained during the eight-year mission of the Coastal Zone Color Scanner (CZCS). The DAAC is currently receiving data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and the MODIS-Terra instrument. The DAAC recently received reformatted data from the Ocean Color and Temperature Scanner (OCTS) and will also archive MODIS-Aqua Ocean products. In addition to its archive and distribution services, the Goddard DAAC strives to improve data access, ease-of-use, and data applicability for a broad spectrum of customers. The DAAC's data support teams practice dual roles, both insuring the integrity of the DAAC data archive and serving the user community with answers to user inquiries, online and print documentation, and customized data services.

  3. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  4. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David; Woody, Craig L.; Rooney, William; Vaska, Paul; Stoll, Sean; Pratte, Jean-Francois; O'Connor, Paul

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  5. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  6. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  7. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  8. Scanner Art and Links to Physics

    ERIC Educational Resources Information Center

    Russell, David

    2005-01-01

    A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…

  9. Evaluation of a commercial flatbed document scanner and radiographic film scanner for radiochromic EBT film dosimetry

    PubMed Central

    Parker, Brent C.; Neck, Daniel W.; Henkelmann, Greg; Rosen, Isaac I.

    2010-01-01

    The purpose of this study was to quantify the performance and assess the utility of two different types of scanners for radiochromic EBT film dosimetry: a commercial flatbed document scanner and a widely used radiographic film scanner. We evaluated the Epson Perfection V700 Photo flatbed scanner and the Vidar VXR Dosimetry Pro Advantage scanner as measurement devices for radiochromic EBT film. Measurements were made of scan orientation effects, response uniformity, and scanner noise. Scanners were tested using films irradiated with eight separate 3×3 cm2 fields to doses ranging from 0.115–5.119 Gy. ImageJ and RIT software was used for analyzing the Epson and Vidar scans, respectively. For repeated scans of a single film, the measurements in each dose region were reproducible to within ±0.3% standard deviation (SD) with both scanners. Film‐to‐film variations for corresponding doses were measured to be within ±0.4% SD for both Epson scanner and Vidar scanners. Overall, the Epson scanner showed a 10% smaller range of pixel value compared to the Vidar scanner. Scanner noise was small: ±0.3% SD for the Epson and ±0.2% for the Vidar. Overall measurement uniformity for blank film in both systems was better than ±0.2%, provided that the leading and trailing 2 cm film edges were neglected in the Vidar system. In this region artifacts are attributed to the film rollers. Neither system demonstrated a clear measurement advantage. The Epson scanner is a relatively inexpensive method for analyzing radiochromic film, but there is a lack of commercially available software. For a clinic already using a Vidar scanner, applying it to radiochromic film is attractive because commercial software is available. However, care must be taken to avoid using the leading and trailing film edges. PACS number: 87.55.Qr

  10. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  11. Color categories and color appearance

    PubMed Central

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  12. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  13. Ocean-color Satellites and the Phytoplankton-dust Connection

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.

    2000-01-01

    Results of a time series of satellite measurements of aerosol radiance made with two ocean-color sensors are presented. Data from the Coastal Zone Color Scanner (CZCS) were collected from 1978 to 1986. The follow-on sensor, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), has been transmitting data since September 1997. Both CZCS and SeaWiFS images successfully depicted regions of well-known, large-scale mineral aerosol plumes, the seasonality of which corresponds to that found by other satellite and land-based platforms. Aerosol radiance extractions were made for two subregions in the North Atlantic, both of which are recipients of regular mineral aerosol deposits originating from northwest Africa. In the almost eight-year time series obtained with CZCS, the annual cycle in both subregions follows a similar pattern each year and agrees well with results from the published literature. However, there is interannual variability and the observed fluctuations may be linked to climatic shifts associated with the North Atlantic Oscillation. The SeaWiFS annual cycle of aerosol radiance in both subregions closely followed that found in the CZCS climatology; SeaWiFS-measured aerosol optical thickness mirrors aerosol radiance to a high degree. The higher temporal resolution offered by the SeaWiFS data demonstrates the sporadic nature of dust events throughout the entire year and not only during the high dust season.

  14. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  15. A three-dimensional evaluation of a laser scanner and a touch-probe scanner.

    PubMed

    Persson, Anna; Andersson, Matts; Oden, Agneta; Sandborgh-Englund, Gunilla

    2006-03-01

    The fit of a dental restoration depends on quality throughout the entire manufacturing process. There is difficulty in assessing the surface topography of an object with a complex form, such as teeth, since there is no exact reference form. The purpose of this study was to determine the repeatability and relative accuracy of 2 dental surface digitization devices. A computer-aided design (CAD) technique was used for evaluation to calculate and present the deviations 3-dimensionally. Ten dies of teeth prepared for complete crowns were fabricated in presintered yttria-stabilized tetragonal zirconia (Y-TZP). The surfaces were digitized 3 times each with an optical or mechanical digitizer. The number of points in the point clouds from each reading were calculated and used as the CAD reference model (CRM). Alignments were performed by registration software that works by minimizing a distance criterion. In color-difference maps, the distribution of the discrepancies between the surfaces in the CRM and the 3-dimensional surface models was identified and located. The repeatability of both scanners was within 10 microm, based on SD and absolute mean values. The qualitative evaluation resulted in an even distribution of the deviations in the optical digitizer, whereas the dominating part of the surfaces in the mechanical digitizer showed no deviations. The relative accuracy of the 2 surface digitization devices was within +/- 6 microm, based on median values. The repeatability of the optical digitizer was comparable with the mechanical digitization device, and the relative accuracy was similar.

  16. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2005-01-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  17. Quantum Color

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  18. Comparison of solid shapes geometry derived by a laser scanner and a total station

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Andreas; Lakakis, Konstantinos

    2016-08-01

    The laser scanning technology has become a common method for the daily applications of a large variety of scientists and professionals. Even for more sophisticated projects, laser scanners have been proved a very useful tool at researchers' and engineers' disposal. In this paper, we investigated the ability of a laser scanner compared to the ability of a total station to provide the geometry of solids. The tests were made in the laboratory facilities of the Aristotle University of Thessaloniki, in a variety of distances between the measuring instrument and the object. The solids that were used differ in shape, material and color. The objects are a wooden cube, a metal cube and a wooden pyramid. The absolute dimensions of the solid shapes were provided by the use of a caliper and were compared to the dimensions that were calculated by the coordinates produced by the total station and laser scanner measurements.

  19. A novel optical scanner for laser radar

    NASA Astrophysics Data System (ADS)

    Yao, Shunyu; Peng, Renjun; Gao, Jianshuang

    2013-09-01

    Laser radar are ideally suitable for recognizing objects, detection, target tracking or obstacle avoidance, because of the high angular and range resolution. In recent years, scannerless ladar has developed rapidly. In contrast with traditional scanner ladar, scannerless ladar has distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. However, the scannerless ladar is still in the stage of laboratory and the performance cannot meet the demands of practical applications. Hence, traditional scanner laser radar is still mainly applied. In scanner ladar system, optical scanner is the key component which can deflect the direction of laser beam to the target. We investigated a novel scanner based on the characteristic of fiber's light-conductive. The fiber bundles are arranged in a special structure which connected to a motor. When motor working properly, the laser passes through the fibers on incident plane and the location of laser spot on output plane will move along with a straight line in a constant speed. The direction of light will be deflected by taking advantage of transmitting optics, then the linear sweeping of the target can be achieved. A laser radar scheme with high speed and large field of view can be realized. Some researches on scanner are simply introduced on section1. The structure of the optical scanner will be described and the practical applications of the scanner in transmitting and receiving optical paths are discussed in section2. Some characteristic of scanner is calculated in section3. In section4, we report the simulation and experiment of our prototype.

  20. Colored Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  1. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  2. Color (RGB) imaging laser radar

    NASA Astrophysics Data System (ADS)

    Ferri De Collibus, M.; Bartolini, L.; Fornetti, G.; Francucci, M.; Guarneri, M.; Nuvoli, M.; Paglia, E.; Ricci, R.

    2008-03-01

    We present a new color (RGB) imaging 3D laser scanner prototype recently developed in ENEA, Italy). The sensor is based on AM range finding technique and uses three distinct beams (650nm, 532nm and 450nm respectively) in monostatic configuration. During a scan the laser beams are simultaneously swept over the target, yielding range and three separated channels (R, G and B) of reflectance information for each sampled point. This information, organized in range and reflectance images, is then elaborated to produce very high definition color pictures and faithful, natively colored 3D models. Notable characteristics of the system are the absence of shadows in the acquired reflectance images - due to the system's monostatic setup and intrinsic self-illumination capability - and high noise rejection, achieved by using a narrow field of view and interferential filters. The system is also very accurate in range determination (accuracy better than 10 -4) at distances up to several meters. These unprecedented features make the system particularly suited to applications in the domain of cultural heritage preservation, where it could be used by conservators for examining in detail the status of degradation of frescoed walls, monuments and paintings, even at several meters of distance and in hardly accessible locations. After providing some theoretical background, we describe the general architecture and operation modes of the color 3D laser scanner, by reporting and discussing first experimental results and comparing high-definition color images produced by the instrument with photographs of the same subjects taken with a Nikon D70 digital camera.

  3. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L.; Powers, Hurshal G.

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  4. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  5. Label-free tissue scanner for colorectal cancer screening

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Sridharan, Shamira; Liang, Jon; Luo, Zelun; Han, Kevin; Macias, Virgilia; Shah, Anish; Patel, Roshan; Tangella, Krishnarao; Kajdacsy-Balla, Andre; Guzman, Grace; Popescu, Gabriel

    2017-06-01

    The current practice of surgical pathology relies on external contrast agents to reveal tissue architecture, which is then qualitatively examined by a trained pathologist. The diagnosis is based on the comparison with standardized empirical, qualitative assessments of limited objectivity. We propose an approach to pathology based on interferometric imaging of "unstained" biopsies, which provides unique capabilities for quantitative diagnosis and automation. We developed a label-free tissue scanner based on "quantitative phase imaging," which maps out optical path length at each point in the field of view and, thus, yields images that are sensitive to the "nanoscale" tissue architecture. Unlike analysis of stained tissue, which is qualitative in nature and affected by color balance, staining strength and imaging conditions, optical path length measurements are intrinsically quantitative, i.e., images can be compared across different instruments and clinical sites. These critical features allow us to automate the diagnosis process. We paired our interferometric optical system with highly parallelized, dedicated software algorithms for data acquisition, allowing us to image at a throughput comparable to that of commercial tissue scanners while maintaining the nanoscale sensitivity to morphology. Based on the measured phase information, we implemented software tools for autofocusing during imaging, as well as image archiving and data access. To illustrate the potential of our technology for large volume pathology screening, we established an "intrinsic marker" for colorectal disease that detects tissue with dysplasia or colorectal cancer and flags specific areas for further examination, potentially improving the efficiency of existing pathology workflows.

  6. Uncertainty Propagation for Terrestrial Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Mezian, c.; Vallet, Bruno; Soheilian, Bahman; Paparoditis, Nicolas

    2016-06-01

    Laser scanners are used more and more in mobile mapping systems. They provide 3D point clouds that are used for object reconstruction and registration of the system. For both of those applications, uncertainty analysis of 3D points is of great interest but rarely investigated in the literature. In this paper we present a complete pipeline that takes into account all the sources of uncertainties and allows to compute a covariance matrix per 3D point. The sources of uncertainties are laser scanner, calibration of the scanner in relation to the vehicle and direct georeferencing system. We suppose that all the uncertainties follow the Gaussian law. The variances of the laser scanner measurements (two angles and one distance) are usually evaluated by the constructors. This is also the case for integrated direct georeferencing devices. Residuals of the calibration process were used to estimate the covariance matrix of the 6D transformation between scanner laser and the vehicle system. Knowing the variances of all sources of uncertainties, we applied uncertainty propagation technique to compute the variance-covariance matrix of every obtained 3D point. Such an uncertainty analysis enables to estimate the impact of different laser scanners and georeferencing devices on the quality of obtained 3D points. The obtained uncertainty values were illustrated using error ellipsoids on different datasets.

  7. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  8. Modeling of estuarne chlorophyll a from an airborne scanner

    USGS Publications Warehouse

    Khorram, Siamak; Catts, Glenn P.; Cloern, James E.; Knight, Allen W.

    1987-01-01

    Near simultaneous collection of 34 surface water samples and airborne multispectral scanner data provided input for regression models developed to predict surface concentrations of estuarine chlorophyll a. Two wavelength ratios were employed in model development. The ratios werechosen to capitalize on the spectral characteristics of chlorophyll a, while minimizing atmospheric influences. Models were then applied to data previously acquired over the study area thre years earlier. Results are in the form of color-coded displays of predicted chlorophyll a concentrations and comparisons of the agreement among measured surface samples and predictions basedon coincident remotely sensed data. The influence of large variations in fresh-water inflow to the estuary are clearly apparent in the results. The synoptic view provided by remote sensing is another method of examining important estuarine dynamics difficult to observe from in situ sampling alone.

  9. Color Blind or Color Conscious?

    ERIC Educational Resources Information Center

    Tatum, Beverly Daniel

    1999-01-01

    A color-blind approach often signifies that an educator has not considered what racial/ethnic identity means to youngsters. Students want to find themselves reflected in the faces of teachers and other students. Color-conscious teachers seek out materials that positively reflect students' identities and initiate discussions about race and racism.…

  10. The MIDAS processor. [Multivariate Interactive Digital Analysis System for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Gordon, M. F.; Mclaughlin, R. H.; Marshall, R. E.

    1975-01-01

    The MIDAS (Multivariate Interactive Digital Analysis System) processor is a high-speed processor designed to process multispectral scanner data (from Landsat, EOS, aircraft, etc.) quickly and cost-effectively to meet the requirements of users of remote sensor data, especially from very large areas. MIDAS consists of a fast multipipeline preprocessor and classifier, an interactive color display and color printer, and a medium scale computer system for analysis and control. The system is designed to process data having as many as 16 spectral bands per picture element at rates of 200,000 picture elements per second into as many as 17 classes using a maximum likelihood decision rule.

  11. Quantum Color

    SciTech Connect

    Lincoln, Don

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  12. Interactive Map | USDA Plant Hardiness Zone Map

    Science.gov Websites

    Choose Basemap: Terrain Road Map Satellite Image Turn on Basemap Roads and Labels Zone Color Transparency menu to switch between Terrain, Road Map, and Satellite Image. Turn on Basemap Roads and Labels Click option is available only for Terrain and Satellite Image basemap choices. Zone Color Transparency The

  13. Crossing Comfort Zones.

    ERIC Educational Resources Information Center

    Madison, D. Soyini

    1993-01-01

    Offers a narrative based on a real event, in the form of a "docustory," describing that moment when teaching worked--when, in an instructional setting, communication was "perfect" or "excellent." Describes how three very different students, in a course on the cultures of women of color, moved beyond comfort zones while working together on a class…

  14. Minuutit (Colors).

    ERIC Educational Resources Information Center

    Pulu, Tupou L.; And Others

    This first grade workbook is designed for children in bilingual Inupiat-English programs in the Alaskan villages of Ambler, Kiana, Kobuk, Noorvik, Selawik, and Shungnak. Each page has a captioned black-and-white drawing to be colored. (CFM)

  15. Urine Color

    MedlinePlus

    ... during urinary tract infections caused by pseudomonas bacteria. Dark brown or cola-colored urine Brown urine can ... of fava beans, rhubarb or aloe can cause dark brown urine. Medications. A number of drugs can ...

  16. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  17. Sea Surface Temperature and Ocean Color Variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Conaty, A. P.

    2001-12-01

    The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.

  18. Multispectral scanner system for ERTS: Four-band scanner system. Volume 1: System description and performance

    NASA Technical Reports Server (NTRS)

    Norwood, V. T.; Fermelia, L. R.; Tadler, G. A.

    1972-01-01

    The four-band Multispectral Scanner System (MSS) is discussed. Included is a description of the MSS with major emphasis on the flight subsystem (scanner and multiplexer), the theory for the MSS calibration system processing techniques, system calibration data, and a summary of the performance of the two four-band MSS systems.

  19. Color vision test

    MedlinePlus

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  20. A flexible and wearable terahertz scanner

    NASA Astrophysics Data System (ADS)

    Suzuki, D.; Oda, S.; Kawano, Y.

    2016-12-01

    Imaging technologies based on terahertz (THz) waves have great potential for use in powerful non-invasive inspection methods. However, most real objects have various three-dimensional curvatures and existing THz technologies often encounter difficulties in imaging such configurations, which limits the useful range of THz imaging applications. Here, we report the development of a flexible and wearable THz scanner based on carbon nanotubes. We achieved room-temperature THz detection over a broad frequency band ranging from 0.14 to 39 THz and developed a portable THz scanner. Using this scanner, we performed THz imaging of samples concealed behind opaque objects, breakages and metal impurities of a bent film and multi-view scans of a syringe. We demonstrated a passive biometric THz scan of a human hand. Our results are expected to have considerable implications for non-destructive and non-contact inspections, such as medical examinations for the continuous monitoring of health conditions.

  1. Reconstruction artifacts in VRX CT scanner images

    NASA Astrophysics Data System (ADS)

    Rendon, David A.; DiBianca, Frank A.; Keyes, Gary S.

    2008-03-01

    Variable Resolution X-ray (VRX) CT scanners allow imaging of different sized anatomy at the same level of detail using the same device. This is achieved by tilting the x-ray detectors so that the projected size of the detecting elements is varied to produce reconstructions of smaller fields of view with higher spatial resolution. As with regular CT scanners, the images obtained with VRX scanners are affected by different kinds of artifacts of various origins. This work studies some of these artifacts and the impact that the VRX effect has on them. For this, computational models of single-arm single-slice VRX scanners are used to produce images with artifacts commonly found in routine use. These images and artifacts are produced using our VRX CT scanner simulator, which allows us to isolate the system parameters that have a greater effect on the artifacts. A study of the behavior of the artifacts at varying VRX opening angles is presented for scanners implemented using two different detectors. The results show that, although varying the VRX angle will have an effect on the severity of each of the artifacts studied, for some of these artifacts the effect of other factors (such as the distribution of the detector cells and the position of the phantom in the reconstruction grid) is overwhelmingly more significant. This is shown to be the case for streak artifacts produced by thin metallic objects. For some artifacts related to beam hardening, their severity was found to decrease along with the VRX angle. These observations allow us to infer that in regular use the effect of the VRX angle artifacts similar to the ones studied here will not be noticeable as it will be overshadowed by parameters that cannot be easily controlled outside of a computational model.

  2. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  3. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  4. Jupiter's Clouds of Many Colors

    NASA Image and Video Library

    2017-06-15

    NASA's Juno spacecraft was racing away from Jupiter following its seventh close pass of the planet when JunoCam snapped this image on May 19, 2017, from about 29,100 miles (46,900 kilometers) above the cloud tops. The spacecraft was over 65.9 degrees south latitude, with a lovely view of the south polar region of the planet. This image was processed to enhance color differences, showing the amazing variety in Jupiter's stormy atmosphere. The result is a surreal world of vibrant color, clarity and contrast. Four of the white oval storms known as the "String of Pearls" are visible near the top of the image. Interestingly, one orange-colored storm can be seen at the belt-zone boundary, while other storms are more of a cream color. https://photojournal.jpl.nasa.gov/catalog/PIA21392

  5. An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner

    NASA Technical Reports Server (NTRS)

    Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel

    1987-01-01

    The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.

  6. Colorful television

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    What are the challenges and rewards for American men and women of color who chose to become scientists? The Public Broadcasting Service intends to show us through an upcoming 6-hour documentary series entitled “Breakthrough: The Changing Face of Science in America.”

  7. Colored thunderstorms.

    PubMed

    Gedzelman, Stanley David

    2017-07-01

    Three scenarios that produce colored thunderstorms are simulated. In Scenario #1, the thunderstorm's sunlit face exhibits a color gradient from white or yellow at top to red at base when the sun is near the horizon. It is simulated with a second-order scattering model as a combination of sunlight and skylight reflected from the cloud face that is attenuated and reddened by Rayleigh and Mie scattering over the long optical path near sunset that increases from cloud top to base. In Scenario #2, the base of the precipitation shaft appears luminous green-blue when surrounded by a much darker arcus cloud. It is simulated as multiply scattered light transmitted through the precipitation shaft using a Monte Carlo model that includes absorption by liquid water and ice. The color occurs over a wide range of solar zenith angles with large liquid water content, but the precipitation shaft is only bright when hydrometeors are large. Attenuation of the light by Rayleigh and Mie scattering outside the precipitation shaft shifts the spectrum to green when viewed from a distance of several kilometers. In Scenario #3, the shaded cloud face exhibits a "sickly" yellow-green color. It is simulated with a second-order scattering model as the result of distant skylight that originates in the sunlit region beyond an opaque anvil of order 40 km wide but is attenuated by Rayleigh and Mie scattering in its path to the cloud and observer.

  8. Colorful Accounting

    ERIC Educational Resources Information Center

    Warrick, C. Shane

    2006-01-01

    As instructors of accounting, we should take an abstract topic (at least to most students) and connect it to content known by students to help increase the effectiveness of our instruction. In a recent semester, ordinary items such as colors, a basketball, and baseball were used to relate the subject of accounting. The accounting topics of account…

  9. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  10. Shift Colors

    Science.gov Websites

    Skip to main content Navigate Up This page location is: Navy Personnel Command Reference Library Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Enlisted Support & Services Expand Support & Services Organization Expand Organization Reference

  11. Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing

    NASA Technical Reports Server (NTRS)

    Leming, T. D.; Stuntz, W. E.

    1984-01-01

    Little is known about the spatial and temporal scales of hypoxic bottom water areas that occur along the inner continental shelf of Texas and Louisiana. Because hypoxia appears to be related to surface chlorophyll and temperature, which can both be measured with the Coastal Zone Color Scanner aboard the Nimbus 7 satellite, an attempt has been made to determine whether conditions favorable for the formation of hypoxia could be detected and monitored from space. A linear discriminant function has identified areas of bottom water hypoxia detected by research vessels up to 10 days after satellite overpass, and predicted hypoxic areas without resort to research vessel data. Such space mapping may be of consequence for marine resource management and exploitation.

  12. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  13. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  14. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-07

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.

  15. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, component parts and accessories. (b...

  16. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, component parts and accessories. (b...

  17. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, component parts and accessories. (b...

  18. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, component parts and accessories. (b...

  19. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, component parts and accessories. (b...

  20. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Vaska, Paul

    2017-12-27

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable" portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  1. Developments in holographic-based scanner designs

    NASA Astrophysics Data System (ADS)

    Rowe, David M.

    1997-07-01

    Holographic-based scanning systems have been used for years in the high resolution prepress markets where monochromatic lasers are generally utilized. However, until recently, due to the dispersive properties of holographic optical elements (HOEs), along with the high cost associated with recording 'master' HOEs, holographic scanners have not been able to penetrate major scanning markets such as the laser printer and digital copier markets, low to mid-range imagesetter markets, and the non-contact inspection scanner market. Each of these markets has developed cost effective laser diode based solutions using conventional scanning approaches such as polygon/f-theta lens combinations. In order to penetrate these markets, holographic-based systems must exhibit low cost and immunity to wavelength shifts associated with laser diodes. This paper describes recent developments in the design of holographic scanners in which multiple HOEs, each possessing optical power, are used in conjunction with one curved mirror to passively correct focal plane position errors and spot size changes caused by the wavelength instability of laser diodes. This paper also describes recent advancements in low cost production of high quality HOEs and curved mirrors. Together these developments allow holographic scanners to be economically competitive alternatives to conventional devices in every segment of the laser scanning industry.

  2. The mapping of marsh vegetation using aircraft multispectral scanner data. [in Louisiana

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1975-01-01

    A test was conducted to determine if salinity regimes in coastal marshland could be mapped and monitored by the identification and classification of marsh vegetative species from aircraft multispectral scanner data. The data was acquired at 6.1 km (20,000 ft.) on October 2, 1974, over a test area in the coastal marshland of southern Louisiana including fresh, intermediate, brackish, and saline zones. The data was classified by vegetational species using a supervised, spectral pattern recognition procedure. Accuracies of training sites ranged from 67% to 96%. Marsh zones based on free soil water salinity were determined from the species classification to demonstrate a practical use for mapping marsh vegetation.

  3. Color naming across languages reflects color use

    PubMed Central

    Gibson, Edward; Futrell, Richard; Mahowald, Kyle; Bergen, Leon; Ratnasingam, Sivalogeswaran; Gibson, Mitchell; Piantadosi, Steven T.; Conway, Bevil R.

    2017-01-01

    What determines how languages categorize colors? We analyzed results of the World Color Survey (WCS) of 110 languages to show that despite gross differences across languages, communication of chromatic chips is always better for warm colors (yellows/reds) than cool colors (blues/greens). We present an analysis of color statistics in a large databank of natural images curated by human observers for salient objects and show that objects tend to have warm rather than cool colors. These results suggest that the cross-linguistic similarity in color-naming efficiency reflects colors of universal usefulness and provide an account of a principle (color use) that governs how color categories come about. We show that potential methodological issues with the WCS do not corrupt information-theoretic analyses, by collecting original data using two extreme versions of the color-naming task, in three groups: the Tsimane', a remote Amazonian hunter-gatherer isolate; Bolivian-Spanish speakers; and English speakers. These data also enabled us to test another prediction of the color-usefulness hypothesis: that differences in color categorization between languages are caused by differences in overall usefulness of color to a culture. In support, we found that color naming among Tsimane' had relatively low communicative efficiency, and the Tsimane' were less likely to use color terms when describing familiar objects. Color-naming among Tsimane' was boosted when naming artificially colored objects compared with natural objects, suggesting that industrialization promotes color usefulness. PMID:28923921

  4. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. 33. SITE BUILDING 002 SCANNER BUILDING MECHANICAL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SITE BUILDING 002 - SCANNER BUILDING - MECHANICAL ROOM 105, VIEW OF CHILLER ROOM MOTOR CONTROL CENTER. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  8. 18. SITE BUILDING 002 SCANNER BUILDING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. SITE BUILDING 002 - SCANNER BUILDING - VIEW OF SITE SECURITY OFFICE ACCESS DOOR FROM EXTERIOR OF OFFICE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 2. SITE BUILDING 002 SCANNER BUILDING VIEW IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SITE BUILDING 002 - SCANNER BUILDING - VIEW IS LOOKING NORTH 80° WEST "B" FACE ALONG BUILDING "A" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component.

    PubMed

    Gordon, H R; Wang, M

    1992-07-20

    The first step in the coastal zone color scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering contribution, Lr(r), to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm Lr(r), is computed by assuming that the ocean surface is flat. Computations of the radiance leaving a Rayleigh-scattering atmosphere overlying a rough Fresnel-reflecting ocean are presented to assess the radiance error caused by the flat-ocean assumption. The surface-roughness model is described in detail for both scalar and vector (including polarization) radiative transfer theory. The computations utilizing the vector theory show that the magnitude of the error significantly depends on the assumptions made in regard to the shadowing of one wave by another. In the case of the coastal zone color scanner bands, we show that for moderate solar zenith angles the error is generally below the 1 digital count level, except near the edge of the scan for high wind speeds. For larger solar zenith angles, the error is generally larger and can exceed 1 digital count at some wavelengths over the entire scan, even for light winds. The error in Lr(r) caused by ignoring surface roughness is shown to be the same order of magnitude as that caused by uncertainties of +/- 15 mb in the surface atmospheric pressure or of +/- 50 Dobson units in the ozone concentration. For future sensors, which will have greater radiometric sensitivity, the error caused by the flat-ocean assumption in the computation of Lr(r) could be as much as an order of magnitude larger than the noise-equivalent spectral radiance in certain situations.

  12. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  13. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  14. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g., the...

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  16. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  17. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in...

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of...

  19. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  20. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois; Volkow, Nora

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  1. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  2. Configuration of the mudstones, gray- and coffee-colored shale lithologic units, zones of silica and epidote, and their relation to the tectonics of the Cerro Prieto geothermal field

    SciTech Connect

    Cobo R, J.M.

    1981-01-01

    Based on well cuttings, five lithological units have been recognized within the area of what is now the Cerro Prieto geothermal field. These five units are described. Differences in origin, mineralogy, grading, color, compaction, etc., are shown.

  3. Point Relay Scanner Utilizing Ellipsoidal Mirrors

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K. (Inventor); Pagano, Robert J. (Inventor)

    1997-01-01

    A scanning system uses a polygonal mirror assembly with each facet of the polygon having an ellipsoidal mirror located thereon. One focal point of each ellipsoidal mirror is located at a common point on the axis of rotation of the polygonal mirror assembly. As the mirror assembly rotates. a second focal point of the ellipsoidal mirrors traces out a scan line. The scanner can be utilized for scanned output display of information or for scanning information to be detected.

  4. Learning and teaching with a computer scanner

    NASA Astrophysics Data System (ADS)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-09-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.

  5. Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang

    2009-01-01

    China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.

  6. Future U.S. ocean color missions-OCI, MODIS and HIRIS

    NASA Astrophysics Data System (ADS)

    Davis, C. O.

    The Coastal Zone Color Scanner (CZCS) launched by the National Aeronautics and Space Administration (NASA) on the Nimbus-7 Satellite in 1978 has provided exceptionally valuable data for studies of the productivity of the ocean, fisheries, the detection of oceanic fronts and currents, and the optical properties of the ocean. NASA has been working with the scientific community, the National Oceanographic and Atmospheric Administration (NOAA), France's Centre National d'Etudes Spatiales (CNES), and industry to develop an Ocean Color Imager (OCI), a follow-on instrument which would provide the near real-time and global data necessary to fill these needs in the 1990's. The Earth Observing Satellite Company (EOSAT) is considering flying an ocean and land wide-field color instrument which would meet these needs on Landsat 6 or 7 planned for launch in 1989 and 1991, respectively. It would provide eight ocean color channels for improved atmospheric correction and in-water algorithms, global coverage and near real-time data for operational uses. In the mid 1990's NASA is planning to fly a Moderate Resolution Imaging Spectrometer (MODIS) and a High Resolution Imaging Spectrometer (HIRIS) as part of the Earth Observing System (Eos) on the Polar Platform of the Space Station. These instruments are array spectrometers which would provide full spectral resolution in the visible and infrared. This opens the possibility of separating different groups of phytoplankton, suspended sediments and other substances in the water. Also, HIRIS would have across track pointing ability which will allow high resolution rapid sampling of dynamic coastal areas and estuaries.

  7. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  8. Scanners for analytic print measurement: the devil in the details

    NASA Astrophysics Data System (ADS)

    Zeise, Eric K.; Williams, Don; Burns, Peter D.; Kress, William C.

    2007-01-01

    Inexpensive and easy-to-use linear and area-array scanners have frequently substituted as colorimeters and densitometers for low-frequency (i.e., large area) hard copy image measurement. Increasingly, scanners are also being used for high spatial frequency, image microstructure measurements, which were previously reserved for high performance microdensitometers. In this paper we address characteristics of flatbed reflection scanners in the evaluation of print uniformity, geometric distortion, geometric repeatability and the influence of scanner MTF and noise on analytic measurements. Suggestions are made for the specification and evaluation of scanners to be used in print image quality standards that are being developed.

  9. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing.

    PubMed

    Wesemann, Christian; Muallah, Jonas; Mah, James; Bumann, Axel

    2017-01-01

    The primary objective of this study was to compare the accuracy and time efficiency of an indirect and direct digitalization workflow with that of a three-dimensional (3D) printer in order to identify the most suitable method for orthodontic use. A master model was measured with a coordinate measuring instrument. The distances measured were the intercanine width, the intermolar width, and the dental arch length. Sixty-four scans were taken with each of the desktop scanners R900 and R700 (3Shape), the intraoral scanner TRIOS Color Pod (3Shape), and the Promax 3D Mid cone beam computed tomography (CBCT) unit (Planmeca). All scans were measured with measuring software. One scan was selected and printed 37 times on the D35 stereolithographic 3D printer (Innovation MediTech). The printed models were measured again using the coordinate measuring instrument. The most accurate results were obtained by the R900. The R700 and the TRIOS intraoral scanner showed comparable results. CBCT-3D-rendering with the Promax 3D Mid CBCT unit revealed significantly higher accuracy with regard to dental casts than dental impressions. 3D printing offered a significantly higher level of deviation than digitalization with desktop scanners or an intraoral scanner. The chairside time required for digital impressions was 27% longer than for conventional impressions. Conventional impressions, model casting, and optional digitization with desktop scanners remains the recommended workflow process. For orthodontic demands, intraoral scanners are a useful alternative for full-arch scans. For prosthodontic use, the scanning scope should be less than one quadrant and three additional teeth.

  10. Satellite Ocean Color Sensor Design Concepts and Performance Requirements

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Meister, Gerhard; Monosmith, Bryan

    2014-01-01

    In late 1978, the National Aeronautics and Space Administration (NASA) launched the Nimbus-7 satellite with the Coastal Zone Color Scanner (CZCS) and several other sensors, all of which provided major advances in Earth remote sensing. The inspiration for the CZCS is usually attributed to an article in Science by Clarke et al. who demonstrated that large changes in open ocean spectral reflectance are correlated to chlorophyll-a concentrations. Chlorophyll-a is the primary photosynthetic pigment in green plants (marine and terrestrial) and is used in estimating primary production, i.e., the amount of carbon fixed into organic matter during photosynthesis. Thus, accurate estimates of global and regional primary production are key to studies of the earth's carbon cycle. Because the investigators used an airborne radiometer, they were able to demonstrate the increased radiance contribution of the atmosphere with altitude that would be a major issue for spaceborne measurements. Since 1978, there has been much progress in satellite ocean color remote sensing such that the technique is well established and is used for climate change science and routine operational environmental monitoring. Also, the science objectives and accompanying methodologies have expanded and evolved through a succession of global missions, e.g., the Ocean Color and Temperature Sensor (OCTS), the Seaviewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Medium Resolution Imaging Spectrometer (MERIS), and the Global Imager (GLI). With each advance in science objectives, new and more stringent requirements for sensor capabilities (e.g., spectral coverage) and performance (e.g., signal-to-noise ratio, SNR) are established. The CZCS had four bands for chlorophyll and aerosol corrections. The Ocean Color Imager (OCI) recommended for the NASA Pre-Aerosol, Cloud, and Ocean Ecosystems (PACE) mission includes 5 nanometers hyperspectral coverage from 350 to

  11. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  12. Automatic color preference correction for color reproduction

    NASA Astrophysics Data System (ADS)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  13. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Zheng, Yunhui (Inventor); Degnan, III, John James (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  14. Instrumental color control in textile printing

    NASA Astrophysics Data System (ADS)

    Connelly, Roland L., Sr.

    1996-03-01

    In textile printing there are several color outputs that need to be controlled. Just as important is the color coordination of these outputs. The types of color output are the video display on the textile design system (CATD for Computer Aided Textile Design), the color scanner, the color pattern printer, and the actual pattern printed on the textile substrate. Each of these systems has its own gamut(s) that is partially overlapping of the others and will require mapping and/or truncation to adequately represent the colors of the final print in the other systems. One of the goals of instrumentation systems is to control these devices so that the message of the pattern is the same on all four media. To accomplish this is a significant task that has yet to be completed to meet the rigorous requirements of the textile and apparel industries. Several of the major problems and directions for solving them will be discussed in this paper. These include getting good instrumental measurements, translation of data between systems, and specific problems related to the hard copy output.

  15. Comparison and use of 3D scanners to improve the quantification of medical images (surface structures and volumes) during follow up of clinical (surgical) procedures

    NASA Astrophysics Data System (ADS)

    Tokkari, Niki; Verdaasdonk, Rudolf M.; Liberton, Niels; Wolff, Jan; den Heijer, Martin; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    It is difficult to obtain quantitative measurements as to surface areas and volumes from standard photos of the body parts of patients which is highly desirable for objective follow up of treatments in e.g. dermatology. plastic, aesthetic and reconstructive surgery. Recently, 3-D scanners have become available to provide quantification. Phantoms (3-D printed hand, nose and ear, colored bread sculpture) were developed to compare a range from low-cost (Sense), medium (HP Sprout) to high end (Artec Spider, Vectra M3) scanners using different 3D imaging technologies, as to resolution, working range, surface color representation, user friendliness. The 3D scans files (STL, OBJ) were processed with Artec studio and GOM software as to deviation compared to the high resolution Artec Spider scanner taken as `golden' standard. The HP Spout, which uses a fringe projection, proved to be nearly as good as the Artec, however, needs to be converted for clinical use. Photogrammetry as used by the Vectra M3 scanner is limited to provide sufficient data points for accurate surface mapping however provides good color/structure representation. The low performance of the Sense is not recommended for clinical use. The Artec scanner was successfully used to measure the structure/volume changes in the face after hormone treatment in transgender patients. 3D scanners can greatly improve quantitative measurements of surfaces and volumes as objective follow up in clinical studies performed by various clinical specialisms (dermatology, aesthetic and reconstructive surgery). New scanning technologies, like fringe projection, are promising for development of low-cost, high precision scanners.

  16. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  17. Hearing Color

    NASA Astrophysics Data System (ADS)

    Bieryla, Allyson; Diaz Merced, Wanda; Davis, Daniel

    2018-06-01

    In astronomy, the relationship between color and temperature is an important concept. This concept can be demonstrated in a laboratory or seen at telescope when observing stars. A blind/visually-impaired (B/VI) person would not be able to engage in the same observational demonstrations that are typically done to explain this concept. We’ve developed a tool for B/VI students to participate in these types of observational activities. Using an arduino compatible micro controller with and RGB light sensor, we are able to convert filtered light into sound. The device will produce different timbres for different wavelengths of light, which can then be used to distinguish the temperature of an object. The device is handheld, easy to program and inexpensive to reproduce (< $50). It is also fitted to mount on a telescope for observing. The design schematic and code will be open source and available for download.

  18. Recent micro-CT scanner developments at UGCT

    NASA Astrophysics Data System (ADS)

    Dierick, Manuel; Van Loo, Denis; Masschaele, Bert; Van den Bulcke, Jan; Van Acker, Joris; Cnudde, Veerle; Van Hoorebeke, Luc

    2014-04-01

    This paper describes two X-ray micro-CT scanners which were recently developed to extend the experimental possibilities of microtomography research at the Centre for X-ray Tomography (www.ugct.ugent.be) of the Ghent University (Belgium). The first scanner, called Nanowood, is a wide-range CT scanner with two X-ray sources (160 kVmax) and two detectors, resolving features down to 0.4 μm in small samples, but allowing samples up to 35 cm to be scanned. This is a sample size range of 3 orders of magnitude, making this scanner well suited for imaging multi-scale materials such as wood, stone, etc. Besides the traditional cone-beam acquisition, Nanowood supports helical acquisition, and it can generate images with significant phase-contrast contributions. The second scanner, known as the Environmental micro-CT scanner (EMCT), is a gantry based micro-CT scanner with variable magnification for scanning objects which are not easy to rotate in a standard micro-CT scanner, for example because they are physically connected to external experimental hardware such as sensor wiring, tubing or others. This scanner resolves 5 μm features, covers a field-of-view of about 12 cm wide with an 80 cm vertical travel range. Both scanners will be extensively described and characterized, and their potential will be demonstrated with some key application results.

  19. Spectral characterization of the LANDSAT-D multispectral scanner subsystems

    NASA Technical Reports Server (NTRS)

    Markham, B. L. (Principal Investigator); Barker, J. L.

    1982-01-01

    Relative spectral response data for the multispectral scanner subsystems (MSS) to be flown on LANDSAT-D and LANDSAT-D backup, the protoflight and flight models, respectively, are presented and compared to similar data for the Landsat 1,2, and 3 subsystems. Channel-bychannel (six channels per band) outputs for soil and soybean targets were simulated and compared within each band and between scanners. The two LANDSAT-D scanners proved to be nearly identical in mean spectral response, but they exhibited some differences from the previous MSS's. Principal differences between the spectral responses of the D-scanners and previous scanners were: (1) a mean upper-band edge in the green band of 606 nm compared to previous means of 593 to 598 nm; (2) an average upper-band edge of 697 nm in the red band compared to previous averages of 701 to 710 nm; and (3) an average bandpass for the first near-IR band of 702-814 nm compared to a range of 693-793 to 697-802 nm for previous scanners. These differences caused the simulated D-scanner outputs to be 3 to 10 percent lower in the red band and 3 to 11 percent higher in the first near-IR band than previous scanners for the soybeans target. Otherwise, outputs from soil and soybean targets were only slightly affected. The D-scanners were generally more uniform from channel to channel within bands than previous scanners.

  20. Using color management in color document processing

    NASA Astrophysics Data System (ADS)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  1. Polarization characteristics of an altazimuth sky scanner

    NASA Technical Reports Server (NTRS)

    Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.

    1980-01-01

    A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.

  2. The Lick Observatory image-dissector scanner.

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wampler, E. J.

    1972-01-01

    A scanner that uses an image dissector to scan the output screen of an image tube has proven to be a sensitive and linear detector for faint astronomical spectra. The image-tube phosphor screen acts as a short-term storage element and allows the system to approach the performance of an ideal multichannel photon counter. Pulses resulting from individual photons, emitted from the output phosphor and detected by the image dissector, trigger an amplifier-discriminator and are counted in a 24-bit, 4096-word circulating memory. Aspects of system performance are discussed, giving attention to linearity, dynamic range, sensitivity, stability, and scattered light properties.

  3. Varifocal MOEMS fiber scanner for confocal endomicroscopy.

    PubMed

    Meinert, Tobias; Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2014-12-15

    Based on an advanced silicon optical bench technology with integrated MOEMS (Micro-Opto-Electro-Mechanical-System) components, a piezo-driven fiber scanner for confocal microscopy has been developed. This highly-miniaturized technology allows integration into an endoscope with a total outer probe diameter of 2.5 mm. The system features a hydraulically-driven varifocal lens providing axial confocal scanning without any translational movement of components. The demonstrated resolutions are 1.7 μm laterally and 19 μm axially.

  4. Mapping soil features from multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Zachary, A. L.

    1974-01-01

    In being able to identify quickly gross variations in soil features, the computer-aided classification of multispectral scanner data can be an effective aid to soil surveying. Variations in soil tone are easily seen as well as variations in features related to soil tone, e.g., drainage patterns and organic matter content. Changes in surface texture also affect the reflectance properties of soils. Inasmuch as conventional soil classes are based on both surface and subsurface soil characteristics, the technique described here can be expected only to augment and not replace traditional soil mapping.

  5. A SIMPLE RADIO-CHROMATOGRAM SCANNER

    SciTech Connect

    McWeeny, D.J.; Burton, H.S.

    1962-07-01

    A sturdy, simple, and reliable radiochromatogram scanner is described. It is constructed from a Panax Universal Castle, a Panax 5054 rate meter, and a recording milliamometer. The castle houses 2 thin endwindows, G--M tubes type GE- EHM-2 mounted one above the other, windows 1/4 in. apart. The 1-in. chromatogram passes continuously thru a selection of slits permitting a choice of views by the G-M tubes. The background count is 10.5 counts per minute and the detection limit for S/sup 35/ as a 3 mm spot on Whatman no. 1 paper is less than 0.2 nc. (T.R.H.)

  6. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  7. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  8. Evaluation of LANDSAT multispectral scanner images for mapping altered rocks in the east Tintic Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Abrams, M. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Positive findings of earlier evaluations of the color-ratio compositing technique for mapping limonitic altered rocks in south-central Nevada are confirmed, but important limitations in the approach used are pointed out. These limitations arise from environmental, geologic, and image processing factors. The greater vegetation density in the East Tintic Mountains required several modifications in procedures to improve the overall mapping accuracy of the CRC approach. Large format ratio images provide better internal registration of the diazo films and avoids the problems associated with magnifications required in the original procedure. Use of the Linoscan 204 color recognition scanner permits accurate consistent extraction of the green pixels representing limonitic bedrock maps that can be used for mapping at large scales as well as for small scale reconnaissance.

  9. Zone lines

    Treesearch

    Kevin T. Smith

    2001-01-01

    Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.

  10. 3D Laser Scanner for Underwater Manipulation.

    PubMed

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  11. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  12. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-21

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km.

  13. An empirical study of scanner system parameters

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.; Biehl, L.; Simmons, W.

    1976-01-01

    The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.

  14. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Darby, William G. (Inventor); Miranda, Felix A. (Inventor); Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  15. Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry

    PubMed Central

    Lewis, David; Chan, Maria F.

    2015-01-01

    Purpose: A known factor affecting the accuracy of radiochromic film dosimetry is the lateral response artifact (LRA) induced by nonuniform response of a flatbed scanner in the direction perpendicular to the scan direction. This work reports a practical solution to eliminate such artifacts for all forms of dose QA. Methods: EBT3 films from a single production lot (02181401) cut into rectangular 4 × 5 cm2 pieces, with the long dimension parallel to the long dimension of the original 20.3 × 25.4 cm2 sheets, were exposed at a depth of 5 cm on a Varian Trilogy at the center of a 20 × 20 cm2 open field at seven doses between 50 and 1600 cGy using 6 MV photons. These films together with an unexposed film from the same production lot were lined one next to the other on an Epson 10000XL or 11000XL scanner in portrait orientation with their long dimension parallel to the scan direction. Scanned images were then obtained with the line of films positioned at seven discrete lateral locations perpendicular to the scan direction. The process was repeated in landscape orientation and on three other Epson scanners. Data were also collected for three additional production lots of EBT3 film (11051302, 03031401, and 03171403). From measurements at the various lateral positions, the scanner response was determined as a function of the lateral position of the scanned film. For a given color channel X, the response at any lateral position L is related to the response at the center, C, of the scanner by Response(C, D, X) = AL,X + BL,X⋅Response(L, D, X), where D is dose and the coefficients AL,X and BL,X are determined from the film measurements at the center of the scanner and six other discrete lateral positions. The values at intermediate lateral positions were obtained by linear interpolation. The coefficients were determined for the red, green, and blue color channels, preserving the ability to apply triple-channel dosimetry once corrections were applied to compensate for the

  16. Correcting lateral response artifacts from flatbed scanners for radiochromic film dosimetry.

    PubMed

    Lewis, David; Chan, Maria F

    2015-01-01

    A known factor affecting the accuracy of radiochromic film dosimetry is the lateral response artifact (LRA) induced by nonuniform response of a flatbed scanner in the direction perpendicular to the scan direction. This work reports a practical solution to eliminate such artifacts for all forms of dose QA. EBT3 films from a single production lot (02181401) cut into rectangular 4 × 5 cm(2) pieces, with the long dimension parallel to the long dimension of the original 20.3 × 25.4 cm(2) sheets, were exposed at a depth of 5 cm on a Varian Trilogy at the center of a 20 × 20 cm(2) open field at seven doses between 50 and 1600 cGy using 6 MV photons. These films together with an unexposed film from the same production lot were lined one next to the other on an Epson 10000 XL or 11000 XL scanner in portrait orientation with their long dimension parallel to the scan direction. Scanned images were then obtained with the line of films positioned at seven discrete lateral locations perpendicular to the scan direction. The process was repeated in landscape orientation and on three other Epson scanners. Data were also collected for three additional production lots of EBT3 film (11051302, 03031401, and 03171403). From measurements at the various lateral positions, the scanner response was determined as a function of the lateral position of the scanned film. For a given color channel X, the response at any lateral position L is related to the response at the center, C, of the scanner by Response(C, D, X) = A(L,X) + B(L,X) ⋅ Response(L, D, X), where D is dose and the coefficients A(L,X) and B(L,X) are determined from the film measurements at the center of the scanner and six other discrete lateral positions. The values at intermediate lateral positions were obtained by linear interpolation. The coefficients were determined for the red, green, and blue color channels, preserving the ability to apply triple-channel dosimetry once corrections were applied to compensate for the

  17. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  18. Skin color - patchy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  19. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Input Scanners: A Growing Impact In A Diverse Marketplace

    NASA Astrophysics Data System (ADS)

    Marks, Kevin E.

    1989-08-01

    Just as newly invented photographic processes revolutionized the printing industry at the turn of the century, electronic imaging has affected almost every computer application today. To completely emulate traditionally mechanical means of information handling, computer based systems must be able to capture graphic images. Thus, there is a widespread need for the electronic camera, the digitizer, the input scanner. This paper will review how various types of input scanners are being used in many diverse applications. The following topics will be covered: - Historical overview of input scanners - New applications for scanners - Impact of scanning technology on select markets - Scanning systems issues

  1. Representing Color Ensembles.

    PubMed

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  2. Scanner OPC signatures: automatic vendor-to-vendor OPE matching

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2009-03-01

    As 193nm lithography continues to be stretched and the k1 factor decreases, optical proximity correction (OPC) has become a vital part of the lithographer's tool kit. Unfortunately, as is now well known, the design variations of lithographic scanners from different vendors cause them to have slightly different optical-proximity effect (OPE) behavior, meaning that they print features through pitch in distinct ways. This in turn means that their response to OPC is not the same, and that an OPC solution designed for a scanner from Company 1 may or may not work properly on a scanner from Company 2. Since OPC is not inexpensive, that causes trouble for chipmakers using more than one brand of scanner. Clearly a scanner-matching procedure is needed to meet this challenge. Previously, automatic matching has only been reported for scanners of different tool generations from the same manufacturer. In contrast, scanners from different companies have been matched using expert tuning and adjustment techniques, frequently requiring laborious test exposures. Automatic matching between scanners from Company 1 and Company 2 has remained an unsettled problem. We have recently solved this problem and introduce a novel method to perform the automatic matching. The success in meeting this challenge required three enabling factors. First, we recognized the strongest drivers of OPE mismatch and are thereby able to reduce the information needed about a tool from another supplier to that information readily available from all modern scanners. Second, we developed a means of reliably identifying the scanners' optical signatures, minimizing dependence on process parameters that can cloud the issue. Third, we carefully employed standard statistical techniques, checking for robustness of the algorithms used and maximizing efficiency. The result is an automatic software system that can predict an OPC matching solution for scanners from different suppliers without requiring expert intervention.

  3. Upgraded airborne scanner for commercial remote sensing

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Huei; Rubin, Tod D.

    1994-06-01

    Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.

  4. Memory for color reactivates color processing region.

    PubMed

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  5. Natural Colorants: Food Colorants from Natural Sources.

    PubMed

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  6. Watermarking spot colors in packaging

    NASA Astrophysics Data System (ADS)

    Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang

    2015-03-01

    In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.

  7. Full-color large-scaled computer-generated holograms for physical and non-physical objects

    NASA Astrophysics Data System (ADS)

    Matsushima, Kyoji; Tsuchiyama, Yasuhiro; Sonobe, Noriaki; Masuji, Shoya; Yamaguchi, Masahiro; Sakamoto, Yuji

    2017-05-01

    Several full-color high-definition CGHs are created for reconstructing 3D scenes including real-existing physical objects. The field of the physical objects are generated or captured by employing three techniques; 3D scanner, synthetic aperture digital holography, and multi-viewpoint images. Full-color reconstruction of high-definition CGHs is realized by RGB color filters. The optical reconstructions are presented for verifying these techniques.

  8. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  11. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 34. SITE BUILDING 002 SCANNER BUILDING ROOM 105 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SITE BUILDING 002 - SCANNER BUILDING - ROOM 105 - CHILLER ROOM, SHOWING SINGLE COMPRESSOR, LIQUID CHILLERS AND "CHILLED WATER RETURN", COOLING TOWER 'TOWER WATER RETURN" AND 'TOWER WATER SUPPLY" LINES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  1. REQUEST A COLOR GUARD

    Science.gov Websites

    EMERGENCY PREPAREDNESS CONTACT REQUEST A SPEAKER REQUEST A COLOR GUARD OPERATIONAL CONTRACT SUPPORT HomeCONTACTREQUEST A COLOR GUARD Request a Color Guard Please take a moment to fill out the document at the link one month to process your request, but no more than three. Color Guard Request Form For Community

  2. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  3. Sensory Drive, Color, and Color Vision.

    PubMed

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  4. Color: Physics and Perception

    NASA Astrophysics Data System (ADS)

    Gilbert, Pupa

    Unless we are colorblind, as soon as we look at something, we know what color it is. Simple, isn't it? No, not really. The color we see is rarely just determined by the physical color, that is, the wavelength of visible light associated with that color. Other factors, such as the illuminating light, or the brightness surrounding a certain color, affect our perception of that color. Most striking, and useful, is understanding how the retina and the brain work together to interpret the color we see, and how they can be fooled by additive color mixing, which makes it possible to have color screens and displays. I will show the physical origin of all these phenomena and give live demos as I explain how they work. Bring your own eyes! For more information: (1) watch TED talk: ``Color: Physics and Perception'' and (2) read book: PUPA Gilbert and W Haeberli ``Physics in the Arts'', ISBN 9780123918789.

  5. SeaWiFS technical report series. Volume 1: An overview of SeaWiFS and ocean color

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Esaias, Wayne E.; Feldman, Gene C.; Gregg, Watson W.; Mcclain, Charles R.

    1992-01-01

    The purpose of this series of technical reports is to provide current documentation of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project activities, instrument performance, algorithms, and operations. This documentation is necessary to ensure that critical information related to the quality and calibration of the satellite data is available to the scientific community. SeaWiFS will bring to the ocean community a welcomed and improved renewal of the ocean color remote sensing capability lost when the Nimbus-7 Coastal Zone Color Scanner (CZCS) ceased operating in 1986. The goal of SeaWiFS, scheduled to be launched in August 1993, is to examine oceanic factors that affect global change. Because of the role of phytoplankton in the global carbon cycle, data obtained from SeaWiFS will be used to assess the ocean's role in this cycle, as well as other biogeochemical cycles. SeaWiFS data will be used to help elucidate the magnitude and variability of the annual cycle of primary production by marine phytoplankton and to determine the distribution and timing of spring blooms. The observations will help to visualize the dynamics of ocean and costal currents, the physics of mixing, and the relationships between ocean physics and large-scale patterns of productivity. The data will help fill the gap in ocean biological observations between those of the CZCS and the upcoming Moderate Resolution Imaging Spectrometer (MODIS) on the Earth Observing System-A (EOS-A) satellite.

  6. Internet Color Imaging

    DTIC Science & Technology

    2000-07-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1348 TITLE: Internet Color Imaging DISTRIBUTION: Approved for public...Paper Internet Color Imaging Hsien-Che Lee Imaging Science and Technology Laboratory Eastman Kodak Company, Rochester, New York 14650-1816 USA...ABSTRACT The sharing and exchange of color images over the Internet pose very challenging problems to color science and technology . Emerging color standards

  7. Real Data and Rapid Results: Ocean Color Data Analysis with Giovanni (GES DISC Interactive Online Visualization and ANalysis Infrastructure)

    NASA Technical Reports Server (NTRS)

    Acker, J. G.; Leptoukh, G.; Kempler, S.; Gregg, W.; Berrick, S.; Zhu, T.; Liu, Z.; Rui, H.; Shen, S.

    2004-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has taken a major step addressing the challenge of using archived Earth Observing System (EOS) data for regional or global studies by developing an infrastructure with a World Wide Web interface which allows online, interactive, data analysis: the GES DISC Interactive Online Visualization and ANalysis Infrastructure, or "Giovanni." Giovanni provides a data analysis environment that is largely independent of underlying data file format. The Ocean Color Time-Series Project has created an initial implementation of Giovanni using monthly Standard Mapped Image (SMI) data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission. Giovanni users select geophysical parameters, and the geographical region and time period of interest. The system rapidly generates a graphical or ASCII numerical data output. Currently available output options are: Area plot (averaged or accumulated over any available data period for any rectangular area); Time plot (time series averaged over any rectangular area); Hovmeller plots (image view of any longitude-time and latitude-time cross sections); ASCII output for all plot types; and area plot animations. Future plans include correlation plots, output formats compatible with Geographical Information Systems (GIs), and higher temporal resolution data. The Ocean Color Time-Series Project will produce sensor-independent ocean color data beginning with the Coastal Zone Color Scanner (CZCS) mission and extending through SeaWiFS and Moderate Resolution Imaging Spectroradiometer (MODIS) data sets, and will enable incorporation of Visible/lnfrared Imaging Radiometer Suite (VIIRS) data, which will be added to Giovanni. The first phase of Giovanni will also include tutorials demonstrating the use of Giovanni and collaborative assistance in the development of research projects using the SeaWiFS and Ocean Color Time-Series Project data in the online Laboratory

  8. Planetwide Color Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The first color movie of Jupiter from NASA's Cassini spacecraft shows what it would look like to peel the entire globe of Jupiter, stretch it out on a wall into the form of a rectangular map, and watch its atmosphere evolve with time.

    The brief movie clip spans 24 Jupiter rotations between Oct. 31 and Nov. 9, 2000.

    Various patterns of motion are apparent all across Jupiter at the cloudtop level seen here. The Great Red Spot shows its counterclockwise rotation, and the uneven distribution of its high haze is obvious. To the east (right) of the Red Spot, oval storms, like ball bearings, roll over and pass each other. Horizontal bands adjacent to each other move at different rates. Strings of small storms rotate around northern-hemisphere ovals. The large grayish-blue 'hot spots' at the northern edge of the white Equatorial Zone change over the course of time as they march eastward across the planet. Ovals in the north rotate counter to those in the south. Small, very bright features appear quickly and randomly in turbulent regions, candidates for lightning storms.

    The clip consists of 14 unevenly spaced timesteps, each a true color cylindrical projection of the complete circumference of Jupiter, from 60 degrees south to 60 degrees north. The maps are made by first assembling mosaics of six images taken by Cassini's narrow-angle camera in the same spectral filter over the course of one Jupiter rotation and, consequently, covering the whole planet. Three such global maps -- in red, green and blue filters -- are combined to make one color map showing Jupiter during one Jovian rotation. Fourteen such maps, spanning 24 Jovian rotations at uneven time intervals comprise the movie. The maps were reduced in scale by a factor of two to make them accessible on the Internet at reasonable rates. Occasional appearances of Io, Europa, and their shadows have not been removed.

    The smallest visible features at the equator are about 600 kilometers (about 370 miles

  9. Comparison of Epson scanner quality for radiochromic film evaluation

    PubMed Central

    Alnawaf, Hani; Yu, Peter K.N.

    2012-01-01

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20‐fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation

  10. Comparison of Epson scanner quality for radiochromic film evaluation.

    PubMed

    Alnawaf, Hani; Yu, Peter K N; Butson, Martin

    2012-09-06

    Epson Desktop scanners have been quoted as devices which match the characteristics required for the evaluation of radiation dose exposure by radiochromic films. Specifically, models such as the 10000XL have been used successfully for image analysis and are recommended by ISP for dosimetry purposes. This note investigates and compares the scanner characteristics of three Epson desktop scanner models including the Epson 10000XL, V700, and V330. Both of the latter are substantially cheaper models capable of A4 scanning. As the price variation between the V330 and the 10000XL is 20-fold (based on Australian recommended retail price), cost savings by using the cheaper scanners may be warranted based on results. By a direct comparison of scanner uniformity and reproducibility we can evaluate the accuracy of these scanners for radiochromic film dosimetry. Results have shown that all three scanners can produce adequate scanner uniformity and reproducibility, with the inexpensive V330 producing a standard deviation variation across its landscape direction of 0.7% and 1.2% in the portrait direction (reflection mode). This is compared to the V700 in reflection mode of 0.25% and 0.5% for landscape and portrait directions, respectively, and 0.5% and 0.8% for the 10000XL. In transmission mode, the V700 is comparable in reproducibility to the 10000XL for portrait and landscape mode, whilst the V330 is only capable of scanning in the landscape direction and produces a standard deviation in this direction of 1.0% compared to 0.6% (V700) and 0.25% (10000XL). Results have shown that the V700 and 10000XL are comparable scanners in quality and accuracy with the 10000XL obviously capable of imaging over an A3 area as opposed to an A4 area for the V700. The V330 scanner produced slightly lower accuracy and quality with uncertainties approximately twice as much as the other scanners. However, the results show that the V330 is still an adequate scanner and could be used for radiation

  11. Colored noise effects on batch attitude accuracy estimates

    NASA Technical Reports Server (NTRS)

    Bilanow, Stephen

    1991-01-01

    The effects of colored noise on the accuracy of batch least squares parameter estimates with applications to attitude determination cases are investigated. The standard approaches used for estimating the accuracy of a computed attitude commonly assume uncorrelated (white) measurement noise, while in actual flight experience measurement noise often contains significant time correlations and thus is colored. For example, horizon scanner measurements from low Earth orbit were observed to show correlations over many minutes in response to large scale atmospheric phenomena. A general approach to the analysis of the effects of colored noise is investigated, and interpretation of the resulting equations provides insight into the effects of any particular noise color and the worst case noise coloring for any particular parameter estimate. It is shown that for certain cases, the effects of relatively short term correlations can be accommodated by a simple correction factor. The errors in the predicted accuracy assuming white noise and the reduced accuracy due to the suboptimal nature of estimators that do not take into account the noise color characteristics are discussed. The appearance of a variety of sample noise color characteristics are demonstrated through simulation, and their effects are discussed for sample estimation cases. Based on the analysis, options for dealing with the effects of colored noise are discussed.

  12. The influence of false color infrared display on training field identification. [for crop inventories

    NASA Technical Reports Server (NTRS)

    Coberly, W. A.; Tubbs, J. D.; Odell, P. L.

    1979-01-01

    The overall success of large-scale crop inventories of agricultural regions using Landsat multispectral scanner data is highly dependent upon the labeling of training data by analyst/photointerpreters. The principal analyst tool in labeling training data is a false color infrared composite of Landsat bands 4, 5, and 7. In this paper, this color display is investigated and its influence upon classification errors is partially determined.

  13. Evaluation of Imaging Parameters of Ultrasound Scanners: Baseline for Future Testing

    PubMed Central

    Pasicz, Katarzyna; Grabska, Iwona; Skrzyński, Witold; Ślusarczyk-Kacprzyk, Wioletta; Bulski, Wojciech

    2017-01-01

    Summary Background Regular quality control is required in Poland only for those methods of medical imaging which involve the use of ionizing radiation but not for ultrasonography. It is known that the quality of ultrasound images may be affected by the wearing down or malfunctioning of equipment. Material/Methods An evaluation of image quality was carried out for 22 ultrasound scanners equipped with 46 transducers. The CIRS Phantom model 040GSE was used. A set of tests was established which could be carried out with the phantom, including: depth of penetration, dead zone, distance measurement accuracy, resolution, uniformity, and visibility of structures. Results While the dead zone was 0 mm for 89% of transducers, it was 3 mm for the oldest transducer. The distances measured agreed with the actual distances by 1 mm or less in most cases, with the largest difference of 2.6 mm. The resolution in the axial direction for linear transducers did not exceed 1 mm, but it reached even 5 mm for some of the convex and sector transducers, especially at higher depths and in the lateral direction. For 29% of transducers, some distortions of anechoic structures were observed. Artifacts were detected for several transducers. Conclusions The results will serve as a baseline for future testing. Several cases of suboptimal image quality were identified along with differences in performance between similar transducers. The results could be used to decide on the applicability of a given scanner or transducer for a particular kind of examination. PMID:29657644

  14. Motion Alters Color Appearance

    PubMed Central

    Hong, Sang-Wook; Kang, Min-Suk

    2016-01-01

    Chromatic induction compellingly demonstrates that chromatic context as well as spectral lights reflected from an object determines its color appearance. Here, we show that when one colored object moves around an identical stationary object, the perceived saturation of the stationary object decreases dramatically whereas the saturation of the moving object increases. These color appearance shifts in the opposite directions suggest that normalization induced by the object’s motion may mediate the shift in color appearance. We ruled out other plausible alternatives such as local adaptation, attention, and transient neural responses that could explain the color shift without assuming interaction between color and motion processing. These results demonstrate that the motion of an object affects both its own color appearance and the color appearance of a nearby object, suggesting a tight coupling between color and motion processing. PMID:27824098

  15. Performance Investigation of a Handheld 3d Scanner to Define Good Practices for Small Artefact 3d Modeling

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2017-08-01

    Handheld 3D scanners can be used to complete large scale models with the acquisition of occluded areas or small artefacts. This may be of interest for digitization projects in the field of Cultural Heritage, where detailed areas may require a specific treatment. Such sensors present the advantage of being easily portable in the field, and easily usable even without particular knowledge. In this paper, the Freestyle3D handheld scanner launched on the market in 2015 by FARO is investigated. Different experiments are described, covering various topics such as the influence of range or color on the measurements, but also the precision achieved for geometrical primitive digitization. These laboratory experiments are completed by acquisitions performed on engraved and sculpted stone blocks. This practical case study is useful to investigate which acquisition protocol seems to be the more adapted and leads to precise results. The produced point clouds will be compared to photogrammetric surveys for the purpose of their accuracy assessment.

  16. Resolution for color photography

    NASA Astrophysics Data System (ADS)

    Hubel, Paul M.; Bautsch, Markus

    2006-02-01

    Although it is well known that luminance resolution is most important, the ability to accurately render colored details, color textures, and colored fabrics cannot be overlooked. This includes the ability to accurately render single-pixel color details as well as avoiding color aliasing. All consumer digital cameras on the market today record in color and the scenes people are photographing are usually color. Yet almost all resolution measurements made on color cameras are done using a black and white target. In this paper we present several methods for measuring and quantifying color resolution. The first method, detailed in a previous publication, uses a slanted-edge target of two colored surfaces in place of the standard black and white edge pattern. The second method employs the standard black and white targets recommended in the ISO standard, but records these onto the camera through colored filters thus giving modulation between black and one particular color component; red, green, and blue color separation filters are used in this study. The third method, conducted at Stiftung Warentest, an independent consumer organization of Germany, uses a whitelight interferometer to generate fringe pattern targets of varying color and spatial frequency.

  17. Searching through synaesthetic colors.

    PubMed

    Laeng, Bruno

    2009-10-01

    Synaesthesia can be characterized by illusory colors being elicited automatically when one reads an alphanumeric symbol. These colors can affect attention; synaesthetes can show advantages in visual search of achromatic symbols that normally cause slow searches. However, some studies have failed to find these advantages, challenging the conclusion that synaesthetic colors influence attention in a manner similar to the influence of perceptual colors. In the present study, we investigated 2 synaesthetes who reported colors localized in space over alphanumeric symbols' shapes. The Euclidian distance in CIE xyY color space between two synaesthetic colors was computed for each specific visual search, so that the relationship between color distance (CD) and efficiency of search could be explored with simple regression analyses. Target-to-distractors color salience systematically predicted the speed of search, but the CD between a target or distractors and the physically presented achromatic color did not. When the synaesthetic colors of a target and distractors were nearly complementary, searches resembled popout performance with real colors. Control participants who performed searches for the same symbols (which were colored according to the synaesthetic colors) showed search functions very similar to those shown by the synaesthetes for the physically achromatic symbols.

  18. LANDSAT-4 horizon scanner performance evaluation

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.

    1984-01-01

    Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.

  19. From Beamline to Scanner with 225Ac

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew K. H.; Ramogida, Caterina F.; Kunz, Peter; Rodriguez-Rodriguez, Cristina; Schaffer, Paul; Sossi, Vesna

    2016-09-01

    Due to the high linear energy transfer and short range of alpha-radiation, targeted radiation therapy using alpha-emitting pharmaceuticals that successfully target small disease clusters will kill target cells with limited harm to healthy tissue, potentially treating the most aggressive forms of cancer. As the parent of a decay chain with four alpha- and two beta-decays, 225Ac is a promising candidate for such a treatment. However, this requires retention of the entire decay chain at the target site, preventing the creation of freely circulating alpha-emitters that reduce therapeutic effect and increase toxicity to non-target tissues. Two major challenges to 225Ac pharmaceutical development exist: insufficient global supply, and the difficulty of preventing toxicity by retaining the entire decay chain at the target site. While TRIUMF works towards large-scale (C i amounts) production of 225Ac, we already use our Isotope Separation On-Line facility to provide small (< 1 mCi) quantities for in-house chemistry and imaging research that aims to improve and assess 225Ac radiopharmaceutical targeting. This presentation provides an overview of this research program and the journey of 225Ac from the beamline to the scanner. This research is funded by the Natural Sciences and Engineering Research Council of Canada.

  20. Handheld laser scanner automatic registration based on random coding

    NASA Astrophysics Data System (ADS)

    He, Lei; Yu, Chun-ping; Wang, Li

    2011-06-01

    Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser

  1. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  2. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  3. Preferred skin color enhancement for photographic color reproduction

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  4. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  5. A general solution for the registration of optical multispectral scanners

    NASA Technical Reports Server (NTRS)

    Rader, M. L.

    1974-01-01

    The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.

  6. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  7. Color and Streptomycetes1

    PubMed Central

    Pridham, Thomas G.

    1965-01-01

    A report summarizing the results of an international workshop on determination of color of streptomycetes is presented. The results suggest that the color systems which seem most practically appealing and effective to specialists on actinomycetes are those embracing a limited number of color names and groups. The broad groupings allow placement of isolates into reasonably well-defined categories based on color of aerial mycelium. Attempts to expand such systems (more color groups) lead to difficulties. It is common knowledge that many, if not all, of the individual groups would in these broad systems contain strains that differ in many other respects, e.g., spore-wall ornamentation, color of vegetative (substratal) mycelium, morphology of chains of spores, and numerous physiological criteria. Also, cultures of intermediate color can be found, which makes placement difficult. As it now stands, color as a criterion for characterization of streptomycetes and streptoverticillia is in questionable status. Although much useful color information can be obtained by an individual, the application of this information to that in the literature or its use in communication with other individuals leaves much to be desired. More objective methods of color determination are needed. At present, the most effective method that could be used internationally is the color-wheel system of Tresner and Backus. Furthermore, the significance of color in speciation of these organisms is an open question. Obviously, more critical work on the color problem is needed. PMID:14264847

  8. Facts About Color Blindness

    MedlinePlus

    ... color perception of its employees, such as graphic design, photography, and food quality inspection. The Farnsworth Lantern ... challenging. Color blindness can go undetected for some time since children will often try to hide their ...

  9. The Trouble with Color.

    ERIC Educational Resources Information Center

    Merchant, David

    1999-01-01

    Discusses problems with color quality in Web sites. Topics include differences in monitor settings, including contrast; amount of video RAM; user preference settings; browser-safe colors; cross-platform readability; and gamma values. (LRW)

  10. Ares Vallis - False Color

    NASA Image and Video Library

    2014-12-31

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Ares Vallis.

  11. Eos Chasma - False Color

    NASA Image and Video Library

    2014-12-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of of Eos Chasma.

  12. Reull Vallis - False Color

    NASA Image and Video Library

    2014-12-18

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Reull Vallis.

  13. Syrtis Major - False Color

    NASA Image and Video Library

    2015-01-09

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a region in Syrtis Major.

  14. Renaudot Crater - False Color

    NASA Image and Video Library

    2015-01-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Renaudot Crater.

  15. Coprates Chasma - False Color

    NASA Image and Video Library

    2014-12-10

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  16. Makhambet Crater - False Color

    NASA Image and Video Library

    2015-01-29

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows Makhambet Crater.

  17. Capen Crater - False Color

    NASA Image and Video Library

    2015-01-21

    The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows small dunes of the floor of Capen Crater in Terra Sabea.

  18. Granicus Valles - False Color

    NASA Image and Video Library

    2015-01-12

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Granicus Valles.

  19. Hebes Chasma - False Color

    NASA Image and Video Library

    2014-12-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Hebes Chasma.

  20. Candor Labes - False Color

    NASA Image and Video Library

    2014-12-25

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Candor Labes.

  1. Coprates Chasma - False Color

    NASA Image and Video Library

    2015-01-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  2. Schaeberle Crater - False Color

    NASA Image and Video Library

    2015-01-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Schaeberle Crater, including small dunes.

  3. Windstreaks -- False Color

    NASA Image and Video Library

    2015-01-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks in Daedalia Planum.

  4. Kasei Valles - False Color

    NASA Image and Video Library

    2015-01-07

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows a portion of Kasei Vallis.

  5. Nili Patera - False Color

    NASA Image and Video Library

    2015-01-02

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Patera.

  6. Melas Chasma - False Color

    NASA Image and Video Library

    2014-12-09

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Melas Chasma.

  7. Coprates Chasma - False Color

    NASA Image and Video Library

    2014-12-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image captured by NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  8. Atlantis Chaos - False Color

    NASA Image and Video Library

    2014-12-23

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Atlantis Chaos.

  9. Coprates Chasma - False Color

    NASA Image and Video Library

    2015-01-01

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Coprates Chasma.

  10. Hargraves Crater - False Color

    NASA Image and Video Library

    2015-01-13

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Hargraves Crater.

  11. Space and time variability of the surface color field in the northern Adriatic Sea

    NASA Technical Reports Server (NTRS)

    Barale, Vittorio; Mcclain, Charles R.; Malanotte-Rizzoli, Paola

    1986-01-01

    A time series of coastal zone color scanner images for the years 1979 and 1980 was used to observe the spatial and temporal variability of bio-optical processes and circulation patterns of the northern Adriatic Sea on monthly, seasonal, and interannual scales. The chlorophyll-like pigment concentrations derived from satellite data exhibited a high correlation with sea truth measurements performed during seven surveys in the summer of both years. Comparison of the mean pigment fields indicates a general increase in concentration values and larger scales of coastal features from 1979 to 1980. This variability may be linked to the different patterns of nutrient influx due to coastal runoff in the 2 years. The distribution of surface features is consistent with the general cyclonic circulation pattern. The pigment heterogeneity appears to be governed by fluctuations of freshwater discharge, while the dominant wind fields do not appear to have important direct effects. The Po River presents a plume spreading predominantly in a southeastern direction, with scales positively correlated with its outflow. The spatial scales of the western coastal layer, in contrast, are negatively correlated with this outflow and the plume scales. Both results are consistent with, and may be rationalized by, recent theoretical and experimental results involving a dynamical balance between nonlinear advection and bottom friction, with alternate predominance of one of the two effects.

  12. Impact of digital intraoral scan strategies on the impression accuracy using the TRIOS Pod scanner.

    PubMed

    Müller, Philipp; Ender, Andreas; Joda, Tim; Katsoulis, Joannis

    2016-04-01

    Little information is available on the impact of different scan strategies on the accuracy of full-arch scans with intraoral scanners. The aim of this in-vitro study was to investigate the trueness and precision of full-arch maxillary digital impressions comparing three scan strategies. Three scan strategies (A, B, and C) were applied each five times on one single model (A, first buccal surfaces, return from occlusal-palatal; B, first occlusal-palatal, return buccal; C, S-type one-way). The TRIOS Pod scanner (3shape, Copenhagen, Denmark) with a color detector was used for these digital impressions. A cast of a maxillary dentate jaw was fabricated and scanned with an industrial reference scanner. This full-arch data record was digitally superimposed with the test scans (trueness) and within-group comparison was performed for each group (precision). The values within the 90/10 percentiles from the digital superimposition were used for calculation and group comparisons with nonparametric tests (ANOVA, post-hoc Bonferroni). The trueness (mean ± standard deviation) was 17.9 ± 16.4 μm for scan strategy A, 17.1 ± 13.7 μm for B, and 26.8 ± 14.7 μm for C without statistically significant difference. The precision was lowest for scan strategy A (35.0 ± 51.1 μm) and significantly different to B (7.9 ± 5.6 μm) and C (8.5 ± 6.3 μm). Scan strategy B may be recommended as it provides the highest trueness and precision in full-arch scans and therefore minimizes inaccuracies in the final reconstruction.

  13. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  14. Scanning properties of a resonant fiber-optic piezoelectric scanner

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Yang, Zhe; Fu, Ling

    2011-12-01

    We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ˜2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers.

  15. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  16. Sweetpotato Color Analyses

    USDA-ARS?s Scientific Manuscript database

    Color is an important attribute that contributes to the appearance of a sweetpotato genotype. A consumer uses color, along with geometric attributes (e.g., gloss, luster, sheen, texture, opaqueness, shape), to subjectively evaluate the appearance of a sweetpotato root. Color can be quantified by t...

  17. Reimagining the Color Wheel

    ERIC Educational Resources Information Center

    Snyder, Jennifer

    2011-01-01

    Color wheels are a traditional project for many teachers. The author has used them in art appreciation classes for many years, but one problem she found when her pre-service art education students created colored wheels was that they were boring: simple circles, with pie-shaped pieces, which students either painted or colored in. This article…

  18. Biology of Skin Color.

    ERIC Educational Resources Information Center

    Corcos, Alain

    1983-01-01

    Information from scientific journals on the biology of skin color is discussed. Major areas addressed include: (1) biology of melanin, melanocytes, and melanosomes; (2) melanosome and human diversity; (3) genetics of skin color; and (4) skin color, geography, and natural selection. (JN)

  19. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  20. Spectra of clinical CT scanners using a portable Compton spectrometer.

    PubMed

    Duisterwinkel, H A; van Abbema, J K; van Goethem, M J; Kawachimaru, R; Paganini, L; van der Graaf, E R; Brandenburg, S

    2015-04-01

    Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  1. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Assessment of satellite and aircraft multispectral scanner data for strip-mine monitoring

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Dooley, J. T.

    1980-01-01

    The application of LANDSAT multispectral scanner data to describe the mining and reclamation changes of a hilltop surface coal mine in the rugged, mountainous area of eastern Kentucky is presented. Original single band satellite imagery, computer enhanced single band imagery, and computer classified imagery are presented for four different data sets in order to demonstrate the land cover changes that can be detected. Data obtained with an 11 band multispectral scanner on board a C-47 aircraft at an altitude of 3000 meters are also presented. Comparing the satellite data with color, infrared aerial photography, and ground survey data shows that significant changes in the disrupted area can be detected from LANDSAT band 5 satellite imagery for mines with more than 100 acres of disturbed area. However, band-ratio (bands 5/6) imagery provides greater contrast than single band imagery and can provide a qualitative level 1 classification of the land cover that may be useful for monitoring either the disturbed mining area or the revegetation progress. However, if a quantitative, accurate classification of the barren or revegetated classes is required, it is necessary to perform a detailed, four band computer classification of the data.

  3. Stability of deep features across CT scanners and field of view using a physical phantom

    NASA Astrophysics Data System (ADS)

    Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.

    2018-02-01

    Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.

  4. Estimation of foot pressure from human footprint depths using 3D scanner

    NASA Astrophysics Data System (ADS)

    Wibowo, Dwi Basuki; Haryadi, Gunawan Dwi; Priambodo, Agus

    2016-03-01

    The analysis of normal and pathological variation in human foot morphology is central to several biomedical disciplines, including orthopedics, orthotic design, sports sciences, and physical anthropology, and it is also important for efficient footwear design. A classic and frequently used approach to study foot morphology is analysis of the footprint shape and footprint depth. Footprints are relatively easy to produce and to measure, and they can be preserved naturally in different soils. In this study, we need to correlate footprint depth with corresponding foot pressure of individual using 3D scanner. Several approaches are used for modeling and estimating footprint depths and foot pressures. The deepest footprint point is calculated from z max coordinate-z min coordinate and the average of foot pressure is calculated from GRF divided to foot area contact and identical with the average of footprint depth. Evaluation of footprint depth was found from importing 3D scanner file (dxf) in AutoCAD, the z-coordinates than sorted from the highest to the lowest value using Microsoft Excel to make footprinting depth in difference color. This research is only qualitatif study because doesn't use foot pressure device as comparator, and resulting the maximum pressure on calceneus is 3.02 N/cm2, lateral arch is 3.66 N/cm2, and metatarsal and hallux is 3.68 N/cm2.

  5. MFP scanner motion characterization using self-printed target

    NASA Astrophysics Data System (ADS)

    Kim, Minwoong; Bauer, Peter; Wagner, Jerry K.; Allebach, Jan P.

    2015-01-01

    Multifunctional printers (MFP) are products that combine the functions of a printer, scanner, and copier. Our goal is to help customers to be able to easily diagnose scanner or print quality issues with their products by developing an automated diagnostic system embedded in the product. We specifically focus on the characterization of scanner motions, which may be defective due to irregular movements of the scan-head. The novel design of our test page and two-stage diagnostic algorithm are described in this paper. The most challenging issue is to evaluate the scanner performance properly when both printer and scanner units contribute to the motion errors. In the first stage called the uncorrected-print-error-stage, aperiodic and periodic motion behaviors are characterized in both the spatial and frequency domains. Since it is not clear how much of the error is contributed by each unit, the scanned input is statistically analyzed in the second stage called the corrected-print-error-stage. Finally, the described diagnostic algorithms output the estimated scan error and print error separately as RMS values of the displacement of the scan and print lines, respectively, from their nominal positions in the scanner or printer motion direction. We validate our test page design and approaches by ground truth obtained from a high-precision, chrome-on-glass reticle manufactured using semiconductor chip fabrication technologies.

  6. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    NASA Astrophysics Data System (ADS)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  7. Applications and requirements for MEMS scanner mirrors

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  8. Detection and mapping of volcanic rock assemblages and associated hydrothermal alteration with Thermal Infrared Multiband Scanner (TIMS) data Comstock Lode Mining District, Virginia City, Nevada

    NASA Technical Reports Server (NTRS)

    Taranik, James V.; Hutsinpiller, Amy; Borengasser, Marcus

    1986-01-01

    Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Virginia City area on September 12, 1984. The data were acquired at approximately 1130 hours local time (1723 IRIG). The TIMS data were analyzed using both photointerpretation and digital processing techniques. Karhuen-Loeve transformations were utilized to display variations in radiant spectral emittance. The TIMS image data were compared with color infrared metric camera photography, LANDSAT Thematic Mapper (TM) data, and key areas were photographed in the field.

  9. Adaptive color artwork

    NASA Astrophysics Data System (ADS)

    Beretta, Giordano

    2007-01-01

    The words in a document are often supported, illustrated, and enriched by visuals. When color is used, some of it is used to define the document's identity and is therefore strictly controlled in the design process. The result of this design process is a "color specification sheet," which must be created for every background color. While in traditional publishing there are only a few backgrounds, in variable data publishing a larger number of backgrounds can be used. We present an algorithm that nudges the colors in a visual to be distinct from a background while preserving the visual's general color character.

  10. Pluto in Extended Color

    NASA Image and Video Library

    2015-09-24

    This cylindrical projection map of Pluto, in enhanced, extended color, is the most detailed color map of Pluto ever made by NASA New Horizons. It uses recently returned color imagery from the New Horizons Ralph camera, which is draped onto a base map of images from the NASA's spacecraft's Long Range Reconnaissance Imager (LORRI). The map can be zoomed in to reveal exquisite detail with high scientific value. Color variations have been enhanced to bring out subtle differences. Colors used in this map are the blue, red, and near-infrared filter channels of the Ralph instrument. http://photojournal.jpl.nasa.gov/catalog/PIA19956

  11. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes.

    PubMed

    Prasad, Dilip K; Agarwal, Krishna

    2016-03-22

    We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL's SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included.

  12. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  13. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Relating color working memory and color perception.

    PubMed

    Allred, Sarah R; Flombaum, Jonathan I

    2014-11-01

    Color is the most frequently studied feature in visual working memory (VWM). Oddly, much of this work de-emphasizes perception, instead making simplifying assumptions about the inputs served to memory. We question these assumptions in light of perception research, and we identify important points of contact between perception and working memory in the case of color. Better characterization of its perceptual inputs will be crucial for elucidating the structure and function of VWM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Miniature Color Display Phase 4

    DTIC Science & Technology

    1993-05-01

    is used to generate full color. By spectral tuning of the xenon arc-lamp backlight and the color polarizers, a color gamut comparable to that of a...5 1.2 Phase IV Accom plishments ................................... 5 1.2.1 Subtractive Color Gamut ...Technical Achievem ents .............................................. 8 2.1 Subtractive Color Gamut 2.1.1 Sub Color LC Technology

  16. Color Reproduction with a Smartphone

    ERIC Educational Resources Information Center

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-01-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition…

  17. Scanner qualification with IntenCD based reticle error correction

    NASA Astrophysics Data System (ADS)

    Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan

    2010-03-01

    Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.

  18. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  19. Improved Scanners for Microscopic Hyperspectral Imaging

    NASA Technical Reports Server (NTRS)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  20. Astrometric properties of the Tautenburg Plate Scanner

    NASA Astrophysics Data System (ADS)

    Brunzendorf, Jens; Meusinger, Helmut

    The Tautenburg Plate Scanner (TPS) is an advanced plate-measuring machine run by the Thüringer Landessternwarte Tautenburg (Karl Schwarzschild Observatory), where the machine is housed. It is capable of digitising photographic plates up to 30 cm × 30 cm in size. In our poster, we reported on tests and preliminary results of its astrometric properties. The essential components of the TPS consist of an x-y table movable between an illumination system and a direct imaging system. A telecentric lens images the light transmitted through the photographic emulsion onto a CCD line of 6000 pixels of 10 µm square size each. All components are mounted on a massive air-bearing table. Scanning is performed in lanes of up to 55 mm width by moving the x-y table in a continuous drift-scan mode perpendicular to the CCD line. The analogue output from the CCD is digitised to 12 bit with a total signal/noise ratio of 1000 : 1, corresponding to a photographic density range of three. The pixel map is produced as a series of optionally overlapping lane scans. The pixel data are stored onto CD-ROM or DAT. A Tautenburg Schmidt plate 24 cm × 24 cm in size is digitised within 2.5 hours resulting in 1.3 GB of data. Subsequent high-level data processing is performed off-line on other computers. During the scanning process, the geometry of the optical components is kept fixed. The optimal focussing of the optics is performed prior to the scan. Due to the telecentric lens refocussing is not required. Therefore, the main source of astrometric errors (beside the emulsion itself) are mechanical imperfections in the drive system, which have to be divided into random and systematic ones. The r.m.s. repeatability over the whole plate as measured by repeated scans of the same plate is about 0.5 µm for each axis. The mean plate-to-plate accuracy of the object positions on two plates with the same epoch and the same plate centre has been determined to be about 1 µm. This accuracy is comparable to

  1. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is

  2. Diffuse attenuation coefficient for downwelling irradiance at 490 nm and its spectral characteristics in the Black Sea upper layer: modeling, in situ measurements and ocean color data

    NASA Astrophysics Data System (ADS)

    Suslin, V. V.; Slabakova, V. K.; Churilova, T. Ya.

    2017-11-01

    Vertical diffuse attenuation coefficient, Kd(490), is one of the key parameter required for water quality modeling, hydrodynamic and biological processes in the sea. We showed that standard level-2 product of Kd(490) was underestimated in comparison with Kd(490) values simulated by the regional model during the diatom bloom in the Black Sea. Using data of SeaWiFS, MERIS and MODIS color scanners, a regional relationship between the model value of Kd(490) and the ratio of remote sensing reflectances has been obtained. Based on the bulgarian argo-bio-buoy dataset, the relationship between the attenuation coefficient of photosynthetically active radiation and attenuation coefficient at a wavelength of 490 nm is obtained. The simplified model, below as the S-model, of the diffuse attenuation coefficient spectrum for downwelling irradiance in the Black Sea upper layer is described. As a consequence of the S-model, the link between the depth of the euphotic zone and Kd(490) has been obtained. It is shown that the Kd(490) values, retrieved from ocean color data with using the regional link and from argo-bio-buoy measurements at depths between 6-20 m, are close to each other.

  3. Regulation of X-Ray Security Scanners in Michigan.

    PubMed

    Parry, Donald E

    2016-02-01

    In January of 2013 the Transportation Security Administration (TSA) ordered the removal of x-ray security scanners from airports by June of 2013. Since that time several of these scanners have been purchased at a reduced cost by various state and county governments for use in screening individuals entering or leaving their facilities. To address this issue the Radiation Safety Section of the State of Michigan drafted a set of registration conditions for facilities to follow when using these security scanners. Inspection procedures and measurement protocols were developed to estimate the dose to screened individuals. Inspections were performed on nine of the 16 registered backscatter scanners in the state and the one transmission scanner. The average estimated effective dose to screened individuals was ∼11 nSv for a two view scan from a backscatter system. The effective dose was 0.446 μSv, 0.330 μSv, and 0.150 μSv for a transmission system operated in the high, medium, and low dose modes, respectively. The limit suggested in the new registration condition is 0.25 μSv for a general use system and 10 μSv for a limited use system.

  4. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    NASA Astrophysics Data System (ADS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  5. Effects of sitting versus standing and scanner type on cashiers.

    PubMed

    Lehman, K R; Psihogios, J P; Meulenbroek, R G

    2001-06-10

    In the retail supermarket industry where cashiers perform repetitive, light manual material-handling tasks when scanning and handling products, reports of musculoskeletal disorders and discomfort are high. Ergonomics tradeoffs exist between sitting and standing postures, which are further confounded by the checkstand design and point-of-sale technology, such as the scanner. A laboratory experiment study was conducted to understand the effects of working position (sitting versus standing) and scanner type (bi-optic versus single window) on muscle activity, upper limb and spinal posture, and subjective preference of cashiers. Ten cashiers from a Dutch retailer participated in the study. Cashiers exhibited lower muscle activity in the neck and shoulders when standing and using a bi-optic scanner. Shoulder abduction was also less for standing conditions. In addition, all cashiers preferred using the bi-optic scanner with mixed preferences for sitting (n = 6) and standing (n = 4). Static loading of the muscles was relatively high compared with benchmarks, suggesting that during the task of scanning, cashiers may not have adequate recovery time to prevent fatigue. It is recommended that retailers integrate bi-optic scanners into standing checkstands to minimize postural stress, fatigue and discomfort in cashiers.

  6. Wear Distribution Detection of Knee Joint Prostheses by Means of 3D Optical Scanners

    PubMed Central

    Affatato, Saverio; Valigi, Maria Cristina; Logozzo, Silvia

    2017-01-01

    The objective of this study was to examine total knee polyethylene inserts from in vitro simulation to evaluate and display—using a 3D optical scanner—wear patterns and wear rates of inserts exposed to wear by means of simulators. Various sets of tibial inserts have been reconstructed by using optical scanners. With this in mind, the wear behavior of fixed and mobile bearing polyethylene knee configurations was investigated using a knee wear joint simulator. After the completion of the wear test, the polyethylene menisci were analyzed by an innovative 3D optical scanners in order to evaluate the 3D wear distribution on the prosthesis surface. This study implemented a new procedure for evaluating polyethylene bearings of joint prostheses obtained after in vitro wear tests and the proposed new approach allowed quantification of the contact zone on the geometry of total knee prostheses. The results of the present study showed that mobile TKPs (total knee prosthesis) have lower wear resistance with respect to fixed TKPs. PMID:28772725

  7. Rapid overt airborne reconnaissance (ROAR) for mines and obstacles in very shallow water, surf zone, and beach

    NASA Astrophysics Data System (ADS)

    Moran, Steven E.; Austin, William L.; Murray, James T.; Roddier, Nicolas A.; Bridges, Robert; Vercillo, Richard; Stettner, Roger; Phillips, Dave; Bisbee, Al; Witherspoon, Ned H.

    2003-09-01

    Under the Office of Naval Research's Organic Mine Countermeasures Future Naval Capabilities (OMCM FNC) program, Lite Cycles, Inc. is developing an innovative and highly compact airborne active sensor system for mine and obstacle detection in very shallow water (VSW), through the surf-zone (SZ) and onto the beach. The system uses an innovative LCI proprietary integrated scanner, detector, and telescope (ISDT) receiver architecture. The ISD tightly couples all receiver components and LIDAR electronics to achieve the system compaction required for tactical UAVintegration while providing a large aperture. It also includes an advanced compact multifunction laser transmitter; an industry-first high-resolution, compact 3-D camera, a scanning function for wide area search, and temporally displaced multiple looks on the fly over the ocean surface for clutter reduction. Additionally, the laser will provide time-multiplexed multi-color output to perform day/night multispectral imaging for beach surveillance. New processing algorithms for mine detection in the very challenging surf-zone clutter environment are under development, which offer the potential for significant processing gains in comparison to the legacy approaches. This paper reviews the legacy system approaches, describes the mission challenges, and provides an overview of the ROAR system architecture.

  8. Digital color representation

    DOEpatents

    White, James M.; Faber, Vance; Saltzman, Jeffrey S.

    1992-01-01

    An image population having a large number of attributes is processed to form a display population with a predetermined smaller number of attributes which represent the larger number of attributes. In a particular application, the color values in an image are compressed for storage in a discrete lookup table (LUT) where an 8-bit data signal is enabled to form a display of 24-bit color values. The LUT is formed in a sampling and averaging process from the image color values with no requirement to define discrete Voronoi regions for color compression. Image color values are assigned 8-bit pointers to their closest LUT value whereby data processing requires only the 8-bit pointer value to provide 24-bit color values from the LUT.

  9. Adaptive color demosaicing and false color removal

    NASA Astrophysics Data System (ADS)

    Guarnera, Mirko; Messina, Giuseppe; Tomaselli, Valeria

    2010-04-01

    Color interpolation solutions drastically influence the quality of the whole image generation pipeline, so they must guarantee the rendering of high quality pictures by avoiding typical artifacts such as blurring, zipper effects, and false colors. Moreover, demosaicing should avoid emphasizing typical artifacts of real sensors data, such as noise and green imbalance effect, which would be further accentuated by the subsequent steps of the processing pipeline. We propose a new adaptive algorithm that decides the interpolation technique to apply to each pixel, according to its neighborhood analysis. Edges are effectively interpolated through a directional filtering approach that interpolates the missing colors, selecting the suitable filter depending on edge orientation. Regions close to edges are interpolated through a simpler demosaicing approach. Thus flat regions are identified and low-pass filtered to eliminate some residual noise and to minimize the annoying green imbalance effect. Finally, an effective false color removal algorithm is used as a postprocessing step to eliminate residual color errors. The experimental results show how sharp edges are preserved, whereas undesired zipper effects are reduced, improving the edge resolution itself and obtaining superior image quality.

  10. Structures in color space

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander P.

    1996-09-01

    Classic colorimetry and the traditionally used color space do not represent all perceived colors (for example, browns look dark yellow in colorimetric conditions of observation) so, the specific goal of this work is to suggest another concept of color and to prove that the corresponding set of colors is complete. The idea of our approach attributing color to surface patches (not to the light) immediately ties all the problems of color perception and vision geometry. The equivalence relation in the linear space of light fluxes F established by a procedure of colorimetry gives us a 3D color space H. By definition we introduce a sample (sigma) (surface patch) as a linear mapping (sigma) : L yields H, where L is a subspace of F called the illumination space. A Dedekind structure of partial order can be defined in the set of the samples: two samples (alpha) and (Beta) belong to one chromatic class if ker(alpha) equals ker(Beta) and (alpha) > (Beta) if ker(alpha) ker(Beta) . The maximal elements of this chain create the chromatic class BLACK. There can be given geometrical arguments for L to be 3D and it can be proved that in this case the minimal element of the above Dedekind structure is unique and the corresponding chromatic class is called WHITE containing the samples (omega) such that ker(omega) equals {0} L. Color is defined as mapping C: H yields H and assuming color constancy the complete set of perceived colors is proved to be isomorphic to a subset C of 3 X 3 matrices. This subset is convex, limited and symmetrical with E/2 as the center of symmetry. The problem of metrization of the color space C is discussed and a color metric related to shape, i.e., to vision geometry, is suggested.

  11. Measurements of ocean color

    NASA Technical Reports Server (NTRS)

    Hovis, W. A.

    1972-01-01

    An airborne instrument for determining ocean color and measurements made with the instrument are discussed. It was concluded that a clear relationship exists between the chlorophyll concentration and the color of the water. High altitude measurements from 50,000 feet are described and the effects of atmospheric scattering on the energy reaching the sensor are examined. The measured spectrum of ocean color at high and low altitudes is plotted.

  12. Melas Chasma - False Color

    NASA Image and Video Library

    2017-07-13

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 59750 Latitude: -10.5452 Longitude: 290.307 Instrument: VIS Captured: 2015-06-03 12:33 https://photojournal.jpl.nasa.gov/catalog/PIA21705

  13. Melas Chasma - False Color

    NASA Image and Video Library

    2015-08-21

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Melas Chasma. Orbit Number: 10289 Latitude: -9.9472 Longitude: 285.933 Instrument: VIS Captured: 2004-04-09 12:43 http://photojournal.jpl.nasa.gov/catalog/PIA19756

  14. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas

  15. Finish line distinctness and accuracy in 7 intraoral scanners versus conventional impression: an in vitro descriptive comparison.

    PubMed

    Nedelcu, Robert; Olsson, Pontus; Nyström, Ingela; Thor, Andreas

    2018-02-23

    Several studies have evaluated accuracy of intraoral scanners (IOS), but data is lacking regarding variations between IOS systems in the depiction of the critical finish line and the finish line accuracy. The aim of this study was to analyze the level of finish line distinctness (FLD), and finish line accuracy (FLA), in 7 intraoral scanners (IOS) and one conventional impression (IMPR). Furthermore, to assess parameters of resolution, tessellation, topography, and color. A dental model with a crown preparation including supra and subgingival finish line was reference-scanned with an industrial scanner (ATOS), and scanned with seven IOS: 3M, CS3500 and CS3600, DWIO, Omnicam, Planscan and Trios. An IMPR was taken and poured, and the model was scanned with a laboratory scanner. The ATOS scan was cropped at finish line and best-fit aligned for 3D Compare Analysis (Geomagic). Accuracy was visualized, and descriptive analysis was performed. All IOS, except Planscan, had comparable overall accuracy, however, FLD and FLA varied substantially. Trios presented the highest FLD, and with CS3600, the highest FLA. 3M, and DWIO had low overall FLD and low FLA in subgingival areas, whilst Planscan had overall low FLD and FLA, as well as lower general accuracy. IMPR presented high FLD, except in subgingival areas, and high FLA. Trios had the highest resolution by factor 1.6 to 3.1 among IOS, followed by IMPR, DWIO, Omnicam, CS3500, 3M, CS3600 and Planscan. Tessellation was found to be non-uniform except in 3M and DWIO. Topographic variation was found for 3M and Trios, with deviations below +/- 25 μm for Trios. Inclusion of color enhanced the identification of the finish line in Trios, Omnicam and CS3600, but not in Planscan. There were sizeable variations between IOS with both higher and lower FLD and FLA than IMPR. High FLD was more related to high localized finish line resolution and non-uniform tessellation, than to high overall resolution. Topography variations were low

  16. Gale Crater - False Color

    NASA Image and Video Library

    2017-02-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Gale Crater. Basaltic sands are dark blue in this type of false color combination. The Curiosity Rover is located in another portion of Gale Crater, far southwest of this image. Orbit Number: 51803 Latitude: -4.39948 Longitude: 138.116 Instrument: VIS Captured: 2013-08-18 09:04 http://photojournal.jpl.nasa.gov/catalog/PIA21312

  17. Melas Chasma - False Color

    NASA Image and Video Library

    2015-10-08

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of the floor of Melas Chasma. The dark blue region in this false color image is sand dunes. Orbit Number: 12061 Latitude: -12.2215 Longitude: 289.105 Instrument: VIS Captured: 2004-09-02 10:11 http://photojournal.jpl.nasa.gov/catalog/PIA19793

  18. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system's eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware. Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  19. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    NASA Technical Reports Server (NTRS)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  20. Use of Seasat synthetic aperture radar and Landsat multispectral scanner subsystem data for Alaskan glaciology studies

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Ormsby, J. P.

    1983-01-01

    Three Seasat synthetic aperture radar (SAR) and three Landsat multispectral scanner subsystem (MSS) scenes of three areas of Alaska were analyzed for hydrological information. The areas were: the Dease Inlet in northern Alaska and its oriented or thaw lakes, the Ruth and Tokositna valley glaciers in south central Alaska, and the Malaspina piedmont glacier on Alaska's southern coast. Results for the first area showed that the location and identification of some older remnant lake basins were more easily determined in the registered data using an MSS/SAR overlay than in either SAR or MSS data alone. Separately, both SAR and MSS data were useful for determination of surging glaciers based on their distinctive medial moraines, and Landsat data were useful for locating the glacier firn zone. For the Malaspina Glacier scenes, the SAR data were useful for locating heavily crevassed ice beneath glacial debris, and Landsat provided data concerning the extent of the debris overlying the glacier.

  1. Calibration procedure for a laser triangulation scanner with uncertainty evaluation

    NASA Astrophysics Data System (ADS)

    Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio

    2016-11-01

    Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.

  2. Dental impressions using 3D digital scanners: virtual becomes reality.

    PubMed

    Birnbaum, Nathan S; Aaronson, Heidi B

    2008-10-01

    The technologies that have made the use of three-dimensional (3D) digital scanners an integral part of many industries for decades have been improved and refined for application to dentistry. Since the introduction of the first dental impressioning digital scanner in the 1980s, development engineers at a number of companies have enhanced the technologies and created in-office scanners that are increasingly user-friendly and able to produce precisely fitting dental restorations. These systems are capable of capturing 3D virtual images of tooth preparations, from which restorations may be fabricated directly (ie, CAD/CAM systems) or fabricated indirectly (ie, dedicated impression scanning systems for the creation of accurate master models). The use of these products is increasing rapidly around the world and presents a paradigm shift in the way in which dental impressions are made. Several of the leading 3D dental digital scanning systems are presented and discussed in this article.

  3. Galileo Attitude Determination: Experiences with a Rotating Star Scanner

    NASA Technical Reports Server (NTRS)

    Merken, L.; Singh, G.

    1991-01-01

    The Galileo experience with a rotating star scanner is discussed in terms of problems encountered in flight, solutions implemented, and lessons learned. An overview of the Galileo project and the attitude and articulation control subsystem is given and the star scanner hardware and relevant software algorithms are detailed. The star scanner is the sole source of inertial attitude reference for this spacecraft. Problem symptoms observed in flight are discussed in terms of effects on spacecraft performance and safety. Sources of thse problems include contributions from flight software idiosyncrasies and inadequate validation of the ground procedures used to identify target stars for use by the autonomous on-board star identification algorithm. Problem fixes (some already implemented and some only proposed) are discussed. A general conclusion is drawn regarding the inherent difficulty of performing simulation tests to validate algorithms which are highly sensitive to external inputs of statistically 'rare' events.

  4. Nodular melanoma serendipitously detected by airport full body scanners.

    PubMed

    Mayer, Jonathan E; Adams, Brian B

    2015-01-01

    Nodular melanoma is the most dangerous form of melanoma and often evades early detection. We present a frequently traveling businessman whose nodular melanoma was detected by airport full body scanners. For about 20 flights over 2 months, the airport full body scanners singled out an area on his left lower leg for a pat-down. Dermatologic examination discovered a nodular melanoma in this area, and after surgical excision, the man traveled without incident. This case raises the possibility of using full body imaging in the detection of melanomas, especially of the nodular subtype. In its current form, full body scanning would most likely not be sensitive or specific enough to become a recommended screening tool. Nonetheless, for travelers with areas repeatedly singled out by the machines without a known justification, airport scanners could serve as incidental free screening for suspicious nodular lesions that should prompt dermatologist referral. © 2014 S. Karger AG, Basel.

  5. Incorporation of a two metre long PET scanner in STIR

    NASA Astrophysics Data System (ADS)

    Tsoumpas, C.; Brain, C.; Dyke, T.; Gold, D.

    2015-09-01

    The Explorer project aims to investigate the potential benefits of a total-body 2 metre long PET scanner. The following investigation incorporates this scanner in STIR library and demonstrates the capabilities and weaknesses of existing reconstruction (FBP and OSEM) and single scatter simulation algorithms. It was found that sensible images are reconstructed but at the expense of high memory and processing time demands. FBP requires 4 hours on a core; OSEM: 2 hours per iteration if ran in parallel on 15-cores of a high performance computer. The single scatter simulation algorithm shows that on a short scale, up to a fifth of the scanner length, the assumption that the scatter between direct rings is similar to the scatter between the oblique rings is approximately valid. However, for more extreme cases this assumption is not longer valid, which illustrates that consideration of the oblique rings within the single scatter simulation will be necessary, if this scatter correction is the method of choice.

  6. Color reproduction with a smartphone

    NASA Astrophysics Data System (ADS)

    Thoms, Lars-Jochen; Colicchia, Giuseppe; Girwidz, Raimund

    2013-10-01

    The world is full of colors. Most of the colors we see around us can be created on common digital displays simply by superposing light with three different wavelengths. However, no mixture of colors can produce a fully pure color identical to a spectral color. Using a smartphone, students can investigate the main features of primary color addition and understand how colors are made on digital displays.

  7. Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds

    NASA Astrophysics Data System (ADS)

    Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu

    2016-06-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  8. Luminance contours can gate afterimage colors and "real" colors.

    PubMed

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  9. [Comparative analysis of 3D data visibility of the prepared tooth finishing line on a synthetic jaw model, captured by international scanners in a laboratory conditions].

    PubMed

    Ryakhovskiy, A N; Kostyukova, V V

    The aim of the study was to compare accuracy of digital impression's finishing line and the zone under it taken by different intraoral scanning systems. Parameters of comparison were: different level of the finishing line to the gingiva and width of sulcus after retraction. For this purpose two synthetic jaw models with prepared teeth were scanned using intraoral scanning systems: 3D Progress (MHT S.P.A., IT - MHT Optic Research AG, CH); True Definition (3M ESPE, USA); Trios (3Shape A/S, DNK); CEREC AC Bluecam, CEREC Omnicam (Sirona Dental System GmbH, DE); Planscan (Planmeca, FIN) (each n=10). Reference-scanning was done by ATOS Core (GOM mbH, DE). The resulting digital impressions were superimposed with the master-scan. The lowest measured deviations (trueness) for intraoral scanners, where the finishing line was 0.5 mm above gingiva were with scanner True Definition - 18.8±6.63 (on the finishing line) and 51.0±14.33 µm (0.3 mm under the finishing line). In conditions where finishing line was on the same level with gingiva, scanner Trios showed the best results: 17.0±3.96 and 52.7±6.52 µm. When the finishing line was 0.5 mm under gingiva, none of the testing scanners could visualize the zone 0.3 mm lower the finishing line. The best results for accuracy o the finishing line in that circumstances showed Trios: 15.1±5.05 µm. The optimum visualization of the finishing line and the zone under it was reached when the sulcus was 0.3 mm after retraction. Thus, the best accuracy was obtained with Trios: 10.3±2.69 (on the finishing line) and 57.2±13.58 µm (0.3 mm under finishing line). The results show that intraoral scanners also provide enough accuracy for indicating finishing line and the zone under it in different conditions of preparation and gingiva retraction. However, not all of the testing scanners can properly indicate finishing line and the zone under it when shoulder is below gingiva and the width of sulcus is less than 0.2 mm.

  10. Trueness and precision of digital impressions obtained using an intraoral scanner with different head size in the partially edentulous mandible.

    PubMed

    Hayama, Hironari; Fueki, Kenji; Wadachi, Juro; Wakabayashi, Noriyuki

    2018-03-01

    It remains unclear whether digital impressions obtained using an intraoral scanner are sufficiently accurate for use in fabrication of removable partial dentures. We therefore compared the trueness and precision between conventional and digital impressions in the partially edentulous mandible. Mandibular Kennedy Class I and III models with soft silicone simulated-mucosa placed on the residual edentulous ridge were used. The reference models were converted to standard triangulated language (STL) file format using an extraoral scanner. Digital impressions were obtained using an intraoral scanner with a large or small scanning head, and converted to STL files. For conventional impressions, pressure impressions of the reference models were made and working casts fabricated using modified dental stone; these were converted to STL file format using an extraoral scanner. Conversion to STL file format was performed 5 times for each method. Trueness and precision were evaluated by deviation analysis using three-dimensional image processing software. Digital impressions had superior trueness (54-108μm), but inferior precision (100-121μm) compared to conventional impressions (trueness 122-157μm, precision 52-119μm). The larger intraoral scanning head showed better trueness and precision than the smaller head, and on average required fewer scanned images of digital impressions than the smaller head (p<0.05). On the color map, the deviation distribution tended to differ between the conventional and digital impressions. Digital impressions are partially comparable to conventional impressions in terms of accuracy; the use of a larger scanning head may improve the accuracy for removable partial denture fabrication. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Characterization and control of EUV scanner dose uniformity and stability

    NASA Astrophysics Data System (ADS)

    Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick

    2018-03-01

    The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.

  12. PET/CT scanners: a hardware approach to image fusion.

    PubMed

    Townsend, David W; Beyer, Thomas; Blodgett, Todd M

    2003-07-01

    New technology that combines positron tomography with x-ray computed tomography (PET/CT) is available from all major vendors of PET imaging equipment: CTI, Siemens, GE, Philips. Although not all vendors have made the same design choices as those described in this review all have in common that their high performance design places a commercial CT scanner in tandem with a commercial PET scanner. The level of physical integration is actually less than that of the original prototype design where the CT and PET components were mounted on the same rotating support. There will undoubtedly be a demand for PET/CT technology with a greater level of integration, and at a reduced cost. This may be achieved through the design of a scanner specifically for combined anatomical and functional imaging, rather than a design combining separate CT and PET scanners, as in the current approaches. By avoiding the duplication of data acquisition and image reconstruction functions, for example, a more integrated design should also allow cost savings over current commercial PET/CT scanners. The goal is then to design and build a device specifically for imaging the function and anatomy of cancer in the most optimal and effective way, without conceptualizing it as combined PET and CT. The development of devices specifically for imaging a particular disease (eg, cancer) differs from the conventional approach of, for example, an all-purpose anatomical imaging device such as a CT scanner. This new concept targets more of a disease management approach rather than the usual division into the medical specialties of radiology (anatomical imaging) and nuclear medicine (functional imaging). Copyright 2003 Elsevier Inc. All rights reserved.

  13. Clarifying color category border according to color vision

    NASA Astrophysics Data System (ADS)

    Ichihara, Takumi; Ichihara, Yasuyo G.

    2015-01-01

    We usually recognize color by two kinds of processes. In the first, the color is recognized continually and a small difference in color is recognized. In the second, the color is recognized discretely. This process recognizes a similar color of a certain range as being in the same color category. The small difference in color is ignored. Recognition by using the color category is important for communication using color. It is known that a color vision defect confuses colors on the confusion locus of color. However, the color category of a color vision defect has not been thoroughly researched. If the color category of the color vision defect is clarified, it will become an important key for color universal design. In this research, we classified color stimuli into four categories to check the shape and the border of the color categories of varied color vision. The experimental result was as follows. The border of protanopia is the following three on the CIE 1931 (x, y) chromaticity diagram: y = -0.3068x + 0.4795, y = -0.1906x + 0.4021, y = -0.2624x + 0.3896. The border of deuteranopia is the following three on the CIE 1931 (x, y) chromaticity diagram: y = -0.7931x + 0.7036, y = -0.718x + 0.5966, y = -0.6667x + 0.5061.

  14. Color image generation for screen-scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi

    2015-10-19

    Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

  15. Research interface on a programmable ultrasound scanner.

    PubMed

    Shamdasani, Vijay; Bae, Unmin; Sikdar, Siddhartha; Yoo, Yang Mo; Karadayi, Kerem; Managuli, Ravi; Kim, Yongmin

    2008-07-01

    Commercial ultrasound machines in the past did not provide the ultrasound researchers access to raw ultrasound data. Lack of this ability has impeded evaluation and clinical testing of novel ultrasound algorithms and applications. Recently, we developed a flexible ultrasound back-end where all the processing for the conventional ultrasound modes, such as B, M, color flow and spectral Doppler, was performed in software. The back-end has been incorporated into a commercial ultrasound machine, the Hitachi HiVision 5500. The goal of this work is to develop an ultrasound research interface on the back-end for acquiring raw ultrasound data from the machine. The research interface has been designed as a software module on the ultrasound back-end. To increase the amount of raw ultrasound data that can be spooled in the limited memory available on the back-end, we have developed a method that can losslessly compress the ultrasound data in real time. The raw ultrasound data could be obtained in any conventional ultrasound mode, including duplex and triplex modes. Furthermore, use of the research interface does not decrease the frame rate or otherwise affect the clinical usability of the machine. The lossless compression of the ultrasound data in real time can increase the amount of data spooled by approximately 2.3 times, thus allowing more than 6s of raw ultrasound data to be acquired in all the modes. The interface has been used not only for early testing of new ideas with in vitro data from phantoms, but also for acquiring in vivo data for fine-tuning ultrasound applications and conducting clinical studies. We present several examples of how newer ultrasound applications, such as elastography, vibration imaging and 3D imaging, have benefited from this research interface. Since the research interface is entirely implemented in software, it can be deployed on existing HiVision 5500 ultrasound machines and may be easily upgraded in the future. The developed research

  16. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  17. 30. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) INTERIOR BETWEEN GRIDS 17-A1 AND 18-A1, SHOWING REAR OF RADAR EMITTER ELECTRONIC INTERFACE TERMINAL NO. 3147-20, "RECEIVER TRANSMITTER RADAR" MODULE. VIEW IS ALSO SHOWING BUILDING FIRE STOP MATERIAL AT BOTTOM OF FLOOR. NOTE: WALL SLOPES BOTTOM TO TOP INWARD; STRUCTURAL ELEMENT IN FOREGROUND. VIEW ALSO SHOWS PIPING GRID OF CHILLED WATER LINES FOR ELECTRONIC SYSTEMS COOLING. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. Shift-variant linear system modeling for multispectral scanners

    NASA Astrophysics Data System (ADS)

    Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.

    1995-07-01

    Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.

  19. Scanner baseliner monitoring and control in high volume manufacturing

    NASA Astrophysics Data System (ADS)

    Samudrala, Pavan; Chung, Woong Jae; Aung, Nyan; Subramany, Lokesh; Gao, Haiyong; Gomez, Juan-Manuel

    2016-03-01

    We analyze performance of different customized models on baseliner overlay data and demonstrate the reduction in overlay residuals by ~10%. Smart Sampling sets were assessed and compared with the full wafer measurements. We found that performance of the grid can still be maintained by going to one-third of total sampling points, while reducing metrology time by 60%. We also demonstrate the feasibility of achieving time to time matching using scanner fleet manager and thus identify the tool drifts even when the tool monitoring controls are within spec limits. We also explore the scanner feedback constant variation with illumination sources.

  20. Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation

    NASA Technical Reports Server (NTRS)

    Watson, N. D.; Miller, J. B.; Taylor, L. V.; Lovell, J. B.; Cox, J. W.; Fedors, J. C.; Kopia, L. P.; Holloway, R. M.; Bradley, O. H.

    1985-01-01

    The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings.

  1. Localization of a mobile laser scanner via dimensional reduction

    NASA Astrophysics Data System (ADS)

    Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas

    2016-11-01

    We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.

  2. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  3. a New Approach for the Semi-Automatic Texture Generation of the Buildings Facades, from Terrestrial Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Oniga, E.

    2012-07-01

    The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue) values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.

  4. Color: an exosomatic organ?

    NASA Astrophysics Data System (ADS)

    van Brakel, Jaap; Saunders, Barbara

    2001-12-01

    According to the dominant view in cognitive science, in particular in its more popularized versions, color sensings or perceptions are located in a 'quality space'. This space has three dimensions: hue (the chromatic aspect of color), saturation (the 'intensity' of hue), and brightness. This space is structured further via a small number of primitive hues or landmark colors, usually four (red, yellow, green, blue) or six (if white and black are included). It has also been suggested that there are eleven semantic universals - the six colors previously mentioned plus orange, pink, brown, purple, and grey. Scientific evidence for these widely accepted theories is at best minimal, based on sloppy methodology and at worst non-existent. Against the standard view, it is argued that color might better be regarded as the outcome of a social-historical developmental trajectory in which there is mutual shaping of philosophical presuppositions, scientific theories, experimental practices, technological tools, industrial products, rhetorical frameworks, and their intercalated and recursive interactions with the practices of daily life. That is: color, the domain of color, is the outcome of interactive processes of scientific, instrumental, industrial, and everyday lifeworlds. That is: color might better be called an exosomatic organ, a second nature.

  5. Millennial Teachers of Color

    ERIC Educational Resources Information Center

    Dilworth, Mary E., Ed.

    2018-01-01

    "Millennial Teachers of Color" explores the opportunities and challenges for creating and sustaining a healthy teaching force in the United States. Millennials are the largest generational cohort in American history, with approximately ninety million members and, of these, roughly 43 percent are people of color. This book, edited by…

  6. Colorful Underwater Sea Creatures

    ERIC Educational Resources Information Center

    McCutcheon, Heather

    2011-01-01

    In this article, the author describes a project wherein students created colorful underwater sea creatures. This project began with a discussion about underwater sea creatures and how they live. The first step was making the multi-colored tissue paper that would become sea creatures and seaweed. Once students had the shapes of their sea creatures…

  7. Requirements for color technology

    NASA Astrophysics Data System (ADS)

    Campbell, Ronald B., Jr.

    1993-06-01

    The requirements for color technology in the general office are reviewed. The two most salient factors driving the requirements for color are the information explosion and the virtually negligible growth in white collar productivity in the recent past. Accordingly, the business requirement upon color technology is that it be utilized in an effective and efficient manner to increase office productivity. Recent research on productivity and growth has moved beyond the classical two factor productivity model of labor and capital to explicitly include knowledge as a third and vital factor. Documents are agents of knowledge in the general office. Documents articulate, express, disseminate, and communicate knowledge. The central question addressed here is how can color, in conjunction with other techniques such as graphics and document design, improve the growth of knowledge? The central thesis is that the effective use of color to convert information into knowledge is one of the most powerful ways to increase office productivity. Material on the value of color is reviewed. This material is related to the role of documents. Document services are the way in which users access and utilize color technology. The requirements for color technology are then defined against the services taxonomy.

  8. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  9. Ganges Chasma - False Color

    NASA Image and Video Library

    2015-01-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the interior of Ganges Chasma.

  10. Ascraeus Mons - False Color

    NASA Image and Video Library

    2015-01-06

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows the southern flank of Ascraeus Mons.

  11. Tyrrhena Terra - False Color

    NASA Image and Video Library

    2014-12-12

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Tyrrhena Terra.

  12. Pollack Crater - False Color

    NASA Image and Video Library

    2015-01-16

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Pollack Crater.

  13. Sulci Gordii - False Color

    NASA Image and Video Library

    2014-12-29

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Sulci Gordii east of Olympus Mons.

  14. Becquerel Crater - False Color

    NASA Image and Video Library

    2015-03-17

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Becquerel Crater.

  15. Antoniadi Crater - False Color

    NASA Image and Video Library

    2014-12-22

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Antoniadi Crater.

  16. Hecates Tholus - False Color

    NASA Image and Video Library

    2014-12-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the flank of Hecates Tholus.

  17. Utopia Planitia - False Color

    NASA Image and Video Library

    2015-01-20

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Utopia Planitia.

  18. Crater - False Color

    NASA Image and Video Library

    2015-01-14

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Acidalia Planitia.

  19. Calahorra Crater - False Color

    NASA Image and Video Library

    2014-12-24

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Calahorra Crater in Chryse Planitia.

  20. Gusev Crater - False Color

    NASA Image and Video Library

    2015-01-19

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows windstreaks on the floor of Gusev Crater.

  1. Terra Cimmeria - False Color

    NASA Image and Video Library

    2015-07-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Cimmeria.

  2. Olympus Mons - False Color

    NASA Image and Video Library

    2015-01-05

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the caldera at the summit of Olympus Mons.

  3. Channel - False Color

    NASA Image and Video Library

    2015-05-25

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed channel in Terra Cimmeria.

  4. Saheki Crater - False Color

    NASA Image and Video Library

    2015-06-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the rim and floor of Saheki Crater.

  5. False Color Surface

    NASA Image and Video Library

    2014-12-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the region near Nili Fossae.

  6. Crater - False Color

    NASA Image and Video Library

    2015-05-26

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of an unnamed crater in Terra Cimmeria.

  7. Daga Vallis - False Color

    NASA Image and Video Library

    2014-12-19

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of Daga Vallis on Eos Mensa.

  8. Proctor Crater - False Color

    NASA Image and Video Library

    2014-12-15

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This false color image from NASA 2001 Mars Odyssey spacecraft shows part of the floor of Proctor Crater.

  9. Color names, color categories, and color-cued visual search: Sometimes, color perception is not categorical

    PubMed Central

    Brown, Angela M; Lindsey, Delwin T; Guckes, Kevin M

    2011-01-01

    The relation between colors and their names is a classic case-study for investigating the Sapir-Whorf hypothesis that categorical perception is imposed on perception by language. Here, we investigate the Sapir-Whorf prediction that visual search for a green target presented among blue distractors (or vice versa) should be faster than search for a green target presented among distractors of a different color of green (or for a blue target among different blue distractors). Gilbert, Regier, Kay & Ivry (2006) reported that this Sapir-Whorf effect is restricted to the right visual field (RVF), because the major brain language centers are in the left cerebral hemisphere. We found no categorical effect at the Green|Blue color boundary, and no categorical effect restricted to the RVF. Scaling of perceived color differences by Maximum Likelihood Difference Scaling (MLDS) also showed no categorical effect, including no effect specific to the RVF. Two models fit the data: a color difference model based on MLDS and a standard opponent-colors model of color discrimination based on the spectral sensitivities of the cones. Neither of these models, nor any of our data, suggested categorical perception of colors at the Green|Blue boundary, in either visual field. PMID:21980188

  10. Moon - False Color Mosaic

    NASA Image and Video Library

    1996-01-29

    This false-color photograph is a composite of 15 images of the Moon taken through three color filters NASA's Galileo solid-state imaging system during the spacecraft passage through the Earth-Moon system on December 8, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00132

  11. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  12. Aerial thermal scanner data for monitoring rooftop temperatures

    NASA Technical Reports Server (NTRS)

    Bjorkland, J.; Schmer, F. A.; Isakson, R. E.

    1975-01-01

    Four Nebraska communities and one South Dakota community were surveyed. Thermal scanner data were converted to a film format and the resultant imagery was successfully employed to monitor rooftop temperatures. The program places emphasis on heat losses resulting from inadequate home insulation, offers CENGAS customers the opportunity to observe a thermogram of their rooftop, and assists homeowners in evaluating insulation needs.

  13. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  14. Prototype active scanner for nighttime oil spill mapping and classification

    NASA Technical Reports Server (NTRS)

    Sandness, G. A.; Ailes, S. B.

    1977-01-01

    A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.

  15. Inguinal Hernia and Airport Scanners: An Emerging Indication for Repair?

    PubMed Central

    Cawich, Shamir O.; Maharaj, Ravi; Dan, Dilip

    2013-01-01

    The use of advanced imaging technology at international airports is increasing in popularity as a corollary to heightened security concerns across the globe. Operators of airport scanners should be educated about common medical disorders such as inguinal herniae in order to avoid unnecessary harassment of travelers since they will encounter these with increasing frequency. PMID:24368923

  16. The economic potential of CT scanners for hardwood sawmills

    Treesearch

    Donald G. Hodges; Walter C. Anderson; Charles W. McMillin

    1990-01-01

    Research has demonstrated that a knowledge of internal log defects prior to sawing could improve lumber value yields significantly. This study evaluated the potential economic returns from investments in computerized tomographic (CT) scanners to detect internal defects in hardwood logs at southern sawmills. The results indicate that such investments would be profitable...

  17. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic scanner calibration test block. 882.1925 Section 882.1925 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1925...

  18. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  19. Engineering evaluation of 24 channel multispectral scanner. [from flight tests

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.

    1973-01-01

    The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.

  20. Laser Scanner Tests For Single-Event Upsets

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.

    1992-01-01

    Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.

  1. Teach Your Computer to Read: Scanners and Optical Character Recognition.

    ERIC Educational Resources Information Center

    Marsden, Jim

    1993-01-01

    Desktop scanners can be used with a software technology called optical character recognition (OCR) to convert the text on virtually any paper document into an electronic form. OCR offers educators new flexibility in incorporating text into tests, lesson plans, and other materials. (MLF)

  2. OCR Scanners Facilitate WP Training in Business Schools and Colleges.

    ERIC Educational Resources Information Center

    School Business Affairs, 1983

    1983-01-01

    Optical Character Recognition Scanners (OCR) scan typed text and feed it directly into word processing systems, saving input time. OCRs are valuable in word processing training programs because they allow more students access to classes and more time for skill training. (MD)

  3. 9. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of back side of radar scanner building no. 106 showing passageway links to other buildings east and west, and DR 3 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. 10. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of back side of radar scanner building no. 104 showing passageway links to other building to east and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. 21. View from south to southerly face of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from south to southerly face of scanner building 104 showing building radius. Radius of building face matches radius of DR antenna systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  6. 20. View from northeast to southwest side of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View from northeast to southwest side of scanner building 104 showing two waveguide termination faces (fiberglass light bands on left of photograph). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... respect to the patient. This generic type of device may include signal analysis and display equipment...

  8. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the patient. This generic type of device may include signal analysis and display equipment, patient...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... respect to the patient. This generic type of device may include signal analysis and display equipment...

  10. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the patient. This generic type of device may include signal analysis and display equipment, patient...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... respect to the patient. This generic type of device may include signal analysis and display equipment...

  12. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892.1300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the patient. This generic type of device may include signal analysis and display equipment, patient...

  13. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  14. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  15. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  16. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A.; Peck, Konan

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  17. Inguinal hernia and airport scanners: an emerging indication for repair?

    PubMed

    Naraynsingh, Vijay; Cawich, Shamir O; Maharaj, Ravi; Dan, Dilip

    2013-01-01

    The use of advanced imaging technology at international airports is increasing in popularity as a corollary to heightened security concerns across the globe. Operators of airport scanners should be educated about common medical disorders such as inguinal herniae in order to avoid unnecessary harassment of travelers since they will encounter these with increasing frequency.

  18. Scanners, optical character readers, Cyrillic alphabet and Russian translations

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1995-01-01

    The writing of code for capture, in a uniform format, of bit maps of words and characters from scanner PICT files is presented. The coding of Dynamic Pattern Matched for the identification of the characters, words and sentences in preparation for translation is discussed.

  19. Impact of topographic mask models on scanner matching solutions

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Pomplun, Jan; Renwick, Stephen P.

    2014-03-01

    Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell's Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained

  20. Surface-roughness considerations for atmospheric correction of ocean color sensors. II: Error in the retrieved water-leaving radiance.

    PubMed

    Gordon, H R; Wang, M

    1992-07-20

    In the algorithm for the atmospheric correction of coastal zone color scanner (CZCS) imagery, it is assumed that the sea surface is flat. Simulations are carried out to assess the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct Sun glitter (either a large solar zenith angle or the sensor tilted away from the specular image of the Sun), the following conclusions appear justified: (1) the error induced by ignoring the surface roughness is less, similar1 CZCS digital count for wind speeds up to approximately 17 m/s, and therefore can be ignored for this sensor; (2) the roughness-induced error is much more strongly dependent on the wind speed than on the wave shadowing, suggesting that surface effects can be adequately dealt with without precise knowledge of the shadowing; and (3) the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness, suggesting that in refining algorithms for future sensors more effort should be placed on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  1. Quantitative investigation of the effects of the scanning parameters in the digitization of EBT and EBT2 Gafchromic film dosimetry with flatbed scanners.

    PubMed

    Hu, Yida; Ahmad, Salahuddin; Ali, Imad

    2012-01-01

    With increasing popularity and complexity of intensity-modulated radiation therapy (IMRT) delivery modalities including regular and arc therapies, there is a growing challenge for validating the accuracy of dose distributions. Gafchromic films have superior characteristics for dose verification over other conventional dosimeters. In order to optimize the use of Gafchromic films in clinical IMRT quality assurance procedures, the scanning parameters of EBT and EBT2 films with a flatbed scanner were investigated. The effects of several parameters including scanning position, orientation, uniformity, film sensitivity and optical density (OD) growth after irradiation were quantified. The profiles of the EBT and EBT2 films had a noise level of 0.6% and 0.7%, respectively. Considerable orientation dependence was observed and the scanner value difference between landscape and portrait modes were about 12% and 10% for EBT and EBT2 films, respectively. The highest response sensitivity was observed using digitized red color images of the EBT2 film scanned with landscape mode. The total system non-uniformity composed of contributions from the film and the scanner was less than 1.7%. OD variations showed that EBT gray scale grew slower, however, reached higher growth values of 15% when compared with EBT2 gray scale which grew 12% after a long time (480 hours) post-irradiation. The EBT film using the red color channel showed the minimal growth where OD increased up to 3% within 3 days after irradiation, and took one week to stabilize.

  2. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  3. Stool Color: When to Worry

    MedlinePlus

    Stool color: When to worry Yesterday, my stool color was bright green. Should I be concerned? Answers from Michael ... M.D. Stool comes in a range of colors. All shades of brown and even green are ...

  4. Color images of Kansas subsurface geology from well logs

    USGS Publications Warehouse

    Collins, D.R.; Doveton, J.H.

    1986-01-01

    Modern wireline log combinations give highly diagnostic information that goes beyond the basic shale content, pore volume, and fluid saturation of older logs. Pattern recognition of geology from logs is made conventionally through either the examination of log overlays or log crossplots. Both methods can be combined through the use of color as a medium of information by setting the three color primaries of blue, green, and red light as axes of three dimensional color space. Multiple log readings of zones are rendered as composite color mixtures which, when plotted sequentially with depth, show lithological successions in a striking manner. The method is extremely simple to program and display on a color monitor. Illustrative examples are described from the Kansas subsurface. ?? 1986.

  5. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  6. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less

  7. Color line scan camera technology and machine vision: requirements to consider

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.

    1997-08-01

    Color machine vision has shown a dynamic uptrend in use within the past few years as the introduction of new cameras and scanner technologies itself underscores. In the future, the movement from monochrome imaging to color will hasten, as machine vision system users demand more knowledge about their product stream. As color has come to the machine vision, certain requirements for the equipment used to digitize color images are needed. Color machine vision needs not only a good color separation but also a high dynamic range and a good linear response from the camera used. Good dynamic range and linear response is necessary for color machine vision. The importance of these features becomes even more important when the image is converted to another color space. There is always lost some information when converting integer data to another form. Traditionally the color image processing has been much slower technique than the gray level image processing due to the three times greater data amount per image. The same has applied for the three times more memory needed. The advancements in computers, memory and processing units has made it possible to handle even large color images today cost efficiently. In some cases he image analysis in color images can in fact even be easier and faster than with a similar gray level image because of more information per pixel. Color machine vision sets new requirements for lighting, too. High intensity and white color light is required in order to acquire good images for further image processing or analysis. New development in lighting technology is bringing eventually solutions for color imaging.

  8. Precision and Accuracy of a Digital Impression Scanner in Full-Arch Implant Rehabilitation.

    PubMed

    Pesce, Paolo; Pera, Francesco; Setti, Paolo; Menini, Maria

    To evaluate the accuracy and precision of a digital scanner used to scan four implants positioned according to an immediate loading implant protocol and to assess the accuracy of an aluminum framework fabricated from a digital impression. Five master casts reproducing different edentulous maxillae with four tilted implants were used. Four scan bodies were screwed onto the low-profile abutments, and a digital intraoral scanner was used to perform five digital impressions of each master cast. To assess trueness, a metal framework of the best digital impression was produced with computer-aided design/computer-assisted manufacture (CAD/CAM) technology and passive fit was assessed with the Sheffield test. Gaps between the frameworks and the implant analogs were measured with a stereomicroscope. To assess precision, three-dimensional (3D) point cloud processing software was used to measure the deviations between the five digital impressions of each cast by producing a color map. The deviation values were grouped in three classes, and differences were assessed between class 2 (representing lower discrepancies) and the assembled classes 1 and 3 (representing the higher negative and positive discrepancies, respectively). The frameworks showed a mean gap of < 30 μm (range: 2 to 47 μm). A statistically significant difference was found between the two groups by the 3D point cloud software, with higher frequencies of points in class 2 than in grouped classes 1 and 3 (P < .001). Within the limits of this in vitro study, it appears that a digital impression may represent a reliable method for fabricating full-arch implant frameworks with good passive fit when tilted implants are present.

  9. Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.

    PubMed

    Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng

    2015-01-01

    The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Theoretical aspects of color vision

    NASA Technical Reports Server (NTRS)

    Wolbarsht, M. L.

    1972-01-01

    The three color receptors of Young-Helmholtz and the opponent colors type of information processing postulated by Hering are both present in the human visual system. This mixture accounts for both the phenomena of color matching or hue discrimination and such perceptual qualities of color as the division of the spectrum into color bands. The functioning of the cells in the visual system, especially within the retina, and the relation of this function to color perception are discussed.

  11. Changing the color of textiles with realistic visual rendering

    NASA Astrophysics Data System (ADS)

    Hébert, Mathieu; Henckens, Lambert; Barbier, Justine; Leboulleux, Lucie; Page, Marine; Roujas, Lucie; Cazier, Anthony

    2015-03-01

    Fast and easy preview of a fabric without having to produce samples would be very profitable for textile designers, but remains a technological challenge. As a first step towards this objective, we study the possibility of making images of a real sample, and changing virtually the colors of its yarns while preserving the shine and shadow texture. We consider two types of fabrics: Jacquard weave fabrics made of polyester warp and weft yarns of different colors, and satin ribbons made of polyester and metallic yarns. For the Jacquard fabric, we make a color picture with a scanner on a sample in which the yarns have contrasted colors, threshold this image in order to distinguish the pixels corresponding to each yarn, and accordingly modify their hue and chroma values. This method is simple to operate but do not enable to simulate the angle-dependent shine. A second method, tested on the satin ribbon made of black polyester and achromatic metallic yarns, is based on polarized imaging. We analyze the polarization state of the reflected light which is different for dielectric and metallic materials illuminated by polarized light. We then add a fixed color value to the pixels representing the polyester yarns and modify the hue and chroma of the pixels representing the metallic yarns. This was performed for many incident angles of light, in order to render the twinkling effect displayed by these ribbons. We could verify through a few samples that the simulated previews reproduce real pictures with visually acceptable accuracy.

  12. Stork Color Proofing Technology

    NASA Astrophysics Data System (ADS)

    Ekman, C. Frederick

    1989-04-01

    For the past few years, Stork Colorproofing B.V. has been marketing an analog color proofing system in Europe based on electrophoto-graphic technology it pioneered for the purpose of high resolution, high fidelity color imaging in the field of the Graphic Arts. Based in part on this technology, it will make available on a commercial basis a digital color proofing system in 1989. Proofs from both machines will provide an exact reference for the user and will look, feel, and behave in a reproduction sense like the printed press sheet.

  13. Colors and contact dermatitis.

    PubMed

    Bonamonte, Domenico; Foti, Caterina; Romita, Paolo; Vestita, Michelangelo; Angelini, Gianni

    2014-01-01

    The diagnosis of skin diseases relies on several clinical signs, among which color is of paramount importance. In this review, we consider certain clinical presentations of both eczematous and noneczematous contact dermatitis in which color plays a peculiar role orientating toward the right diagnosis. The conditions that will be discussed include specific clinical-morphologic subtypes of eczematous contact dermatitis, primary melanocytic, and nonmelanocytic contact hyperchromia, black dermographism, contact chemical leukoderma, and others. Based on the physical, chemical, and biologic factors underlying a healthy skin color, the various skin shades drawing a disease picture are thoroughly debated, stressing their etiopathogenic origins and histopathologic aspects.

  14. Terra Cimmeria - False Color

    NASA Image and Video Library

    2016-10-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows dust devil tracks (dark blue linear feature) in Terra Cimmeria. Orbit Number: 43463 Latitude: -53.1551 Longitude: 125.069 Instrument: VIS Captured: 2011-10-01 23:55 http://photojournal.jpl.nasa.gov/catalog/PIA21009

  15. Russell Crater - False Color

    NASA Image and Video Library

    2017-06-01

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows part of Russell Crater in Noachis Terra. Orbit Number: 59591 Latitude: -54.471 Longitude: 13.1288 Instrument: VIS Captured: 2015-05-21 10:57 https://photojournal.jpl.nasa.gov/catalog/PIA21674

  16. Color universal design: analysis of color category dependency on color vision type (3)

    NASA Astrophysics Data System (ADS)

    Kojima, Natsuki; Ichihara, Yasuyo G.; Ikeda, Tomohiro; Kamachi, Miyuki G.; Ito, Kei

    2012-01-01

    We report on the results of a study investigating the color perception characteristics of people with red-green color confusion. We believe that this is an important step towards achieving Color Universal Design. In Japan, approximately 5% of men and 0.2% of women have red-green confusion. The percentage for men is higher in Europe and the United States; up to 8% in some countries. Red-green confusion involves a perception of colors different from normal color vision. Colors are used as a means of disseminating clear information to people; however, it may be difficult to convey the correct information to people who have red-green confusion. Consequently, colors should be chosen that minimize accidents and that promote more effective communication. In a previous survey, we investigated color categories common to each color vision type, trichromat (C-type color vision), protan (P-type color vision) and deuteran (D-type color vision). In the present study, first, we conducted experiments in order to verify a previous survey of C-type color vision and P-type color vision. Next, we investigated color difference levels within "CIE 1976 L*a*b*" (the CIELAB uniform color space), where neither C-type nor P-type color vision causes accidents under certain conditions (rain maps/contour line levels and graph color legend levels). As a result, we propose a common chromaticity of colors that the two color vision types are able to categorize by means of color names common to C-type color vision. We also offer a proposal to explain perception characteristics of color differences with normal color vision and red-green confusion using the CIELAB uniform color space. This report is a follow-up to SPIE-IS & T / Vol. 7528 7528051-8 and SPIE-IS & T /vol. 7866 78660J-1-8.

  17. Color discrimination in carriers of color deficiency.

    PubMed

    Hood, S M; Mollon, J D; Purves, L; Jordan, G

    2006-09-01

    Carriers of X-linked color vision deficiencies have previously been reported to exhibit mild abnormalities of color matching and discrimination. In a sample of 55 carriers of protan and deutan deficiencies and 55 age-matched normal controls, we measured chromatic discrimination along a red-green axis. We found that discrimination was impaired in the case of carriers of deutan deficiencies (which affect the middle-wave-sensitive cones of the retina), but was normal in the case of carriers of protan deficiencies (which affect the long-wave-sensitive cones). We argue that this result can be explained by the difference in the relative numbers of middle- and long-wave cones in heterozygous retinae: the imbalance of the two cone types is predicted to be much greater in the case of the deutan heterozygote than in the case of the protan heterozygote. In future studies it will be necessary to consider separately the two types of heterozygote.

  18. Standardizing CT lung density measure across scanner manufacturers.

    PubMed

    Chen-Mayer, Huaiyu Heather; Fuld, Matthew K; Hoppel, Bernice; Judy, Philip F; Sieren, Jered P; Guo, Junfeng; Lynch, David A; Possolo, Antonio; Fain, Sean B

    2017-03-01

    Computed Tomography (CT) imaging of the lung, reported in Hounsfield Units (HU), can be parameterized as a quantitative image biomarker for the diagnosis and monitoring of lung density changes due to emphysema, a type of chronic obstructive pulmonary disease (COPD). CT lung density metrics are global measurements based on lung CT number histograms, and are typically a quantity specifying either the percentage of voxels with CT numbers below a threshold, or a single CT number below which a fixed relative lung volume, nth percentile, falls. To reduce variability in the density metrics specified by CT attenuation, the Quantitative Imaging Biomarkers Alliance (QIBA) Lung Density Committee has organized efforts to conduct phantom studies in a variety of scanner models to establish a baseline for assessing the variations in patient studies that can be attributed to scanner calibration and measurement uncertainty. Data were obtained from a phantom study on CT scanners from four manufacturers with several protocols at various tube potential voltage (kVp) and exposure settings. Free from biological variation, these phantom studies provide an assessment of the accuracy and precision of the density metrics across platforms solely due to machine calibration and uncertainty of the reference materials. The phantom used in this study has three foam density references in the lung density region, which, after calibration against a suite of Standard Reference Materials (SRM) foams with certified physical density, establishes a HU-electron density relationship for each machine-protocol. We devised a 5-step calibration procedure combined with a simplified physical model that enabled the standardization of the CT numbers reported across a total of 22 scanner-protocol settings to a single energy (chosen at 80 keV). A standard deviation was calculated for overall CT numbers for each density, as well as by scanner and other variables, as a measure of the variability, before and after the

  19. Diurnal changes in ocean color in coastal waters

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  20. Ganymede Color Global

    NASA Image and Video Library

    1998-08-03

    Natural color view of Ganymede from NASA Galileo spacecraft during its first encounter with the satellite. The dark areas are the older, more heavily cratered regions and the light areas are younger, tectonically deformed regions.

  1. Color Video Petrography.

    ERIC Educational Resources Information Center

    Nagle, Frederick

    1981-01-01

    Describes the production and use of color videocassettes with an inexpensive, conventional TV camera and an ordinary petrographic microscope. The videocassettes are used in optical mineralogy and petrology courses. (Author/WB)

  2. Colorful Polar Layered Deposits

    NASA Image and Video Library

    2016-03-23

    The North Polar layered deposits provide a record of recent climate changes on Mars as seen by NASA Mars Reconnaissance Orbiter spacecraft. Color variations between layers are due to differences in composition of the dust.

  3. Color Infrared, Terra Sirenum

    NASA Image and Video Library

    2002-03-01

    This is the first high-resolution color infrared image taken of Mars. The image was constructed using three of the ten infrared filters on the thermal emission imaging system of NASA Mars Odyssey spacecraft.

  4. Colors of the Sky.

    ERIC Educational Resources Information Center

    Bohren, Craig F.; Fraser, Alistair B.

    1985-01-01

    Explains the physical principles which result in various colors of the sky. Topics addressed include: blueness, mystical properties of water vapor, ozone, fluctuation theory of scattering, variation of purity and brightness, and red sunsets and sunrises. (DH)

  5. Nili Fossae - False Color

    NASA Image and Video Library

    2016-04-27

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Nili Fossae.

  6. Capri Mensa - False Color

    NASA Image and Video Library

    2015-07-27

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa and Capri Chasma.

  7. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-04-25

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  8. Eridania Planitia - False Color

    NASA Image and Video Library

    2016-06-22

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Eridania Planitia.

  9. Arabia Terra - False Color

    NASA Image and Video Library

    2016-05-05

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Arabia Terra.

  10. Tyrrhena Terra - False Color

    NASA Image and Video Library

    2016-03-16

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows a hill in Tyrrhena Terra.

  11. Mawrth Vallis - False Color

    NASA Image and Video Library

    2015-09-30

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows where Mawrth Vallis empties into Chryse Planitia.

  12. Gale Crater - False Color

    NASA Image and Video Library

    2016-10-17

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Gale Crater.

  13. Crater - False Color

    NASA Image and Video Library

    2016-03-07

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed crater in Terra Sabaea.

  14. Ophir Chasma - False Color

    NASA Image and Video Library

    2016-04-28

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Ophir Chasma.

  15. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-03-14

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Terra Sirenum.

  16. Capri Mensa - False Color

    NASA Image and Video Library

    2016-03-18

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Capri Mensa.

  17. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-03-15

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  18. Terra Sirenum - False Color

    NASA Image and Video Library

    2016-05-06

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sirenum.

  19. Peraea Cavus - False Color

    NASA Image and Video Library

    2016-05-02

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image from NASA 2001 Mars Odyssey spacecraft shows part of Peraea Cavus.

  20. Terra Sabaea - False Color

    NASA Image and Video Library

    2016-02-01

    The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows part of the plains of Terra Sabaea.