Sample records for zone conceptual models

  1. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  2. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  3. The site-scale saturated zone flow model for Yucca Mountain: Calibration of different conceptual models and their impact on flow paths

    USGS Publications Warehouse

    Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.

    2003-01-01

    This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B

  4. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less

  5. Impacts of Quaternary History on Critical Zone Structure and Processes: Examples and a Conceptual Model from the Intensively Managed Landscapes Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Anders, Alison M.; Bettis, E. Arthur; Grimley, David A.; Stumpf, Andrew J.; Kumar, Praveen

    2018-03-01

    The concept of a critical zone (CZ) supporting terrestrial life has fostered groundbreaking interdisciplinary science addressing complex interactions among water, soil, rock, air and life near Earth’s surface. Pioneering work has focused on the CZ in areas with residual soils and steady-state or erosional topography. CZ evolution in these areas is conceptualized as progressive weathering of local bedrock (e.g. in the flow-through reactor model). However, this model is not applicable to areas in which weathering profiles form in transported materials including the formerly glaciated portion of the Central Lowland of North America. We present a new conceptual model of CZ evolution in landscapes impacted by continental glaciation based on investigations at three study sites in the Intensively Managed Landscapes Critical Zone Observatory (IML-CZO) The IML-CZO is devoted to the study of CZ processes in a region characterized by thick surficial deposits resulting from multiple continental glaciations, with bedrock at depths of up to 150 m. Here the physical (glacial ice, loess, developing soil profiles) and biological (microbes, tundra, forest, prairie) components of the CZ vary significantly in time. Moreover, the spatial relationships between mineral components of the CZ record a history of glacial-interglacial cycles and landscape evolution. We present cross-sections from IML-CZO sites to provide specific examples of how environmental change is recorded by the structure of the mineral components of the CZ. We build on these examples to create an idealized model of CZ evolution through a glacial cycle that represents the IML-CZO sites and other areas of low relief that have experienced continental glaciation. In addition, we identify two main characteristics of CZ structure which should be included in a conceptual model of CZ development in the IML-CZO and similar settings: (1) mineral components have diverse origins and transport trajectories including alteration in

  6. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Uncertainty and the Conceptual Site Model

    NASA Astrophysics Data System (ADS)

    Price, V.; Nicholson, T. J.

    2007-12-01

    Our focus is on uncertainties in the underlying conceptual framework upon which all subsequent steps in numerical and/or analytical modeling efforts depend. Experienced environmental modelers recognize the value of selecting an optimal conceptual model from several competing site models, but usually do not formally explore possible alternative models, in part due to incomplete or missing site data, as well as relevant regional data for establishing boundary conditions. The value in and approach for developing alternative conceptual site models (CSM) is demonstrated by analysis of case histories. These studies are based on reported flow or transport modeling in which alternative site models are formulated using data that were not available to, or not used by, the original modelers. An important concept inherent to model abstraction of these alternative conceptual models is that it is "Far better an approximate answer to the right question, which is often vague, than the exact answer to the wrong question, which can always be made precise." (Tukey, 1962) The case histories discussed here illustrate the value of formulating alternative models and evaluating them using site-specific data: (1) Charleston Naval Site where seismic characterization data allowed significant revision of the CSM and subsequent contaminant transport modeling; (2) Hanford 300-Area where surface- and ground-water interactions affecting the unsaturated zone suggested an alternative component to the site model; (3) Savannah River C-Area where a characterization report for a waste site within the modeled area was not available to the modelers, but provided significant new information requiring changes to the underlying geologic and hydrogeologic CSM's used; (4) Amargosa Desert Research Site (ADRS) where re-interpretation of resistivity sounding data and water-level data suggested an alternative geologic model. Simple 2-D spreadsheet modeling of the ADRS with the revised CSM provided an improved

  8. New Conceptual Model for Soil Treatment Units: Formation of Multiple Hydraulic Zones during Unsaturated Wastewater Infiltration.

    PubMed

    Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E

    2013-07-01

    Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  10. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  11. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  12. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends

  13. Landscape evolution and agricultural land salinization in coastal area: A conceptual model.

    PubMed

    Bless, Aplena Elen; Colin, François; Crabit, Armand; Devaux, Nicolas; Philippon, Olivier; Follain, Stéphane

    2018-06-01

    Soil salinization is a major threat to agricultural lands. Among salt-affected lands, coastal areas could be considered as highly complex systems, where salinization degradation due to anthropogenic pressure and climate-induced changes could significantly alter system functioning. For such complex systems, conceptual models can be used as evaluation tools in a preliminary step to identify the main evolutionary processes responsible for soil and water salinization. This study aimed to propose a conceptual model for water fluxes in a coastal area affected by salinity, which can help to identify the relationships between agricultural landscape evolution and actual salinity. First, we conducted field investigations from 2012 to 2016, mainly based on both soil (EC 1/5 ) and water (EC w ) electrical conductivity survey. This allowed us to characterize spatial structures for EC 1/5 and EC w and to identify the river as a preponderant factor in land salinization. Subsequently, we proposed and used a conceptual model for water fluxes and conducted a time analysis (1962-2012) for three of its main constitutive elements, namely climate, river, and land systems. When integrated within the conceptual model framework, it appeared that the evolution of all constitutive elements since 1962 was responsible for the disruption of system equilibrium, favoring overall salt accumulation in the soil root zone. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.

  15. One-dimensional flow model of the river-hyporheic zone system

    NASA Astrophysics Data System (ADS)

    Pokrajac, D.

    2016-12-01

    The hyporheic zone is a shallow layer beneath natural streams that is characterized by intense exchange of water, nutrients, pollutants and thermal energy. Understanding these exchange processes is crucial for successful modelling of the river hydrodynamics and morphodynamics at various scales from the river corridor up to the river network scale (Cardenas, 2015). Existing simulation models of hyporheic exchange processes are either idealized models of the tracer movement through the river-hyporheic zone system (e.g. TSM, Bencala and Walters, 1983) or detailed models of turbulent flow in a stream, coupled with a conventional 2D Darcian groundwater model (e.g. Cardenas and Wilson, 2007). This paper presents an alternative approach which involves a simple 1-D simulation model of the hyporheic zone system based on the classical SWE equations coupled with the newly developed porous media analogue. This allows incorporating the effects of flow unsteadiness and non-Darcian parameterization od the drag term in the hyporheic zone model. The conceptual model of the stream-hyporheic zone system consists of a 1D model of the open channel flow in the river, coupled with a 1D model of the flow in the hyporheic zone via volume flux due to the difference in the water level in the river and the hyporheic zone. The interaction with the underlying groundwater aquifer is neglected, but coupling the present model with any conventional groundwater model is straightforward. The paper presents the derivation of the 1D flow equations for flow in the hyporheic zone, the details of the numerical scheme used for solving them and the model validation by comparison with published experimental data. References Bencala, K. E., and R. A. Walters (1983) "Simulation of solute transport in a mountain pool-and-riffle stream- a transient storage model", Water Resources Reseach 19(3): 718-724. Cardenas, M. B. (2015) "Hyporheic zone hydrologic science: A historical account of its emergence and a

  16. The conceptualization model problem—surprise

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  17. Conceptual and logical level of database modeling

    NASA Astrophysics Data System (ADS)

    Hunka, Frantisek; Matula, Jiri

    2016-06-01

    Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.

  18. Conceptual models of information processing

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  19. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  20. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifiesmore » a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.« less

  1. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    PubMed

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  2. Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.

    2005-05-01

    Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system

  3. Preliminary results from the hydrodynamic element of the 1994 entrapment zone study

    USGS Publications Warehouse

    Burau, J.R.; Stacey, M.; Gartner, J.W.

    1995-01-01

    This article discusses preliminary results from analyses of USGS hydrodynamic data collected as part of the 1994 Interagency Ecological Program entrapment zone study. The USGS took part in three 30-hour cruises and deployed instruments for measuring currents and salinity from April to June. This article primarily focuses on the analysis of data from five Acoustic Doppler Current ProUers (ADCPs) deployed in Carquinez Strait, Suisun Bay, and the Western Delta. From these analyses a revised conceptual model of the hydrodynamics of the entrapment/null zone has evolved. The ideas discussed in this newsletter article are essentially working hypotheses, which are presented here to stimulate discussion and further analyses. In this article we discuss the currently-held conceptual model of entrapment and present data that are inconsistent with this conceptual model. Finally, we suggest a revised conceptual model that is consistent with all of the hydrodynamic data collected to date and describe how the 1995 study incorporates our revised conceptual model into its design.

  4. A Multivariate Model of Conceptual Change

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John

    2016-01-01

    The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…

  5. Our evolving conceptual model of the coastal eutrophication problem

    USGS Publications Warehouse

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  6. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  7. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  8. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    NASA Astrophysics Data System (ADS)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling

  9. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    PubMed

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  10. Model averaging techniques for quantifying conceptual model uncertainty.

    PubMed

    Singh, Abhishek; Mishra, Srikanta; Ruskauff, Greg

    2010-01-01

    In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.

  11. Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.

    2005-12-01

    Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and

  12. Evaluating the Functionality of Conceptual Models

    NASA Astrophysics Data System (ADS)

    Mehmood, Kashif; Cherfi, Samira Si-Said

    Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.

  13. A conceptual model for vision rehabilitation.

    PubMed

    Roberts, Pamela S; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2016-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines.

  14. Mushy zone modeling

    NASA Astrophysics Data System (ADS)

    Glicksman, Martin E.; Smith, Richard N.; Marsh, Steven P.; Kuklinski, Robert

    A key element of mushy zone modeling is the description of the microscopic evolution of the lengthscales within the mushy zone and the influence of macroscopic transport processes. This paper describes some recent progress in developing a mean-field statistical theory of phase coarsening in adiabatic mushy zones. The main theoretical predictions are temporal scaling laws that indicate that average lengthscale increases as time 1/3, a self-similar distribution of mushy zone lengthscales based on spherical solid particle shapes, and kinetic rate constants which provide the dependences of the coarsening process on material parameters and the volume fraction of the solid phase. High precision thermal decay experiments are described which verify aspects of the theory in pure material mushy zones held under adiabatic conditions. The microscopic coarsening theory is then integrated within a macroscopic heat transfer model of one-dimensional alloy solidification, using the Double Integral Method. The method demonstrates an ability to predict the influence of macroscopic heat transfer on the evolution of primary and secondary dendrite arm spacings in Al-Cu alloys. Finally, some suggestions are made for future experimental and theoretical studies required in developing comprehensive solidification processing models.

  15. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, becausemore » the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.« less

  16. OWL references in ORM conceptual modelling

    NASA Astrophysics Data System (ADS)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  17. A conceptual model for vision rehabilitation

    PubMed Central

    Roberts, Pamela S.; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2017-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines. PMID:27997671

  18. Using a conceptual model to assess the role of flow regulation in the hydromorphological evolution of riparian corridors

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, Vanesa; Gonzalez del Tánago, Marta; García de Jalón, diego

    2017-04-01

    Riparian corridors result from active vegetation-fluvial interactions, which are highly dependent on flow regime conditions and sediment dynamics. Colonization, establishment and survival of species are constrained by fluvial processes which vary according to topographic and sedimentological complexity of the corridor. In order to manage these dynamic and complex riparian systems there is a need for practical tools based on conceptual models. The objective of this study was to apply the conceptual model of riparian corridors lateral zonation in response to the dominant fluvial processes established by Gurnell et al. (2015) and verify its usefulness as a tool for assessing the effect of flow regulation. Two gravel rivers have been selected for this purpose from the north of Spain, the Porma River regulated by Boñar large dam and the unregulated Curueño River. The historical series of flows and the aerial photographs of 1956 and 2011 on which the river corridor has been delimited have been analyzed and identified the permanent inundated zone (1) and four areas of riparian vegetation dominated respectively by fluvial disturbance with coarse sediment erosion and deposition (zone 2), fluvial disturbance with finer sediment deposition (zone 3), inundation (zone 4) and soil moisture regime (zone 5). Likewise, a two-dimensional hydraulic simulation was performed with avenues of different return periods and calculated the prevailing hydraulic conditions (depths, velocities and drag forces) to characterize each of the vegetation zones mentioned in both rivers. The results show that the most active zone 2 (fluvial disturbance dominated showing coarse sediment erosion and deposition) disappears due to the regulation of flows and vegetation encroachment, while the riparian corridor is dominated by the less active zone where the vegetation is maintained by the humidity of sporadic floods and underground runoff. Moreover, by means of the hydraulic simulation we have found a

  19. An Empirical Study of Enterprise Conceptual Modeling

    NASA Astrophysics Data System (ADS)

    Anaby-Tavor, Ateret; Amid, David; Fisher, Amit; Ossher, Harold; Bellamy, Rachel; Callery, Matthew; Desmond, Michael; Krasikov, Sophia; Roth, Tova; Simmonds, Ian; de Vries, Jacqueline

    Business analysts, business architects, and solution consultants use a variety of practices and methods in their quest to understand business. The resulting work products could end up being transitioned into the formal world of software requirement definitions or as recommendations for all kinds of business activities. We describe an empirical study about the nature of these methods, diagrams, and home-grown conceptual models as reflected in real practice at IBM. We identify the models as artifacts of "enterprise conceptual modeling". We study important features of these models, suggest practical classifications, and discuss their usage. Our survey shows that the "enterprise conceptual modeling" arena presents a variety of descriptive models, each used by a relatively small group of colleagues. Together they form a "long tail" that extends from "drawings" on one end to "standards" on the other.

  20. A Structural Equation Model of Conceptual Change in Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  1. Assessing conceptual models for subsurface reactive transport of inorganic contaminants

    USGS Publications Warehouse

    Davis, James A.; Yabusaki, Steven B.; Steefel, Carl; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.

    2004-01-01

    In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology petroleum extraction, carbon sequestration, etc.),scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance.In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil,vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.

  2. Modeling the Effects of Hydrogeomorphology and Climactic Factors on Nitrogen, Phosphorus, and Greenhouse Gas Dynamics in Riparian Zones.

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Y.; Vidon, P.; Gold, A.; Pradhanang, S. M.; Addy, K.

    2017-12-01

    Vegetated riparian zones are often considered for use as best management practices to mitigate the impacts of agriculture on water quality. However, riparian zones can also be a source of greenhouse gases and their influence on water quality varies depending on landscape hydrogeomorphic characteristics and climate. Methods used to evaluate riparian zone functions include conceptual models, and spatially explicit and process based models (REMM), but very few attempts have been made to connect riparian zone characteristics with function using easily accessible landscape scale data. Here, we present comprehensive statistical models that can be used to assess riparian zone functions with easily obtainable landscape-scale hydrogeomorphic attributes and climate data. Models were developed from a database spanning 88 years and 36 sites. Statistical methods including principal component analysis and stepwise regression were used to reduced data dimensionality and identify significant predictors. Models were validated using additional data collected from scientific literature. The 8 models developed connect landscape characteristics to nitrogen and phosphorus concentration and removal (1-4), greenhouse gas emissions (5-7), and water table depth (8). Results show the range of influence that various climate and landscape characteristics have on riparian zone functions, and the tradeoffs that exist with regards to nitrogen, phosphorous, and greenhouse gases. These models will help reduce the need for extensive field measurements and help scientists and land managers make more informed decisions regarding the use of riparian zones for water quality management.

  3. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  4. Force-directed visualization for conceptual data models

    NASA Astrophysics Data System (ADS)

    Battigaglia, Andrew; Sutter, Noah

    2017-03-01

    Conceptual data models are increasingly stored in an eXtensible Markup Language (XML) format because of its portability between different systems and the ability of databases to use this format for storing data. However, when attempting to capture business or design needs, an organized graphical format is preferred in order to facilitate communication to receive as much input as possible from users and subject-matter experts. Existing methods of achieving this conversion suffer from problems of not being specific enough to capture all of the needs of conceptual data modeling and not being able to handle a large number of relationships between entities. This paper describes an implementation for a modeling solution to clearly illustrate conceptual data models stored in XML formats in well organized and structured diagrams. A force layout with several different parameters is applied to the diagram to create both compact and easily traversable relationships between entities.

  5. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development

    PubMed Central

    2016-01-01

    Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other

  6. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    PubMed

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  7. Data Modeling & the Infrastructural Nature of Conceptual Tools

    ERIC Educational Resources Information Center

    Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta

    2007-01-01

    The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…

  8. Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX

    NASA Astrophysics Data System (ADS)

    Potter, S. R.; Tu, M.; Wilcox, B. P.

    2011-12-01

    Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The

  9. Food web conceptual model

    USGS Publications Warehouse

    Hartman, Rosemary; Brown, Larry R.; Hobbs, Jim

    2017-01-01

    This chapter describes a general model of food webs within tidal wetlands and represents how physical features of the wetland affect the structure and function of the food web. This conceptual model focuses on how the food web provides support for (or may reduce support for) threatened fish species. This model is part of a suite of conceptual models designed to guide monitoring of restoration sites throughout the San Francisco Estuary (SFE), but particularly within the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh. The conceptual models have been developed based on the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) models, and are designed to aid in the identification and evaluation of monitoring metrics for tidal wetland restoration projects. Many tidal restoration sites in the Delta are being constructed to comply with environmental regulatory requirements associated with the operation of the Central Valley Project and State Water Project. These include the Biological Opinions for Delta Smelt (Hypomesus transpacificus) and salmonids (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009), and the Incidental Take Permit for Longfin Smelt (Spirinchus thaleichthyes) (California Department of Fish and Wildlife 2009). These regulatory requirements are based on the hypothesis that the decline of listed fish species is due in part to a decline in productivity of the food web (phytoplankton and zooplankton in particular) or alterations in the food web such that production is consumed by other species in the Estuary (Sommer et al. 2007; Baxter et al. 2010; Brown et al. 2016a). Intertidal wetlands and shallow subtidal habitat can be highly productive, so restoring areas of tidal wetlands may result in a net increase in productivity that will provide food web support for these fish species. However, other factors such as invasive bivalves that reduce phytoplankton and zooplankton biomass and invasive predatory fishes that may

  10. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    ERIC Educational Resources Information Center

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  11. From conceptual modeling to a map

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Olszewski, Robert

    2018-05-01

    Nowadays almost every map is a component of the information system. Design and production of maps requires the use of specific rules for modeling information systems: conceptual, application and data modelling. While analyzing various stages of cartographic modeling the authors ask the question: at what stage of this process a map occurs. Can we say that the "life of the map" begins even before someone define its form of presentation? This question is particularly important at the time of exponentially increasing number of new geoinformation products. During the analysis of the theory of cartography and relations of the discipline to other fields of knowledge it has been attempted to define a few properties of cartographic modeling which distinguish the process from other methods of spatial modeling. Assuming that the map is a model of reality (created in the process of cartographic modeling supported by domain-modeling) the article proposes an analogy of the process of cartographic modeling to the scheme of conceptual modeling presented in ISO 19101 standard.

  12. [Public health conceptual models and paradigms].

    PubMed

    Hernández-Girón, Carlos; Orozco-Núñez, Emanuel; Arredondo-López, Armando

    2012-01-01

    The epidemiological transition model proposed by Omhran at the beginning of the 1970s (decreased fecundity rate and increased life expectancy), together with modifications in lifestyles and diet, showed increased mortality due to chronically degenerative causes. This essay thus discusses and makes a comparative analysis of some currents of thought, taking as its common thread an analysis of epidemiological change identified in different eras or stages and relationships with some public health models or conceptual frameworks. Discussing public health paradigms leads to a historical recapitulation of conceptual models ranging from magical-religious conceptions to ecological and socio-medical models. M. Susser proposed 3 eras in this discipline's evolution in his speech on the future of the epidemiology. The epidemiological changes analysed through different approaches constitute elements of analysis that all models discussed in this essay include to delimit the contributions and variables so determining them.

  13. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model?

    PubMed

    Gainotti, Guido

    2011-04-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually

  15. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity

    PubMed Central

    Marson, Daniel

    2016-01-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. PMID:27506235

  16. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual

  17. Conceptual Modeling via Logic Programming

    DTIC Science & Technology

    1990-01-01

    Define User Interface and Query Language L i1W= Ltl k.l 4. Define Procedures for Specifying Output S . Select Logic Programming Language 6. Develop ...baseline s change model. sessions and baselines. It was changed 6. Develop Methodology for C 31 Users. considerably with the advent of the window This...Model Development : Implica- for Conceptual Modeling Via Logic tions for Communications of a Cognitive Programming. Marina del Rey, Calif.: Analysis of

  18. Developing Conceptual Models of Biodegradation: Lessons Learned From a Long-Term Study of a Crude-Oil Contaminant Plume

    NASA Astrophysics Data System (ADS)

    Cozzarelli, I. M.; Esaid, H. I.; Bekins, B. A.; Eganhouse, R. P.; Baedecker, M.

    2002-05-01

    Assessment of natural attenuation as a remedial option requires understanding the long-term fate of contaminant compounds. The development of correct conceptual models of biodegradation requires observations at spatial and temporal scales appropriate for the reactions being measured. For example, the availability of electron acceptors such as solid-phase iron oxides may vary at the cm scale due to aquifer heterogeneities. Characterizing the distribution of these oxides may require small-scale measurements over time scales of tens of years in order to assess their impact on the fate of contaminants. The long-term study of natural attenuation of hydrocarbons in a contaminant plume near Bemidji, MN provides insight into how natural attenuation of hydrocarbons evolves over time. The sandy glacial-outwash aquifer at this USGS Toxic Substances Hydrology research site was contaminated by crude oil in 1979. During the 16 years that data have been collected the shape and extent of the contaminant plume changed as redox reactions, most notably iron reduction, progressed over time. Investigation of the controlling microbial reactions in this system required a systematic and multi-scaled approach. Early indications of plume shrinkage were observed over a time scale of a few years, based on observation well data. These changes were associated with iron reduction near the crude-oil source. The depletion of Fe (III) oxides near the contaminant source caused the dissolved iron concentrations to increase and spread downgradient at a rate of approximately 3 m/year. The zone of maximum benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations has also spread within the anoxic plume. Subsequent analyses of sediment and water, collected at small-scale cm intervals from cores in the contaminant plume, provided insight into the evolution of redox zones at smaller scales. Contaminants, such as ortho-xylene, that appeared to be contained near the oil source based on the larger

  19. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    PubMed Central

    Lafave, Mark R.; Butterwick, Dale; Eubank, Breda

    2015-01-01

    Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897

  20. Approximate Model of Zone Sedimentation

    NASA Astrophysics Data System (ADS)

    Dzianik, František

    2011-12-01

    The process of zone sedimentation is affected by many factors that are not possible to express analytically. For this reason, the zone settling is evaluated in practice experimentally or by application of an empirical mathematical description of the process. The paper presents the development of approximate model of zone settling, i.e. the general function which should properly approximate the behaviour of the settling process within its entire range and at the various conditions. Furthermore, the specification of the model parameters by the regression analysis of settling test results is shown. The suitability of the model is reviewed by graphical dependencies and by statistical coefficients of correlation. The approximate model could by also useful on the simplification of process design of continual settling tanks and thickeners.

  1. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2015-04-25

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    PubMed

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The Cancer Family Caregiving Experience: An Updated and Expanded Conceptual Model

    PubMed Central

    Fletcher, Barbara Swore; Miaskowski, Christine; Given, Barbara; Schumacher, Karen

    2011-01-01

    Objective The decade from 2000–2010 was an era of tremendous growth in family caregiving research specific to the cancer population. This research has implications for how cancer family caregiving is conceptualized, yet the most recent comprehensive model of cancer family caregiving was published ten years ago. Our objective was to develop an updated and expanded comprehensive model of the cancer family caregiving experience, derived from concepts and variables used in research during past ten years. Methods A conceptual model was developed based on cancer family caregiving research published from 2000–2010. Results Our updated and expanded model has three main elements: 1) the stress process, 2) contextual factors, and 3) the cancer trajectory. Emerging ways of conceptualizing the relationships between and within model elements are addressed, as well as an emerging focus on caregiver-patient dyads as the unit of analysis. Conclusions Cancer family caregiving research has grown dramatically since 2000 resulting in a greatly expanded conceptual landscape. This updated and expanded model of the cancer family caregiving experience synthesizes the conceptual implications of an international body of work and demonstrates tremendous progress in how cancer family caregiving research is conceptualized. PMID:22000812

  4. Tumor heterogeneity and progression: conceptual foundations for modeling.

    PubMed

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  5. A New Method for Conceptual Modelling of Information Systems

    NASA Astrophysics Data System (ADS)

    Gustas, Remigijus; Gustiene, Prima

    Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.

  6. In defense of abstract conceptual representations.

    PubMed

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge.

  7. A Conceptual Model for Episodes of Acute, Unscheduled Care.

    PubMed

    Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G

    2016-10-01

    We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  8. Why College Students Cheat: A Conceptual Model of Five Factors

    ERIC Educational Resources Information Center

    Yu, Hongwei; Glanzer, Perry L.; Johnson, Byron R.; Sriram, Rishi; Moore, Brandon

    2018-01-01

    Though numerous studies have identified factors associated with academic misconduct, few have proposed conceptual models that could make sense of multiple factors. In this study, we used structural equation modeling (SEM) to test a conceptual model of five factors using data from a relatively large sample of 2,503 college students. The results…

  9. The ACTIVE conceptual framework as a structural equation model.

    PubMed

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show

  10. The ACTIVE conceptual framework as a structural equation model

    PubMed Central

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Conclusions Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of

  11. Thoughts About Nursing Conceptual Models and the "Medical Model".

    PubMed

    Fawcett, Jacqueline

    2017-01-01

    This essay, written to celebrate the 30th anniversary of Nursing Science Quarterly, focuses on the distinctions between the discipline of nursology and the trade of medicine. The distinctions are drawn from content found in nursing conceptual models and from literature about the elusive content of the so-called "medical model."

  12. Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling

    NASA Astrophysics Data System (ADS)

    March, Salvatore T.; Allen, Gove N.

    Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.

  13. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    NASA Technical Reports Server (NTRS)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  14. Modeling work zone crash frequency by quantifying measurement errors in work zone length.

    PubMed

    Yang, Hong; Ozbay, Kaan; Ozturk, Ozgur; Yildirimoglu, Mehmet

    2013-06-01

    Work zones are temporary traffic control zones that can potentially cause safety problems. Maintaining safety, while implementing necessary changes on roadways, is an important challenge traffic engineers and researchers have to confront. In this study, the risk factors in work zone safety evaluation were identified through the estimation of a crash frequency (CF) model. Measurement errors in explanatory variables of a CF model can lead to unreliable estimates of certain parameters. Among these, work zone length raises a major concern in this analysis because it may change as the construction schedule progresses generally without being properly documented. This paper proposes an improved modeling and estimation approach that involves the use of a measurement error (ME) model integrated with the traditional negative binomial (NB) model. The proposed approach was compared with the traditional NB approach. Both models were estimated using a large dataset that consists of 60 work zones in New Jersey. Results showed that the proposed improved approach outperformed the traditional approach in terms of goodness-of-fit statistics. Moreover it is shown that the use of the traditional NB approach in this context can lead to the overestimation of the effect of work zone length on the crash occurrence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Supporting user-defined granularities in a spatiotemporal conceptual model

    USGS Publications Warehouse

    Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.

    2002-01-01

    Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.

  16. Conceptual Model Learning Objects and Design Recommendations for Small Screens

    ERIC Educational Resources Information Center

    Churchill, Daniel

    2011-01-01

    This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…

  17. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  18. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    PubMed

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  19. Hydrologic processes in deep vadose zones in interdrainage arid environments

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.

    2004-01-01

    A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.

  20. Conceptual modeling for Prospective Health Technology Assessment.

    PubMed

    Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2012-01-01

    Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.

  1. Developing rural palliative care: validating a conceptual model.

    PubMed

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  2. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  3. Estimating the Spatial Extent of Unsaturated Zones in Heterogeneous River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Schilling, Oliver S.; Irvine, Dylan J.; Hendricks Franssen, Harrie-Jan; Brunner, Philip

    2017-12-01

    The presence of unsaturated zones at the river-aquifer interface has large implications on numerous hydraulic and chemical processes. However, the hydrological and geological controls that influence the development of unsaturated zones have so far only been analyzed with simplified conceptualizations of flow processes, or homogeneous conceptualizations of the hydraulic conductivity in either the aquifer or the riverbed. We systematically investigated the influence of heterogeneous structures in both the riverbed and the aquifer on the development of unsaturated zones. A stochastic 1-D criterion that takes both riverbed and aquifer heterogeneity into account was developed using a Monte Carlo sampling technique. The approach allows the reliable estimation of the upper bound of the spatial extent of unsaturated areas underneath a riverbed. Through systematic numerical modeling experiments, we furthermore show that horizontal capillary forces can reduce the spatial extent of unsaturated zones under clogged areas. This analysis shows how the spatial structure of clogging layers and aquifers influence the propensity for unsaturated zones to develop: In riverbeds where clogged areas are made up of many small, spatially disconnected patches with a diameter in the order of 1 m, unsaturated areas are less likely to develop compared to riverbeds where large clogged areas exist adjacent to unclogged areas. A combination of the stochastic 1-D criterion with an analysis of the spatial structure of the clogging layers and the potential for resaturation can help develop an appropriate conceptual model and inform the choice of a suitable numerical simulator for river-aquifer systems.

  4. Development of a semi-automated model identification and calibration tool for conceptual modelling of sewer systems.

    PubMed

    Wolfs, Vincent; Villazon, Mauricio Florencio; Willems, Patrick

    2013-01-01

    Applications such as real-time control, uncertainty analysis and optimization require an extensive number of model iterations. Full hydrodynamic sewer models are not sufficient for these applications due to the excessive computation time. Simplifications are consequently required. A lumped conceptual modelling approach results in a much faster calculation. The process of identifying and calibrating the conceptual model structure could, however, be time-consuming. Moreover, many conceptual models lack accuracy, or do not account for backwater effects. To overcome these problems, a modelling methodology was developed which is suited for semi-automatic calibration. The methodology is tested for the sewer system of the city of Geel in the Grote Nete river basin in Belgium, using both synthetic design storm events and long time series of rainfall input. A MATLAB/Simulink(®) tool was developed to guide the modeller through the step-wise model construction, reducing significantly the time required for the conceptual modelling process.

  5. Development of Conceptual Models for Internet Search: A Case Study.

    ERIC Educational Resources Information Center

    Uden, Lorna; Tearne, Stephen; Alderson, Albert

    This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…

  6. Administrator Training and Development: Conceptual Model.

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    A conceptual model for an individualized training program for school administrators integrates processes, characteristics, and tasks through theory training and application. Based on an application of contingency theory, it provides a system matching up administrative candidates' needs in three areas (administrative process, administrative…

  7. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  8. Conceptual model for partnership and sustainability in global health.

    PubMed

    Leffers, Jeanne; Mitchell, Emma

    2011-01-01

    Although nursing has a long history of service to the global community, the profession lacks a theoretical and empirical base for nurses to frame their global practice. A study using grounded theory methodology to investigate partnership and sustainability for global health led to the development of a conceptual model. Interviews were conducted with 13 global health nurse experts. Themes from the interviews were: components for engagement, mutual goal setting, cultural bridging, collaboration, capacity building, leadership, partnership, ownership, and sustainability. Next, the identified themes were reviewed in the literature in order to evaluate their conceptual relationships. Finally, careful comparison of the interview transcripts and the supporting literature led to the Conceptual Framework for Partnership and Sustainability in Global Health Nursing. The model posits that engagement and partnership must precede any planning and intervention in order to create sustainable interventions. This conceptual framework will offer nurses important guidance for global health nursing practice. © 2010 Wiley Periodicals, Inc.

  9. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  10. Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and

  11. Showing Automatically Generated Students' Conceptual Models to Students and Teachers

    ERIC Educational Resources Information Center

    Perez-Marin, Diana; Pascual-Nieto, Ismael

    2010-01-01

    A student conceptual model can be defined as a set of interconnected concepts associated with an estimation value that indicates how well these concepts are used by the students. It can model just one student or a group of students, and can be represented as a concept map, conceptual diagram or one of several other knowledge representation…

  12. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone

    PubMed Central

    Hawley, Alyse K.; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P.; Kheirandish, Sam; Michiels, Céline C.; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A.; Hallam, Steven J.

    2016-01-01

    Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet—a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite “leakage” during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales. PMID:27655888

  13. Integrating biogeochemistry with multiomic sequence information in a model oxygen minimum zone.

    PubMed

    Louca, Stilianos; Hawley, Alyse K; Katsev, Sergei; Torres-Beltran, Monica; Bhatia, Maya P; Kheirandish, Sam; Michiels, Céline C; Capelle, David; Lavik, Gaute; Doebeli, Michael; Crowe, Sean A; Hallam, Steven J

    2016-10-04

    Microorganisms are the most abundant lifeform on Earth, mediating global fluxes of matter and energy. Over the past decade, high-throughput molecular techniques generating multiomic sequence information (DNA, mRNA, and protein) have transformed our perception of this microcosmos, conceptually linking microorganisms at the individual, population, and community levels to a wide range of ecosystem functions and services. Here, we develop a biogeochemical model that describes metabolic coupling along the redox gradient in Saanich Inlet-a seasonally anoxic fjord with biogeochemistry analogous to oxygen minimum zones (OMZs). The model reproduces measured biogeochemical process rates as well as DNA, mRNA, and protein concentration profiles across the redox gradient. Simulations make predictions about the role of ubiquitous OMZ microorganisms in mediating carbon, nitrogen, and sulfur cycling. For example, nitrite "leakage" during incomplete sulfide-driven denitrification by SUP05 Gammaproteobacteria is predicted to support inorganic carbon fixation and intense nitrogen loss via anaerobic ammonium oxidation. This coupling creates a metabolic niche for nitrous oxide reduction that completes denitrification by currently unidentified community members. These results quantitatively improve previous conceptual models describing microbial metabolic networks in OMZs. Beyond OMZ-specific predictions, model results indicate that geochemical fluxes are robust indicators of microbial community structure and reciprocally, that gene abundances and geochemical conditions largely determine gene expression patterns. The integration of real observational data, including geochemical profiles and process rate measurements as well as metagenomic, metatranscriptomic and metaproteomic sequence data, into a biogeochemical model, as shown here, enables holistic insight into the microbial metabolic network driving nutrient and energy flow at ecosystem scales.

  14. Comparison of Conceptual and Neural Network Rainfall-Runoff Models

    NASA Astrophysics Data System (ADS)

    Vidyarthi, V. K.; Jain, A.

    2014-12-01

    Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to

  15. Conceptual Models and the Future of Special Education

    ERIC Educational Resources Information Center

    Kauffman, James M.

    2007-01-01

    A medical model has advantages over a legal model in thinking about special education, especially in responding supportively to difference, meeting individual needs, and practicing prevention. The legal conceptual model now dominates thinking about special education, but a medical model promises a brighter future for special education and for…

  16. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    NASA Astrophysics Data System (ADS)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  17. Deep arid system hydrodynamics 1. Equilibrium states and response times in thick desert vadose zones

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Plummer, Mitchell A.; Phillips, Fred M.; Wolfsberg, Andrew V.

    2002-01-01

    Quantifying moisture fluxes through deep desert soils remains difficult because of the small magnitude of the fluxes and the lack of a comprehensive model to describe flow and transport through such dry material. A particular challenge for such a model is reproducing both observed matric potential and chloride profiles. We propose a conceptual model for flow in desert vadose zones that includes isothermal and nonisothermal vapor transport and the role of desert vegetation in supporting a net upward moisture flux below the root zone. Numerical simulations incorporating this conceptual model match typical matric potential and chloride profiles. The modeling approach thereby reconciles the paradox between the recognized importance of plants, upward driving forces, and vapor flow processes in desert vadose zones and the inadequacy of the downward‐only liquid flow assumption of the conventional chloride mass balance approach. Our work shows that water transport in thick desert vadose zones at steady state is usually dominated by upward vapor flow and that long response times, of the order of 104–105 years, are required to equilibrate to existing arid surface conditions. Simulation results indicate that most thick desert vadose zones have been locked in slow drying transients that began in response to a climate shift and establishment of desert vegetation many thousands of years ago.

  18. Application of the human needs conceptual model to dental hygiene practice.

    PubMed

    Darby, M L; Walsh, M M

    2000-01-01

    The Human Needs Conceptual Model is relevant to dental hygiene because of the need for dental hygienists to be client focused, humanistic, and accountable in practice. Application of the Human Needs Conceptual Model provides a formal framework for identifying and understanding the unique needs of the client that can be met through dental hygiene care. Practitioners find that the Human Needs Conceptual Model can not only help them in assessment and diagnosis, but also in client education, decision-making, care implementation, and the evaluation of treatment outcomes. By using the model, the dental hygienist is able to manage client care humanistically and holistically, and ensure that care is client-centered rather than task-oriented. With the model, a professional practice can be made operational.

  19. Conceptual Models of Depression in Primary Care Patients: A Comparative Study

    PubMed Central

    Karasz, Alison; Garcia, Nerina; Ferri, Lucia

    2009-01-01

    Conventional psychiatric treatment models are based on a biopsychiatric model of depression. A plausible explanation for low rates of depression treatment utilization among ethnic minorities and the poor is that members of these communities do not share the cultural assumptions underlying the biopsychiatric model. The study examined conceptual models of depression among depressed patients from various ethnic groups, focusing on the degree to which patients’ conceptual models ‘matched’ a biopsychiatric model of depression. The sample included 74 primary care patients from three ethnic groups screening positive for depression. We administered qualitative interviews assessing patients’ conceptual representations of depression. The analysis proceeded in two phases. The first phase involved a strategy called ‘quantitizing’ the qualitative data. A rating scheme was developed and applied to the data by a rater blind to study hypotheses. The data was subjected to statistical analyses. The second phase of the analysis involved the analysis of thematic data using standard qualitative techniques. Study hypotheses were largely supported. The qualitative analysis provided a detailed picture of primary care patients’ conceptual models of depression and suggested interesting directions for future research. PMID:20182550

  20. Leading Generative Groups: A Conceptual Model

    ERIC Educational Resources Information Center

    London, Manuel; Sobel-Lojeski, Karen A.; Reilly, Richard R.

    2012-01-01

    This article presents a conceptual model of leadership in generative groups. Generative groups have diverse team members who are expected to develop innovative solutions to complex, unstructured problems. The challenge for leaders of generative groups is to balance (a) establishing shared goals with recognizing members' vested interests, (b)…

  1. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    PubMed

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  2. On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish

    2016-04-01

    A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.

  3. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    PubMed

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  4. Conceptual Model of Quantities, Units, Dimensions, and Values

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  5. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  6. Semantic Description of Educational Adaptive Hypermedia Based on a Conceptual Model

    ERIC Educational Resources Information Center

    Papasalouros, Andreas; Retalis, Symeon; Papaspyrou, Nikolaos

    2004-01-01

    The role of conceptual modeling in Educational Adaptive Hypermedia Applications (EAHA) is especially important. A conceptual model of an educational application depicts the instructional solution that is implemented, containing information about concepts that must be ac-quired by learners, tasks in which learners must be involved and resources…

  7. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    PubMed Central

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  8. Conceptual hydrogeological model of a coastal hydrosystem in the mediterranean

    NASA Astrophysics Data System (ADS)

    Mitropapas, Anastasios; Pouliaris, Christos; Apostolopoulos, Georgios; Vasileiou, Eleni; Schüth, Christoph; Vienken, Thomas; Dietrich, Peter; Kallioras, Andreas

    2016-04-01

    Groundwater resources management in the Mediterranean basin is an issue of paramount importance that becomes a necessity in the case of the coastal hydrosystems. Coastal aquifers are considered very sensitive ecosystems that are subject to several stresses being of natural or anthropogenic origin. The coastal hydrosystem of Lavrion can be used as a reference site that incorporates multi-disciplinary environmental problems, which are typical for Circum-Mediterranean. This study presents the synthesis of a wide range of field activities within the area of Lavrion including the monitoring of water resources within all hydrologic zones (surface, unsaturated and saturated) and geophysical (invasive and non-invasive) surveys. Different monitoring approaches -targeting to the collection of hydrochemical, geophysical, geological, hydrological data- were applied, that proved to provide a sound characterization of the groundwater flows within the coastal karstic system in connection to the surrounding water bodies of the study area. The above are used as input parameters process during the development of the conceptual model of the coastal hydrosystem of Lavrion. Key-words: Coastal hydrosystems, Mediterranean basin, seawater intrusion

  9. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  10. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  11. Self-Presentation: A Conceptualization and Model.

    ERIC Educational Resources Information Center

    Schlenker, Barry R.

    This paper provides a conceptual definition and model of self-presentational behavior. Self-presentation is defined as the attempt to control self-relevant images before real or imagined others. Several aspects of the definition are discussed along with the notion that people's self-presentations represent the choice of the most desirable images…

  12. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  13. Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research

    ERIC Educational Resources Information Center

    Fried, Leanne; Mansfield, Caroline; Dobozy, Eva

    2015-01-01

    This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…

  14. Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts

    ERIC Educational Resources Information Center

    Agnew, Deborah; Pill, Shane; Orrell, Janice

    2017-01-01

    This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…

  15. Life cycle cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.

  16. Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2003-10-01

    A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be

  17. Numerical model of water flow in a fractured basalt vadose zone: Box Canyon Site, Idaho

    NASA Astrophysics Data System (ADS)

    Doughty, Christine

    2000-12-01

    A numerical model of a fractured basalt vadose zone has been developed on the basis of the conceptual model described by Faybishenko et al. [[his issue]. The model has been used to simulate a ponded infiltration test in order to investigate infiltration through partially saturated fractured basalt. A key question addressed is how the fracture pattern geometry and fracture connectivity within a single basalt flow of the Snake River Plain basalt affect water infiltration. The two-dimensional numerical model extends from the ground surface to a perched water body 20 m below and uses an unconventional quasi-deterministic approach with explicit but highly simplified representation of major fractures and other important hydrogeologic features. The model adequately reproduces the majority of the field observation and provides insights into the infiltration process that cannot be obtained by data collection alone, demonstrating its value as a component of field studies.

  18. Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions

    ERIC Educational Resources Information Center

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2017-01-01

    This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…

  19. An Integrative-Interactive Conceptual Model for Curriculum Development.

    ERIC Educational Resources Information Center

    Al-Ibrahim, Abdul Rahman H.

    1982-01-01

    The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)

  20. Conceptual Commitments of the LIDA Model of Cognition

    NASA Astrophysics Data System (ADS)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  1. Conceptual models for cumulative risk assessment.

    PubMed

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  2. Implementation of nursing conceptual models: observations of a multi-site research team.

    PubMed

    Shea, H; Rogers, M; Ross, E; Tucker, D; Fitch, M; Smith, I

    1989-01-01

    The general acceptance by nursing of the nursing process as the methodology of practice enabled nurses to have a common grounding for practice, research and theory development in the 1970s. It has become clear, however, that the nursing process is just that--a process. What is sorely needed is the nursing content for that process and consequently in the past 10 years nursing theorists have further developed their particular conceptual models (CM). Three major teaching hospitals in Toronto have instituted a conceptual model (CM) of nursing as a basis of nursing practice. Mount Sinai Hospital has adopted Roy's adaptation model; Sunnybrook Medical Centre, Kings's goal attainment model; and Toronto General Hospital, Orem's self-care deficit theory model. All of these hospitals are affiliated through a series of cross appointments with the Faculty of Nursing at the University of Toronto. Two community hospitals, Mississauga and Scarborough General, have also adopted Orem's model and are related to the University through educational, community and interest groups. A group of researchers from these hospitals and the University of Toronto have proposed a collaborative project to determine what impact using a conceptual model will make on nursing practice. Discussions among the participants of this research group indicate that there are observations associated with instituting conceptual models that can be identified early in the process of implementation. These observations may be of assistance to others contemplating the implementation of conceptually based practice in their institution.

  3. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research

    PubMed Central

    Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.

    2017-01-01

    Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262

  4. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    PubMed

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  5. A conceptual disease model for adult Pompe disease.

    PubMed

    Kanters, Tim A; Redekop, W Ken; Rutten-Van Mölken, Maureen P M H; Kruijshaar, Michelle E; Güngör, Deniz; van der Ploeg, Ans T; Hakkaart, Leona

    2015-09-15

    Studies in orphan diseases are, by nature, confronted with small patient populations, meaning that randomized controlled trials will have limited statistical power. In order to estimate the effectiveness of treatments in orphan diseases and extrapolate effects into the future, alternative models might be needed. The purpose of this study is to develop a conceptual disease model for Pompe disease in adults (an orphan disease). This conceptual model describes the associations between the most important levels of health concepts for Pompe disease in adults, from biological parameters via physiological parameters, symptoms and functional indicators to health perceptions and final health outcomes as measured in terms of health-related quality of life. The structure of the Wilson-Cleary health outcomes model was used as a blueprint, and filled with clinically relevant aspects for Pompe disease based on literature and expert opinion. Multiple observations per patient from a Dutch cohort study in untreated patients were used to quantify the relationships between the different levels of health concepts in the model by means of regression analyses. Enzyme activity, muscle strength, respiratory function, fatigue, level of handicap, general health perceptions, mental and physical component scales and utility described the different levels of health concepts in the Wilson-Cleary model for Pompe disease. Regression analyses showed that functional status was affected by fatigue, muscle strength and respiratory function. Health perceptions were affected by handicap. In turn, self-reported quality of life was affected by health perceptions. We conceptualized a disease model that incorporated the mechanisms believed to be responsible for impaired quality of life in Pompe disease. The model provides a comprehensive overview of various aspects of Pompe disease in adults, which can be useful for both clinicians and policymakers to support their multi-faceted decision making.

  6. Vadose zone transport field study: Detailed test plan for simulated leak tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from thesemore » uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford

  7. Multi-model groundwater-management optimization: reconciling disparate conceptual models

    NASA Astrophysics Data System (ADS)

    Timani, Bassel; Peralta, Richard

    2015-09-01

    Disagreement among policymakers often involves policy issues and differences between the decision makers' implicit utility functions. Significant disagreement can also exist concerning conceptual models of the physical system. Disagreement on the validity of a single simulation model delays discussion on policy issues and prevents the adoption of consensus management strategies. For such a contentious situation, the proposed multi-conceptual model optimization (MCMO) can help stakeholders reach a compromise strategy. MCMO computes mathematically optimal strategies that simultaneously satisfy analogous constraints and bounds in multiple numerical models that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. Shadow prices and trade-offs guide the process of refining the first MCMO-developed `multi-model strategy into a realistic compromise management strategy. By employing automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and Idaho, USA) river-aquifer system employs two simulation models with analogous background conditions but different vertical discretization and boundary conditions. The objective is to maximize additional safe pumping (beyond current pumping), subject to constraints on groundwater head and seepage from the aquifer to surface waters. MCMO application reveals that in order to protect the local ecosystem, increased groundwater pumping can satisfy only 40 % of projected water demand increase. To explore the possibility of increasing that pumping while protecting the ecosystem, MCMO clearly identifies localities requiring additional field data. MCMO is applicable to other areas and optimization problems than used here. Steps to prepare comparable sub-models for MCMO use are area-dependent.

  8. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    NASA Astrophysics Data System (ADS)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  9. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  10. A benchmark for subduction zone modeling

    NASA Astrophysics Data System (ADS)

    van Keken, P.; King, S.; Peacock, S.

    2003-04-01

    Our understanding of subduction zones hinges critically on the ability to discern its thermal structure and dynamics. Computational modeling has become an essential complementary approach to observational and experimental studies. The accurate modeling of subduction zones is challenging due to the unique geometry, complicated rheological description and influence of fluid and melt formation. The complicated physics causes problems for the accurate numerical solution of the governing equations. As a consequence it is essential for the subduction zone community to be able to evaluate the ability and limitations of various modeling approaches. The participants of a workshop on the modeling of subduction zones, held at the University of Michigan at Ann Arbor, MI, USA in 2002, formulated a number of case studies to be developed into a benchmark similar to previous mantle convection benchmarks (Blankenbach et al., 1989; Busse et al., 1991; Van Keken et al., 1997). Our initial benchmark focuses on the dynamics of the mantle wedge and investigates three different rheologies: constant viscosity, diffusion creep, and dislocation creep. In addition we investigate the ability of codes to accurate model dynamic pressure and advection dominated flows. Proceedings of the workshop and the formulation of the benchmark are available at www.geo.lsa.umich.edu/~keken/subduction02.html We strongly encourage interested research groups to participate in this benchmark. At Nice 2003 we will provide an update and first set of benchmark results. Interested researchers are encouraged to contact one of the authors for further details.

  11. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a

  12. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling.

    PubMed

    McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter

    2018-03-01

    Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting

  13. [Impact of small-area context on health: proposing a conceptual model].

    PubMed

    Voigtländer, S; Mielck, A; Razum, O

    2012-11-01

    Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Re-Conceptualizing Intimacy and Distance in Instructional Models

    ERIC Educational Resources Information Center

    Ketterer, John J.

    2006-01-01

    The idea that distance education lacks intimacy and is therefore inferior is based on an embedded metaphor that sustains a restricted and limiting mental model of ideal instruction. The authors analyze alternative conceptualizations of intimacy, space, and place as factors in the development of effective instructional models. They predict that the…

  15. Conceptual Model of Research to Reduce Stigma Related to Mental Disorders in Adolescents

    PubMed Central

    Pinto-Foltz, Melissa D.; Logsdon, M. Cynthia

    2010-01-01

    Purpose: To explicate an initial conceptual model that is amenable to testing and guiding anti-stigma interventions with adolescents. Design/Sources Used: Multidisciplinary research and theoretical articles were reviewed. . Conclusions: The conceptual model may guide anti-stigma interventions, and undergo testing and refinement in the future to reflect scientific advances in stigma reduction among adolescents. Use of a conceptual model enhances empirical evaluation of anti-stigma interventions yielding a casual explanation for the intervention effects and enhances clinical applicability of interventions across settings. PMID:19916813

  16. Conceptual Models for Cumulative Risk Assessment

    PubMed Central

    Sexton, Ken

    2011-01-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive “family” of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects. PMID:22021317

  17. Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter

    ERIC Educational Resources Information Center

    Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia

    2011-01-01

    This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…

  18. OBO to UML: Support for the development of conceptual models in the biomedical domain.

    PubMed

    Waldemarin, Ricardo C; de Farias, Cléver R G

    2018-04-01

    A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  20. A Conceptual Model To Assist Educational Leaders Manage Change.

    ERIC Educational Resources Information Center

    Cochren, John R.

    This paper presents a conceptual model to help school leaders manage change effectively. The model was developed from a literature review of theory development and model construction. Specifically, the paper identifies the major components that inhibit organizational change, and synthesizes the most salient features of these components through a…

  1. Modeling and Simulation for a Surf Zone Robot

    DTIC Science & Technology

    2012-12-14

    of-freedom surf zone robot is developed and tested with a physical test platform and with a simulated robot in Robot Operating System . Derived from...terrain. The application of the model to future platforms is analyzed and a broad examination of the current state of surf zone robotic systems is...public release; distribution is unlimited MODELING AND SIMULATION FOR A SURF ZONE ROBOT Eric Shuey Lieutenant, United States Navy B.S., Systems

  2. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  3. Modeling hyporheic zone processes

    USGS Publications Warehouse

    Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar

    2003-01-01

    Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.

  4. `Dhara': An Open Framework for Critical Zone Modeling

    NASA Astrophysics Data System (ADS)

    Le, P. V.; Kumar, P.

    2016-12-01

    Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.

  5. Conceptual Model for Basement and Surface Structure Relationships in an Oblique Collision, Sawtooth Range, MT

    NASA Astrophysics Data System (ADS)

    Palu, J. M.; Burberry, C. M.

    2014-12-01

    The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This

  6. Students as Partners: Reflections on a Conceptual Model

    ERIC Educational Resources Information Center

    Healey, Mick; Flint, Abbi; Harrington, Kathy

    2016-01-01

    This article reflects on a conceptual model for mapping the work that fits under the broad heading of students as partners in learning and teaching in higher education (Healey, Flint, & Harrington, 2014). We examine the nature and purpose of the model with reference to specific examples, and reflect on the potential and actual uses of the…

  7. Vadose Zone Transport Field Study: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated

  8. A Systematic Review of Conceptual Frameworks of Medical Complexity and New Model Development.

    PubMed

    Zullig, Leah L; Whitson, Heather E; Hastings, Susan N; Beadles, Chris; Kravchenko, Julia; Akushevich, Igor; Maciejewski, Matthew L

    2016-03-01

    Patient complexity is often operationalized by counting multiple chronic conditions (MCC) without considering contextual factors that can affect patient risk for adverse outcomes. Our objective was to develop a conceptual model of complexity addressing gaps identified in a review of published conceptual models. We searched for English-language MEDLINE papers published between 1 January 2004 and 16 January 2014. Two reviewers independently evaluated abstracts and all authors contributed to the development of the conceptual model in an iterative process. From 1606 identified abstracts, six conceptual models were selected. One additional model was identified through reference review. Each model had strengths, but several constructs were not fully considered: 1) contextual factors; 2) dynamics of complexity; 3) patients' preferences; 4) acute health shocks; and 5) resilience. Our Cycle of Complexity model illustrates relationships between acute shocks and medical events, healthcare access and utilization, workload and capacity, and patient preferences in the context of interpersonal, organizational, and community factors. This model may inform studies on the etiology of and changes in complexity, the relationship between complexity and patient outcomes, and intervention development to improve modifiable elements of complex patients.

  9. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  10. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less

  11. Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.

    PubMed

    Gilbert, Jason H; Von Ah, Diane; Broome, Marion E

    Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing

  12. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    PubMed

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  13. The Site-Scale Saturated Zone Flow Model for Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.

    2006-12-01

    This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the

  14. A new conceptual model for whole mantle convection and the origin of hotspot plumes

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2014-08-01

    A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations

  15. A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.

    2004-12-01

    The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio

  16. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  17. Sustainable Street Vendors Spatial Zoning Models in Surakarta

    NASA Astrophysics Data System (ADS)

    Rahayu, M. J.; Putri, R. A.; Rini, E. F.

    2018-02-01

    Various strategies that have been carried out by Surakarta’s government to organize street vendors have not achieved the goal of street vendors’ arrangement comprehensively. The street vendors arrangement strategy consists of physical (spatial) and non-physical. One of the physical arrangements is to define the street vendor’s zoning. Based on the street vendors’ characteristics, there are two alternative locations of stabilization (as one kind of street vendors’ arrangement) that can be used. The aim of this study is to examine those alternative locations to set the street vendor’s zoning models. Quatitative method is used to formulate the spatial zoning model. The street vendor’s zoning models are formulated based on two approaches, which are the distance to their residences and previous trading locations. Geographic information system is used to indicate all street vendors’ residences and trading locations based on their type of goods. Through proximity point distance tool on ArcGIS, we find the closeness of residential location and previous trading location with the alternative location of street vendors’ stabilization. The result shows that the location was chosen by the street vendors to sell their goods mainly consider the proximity to their homes. It also shows street vendor’s zoning models which based on the type of street vendor’s goods.

  18. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less

  19. Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.

    PubMed

    Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H

    2012-11-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  20. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  1. Conceptual Model of Climate Change Impacts at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, Jean Marie

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less

  2. Mercury and methylmercury dynamics in the hyporheic zone of an Oregon stream

    USGS Publications Warehouse

    Hinkle, Stephen R.; Bencala, Kenneth E.; Wentz, Dennis A.; Krabbenhoft, David P.

    2014-01-01

    The role of the hyporheic zone in mercury (Hg) cycling has received limited attention despite the biogeochemically active nature of this zone and, thus, its potential to influence Hg behavior in streams. An assessment of Hg geochemistry in the hyporheic zone of a coarse-grained island in the Coast Fork Willamette River in Oregon, USA, illustrates the spatially dynamic nature of this region of the stream channel for Hg mobilization and attenuation. Hyporheic flow through the island was evident from the water-table geometry and supported by hyporheic-zone chemistry distinct from that of the bounding groundwater system. Redox-indicator species changed abruptly along a transect through the hyporheic zone, indicating a biogeochemically reactive stream/hyporheic-zone continuum. Dissolved organic carbon (DOC), total Hg, and methylmercury (MeHg) concentrations increased in the upgradient portion of the hyporheic zone and decreased in the downgradient region. Total Hg (collected in 2002 and 2003) and MeHg (collected in 2003) were correlated with DOC in hyporheic-zone samples: r2=0.63 (total Hg-DOC, 2002), 0.73 (total Hg-DOC, 2003), and 0.94 (MeHg-DOC, 2003). Weaker Hg/DOC association in late summer 2002 than in early summer 2003 may reflect seasonal differences in DOC reactivity. Observed correlations between DOC and both total Hg and MeHg reflect the importance of DOC for Hg mobilization, transport, and fate in this hyporheic zone. Correlations with DOC provide a framework for conceptualizing and quantifying Hg and MeHg dynamics in this region of the stream channel, and provide a refined conceptual model of the role hyporheic zones may play in aquatic ecosystems.

  3. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  4. A conceptual and disease model framework for osteoporotic kyphosis.

    PubMed

    Bayliss, M; Miltenburger, C; White, M; Alvares, L

    2013-09-01

    This paper presents a multi-method research project to develop a conceptual framework for measuring outcomes in studies of osteoporotic kyphosis. The research involved literature research and qualitative interviews among clinicians who treat patients with kyphosis and among patients with the condition. Kyphosis due to at least one vertebral compression fracture is prevalent among osteoporotic patients, resulting in well-documented symptoms and impact on functioning and well-being. A three-part study led to development of a conceptual measurement framework for comprehensive assessment of symptoms, impact, and treatment benefit for kyphosis. A literature-based disease model (DM) was developed and tested with physicians (n = 10) and patients (n = 10), and FDA guidelines were used to develop a final disease model and a conceptual framework. The DM included signs, symptoms, causes/triggers, exacerbations, and functional status associated with kyphosis. The DM was largely confirmed, but physicians and patients added several concepts related to impact on functioning, and some concepts were not confirmed and removed from the DM. This study confirms the need for more comprehensive assessment of health outcomes in kyphosis, as most current studies omit key concepts.

  5. Constructing a Conceptual Model Linking Drivers and Ecosystem Services in Piedmont Streams

    DTIC Science & Technology

    2011-04-01

    to the Virginia-Maryland border and is bound by the Appalachian Mountains and Blue Ridge to the northwest and the Atlantic Coastal Plain to the south...demand on freshwater ecosystem services, and a growing appreciation for the value of functioning ecosystems, the Appalachian Piedmont has developed a...the model and how it can be adapted and ap - plied for specific projects. A FRAMEWORK FOR CONCEPTUAL MODELING The general approach to conceptual

  6. River City High School Guidance Services: A Conceptual Model.

    ERIC Educational Resources Information Center

    American Coll. Testing Program, Iowa City, IA.

    This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…

  7. Documentation of Computer Program INFIL3.0 - A Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone

    USGS Publications Warehouse

    ,

    2008-01-01

    This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that

  8. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  9. Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.

    PubMed

    Henry, Stephen G; Matthias, Marianne S

    2018-02-01

    Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    USGS Publications Warehouse

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent

  11. Developing a Conceptual Model of STEAM Teaching Practices

    ERIC Educational Resources Information Center

    Quigley, Cassie F.; Herro, Dani; Jamil, Faiza M.

    2017-01-01

    STEAM, where the "A" represents arts and humanities, is considered a transdisciplinary learning process that has the potential to increase diverse participation in science, technology, engineering, and math (STEM) fields. However, a well-defined conceptual model that clearly articulates essential components of the STEAM approach is…

  12. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    USGS Publications Warehouse

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  13. Risk factors for pressure ulcer development in critically Ill patients: a conceptual model to guide research.

    PubMed

    Benoit, Richard; Mion, Lorraine

    2012-08-01

    This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  14. Educational Criteria for Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling

    ERIC Educational Resources Information Center

    Kayama, Mizue; Ogata, Shinpei; Asano, David K.; Hashimoto, Masami

    2016-01-01

    Conceptual modeling is one of the most important learning topics for higher education and secondary education. The goal of conceptual modeling in this research is to draw a class diagram using given notation to satisfy the given requirements. In this case, the subjects are asked to choose concepts to satisfy the given requirements and to correctly…

  15. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  16. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model

    USGS Publications Warehouse

    Langevin, C.D.

    2003-01-01

    A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.

  17. Development of a Conceptual Chum Salmon Emergence Model for Ives Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Christopher J.; Geist, David R.; Arntzen, Evan V.

    2011-02-09

    The objective of the study described herein was to develop a conceptual model of chum salmon emergence that was based on empirical water temperature of the riverbed and river in specific locations where chum salmon spawn in the Ives Island area. The conceptual model was developed using water temperature data that have been collected in the past and are currently being collected in the Ives Island area. The model will be useful to system operators who need to estimate the complete distribution of chum salmon emergence (first emergence through final emergence) in order to balance chum salmon redd protection andmore » power system operation.« less

  18. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    PubMed

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  19. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  20. A Multiperspectival Conceptual Model of Transformative Meaning Making

    ERIC Educational Resources Information Center

    Freed, Maxine

    2009-01-01

    Meaning making is central to transformative learning, but little work has explored how meaning is constructed in the process. Moreover, no meaning-making theory adequately captures its characteristics and operations during radical transformation. The purpose of this dissertation was to formulate and specify a multiperspectival conceptual model of…

  1. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  2. A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation

    ERIC Educational Resources Information Center

    Poikela, Paula; Teräs, Marianne

    2015-01-01

    Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…

  3. Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2015-01-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…

  4. Atomistic Cohesive Zone Models for Interface Decohesion in Metals

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship characterizing the load transfer across the plane of a growing edge crack is extracted from atomistic simulations for use within a continuum finite element model. The methodology for the atomistic derivation of a cohesive-zone law is presented. This procedure can be implemented to build cohesive-zone finite element models for simulating fracture in nanocrystalline or ultrafine grained materials.

  5. A conceptual network model of the air transportation system. the basic level 1 model.

    DOT National Transportation Integrated Search

    1971-04-01

    A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...

  6. Supercycles at subduction thrusts controlled by seismogenic zone downdip width

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Herrendoerfer, R.; Gerya, T.; Dalguer, L. A.

    2014-12-01

    Supercycles in subduction zones describe a long-term cluster of megathrust earthquakes, which recur in a similar way (Sieh et al. 2008,Goldfinger et al. 2013). It consists of two complete failures of a given subduction segment in between which, after a long period of relative quiescence, partial ruptures occur. We recognize that supercycles were proposed in those subduction zones (Sieh et al. 2008,Goldfinger et al. 2013, Metois et al. 2014, Chlieh et al. 2014) for which the seismogenic zone downdip width is estimated to be larger than average (Heuret et al. 2011, Hayes et al. 2012). We show with a two-dimensional numerical model of a subduction zone that the seismogenic zone downdip width indeed has a strong influence on the long-term seismicity pattern and rupture styles. Increasing the downdip width of the seismogenic zone leads to a transition from ordinary cycles of similar sized crack-like ruptures to supercycles consisting of a range of rupture sizes and styles. Our model demonstrates how interseismic deformation accompanied by subcritical and pulse-like ruptures effectively increases the stress throughout the seismogenic zone towards a critical state at which a crack-like superevent releases most of the accumulated stresses. We propose such stress evolution along the dip of the megathrust as the simplest explanation for supercycles. This conceptual model suggests that larger than thus far observed earthquakes could occur as part of a supercycle in subduction zones with a larger than average seismogenic zone downdip width (>120-150 km).

  7. Conceptual Modeling in the Time of the Revolution: Part II

    NASA Astrophysics Data System (ADS)

    Mylopoulos, John

    Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.

  8. Towards Smart and Resilient City: A Conceptual Model

    NASA Astrophysics Data System (ADS)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  9. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Kelin

    2017-03-01

    Episodic tremor and accompanying slow slip, together called ETS, is most often observed in subduction zones of young and warm subducting slabs. ETS should help us to understand the mechanics of subduction megathrusts, but its mechanism is still unclear. It is commonly assumed that ETS represents a transition from seismic to aseismic behaviour of the megathrust with increasing depth, but this assumption is in contradiction with an observed spatial separation between the seismogenic zone and the ETS zone. Here we propose a unifying model for the necessary geological condition of ETS that explains the relationship between the two zones. By developing numerical thermal models, we examine the governing role of thermo-petrologically controlled fault zone rheology (frictional versus viscous shear). High temperatures in the warm-slab environment cause the megathrust seismogenic zone to terminate before reaching the depth of the intersection of the continental Mohorovičić discontinuity (Moho) and the subduction interface, called the mantle wedge corner. High pore-fluid pressures around the mantle wedge corner give rise to an isolated friction zone responsible for ETS. Separating the two zones is a segment of semi-frictional or viscous behaviour. The new model reconciles a wide range of seemingly disparate observations and defines a conceptual framework for the study of slip behaviour and the seismogenesis of major faults.

  10. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  11. Recent Advances in Hyporheic Zone Science

    NASA Astrophysics Data System (ADS)

    Hester, E. T.

    2017-12-01

    The hyporheic zone exists beneath and adjacent to streams and rivers where surface water and groundwater interact. It provides unique habitat for aquatic organisms, can buffer surface water temperatures, and can be highly reactive, processing nutrients and improving water quality. The hyporheic zone is the subject of considerable research and the past year in WRR witnessed important conceptual advances. A key focus was rigorous evaluation of mixing between surface water and groundwater that occurs within hyporheic sediments. Field observations indicate that greater mixing occurs in the hyporheic zone than in deeper groundwater, and this distinction has been explored by recent numerical modeling studies, but more research is needed to fully understand the causes. A commentary this year in WRR proposed that hyporheic mixing is enhanced by a combination of fluctuating boundary conditions and multiscale physical and chemical spatial heterogeneity but confirmation is left to future research. This year also witnessed the boundaries of knowledge pushed back in a number of other key areas. Field quantification of hyporheic exchange and reactions benefited from advances including the use and interpretation of high frequency nutrient sensors, actively heater fiber optic sensors, isotope tracers, and geophysical methods such as electrical resistivity imaging. Conceptual advances were made in understanding the effects of unsteady environmental conditions (e.g., tides and storms) and preferential flow on hyporheic processes. Finally, hyporheic science is being brought increasingly to bear on applied issues such as informing nutrient removal crediting for stream restoration practices, for example in the Chesapeake Bay watershed.

  12. [Case study on health risk assessment based on site-specific conceptual model].

    PubMed

    Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Xia, Tian-Xiang; Zhu, Xiao-Ying; Han, Dan; Zhang, Li-Na

    2013-02-01

    Site investigation was carried out on an area to be redeveloped as a subway station, which is right downstream of the groundwater of a former chemical plant. The results indicate the subsurface soil and groundwater in the area are both polluted heavily by 1,2-dichloroethane, which was caused by the chemical plant upstream with the highest concentration was 104.08 mg.kg-1 for soil sample at 8.6 m below ground and the highest concentration was 18500 microg.L-1 for groundwater. Further, a site-specific contamination conceptual model, giving consideration to the specific structure configuration of the station, was developed, and the corresponding risk calculation equation was derived. The carcinogenic risks calculated with models developed on the generic site conceptual model and derived herein on the site-specific conceptual model were compared. Both models indicate that the carcinogenic risk is significantly higher than the acceptable level which is 1 x 10(-6). The comparison result reveals that the risk calculated with the former models for soil and groundwater are higher than the one calculated with the latter models by 2 times and 1.5 times, respectively. The finding in this paper indicates that the generic risk assessment model may underestimate the risk if specific site conditions and structure configuration are not considered.

  13. Groundwater modelling in conceptual hydrological models - introducing space

    NASA Astrophysics Data System (ADS)

    Boje, Søren; Skaugen, Thomas; Møen, Knut; Myrabø, Steinar

    2017-04-01

    The tiny Sæternbekken Minifelt (Muren) catchment (7500 m2) in Bærumsmarka, Norway, was during the 1990s, densely instrumented with more than a 100 observation points for measuring groundwater levels. The aim was to investigate the link between shallow groundwater dynamics and runoff. The DDD (Distance Distribution Dynamics) model is a newly developed rainfall-runoff model used operationally by the Norwegian Flood-Forecasting service at NVE. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD model has a 2-D representation that calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. The groundwater observations from more than two decades ago are used to verify assumptions of the subsurface reservoir in the DDD model and to validate its spatial representation of the subsurface reservoir. The Muren catchment will, during 2017, be re-instrumented in order to continue the work to bridge the gap between conceptual hydrological models, with typically single value or 0-dimension representation of the subsurface, and models with more realistic 2- or 3-dimension representation of the subsurface.

  14. A Conceptual Model of the World of Work.

    ERIC Educational Resources Information Center

    VanRooy, William H.

    The conceptual model described in this paper resulted from the need to organize a body of knowledge related to the world of work which would enable curriculum developers to prepare accurate, realistic instructional materials. The world of work is described by applying Malinowski's scientific study of the structural components of culture. It is…

  15. A Conceptual Model of Career Development to Enhance Academic Motivation

    ERIC Educational Resources Information Center

    Collins, Nancy Creighton

    2010-01-01

    The purpose of this study was to develop, refine, and validate a conceptual model of career development to enhance the academic motivation of community college students. To achieve this end, a straw model was built from the theoretical and empirical research literature. The model was then refined and validated through three rounds of a Delphi…

  16. A Conceptual Model of the Information Requirements of Nursing Organizations

    PubMed Central

    Miller, Emmy

    1989-01-01

    Three related issues play a role in the identification of the information requirements of nursing organizations. These issues are the current state of computer systems in health care organizations, the lack of a well-defined data set for nursing, and the absence of models representing data and information relevant to clinical and administrative nursing practice. This paper will examine current methods of data collection, processing, and storage in clinical and administrative nursing practice for the purpose of identifying the information requirements of nursing organizations. To satisfy these information requirements, database technology can be used; however, a model for database design is needed that reflects the conceptual framework of nursing and the professional concerns of nurses. A conceptual model of the types of data necessary to produce the desired information will be presented and the relationships among data will be delineated.

  17. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    NASA Astrophysics Data System (ADS)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  18. Fostering radical conceptual change through dual-situated learning model

    NASA Astrophysics Data System (ADS)

    She, Hsiao-Ching

    2004-02-01

    This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.

  19. Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Gailly, Frederik; Poels, Geert

    Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.

  20. CONCEPTUAL MODELS AND METHODS TO GUIDE DIAGNOSTIC RESEARCH INTO CAUSES OF IMPAIRMENT TO AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...

  1. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  2. Some problems with social cognition models: a pragmatic and conceptual analysis.

    PubMed

    Ogden, Jane

    2003-07-01

    Empirical articles published between 1997 and 2001 from 4 health psychology journals that tested or applied 1 or more social cognition models (theory of reasoned action, theory of planned behavior, health belief model, and protection motivation theory; N = 47) were scrutinized for their pragmatic and conceptual basis. In terms of their pragmatic basis, these 4 models were useful for guiding research. The analysis of their conceptual basis was less positive. First, these models do not enable the generation of hypotheses because their constructs are unspecific; they therefore cannot be tested. Second, they focus on analytic truths rather than synthetic ones, and the conclusions resulting from their application are often true by definition rather than by observation. Finally, they may create and change both cognitions and behavior rather than describe them.

  3. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customermore » base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.« less

  4. Modeling biogechemical reactive transport in a fracture zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes inmore » biochemical parameters.« less

  5. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  6. Temperature Models for the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Kostoglodov, V.; Currie, C.; Manea, M.; Wang, K.

    2002-12-01

    It is well known that the temperature is one of the major factors which controls the seismogenic zone. The Mexican subduction zone is characterized by a very shallow flat subducting interplate in its central part (Acapulco, Oaxaca), and deeper subduction slabs northern (Jalisco) and southern (Chiapas). It has been proposed that the seismogenic zone is controlled, among other factors, by a temperature. Therefore, we have developed four two-dimensional steady state thermal models for Jalisco, Guerrero, Oaxaca and Chiapas. The updip limit of the seismogenic zone is taken between 100 §C and 150 §C, while the downdip limit is thought to be at 350 §C because of the transition from stick-slip to stable-sliding. The shape of the subducting plate is inferred from gravity and seismicity. The convergence velocity between oceanic and continental lithospheric plates is taken as the following: 5 cm/yr for Jalisco profile, 5.5 for Guerrero profile, 5.8 for Oaxaca profile, and 7.8 for Chiapas profile. The age of the subducting plates, since they are young, and provides the primary control on the forearc thermal structure, are as the following: 11 My for Jalisco profile, 14.5 My for Guerrero profile, 15 My for Oaxaca profile, and 28 My for Chiapas profile. We also introduced in the models a small quantity of frictional heating (pore pressure ratio 0.98). The value of 0.98 for pore pressure ratio was obtained for the Guerrero profile, in order to fit the intersection between the 350 §C isotherm and the subducting plate at 200 Km from trench. The value of 200 km coupling zone from trench is inferred from GPS data for the steady interseismic period and also for the last slow aseismic slip that occurred in Guerrero in 2002. We have used this value of pore pressure ratio (0.98) for all the other profiles. For the others three profiles we obtained the following coupling extents: Jalisco - 100 km, Oaxaca - 170 km and Chiapas - 125 km (from the trench). Independent constrains of the

  7. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  8. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  9. Inhalation exposure to cleaning products: application of a two-zone model.

    PubMed

    Earnest, C Matt; Corsi, Richard L

    2013-01-01

    In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.

  10. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  11. Work zone safety analysis and modeling: a state-of-the-art review.

    PubMed

    Yang, Hong; Ozbay, Kaan; Ozturk, Ozgur; Xie, Kun

    2015-01-01

    Work zone safety is one of the top priorities for transportation agencies. In recent years, a considerable volume of research has sought to determine work zone crash characteristics and causal factors. Unlike other non-work zone-related safety studies (on both crash frequency and severity), there has not yet been a comprehensive review and assessment of methodological approaches for work zone safety. To address this deficit, this article aims to provide a comprehensive review of the existing extensive research efforts focused on work zone crash-related analysis and modeling, in the hopes of providing researchers and practitioners with a complete overview. Relevant literature published in the last 5 decades was retrieved from the National Work Zone Crash Information Clearinghouse and the Transport Research International Documentation database and other public digital libraries and search engines. Both peer-reviewed publications and research reports were obtained. Each study was carefully reviewed, and those that focused on either work zone crash data analysis or work zone safety modeling were identified. The most relevant studies are specifically examined and discussed in the article. The identified studies were carefully synthesized to understand the state of knowledge on work zone safety. Agreement and inconsistency regarding the characteristics of the work zone crashes discussed in the descriptive studies were summarized. Progress and issues about the current practices on work zone crash frequency and severity modeling are also explored and discussed. The challenges facing work zone safety research are then presented. The synthesis of the literature suggests that the presence of a work zone is likely to increase the crash rate. Crashes are not uniformly distributed within work zones and rear-end crashes are the most prevalent type of crashes in work zones. There was no across-the-board agreement among numerous papers reviewed on the relationship between work zone

  12. Incompletely Mixed Surface Transient Storage Zones at River Restoration Structures: Modeling Implications

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Robinson, J.

    2012-12-01

    River restoration structures, also known as river steering deflectors, are designed to reduce bank shear stress by generating wake zones between the bank and the constricted conveyance region. There is interest in characterizing the surface transient storage (STS) and associated biogeochemical processing in the STS zones around these structures to quantify the ecosystem benefits of river restoration. This research explored how the hydraulics around river restoration structures prohibits application of transient storage models designed for homogenous, completely mixed STS zones. We used slug and constant rate injections of a conservative tracer in a 3rd order river in Onondaga County, NY over the course of five experiments at varying flow regimes. Recovered breakthrough curves spanned a transect including the main channel and wake zone at a j-hook restoration structure. We noted divergent patterns of peak solute concentration and times within the wake zone regardless of transect location within the structure. Analysis reveals an inhomogeneous STS zone which is frequently still loading tracer after the main channel has peaked. The breakthrough curve loading patterns at the restoration structure violated the assumptions of simplified "random walk" 2 zone transient storage models which seek to identify representative STS zones and zone locations. Use of structure-scale Weiner filter based multi-rate mass transfer models to characterize STS zones residence times are similarly dependent on a representative zone location. Each 2 zone model assumes 1 zone is a completely mixed STS zone and the other a completely mixed main channel. Our research reveals limits to simple application of the recently developed 2 zone models, and raises important questions about the measurement scale necessary to identify critical STS properties at restoration sites. An explanation for the incompletely mixed STS zone may be the distinct hydraulics at restoration sites, including a constrained

  13. The inner zone electron model AE-5

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Vette, J. I.

    1972-01-01

    A description is given of the work performed in the development of the inner radiation zone electron model, AE-5. A complete description of the omnidirectional flux model is given for energy thresholds E sub T in the range 4.0 E sub T/(MeV) 0.04 and for L values in the range 2.8 L 1.2 for an epoch of October 1967. Confidence codes for certain regions of B-L space and certain energies are given based on data coverage and the assumptions made in the analysis. The electron model programs that can be supplied to a user are referred to. One of these, a program for accessing the model flux at arbitrary points in B-L space and arbitrary energies, includes the latest outer zone electron model and proton model. The model AE-5, is based on data from five satellites, OGO 1, OGO 3, 1963-38C, OV3-3, and Explorer 26, spanning the period December 1964 to December 1967.

  14. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    PubMed

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  15. Conceptualizing Programme Evaluation

    ERIC Educational Resources Information Center

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  16. Conceptual and numerical modeling approach of the Guarani Aquifer System

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Vives, L.; Gomez, A.

    2013-01-01

    In large aquifers, relevant for their considerable size, regional groundwater modeling remains challenging given geologic complexity and data scarcity in space and time. Yet, it may be conjectured that regional scale groundwater flow models can help in understanding the flow system functioning and the relative magnitude of water budget components, which are important for aquifer management. The Guaraní Aquifer System is the largest transboundary aquifer in South America. It contains an enormous volume of water; however, it is not well known, being difficult to assess the impact of exploitation currently used to supply over 25 million inhabitants. This is a sensitive issue because the aquifer is shared by four countries. Moreover, an integrated groundwater model, and therefore a global water balance, were not available. In this work, a transient regional scale model for the entire aquifer based upon five simplified, equally plausible conceptual models represented by different hydraulic conductivity parametrizations is used to analyze the flow system and water balance components. Combining an increasing number of hydraulic conductivity zones and an appropriate set of boundary conditions, the hypothesis of a continuous sedimentary unit yielded errors within the calibration target in a regional sense. The magnitude of the water budget terms resulted very similar for all parametrizations. Recharge and stream/aquifer fluxes were the dominant components representing, on average, 84.2% of total inflows and 61.4% of total outflows, respectively. However, leakage was small compared to stream discharges of main rivers. For instance, the simulated average leakage for the Uruguay River was 8 m3 s-1 while the observed absolute minimum discharge was 382 m3 s-1. Streams located in heavily pumped regions switched from a gaining condition in early years to a losing condition over time. Water is discharged through the aquifer boundaries, except at the eastern boundary. On average

  17. A conceptual data model and modelling language for fields and agents

    NASA Astrophysics Data System (ADS)

    de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown

  18. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  19. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    ERIC Educational Resources Information Center

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  20. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  1. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  2. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    EPA Science Inventory

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  3. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  4. Turnaround Time Modeling for Conceptual Rocket Engines

    NASA Technical Reports Server (NTRS)

    Nix, Michael; Staton, Eric J.

    2004-01-01

    Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.

  5. CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...

  6. What Is FRBR? A Conceptual Model for the Bibliographic Universe

    ERIC Educational Resources Information Center

    Tillett, Barbara

    2005-01-01

    From 1992 to 1995 the IFLA Study Group on Functional Requirements for Bibliographic Records (FRBR) developed an entity relationship model as a generalised view of the bibliographic universe, intended to be independent of any cataloguing code or implementation. The FRBR report itself includes a description of the conceptual model (the entities,…

  7. Implications of conceptual channel representation on SWAT streamflow and sediment modeling

    USDA-ARS?s Scientific Manuscript database

    Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of...

  8. A conceptual model of children's cognitive adaptation to physical disability.

    PubMed

    Bernardo, M L

    1982-11-01

    Increasing numbers of children are being required to adapt to lifelong illness and disability. While numerous studies exist on theories of adaptation, reaction to illness, and children's concepts of self and of illness, an integrated view of children's ability to conceptualize themselves, their disabilities and possible adaptations has not been formulated. In this article an attempt has been made to integrate models of adaptation to disability and knowledge about children's cognitive development using Piagetian theory of cognitive development and Crate's stages of adaptation to chronic illness. This conceptually integrated model can be used as a departure point for studies to validate the applicability of Piaget's theory to the development of the physically disabled child and to clinically assess the adaptational stages available to the child at various developmental stages.

  9. Navigating Cultural Worlds and Negotiating Identities: A Conceptual Model

    ERIC Educational Resources Information Center

    Mistry, Jayanthi; Wu, Jean

    2010-01-01

    For children from culturally and linguistically diverse backgrounds the ability to maintain flexible identities and integrate multiple facets of self is a crucial developmental task. We present a conceptual model for the development of expertise in navigating across cultures, delineating how community characteristics interact with family and…

  10. Testing an integral conceptual model of frailty.

    PubMed

    Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M

    2012-09-01

    This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty.   The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.

  11. A conceptual model and assessment template for capacity evaluation in adult guardianship.

    PubMed

    Moye, Jennifer; Butz, Steven W; Marson, Daniel C; Wood, Erica

    2007-10-01

    We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity assessment were integrated, through expert group consensus and external review by legal and health care professionals, to form a conceptual model and template. The model and template provide a structure for conducting and documenting a capacity evaluation in guardianship by using six assessment domains of interest to the courts: (a) medical condition, (b) cognition, (c) functional abilities, (d) values, (e) risk of harm and level of supervision needed, and (f) means to enhance capacity. The template also addresses the participation of the person in the guardianship hearing, confidentiality and privilege issues, and certification by the examiner. An online version of the template can be adapted to address specific jurisdictional requirements. A conceptual model and evaluation template provide a useful cross-jurisdictional format for conducting and documenting capacity assessments of older adults in guardianship proceedings. The template may be particularly useful to clinicians for providing courts with information to support limited guardianship orders.

  12. Integrated conceptual ecological model and habitat indices for the southwest Florida coastal wetlands

    USGS Publications Warehouse

    Wingard, G. Lynn; Lorenz, J. L.

    2014-01-01

    The coastal wetlands of southwest Florida that extend from Charlotte Harbor south to Cape Sable, contain more than 60,000 ha of mangroves and 22,177 ha of salt marsh. These coastal wetlands form a transition zone between the freshwater and marine environments of the South Florida Coastal Marine Ecosystem (SFCME). The coastal wetlands provide diverse ecosystem services that are valued by society and thus are important to the economy of the state. Species from throughout the region spend part of their life cycle in the coastal wetlands, including many marine and coastal-dependent species, making this zone critical to the ecosystem health of the Everglades and the SFCME. However, the coastal wetlands are increasingly vulnerable due to rising sea level, changes in storm intensity and frequency, land use, and water management practices. They are at the boundary of the region covered by the Comprehensive Everglades Restoration Plan (CERP), and thus are impacted by both CERP and marine resource management decisions. An integrated conceptual ecological model (ICEM) for the southwest coastal wetlands of Florida was developed that illustrates the linkages between drivers, pressures, ecological process, and ecosystem services. Five ecological indicators are presented: (1) mangrove community structure and spatial extent; (2) waterbirds; (3) prey-base fish and macroinvertebrates; (4) crocodilians; and (5) periphyton. Most of these indicators are already used in other areas of south Florida and the SFCME, and therefore will allow metrics from the coastal wetlands to be used in system-wide assessments that incorporate the entire Greater Everglades Ecosystem.

  13. Probabilistic models of cognition: conceptual foundations.

    PubMed

    Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan

    2006-07-01

    Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.

  14. Theoretical model of the helium zone plate microscope

    NASA Astrophysics Data System (ADS)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil

    2017-01-01

    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  15. A Conceptual Hydrogeologic Model of the Vicinity of DUSEL Homestake

    NASA Astrophysics Data System (ADS)

    Murdoch, L. C.; Germanovich, L. N.; Boutt, D. F.; Kieft, T. L.; Wang, H. F.; Onstott, T. C.

    2009-12-01

    The Deep Underground Science and Engineering Laboratory (DUSEL) is a research facility planned to occupy the workings of the former Homestake gold mine in the northern Black Hills, South Dakota. The hydrogeology was of minor importance to locating and recovering gold ore, so it was overlooked during mining and is relatively unknown. This knowledge gap hinders planning of the Deep EcoHydrology Experiment at DUSEL and motivated the work described here. The conceptual hydrogeologic model is characterized by permeability that is assumed to be anisotropic and controlled by regional foliation, which strikes approximately N20W and dips steeply to the NE. Permeability is on the order of 0.1 mD in fresh rock, but increases to roughly 100 mD at shallow depths. The permeability distribution is assumed to result from unloading of the foliated rock, and a simple model of stress-dependence explains the permeability distribution and suggests that the more permeable zone is on the order of ~100 m thick. A stream hydrograph from Whitetail Creek (station 06436156) was analyzed to estimate recharge flux and the result indicates an average value of approximately 5 x 10-9 m/s. A numerical model of the vicinity of the mine was developed by representing the mine workings as a dual- porosity inclusion embedded in a single-porosity, anisotropic material. The extent of the dual-porosity medium was advanced downward based on the mining records and the hydraulic head within the material representing the mine workings was adjusted to represent filling and draining of the workings. The results suggest that the groundwater is characterized by a shallow flow system of distributed recharge that mostly discharges to nearby streams. The mine itself acts like a large sink that moves downward and to the southeast during mining, and then is controlled by variations in pumping rate once the mine reaches its greatest depth. The deep flow system consists of (i) a zone of relatively rapid flow from the

  16. Strategies to Move From Conceptual Models to Quantifying Resilience in FEW Systems

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Adam, J. C.; Boll, J.; Barber, M. E.; Cosens, B.; Goldsby, M.; Fortenbery, R.; Fowler, A.; Givens, J.; Guzman, C. D.; Hampton, S. E.; Harrison, J.; Huang, M.; Katz, S. L.; Kraucunas, I.; Kruger, C. E.; Liu, M.; Luri, M.; Malek, K.; Mills, A.; McLarty, D.; Pickering, N. B.; Rajagopalan, K.; Stockle, C.; Richey, A.; Voisin, N.; Witinok-Huber, B.; Yoder, J.; Yorgey, G.; Zhao, M.

    2017-12-01

    Understanding interdependencies within Food-Energy-Water (FEW) systems is critical to maintain FEW security. This project examines how coordinated management of physical (e.g., reservoirs, aquifers, and batteries) and non-physical (e.g., water markets, social capital, and insurance markets) storage systems across the three sectors promotes resilience. Coordination increases effective storage within the overall system and enhances buffering against shocks at multiple scales. System-wide resilience can be increased with innovations in technology (e.g., smart systems and energy storage) and institutions (e.g., economic systems and water law). Using the Columbia River Basin as our geographical study region, we use an integrated approach that includes a continuum of science disciplines, moving from theory to practice. In order to understand FEW linkages, we started with detailed, connected conceptual models of the food, energy, water, and social systems to identify where key interdependencies (i.e., overlaps, stocks, and flows) exist within and between systems. These are used to identify stress and opportunity points, develop innovation solutions across FEW sectors, remove barriers to the adoption of solutions, and quantify increases in system-wide resilience to regional and global change. The conceptual models act as a foundation from which we can identify key drivers, parameters, time steps, and variables of importance to build and improve existing systems dynamic and biophysical models. Our process of developing conceptual models and moving to integrated modeling is critical and serves as a foundation for coupling quantitative components with economic and social domain components and analyses of how these interact through time and space. This poster provides a description of this process that pulls together conceptual maps and integrated modeling output to quantify resilience across all three of the FEW sectors (a.k.a. "The Resilience Calculator"). Companion posters

  17. Mapping the Territory: A Conceptual Model of Scholastic Journalism.

    ERIC Educational Resources Information Center

    Arnold, Mary

    1991-01-01

    Describes scholastic journalism as the teaching of secondary school students to gather, process, and present information to an audience. Offers a model focusing upon scholastic journalism's conceptual areas of law and ethics, history and cultural diversity, technology and financial support, media and content, pedagogy, and working context as a…

  18. Conceptual Model for Quality of Life among Adults With Congenital or Early Deafness

    PubMed Central

    Kushalnagar, P; McKee, M; Smith, SR; Hopper, M; Kavin, D; Atcherson, SR

    2015-01-01

    Background A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. Objective: To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Methods Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Results Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Conclusions Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. PMID:24947577

  19. Conceptual model for quality of life among adults with congenital or early deafness.

    PubMed

    Kushalnagar, Poorna; McKee, Michael; Smith, Scott R; Hopper, Melinda; Kavin, Denise; Atcherson, Samuel R

    2014-07-01

    A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Soil moisture dynamics modeling considering multi-layer root zone.

    PubMed

    Kumar, R; Shankar, V; Jat, M K

    2013-01-01

    The moisture uptake by plant from soil is a key process for plant growth and movement of water in the soil-plant system. A non-linear root water uptake (RWU) model was developed for a multi-layer crop root zone. The model comprised two parts: (1) model formulation and (2) moisture flow prediction. The developed model was tested for its efficiency in predicting moisture depletion in a non-uniform root zone. A field experiment on wheat (Triticum aestivum) was conducted in the sub-temperate sub-humid agro-climate of Solan, Himachal Pradesh, India. Model-predicted soil moisture parameters, i.e., moisture status at various depths, moisture depletion and soil moisture profile in the root zone, are in good agreement with experiment results. The results of simulation emphasize the utility of the RWU model across different agro-climatic regions. The model can be used for sound irrigation management especially in water-scarce humid, temperate, arid and semi-arid regions and can also be integrated with a water transport equation to predict the solute uptake by plant biomass.

  1. Bayesian Modeling of Exposure and Airflow Using Two-Zone Models

    PubMed Central

    Zhang, Yufen; Banerjee, Sudipto; Yang, Rui; Lungu, Claudiu; Ramachandran, Gurumurthy

    2009-01-01

    Mathematical modeling is being increasingly used as a means for assessing occupational exposures. However, predicting exposure in real settings is constrained by lack of quantitative knowledge of exposure determinants. Validation of models in occupational settings is, therefore, a challenge. Not only do the model parameters need to be known, the models also need to predict the output with some degree of accuracy. In this paper, a Bayesian statistical framework is used for estimating model parameters and exposure concentrations for a two-zone model. The model predicts concentrations in a zone near the source and far away from the source as functions of the toluene generation rate, air ventilation rate through the chamber, and the airflow between near and far fields. The framework combines prior or expert information on the physical model along with the observed data. The framework is applied to simulated data as well as data obtained from the experiments conducted in a chamber. Toluene vapors are generated from a source under different conditions of airflow direction, the presence of a mannequin, and simulated body heat of the mannequin. The Bayesian framework accounts for uncertainty in measurement as well as in the unknown rate of airflow between the near and far fields. The results show that estimates of the interzonal airflow are always close to the estimated equilibrium solutions, which implies that the method works efficiently. The predictions of near-field concentration for both the simulated and real data show nice concordance with the true values, indicating that the two-zone model assumptions agree with the reality to a large extent and the model is suitable for predicting the contaminant concentration. Comparison of the estimated model and its margin of error with the experimental data thus enables validation of the physical model assumptions. The approach illustrates how exposure models and information on model parameters together with the knowledge of

  2. Pattern of students' conceptual change on magnetic field based on students' mental models

    NASA Astrophysics Data System (ADS)

    Hamid, Rimba; Widodo, Ari; Sopandi, Wahyu

    2017-05-01

    Students understanding about natural phenomena can be identified by analyzing their mental model. Changes in students' mental model are good indicator of students' conceptual change. This research aims at identifying students' conceptual change by analyzing changes in students' mental model. Participants of the study were twenty five elementary school students. Data were collected through throughout the lessons (prior to the lessons, during the lessons and after the lessons) based on students' written responses and individual interviews. Lessons were designed to facilitate students' conceptual change by allowing students to work in groups of students who have the similar ideas. Therefore, lessons were students-directed. Changes of students' ideas in every stage of the lessons were identified and analyzed. The results showed that there are three patterns of students' mental models, namely type of scientific (44%), analogous to everyday life (52%), and intuitive (4%). Further analyses of the pattern of their conceptual change identifies four different patterns, i.e. consistently correct (20%), consistently incomplete (16%), changing from incorrect to incomplete (8%), changing from incomplete to complete (32%), changing from complete to incorrect (4%), and changing from incorrect to complete (4%). This study suggest that the process of learning science does not move in a linear and progressive ways, rather they move in random and may move backward and forward.

  3. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  4. Moving from Victim to Survivor of Cultural Violence: A Conceptual Model

    ERIC Educational Resources Information Center

    Salazar, Carmen F.; Casto, Challon

    2008-01-01

    The authors propose the Moving From Victim to Survivor of Cultural Violence model, using the stages of D. W. Sue and D. Sue's (1999) Racial/Cultural Identity Development model. This conceptual model describes the process of first overcoming internalized sexism, domestic abuse, sexual harassment, rape, and other forms of oppression and then healing…

  5. Enabling new graduate midwives to work in midwifery continuity of care models: A conceptual model for implementation.

    PubMed

    Cummins, Allison M; Catling, Christine; Homer, Caroline S E

    2017-12-04

    High-level evidence demonstrates midwifery continuity of care is beneficial for women and babies. Women have limited access to midwifery continuity of care models in Australia. One of the factors limiting women's access is recruiting enough midwives to work in continuity. Our research found that newly graduated midwives felt well prepared to work in midwifery led continuity of care models, were well supported to work in the models and the main driver to employing them was a need to staff the models. However limited opportunities exist for new graduate midwives to work in midwifery continuity of care. The aim of this paper therefore is to describe a conceptual model developed to enable new graduate midwives to work in midwifery continuity of care models. The findings from a qualitative study were synthesised with the existing literature to develop a conceptual model that enables new graduate midwives to work in midwifery continuity of care. The model contains the essential elements to enable new graduate midwives to work in midwifery continuity of care models. Each of the essential elements discussed are to assist midwifery managers, educators and new graduates to facilitate the organisational changes required to accommodate new graduates. The conceptual model is useful to show maternity services how to enable new graduate midwives to work in midwifery continuity of care models. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  6. Hydrogeologic setting and conceptual hydrologic model of the Spring Creek basin, Centre County, Pennsylvania

    USGS Publications Warehouse

    Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.

    2005-01-01

    The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.

  7. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  8. Eating disorders and non-suicidal self-injury: Structural equation modelling of a conceptual model.

    PubMed

    Vieira, Ana Isabel; Machado, Bárbara C; Moreira, Célia S; Machado, Paulo P P; Brandão, Isabel; Roma-Torres, António; Gonçalves, Sónia

    2018-06-14

    Evidence suggests several risk factors for both eating disorders (ED) and nonsuicidal self-injury (NSSI), but the relationships between these factors are not well understood. Considering our previous work and a conceptual model, this cross-sectional study aimed to assess the relationships among distal and proximal factors for the presence of NSSI in ED. We assessed 245 ED patients with the Oxford Risk Factor Interview for ED. Structural equation modelling revealed that both distal and proximal factors were related to the presence of NSSI in ED, disclosing a mediating role of the proximal factors. Stressful life events mediated the relationship between childhood sexual abuse, peer aggression, and both ED and NSSI. Childhood physical abuse was related to ED and NSSI via substance use, negative self-evaluation, and suicide attempts. Findings provided support for the conceptual model and highlight the possible mechanisms by which psychosocial factors may lead to ED and NSSI. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Understanding Co-development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    NASA Astrophysics Data System (ADS)

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-04-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.

  10. A Conceptual Model for Multidimensional Analysis of Documents

    NASA Astrophysics Data System (ADS)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  11. Conceptualizations of Creativity: Comparing Theories and Models of Giftedness

    ERIC Educational Resources Information Center

    Miller, Angie L.

    2012-01-01

    This article reviews seven different theories of giftedness that include creativity as a component, comparing and contrasting how each one conceptualizes creativity as a part of giftedness. The functions of creativity vary across the models, suggesting that while the field of gifted education often cites the importance of creativity, the…

  12. Model Package Report: Central Plateau Vadose Zone Geoframework Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Sarah D.

    The purpose of the Central Plateau Vadose Zone (CPVZ) Geoframework model (GFM) is to provide a reasonable, consistent, and defensible three-dimensional (3D) representation of the vadose zone beneath the Central Plateau at the Hanford Site to support the Composite Analysis (CA) vadose zone contaminant fate and transport models. The GFM is a 3D representation of the subsurface geologic structure. From this 3D geologic model, exported results in the form of point, surface, and/or volumes are used as inputs to populate and assemble the various numerical model architectures, providing a 3D-layered grid that is consistent with the GFM. The objective ofmore » this report is to define the process used to produce a hydrostratigraphic model for the vadose zone beneath the Hanford Site Central Plateau and the corresponding CA domain.« less

  13. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  14. Working in the Interpretive Zone: Conceptualizing Collaboration in Qualitative Research Teams.

    ERIC Educational Resources Information Center

    Wasser, Judith Davidson; Bresler, Liora

    1996-01-01

    Formulates the idea of the "interpretive zone" as a way to describe the space in which collaborative interpretation of research unfolds. Because of the importance of teamwork to qualitative research, the interpretive zone becomes a critical location for future methodological inquiry and examination of the dynamics of group research. (SLD)

  15. [Application analysis of Nursing Care Systematization according to Horta's Conceptual Model].

    PubMed

    da Cunha, Sandra Maria Botelho; Barros, Alba Lúcia Botura Leite

    2005-01-01

    This study has as purpose to analyse the implementation of the Nursing Care Systematization in a private hospital in medical surgical units. Results evidenced that the Horta's Conceptual Model was present only in part of nursing hystory instrument, that the remaining phases of nursing process were not inter-related and that there was a lack of coherence of the prescribed actions in relation to the patient's health condition. From the results of the study it can be concluded that the model used for Nursing Care Systematization is eclectic, not obeying therefore, only to Horta's conceptual model; the totality of the data had not been collected in some phases of the nursing process; there is no correlation of the phases in the majority of analyzed patient records; diagnostic and planning phases do not comprise the phases of the nursing process as proposed by Horta.

  16. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of

  17. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  18. Work zone lane closure analysis model.

    DOT National Transportation Integrated Search

    2009-10-01

    At the Alabama Department of Transportation (ALDOT), the tool used by traffic engineers to predict whether a queue will form at a freeway work zone is the Excel-based "Lane Rental Model" developed at the Oklahoma Department of Transportation (OkDOT) ...

  19. Geodynamic Modeling of the Subduction Zone around the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Honda, S.

    2017-06-01

    In this review, which focuses on our research, we describe the development of the thermomechanical modeling of subduction zones, paying special attention to those around the Japanese Islands. Without a sufficient amount of data and observations, models tended to be conceptual and general. However, the increasing power of computational tools has resulted in simple analytical and numerical models becoming more realistic, by incorporating the mantle flow around the subducting slab. The accumulation of observations and data has made it possible to construct regional models to understand the detail of the subduction processes. Recent advancements in the study of the seismic tomography and geology around the Japanese Islands has enabled new aspects of modeling the mantle processes. A good correlation between the seismic velocity anomalies and the finger-like distribution of volcanoes in northeast Japan has been recognized and small-scale convection (SSC) in the mantle wedge has been proposed to explain such a feature. The spatial and temporal evolution of the distribution of past volcanoes may reflect the characteristics of the flow in the mantle wedge, and points to the possibility of the flip-flopping of the finger-like pattern of the volcano distribution and the migration of volcanic activity from the back-arc side to the trench side. These observations are found to be qualitatively consistent with the results of the SSC model. We have also investigated the expected seismic anisotropy in the presence of SSC. The fast direction of the P-wave anisotropy generally shows the trench-normal direction with a reduced magnitude compared to the case without SSC. An analysis of full 3D seismic anisotropy is necessary to confirm the existence and nature of SSC. The 3D mantle flow around the subduction zone of plate-size scale has been modeled. It was found that the trench-parallel flow in the sub-slab mantle around the northern edge of the Pacific plate at the junction between

  20. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  1. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  2. An analytical model for non-conservative pollutants mixing in the surf zone.

    PubMed

    Ki, Seo Jin; Hwang, Jin Hwan; Kang, Joo-Hyon; Kim, Joon Ha

    2009-01-01

    Accurate simulation of the surf zone is a prerequisite to improve beach management as well as to understand the fundamentals of fate and transport of contaminants. In the present study, a diagnostic model modified from a classic solute model is provided to illuminate non-conservative pollutants behavior in the surf zone. To readily understand controlling processes in the surf zone, a new dimensionless quantity is employed with index of kappa number (K, a ratio of inactivation rate to transport rate of microbial pollutant in the surf zone), which was then evaluated under different environmental frames during a week simulation period. The sensitivity analysis showed that hydrodynamics and concentration gradients in the surf zone mostly depend on n (number of rip currents), indicating that n should be carefully adjusted in the model. The simulation results reveal, furthermore, that large deviation typically occurs in the daytime, signifying inactivation of fecal indicator bacteria is the main process to control surf zone water quality during the day. Overall, the analytical model shows a good agreement between predicted and synthetic data (R(2) = 0.51 and 0.67 for FC and ENT, respectively) for the simulated period, amplifying its potential use in the surf zone modelling. It is recommended that when the dimensionless index is much larger than 0.5, the present modified model can predict better than the conventional model, but if index is smaller than 0.5, the conventional model is more efficient with respect to time and cost.

  3. Evaluation of using digital gravity field models for zoning map creation

    NASA Astrophysics Data System (ADS)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  4. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Huet, B.; Labrousse, L.; Yao, K.; Agard, P.; Jolivet, L.

    2013-04-01

    We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr-Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes extremely penetrative but

  5. Conceptual Models of Social Determinants of Health: A Narrative Review

    PubMed Central

    HOSSEINI SHOKOUH, Sayyed Morteza; ARAB, Mohammad; EMAMGHOLIPOUR, Sara; RASHIDIAN, Arash; MONTAZERI, Ali; ZABOLI, Rouhollah

    2017-01-01

    Background: There are several conflicting conceptual models to explain social determinants of health (SDH) as responsible for most health inequalities. This study aimed to present these models in historical perspective and provide main component of SDH models as an SES indicators. Methods: This was a narrative study using international databases to retrieve literature dealing with conceptual models of SDH. All publication in English language until Mar 2015 was included. The CASP and PRISMA were used to summarize the literature. Results: Overall, 248 publications were retrieved and screened. After exclusion of irrelevant and duplicates, 94 citations were found to be relevant and 21 publications included in this review. In general, 21 models of SDH were found: some models presented before year 1995(n=4), some models presented between 1995 and 2005 (n=13) and some models presented after 2005 (n=4). However, we found three categories of indicators that contribute to SDH models and that were classic factors, fixed and demographic factors and proxy factors. Conclusion: Reduction of socioeconomic inequalities in health requires understanding of mechanisms and causal pathways; therefore, every country needs to design the specific model. As the available models are for developed countries, lack of a specific model for developing ones is tangible. As there is no gold standard related to SES indicators, therefore, it is proposed to use the various indicators based on life course approach, which leads to understanding and adopting effective policy interventions. PMID:28540259

  6. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  7. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  8. The nature of generalized anxiety disorder and pathological worry: current evidence and conceptual models.

    PubMed

    Brown, T A

    1997-10-01

    To examine the nature and conceptualization of generalized anxiety disorder (GAD) and chronic worry as well as data bearing on the validity of GAD as a distinct diagnosis. Narrative literature review. Although a wealth of data have been obtained on the epidemiology, genetics, and nature of GAD, many important questions remain regarding the validity of current conceptual models of pathological worry and the discriminability of GAD from certain emotional disorders (for instance, mood disorders) and higher-order trait vulnerability dimensions (for example, negative affect). Because the constituent features of GAD are salient to current conceptual models of emotional disorders (for example, models that implicate negative affect or worry/anxious apprehension as vulnerability factors), research on the nature of GAD and its associated features should provide important information on the pathogenesis, course, and co-occurrence of the entire range of anxiety and mood disorders.

  9. Development and validation of a mass casualty conceptual model.

    PubMed

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  10. Modeling Zone-3 Protection with Generic Relay Models for Dynamic Contingency Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; Vyakaranam, Bharat GNVSR; Diao, Ruisheng

    This paper presents a cohesive approach for calculating and coordinating the settings of multiple zone-3 protections for dynamic contingency analysis. The zone-3 protections are represented by generic distance relay models. A two-step approach for determining zone-3 relay settings is proposed. The first step is to calculate settings, particularly, the reach, of each zone-3 relay individually by iteratively running line open-end fault short circuit analysis; the blinder is also employed and properly set to meet the industry standard under extreme loading conditions. The second step is to systematically coordinate the protection settings of the zone-3 relays. The main objective of thismore » coordination step is to address the over-reaching issues. We have developed a tool to automate the proposed approach and generate the settings of all distance relays in a PSS/E dyr format file. The calculated zone-3 settings have been tested on a modified IEEE 300 system using a dynamic contingency analysis tool (DCAT).« less

  11. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  12. A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment

    Treesearch

    Tyler Jon Smith

    2008-01-01

    In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...

  13. Performance measurement for people with multiple chronic conditions: conceptual model.

    PubMed

    Giovannetti, Erin R; Dy, Sydney; Leff, Bruce; Weston, Christine; Adams, Karen; Valuck, Tom B; Pittman, Aisha T; Blaum, Caroline S; McCann, Barbara A; Boyd, Cynthia M

    2013-10-01

    Improving quality of care for people with multiple chronic conditions (MCCs) requires performance measures reflecting the heterogeneity and scope of their care. Since most existing measures are disease specific, performance measures must be refined and new measures must be developed to address the complexity of care for those with MCCs. To describe development of the Performance Measurement for People with Multiple Chronic Conditions (PM-MCC) conceptual model. Framework development and a national stakeholder panel. We used reviews of existing conceptual frameworks of performance measurement, review of the literature on MCCs, input from experts in the multistakeholder Steering Committee, and public comment. The resulting model centers on the patient and family goals and preferences for care in the context of multiple care sites and providers, the type of care they are receiving, and the national priority domains for healthcare quality measurement. This model organizes measures into a comprehensive framework and identifies areas where measures are lacking. In this context, performance measures can be prioritized and implemented at different levels, in the context of patients' overall healthcare needs.

  14. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  15. NaturAnalogs for the Unsaturated Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Simmons; A. Unger; M. Murrell

    2000-03-08

    The purpose of this Analysis/Model Report (AMR) is to document natural and anthropogenic (human-induced) analog sites and processes that are applicable to flow and transport processes expected to occur at the potential Yucca Mountain repository in order to build increased confidence in modeling processes of Unsaturated Zone (UZ) flow and transport. This AMR was prepared in accordance with ''AMR Development Plan for U0135, Natural Analogs for the UZ'' (CRWMS 1999a). Knowledge from analog sites and processes is used as corroborating information to test and build confidence in flow and transport models of Yucca Mountain, Nevada. This AMR supports the Unsaturatedmore » Zone (UZ) Flow and Transport Process Model Report (PMR) and the Yucca Mountain Site Description. The objectives of this AMR are to test and build confidence in the representation of UZ processes in numerical models utilized in the UZ Flow and Transport Model. This is accomplished by: (1) applying data from Boxy Canyon, Idaho in simulations of UZ flow using the same methodologies incorporated in the Yucca Mountain UZ Flow and Transport Model to assess the fracture-matrix interaction conceptual model; (2) Providing a preliminary basis for analysis of radionuclide transport at Pena Blanca, Mexico as an analog of radionuclide transport at Yucca Mountain; and (3) Synthesizing existing information from natural analog studies to provide corroborating evidence for representation of ambient and thermally coupled UZ flow and transport processes in the UZ Model.« less

  16. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin

    2006-01-01

    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  17. A Conceptual Model for Analysing Management Development in the UK Hospitality Industry

    ERIC Educational Resources Information Center

    Watson, Sandra

    2007-01-01

    This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…

  18. A Conceptual Model for Increasing Use of Electronic Medical Records by Primary Care Physicians Through End-User Support.

    PubMed

    Randhawa, Gurprit K

    2017-01-01

    A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.

  19. How Instruction Influences Conceptual Development: Vygotsky's Theory Revisited

    ERIC Educational Resources Information Center

    Clarà, Marc

    2017-01-01

    Although current interpretations of Vygotsky's theory largely assume that instruction pushes development, the issue of how this occurs has yet to be clarified. For example, the notion of "zone of proximal development" has aroused strong disagreement, and the common conceptualization of the notion of "nonspontaneous concept" has…

  20. A Conceptual Model of the Pasadena Housing System

    NASA Technical Reports Server (NTRS)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  1. Designing Public Library Websites for Teens: A Conceptual Model

    ERIC Educational Resources Information Center

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  2. Comparing two-zone models of dust exposure.

    PubMed

    Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W

    2011-09-01

    The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.

  3. Establishing the Conceptual Model to Connect Stress with Geoelectric Signals

    NASA Astrophysics Data System (ADS)

    Chen, H. J.; Chen, C. C.; Ouillon, G.; Sornette, D.

    2017-12-01

    In this study, we conceptualize a completely novel model combining the seismic microruptures occurring within a generalized Burridge-Knopoff spring-block model, with the nucleation and propagation of geoelectric pulses within a coupled electrokinetic system (modelled with a series of RLC circuits). In particular, it is able to reproduce the unipolar pulses that have often been reported before large seismic events, as well as the observed anomalies in the statistical moments of the ambient electric field. This model is thus likely to open a new era of modeling and analyses of geoelectric precursors to earthquakes.

  4. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  5. Conceptual Model for Mitigating Human - Wildlife Conflict based on System Thinking

    NASA Astrophysics Data System (ADS)

    Patana, Pindi; Mawengkang, Herman; Silvi Lydia, Maya

    2018-01-01

    In conservation process it is unavoidably that conflict incidents may occur among the people and wild-life in the surrounding of the conservation area. Mitigating conflict between wildlife and people is considered a top conservation priority, particularly in landscapes where high densities of people and wildlife co-occur. This conflict is also happened in Leuser conservation area located in the border of North Sumatra and Aceh province, Indonesia. Easing the conflict problem is very difficult. This paper proposes a conceptual model based on system thinking to explore factors that may have great influence on the conflict and to figure out mitigating the conflict. We show how this conceptual framework can be utilized to analyze the conflict occur and further how it could used to develop a multi- criteria decision model.

  6. [Design of a conceptual model on the transference of public health research results in Honduras].

    PubMed

    Macías-Chapula, César A

    2012-01-01

    To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.

  7. A conceptual model to empower software requirements conflict detection and resolution with rule-based reasoning

    NASA Astrophysics Data System (ADS)

    Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed

    2016-08-01

    It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.

  8. A Conceptual Model for Effective Distance Learning in Higher Education

    ERIC Educational Resources Information Center

    Farajollahi, Mehran; Zare, Hosein; Hormozi, Mahmood; Sarmadi, Mohammad Reza; Zarifsanaee, Nahid

    2010-01-01

    The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is…

  9. Purpose and Pedagogy: A Conceptual Model for an ePortfolio

    ERIC Educational Resources Information Center

    Buyarski, Catherine A.; Aaron, Robert W.; Hansen, Michele J.; Hollingsworth, Cynthia D.; Johnson, Charles A.; Kahn, Susan; Landis, Cynthia M.; Pedersen, Joan S.; Powell, Amy A.

    2015-01-01

    This conceptual model emerged from the need to balance multiple purposes and perspectives associated with developing an ePortfolio designed to promote student development and success. A comprehensive review of literature from various disciplines, theoretical frameworks, and scholarship, including self-authorship, reflection, ePortfolio pedagogy,…

  10. Meaning in Life: A conceptual model for disaster nursing practice.

    PubMed

    Noviana, Uki; Miyazaki, Misako; Ishimaru, Mina

    2016-04-01

    This study aimed to develop a conceptual model for understanding meaning in life (MIL) using respondents' quotations in the primary qualitative studies. The primary studies were selected from the PsycINFO, PsycARTICLES and CINAHL databases using keywords 'meaning in life', 'meaning of life', 'purpose in life' and 'will to meaning'. Respondents' quotations in the primary studies were analysed interpretatively to identify MIL from the respondents' perspectives. The data were synthesized to integrate findings from 10 selected primary studies. The findings identified (i) six sources of MIL (e.g. having a significant others, having new experiences and performing spiritual activities); (ii) eight components of MIL (e.g. focusing on self, connecting to others, contributing to others and having a sense of direction and purpose); and (iii) the emotional outcomes of having MIL: happiness, satisfaction and joy. Through a discussion of the findings, a conceptual model of MIL emerged. © 2016 John Wiley & Sons Australia, Ltd.

  11. Scientific and conceptual flaws of coercive treatment models in addiction.

    PubMed

    Uusitalo, Susanne; van der Eijk, Yvette

    2016-01-01

    In conceptual debates on addiction, neurobiological research has been used to support the idea that addicted drug users lack control over their addiction-related actions. In some interpretations, this has led to coercive treatment models, in which, the purpose is to 'restore' control. However, neurobiological studies that go beyond what is typically presented in conceptual debates paint a different story. In particular, they indicate that though addiction has neurobiological manifestations that make the addictive behaviour difficult to control, it is possible for individuals to reverse these manifestations through their own efforts. Thus, addicted individuals should not be considered incapable of making choices voluntarily, simply on the basis that addiction has neurobiological manifestations, and coercive treatment models of addiction should be reconsidered in this respect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. The Role of Model Building in Problem Solving and Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Jonassen, David; Teo, Timothy

    2011-01-01

    This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…

  13. What if ? On alternative conceptual models and the problem of their implementation

    NASA Astrophysics Data System (ADS)

    Neuberg, Jurgen

    2015-04-01

    Seismic and other monitoring techniques rely on a set of conceptual models on the base of which data sets can be interpreted. In order to do this on an operational level in volcano observatories these models need to be tested and ready for an interpretation in a timely manner. Once established, scientists in charge advising stakeholders and decision makers often stick firmly to these models to avoid confusion by giving alternative versions of interpretations to non-experts. This talk gives an overview of widely accepted conceptual models to interpret seismic and deformation data, and highlights in a few case studies some of the arising problems. Aspects covered include knowledge transfer between research institutions and observatories, data sharing, the problem of up-taking advice, and some hidden problems which turn out to be much more critical in assessing volcanic hazard than the actual data interpretation.

  14. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  15. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  16. INEEL Subregional Conceptual Model Report Volume 3: Summary of Existing Knowledge of Natural and Anthropogenic Influences on the Release of Contaminants to the Subsurface Environment from Waste Source Terms at the INEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul L. Wichlacz

    2003-09-01

    This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventorymore » of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.« less

  17. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    NASA Astrophysics Data System (ADS)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated

  18. Sources of Sex Discrimination in Educational Systems: A Conceptual Model

    ERIC Educational Resources Information Center

    Kutner, Nancy G.; Brogan, Donna

    1976-01-01

    A conceptual model is presented relating numerous variables contributing to sexism in American education. Discrimination is viewed as intervening between two sets of interrelated independent variables and the dependent variable of sex inequalities in educational attainment. Sex-role orientation changes are the key to significant change in the…

  19. Testing a Conceptual Model of Working through Self-Defeating Patterns

    ERIC Educational Resources Information Center

    Wei, Meifen; Ku, Tsun-Yao

    2007-01-01

    The present study developed and examined a conceptual model of working through self-defeating patterns. Participants were 390 college students at a large midwestern university. Results indicated that self-defeating patterns mediated the relations between attachment and distress. Also, self-esteem mediated the link between self-defeating patterns…

  20. On the mutual relationship between conceptual models and datasets in geophysical monitoring of volcanic systems

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Thomas, M.; Pascal, K.; Karl, S.

    2012-04-01

    Geophysical datasets are essential to guide particularly short-term forecasting of volcanic activity. Key parameters are derived from these datasets and interpreted in different ways, however, the biggest impact on the interpretation is not determined by the range of parameters but controlled through the parameterisation and the underlying conceptual model of the volcanic process. On the other hand, the increasing number of sophisticated geophysical models need to be constrained by monitoring data, to transform a merely numerical exercise into a useful forecasting tool. We utilise datasets from the "big three", seismology, deformation and gas emissions, to gain insight in the mutual relationship between conceptual models and constraining data. We show that, e.g. the same seismic dataset can be interpreted with respect to a wide variety of different models with very different implications to forecasting. In turn, different data processing procedures lead to different outcomes even though they are based on the same conceptual model. Unsurprisingly, the most reliable interpretation will be achieved by employing multi-disciplinary models with overlapping constraints.

  1. Conceptual model of turbulent flameholding for scramjet combustors

    NASA Technical Reports Server (NTRS)

    Huber, P. W.

    1980-01-01

    New concepts and approaches to scramjet combustor design are presented. Blowoff was from failure of the recirculation-zone (RZ) flame to reach the dividing streamline (DS) at the rear stagnation zone. Increased turbulent exchange across the DS helped flameholding due to forward movement of the flame anchor point inside the RZ. Modeling of the blowoff phenomenon was based on a mass conservation concept involving the traverse of a flame element across the RZ and a flow element along the DS. The scale required to achieve flameholding, predicted by the model, showed a strong adverse effect of low pressure and low fuel equivalence ratio, moderate effect of flight Mach number, and little effect of temperature recovery factor. Possible effects of finite rate chemistry on flameholding and flamespreading in scramjets are discussed and recommendations for approaches to engine combustor design as well as for needed research to reduce uncertainties in the concepts are made.

  2. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    EPA Pesticide Factsheets

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  3. Revising a conceptual model of partnership and sustainability in global health.

    PubMed

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  4. A conceptual holding model for veterinary applications.

    PubMed

    Ferrè, Nicola; Kuhn, Werner; Rumor, Massimo; Marangon, Stefano

    2014-05-01

    Spatial references are required when geographical information systems (GIS) are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals) is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a \\"schema\\" that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application \\"schema\\" of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC--INSPIRE). The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application \\"schema\\" that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  5. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  6. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  7. Classroom Model of a Wadati Zone.

    ERIC Educational Resources Information Center

    Shea, James H.

    1980-01-01

    Describes a plexiglass and aluminum model of a Wadati zone suitable for classroom exercises and demonstrations in earth science to let students test the hypothesis that earthquake hypocenters near oceanic trenches tend to occur along planes that dip away from the trenches, toward associated island arc or continental mountain chain. (Author/JN)

  8. A New Conceptual Model for Understanding International Students' College Needs

    ERIC Educational Resources Information Center

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  9. A CONCEPTUAL MODEL FOR MULTI-SCALAR ASSESSMENTS OF ESTUARINE ECOLOGICAL INTEGRITY

    EPA Science Inventory

    A conceptual model was developed that relates an estuarine system's anthropogenic inputs to it's ecological integrity. Ecological integrity is operationally defined as an emergent property of an ecosystem that exists when the structural components are complete and the functional ...

  10. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Wealthall, Gary P.; Dearden, Rachel A.; McAlary, Todd A.

    2011-04-01

    Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone — VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site — VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes — e.g., multi-mechanistic sorption phase partitioning, and

  11. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow

  12. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  13. Patient-reported outcomes in insomnia: development of a conceptual framework and endpoint model.

    PubMed

    Kleinman, Leah; Buysse, Daniel J; Harding, Gale; Lichstein, Kenneth; Kalsekar, Anupama; Roth, Thomas

    2013-01-01

    This article describes qualitative research conducted with patients with clinical diagnoses of insomnia and focuses on the development of a conceptual framework and endpoint model that identifies a hierarchy and interrelationships of potential outcomes in insomnia research. Focus groups were convened to discuss how patients experience insomnia and to generate items for patient-reported questionnaires on insomnia and associated daytime consequences. Results for the focus group produced two conceptual frameworks: one for sleep and one for daytime impairment. Each conceptual framework consists of hypothesized domains and items in each domain based on patient language taken from the focus group. These item pools may ultimately serve as a basis to develop new questionnaires to assess insomnia.

  14. Geographers in the Post-Industrial Age: A Conceptual Curriculum Model for Geography.

    ERIC Educational Resources Information Center

    Verduin-Muller, Henriette

    The document describes a conceptual curriculum model for designing original geographical curriculum materials. The model emanated from a series of research projects at the Geographical Institute's Department of Geography for Education at the Rijksuniversiteit of Utrecht, the Netherlands. The objective of the research was to gain insight into the…

  15. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates basedmore » on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  16. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the

  17. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  18. Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Wendy H.; McNicol, Gavin; Teh, Yit Arn; Estera-Molina, Katerina; Wood, Tana E.; Silver, Whendee L.

    2017-09-01

    Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamics—in which the water table position determines the vertical distribution of methanogenesis and methanotrophy—versus an emerging model in which methanogenesis and methanotrophy can both occur throughout the soil profile due to spatially heterogeneous redox and anaerobic CH4 oxidation. We simultaneously measured gross CH4 production and oxidation in situ across a microtopographical gradient in a drained temperate peatland and ex situ along the soil profile, giving us novel insight into the component fluxes of landscape-level net CH4 fluxes. Net CH4 fluxes varied among landforms (p < 0.001), ranging from 180.3 ± 81.2 mg C m-2 d-1 in drainage ditches to -0.7 ± 1.2 mg C m-2 d-1 in the highest landform. Contrary to prediction by the classical conceptual model, variability in methanogenesis alone drove the landscape-level net CH4 flux patterns. Consistent with the emerging model, freshly collected soils from above the water table produced CH4 within anaerobic microsites. Even in soil from beneath the water table, gross CH4 production was best predicted by the methanogenic fraction of carbon mineralization, an index of highly reducing microsites. We measured low rates of anaerobic CH4 oxidation, which may have been limited by relatively low in situ CH4 concentrations in the hummock/hollow soil profile. Our study revealed complex CH4 dynamics better represented by the emerging heterogeneous conceptual model than the classical model based on redox strata.

  19. Numerical Modelling of Subduction Zones: a New Beginning

    NASA Astrophysics Data System (ADS)

    Ficini, Eleonora; Dal Zilio, Luca; Doglioni, Carlo; Gerya, Taras V.

    2016-04-01

    Subduction zones are one of the most studied although still controversial geodynamic process. Is it a passive or an active mechanism in the frame of plate tectonics? How subduction initiates? What controls the differences among the slabs and related orogens and accretionary wedges? The geometry and kinematics at plate boundaries point to a "westerly" polarized flow of plates, which implies a relative opposed flow of the underlying Earth's mantle, being the decoupling located at about 100-200 km depth in the low-velocity zone or LVZ (Doglioni and Panza, 2015 and references therein). This flow is the simplest explanation for determining the asymmetric pattern of subduction zones; in fact "westerly" directed slabs are steeper and deeper with respect to the "easterly or northeasterly" directed ones, that are less steep and shallower, and two end members of orogens associated to the downgoing slabs can be distinguished in terms of topography, type of rocks, magmatism, backarc spreading or not, foredeep subsidence rate, etc.. The classic asymmetry comparing the western Pacific slabs and orogens (low topography and backarc spreading in the upper plate) and the eastern Pacific subduction zones (high topography and deep rocks involved in the upper plate) cannot be ascribed to the age of the subducting lithosphere. In fact, the same asymmetry can be recognized all over the world regardless the type and age of the subducting lithosphere, being rather controlled by the geographic polarity of the subduction. All plate boundaries move "west". Present numerical modelling set of subduction zones is based on the idea that a subducting slab is primarily controlled by its negative buoyancy. However, there are several counterarguments against this assumption, which is not able to explain the global asymmetric aforementioned signatures. Moreover, petrological reconstructions of the lithospheric and underlying mantle composition, point for a much smaller negative buoyancy than predicted

  20. Root Zone Water Quality Model (RZWQM2): Model use, calibration, and validation

    USDA-ARS?s Scientific Manuscript database

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model it has many desirable features for the modeling community. This paper outlines the principles of calibr...

  1. A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems

    NASA Astrophysics Data System (ADS)

    Duque, Rafael; Bravo, Crescencio; Ortega, Manuel

    Collaborative work using groupware systems is a dynamic process in which many tasks, in different application domains, are carried out. Currently, one of the biggest challenges in the field of CSCW (Computer-Supported Cooperative Work) research is to establish conceptual models which allow for the analysis of collaborative activities and their resulting products. In this article, we propose an ontology that conceptualizes the required elements which enable an analysis to infer a set of analysis indicators, thus evaluating both the individual and group work and the artefacts which are produced.

  2. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of

  3. A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania

    NASA Astrophysics Data System (ADS)

    Boukhemacha, Mohamed Amine; Gogu, Constantin Radu; Serpescu, Irina; Gaitanaru, Dragos; Bica, Ioan

    2015-05-01

    Management of groundwater systems in urban areas is necessary and can be reliably performed by means of mathematical modeling combined with geospatial analysis. A conceptual approach for the study of urban hydrogeological systems is presented. The proposed approach is based on the features of Bucharest city (Romania) and can be adapted to other urban areas showing similar characteristics. It takes into account the interaction between groundwater and significant urban infrastructure elements that can be encountered in modern cities such as subway tunnels and water-supply networks, and gives special attention to the sewer system. In this respect, an adaptation of the leakage factor approach is proposed, which uses a sewer-system zoning function related to the conduits' location in the aquifer system and a sewer-conduits classification function related to their structural and/or hydraulic properties. The approach was used to elaborate a single-layered steady state groundwater flow model for a pilot zone of Bucharest city.

  4. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates

  5. The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.

    PubMed

    Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K

    2000-06-01

    The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.

  6. Explorative study on management model of tourism business zone at Kuta, Bali

    NASA Astrophysics Data System (ADS)

    Astawa, I. K.; Suardani, A. A. P.; Harmini, A. A. A. N.

    2018-01-01

    Business activities through asset management of indigenous village of Kuta provide an opportunity for the community to participate in improving their welfare. This study aims to analyze the management model of Kuta’s tourism business zone, the involvement of stakeholders in the management of Kuta’s tourism business zone in indigenous village of Kuta and the implications of each business tourism zone in indigenous village of Kuta in the level of community welfare in each zone. Data collection was done by observation, interview, questionnaire, and documentation. The main instrument of this study is the researchers themselves assisted with interview guideline. The results showed that the management model has been arranged in 5 tourism business zones in indigenous village of Kuta. The involvement of all stakeholders in the management of the tourism business zone follows the procedure of execution of duties and provides security, comfort and certainty of doing business activities at each zone. The implications of the tourism business in the level of community welfare in each zone in indigenous village of Kuta have been able to bring happiness in business and all community are satisfied with the income they earned from work in each business zone.

  7. Checking a Conceptual Model for Groundwater Flow in the Fractured Rock at Äspö, Sweden

    NASA Astrophysics Data System (ADS)

    Kröhn, K. P.

    2015-12-01

    The underground Hard Rock Laboratory (HRL) at Äspö, Sweden, is located in granitic rock and dedicated to investigations concerning deep geological disposal of radioactive waste. Several in-situ experiments have been performed in the HRL, among them the recent Buffer-Rock Interaction Experiment (BRIE) and, on a much larger scale, the long-term Prototype Repository (PR) experiment.Interpretation of such experiments requires a profound understanding of the groundwater flow system. Often assumed is a conceptual model where the so-called "intact rock" is interspersed with stochastically distributed fractures. It is also a common assumption, though, that fractures in granite exist on all length-scales implying that the hydraulically relevant rock porosity is basically made up of micro fractures. The conceptual approach of GRS' groundwater flow code d3f thus appeared to be fitting where large fractures are represented discretely by lower-dimensional features while the remaining set of smaller fractures - also called "background fractures" - is assumed to act like an additional homogeneous continuum besides what is believed to be the undisturbed matrix. This approach was applied to a hydraulic model of the BRIE in a cube-like domain of 40 m side length including drifts, boreholes and three intersecting large fractures. According to observations at the underground rock laboratories Stripa and the HRL a narrow zone of reduced permeability - called "skin" - was additionally arranged around all geotechnical openings. Calibration of the model resulted in a considerable increase of matrix permeability due to adding the effect of the background fractures. To check the validity of this approach the calibrated data for the BRIE were applied to a model for the PR which is also located in the HRL but at quite some distance. The related brick-shaped model domain has a size of 200 m x 150 m x 50 m. Fitting the calculated outflow from the rock to the measured outflow distribution

  8. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  9. Evaluation of a distributed catchment scale water balance model

    NASA Technical Reports Server (NTRS)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  10. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    PubMed

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  11. Influences of Dam Operations in Groundwater-Surface Water Mixing Zones: Towards Multiscale Understanding

    NASA Astrophysics Data System (ADS)

    Stegen, J.; Scheibe, T. D.; Chen, X.; Huang, M.; Arntzen, E.; Garayburu-Caruso, V. A.; Graham, E.; Johnson, T. C.; Strickland, C. E.

    2017-12-01

    The installation and operation of dams have myriad influences on ecosystems, from direct effects on hydrographs to indirect effects on marine biogeochemistry and terrestrial food webs. With > 50000 existing and > 3700 planned large dams world-wide there is a pressing need for holistic understanding of dam impacts. Such understanding is likely to reveal unrecognized opportunities to modify dam operations towards beneficial outcomes. One of the most dramatic influences of daily dam operations is the creation of `artificial intertidal zones' that emerge from short-term increases and decreases in discharge due to hydroelectric power demands; known as hydropeaking. There is a long history of studying the influences of hydropeaking on macrofauna such as fish and invertebrates, but only recently has significant attention been paid to the hydrobiogeochemical effects of hydropeaking. Our aim here is to develop an integrated conceptual model of the hydrobiogeochemical influences of hydropeaking. To do so we reviewed available literature focusing on hydrologic and/or biogeochemical influences of hydropeaking. Results from these studies were collated into a single conceptual model that integrates key physical (e.g., sediment transport, hydromorphology) and biological (e.g., timescale of microbiome response) processes. This conceptual model highlights non-intuitive impacts of hydropeaking, the presence of critical thresholds, and strong interactions among processes. When examined individually these features suggest context dependency, but when viewed through an integrated conceptual model, common themes emerge. We will further discuss a critical next step, which is the local to regional to global evaluation of this conceptual model, to enable multiscale understanding. We specifically propose a global `hydropeaking network' of researchers using common methods, data standards, and analysis techniques to quantify the hydrobiogeochemical effects of hydropeaking across biomes. We

  12. Dynamic topography in subduction zones: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bajolet, Flora; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    The topography in subduction zones can exhibit very complex patterns due to the variety of forces operating this setting. If we can deduce the theoretical isostatic value from density structure of the lithosphere, the effect of flexural bending and the dynamic component of topography are difficult to quantify. In this work, we attempt to measure and analyze the topography of the overriding plate during subduction compared to a pure shortening setting. We use analog models where the lithospheres are modeled by thin-sheet layers of silicone putty lying on low-viscosity syrup (asthenosphere). The model is shorten by a piston pushing an oceanic plate while a continental plate including a weak zone to localize the deformation is fixed. In one type of experiments, the oceanic plate bends and subducts underneath the continental one; in a second type the two plates are in contact without any trench, and thus simply shorten. The topography evolution is monitored with a laser-scanner. In the shortening model, the elevation increases progressively, especially in the weak zone, and is consistent with expected isostatic values. In the subduction model, the topography is characterized, from the piston to the back-wall, by a low elevation of the dense oceanic plate, a flexural bulge, the trench forming a deep depression, the highly elevated weak zone, and the continental upper plate of intermediate elevation. The topography of the upper plate is consistent with isostatic values for very early stages, but exhibits lower elevations than expected for later stages. For a same amount of shortening of the continental plate, the thickening is the same and the plate should have the same elevation in both types of models. However, comparing the topography at 20, 29 and 39% of shortening, we found that the weak zone is 0.4 to 0.6 mm lower when there is an active subduction. Theses values correspond to 2.6 to 4 km in nature. Although theses values are high, there are of the same order as

  13. Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.

    PubMed

    Grosman, Benyamin; Dassau, Eyal; Zisser, Howard C; Jovanovic, Lois; Doyle, Francis J

    2010-07-01

    Development of an artificial pancreas based on an automatic closed-loop algorithm that uses a subcutaneous insulin pump and continuous glucose sensor is a goal for biomedical engineering research. However, closing the loop for the artificial pancreas still presents many challenges, including model identification and design of a control algorithm that will keep the type 1 diabetes mellitus subject in normoglycemia for the longest duration and under maximal safety considerations. An artificial pancreatic beta-cell based on zone model predictive control (zone-MPC) that is tuned automatically has been evaluated on the University of Virginia/University of Padova Food and Drug Administration-accepted metabolic simulator. Zone-MPC is applied when a fixed set point is not defined and the control variable objective can be expressed as a zone. Because euglycemia is usually defined as a range, zone-MPC is a natural control strategy for the artificial pancreatic beta-cell. Clinical data usually include discrete information about insulin delivery and meals, which can be used to generate personalized models. It is argued that mapping clinical insulin administration and meal history through two different second-order transfer functions improves the identification accuracy of these models. Moreover, using mapped insulin as an additional state in zone-MPC enriches information about past control moves, thereby reducing the probability of overdosing. In this study, zone-MPC is tested in three different modes using unannounced and announced meals at their nominal value and with 40% uncertainty. Ten adult in silico subjects were evaluated following a scenario of mixed meals with 75, 75, and 50 grams of carbohydrates (CHOs) consumed at 7 am, 1 pm, and 8 pm, respectively. Zone-MPC results are compared to those of the "optimal" open-loop preadjusted treatment. Zone-MPC succeeds in maintaining glycemic responses closer to euglycemia compared to the "optimal" open-loop treatment in te three

  14. Conceptual model of iCAL4LA: Proposing the components using comparative analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul

    2016-08-01

    This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.

  15. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    ERIC Educational Resources Information Center

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  16. A revised dislocation model of interseismic deformation of the Cascadia subduction zone

    USGS Publications Warehouse

    Wang, Kelin; Wells, Ray E.; Mazzotti, Stephane; Hyndman, Roy D.; Sagiya, Takeshi

    2003-01-01

    CAS3D‐2, a new three‐dimensional (3‐D) dislocation model, is developed to model interseismic deformation rates at the Cascadia subduction zone. The model is considered a snapshot description of the deformation field that changes with time. The effect of northward secular motion of the central and southern Cascadia forearc sliver is subtracted to obtain the effective convergence between the subducting plate and the forearc. Horizontal deformation data, including strain rates and surface velocities from Global Positioning System (GPS) measurements, provide primary geodetic constraints, but uplift rate data from tide gauges and leveling also provide important validations for the model. A locked zone, based on the results of previous thermal models constrained by heat flow observations, is located entirely offshore beneath the continental slope. Similar to previous dislocation models, an effective zone of downdip transition from locking to full slip is used, but the slip deficit rate is assumed to decrease exponentially with downdip distance. The exponential function resolves the problem of overpredicting coastal GPS velocities and underpredicting inland velocities by previous models that used a linear downdip transition. A wide effective transition zone (ETZ) partially accounts for stress relaxation in the mantle wedge that cannot be simulated by the elastic model. The pattern of coseismic deformation is expected to be different from that of interseismic deformation at present, 300 years after the last great subduction earthquake. The downdip transition from full rupture to no slip should take place over a much narrower zone.

  17. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation

  18. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A conceptual life-history model for pallid and shovelnose sturgeon

    USGS Publications Warehouse

    Wildhaber, Mark L.; DeLonay, Aaron J.; Papoulias, Diana M.; Galat, David L.; Jacobson, Robert B.; Simpkins, Darin G.; Braaten, P. J.; Korschgen, Carl E.; Mac, Michael J.

    2007-01-01

    Intensive management of the Missouri and Mississippi Rivers has resulted in dramatic physical changes to these rivers. These changes have been implicated as causative agents in the decline of pallid sturgeon. The pallid sturgeon, federally listed as endangered, is endemic to the turbid waters of the Missouri River and the Lower Mississippi River. The sympatric shovelnose sturgeon historically was more common and widespread than the pallid sturgeon. Habitat alteration, river regulation, pollution, and over-harvest have resulted in the now predictable patterns of decline and localized extirpation of sturgeon across species and geographic areas. Symptomatic of this generalized pattern of decline is poor reproductive success, and low or no recruitment of wild juveniles to the adult population. The purpose of this report is to introduce a conceptual life-history model of the factors that affect reproduction, growth, and survival of shovelnose and pallid sturgeons. The conceptual model provided here was developed to organize the understanding about the complex life history of Scaphirhynchus sturgeons. It was designed to be used for communication, planning, and to provide the structure for a population-forecasting model. These models are intended to be dynamic and responsive to new information and changes in river management, thereby providing scientists, stakeholders, and managers with ways to improve understanding of the effects of management actions on the ecological requirements of Scaphirhynchus sturgeons. As new scientific knowledge becomes available, it could be included in the model in many ways at various integration levels.

  20. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  1. Conceptualizing race in economic models of medical utilization: a case study of community-based elders and the emergency room.

    PubMed Central

    White-Means, S I

    1995-01-01

    There is no consensus on the appropriate conceptualization of race in economic models of health care. This is because race is rarely the primary focus for analysis of the market. This article presents an alternative framework for conceptualizing race in health economic models. A case study is analyzed to illustrate the value of the alternative conceptualization. The case study findings clearly document the importance of model stratification according to race. Moreover, the findings indicate that empirical results are improved when medical utilization models are refined in a way that reflects the unique experiences of the population that is studied. PMID:7721593

  2. EPA MODELING TOOLS FOR CAPTURE ZONE DELINEATION

    EPA Science Inventory

    The EPA Office of Research and Development supports a step-wise modeling approach for design of wellhead protection areas for water supply wells. A web-based WellHEDSS (wellhead decision support system) is under development for determining when simple capture zones (e.g., centri...

  3. Integrating O/S models during conceptual design, part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.

  4. An analogue conceptual rainfall-runoff model for educational purposes

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Riedl, Michael; Schulz, Karsten

    2016-04-01

    Conceptual rainfall-runoff models, in which runoff processes are modelled with a series of connected linear and non-linear reservoirs, remain widely applied tools in science and practice. Additionally, the concept is appreciated in teaching due to its somewhat simplicity in explaining and exploring hydrological processes of catchments. However, when a series of reservoirs are used, the model system becomes highly parametrized and complex and the traceability of the model results becomes more difficult to explain to an audience not accustomed to numerical modelling. Since normally the simulations are performed with a not visible digital code, the results are also not easily comprehensible. This contribution therefore presents a liquid analogue model, in which a conceptual rainfall-runoff model is reproduced by a physical model. This consists of different acrylic glass containers representing different storage components within a catchment, e.g. soil water or groundwater storage. The containers are equipped and connected with pipes, in which water movement represents different flow processes, e.g. surface runoff, percolation or base flow. Water from a storage container is pumped to the upper part of the model and represents effective rainfall input. The water then flows by gravity through the different pipes and storages. Valves are used for controlling the flows within the analogue model, comparable to the parameterization procedure in numerical models. Additionally, an inexpensive microcontroller-based board and sensors are used to measure storage water levels, with online visualization of the states as time series data, building a bridge between the analogue and digital world. The ability to physically witness the different flows and water levels in the storages makes the analogue model attractive to the audience. Hands-on experiments can be performed with students, in which different scenarios or catchment types can be simulated, not only with the analogue but

  5. Examining the Etiology of Reading Disability as Conceptualized by the Hybrid Model

    ERIC Educational Resources Information Center

    Erbeli, Florina; Hart, Sara A.; Wagner, Richard K.; Taylor, Jeanette

    2018-01-01

    A fairly recent definition of reading disability (RD) is that in the form of a hybrid model. The model views RD as a latent construct that is manifested through various observable unexpected impairments in reading-related skills and through inadequate response to intervention. The current report evaluated this new conceptualization of RD from an…

  6. 1994 conceptual model of the carbon tetrachloride contamination in the 200 West Area at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, V.J.

    1994-08-01

    Between 1955 and 1973, a total of 363,000 to 580,000 L (577,000 to kg) of liquid carbon tetrachloride, in mixtures with other organic and aqueous, actinide-bearing fluids, were discharged to the soil column at three disposal facilities -- the 216-Z-9 Trench, the 216-Z-lA TiTe Field, and the 216-Z-18 Crib -- in the 200 West Area at the Hanford Site. In the mid-1980`s, dissolved carbon tetrachloride was found in the uppermost aquifer beneath the disposal facilities, and in late 1990, the US Environmental Protection Agency and the Washington State Department of Ecology requested that the US Department of Energy proceed withmore » planning and implementation of an expedited response action (ERA) to minimize additional carbon tetrachloride contamination of the groundwater. In February 1992, soil vapor extraction was initiated to remove carbon tetrachloride from the unsaturated zone beneath these disposal facilities. By May 1994, a total of 10,560 L (16,790 kg) of carbon tetrachloride had been removed, amounting to an estimated 2% of the discharged inventory. In the spring of 1991, the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) program selected the carbon tetrachloride-contaminated site for demonstration and deployment of new technologies for evaluation and cleanup of volatile organic compounds and associated contaminants in soils and groundwater at arid sites. Site investigations conducted in support of both the ERA and the VOC-Arid ID have been integrated because of their shared objective to refine the conceptual model of the site and to promote efficiency. Site characterization data collected in fiscal year 1993 have supported and led to refinement of the conceptual model of the carbon tetrachloride site.« less

  7. Zoning in On Parents’ Needs: Understanding parents’ perspectives in order to provide person-centered care

    PubMed Central

    Jones, Jana E.; Kessler-Jones, Alanna; Thompson, Mary K.; Young, Kate; Anderson, Amelia J.; Strand, David M.

    2014-01-01

    Purpose In order to develop a theoretical framework for person-centered care models for children with epilepsy and their parents, we conducted a qualitative study to explore and understand parents’ needs, values, and preferences to ultimately reduce barriers that may be impeding parents from accessing and obtaining help for the child’s co-occurring problems. Methods A qualitative grounded theory study design was utilized to understand parents’ perspectives. The participants were 22 parents of children with epilepsy who ranged in age from 31-53 years. Interviews were conducted using open ended semi-structured questions to facilitate conversation. Transcripts were analyzed using grounded theory guidelines. Results In order to understand the different perspectives parents had about their child, we devised a theory composed of three zones (Zones 1, 2, 3) that can be used to conceptualize parents’ viewpoints. Zone location was based on parents’ perspectives of their child’s comorbidities in the context of epilepsy. These zones were developed to help identify distinctions between parents’ perspectives and to provide a framework within which to understand parents’ readiness to access and implement interventions to address the child’s struggles. These zones of understanding describe parents’ perspectives of their child’s struggles at a particular point in time. This is the perspective from which parents address their child’s needs. This theoretical perspective provides a structure in which to discuss parents’ perspectives on conceptualizing or comprehending the child’s struggles in the context of epilepsy. The zones are based on how the parents a) describe their concerns about the child’s struggles, b) their understanding of the struggles, and c) the parent’s view of the child’s future. Conclusions Clinicians working with individuals and families with epilepsy are aware that epilepsy is a complex and unpredictable disorder. The zones help

  8. Applying a Cognitive-Affective Model of Conceptual Change to Professional Development

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen K.; Crippen, Kent J.

    2010-04-01

    This study evaluated Gregoire’s (2003) Cognitive-Affective Conceptual Change model (CAMCC) for predicting and assessing conceptual change in science teachers engaged in a long-term professional development project set in a large school district in the southwestern United States. A multiple case study method with data from three teacher participants was used to understand the process of integrating and applying a reform message of inquiry based science teaching. Data sources included: responses to example teaching scenarios, reflective essays, lesson plans, classroom observations, and action research projects. Findings show that the CAMCC functioned well in predicting how these teachers made decisions that impacted how they processed the reform message. When the reform message was communicated in such a way as to initiate stress appraisal, conceptual change occurred, producing changes in classroom practice. If the reform message did not initiate stress appraisal, teachers rejected the professional development message and developed heuristic responses. In order to further research and improve practice, propositions for assessments related to the CAMCC are provided.

  9. The Evolution of Root Zone Storage Capacity after Land Use Change

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Wagener, Thorsten; Savenije, Hubert H. G.; Hrachowitz, Markus

    2016-04-01

    Root zone storage capacity forms a crucial parameter in ecosystem functioning as it is the key parameter that determines the partitioning between runoff and transpiration. There is increasing evidence from several case studies for specific plants that vegetation adapts to the critical situation of droughts. For example, trees will, on the long term, try to improve their internal hydraulic conductivity after droughts, for example by allocating more biomass for roots. In spite of this understanding, the water storage capacity in the root zone is often treated as constant in hydrological models. In this study, it was hypothesized that root zone storage capacities are altered by deforestation and the regrowth of the ecosystem. Three deforested sub catchments as well as not affected, nearby control catchments of the experimental forests of HJ Andrews and Hubbard Brook were selected for this purpose. Root zone storage capacities were on the one hand estimated by a climate-based approach similar to Gao et al. (2014), making use of simple water balance considerations to determine the evaporative demand of the system. In this way, the maximum deficit between evaporative demand and precipitation allows a robust estimation of the root zone storage capacity. On the other hand, three conceptual hydrological models (FLEX, HYPE, HYMOD) were calibrated in a moving window approach for all catchments. The obtained model parameter values representing the root zone storage capacities of the individual catchments for each moving window period were then compared to the estimates derived from climate data for the same periods. Model- and climate-derived estimates of root zone storage capacities both showed a similar evolution. In the deforested catchments, considerable reductions of the root zone storage capacities, compared to the pre-treatment situation and control catchments, were observed. In addition, the years after forest clearing were characterized by a gradual recovery of the

  10. A conceptual framework for a long-term economic model for the treatment of attention-deficit/hyperactivity disorder.

    PubMed

    Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A

    2017-06-01

    Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.

  11. Examining the influence of formative assessment on conceptual accumulation and conceptual change

    NASA Astrophysics Data System (ADS)

    Tomita, Miki K.

    This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on

  12. Towards an Integrated Conceptual Model of International Student Adjustment and Adaptation

    ERIC Educational Resources Information Center

    Schartner, Alina; Young, Tony Johnstone

    2016-01-01

    Despite a burgeoning body of empirical research on "the international student experience", the area remains under-theorized. The literature to date lacks a guiding conceptual model that captures the adjustment and adaptation trajectories of this unique, growing, and important sojourner group. In this paper, we therefore put forward a…

  13. Modelling of the MEA float zone using accelerometer data

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1993-01-01

    During a floating zone experiment involving the growth of indium on a recent orbiter mission, (STS 32) oscillation of the zone shapes were observed to occur in response to the background acceleration. An understanding of the nature of the response of the zone shape to forced (g-jitter) oscillations and predictions of its impact on future experiments is of great interest not only to the PI's but to other commercial and academic investigators who plan to fly similar experiments in the orbiter and on space station. Motivated by this, a 15 month study was undertaken to analyze the nature of the g-sensitivity of the STS 32 floating zone crystal growth experiment. Numerical models were used to describe the time-dependent free surface motion of the zone as it responds to the spacecraft residual acceleration. Relevant experimental data concerning the acceleration environment was obtained from the Honeywell in Space Accelerometer (HISA) investigators through MSFC's ACAP program and processed and analyzed. For the indium floating zone experiment, a series of calculations were made using time-dependent axial accelerations g(t). The form of g(t) included simple sinusoidal disturbances as well as actual data (subject to appropriate filtering) measured on the STS 32 mission. Focus was on the calculation of the response of the free surface of the zone as well as the internal flows and internal heat transfer. The influence of solidification on the response of the zone shape was also examined but found to be negligible.

  14. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model

  15. SITE CHARACTERIZATION TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND TRANSPORT MODELS FOR MONITORING CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  16. The relevance of the philosophical 'mind-body problem' for the status of psychosomatic medicine: a conceptual analysis of the biopsychosocial model.

    PubMed

    Van Oudenhove, Lukas; Cuypers, Stefaan

    2014-05-01

    Psychosomatic medicine, with its prevailing biopsychosocial model, aims to integrate human and exact sciences with their divergent conceptual models. Therefore, its own conceptual foundations, which often remain implicit and unknown, may be critically relevant. We defend the thesis that choosing between different metaphysical views on the 'mind-body problem' may have important implications for the conceptual foundations of psychosomatic medicine, and therefore potentially also for its methods, scientific status and relationship with the scientific disciplines it aims to integrate: biomedical sciences (including neuroscience), psychology and social sciences. To make this point, we introduce three key positions in the philosophical 'mind-body' debate (emergentism, reductionism, and supervenience physicalism) and investigate their consequences for the conceptual basis of the biopsychosocial model in general and its 'psycho-biological' part ('mental causation') in particular. Despite the clinical merits of the biopsychosocial model, we submit that it is conceptually underdeveloped or even flawed, which may hamper its use as a proper scientific model.

  17. Conceptual model for collision detection and avoidance for runway incursion prevention

    NASA Astrophysics Data System (ADS)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  18. The ISO Edi Conceptual Model Activity and Its Relationship to OSI.

    ERIC Educational Resources Information Center

    Fincher, Judith A.

    1990-01-01

    The edi conceptual model is being developed to define common structures, services, and processes that syntax-specific standards like X12 and EDIFACT could adopt. Open Systems Interconnection (OSI) is of interest to edi because of its potential to help enable global interoperability across Electronic Data Interchange (EDI) functional groups. A…

  19. A Conceptual Model for Teaching Critical Thinking in a Knowledge Economy

    ERIC Educational Resources Information Center

    Chadwick, Clifton

    2011-01-01

    Critical thinking, viewed as rational and analytic thinking, is crucial for participation in a knowledge economy and society. This article provides a brief presentation of the importance of teaching critical thinking in a knowledge economy; suggests a conceptual model for teaching thinking; examines research on the historical role of teachers in…

  20. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  1. Application of the human needs conceptual model of dental hygiene to the role of the clinician : part II.

    PubMed

    Walsh, M M; Darby, M

    1993-01-01

    In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.

  2. Microplate and shear zone models for oceanic spreading center reorganizations

    NASA Technical Reports Server (NTRS)

    Engeln, Joseph F.; Stein, Seth; Werner, John; Gordon, Richard

    1988-01-01

    The kinematics of rift propagation and the resulting goemetries of various tectonic elements for two plates is reviewed with no overlap zone. The formation and evolution of overlap regions using schematic models is discussed. The models are scaled in space and time to approximate the Easter plate, but are simplified to emphasize key elements. The tectonic evolution of overlap regions which act as rigid microplates and shear zones is discussed, and the use of relative motion and structural data to discriminate between the two types of models is investigated. The effect of propagation rate and rise time on the size, shape, and deformation of the overlap region is demonstrated.

  3. Mapping the Habitable Zone of Exoplanets with a 2D Energy Balance Model

    NASA Astrophysics Data System (ADS)

    Moon, Nicole Taylor; Dr. Lisa Kaltenegger, Dr. Ramses Ramirez

    2018-01-01

    Traditionally, the habitable zone has been defined as the distance at which liquid water could exist on the surface of a rocky planet. However, different complexity models (simplified and fast:1D, and complex and time-intense:3D) models derive different boundaries for the habitable zone. The goal of this project was to test a new intermediate complexity 2D Energy Balance model, add a new ice albedo feedback mechanism, and derive the habitable zone boundaries. After completing this first project, we also studied how other feedback mechanisms, such as the presence of clouds and the carbonate-silicate cycle, effected the location of the habitable zone boundaries using this 2D model. This project was completed as part of a 2017 summer REU program hosted by Cornell's Center for Astrophysics and Plantary Sciecne and in partnership with the Carl Sagan Institute.

  4. Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation

    ERIC Educational Resources Information Center

    Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy

    2014-01-01

    Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…

  5. Using Analogy and Model to Enhance Conceptual Change in Thai Middle School Students

    ERIC Educational Resources Information Center

    Wichaidit, Sittichai; Wongyounoi, Somson; Dechsri, Precharn; Chaivisuthangkura, Parin

    2011-01-01

    This study examined conceptual change of Thai middle school students after learning photosynthesis with analogy and model. The analogy mapped key features from the analog (cooking food) to the target concept (photosynthesis). Modeling photosynthesis activity provided the opportunity for students to understand how plants use sugar to synthesize…

  6. Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model

    ERIC Educational Resources Information Center

    Kim, Sooyoung

    2007-01-01

    Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…

  7. Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model

    ERIC Educational Resources Information Center

    Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa

    2011-01-01

    Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…

  8. Modelling Subduction Zone Magmatism Due to Hydraulic Fracture

    NASA Astrophysics Data System (ADS)

    Lawton, R.; Davies, J. H.

    2014-12-01

    The aim of this project is to test the hypothesis that subduction zone magmatism involves hydraulic fractures propagating from the oceanic crust to the mantle wedge source region (Davies, 1999). We aim to test this hypothesis by developing a numerical model of the process, and then comparing model outputs with observations. The hypothesis proposes that the water interconnects in the slab following an earthquake. If sufficient pressure develops a hydrofracture occurs. The hydrofracture will expand in the direction of the least compressive stress and propagate in the direction of the most compressive stress, which is out into the wedge. Therefore we can calculate the hydrofracture path and end-point, given the start location on the slab and the propagation distance. We can therefore predict where water is added to the mantle wedge. To take this further we have developed a thermal model of a subduction zone. The model uses a finite difference, marker-in-cell method to solve the heat equation (Gerya, 2010). The velocity field was prescribed using the analytical expression of cornerflow (Batchelor, 1967). The markers contained within the fixed grid are used to track the different compositions and their properties. The subduction zone thermal model was benchmarked (Van Keken, 2008). We used the hydrous melting parameterization of Katz et.al., (2003) to calculate the degree of melting caused by the addition of water to the wedge. We investigate models where the hydrofractures, with properties constrained by estimated water fluxes, have random end points. The model predicts degree of melting, magma productivity, temperature of the melt and water content in the melt for different initial water fluxes. Future models will also include the buoyancy effect of the melt and residue. Batchelor, Cambridge UP, 1967. Davies, Nature, 398: 142-145, 1999. Gerya, Cambridge UP, 2010. Katz, Geochem. Geophys. Geosy, 4(9), 2003 Van Keken et.al. Phys. Earth. Planet. In., 171:187-197, 2008.

  9. Problem-oriented patient record model as a conceptual foundation for a multi-professional electronic patient record.

    PubMed

    De Clercq, Etienne

    2008-09-01

    It is widely accepted that the development of electronic patient records, or even of a common electronic patient record, is one possible way to improve cooperation and data communication between nurses and physicians. Yet, little has been done so far to develop a common conceptual model for both medical and nursing patient records, which is a first challenge that should be met to set up a common electronic patient record. In this paper, we describe a problem-oriented conceptual model and we show how it may suit both nursing and medical perspectives in a hospital setting. We started from existing nursing theory and from an initial model previously set up for primary care. In a hospital pilot site, a multi-disciplinary team refined this model using one large and complex clinical case (retrospective study) and nine ongoing cases (prospective study). An internal validation was performed through hospital-wide multi-professional interviews and through discussions around a graphical user interface prototype. To assess the consistency of the model, a computer engineer specified it. Finally, a Belgian expert working group performed an external assessment of the model. As a basis for a common patient record we propose a simple problem-oriented conceptual model with two levels of meta-information. The model is mapped with current nursing theories and it includes the following concepts: "health care element", "health approach", "health agent", "contact", "subcontact" and "service". These concepts, their interrelationships and some practical rules for using the model are illustrated in this paper. Our results are compatible with ongoing standardization work at the Belgian and European levels. Our conceptual model is potentially a foundation for a multi-professional electronic patient record that is problem-oriented and therefore patient-centred.

  10. Regulation of Ion Gradients across Myocardial Ischemic Border Zones: A Biophysical Modelling Analysis

    PubMed Central

    Niederer, Steven

    2013-01-01

    The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to depletion in the ischemic region. PMID:23577101

  11. Assessment of the geothermal potential of fault zones in Germany by numerical modelling

    NASA Astrophysics Data System (ADS)

    Kuder, Jörg

    2017-04-01

    Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).

  12. Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Pohll, G. M.; Stone, M. C.; Niswonger, R. G.; McKay, W. A.

    2013-12-01

    Biogeochemical reactions that occur in the hyporheic zone are highly dependent on the time solutes are in contact with riverbed sediments. In this investigation, we developed a two-dimensional longitudinal flow and solute transport model to estimate the spatial distribution of mean residence time in the hyporheic zone along a riffle-pool sequence to gain a better understanding of nitrogen reactions. A flow and transport model was developed to estimate spatially distributed mean residence times and was calibrated using observations of temperature and pressure. The approach used in this investigation accounts for the mixing of ages given advection and dispersion. Uncertainty of flow and transport parameters was evaluated using standard Monte-Carlo analysis and the generalized likelihood uncertainty estimation method. Results of parameter estimation indicate the presence of a low-permeable zone in the riffle area that induced horizontal flow at shallow depth within the riffle area. This establishes shallow and localized flow paths and limits deep vertical exchange. From the optimal model, mean residence times were found to be relatively long (9 - 40 days). The uncertainty of hydraulic conductivity resulted in a mean interquartile range of 13 days across all piezometers and was reduced by 24% with the inclusion of temperature and pressure observations. To a lesser extent, uncertainty in streambed porosity and dispersivity resulted in a mean interquartile range of 2.2- and 4.7 days, respectively. Alternative conceptual models demonstrate the importance of accounting for the spatial distribution of hydraulic conductivity in simulating mean residence times in a riffle-pool sequence. It is demonstrated that spatially variable mean residence time beneath a riffle-pool system does not conform to simple conceptual models of hyporheic flow through a riffle-pool sequence. Rather, the mixing behavior between the river and the hyporheic flow are largely controlled by layered

  13. Knowledge Restructuring in Biology: Testing a Punctuated Model of Conceptual Change

    ERIC Educational Resources Information Center

    Mintzes, Joel; Quinn, Heather J.

    2007-01-01

    Emerging from a human constructivist view of learning and a punctuated model of conceptual change, these studies explored differences in the structural complexity and content validity of knowledge about prehistoric life depicted in concept maps by learners ranging in age from approximately 10 to 20 years. Study 1 (cross-age) explored the…

  14. Implementation guide for monitoring work zone safety and mobility impacts

    DOT National Transportation Integrated Search

    2009-01-01

    This implementation guide describes the conceptual framework, data requirements, and computational procedures for determining the safety and mobility impacts of work zones in Texas. Researchers designed the framework and procedures to assist district...

  15. Viscoelastic shear zone model of a strike-slip earthquake cycle

    USGS Publications Warehouse

    Pollitz, F.F.

    2001-01-01

    I examine the behavior of a two-dimensional (2-D) strike-slip fault system embedded in a 1-D elastic layer (schizosphere) overlying a uniform viscoelastic half-space (plastosphere) and within the boundaries of a finite width shear zone. The viscoelastic coupling model of Savage and Prescott [1978] considers the viscoelastic response of this system, in the absence of the shear zone boundaries, to an earthquake occurring within the upper elastic layer, steady slip beneath a prescribed depth, and the superposition of the responses of multiple earthquakes with characteristic slip occurring at regular intervals. So formulated, the viscoelastic coupling model predicts that sufficiently long after initiation of the system, (1) average fault-parallel velocity at any point is the average slip rate of that side of the fault and (2) far-field velocities equal the same constant rate. Because of the sensitivity to the mechanical properties of the schizosphere-plastosphere system (i.e., elastic layer thickness, plastosphere viscosity), this model has been used to infer such properties from measurements of interseismic velocity. Such inferences exploit the predicted behavior at a known time within the earthquake cycle. By modifying the viscoelastic coupling model to satisfy the additional constraint that the absolute velocity at prescribed shear zone boundaries is constant, I find that even though the time-averaged behavior remains the same, the spatiotemporal pattern of surface deformation (particularly its temporal variation within an earthquake cycle) is markedly different from that predicted by the conventional viscoelastic coupling model. These differences are magnified as plastosphere viscosity is reduced or as the recurrence interval of periodic earthquakes is lengthened. Application to the interseismic velocity field along the Mojave section of the San Andreas fault suggests that the region behaves mechanically like a ???600-km-wide shear zone accommodating 50 mm/yr fault

  16. Science Teachers' Conceptual Growth within Vygotsky's Zone of Proximal Development.

    ERIC Educational Resources Information Center

    Jones, M. Gail; Rua, Melissa J.; Carter, Glenda

    1998-01-01

    Examines how science teachers' (n=14) knowledge of science and science pedagogy changed after participation in a constructivist-based methods course. More-experienced teachers were paired with less-experienced teachers, and pre- and post-instructional concept maps, journals, portfolios, and transcripts revealed that, within the zone of proximal…

  17. A conceptual framework for Lake Michigan coastal/nearshore ecosystems, with application to Lake Michigan Lakewide Management Plan (LaMP) objectives

    USGS Publications Warehouse

    Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.

    2013-01-01

    The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.

  18. Hydrology of the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Lecain, Gary D.; Stuckless, John S.

    2012-01-01

    The unsaturated zone at Yucca Mountain was investigated as a possible site for the nation's first high-level nuclear waste repository. Scientific investigations included infiltration studies, matrix properties testing, borehole testing and monitoring, underground excavation and testing, and the development of conceptual and numerical models of the hydrologic processes at Yucca Mountain. Infiltration estimates by empirical and geochemical methods range from 0.2 to 1.4 mm/yr and 0.2–6.0 mm/yr, respectively. Infiltration estimates from numerical models range from 4.5 mm/yr to 17.6 mm/yr. Rock matrix properties vary vertically and laterally as the result of depositional processes and subsequent postdepositional alteration. Laboratory tests indicate that the average matrix porosity and hydraulic conductivity values for the main level of the proposed repository (Topopah Spring Tuff middle nonlithophysal zone) are 0.08 and 4.7 × 10−12 m/s, respectively. In situ fracture hydraulic conductivity values are 3–6 orders of magnitude greater. The permeability of fault zones is approximately an order of magnitude greater than that of the surrounding rock unit. Water samples from the fault zones have tritium concentrations that indicate some component of postnuclear testing. Gas and water vapor movement through the unsaturated zone is driven by changes in barometric pressure, temperature-induced density differences, and wind effects. The subsurface pressure response to surface barometric changes is controlled by the distribution and interconnectedness of fractures, the presence of faults and their ability to conduct gas and vapor, and the moisture content and matrix permeability of the rock units. In situ water potential values are generally less than −0.2 MPa (−2 bar), and the water potential gradients in the Topopah Spring Tuff units are very small. Perched-water zones at Yucca Mountain are associated with the basal vitrophyre of the Topopah Spring Tuff or the Calico

  19. Conceptual Model of Weight Management in Overweight and Obese African-American Females.

    PubMed

    Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M

    2017-04-01

    Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.

  20. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  1. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  2. A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence

    USGS Publications Warehouse

    Power, J.; Jolly, A.; Nye, C.; Harbin, M.

    2002-01-01

    A conceptual model of the geometry and dynamics of the Mount Spurr magmatic system is developed using seismic, geochemical, and visual observations of the 1992 Crater Peak eruption sequence. The basis for this model is a new classification of all located seismic events and results from prior studies of seismology, geology, geochemistry, and geophysics of the Mount Spurr area. Significant seismic features of the 1992 eruption sequence include (1) a distinct swarm of volcano-tectonic (VT) earthquakes in August 1991 directly beneath the Crater Peak vent, (2) a caldera-wide increase in VT earthquakes, lasting 7 months, which preceded the 27 June eruption, (3) two shallow swarms of VT earthquakes that occured on 5 June and 27 June, the latter immediately preceding the 27 June eruption, (4) a mix of VT, long-period (LP), and hybrid events at depths of 20-40 km, which began coincident with the onset of seismic unrest and reached a peak after eruptive activity ended, (5) a strong swarm of VT earthquakes that began as the 16-17 September eruption was ending, (6) a prominent swarm of VT earthquakes on 9-10 November at depths of 1 to 4 km beneath Crater Peak, and (7) a smaller swarm of VT earthquakes in late December 1992, which were located between 7 and 10 km depth. These seismic observations, combined with geological, geochemical, and geophysical data and observations, suggest a deep magmatic source zone for Crater Peak andesites at depths of 20-40 km, a smaller mid-crustal storage zone at about 10 km depth, and a conduit that extends to the surface. We infer that the magmas erupted in 1992 were generated at depths of 20-40 km and rose to the mid-crustal storage zone that fed all three 1992 eruptions. The 1992 eruption sequence may have terminated when additional magma solidified at shallow depths.

  3. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity

  4. Conceptual heuristic models of the interrelationships between obesity and the occupational environment

    PubMed Central

    Pandalai, Sudha P; Schulte, Paul A; Miller, Diane B

    2015-01-01

    Objective Research and interventions targeting the relationship between work, its attendant occupational hazards, and obesity are evolving but merit further consideration in the public health arena. In this discussion paper, conceptual heuristic models are described examining the role of obesity as both a risk factor and health outcome in the occupational setting. Methods PubMed was searched using specific criteria from 2000 and onwards for evidence to support conceptual models in which obesity serves as a risk factor for occupational disease or an outcome of occupational exposures. Nine models are presented: four where obesity is a risk factor and five where it is an adverse effect. Results A broad range of work-related health effects are associated with obesity including musculoskeletal disorders, asthma, liver disease, and cardiovascular disease, among others. Obesity can be associated with occupational hazards such as shift work, sedentary work, job stress, and exposure to some chemicals. Conclusion Identification of combinations of risk factors pertinent to obesity in the occupational environment will provide important guidance for research and prevention. PMID:23588858

  5. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  6. What Can Be Learned From a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    NASA Astrophysics Data System (ADS)

    Ohlsson, Stellan; Cosejo, David G.

    2014-07-01

    The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.

  7. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    ERIC Educational Resources Information Center

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  8. Definition of zones with different levels of productivity within an agricultural field using fuzzy modeling

    USDA-ARS?s Scientific Manuscript database

    Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for the definition of zones with different levels of productivity is based on fuzzy indicator model. Fuzzy indicator model for identification of zones with different levels of productivit...

  9. Data reduction of room tests for zone model validation

    Treesearch

    M. Janssens; H. C. Tran

    1992-01-01

    Compartment fire zone models are based on many simplifying assumptions, in particular that gases stratify in two distinct layers. Because of these assumptions, certain model output is in a form unsuitable for direct comparison to measurements made in full-scale room tests. The experimental data must first be reduced and transformed to be compatible with the model...

  10. From Existence to Essence: A Conceptual Model for an Appalachian Studies Curriculum.

    ERIC Educational Resources Information Center

    Best, Billy F.

    Comprised of 4 chapters, this dissertation explores the existential premise "existence precedes essence" as applicable to development of a conceptual model for an Appalachian studies curriculum. Entitled "Personal Considerations: Pedagogy of a Hillbilly", the 1st chapter details the conflicts between the Appalachian institution…

  11. Workplace Commitment: A Conceptual Model Developed from Integrative Review of the Research

    ERIC Educational Resources Information Center

    Fornes, Sandra L.; Rocco, Tonette S.; Wollard, Karen K.

    2008-01-01

    This article investigates the previous research and theories of workplace commitment using content analysis and concept mapping. It provides a conceptual model of workplace commitment, integrating the literature on organizational commitment, occupational/career commitment, and individual commitment. The significance of this article lies in the…

  12. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model

    PubMed Central

    O’Hare, Matthew T.; Baattrup-Pedersen, Annette; Baumgarte, Inga; Freeman, Anna; Gunn, Iain D. M.; Lázár, Attila N.; Sinclair, Raeannon; Wade, Andrew J.; Bowes, Michael J.

    2018-01-01

    Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the threshold nutrient concentrations at which nutrients no longer limit algal growth. We also now know that the physical habitat template of rivers is a primary selector of aquatic plant communities. As such, nutrient enrichment impacts on aquatic plant communities are strongly influenced, both directly and indirectly, by physical habitat. A new conceptual model is proposed that incorporates these findings. The application of the model to management, system remediation, target setting, and our understanding of multi-stressor systems is discussed. We also look to the future and the potential for new numerical models to guide management. PMID:29755484

  13. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    NASA Astrophysics Data System (ADS)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  14. Understanding the Patient Perspective of Seizure Severity in Epilepsy: Development of a Conceptual Model.

    PubMed

    Borghs, Simon; Tomaszewski, Erin L; Halling, Katarina; de la Loge, Christine

    2016-10-01

    For patients with uncontrolled epilepsy, the severity and postictal sequelae of seizures might be more impactful than their frequency. Seizure severity is often assessed using patient-reported outcome (PRO) instruments; however, evidence of content validity for existing instruments is lacking. Our aim was to understand the real-life experiences of patients with uncontrolled epilepsy. A preliminary conceptual model was developed. The model was refined through (1) a targeted literature review of qualitative research on seizure severity; (2) interviews with four clinical epilepsy experts to evaluate identified concepts; and (3) qualitative interviews with patients with uncontrolled epilepsy, gathering descriptions of symptoms and impacts of epilepsy, focusing on how patients experience and describe "seizure severity." Findings were summarized in a final conceptual model of seizure severity in epilepsy. Twenty-five patients (12 who experienced primary generalized tonic-clonic seizures and 13 who experienced partial-onset seizures) expressed 42 different symptoms and 26 different impacts related to seizures. The final conceptual model contained a wide range of concepts related to seizure frequency, symptoms, and duration. Our model identified several new concepts that characterize the patient experience of seizure severity. A seizure severity PRO instrument should cover a wide range of seizure symptoms alongside frequency and duration of seizures. This qualitative work reinforces the notion that measuring seizure frequency is insufficient and that seizure severity is important in defining the patient's experience of epilepsy. This model could be used to assess the content validity of existing PRO instruments, or could support the development of a new one.

  15. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low

  16. A Conceptual View of the Officer Procurement Model (TOPOPS). Technical Report No. 73-73.

    ERIC Educational Resources Information Center

    Akman, Allan; Nordhauser, Fred

    This report presents the conceptual design of a computer-based linear programing model of the Air Force officer procurement system called TOPOPS. The TOPOPS model is an aggregate model which simulates officer accession and training and is directed at optimizing officer procurement in terms of either minimizing cost or maximizing accession quality…

  17. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    USGS Publications Warehouse

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  18. College Men's Meanings of Masculinities and Contextual Influences: Toward a Conceptual Model

    ERIC Educational Resources Information Center

    Harris, Frank, III

    2010-01-01

    Based on a grounded theory study involving 68 male undergraduates, a conceptual model of the meanings college men ascribe to masculinities is proposed in this article. The participants equated masculinities with "being respected," "being confident and self-assured," "assuming responsibility," and "embodying physical prowess." Contextual factors…

  19. Integrating Hydrogeological, Microbiological, and Geochemical Data Using a Multi-Component Reactive Transport Model: Quantifying the Biogeochemical Evolution of Redox Zones in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Phanikumar, M. S.; Long, D. T.; Hyndman, D. W.

    2003-12-01

    Hydrogeological, microbiological, and geochemical processes operating in a shallow sandy aquifer contaminated by waste fuels and chlorinated solvents were integrated using high-resolution mechanistic models. A 3-D, transient, reactive transport model was developed to quantitatively describe coupled processes via thermodynamic and kinetic arguments. The model was created by linking the hydrodynamic model MODFLOW (McDonald and Harbaugh, 1988), with advection, dispersion and user defined kinetic reactions based on RT3D 2.0, (Clement and Jones, 1998) and geochemical model PHREEQC (Parkhurst and Appelo, 1999). This model, BGTK3D 2.0, describes 1) the biodegradation of organic matter based on the influence of transport processes on microbial growth, 2) the complex suite of biogeochemical reactions operating in the aquifer, and 3) sharp chemical gradients. Some key features of this model are an ability to incorporate realistic solid phases to test hypotheses regarding mineral-water interactions, and an ability to accurately describe small-scale biogeochemical cycling (cm variability) observed in the field without oscillations or excessive numerical damping. BGTK3D was used to test hypotheses regarding the evolution of redox chemistry in a contaminated aquifer. The conceptual model that terminal electron accepting processes (TEAPs) distribute themselves sequentially into redox zones down flow path in aqueous systems is often used to interpret how and at what rates organic compounds will be degraded in the environment. Geochemical and microbiological data collected from a mixed contaminant plume at the former Wurtsmith AFB in Oscoda, Michigan suggests that under steady-state, mature plume conditions, traditional redox zonation may not be a realistic model of the distribution of TEAPs and therefore may not be the best model to evaluate the potential degradation of organic compounds. Based on these data, a conceptual model of TEAP evolution in contaminated systems was

  20. [Nursing care systematization in rehabilitation unit, in accordance to Horta's conceptual model].

    PubMed

    Neves, Rinaldo de Souza

    2006-01-01

    The utilization of a conceptual model in the Nursing Attendance Systemization allows the development of activities based on theoretical references that can guide the implantation and the implementation of nursing proceedings in hospitals. In this article we examine the option made for the implementation of the Horta's conceptual model in the construction of a nursing attendance system in the Rehabilitation Unit of a public hospital located in the Federal District of Brazil. Through the utilization of these theoretical references it was possible to make available a data collection tool based on the basic human needs. The identification of these needs made possible the construction of the hierarchically disposed pyramid of the neurological patients' modified basic needs. Through this reference paper we intend to elaborate the prescription and nursing evolution based in the concepts and standards of the Horta's nursing process, making possible the inter-relationship of all phases of this attendance methodology.

  1. Improving conceptual models of water and carbon transfer through peat

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Siegel, Donald I.; Rosenberry, Donald O.; Baird, Andrew J.; Belyea, Lisa R.; Comas, Xavier; Reeve, A.S.; Slater, Lee D.

    2009-01-01

    Northern peatlands store 500 × 1015 g of organic carbon and are very sensitive to climate change. There is a strong conceptual model of sources, sinks, and pathways of carbon within peatlands, but challenges remain both in understanding the hydrogeology and the linkages between carbon cycling and peat pore water flow. In this chapter, research findings from the glacial Lake Agassiz peatlands are used to develop a conceptual framework for peatland hydrogeology and identify four challenges related to northern peatlands yet to be addressed: (1) develop a better understanding of the extent and net impact of climate-driven groundwater flushing in peatlands; (2) quantify the complexities of heterogeneity on pore water flow and, in particular, reconcile contradictions between peatland hydrogeologic interpretations and isotopic data; (3) understand the hydrogeologic implications of free-phase methane production, entrapment, and release in peatlands; and (4) quantify the impact of arctic and subarctic warming on peatland hydrogeology and its linkage to carbon cycling.

  2. Development of a conceptual model of cancer caregiver health literacy.

    PubMed

    Yuen, E Y N; Dodson, S; Batterham, R W; Knight, T; Chirgwin, J; Livingston, P M

    2016-03-01

    Caregivers play a vital role in caring for people diagnosed with cancer. However, little is understood about caregivers' capacity to find, understand, appraise and use information to improve health outcomes. The study aimed to develop a conceptual model that describes the elements of cancer caregiver health literacy. Six concept mapping workshops were conducted with 13 caregivers, 13 people with cancer and 11 healthcare providers/policymakers. An iterative, mixed methods approach was used to analyse and synthesise workshop data and to generate the conceptual model. Six major themes and 17 subthemes were identified from 279 statements generated by participants during concept mapping workshops. Major themes included: access to information, understanding of information, relationship with healthcare providers, relationship with the care recipient, managing challenges of caregiving and support systems. The study extends conceptualisations of health literacy by identifying factors specific to caregiving within the cancer context. The findings demonstrate that caregiver health literacy is multidimensional, includes a broad range of individual and interpersonal elements, and is influenced by broader healthcare system and community factors. These results provide guidance for the development of: caregiver health literacy measurement tools; strategies for improving health service delivery, and; interventions to improve caregiver health literacy. © 2015 John Wiley & Sons Ltd.

  3. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  4. Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Downer, Charles; Wahl, Mark

    2017-04-01

    In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick

  5. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic

  6. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    ERIC Educational Resources Information Center

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  7. CADDIS Volume 2. Sources, Stressors and Responses: Simple and Detailed Conceptual Model Diagram Downloads

    EPA Pesticide Factsheets

    Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.

  8. A Dyadic Approach: Applying a Developmental-Conceptual Model to Couples Coping with Chronic Illness

    ERIC Educational Resources Information Center

    Checton, Maria G.; Magsamen-Conrad, Kate; Venetis, Maria K.; Greene, Kathryn

    2015-01-01

    The purpose of the present study was to apply Berg and Upchurch's developmental-conceptual model toward a better understanding of how couples cope with chronic illness. Specifically, a model was hypothesized in which proximal factors (relational quality), dyadic appraisal (illness interference), and dyadic coping (partner support) influence…

  9. University Library Strategy Development: A Conceptual Model of Researcher Performance to Inform Service Delivery

    ERIC Educational Resources Information Center

    Maddox, Alexia; Zhao, Linlin

    2017-01-01

    This case study presents a conceptual model of researcher performance developed by Deakin University Library, Australia. The model aims to organize research performance data into meaningful researcher profiles, referred to as researcher typologies, which support the demonstration of research impact and value. Three dimensions shaping researcher…

  10. A Conceptual/Cross-cultural Model for Teaching Anthropology in the Elementary School.

    ERIC Educational Resources Information Center

    Dynneson, Thomas L.

    A conceptual/cross-cultural model, developed to help elementary teachers cope with the problems of initiating cultural, ethnic, or anthropology studies, is presented in five sections. (1) A brief description of the structure and methodology of anthropology defines in outline form the fields of cultural and social anthropology, physical…

  11. A Conceptual Model and Assessment Template for Capacity Evaluation in Adult Guardianship

    ERIC Educational Resources Information Center

    Moye, Jennifer; Butz, Steven W.; Marson, Daniel C.; Wood, Erica

    2007-01-01

    Purpose: We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. Design and Methods: We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity…

  12. The evolution of root zone moisture storage capacities after deforestation: a step towards hydrological predictions under change?

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus

    2017-04-01

    The moisture storage available to vegetation is a key parameter in the hydrological functioning of ecosystems. This parameter, the root zone storage capacity, determines the partitioning between runoff and transpiration, but is impossible to observe at the catchment scale. In this research, data from the experimental forests of HJ Andrews (Oregon, USA) and Hubbard Brook (New Hampshire, USA) was used to test the hypotheses that: (1) the root zone storage capacity significantly changes after deforestation, (2) changes in the root zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root zone storage can improve the performance of a hydrological model. At first, root zone storage capacities were estimated based on a simple, water-balance based method. Briefly, the maximum difference between cumulative rainfall and estimated transpiration was determined, which could be considered a proxy for root zone storage capacity. These values were compared with root zone storage capacities obtained from four conceptual models (HYPE, HYMOD, FLEX, TUW), calibrated for consecutive 2-year windows. Both methods showed a sharp decline in root zone storage capacity after deforestation, which was followed by a gradual recovery signal. It was found in a trend analysis that these recovery periods took between 5 and 13 years for the different catchments. Eventually, one of the models was adjusted to allow for a time-dynamic formulation of root zone storage capacity. This adjusted model showed improvements in model performance as evaluated by 28 hydrological signatures, such as rising limb density or peak flows. Thus, this research clearly shows the time-dynamic character of a crucial parameter, which is often considered to remain constant in time. Root zone storage capacities are strongly affected by deforestation, leading to changes in hydrological regimes, and time-dynamic formulations of root

  13. Groundwater modelling in decision support: reflections on a unified conceptual framework

    NASA Astrophysics Data System (ADS)

    Doherty, John; Simmons, Craig T.

    2013-11-01

    Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.

  14. A New Model to Facilitate Individualized Case Conceptualization and Treatment of Social Phobia: An Examination and Reaction to Moscovitch's Model

    ERIC Educational Resources Information Center

    Heimberg, Richard G.

    2009-01-01

    Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…

  15. A three-dimensional conceptual model of the water quality distribution in the Albuquerque Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, D.

    1995-12-31

    It is possible to construct a conceptual model of the Albuquerque Basin`s geochemical characteristics and water quality distribution based on (1) the Hawley and Haase hydrogeological model, (2) water analyses from City of Albuquerque water wells, and (3) sound geological and chemical principles. Previous studies have characterized the water quality and geochemistry of the Albuquerque Basin from a two-dimensional perspective; however, to date, there has been no examination of the variation of water quality with depth within the Albuquerque Basin. The primary focus of this paper is to describe a first attempt at developing a conceptual understanding of the three-dimensionalmore » water quality distribution of the Albuquerque Basin based on the above three building blocks.« less

  16. Conceptual model of knowledge base system

    NASA Astrophysics Data System (ADS)

    Naykhanova, L. V.; Naykhanova, I. V.

    2018-05-01

    In the article, the conceptual model of the knowledge based system by the type of the production system is provided. The production system is intended for automation of problems, which solution is rigidly conditioned by the legislation. A core component of the system is a knowledge base. The knowledge base consists of a facts set, a rules set, the cognitive map and ontology. The cognitive map is developed for implementation of a control strategy, ontology - the explanation mechanism. Knowledge representation about recognition of a situation in the form of rules allows describing knowledge of the pension legislation. This approach provides the flexibility, originality and scalability of the system. In the case of changing legislation, it is necessary to change the rules set. This means that the change of the legislation would not be a big problem. The main advantage of the system is that there is an opportunity to be adapted easily to changes of the legislation.

  17. Shear heating and metamorphism in subduction zones, 1. Thermal models

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the

  18. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : executive summary report.

    DOT National Transportation Integrated Search

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  19. Creep model of unsaturated sliding zone soils and long-term deformation analysis of landslides

    NASA Astrophysics Data System (ADS)

    Zou, Liangchao; Wang, Shimei; Zhang, Yeming

    2015-04-01

    Sliding zone soil is a special soil layer formed in the development of a landslide. Its creep behavior plays a significant role in long-term deformation of landslides. Due to rainfall infiltration and reservoir water level fluctuation, the soils in the slide zone are often in unsaturated state. Therefore, the investigation of creep behaviors of the unsaturated sliding zone soils is of great importance for understanding the mechanism of the long-term deformation of a landslide in reservoir areas. In this study, the full-process creep curves of the unsaturated soils in the sliding zone in different net confining pressure, matric suctions and stress levels were obtained from a large number of laboratory triaxial creep tests. A nonlinear creep model for unsaturated soils and its three-dimensional form was then deduced based on the component model theory and unsaturated soil mechanics. This creep model was validated with laboratory creep data. The results show that this creep model can effectively and accurately describe the nonlinear creep behaviors of the unsaturated sliding zone soils. In order to apply this creep model to predict the long-term deformation process of landslides, a numerical model for simulating the coupled seepage and creep deformation of unsaturated sliding zone soils was developed based on this creep model through the finite element method (FEM). By using this numerical model, we simulated the deformation process of the Shuping landslide located in the Three Gorges reservoir area, under the cycling reservoir water level fluctuation during one year. The simulation results of creep displacement were then compared with the field deformation monitoring data, showing a good agreement in trend. The results show that the creeping deformations of landslides have strong connections with the changes of reservoir water level. The creep model of unsaturated sliding zone soils and the findings obtained by numerical simulations in this study are conducive to

  20. Understanding Co-Development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    ERIC Educational Resources Information Center

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-01-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…

  1. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    NASA Astrophysics Data System (ADS)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  2. Analytics For Distracted Driver Behavior Modeling in Dilemma Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jan-Mou; Malikopoulos, Andreas; Thakur, Gautam

    2014-01-01

    In this paper, we present the results obtained and insights gained through the analysis of TRB contest data. We used exploratory analysis, regression, and clustering models for gaining insights into the driver behavior in a dilemma zone while driving under distraction. While simple exploratory analysis showed the distinguishing driver behavior patterns among different popu- lation groups in the dilemma zone, regression analysis showed statically signification relationships between groups of variables. In addition to analyzing the contest data, we have also looked into the possible impact of distracted driving on the fuel economy.

  3. Long-Term Conceptual Retrieval by College Biology Majors Following Model-Based Instruction

    ERIC Educational Resources Information Center

    Dauer, Joseph T.; Long, Tammy M.

    2015-01-01

    One of the goals of college-level introductory biology is to establish a foundation of knowledge and skills that can be built upon throughout a biology curriculum. In a reformed introductory biology course, we used iterative model construction as a pedagogical tool to promote students' understanding about conceptual connections, particularly those…

  4. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models

    PubMed Central

    Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann

    2017-01-01

    The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533

  5. Evaluation of Alternative Conceptual Models Using Interdisciplinary Information: An Application in Shallow Groundwater Recharge and Discharge

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Bajcsy, P.; Valocchi, A. J.; Kim, C.; Wang, J.

    2007-12-01

    Natural systems are complex, thus extensive data are needed for their characterization. However, data acquisition is expensive; consequently we develop models using sparse, uncertain information. When all uncertainties in the system are considered, the number of alternative conceptual models is large. Traditionally, the development of a conceptual model has relied on subjective professional judgment. Good judgment is based on experience in coordinating and understanding auxiliary information which is correlated to the model but difficult to be quantified into the mathematical model. For example, groundwater recharge and discharge (R&D) processes are known to relate to multiple information sources such as soil type, river and lake location, irrigation patterns and land use. Although hydrologists have been trying to understand and model the interaction between each of these information sources and R&D processes, it is extremely difficult to quantify their correlations using a universal approach due to the complexity of the processes, the spatiotemporal distribution and uncertainty. There is currently no single method capable of estimating R&D rates and patterns for all practical applications. Chamberlin (1890) recommended use of "multiple working hypotheses" (alternative conceptual models) for rapid advancement in understanding of applied and theoretical problems. Therefore, cross analyzing R&D rates and patterns from various estimation methods and related field information will likely be superior to using only a single estimation method. We have developed the Pattern Recognition Utility (PRU), to help GIS users recognize spatial patterns from noisy 2D image. This GIS plug-in utility has been applied to help hydrogeologists establish alternative R&D conceptual models in a more efficient way than conventional methods. The PRU uses numerical methods and image processing algorithms to estimate and visualize shallow R&D patterns and rates. It can provide a fast initial

  6. Development of a Conceptual Model for Smoking Cessation: Physical Activity, Neurocognition, and Executive Functioning.

    PubMed

    Loprinzi, Paul D; Herod, Skyla M; Walker, Jerome F; Cardinal, Bradley J; Mahoney, Sara E; Kane, Christy

    2015-01-01

    Considerable research has shown adverse neurobiological effects of chronic alcohol use, including long-term and potentially permanent changes in the structure and function of the brain; however, much less is known about the neurobiological consequences of chronic smoking, as it has largely been ignored until recently. In this article, we present a conceptual model proposing the effects of smoking on neurocognition and the role that physical activity may play in this relationship as well as its role in smoking cessation. Pertinent published peer-reviewed articles deposited in PubMed delineating the pathways in the proposed model were reviewed. The proposed model, which is supported by emerging research, demonstrates a bidirectional relationship between smoking and executive functioning. In support of our conceptual model, physical activity may moderate this relationship and indirectly influence smoking behavior through physical activity-induced changes in executive functioning. Our model may have implications for aiding smoking cessation efforts through the promotion of physical activity as a mechanism for preventing smoking-induced deficits in neurocognition and executive function.

  7. Bayesian Assessment of the Uncertainties of Estimates of a Conceptual Rainfall-Runoff Model Parameters

    NASA Astrophysics Data System (ADS)

    Silva, F. E. O. E.; Naghettini, M. D. C.; Fernandes, W.

    2014-12-01

    This paper evaluated the uncertainties associated with the estimation of the parameters of a conceptual rainfall-runoff model, through the use of Bayesian inference techniques by Monte Carlo simulation. The Pará River sub-basin, located in the upper São Francisco river basin, in southeastern Brazil, was selected for developing the studies. In this paper, we used the Rio Grande conceptual hydrologic model (EHR/UFMG, 2001) and the Markov Chain Monte Carlo simulation method named DREAM (VRUGT, 2008a). Two probabilistic models for the residues were analyzed: (i) the classic [Normal likelihood - r ≈ N (0, σ²)]; and (ii) a generalized likelihood (SCHOUPS & VRUGT, 2010), in which it is assumed that the differences between observed and simulated flows are correlated, non-stationary, and distributed as a Skew Exponential Power density. The assumptions made for both models were checked to ensure that the estimation of uncertainties in the parameters was not biased. The results showed that the Bayesian approach proved to be adequate to the proposed objectives, enabling and reinforcing the importance of assessing the uncertainties associated with hydrological modeling.

  8. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    NASA Astrophysics Data System (ADS)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  9. Conceptualizing and Communicating River Restoration

    NASA Astrophysics Data System (ADS)

    Jacobosn, R. B.

    2007-12-01

    River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.

  10. Modeling CANDU-6 liquid zone controllers for effects of thorium-based fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Aubin, E.; Marleau, G.

    2012-07-01

    We use the DRAGON code to model the CANDU-6 liquid zone controllers and evaluate the effects of thorium-based fuels on their incremental cross sections and reactivity worth. We optimize both the numerical quadrature and spatial discretization for 2D cell models in order to provide accurate fuel properties for 3D liquid zone controller supercell models. We propose a low computer cost parameterized pseudo-exact 3D cluster geometries modeling approach that avoids tracking issues on small external surfaces. This methodology provides consistent incremental cross sections and reactivity worths when the thickness of the buffer region is reduced. When compared with an approximate annularmore » geometry representation of the fuel and coolant region, we observe that the cluster description of fuel bundles in the supercell models does not increase considerably the precision of the results while increasing substantially the CPU time. In addition, this comparison shows that it is imperative to finely describe the liquid zone controller geometry since it has a strong impact of the incremental cross sections. This paper also shows that liquid zone controller reactivity worth is greatly decreased in presence of thorium-based fuels compared to the reference natural uranium fuel, since the fission and the fast to thermal scattering incremental cross sections are higher for the new fuels. (authors)« less

  11. Interprofessional partnerships in chronic illness care: a conceptual model for measuring partnership effectiveness

    PubMed Central

    Butt, Gail; Markle-Reid, Maureen; Browne, Gina

    2008-01-01

    Introduction Interprofessional health and social service partnerships (IHSSP) are internationally acknowledged as integral for comprehensive chronic illness care. However, the evidence-base for partnership effectiveness is lacking. This paper aims to clarify partnership measurement issues, conceptualize IHSSP at the front-line staff level, and identify tools valid for group process measurement. Theory and methods A systematic literature review utilizing three interrelated searches was conducted. Thematic analysis techniques were supported by NVivo 7 software. Complexity theory was used to guide the analysis, ground the new conceptualization and validate the selected measures. Other properties of the measures were critiqued using established criteria. Results There is a need for a convergent view of what constitutes a partnership and its measurement. The salient attributes of IHSSP and their interorganizational context were described and grounded within complexity theory. Two measures were selected and validated for measurement of proximal group outcomes. Conclusion This paper depicts a novel complexity theory-based conceptual model for IHSSP of front-line staff who provide chronic illness care. The conceptualization provides the underpinnings for a comprehensive evaluative framework for partnerships. Two partnership process measurement tools, the PSAT and TCI are valid for IHSSP process measurement with consideration of their strengths and limitations. PMID:18493591

  12. The Behavioral Intervention Technology Model: An Integrated Conceptual and Technological Framework for eHealth and mHealth Interventions

    PubMed Central

    Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-01-01

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or “elements” (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user’s environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy

  13. The behavioral intervention technology model: an integrated conceptual and technological framework for eHealth and mHealth interventions.

    PubMed

    Mohr, David C; Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-06-05

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or "elements" (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user's environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs.

  14. A Two-Zone Multigrid Model for SI Engine Combustion Simulation Using Detailed Chemistry

    DOE PAGES

    Ge, Hai-Wen; Juneja, Harmit; Shi, Yu; ...

    2010-01-01

    An efficient multigrid (MG) model was implemented for spark-ignited (SI) engine combustion modeling using detailed chemistry. The model is designed to be coupled with a level-set-G-equation model for flame propagation (GAMUT combustion model) for highly efficient engine simulation. The model was explored for a gasoline direct-injection SI engine with knocking combustion. The numerical results using the MG model were compared with the results of the original GAMUT combustion model. A simpler one-zone MG model was found to be unable to reproduce the results of the original GAMUT model. However, a two-zone MG model, which treats the burned and unburned regionsmore » separately, was found to provide much better accuracy and efficiency than the one-zone MG model. Without loss in accuracy, an order of magnitude speedup was achieved in terms of CPU and wall times. To reproduce the results of the original GAMUT combustion model, either a low searching level or a procedure to exclude high-temperature computational cells from the grouping should be applied to the unburned region, which was found to be more sensitive to the combustion model details.« less

  15. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  16. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  17. CONCEPTUAL BASIS FOR MULTI-ROUTE INTAKE DOSE MODELING USING AN ENERGY EXPENDITURE APPROACH

    EPA Science Inventory

    This paper provides the conceptual basis for a modeling logic that is currently being developed in the National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency ( EPA) for use in intake dose assessments involving substances that can enter the body...

  18. A Conceptual Modeling Approach for OLAP Personalization

    NASA Astrophysics Data System (ADS)

    Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan

    Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.

  19. Modeling the migration of fluids in subduction zones

    NASA Astrophysics Data System (ADS)

    Spiegelman, M.; Wilson, C. R.; van Keken, P. E.; Hacker, B. R.

    2010-12-01

    Fluids play a major role in the formation of arc volcanism and the generation of continental crust. Progressive dehydration reactions in the downgoing slab release fluids to the hot overlying mantle wedge, causing flux melting and the migration of melts to the volcanic front. While the qualitative concept is well established the quantitative details of fluid release and especially that of fluid migration and generation of hydrous melting in the wedge is still poorly understood. Here we present new models of the fluid migration through the mantle wedge for subduction zones that span the spectrum of arcs worldwide. We focus on the flow of water and use an existing set of high resolution thermal and metamorphic models (van Keken et al., JGR, in review) to predict the regions of water release from the sediments, upper and lower crust, and upper most mantle. We use this water flux as input for the fluid migration calculation based on new finite element models built on advanced computational libraries (FEniCS/PETSc) for efficient and flexible solution of coupled multi-physics problems. The first generation of these models solves for the evolution of porosity and fluid-pressure/flux throughout the slab and wedge given solid flow, viscosity and thermal fields from the existing thermal models. Fluid flow in the new models depends on both permeability and the rheology of the slab-wedge system as interaction with rheological variability can induce additional pressure gradients that affect the fluid flow pathways. We will explore the sensitivity of fluid flow paths for a range of subduction zones and fluid flow parameters with emphasis on variability of the location of the volcanic arc with respect to flow paths and expected degrees of hydrous melting which can be estimated given a variety of wet-melting parameterizations (e.g. Katz et al, 2003, Kelley et al, 2010). The current models just include dehydration reactions but work continues on the next generation of models which

  20. Conceptual framework of Tenaga Nasional Berhad (TNB) cost of service (COS) model

    NASA Astrophysics Data System (ADS)

    Zainudin, WNRA; Ishak, WWM; Sulaiman, NA

    2017-09-01

    One of Malaysia Electricity Supply Industry (MESI) objectives is to ensure Tenaga Nasional Berhad (TNB) economic viability based on a fair economic electricity pricing. In meeting such objective, a framework that investigates the effect of cost of service (COS) on revenue is in great need. This paper attempts to present a conceptual framework that illustrate the distribution of the COS among TNB’s various cost centres which are subsequently redistributed in varying quantities among all of its customer categories. A deep understanding on the concepts will ensure optimal allocation of COS elements between different sub activities of energy production processes can be achieved. However, this optimal allocation needs to be achieved with respect to the imposed TNB revenue constraint. Therefore, the methodology used for this conceptual approach is being modelled into four steps. Firstly, TNB revenue requirement is being examined to ensure the conceptual framework addressed the requirement properly. Secondly, the revenue requirement is unbundled between three major cost centres or business units consist of generation, transmission and distribution and the cost is classified based on demand, energy and customers related charges. Finally, the classified costs are being allocated to different customer categories i.e. Household, Commercial, and Industrial. In summary, this paper proposed a conceptual framework on the cost of specific services that TNB currently charging its customers and served as potential input into the process of developing revised electricity tariff rates. On that purpose, the finding of this COS study finds cost to serve customer varies with the voltage level that customer connected to, the timing and the magnitude of customer demand on the system. This COS conceptual framework could potentially be integrated into a particular tariff structure and serve as a useful tool for TNB.

  1. Federal Highway Administration (FHWA) work zone driver model software

    DOT National Transportation Integrated Search

    2016-11-01

    FHWA and the U.S. Department of Transportation (USDOT) Volpe Center are developing a work zone car-following model and simulation software that interfaces with existing microsimulation tools, enabling more accurate simulation of car-following through...

  2. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    NASA Astrophysics Data System (ADS)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  3. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part I. Model validation

    USDA-ARS?s Scientific Manuscript database

    Process-based modeling provides detailed spatial and temporal information of the soil environment in the shallow seedling recruitment zone across field topography where measurements of soil temperature and water may not sufficiently describe the zone. Hourly temperature and water profiles within the...

  4. A Conceptual Model of Management Learning in Micro Businesses: Implications for Research and Policy

    ERIC Educational Resources Information Center

    Devins, David; Gold, Jeff; Johnson, Steve; Holden, Rick

    2005-01-01

    Purpose: This article proposes the development of a conceptual model to help understand the nature of management learning in the micro business context and to inform research and policy discourse. Design/Methodology/Approach: The model is developed on the basis of a literature search and review of academic and grey literature. Findings: The…

  5. Testing a Conceptual Change Model Framework for Visual Data

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  6. A conceptual model for the growth, persistence, and blooming behavior of the benthic mat-forming diatom Didymosphenia geminata (Invited)

    NASA Astrophysics Data System (ADS)

    Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.

    2010-12-01

    The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.

  7. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  8. Conceptualizing gambling disorder with the process model of emotion regulation.

    PubMed

    Rogier, Guyonne; Velotti, Patrizia

    2018-06-25

    Introduction Nowadays, gambling disorder (GD) is a worldwide health issue and there is a growing need to both improve our understanding of this disorder and to tailor specific interventions for its treatment. Moreover, theoretical models and preliminary empirical results suggest that difficulty in regulating emotional states might be involved in GD. However, literature describing clinical and theoretical aspects of emotional dysregulation among pathological gamblers (PGs) shows a lack of systematic description. Objectives We aimed to provide, within an exhaustive theoretical framework of emotion regulation (ER) processing, empirical evidence supporting a conceptual model of GD as an ER affliction. Methods We commented on empirical evidence on the relationship between ER and GD in the light of two main conceptual models of emotion (dys)regulation. Results The results suggest there are actual deficits of ER processing among PGs, manifesting themselves through different ways and in different steps of the ER timeline. In addition, dysregulation of positive emotions may play a central role in GD. From a clinical point of view, we pointed out that deficits in ER might be multiple in nature and an assessment for GD should be accurate to identify the specific components accounting for the development and maintenance of the disorder. It should also orientate the clinician in selecting therapeutic objectives. Conclusions The nature of emotional states that are difficult to regulate might account for the GD severity and indicate the subtype of PGs the patient belongs to. Treatment programs should be tailored on the specificity of PGs.

  9. Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics

    Treesearch

    Wendy H. Yang; Gavin McNicol; Yit Arn Teh; Katerina Estera-Molina; Tana E. Wood; Whendee L. Silver

    2017-01-01

    Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamics—in which the water table position determines the vertical distribution of methanogenesis and methanotrophy—...

  10. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  11. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  12. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc

    2017-04-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  13. A conceptual model of psychosocial risk and protective factors for excessive gestational weight gain.

    PubMed

    Hill, Briony; Skouteris, Helen; McCabe, Marita; Milgrom, Jeannette; Kent, Bridie; Herring, Sharon J; Hartley-Clark, Linda; Gale, Janette

    2013-02-01

    nearly half of all women exceed the guideline recommended pregnancy weight gain for their Body Mass Index (BMI) category. Excessive gestational weight gain (GWG) is correlated positively with postpartum weight retention and is a predictor of long-term, higher BMI in mothers and their children. Psychosocial factors are generally not targeted in GWG behaviour change interventions, however, multifactorial, conceptual models that include these factors, may be useful in determining the pathways that contribute to excessive GWG. We propose a conceptual model, underpinned by health behaviour change theory, which outlines the psychosocial determinants of GWG, including the role of motivation and self-efficacy towards healthy behaviours. This model is based on a review of the existing literature in this area. there is increasing evidence to show that psychosocial factors, such as increased depressive symptoms, anxiety, lower self-esteem and body image dissatisfaction, are associated with excessive GWG. What is less known is how these factors might lead to excessive GWG. Our conceptual model proposes a pathway of factors that affect GWG, and may be useful for understanding the mechanisms by which interventions impact on weight management during pregnancy. This involves tracking the relationships among maternal psychosocial factors, including body image concerns, motivation to adopt healthy lifestyle behaviours, confidence in adopting healthy lifestyle behaviours for the purposes of weight management, and actual behaviour changes. health-care providers may improve weight gain outcomes in pregnancy if they assess and address psychosocial factors in pregnancy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Can Cultural Competency Reduce Racial And Ethnic Health Disparities? A Review And Conceptual Model

    PubMed Central

    Brach, Cindy; Fraserirector, Irene

    2016-01-01

    This article develops a conceptual model of cultural competency’s potential to reduce racial and ethnic health disparities, using the cultural competency and disparities literature to lay the foundation for the model and inform assessments of its validity. The authors identify nine major cultural competency techniques: interpreter services, recruitment and retention policies, training, coordinating with traditional healers, use of community health workers, culturally competent health promotion, including family/community members, immersion into another culture, and administrative and organizational accommodations. The conceptual model shows how these techniques could theoretically improve the ability of health systems and their clinicians to deliver appropriate services to diverse populations, thereby improving outcomes and reducing disparities. The authors conclude that while there is substantial research evidence to suggest that cultural competency should in fact work, health systems have little evidence about which cultural competency techniques are effective and less evidence on when and how to implement them properly. PMID:11092163

  15. 1D minimum p-velocity model of the Kamchatka subducting zone

    NASA Astrophysics Data System (ADS)

    Nizkous, I.; Sanina, I.; Gontovaya, L.

    2003-04-01

    Kamchatka peninsula is a very active seismic zone. The old Pacific plate subducts below the North American Plate and this causes high seismic and volcanic activity in this region. The extensive Kamchatka Regional Seismic Network (KRSN) has operated since 1962 and registers around 600 earthquakes per year. This provides a large number of high quality seismic data. In this work we are investigate P-velocity structure of the Kamchatka peninsula and subducting zone in Western Pacific. This region is well studied, but we would like to try a little bit different approach. We would like to present 1D minimum P-velocity model of the Kamchatka region created using VELEST program [3]. Data set based on 84 well-located earthquakes (IP, EP, IS and ES phases) recorded by KRSN in 1998 and in 1999. As the initial model Kuzin's model have been taken [1]. But in our calculations we split model into 17 layers instead of initial 5. Maximal investigated depth is 120 km. Using VELEST simultaneous mode we solve coupled hypocenter-velocity model problem for local earthquakes. In this case it is very important to utilize well locatable events for the sake of minimizing a priori added uncertainties. And this is major point of the approach. We apply this idea and the result is looks like the result obtained by A. Gorbatov et. al. [2] Using this 1D minimum model we redefine earthquakes hypocenter parameters and recalculate p-wave travel time residuals. This work is the first step in 3D modeling of the Kamchatka subducting zone. References: 1. I.P Kuzin. 'Focal zone and upper mantle structure of the East Kamchatka region', Moscow, Nauka, 1974. 2. A. Gorbatov, J. Domingues, G.Suarez, V.kostoglodov, D.Zhao, and E. Gordeev, 'Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula', Geophys. J. Int, 1999, 137, 269-279. 3. Kissling, E., W.L. Ellsworth, D. Eberhart-Phillips, and U. Kradolfer: Initial reference models in local earthquake tomography, J. Geophys. Res., 99

  16. The Cascadia Subduction Zone: two contrasting models of lithospheric structure

    USGS Publications Warehouse

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.

    1998-01-01

    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  17. Parenting around child snacking: development of a theoretically-guided, empirically informed conceptual model.

    PubMed

    Davison, Kirsten K; Blake, Christine E; Blaine, Rachel E; Younginer, Nicholas A; Orloski, Alexandria; Hamtil, Heather A; Ganter, Claudia; Bruton, Yasmeen P; Vaughn, Amber E; Fisher, Jennifer O

    2015-09-17

    Snacking contributes to excessive energy intakes in children. Yet factors shaping child snacking are virtually unstudied. This study examines food parenting practices specific to child snacking among low-income caregivers. Semi-structured interviews were conducted in English or Spanish with 60 low-income caregivers of preschool-aged children (18 non-Hispanic white, 22 African American/Black, 20 Hispanic; 92% mothers). A structured interview guide was used to solicit caregivers' definitions of snacking and strategies they use to decide what, when and how much snack their child eats. Interviews were audio-recorded, transcribed verbatim and analyzed using an iterative theory-based and grounded approach. A conceptual model of food parenting specific to child snacking was developed to summarize the findings and inform future research. Caregivers' descriptions of food parenting practices specific to child snacking were consistent with previous models of food parenting developed based on expert opinion [1, 2]. A few noteworthy differences however emerged. More than half of participants mentioned permissive feeding approaches (e.g., my child is the boss when it comes to snacks). As a result, permissive feeding was included as a higher order feeding dimension in the resulting model. In addition, a number of novel feeding approaches specific to child snacking emerged including child-centered provision of snacks (i.e., responding to a child's hunger cues when making decisions about snacks), parent unilateral decision making (i.e., making decisions about a child's snacks without any input from the child), and excessive monitoring of snacks (i.e., monitoring all snacks provided to and consumed by the child). The resulting conceptual model includes four higher order feeding dimensions including autonomy support, coercive control, structure and permissiveness and 20 sub-dimensions. This study formulates a language around food parenting practices specific to child snacking

  18. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  19. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    NASA Astrophysics Data System (ADS)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  20. Phase II, improved work zone design guidelines and enhanced model of traffic delays in work zones : final report, March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    This project contains three major parts. In the first part a digital computer simulation model was developed with the aim to model the traffic through a freeway work zone situation. The model was based on the Arena simulation software and used cumula...

  1. MT data inversion and sensitivity analysis to image electrical structure of Zagros collision zone

    NASA Astrophysics Data System (ADS)

    Layegh Haghighi, T.; Montahaei, M.; Oskooi, B.

    2018-01-01

    Magnetotelluric (MT) data from 46 stations on a 470-km-long profile across the Zagros fold-thrust belt (ZFTB) that marks the Arabia-Eurasia collision zone were inverted to derive 2-D electrical resistivity structure between Busher on the coast of Persian Gulf and Posht-e-Badam, 160 km north east of Yazd. The model includes prominent anomalies in the upper and lower crust, beneath the brittle-ductile transition depth and mostly related to the fluid distribution and sedimentary layers beneath the profile. The conductivities and dimensions of the fault zone conductors (FZCs) and high conductivity zones (HCZs) as the major conductive anomalies in a fault zone conceptual model vary significantly below the different faults accommodated in this region. The enhanced conductivity below the site Z30 correlates well with the main Zagros thrust (MZT), located at the western boundary of Sanandaj-Sirjan zone (SSZ) and known as the transition between the two continents. The depth extent of the huge conductor beneath the south west of the profile, attributed to the thick sedimentary columns of the Arabian crust, cannot be resolved due to the smearing effect of the smoothness constraint employed in the regularized inversion procedure and the sensitivity of MT data to the conductance of the subsurface. We performed different tests to determine the range of 2-D models consistent with the data. Our approach was based on synthetic studies, comprising of hypothesis testing and the use of a priori information throughout the inversion procedure as well as forward modeling. We conclude that the minimum depth extent of the conductive layer beneath the southwest of the profile can be determined as approximately deeper than 15 km and also the screening effect of the conductive overburden is highly intense in this model and prevents the deep structures from being resolved properly.

  2. Benefits of using a Social-Ecological Systems Approach to Conceptualize and Model Wetlands Restoration

    EPA Science Inventory

    Using a social-ecological systems (SES) perspective to examine wetland restoration helps decision-makers recognize interdependencies and relations between ecological and social components of coupled systems. Conceptual models are an invaluable tool to capture, visualize, and orga...

  3. Agent-Based Modeling and Simulation in the Dilemma Zone

    DOT National Transportation Integrated Search

    2015-12-01

    The goal of this study is to develop a realistic dilemma zone (DZ) model that considers the effects of factors surrounding vehicles at an intersection, particularly focusing on driver decision-making behavior, such as the presence of a pedestrian cou...

  4. Marital Aggression and Child Peer Competence: A Comparison of Three Conceptual Models

    PubMed Central

    Finger, Brent; Eiden, Rina D.; Edwards, Ellen P.; Leonard, Kenneth E.; Kachadourian, Lorig

    2013-01-01

    This study examined longitudinal data linking marital aggression with child peer competence in kindergarten. The study compared three conceptual models for understanding the relation between marital aggression and child peer competence. Model 1 examines the direct effects of marital aggression, parental alcoholism, and parenting on child peer competence, model 2 posits that this relation is mediated by child social problem solving abilities (social information processing theory), while model 3 proposes that the relation is mediated by parental warmth/sensitivity (spillover theory). Structural Equation Modeling was most supportive of models 1 and 3 indicating that parenting behavior, but not social problem solving, partially mediates the relation between marital conflict and child peer competence. PMID:24009468

  5. A conceptual model of physician work intensity: guidance for evaluating policies and practices to improve health care delivery.

    PubMed

    Horner, Ronnie D; Matthews, Gerald; Yi, Michael S

    2012-08-01

    Physician work intensity, although a major factor in determining the payment for medical services, may potentially affect patient health outcomes including quality of care and patient safety, and has implications for the redesign of medical practice to improve health care delivery. However, to date, there has been minimal research regarding the relationship between physician work intensity and either patient outcomes or the organization and management of medical practices. A theoretical model on physician work intensity will provide useful guidance to such inquiries. To describe an initial conceptual model to facilitate further investigations of physician work intensity. A conceptual model of physician work intensity is described using as its theoretical base human performance science relating to work intensity. For each of the theoretical components, we present relevant empirical evidence derived from a review of the current literature. The proposed model specifies that the level of work intensity experienced by a physician is a consequence of the physician performing the set of tasks (ie, demands) relating to a medical service. It is conceptualized that each medical service has an inherent level of intensity that is experienced by a physician as a function of factors relating to the physician, patient, and medical practice environment. The proposed conceptual model provides guidance to researchers as to the factors to consider in studies of how physician work intensity impacts patient health outcomes and how work intensity may be affected by proposed policies and approaches to health care delivery.

  6. Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report - December 2016.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John R.

    This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM)more » of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.« less

  7. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang

    2017-05-01

    Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.

  9. Further Conceptualizing Ethnic and Racial Identity Research: The Social Identity Approach and Its Dynamic Model.

    PubMed

    Verkuyten, Maykel

    2016-11-01

    This article proposes a further conceptualization of ethnic and racial identity (ERI) as a fundamental topic in developmental research. Adding to important recent efforts to conceptually integrate and synthesize this field, it is argued that ERI research will be enhanced by more fully considering the implications of the social identity approach. These implications include (a) the conceptualization of social identity, (b) the importance of identity motives, (c) systematic ways for theorizing and examining the critical role of situational and societal contexts, and (d) a dynamic model of the relation between ERI and context. These implications have not been fully considered in the developmental literature but offer important possibilities for moving the field forward in new directions. © 2016 The Author. Child Development © 2016 Society for Research in Child Development, Inc.

  10. Geohydrology and conceptual model of a ground-water-flow system near a Superfund site in Cheshire, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Barlow, P.M.; Starn, J.J.

    1996-01-01

    Degradation of ground-water quality has been identified in an area of the north-central part of the town of Cheshire, Connecticut. An investigation by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, was done during 1994-95 to characterize the unconsolidated glacial deposits and the sedimentary bedrock, integrate the local geohydrologic conditions with the regional geohydrologic system, and develop a conceptual understanding of ground-water flow in the study area. A regional ground-water-flow model developed for the region near the study area indicates that perennial streams, including Judd Brook and the Tenmile River, form hydrologic divides that separate the larger region into hydraulically independent flow systems. In the local study area, synoptic water-level measurements made in June 1995 indicate that ground water near the water table flows west and southwestward from the low hill on the eastern side of the area toward the pond and wetlands along Judd Brook. Water-level data indicate that there is good hydraulic connection between the unconsolidated materials and underlying fractured bedrock. Unconsolidated materials in the study area consist principally of glacial stratified deposits that are fine sand, silt, and clay of glaci- olacustrine origin; locally these overlie thin glacial till. The glacial sediments range in thickness from a few feet to about 25 ft in the eastern part of the study area and are as much as 100 ft thick in the western and southern part of the study area beneath the Judd Brook and Tenmile River valleys. Fluvial redbeds of the New Haven Arkose underlie the glacial deposits in the region; in the study area, the redbeds consist of (1) channel sandstone units, which are coarse sandstone to fine conglomerate, generally in 6- to 15-ft- thick sequences; and (2) overbank mudstone units, which are siltstone and silty sandstone with some fine sandstone, generally in 6- to 50-ft-thick sequences. Thin

  11. Refining and validating a conceptual model of Clinical Nurse Leader integrated care delivery.

    PubMed

    Bender, Miriam; Williams, Marjory; Su, Wei; Hites, Lisle

    2017-02-01

    To empirically validate a conceptual model of Clinical Nurse Leader integrated care delivery. There is limited evidence of frontline care delivery models that consistently achieve quality patient outcomes. Clinical Nurse Leader integrated care delivery is a promising nursing model with a growing record of success. However, theoretical clarity is necessary to generate causal evidence of effectiveness. Sequential mixed methods. A preliminary Clinical Nurse Leader practice model was refined and survey items developed to correspond with model domains, using focus groups and a Delphi process with a multi-professional expert panel. The survey was administered in 2015 to clinicians and administrators involved in Clinical Nurse Leader initiatives. Confirmatory factor analysis and structural equation modelling were used to validate the measurement and model structure. Final sample n = 518. The model incorporates 13 components organized into five conceptual domains: 'Readiness for Clinical Nurse Leader integrated care delivery'; 'Structuring Clinical Nurse Leader integrated care delivery'; 'Clinical Nurse Leader Practice: Continuous Clinical Leadership'; 'Outcomes of Clinical Nurse Leader integrated care delivery'; and 'Value'. Sample data had good fit with specified model and two-level measurement structure. All hypothesized pathways were significant, with strong coefficients suggesting good fit between theorized and observed path relationships. The validated model articulates an explanatory pathway of Clinical Nurse Leader integrated care delivery, including Clinical Nurse Leader practices that result in improved care dynamics and patient outcomes. The validated model provides a basis for testing in practice to generate evidence that can be deployed across the healthcare spectrum. © 2016 John Wiley & Sons Ltd.

  12. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education.

    PubMed

    Hervatis, Vasilis; Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-10-06

    Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators' decision making. A deductive case study approach was applied to develop the conceptual model. The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach.

  13. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education

    PubMed Central

    Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-01-01

    Background Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. Objective The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. Methods A deductive case study approach was applied to develop the conceptual model. Results The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. Conclusions The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach. PMID:27731840

  14. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  15. Alternative Zoning Scenarios for Regional Sustainable Land Use Controls in China: A Knowledge-Based Multiobjective Optimisation Model

    PubMed Central

    Xia, Yin; Liu, Dianfeng; Liu, Yaolin; He, Jianhua; Hong, Xiaofeng

    2014-01-01

    Alternative land use zoning scenarios provide guidance for sustainable land use controls. This study focused on an ecologically vulnerable catchment on the Loess Plateau in China, proposed a novel land use zoning model, and generated alternative zoning solutions to satisfy the various requirements of land use stakeholders and managers. This model combined multiple zoning objectives, i.e., maximum zoning suitability, maximum planning compatibility and maximum spatial compactness, with land use constraints by using goal programming technique, and employed a modified simulated annealing algorithm to search for the optimal zoning solutions. The land use zoning knowledge was incorporated into the initialisation operator and neighbourhood selection strategy of the simulated annealing algorithm to improve its efficiency. The case study indicates that the model is both effective and robust. Five optimal zoning scenarios of the study area were helpful for satisfying the requirements of land use controls in loess hilly regions, e.g., land use intensification, agricultural protection and environmental conservation. PMID:25170679

  16. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  17. A picture is worth a thousand words: helping students visualize a conceptual model.

    PubMed

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  18. Calibration of an Unsteady Groundwater Flow Model for a Complex, Strongly Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Curtis, Z. K.; Liao, H.; Li, S. G.; Phanikumar, M. S.; Lusch, D.

    2016-12-01

    Modeling of groundwater systems characterized by complex three-dimensional structure and heterogeneity remains a significant challenge. Most of today's groundwater models are developed based on relatively simple conceptual representations in favor of model calibratibility. As more complexities are modeled, e.g., by adding more layers and/or zones, or introducing transient processes, more parameters have to be estimated and issues related to ill-posed groundwater problems and non-unique calibration arise. Here, we explore the use of an alternative conceptual representation for groundwater modeling that is fully three-dimensional and can capture complex 3D heterogeneity (both systematic and "random") without over-parameterizing the aquifer system. In particular, we apply Transition Probability (TP) geostatistics on high resolution borehole data from a water well database to characterize the complex 3D geology. Different aquifer material classes, e.g., `AQ' (aquifer material), `MAQ' (marginal aquifer material'), `PCM' (partially confining material), and `CM' (confining material), are simulated, with the hydraulic properties of each material type as tuning parameters during calibration. The TP-based approach is applied to simulate unsteady groundwater flow in a large, complex, and strongly heterogeneous glacial aquifer system in Michigan across multiple spatial and temporal scales. The resulting model is calibrated to observed static water level data over a time span of 50 years. The results show that the TP-based conceptualization enables much more accurate and robust calibration/simulation than that based on conventional deterministic layer/zone based conceptual representations.

  19. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  20. Exploring the Postgraduate Research Climate and the Postgraduate Research Experience: A Conceptual Model

    ERIC Educational Resources Information Center

    Govender, K. K.

    2011-01-01

    The objective of this article is to develop a conceptual model aimed at improving the postgraduate research students' experience. Since postgraduate students "vote with their feet" an improved understanding of the postgraduate research service encounter may result in improving the quality of the encounter and so increasing throughput and…

  1. A Conceptual Three-Dimensional Model for Evaluating Community-Based Substance Abuse Prevention Programs.

    ERIC Educational Resources Information Center

    Albers, Eric C.; Santangelo, Linda K.; McKinlay, George; Cavote, Steve; Rock, Stephen L.; Evans, William

    2002-01-01

    Presents a three-dimensional model for conceptualizing existing prevention programs, defining and measuring effects of prevention programs, and making a connection between those programmatic effects, and the interests of the funder. This paper describes the methodology and its use for promoting the efficiency and effectiveness of substance abuse…

  2. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.

    PubMed

    Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max

    2017-12-01

    A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.

  3. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  4. Internal Models, Vestibular Cognition, and Mental Imagery: Conceptual Considerations.

    PubMed

    Mast, Fred W; Ellis, Andrew W

    2015-01-01

    Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mechanisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cognition will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.

  5. Developing a Learning Progression of Buoyancy to Model Conceptual Change: A Latent Class and Rule Space Model Analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yizhu; Zhai, Xiaoming; Andersson, Björn; Zeng, Pingfei; Xin, Tao

    2018-06-01

    We applied latent class analysis and the rule space model to verify the cumulative characteristic of conceptual change by developing a learning progression for buoyancy. For this study, we first abstracted seven attributes of buoyancy and then developed a hypothesized learning progression for buoyancy. A 14-item buoyancy instrument was administered to 1089 8th grade students to verify and refine the learning progression. The results suggest four levels of progression during conceptual change when 8th grade students understand buoyancy. Students at level 0 can only master Density. When students progress to level 1, they can grasp Direction, Identification, Submerged volume, and Relative density on the basis of the prior level. Then, students gradually master Archimedes' theory as they reach level 2. The most advanced students can further grasp Relation with motion and arrive at level 3. In addition, this four-level learning progression can be accounted for by the Qualitative-Quantitative-Integrative explanatory model.

  6. Empirical Models of Zones Protecting Against Coal Dust Explosion

    NASA Astrophysics Data System (ADS)

    Prostański, Dariusz

    2017-09-01

    The paper presents predicted use of research' results to specify relations between volume of dust deposition and changes of its concentration in air. These were used to shape zones protecting against coal dust explosion. Methodology of research was presented, including methods of measurement of dust concentration as well as deposition. Measurements were taken in the Brzeszcze Mine within framework of MEZAP, co-financed by The National Centre for Research and Development (NCBR) and performed by the Institute of Mining Technology KOMAG, the Central Mining Institute (GIG) and the Coal Company PLC. The project enables performing of research related to measurements of volume of dust deposition as well as its concentration in air in protective zones in a number of mine workings in the Brzeszcze Mine. Developed model may be supportive tool in form of system located directly in protective zones or as operator tool warning about increasing hazard of coal dust explosion.

  7. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We

  8. Understanding How Domestic Violence Support Services Promote Survivor Well-being: A Conceptual Model.

    PubMed

    Sullivan, Cris M

    2018-01-01

    Domestic violence (DV) victim service programs have been increasingly expected by legislators and funders to demonstrate that they are making a significant difference in the lives of those using their services. Alongside this expectation, they are being asked to describe the Theory of Change guiding how they believe their practices lead to positive results for survivors and their children. Having a widely accepted conceptual model is not just potentially useful to funders and policy makers as they help shape policy and practice -- it can also help programs continually reflect upon and improve their work. This paper describes the iterative and collaborative process undertaken to generate a conceptual model describing how DV victim services are expected to improve survivors' lives. The Social and Emotional Well-Being Framework guiding the model is an ideal structure to use to describe the goals and practices of DV programs because this framework: (1) accurately represents DV programs' goal of helping survivors and their children thrive; and (2) recognizes the importance of community, social, and societal context in influencing individuals' social and emotional well-being. The model was designed to guide practice and to generate new questions for research and evaluation that address individual, community, and systems factors that promote or hinder survivor safety and well-being.

  9. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  10. Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; McDonnell, Jeff

    2004-01-01

    We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When

  11. Space-time evolution of cataclasis in carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo

    2018-05-01

    The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.

  12. [Active ageing and success: A brief history of conceptual models].

    PubMed

    Petretto, Donatella Rita; Pili, Roberto; Gaviano, Luca; Matos López, Cristina; Zuddas, Carlo

    2016-01-01

    The aim of this paper is to analyse and describe different conceptual models of successful ageing, active and healthy ageing developed in Europe and in America in the 20° century, starting from Rowe and Kahn's original model (1987, 1997). A narrative review was conducted on the literature on successful ageing. Our review included definition of successful ageing from European and American scholars. Models were found that aimed to describe indexes of active and healthy ageing, models devoted to describe processes involved in successful ageing, and additional views that emphasise subjective and objective perception of successful ageing. A description is also given of critiques on previous models and remedies according to Martin et al. (2014) and strategies for successful ageing according to Jeste and Depp (2014). The need is discussed for the enhancement of Rowe and Kahn's model and other models with a more inclusive, universal description of ageing, incorporating scientific evidence regarding active ageing. Copyright © 2015 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. An overview of the recent approaches for terroir functional modelling, footprinting and zoning

    NASA Astrophysics Data System (ADS)

    Costantini, Edoardo; Emmanuelle, Vaudour; Jones, Gregory; Mocali, Stefano

    2014-05-01

    Notions of terroir and their conceptualization through agri-environmental sciences have become popular in many parts of world. Originally developed for wine, terroir is now investigated for fruits, vegetables, cheese, olive oil, coffee, cacao and other crops, linking the uniqueness and quality of both beverages and foods to the environment where they are produced, giving the consumer a sense of place. Climate, geology, geomorphology, and soil are the main environmental factors which compose the terroir effect at different scales. Often considered immutable at the cultural scale, the natural components of terroir are actually a set of processes, which together create a delicate equilibrium and regulation of its effect on products in both space and time. Due to both a greater need to better understand regional to site variations in crop production and the growth in spatial analytic technologies, the study of terroir has shifted from a largely descriptive regional science to a more applied, technical research field. Furthermore, the explosion of spatial data availability and elaboration technologies have made the scale of study more valuable to the individual grower, resulting in greater adoption and application. Moreover, as soil microbial communities are known to be of vital importance for terrestrial processes by driving the major soil geochemical cycles and supporting healthy plant growth, an intensive investigation of the microbial organization and their function is also required. Our objective is to present an overview of existing data and modeling approaches for terroir functional modeling, footprinting and zoning at local and regional scales. This review will focus on four main areas of recent terroir research: 1) quantifying the influences of terroir components on plant growth, fruit composition and quality, mostly examining climate-soil-water relationships; 2) the metagenomic approach as new tool to unravel the biogeochemical cycles of both macro- and

  14. PIRPOSAL Model of Integrative STEM Education: Conceptual and Pedagogical Framework for Classroom Implementation

    ERIC Educational Resources Information Center

    Wells, John G.

    2016-01-01

    The PIRPOSAL model is both a conceptual and pedagogical framework intended for use as a pragmatic guide to classroom implementation of Integrative STEM Education. Designerly questioning prompted by a "need to know" serves as the basis for transitioning student designers within and among multiple phases while they progress toward an…

  15. Conceptual Resources in Self-Developed Explanatory Models: The Importance of Integrating Conscious and Intuitive Knowledge

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Brown, David E.

    2010-01-01

    This study explores the spontaneous explanatory models children construct, critique, and revise in the context of tasks in which children need to predict, observe, and explain phenomena involving magnetism. It further investigates what conceptual resources students use, and in what ways they use them, to construct explanatory models, and the…

  16. The saturated zone at Yucca Mountain: An overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration

    USGS Publications Warehouse

    Eddebbarh, A.-A.; Zyvoloski, G.A.; Robinson, B.A.; Kwicklis, E.M.; Reimus, P.W.; Arnold, B.W.; Corbet, T.; Kuzio, S.P.; Faunt, C.

    2003-01-01

    The US Department of Energy is pursuing Yucca Mountain, Nevada, for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste, if the repository is able to meet applicable radiation protection standards established by the US Nuclear Regulatory Commission and the US Environmental Protection Agency (EPA). Effective performance of such a repository would rely on a number of natural and engineered barriers to isolate radioactive waste from the accessible environment. Groundwater beneath Yucca Mountain is the primary medium through which most radionuclides might move away from the potential repository. The saturated zone (SZ) system is expected to act as a natural barrier to this possible movement of radionuclides both by delaying their transport and by reducing their concentration before they reach the accessible environment. Information obtained from Yucca Mountain Site Characterization Project activities is used to estimate groundwater flow rates through the site-scale SZ flow and transport model area and to constrain general conceptual models of groundwater flow in the site-scale area. The site-scale conceptual model is a synthesis of what is known about flow and transport processes at the scale required for total system performance assessment of the site. This knowledge builds on and is consistent with knowledge that has accumulated at the regional scale but is more detailed because more data are available at the site-scale level. The mathematical basis of the site-scale model and the associated numerical approaches are designed to assist in quantifying the uncertainty in the permeability of rocks in the geologic framework model and to represent accurately the flow and transport processes included in the site-scale conceptual model. Confidence in the results of the mathematical model was obtained by comparing calculated to observed hydraulic heads, estimated to measured permeabilities, and lateral flow rates

  17. The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?

    NASA Astrophysics Data System (ADS)

    Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus

    2016-12-01

    The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to

  18. Conceptualization of preferential flow for hillslope stability assessment

    NASA Astrophysics Data System (ADS)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  19. Conceptual modelling to predict unobserved system states - the case of groundwater flooding in the UK Chalk

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Ireson, A. M.

    2017-12-01

    Chalk aquifers represent an important source of drinking water in the UK. Due to its fractured-porous structure, Chalk aquifers are characterized by highly dynamic groundwater fluctuations that enhance the risk of groundwater flooding. The risk of groundwater flooding can be assessed by physically-based groundwater models. But for reliable results, a-priori information about the distribution of hydraulic conductivities and porosities is necessary, which is often not available. For that reason, conceptual simulation models are often used to predict groundwater behaviour. They commonly require calibration by historic groundwater observations. Consequently, their prediction performance may reduce significantly, when it comes to system states that did not occur within the calibration time series. In this study, we calibrate a conceptual model to the observed groundwater level observations at several locations within a Chalk system in Southern England. During the calibration period, no groundwater flooding occurred. We then apply our model to predict the groundwater dynamics of the system at a time that includes a groundwater flooding event. We show that the calibrated model provides reasonable predictions before and after the flooding event but it over-estimates groundwater levels during the event. After modifying the model structure to include topographic information, the model is capable of prediction the groundwater flooding event even though groundwater flooding never occurred in the calibration period. Although straight forward, our approach shows how conceptual process-based models can be applied to predict system states and dynamics that did not occur in the calibration period. We believe such an approach can be transferred to similar cases, especially to regions where rainfall intensities are expected to trigger processes and system states that may have not yet been observed.

  20. Body composition, muscle capacity, and physical function in older adults: an integrated conceptual model.

    PubMed

    Brady, Anne O; Straight, Chad R; Evans, Ellen M

    2014-07-01

    The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.