Science.gov

Sample records for zone drip irrigation

  1. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  2. Drip irrigation research update at NPRL

    USDA-ARS?s Scientific Manuscript database

    Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...

  3. Irrigation strategies using subsurface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  4. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  5. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    USDA-ARS?s Scientific Manuscript database

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  6. A comparison of precision mobile drip irrigation, LESA and LEPA

    USDA-ARS?s Scientific Manuscript database

    Precision mobile drip irrigation (PMDI) is a surface drip irrigation system fitted onto moving sprinkler systems that applies water through the driplines as they are dragged across the field. This application method can conserve water by limiting runoff, and reducing evaporative losses since the wat...

  7. Irrigation and fertigation with drip and alternative micro irrigation systems in northern highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...

  8. Simulation of Soil Wetting Patterns in Drip and Subsurface Irrigation. Effects in Design and Irrigation Management Variables.

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sinobas, L.; Gil-Rodríguez, M.; Sánchez, R.; Losada, A.; Castañón, G.; Juana, L.; Laguna, F. V.; Benítez, J.

    2010-05-01

    Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing between emitters and the inlet pressure and irrigation time for any given set of soil, crop, and climatic conditions, as well as understanding the wetted zone pattern around the emitter. Likewise, water distribution is affected by soil hydraulic properties, initial water content, emitter discharge, irrigation frequency, evapotranspiration and root characteristics. However, complexity arousing of soil water properties and soil profile characteristics means that these are often not properly considered in the design and management of those systems. A better understanding of the infiltration process around the discharge point source should contribute to increase water use efficiency and thus to reduce the risk of environmental impact of irrigation. In this regard, numerical models have been proved to be a powerful tool to analyze the evolution of the wetting pattern during the distribution and redistribution processes, in order to explore irrigation management strategies, to set up the duration of irrigation, and finally to optimize water use efficiency. Also, irrigation design variables such as emitter spacing and discharge could also be assessed. In this study the suitability of the HYDRUS-2D to simulate infiltration process around an emitter during irrigation of a loamy soil with drip and SDI laterals has been addressed. The model was then applied in order to evaluate the main dimensions of the wetted soil volume surrounding the emitter during irrigation. Irrigation uniformity

  9. Yield response and economics of shallow subsurface drip irrigation systems

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  10. Progress on field study with precision mobile drip irrigation technologly

    USDA-ARS?s Scientific Manuscript database

    Precision mobile drip irrigation (PMDI) is a technology that was developed in the 1970s that converts drop hoses on moving irrigation systems to dripline. Although this technology was developed more than 40 years ago, it was not widely implemented and few studies reported on its performance. Recentl...

  11. Sensing water from subsurface drip irrigation laterals: In situ sensors, weighing lysimeters and COSMOS under vegetated and bare conditions

    USDA-ARS?s Scientific Manuscript database

    Characterization of soil water dynamics in the root zone under subsurface drip irrigated (SDI) is complicated by the three dimensional nature of water fluxes from drip emitters plus the fluxes, if any, of water from precipitation. In addition, soil water sensing systems may differ in their operating...

  12. Longevity of shallow subsurface drip irrigation tubing under three tillage practices

    USDA-ARS?s Scientific Manuscript database

    Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...

  13. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  14. Evaluation of dripper clogging using magnetic water in drip irrigation

    NASA Astrophysics Data System (ADS)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  15. Water use efficiency of different sugarcane genotypes irrigated by a subsurface drip irrigation system

    NASA Astrophysics Data System (ADS)

    Silva, A. L. B. O.; Pires, R. C. M.; Ribeiro, R. V.; Machado, E. C.; Rolim, G. S.; Magalhães Filho, J. R.; Marchiori, P. E. R.

    2012-04-01

    The biofuel production is a growing concern on modern society due to the agricultural sustainability, in which both food and energy supplying should be take into account. The agroclimatic zoning indicates that sugarcane expansion in Brazil can only take place in marginal lands, where water deficit occurs and irrigation is necessary. The aim of this work was to evaluate water consumption and the water use efficiency of two sugarcane genotypes irrigated by a subsurface drip irrigation system. The field experiment was carried out in Campinas SP Brazil, with IACSP95-5000 and SP79-1011 varieties. Those varieties have different canopy characteristics and development, with IACSP95-5000 being more responsive to soil water availability and presenting higher light interception when compared to SP79-1011. Crop evapotranspiration (ETc) was calculated through field water balance from August 2010 to March 2011. Soil water content was evaluated by using a capacitance probe, sampling different depths in soil profile until 1-m. IACSP95-5000 had higher water consumption than SP79-1011. The mean ETc value of IACSP95-5000 was 5.0 mm day-1, whereas SP79-1011 showed 3.7 mm day-1. ETc values were positively correlated to biomass production, with IACSP95-5000 exhibiting higher growth and water use efficiency than SP79-1011.

  16. Performance of precision mobile drip irrigation in the Texas High Plains region

    USDA-ARS?s Scientific Manuscript database

    Mobile drip irrigation (MDI) technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, info...

  17. Validation and application of a two-dimensional model to simulate soil salt transport under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo

    2017-04-01

    drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.

  18. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the

  19. Plant development and yield of four sugarcane varieties irrigated by a subsurface drip irrigation system in Campinas, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, André Luiz Barros de O.; Célia de Matos Pires, Regina; Yukitaka Pessinati Ohashi, Augusto; Vasconcelos Ribeiro, Rafael; Landell, Marcos Guimarães de Andrade; Aparecida Creste Dias de Souza, Silvana

    2013-04-01

    The biofuel production is a growing concern on modern society due to the agricultural sustainability, in which both food and energy supply should be taken into account. The agroclimatic zoning indicates that sugarcane expansion in Brazil can only take place in marginal lands, where water deficit occurs and irrigation is necessary. The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficit conditions or to attain high yield and to increase longevity of plants. In this context it is necessary to investigate responses of different varieties to water supply. The aim of this work was to evaluate the plant development and yield of four sugarcane varieties irrigated by a subsurface drip irrigation system in Campinas, Brazil in the 1st cane ratoon cycle. The field experiment was carried out in Campinas SP Brazil, with IACSP95-5000, IACSP94-2094, IACSP94-2101 and SP79-1011 cultivars in the 1st cane ratoon cycle, from January (after the harvest of cane plant cycle) to October (harvest the 1st cane ratoon cycle). The plant spacing was 1.5 m between rows. Each cultivar was planted in an area of 0.4 hectares. The irrigation was done by a subsuperficial drip system with one drip line in each plant row installed at 0.25 m deep. During the 1st cane ratoon cycle the parameters were analysed on the 33rd, 123rd, 185th and 277th day. The analysed parameters were: plant yield (m), leaf area index (LAI) and yield (tons per hectare). According to the results from the second sampling (123rd day) the varieties IACSP95-5000 and IACSP94-2101 showed higher plant height when compared to the other varieties. However, from the third sampling (185th day) on the IACSP95-5000 variety grew considerably taller than the other varieties. The varieties SP79-1011and IACSP94-2101 presented lower values of LAI throughout the crop cycle when compared to other varieties. But on the

  20. Reducing water inputs with subsurface drip irrigation may improve alfalfa nutritive value

    USDA-ARS?s Scientific Manuscript database

    Irrigated alfalfa (Medicago sativa L.) is an important forage crop for western Kansas dairy producers. Concerns over decreasing groundwater supplies have prompted the need to develop more efficient methods of irrigation. We investigated the effects of a subsurface drip irrigation system at three lev...

  1. Geophysical and Geochemical Characterization of Subsurface Drip Irrigation Sites, Powder River Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Burton, B. L.; Bern, C. R.; Sams, J. I., III; Veloski, G.; Minsley, B. J.; Smith, B. D.

    2010-12-01

    for six years and includes irrigated alfalfa and grass and adjacent non-irrigated grass fields. A single ground-based EMI survey was performed in Feb. 2010, which helped direct subsequent soil sampling. Gypsum distribution can be differentiated into two soil zones: an upper, gypsum-poor zone and a lower gypsum-rich zone. The break between zones is 30 cm deeper in the irrigated soil and is probably due to dissolution and displacement of gypsum by SDI waters infiltrating from the drip tape. Resistivity profiles were acquired in June 2010 over the soil sampling sites and are consistent with the EMI data, which show higher conductivity values in the irrigated fields. In the SDI alfalfa field, there is a strong negative correlation between mass wetness and resistivity with a 75% increase in mass wetness (0.2-0.35 g/g) at 3 m depth corresponding to a 30% resistivity decrease (15-10 ohm-m). When compared to the non-irrigated field profile, the SDI alfalfa field data show a 50% resistivity decrease (20-10 ohm-m) below 3 m depth, indicating a possible accumulation of irrigated waters below the SDI system.

  2. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed

  3. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  4. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    USGS Publications Warehouse

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  5. Drip irrigation management in different chufa planting strategies: yield and irrigation water use efficiency

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2013-04-01

    In a study presented in the EGU assembly 2012, it was analysed how yield and irrigation water use efficiency (IWUE) in chufa (Cyperus esculentus L. var. sativus), crop, were affected by planting strategy (ridges and flat raised beds, with two and three plant rows along them) and irrigation system [furrow (FI) and drip irrigation (DI)]. Each irrigation session started when the Volumetric Soil Water Content (VSWC) in ridges dropped to 80% of field capacity; beds were irrigated simultaneously with ridges and with the same irrigation duration. R produced lower yield than the two types of beds, and yields in DI were higher than those FI. Ridges led to the highest IWUE with DI, and to the lowest with FI. Then, it was decided to analyse, in DI, how yield and IWUE responded to start each irrigation session when the VSWC in the central point of different planting strategies [ridges (R), and flat raised beds with two (b) and three (B) plant rows along them] dropped to 80% of field capacity. In R and b, plants were irrigated by a single dripline per plant row, while in B two irrigation layouts were assayed: a single dripline per plant row (B3) and two driplines per bed (B2), placing each dripline between two planting rows. Irrigation session stop was also automated as a function of the VSWC. Results show that yield was affected (P˜0.01) by planting strategy; the greatest yield was obtained in b (2.4 kgm-2), differing (P˜0.05) from that obtained in R (2.1 kgm-2), with intermediate yields in B2 (2.3 kgm-2) and B3 (2.3 kgm-2). Yield was not affected (P˜0.05) by the utilisation of two or three driplines in B. Considerably less irrigation water was applied (IWA) in R (376 mm) than in B3 (465 mm), B2 (475 mm) and b (502 mm). This automatic irrigation management, as a function of the VSWC in each planting strategy, lead to adjust the IWA to the plant water requirements, which were similar in all three flat raised beds, since they correspond to the same planting density, that was

  6. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree.

    PubMed

    Liu, Xiaogang; Li, Fusheng; Yang, Qiliang; Wang, Xinle

    2016-07-01

    To obtain optimal irrigation management for young coffee tree, the effects of alternate drip irrigation (ADI) and superabsorbent polymers on physiology, growth, dry mass accumulation and water use on one-year old Coffea arabica L. tree were investigated. This experiment had three drip irrigation methods, i.e., conventional drip irrigation (CDI), alternate drip irrigation (ADI) and fixed drip irrigation (FDI), and two levels of superabsorbent polymers, i.e., no superabsorbent polymers (NSAP) and added superabsorbent polymers (SAP). Compared to CDI, ADI saved irrigation water by 32.1% and increased water use efficiency (WUE) by 29.9%. SAP increased root-shoot ratio, total dry mass and WUE by 20.3, 24.9 and 33.0%, respectively, when compared to NSAP. Compared to CDI with NSAP treatment, ADI with SAP treatment increased total dry mass by 13.8% and saved irrigation water by 34.4%, thus increased WUE by 73.4%, and it increased root activity, the contents of chlorophyll and soluble sugar in leaves by 162.4, 38.0 and 8.5%, but reduced the contents of proline and malondialdehyde in leaves by 7.2 and 9.7%, respectively. Thus, alternate drip irrigation with superabsorbent polymers increased the growth and WUE of young Coffea arabica L. tree and was optimal irrigation management for young coffee tree.

  7. D-Area Drip Irrigation/Phytoremediation Project: SRTC Report on Phase 1

    SciTech Connect

    Wilde, E.W.

    2001-09-11

    The overall objective of this project is to evaluate a novel drip irrigation-phytoremediation process for remediating volatile organic contaminants (VOCs), primarily trichloroethylene (TCE), from groundwater in D-Area at the Savannah River Site (SRS). The process is expected to be less expensive and more beneficial to the environment than alternative TCE remediation technologies.

  8. Yield and economics of shallow subsurface drip irrigation (S3DI) and furrow diking

    USDA-ARS?s Scientific Manuscript database

    A shallow subsurface drip irrigation (S3DI) was installed yearly in conjunction with furrow diking to document yield and economic benefit of these techniques on peanut (Arachis hypogaea L.), cotton (Gossypium hirsutum L.), and corn (Zea mays L.). This research was conducted for three years from 2005...

  9. Cotton, tomato, corn, and onion production with subsurface drip irrigation – a review

    USDA-ARS?s Scientific Manuscript database

    The usage of subsurface drip irrigation (SDI) has increased by 89% in the USA during the last ten years according to USDA NASS estimates and over 93% of the SDI land area is located in just ten states. Combining public entity and private industry perceptions of SDI in these ten states, the major cro...

  10. Simplified Equations to Estimate Flushline Diameter for Subsurface Drip Irrigation Systems

    USDA-ARS?s Scientific Manuscript database

    A formulation of the Hazen-Williams equation is typically used to determine the diameter of the common flushline that is often used at the distal end of subsurface drip irrigation systems to aid in joint flushing of a group of driplines. Although this method is accurate, its usage is not intuitive a...

  11. Shallow subsurface drip irrigation (S3DI) for small irregular-shaped fields in the southeast

    USDA-ARS?s Scientific Manuscript database

    Field tests were conducted using S3DI on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) rotations to investigate yield potential and economic sustainability of this irrigation system. Drip tubing was installed in alternate row middles, strip tillage was used ...

  12. Developing a Hybrid Solar/Wind Powered Drip Irrigation System for Dragon Fruit Yield

    NASA Astrophysics Data System (ADS)

    Widiastuti, I.; Wijayanto, D. S.

    2017-03-01

    Irrigation operations take a large amount of water and energy which impact to total costs of crop production. Development of an efficient irrigation supplying precise amount of water and conserving the use of energy can have benefits not only by reducing the operating costs but also by enhancing the farmland productivity. This article presents an irrigation method that promotes sustainable use of water and energy appropriate for a developing tropical country. It proposes a drip irrigation system supported by a combined solar-wind electric power generation system for efficient use of water in dragon fruit cultivation. The electric power generated is used to drive a water pump filling a storage tank for irrigating a 3000 m2 dragon fruit yield in Nguntoronadi, Wonogiri, Indonesia. In designing the irrigation system, the plant’s water requirement was identified based on the value of reference evapotranspiration of the area. A cost/benefit analysis was performed to evaluate the economic feasibility of the proposed scheme. The installation of this solar and wind drip irrigation helps provide sufficient quantity of water to each plant using renewable energy sources which reduce dependence on fossil fuel.

  13. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    PubMed

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  14. D-Area Drip Irrigation-Phytoremediation Project: SRTC Final Report

    SciTech Connect

    Wilde, E.W.

    2003-01-14

    Groundwater in D-Area at the Savannah River Site (SRS) is contaminated with trichloroethylene (TCE) and by-products resulting from discharges of this organic solvent during past operations. Several potential clean-up strategies are being or have been investigated, including a novel drip irrigation-phytoremediation process that is the focus of the treatability study described in this report. The contaminated groundwater in D-Area occurs primarily at depths of 30 to 50 feet below ground surface, well below the depths that are typically penetrated by plant roots. The system investigated in this study involved pumping water from the contaminated aquifer and discharging the water intomore » overlying test plots below the surface using drip irrigation. The test plots contained pines, cottonwoods, or no vegetation (controls). The primary objective was to determine the overall effectiveness of the process for TCE removal and to elucidate the biotic and abiotic pathways for its removal.« less

  15. Solar-powered drip irrigation enhances food security in the Sudano–Sahel

    PubMed Central

    Burney, Jennifer; Woltering, Lennart; Burke, Marshall; Naylor, Rosamond; Pasternak, Dov

    2010-01-01

    Meeting the food needs of Africa’s growing population over the next half-century will require technologies that significantly improve rural livelihoods at minimal environmental cost. These technologies will likely be distinct from those of the Green Revolution, which had relatively little impact in sub-Saharan Africa; consequently, few such interventions have been rigorously evaluated. This paper analyzes solar-powered drip irrigation as a strategy for enhancing food security in the rural Sudano–Sahel region of West Africa. Using a matched-pair comparison of villages in northern Benin (two treatment villages, two comparison villages), and household survey and field-level data through the first year of harvest in those villages, we find that solar-powered drip irrigation significantly augments both household income and nutritional intake, particularly during the dry season, and is cost effective compared to alternative technologies. PMID:20080616

  16. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  17. Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation

    PubMed Central

    He, Haibing; Ma, Fuyu; Yang, Ru; Chen, Lin; Jia, Biao; Cui, Jing; Fan, Hua; Wang, Xin; Li, Li

    2013-01-01

    Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity. PMID:24340087

  18. Bioenergy from Coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater.

    PubMed

    Cantrell, Keri B; Stone, Kenneth C; Hunt, Patrick G; Ro, Kyoung S; Vanotti, Matias B; Burns, Joseph C

    2009-07-01

    Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern US due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with livestock wastewater. The objective of this study was to determine the effect of subsurface drip irrigation with treated swine wastewater on both the quantity and quality of bermudagrass bioenergy. The treated wastewater was recycled from an advanced treatment system and used for irrigation of bermudagrass in two crop seasons. The experiment had nine water and drip line spacing treatments arrayed in a randomized complete block-design with four replicates. The bermudagrass was analyzed for calorific and mineral contents. Bermudagrass energy yields for 2004 and 2005 ranged from 127.4 to 251.4MJ ha(-1). Compared to irrigation with commercial nitrogen fertilizer, the least biomass energy density was associated with bermudagrass receiving treated swine wastewater. Yet, in 2004 the wastewater irrigated bermudagrass had greater hay yields leading to greater energy yield per ha. This decrease in energy density of wastewater irrigated bermudagrass was associated with increased concentrations of K, Ca, and Na. After thermal conversion, these compounds are known to remain in the ash portion thereby decreasing the energy density. Nonetheless, the loss of energy density using treated effluent via SDI may be offset by the positive influence of these three elements for their catalytic properties in downstream thermal conversion processes such as promoting a lesser char yield and greater combustible gas formation.

  19. Transitional Effects of Double-Lateral Drip Irrigation and Straw Mulch on Irrigation Water Consumption, Mineral Nutrition, Yield, and Storability of Sweet Cherry

    USDA-ARS?s Scientific Manuscript database

    A field trial was conducted on a Cherryhill silt loam soil at The Dalles, OR from 2006 through 2008. The impacts of switching from the traditional micro sprinkler irrigation (MS) to double-lateral drip irrigation (DD) and from no ground cover with herbicide control of weeds (NC) to in-row wheat (Tri...

  20. Effect of Fumigation on Rotylenchulus reniformis Population Density Through Subsurface Drip Irrigation Located Every Other Furrow.

    PubMed

    Wheeler, T A; Porter, D O; Archer, D; Mullinix, B G

    2008-09-01

    Plots naturally infested with Rotylenchulus reniformis were sampled in the spring of 2006 and 2007 at depths of 15 and 30 cm in the bed, furrow over the drip tape, and "dry" furrow, and at approximately 40 to 45 cm depth in the bed and dry furrow. Then, 1,3-dichloropropene (Telone EC) was injected into the subsurface drip irrigation at 46 kg a.i./ha, and 3 to 4 weeks later the plots were resampled and assayed for nematodes. The transformed values for nematode population density (IvLRr) before fumigation were higher at 30 and 40 cm depths than at a 15 cm depth. IvLRr before fumigation was higher in the soil over the drip lines than in the bed or dry furrow and was higher in the bed than the dry furrow. IvLRr was higher in the plots to be fumigated than the plots that were not to be fumigated for all depths and locations except at a 15 cm depth over the drip lines, where the values were similar. However, after fumigation, IvLRr was lower over the drip lines at a 30 cm depth in plots that were fumigated compared to samples in a similar location and depth that were not fumigated. There were no other location/depth combinations where the fumigation reduced IvLRr below that in the nonfumigated plots. Yield in 2006, which was a very hot and dry year, was predicted adequately (R(2) = 0.67) by a linear model based on the preplant population density of R. reniformis, with a very steep slope (-2.8 kg lint/ha per R. reniformis/100 cm(3) soil). However, no relationship between nematode density and yield was seen in 2007, which had cooler weather for most of the season. Yield was not significantly improved by fumigation through the drip irrigation system in either year compared to plots treated only with aldicarb (0.84 kg a.i./ha), indicating that the level of control with fumigation did not kill enough R. reniformis to be successful.

  1. An optimization model to design and manage subsurface drip irrigation system for alfalfa

    NASA Astrophysics Data System (ADS)

    Kandelous, M.; Kamai, T.; Vrugt, J. A.; Simunek, J.; Hanson, B.; Hopmans, J. W.

    2010-12-01

    Subsurface drip irrigation (SDI) is one of the most efficient and cost-effective methods for watering alfalfa plants. Lateral installation depth and distance, emitter discharge, and irrigation time and frequency of SDI, in addition to soil and climatic conditions affect alfalfa’s root water uptake and yield. Here we use a multi-objective optimization approach to find optimal SDI strategies. Our approach uses the AMALGAM evolutionary search method, in combination with the HYDRUS-2D unsaturated flow model to maximize water uptake by alfalfa’s plant roots, and minimize loss of irrigation and drainage water to the atmosphere or groundwater. We use a variety of different objective functions to analyze SDI. These criteria include the lateral installation depth and distance, the lateral discharge, irrigation duration, and irrigation frequency. Our framework includes explicit recognition of the soil moisture status during the simulation period to make sure that the top soil is dry for harvesting during the growing season. Initial results show a wide spectrum of optimized SDI strategies for different root distributions, soil textures and climate conditions. The developed tool should be useful in helping farmers optimize their irrigation strategy and design.

  2. Sorption of pathogens during sub-surface drip irrigation with wastewater

    NASA Astrophysics Data System (ADS)

    Levi, Laillach; Gillerman Gillerman, Leonid; Kalavrouziotis, Ioannis; Oron, Gideon

    2017-04-01

    Water scarcity continues to be one of the major threats to human survival in many regions worldwide, such as Africa, the Mediterranean Basin, the State of California in the US. Due to a mixture of factors such as population growth, reduction in water resources availability and higher demand for high quality waters in these regions these countries face water shortage issues that stem from overuse, extensive extraction of groundwater, and frequent drought events. In addition, there are increases in environmental and health awareness that have led to intensive efforts in the treatment and reuse of nonconventional water sources, mainly wastewater and greywater. One approach to water shortages issues is to use wastewater as means to close the gap between supply and demand. However, the need to treat wastewater and to disinfect it forces additional economic burden on the users, primarily for agricultural irrigation. A possible solution might be to use the soil as a sorbent for the contained pathogens. Under sub-surface drip irrigation, not allowing the wastewater to reach the soil surface, the pathogens will remain in the soil. It was as well shown in field experiments that the opening size of roots will not allow pathogens to penetrate into the plants. Additional advantages such as water saving, protection of the pipe systems and others are also important. Field experiments in commercial fields just emphasize the main advantages of sub-surface drip irrigation.

  3. A comparison of methods for determining the cotton field evapotranspiration and its components under mulched drip irrigation conditions: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.

    2013-12-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter

  4. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum)

    PubMed Central

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675

  5. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum).

    PubMed

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.

  6. Economic feasibility of converting center pivot irrigation to subsurface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Advancements in irrigation technology have increased water use efficiency. However, producers can be reluctant to convert to a more efficient irrigation system when the initial investment costs are high. This study examines the economic feasibility of replacing low energy precision application (LEPA...

  7. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops.

    PubMed

    Abalos, Diego; Sanchez-Martin, Laura; Garcia-Torres, Lourdes; van Groenigen, Jan Willem; Vallejo, Antonio

    2014-08-15

    Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4(+) and NO3(-)) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P<0.005). Daily irrigation reduced NO emissions by 42% (P<0.005) but increased CO2 emissions by 21% (P<0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3(-)-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    PubMed

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  9. Low salinity hydrocarbon water disposal through deep subsurface drip irrigation: leaching of native selenium

    USGS Publications Warehouse

    Bern, Carleton R.; Engle, Mark A.; Boehlke, Adam R.; Zupancic, John W.; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    A subsurface drip irrigation system is being used in Wyoming’s Powder River Basin that treats high sodium, low salinity, coal bed methane (CBM) produced water with sulfuric acid and injects it into cropped fields at a depth of 0.92 m. Dissolution of native gypsum releases calcium that combats soil degradation that would otherwise result from high sodium water. Native selenium is leached from soil by application of the CBM water and traces native salt mobilization to groundwater. Resulting selenium concentrations in groundwater at this alluvial site were generally low (0.5–23 μg/L) compared to Wyoming’s agricultural use suitability standard (20 μg/L).

  10. A Computer Program for Drip Irrigation System Design for Small Plots

    NASA Astrophysics Data System (ADS)

    Philipova, Nina; Nicheva, Olga; Kazandjiev, Valentin; Chilikova-Lubomirova, Mila

    2012-12-01

    A computer programhas been developed for design of surface drip irrigation system. It could be applied for calculation of small scale fields with an area up to 10 ha. The program includes two main parts: crop water requirements and hydraulic calculations of the system. It has been developed in Graphical User Interface in MATLAB and gives opportunity for selecting some parameters from tables such as: agro- physical soil properties, characteristics of the corresponding crop, climatic data. It allows the user of the program to assume and set a definite value, for example the emitter discharge, plot parameters and etc. Eight cases of system layout according to the water source layout and the number of plots of the system operation are laid into hydraulic section of the program. It includes the design of lateral, manifold, main line and pump calculations. The program has been compiled to work in Windows.

  11. Water saving in chufa cultivation using flat raised beds and drip irrigation

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, N.; San Bautista, A.; López-Galarza, S.; Maroto, J. V.; Pascual, B.

    2012-04-01

    Chufa (Cyperus esculentus L. var. sativus), also known as tiger nut, is a typical crop in the Region of Valencia (Spain). Its tubers are used to produce a beverage called horchata. Chufa has been cultivated traditionally in ridges and furrow irrigated. Currently, the quality of water used is acceptable, there are no limitations on supply, and water is not expensive; therefore, large amounts of water are used. The European Water Framework Directive 2000/60 is based on the precautionary principle, considering preventive action for measures to be taken; thus, water use is an issue to improve. Moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. In this two year study (2007-2008), we analysed how yield and irrigation water use efficiency (IWUE) are affected by two cultivation factors: planting strategy and irrigation system. Three planting strategies were analysed: ridges (R) and flat raised beds, with two (B2) and three (B3) plant rows along them, while two irrigation systems were compared, furrow (FI) and drip irrigation (DI). Within the beds, the effect of the position of the plant row was considered, differing among plants grown in the north (n), central (c), and south (s) rows. Distances between ridge and bed axes were 60, 80 and 120 cm for R, B2 and B3, respectively. Irrigation was based on the Volumetric Soil Water Content (VSWC), which was continuously monitored with capacitance sensors (ECH2O EC-5 in FI and multidepth capacitance sensors C-Probe in DI). Each irrigation session started when the VSWC in R dropped to 60% and 80% of field capacity in FI and DI, respectively. Each DI session lasted 60 min in 2007; while in 2008 the installation was automated, stopping each session when the sum of the VSWC at 10, 20, and 30 cm soil depth reached its corresponding field capacity value. With both irrigation systems, beds were irrigated simultaneously with ridges and with the same irrigation duration. Plants from

  12. Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Jiménez Bello, Miguel Angel; Martínez Alzamora, Fernando; Vereecken, Harry

    2017-04-01

    Irrigated agriculture accounts worldwide for 40% of food production and 70% of fresh water withdrawals. Irrigation scheduling aims to minimize water use while maintaining the agricultural production. In this study we were concerned with the real-time automatic control of irrigation, which calculates daily water allocation by combining information from soil moisture sensors and a land surface model. The combination of soil moisture measurements and predictions by the Community Land Model (CLM) using sequential data assimilation (DA) is a promising alternative to improve the estimate of soil and plant water status. The LETKF (Local Ensemble Transform Kalman Filter) was chosen to assimilate soil water content measured by FDR (Frequency Domain Reflectometry) into CLM and improve the initial (soil moisture) conditions for the next model run. In addition, predictions by the GFS (Global Forecast System) atmospheric simulation model were used as atmospheric input data for CLM to predict an ensemble of possible soil moisture evolutions for the next days. The difference between predicted and target soil water content is defined as the water deficit, and the irrigation amount was calculated by the integrated water deficit over the root zone. The corresponding irrigation time to apply the required water was introduced in SCADA (supervisory control and data acquisition system) for each citrus field. In total 6 fields were irrigated according our optimization approach including data assimilation (CLM-DA) and there were also 2 fields following the FAO (Food and Agriculture Organization) water balance method and 4 fields controlled by farmers as reference. During the real-time irrigation campaign in Valencia from July to October in 2015 and June to October in 2016, the applied irrigation amount, stem water potential and soil moisture content were recorded. The data indicated that 5% 20% less irrigation water was needed for the CLM-DA scheduled fields than for the other fields

  13. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India.

    PubMed

    Surendran, U; Jayakumar, M; Marimuthu, S

    2016-12-15

    Low cost drip irrigation (LCDI) has been a recent introduction to India and it may be an inexpensive means of expanding irrigation into uncultivated areas, thereby increasing land productivity. This paper is structured into two phases. The first phase, presents an assessment of different irrigation methods (LCDI, conventional drip irrigation (CDI) with single row and paired row, siphon and flood irrigation) on sugarcane production. The results showed that cane yield and water productivity was significantly increased in both plant and ratoon crop of sugarcane owing to the methods of irrigation. Among the methods, LCDI recorded 118.6tha -1 of cane yield and it was on par with the single row CDI, which recorded the highest mean yield of 120.4tha -1 and both are found to be significantly superior to the rest of the treatments. The lowest yield was recorded in the treatment of flood irrigation (94.40tha -1 ). Benefit Cost Ratio analysis confirmed that LCDI performed better compared to other irrigation methods. The second phase deals with the farmer participatory research demonstrations at multi location on evaluation of LCDI with flood irrigation. LCDI out performed flood irrigation under all the locations in terms of sugarcane yield, soil moisture content, postharvest soil fertility, reduction in nutrient transport to surface and ground water, water and energy saving. These results suggest that LCDI is a feasible option to increase the sugarcane production in water scarcity areas of semiarid agro ecosystems, and have long-term sustained economic benefits than flood irrigation in terms of water productivity, energy saving and environmental sustainability. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Zone edge effects with variable rate irrigation

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  15. Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Fan, Wangtao; Li, Gang

    2018-02-01

    Subsurface drip irrigation (SDI) is a technique that has a high potential in application because of its high efficiency in water-saving. The hydraulic characteristics of SDI sub-unit pipe network can be affected by soil physical properties as the emitters are buried in soils. The related research, however, is not fully explored. The laboratory tests were carried out in the present study to determine the effects of hydraulic factors including operating pressure, initial soil water content, and bulk density on flow rate and its sensitivity to each hydraulic factor for two types of SDI emitters (PLASSIM emitter and Heping emitter). For this purpose, three soils with contrasting textures (i.e., light sand, silt loam, and light clay) were repacked with two soil bulk density (1.25 and1.40 g cm-3) with two initial soil water content (12% and 18%) in plexiglass columns with 40 cm in diameter and 40 cm in height. Drip emitters were buried at depth of 20 cm to measure the flow rates under seven operating pressures (60, 100, 150, 200, 250, 300, and 370 kPa). We found that the operating pressure was the dominating factor of flow rate of the SDI emitter, and flow rate increased with the increase of operating pressure. The initial soil water content and bulk density also affected the flow rate, and their effects were the most notable in the light sand soil. The sensitivity of flow rate to each hydraulic factor was dependent on soil texture, and followed a descending order of light sand>silt loam>light clay for both types of emitters. Further, the sensitivity of flow rate to each hydraulic factor decreased with the increase of operating pressure, initial soil water content, and bulk density. This study may be used to guide the soil specific-design of SDI emitters for optimal water use and management.

  16. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    NASA Astrophysics Data System (ADS)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the

  17. The safety of thiamethoxam to pollinating bumble bees (Bombus terrestris L.) when applied to tomato plants through drip irrigation.

    PubMed

    Alarcón, A L; Cánovas, M; Senn, R; Correia, R

    2005-01-01

    Thiamethoxam, mainly sold under the trademark of Actara, is a neonicotinoid widely used in covered vegetables for the control of aphids and whiteflies. In these crops, and particularly in covered tomatoes, bumble-bees are used for cross-pollination as an alternative to labour intensive manual techniques. In this study, made on tomatoes grown in separated greenhouse plots in Murcia, Southern Spain, thiamethoxam was applied through drip irrigation at a rate of 200 g ai/ha, and as a split application of the same rate, to evaluate the effects on pollinating bumble bees compared to a foliar application of a toxic standard. The results showed that the toxic foliar standard had a clear effect on the pollination of tomato flowers, declining to zero pollination two weeks after application, whereas both the single and split drip irrigation applications of Actara had no effect on pollination when compared to the control plots. The count of dead adults and larvae did not show any differences between the treatments, whereas the measurement of sugar water consumption was shown to correlate well with pollination. The consumption of sugar water declined in the toxic standard plots by 69% with respect to the control, whilst the decline in lower dose drip irrigation application was only 3%. In regard to hive weight, and number of adults and brood after destructive sampling; there were no statistical differences between the treatments but a negative effect of the foliar treatment was observed. Based on these results we can conclude that a split application of Actara applied in drip irrigation to the soil/substrate has no effect on the bumble-bees used in tomatoes for pollination.

  18. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    USGS Publications Warehouse

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  19. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    NASA Astrophysics Data System (ADS)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (˜3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na-Mg-SO4 salts more soluble than gypsum. Irrigation with high SAR (˜24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  20. Optimized solar-wind-powered drip irrigation for farming in developing countries

    NASA Astrophysics Data System (ADS)

    Barreto, Carolina M.

    The two billion people produce 80% of all food consumed in the developing world and 1.3 billion lack access to electricity. Agricultural production will have to increase by about 70% worldwide by 2050 and to achieve this about 50% more primary energy has to be made available by 2035. Energy-smart agri-food systems can improve productivity in the food sector, reduce energy poverty in rural areas and contribute to achieving food security and sustainable development. Agriculture can help reduce poverty for 75% of the world's poor, who live in rural areas and work mainly in farming. The costs associated with irrigation pumping are directly affected by energy prices and have a strong impact on farmer income. Solar-wind (SW) drip irrigation (DI) is a sustainable method to meet these challenges. This dissertation shows with onsite data the low cost of SW pumping technologies correlating the water consumption (evapotranspiration) and the water production (SW pumping). The author designed, installed, and collected operating data from the six SWDI systems in Peru and in the Tohono O'odham Nation in AZ. The author developed, tested, and a simplified model for solar engineers to size SWDI systems. The author developed a business concept to scale up the SWDI technology. The outcome was a simplified design approach for a DI system powered by low cost SW pumping systems optimized based on the logged on site data. The optimization showed that the SWDI system is an income generating technology and that by increasing the crop production per unit area, it allowed small farmers to pay for the system. The efficient system resulted in increased yields, sometimes three to four fold. The system is a model for smallholder agriculture in developing countries and can increase nutrition and greater incomes for the world's poor.

  1. Greenhouse and field-based studies on the distribution of dimethoate in cotton and its effect on Tetranychus urticae by drip irrigation.

    PubMed

    He, Jiangtao; Zhou, Lijuan; Yao, Qiang; Liu, Bo; Xu, Hanhong; Huang, Jiguang

    2018-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton. We investigated the efficacy of dimethoate in controlling T. urticae by drip irrigation. Greenhouse and field experiments were carried out to determine the efficacy of dimethoate to T. urticae and the absorption and distribution of dimethoate in cotton. Greenhouse results showed that cotton leaves received higher amounts of dimethoate compared with cotton roots and stems, with higher amounts in young leaves compared with old leaves and cotyledon having the lowest amounts among leaves. Field results showed the efficacy of dimethoate to T. urticae by drip irrigation varied by volume of dripping water, soil pH and dimethoate dosage. Dimethoate applied at 3.00 kg ha -1 with 200 m 3  ha -1 water at weak acidic soil pH (5.70-6.70) through drip irrigation can obtain satisfactory control efficacy (81.49%, 7 days) to T. urticae, without negatively impacting on its natural enemy Neoseiulus cucumeris. The residue of dimethoate in all cotton seed samples were not detectable. These results demonstrate the effectiveness of applying dimethoate by drip irrigation for control of T. urticae on cotton. This knowledge could aid in the applicability of dimethoate by drip irrigation for field management of T. urticae populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Analysis of water application efficiency and emission uniformity of drip irrigation systems based on space-time analysis of soil moisture patterns in soils

    NASA Astrophysics Data System (ADS)

    Shabeeb, Ahmeed; Taha, Uday; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    In order to evaluate how efficiently and uniformly drip irrigation systems can deliver water to emitters distributed around a field, we need some methods for measuring/calculating water application efficiency (WAE) and emission uniformity (EU). In general, the calculation of the WAE and of other efficiency indices requires the measurement of the water stored in the root zone. Measuring water storage in soils allows directly saying how much water a given location of the field retains having received a given amount of irrigation water. And yet, due to the difficulties of measuring water content variability under an irrigation system at field scale, it is quite common using EU as a proxy indicator of the irrigation performance. This implicitly means assuming that the uniformity of water application is immediately reflected in an uniformity of water stored in the root zone. In other words, that if a site receive more water it will store more water. Nevertheless, due to the heterogeneity of soil hydrological properties the same EU may correspond to very different distributions of water stored in the soil root zone. 1) In the case of isolated drippers, the storages measured in the soil root zone layer shortly after an irrigation event may be or not different from the water height applied at the surface depending on the vertical/horizontal development of the wetted bulbs. Specifically, in the case of dominant horizontal spreading the water storage is expected to reflect the distribution of water applied at the surface. To the contrary, in the case of relatively significant vertical spreading, deep percolation fluxes (fluxes leaving the root zone) may well induce water storages in the root zone significantly different from the water applied at the surface. 2) The drippers and laterals are close enough that the wetted bulbs below adjacent drippers may interact. In this case, lateral fluxes in the soil may well induce water storages in the root zone which may be

  3. "More drop per crop" when moving from gravitational to drip irrigated agriculture? Experiences from a North Moroccan case study

    NASA Astrophysics Data System (ADS)

    Feltz, N.; Gaspart, F.; Vanclooster, M.

    2015-12-01

    In order to save agricultural water, the famous FAO's "more crop per drop" has been taken literally in many arid or semi-arid places around the world and policies that aim improving "efficiencies" (irrigation efficiency…) have been implemented, often leading to the promotion of water saving technologies. In 1865, studying coal consumption, W.S. Jevons highlighted that improving coal use efficiency could, as a paradox, lead to higher global coal use. Many economists later extended this idea to resource saving technologies in general, showing that, due to the "rebound effect", the adoption of more efficient technologies, in terms of use of resources, could lead to a higher global consumption of this resource if this adoption didn't go with adjustment measures. Regarding these considerations, the emerging question is to which extent water saving technologies (i.e. that aim improving water related efficiencies) are appropriate to save water at large scale. Our study addresses this question through the analysis of the conversion from surface to drip irrigation in Triffa's irrigated perimeter (Morocco). We aim addressing this question using the detailed analysis of two data sets. First, available data were collected for every farm within the study area from the local administrations. Second, interviews were conducted with farmers to complete the dataset and to characterize their behavior. This allowed assessing water related efficiencies at farm scale. Subsequently, models were implemented to link efficiencies with general attributes and thereby identify the main drivers of water related efficiencies in the study area. Finally, these models were used to upscale farm-scale assessment to the perimeter scale. Our results show that, under current conditions, moving from surface to drip irrigation leads to higher global water withdrawal. However, the aforementioned "rebound effect" does not allow explaining the higher pressure because of contextual specificities. Deeper

  4. Tracking solutes and water from subsurface drip irrigation application of coalbed methane-produced waters, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Engle, M.A.; Bern, C.R.; Healy, R.W.; Sams, J.I.; Zupancic, J.W.; Schroeder, K.T.

    2011-01-01

    One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBMwater (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation.Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  5. Is the Taklimakan Desert Highway Shelterbelt Sustainable to Long-Term Drip Irrigation with High Saline Groundwater?

    PubMed Central

    Zhang, Jianguo; Xu, Xinwen; Li, Shengyu; Zhao, Ying; Zhang, Afeng; Zhang, Tibin; Jiang, Rui

    2016-01-01

    Freshwater resources are scarce in desert regions. Highly saline groundwater of different salinity is being used to drip irrigate the Taklimakan Desert Highway Shelterbelt with a double-branch-pipe system controlling the irrigation cycles. In this study, to evaluate the dynamics of soil moisture and salinity under the current irrigation system, soil samples were collected to a 2-m depth in the shelterbelt planted for different years and irrigated with different groundwater salinities, and soil moisture and salinity were analyzed. The results showed that both depletion of soil moisture and increase of topsoil salinity occurred simultaneously during one irrigation cycle. Soil moisture decreased from 27.4% to 2.4% for a 15-day irrigation cycle and from 26.4% to 2.7% for a 10-day-cycle, respectively. Topsoil electrical conductivity (EC) increased from 0.64 to 3.32 dS/m and 0.70 to 3.99 dS/m for these two irrigation cycles. With increased shelterbelt age, profiled average soil moisture (0–200 cm) reduced from 12.8% (1-year) to 7.1% (10-year); however, soil moisture in 0–20-cm increased, while topsoil salinity decreased. In addition, irrigation salinity mainly affected soil salinity in the 0–20-cm range. We conclude that water supply with the double-branch-pipe is a feasible irrigation method for the Taklimakan Desert Highway Shelterbelt, and our findings provide a model for shelterbelt construction and sustainable management when using highly saline water for irrigation in analogous habitats. PMID:27711244

  6. Using Hydrus 2-D to assess the emitters optimal position for Eggplants under surface and subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Autovino, Dario; Douh, Boutheina; Boujelben, Abdel Hamid; Provenznao, Giuseppe; Rallo, Giovanni

    2014-05-01

    The main objective of the work is to assess the emitters optimal position for Eggplant crop (Solanum melongena L.) in a sandy loam soil irrigated with surface or subsurface drip irrigation systems, by means of field measurements and simulations carried out with Hydrus-2D model. Initially, the performance of the model is evaluated on the basis of the comparison between simulated soil water contents (SWC) and the corresponding measured in two plots, in which laterals with coextruded emitters are laid on the soil surface (T0) and at 20 cm depth (T20), respectively. In order to choose the best position of the lateral, the results of different simulation runs, carried out by changing the installation depth of the lateral (5 cm, 15 cm and 45 cm) were compared in terms of ratio between actual transpiration and total amount of water provided during the entire growing season (WUE). Experiments were carried out, from April to June 2007, at Institut Supérieur Agronomique de Chott Mériem (Sousse, Tunisia). In the two plots, plants were spaced 0.40 m along the row and 1.2 m between the rows. Each plot was irrigated by means of laterals with coextruded emitters spaced 0.40 m and discharging a flow rate equal to 4.0 l h-1 at a nominal pressure of 100 kPa. In each plot, spatial and temporal variability of SWCs were acquired with a Time Domain Reflectometry probe (Trime-FM3), on a total of four 70 cm long access tubes, installed along the direction perpendicular to the plant row, at distances of 0, 20, 40 and 60 cm from the emitter. Irrigation water was supplied, accounting for the rainfall, every 7-10 days at the beginning of the crop cycle (March-April) and approximately once a week during the following stages till the harvesting (May-June), for a total of 15 one-hour watering. To run the model, soil evaporation, Ep, and crop transpiration, Tp were determined according to the modified FAO Penman-Monteith equation and the dual crop coefficient approach, whereas soil hydraulics

  7. Prototype of a subsurface drip irrigation emitter: Manufacturing, hydraulic evaluation and experimental analyses

    NASA Astrophysics Data System (ADS)

    Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens

    2013-04-01

    Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate

  8. Increase globe artichoke cropping sustainability using sub-surface drip-irrigation systems in a Mediterranean coastal area for reducing groundwater withdrawal

    NASA Astrophysics Data System (ADS)

    Mantino, Alberto; Marchina, Chiara; Bonari, Enrico; Fabbrizzi, Alessandro; Rossetto, Rudy

    2017-04-01

    During the last decades in coastal areas of the Mediterranean basin, human growth posed severe stresses on freshwater resources due to increasing demand by agricultural, industrial and civil activities, in particular on groundwater. This in turn led to worsening of water quality, loss/reduction of wetlands, up to soil salinization and abandonment of agricultural areas. Within the EU LIFE REWAT project a number of demonstration measures will take place in the lower Cornia valley (Livorno, Italy), both structural (pilot) and non-structural (education, dissemination and capacity building), aiming at achieving sustainable and participated water management. In particular, the five demonstration actions are related to: (1) set up of a managed aquifer recharge facility, (2) restoration of a Cornia river reach, (3) water saving in the civil water supply sector, (4) water saving in agriculture, (5) reuse of treated wastewater for irrigation purposes. Thus, the REWAT project general objective is to develop a new model of governance for sustainable development of the lower Cornia valley based on the water asset at its core. As per water use in agriculture, the lower Cornia valley is well known for the horticultural production. In this regard, globe artichoke (Cynara cardunculus L. var. scolymus L. (Fiori)) crops, a perennial cool-season vegetable, cover a surface of about 600 ha. In order to increase stability and productivity of the crop, about 2000 - 4000 m3 ha-1 yr-1 of irrigation water is required. Recent studies demonstrated that yield of different crops increases using Sub-surface Drip-Irrigation (SDI) system under high frequency irrigation management enhancing water use efficiency. In the SDI systems, the irrigation water is delivered to the plant root zone, below the soil surface by buried plastic tubes containing embedded emitters located at regular spacing. Within the LIFE REWAT, the specific objectives of the pilot on irrigation efficiency is to (i) demonstrate the

  9. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  10. Alfalfa production with subsurface drip irrigation in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Irrigated alfalfa production is gaining interest because of the growing number of dairies in the semi-arid U.S. Central Great Plains and its longstanding superior profitability compared to other alternative crops grown in the region. Irrigation requirements for alfalfa are great because of alfalfa's...

  11. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    PubMed Central

    Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

    2012-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated. PMID:25685457

  12. Effects of different on-farm management on yield and water use efficiency of Potato crop cultivated in semiarid environments under subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2016-04-01

    In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular

  13. Reuse of municipal effluent with drip irrigation and evaluation the effect on soil properties in a semi-arid area.

    PubMed

    Hassanli, Ali M; Javan, Mahmood; Saadat, Yusof

    2008-09-01

    Irrigation with municipal effluent was evaluated during 25 months in Southern Iran from 2003 to 2005 in which 14 tree species were irrigated with effluent and borehole water at an annual supply rate of 3,940 and 5,395 m(3) ha(-1), respectively. To mitigate the environmental effects, a drip irrigation system was designed and the amount of applied water based on pan evaporation was measured by flow meters and soil properties were monitored. The statistical results showed that the applied effluent had no adverse effect on soil properties. The soil salinity was reduced from 8.2, 6.8 and 7.0 dSm(-1) to 1.07, 1.12 and 3.5 dSm(-1 )in the soil layers 0-30, 30-60 and 60-90 cm, respectively. The SAR decreased significantly, while soil pH increased by 0.8 and 0.6 units in the layers 0-30 and 30-60 cm. A total application of 9,335 m(3)ha(-1 )of effluent with a nitrogen and phosphorus concentration of 7.9 and 10.3 mg l(-1), added 73 and 101 kg ha(-1) of nitrogen and phosphorus to the soil. Organic carbon also increased significantly. Twenty-five months irrigation with effluent caused a slight increase in soil bulk density and a slight decrease in mean permeability. Because of an efficient filtration and high discharge rate of bubblers (drippers), no considerable sign of clogging was observed.

  14. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    USDA-ARS?s Scientific Manuscript database

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  15. Bioenergy from coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater

    USDA-ARS?s Scientific Manuscript database

    Coastal bermudagrass (Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern United States due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with li...

  16. A comparison of E. coli persistence on basil plants and soil using drip and overhead irrigation

    USDA-ARS?s Scientific Manuscript database

    Introduction: It is estimated that each year in the US there are 63,153 cases of foodborne illnesses caused by E.coli O157 serotypes and 112,752 illnesses caused by non-O157 shiga-toxin producing E.coli. Irrigation water is recognized as a pre-harvest contamination source and has been linked with o...

  17. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    NASA Astrophysics Data System (ADS)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively

  18. Effect of long-term irrigation patterns on phosphorus forms and distribution in the brown soil zone.

    PubMed

    Liu, Chang; Dang, Xiuli; Mayes, Melanie A; Chen, Leilei; Zhang, Yulong

    2017-01-01

    Continuous application of P fertilizers under different irrigation patterns can change soil phosphorus (P) chemical behavior and increase soil P levels that are of environmental concern. To assess the effect of long-term different irrigation patterns on soil P fractions and availability, this study examined sequential changes in soil organic P and inorganic P from furrow irrigation (FI), surface drip irrigation (SUR), and subsurface drip irrigation (SDI) in the brown soil zone (0-60 cm) during 1998 to 2011. Analyses of soil P behavior showed that the levels of total P are frequently high on top soil layers. The total P (TP) contents of the entire soil profiles under three irrigation treatments were 830.2-3180.1 mg/kg. The contents of available P (AP) were 72.6-319.3 mg P/kg soil through soil profiles. The greatest TP and AP contents were obtained within the upper soil layers in FI. Results of Hedley's P fractionation indicate that HCl-P is a dominant form and the proportion to TP ranges from 29% to 43% in all three methods. The contents of various fractions of P were positively correlated with the levels of total carbon (TC), total inorganic carbon (TIC), and calcium (Ca), whereas the P fractions had negative correlation with pH in all soil samples. Regression models proved that NaHCO3-Po was an important factor in determining the amount of AP in FI. H2O-Po, NaHCO3-Po, and NaOH-Pi were related to available P values in SUR. NaHCO3-Po and NaOH-Po played important roles in SDI. The tomato yield under SUR was higher than SDI and FI. The difference of P availability was also controlled by the physicochemical soil properties under different irrigation schedule. SUR was a reasonable irrigation pattern to improve the utilization efficiency of water and fertilizer.

  19. Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zaib Jadoon, Khan; Umer Altaf, Muhammad; McCabe, Matthew Francis; Hoteit, Ibrahim; Muhammad, Nisar; Moghadas, Davood; Weihermüller, Lutz

    2017-10-01

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In MCMC the posterior distribution is computed using Bayes' rule. The electromagnetic forward model based on the full solution of Maxwell's equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD Mini-Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness as compared to layers electrical conductivity are not very informative and are therefore difficult to resolve. Application of the proposed MCMC-based inversion to field measurements in a drip irrigation system demonstrates that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for the assessment of the model outputs.

  20. Research on chemical characteristics of soil salt crusts with saline groundwater drip-irrigation in the Tarim Desert Highway Shelterbelt.

    PubMed

    Zhang, Jianguo; Xu, Xinwen; Lei, Jiaqiang; Li, Shengyu

    2013-01-01

    Soil salt crusts are special layers at soil surface which are widely distributed in the Trim Desert Highway Shelterbelt under drip-irrigation with high salinity groundwater. In order to reveal annual variation of their chemical characteristics, soil salt crusts in shelterbelt of different ages in hinterland of the Taklimakan Desert were sampled. SOM, total salt, inions and pH were analyzed. Following results were obtained. SOM of salt crusts increased with the shelterbelt ages, but increasing trend became lower gradually. Total salt, ions, and pH of salt crusts reduced gradually with the shelterbelt ages. Total salt of salt crusts in shelterbelt of different ages was much higher than shifting sandy land. Ions were higher than shifting sandy land, Cl(-), Na(+), and SO4 (2-) increased more obvious, then Mg(2+), K(+), Ca(2+) and HCO3 (-), CO3 (2-) was little and nearly had no change. pH was all alkaline, pH of salt crusts in shelterbelt of 11 years was even lower than shifting sandy land. We can include that the quality of shallow soil (0~30 cm) in the Trim Desert Highway Shelterbelt becomes better gradually.

  1. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    PubMed Central

    Pardossi, Alberto; Incrocci, Luca; Incrocci, Giorgio; Malorgio, Fernando; Battista, Piero; Bacci, Laura; Rapi, Bernardo; Marzialetti, Paolo; Hemming, Jochen; Balendonck, Jos

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method). An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS), such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity) marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy) on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy. PMID:22574047

  2. Assessing the performance of surface and subsurface drip systems on irrigation water use efficiency of citrus orchards in Spain

    NASA Astrophysics Data System (ADS)

    Amparo Martinez-Gimeno, Maria; Provenzano, Giuseppe; Bonet, Luis; Intrigliolo, Diego S.; Badal, Eduardo; Ballestrer, Carlos

    2017-04-01

    In Mediterranean countries, water scarcity represents a real environmental concern at present and, according to the current climate change models predictions, the problem will be amplified in the future. In order to deal with this issue, application of strategies aimed to optimize the water resources in agriculture and to increase water use efficiency have become essential. On the one hand, it is important the election of the appropriate irrigation system for each particular case. On the other hand, identify the best management options for that specific irrigation system is crucial to optimize the available water resources without affecting yield. When using water saving strategies, however, it is a must to monitor the soil and/or crop water status in order to know the level of stress reached by the plants and to avoid levels that could lead to detrimental effects on yield. Stem water potential, ψstem, expressing the instantaneous condition of crop water stress, is considered a robust indicator of crop water status. The main objective of this study was to assess the performance of a surface (DI) and subsurface (SDI) drip irrigation system in a citrus orchard with 7 (DI7, SDI7) or 14 emitters (DI14, SDI14) per plant, in terms of irrigation water use efficiency (IWUE) and possible amount of water saving. The experiment was carried out in 2014 and 2015 in Alberique, Spain, (39˚ 7'31" N, 0˚ 33'17" W), in a commercial orchard (Citrus clementina, Hort. ex Tan. 'Arrufatina') in which four different treatments with three replications (12 sub-plots) were prepared according to a complete randomized block design. Irrigation doses and timing were scheduled based on the estimated maximum crop evapotranspiration corrected according to measurements of ψstem and soil water content, and weather forecasts. In order to limit the maximum crop water stress, the thresholds of ψstem were assumed in the range between -0.8 and -1.0 MPa from January to June and between -1.0 and -1

  3. [Effects of enhanced-efficiency nitrogen fertilizers on nitrous oxide emissions from cotton field under plastic mulched drip irrigation in Xinjiang,China].

    PubMed

    Ma, Zhi Wen; Gao, Xiao Peng; Gui, Dong Wei; Kuang, Wen Nong; Wang, Xi He; Liu, Hua

    2016-12-01

    The effect of enhanced-efficiency nitrogen (N) fertilizers on emissions of nitrous oxide (N 2 O) from the grey desert agricultural soils of Xinjiang is uncertain. In this study, the enhanced-efficiency fertilizers, polymer-coated urea (ESN), and stabilized urea with urease and nitrification inhibitors (U+I) were compared to conventional urea (U) for N 2 O emissions from cotton under plastic mulch drip irrigation near Urumqi, Xinjiang. ESN was added once at planting but the other treatments were added multiple times with drip irrigation during the growing season. Gas samples were collected and analyzed twice per week during the growing season, using the static chamber-chromatography methodology. The results showed that generally, ESN significantly increased soil cumulative N 2 O emissions during the growing season by 47%-73% compared to other treatments. In the first four months after fertilization, soil ammonium (NH 4 + -N) and nitrate (NO 3 - -N) concentrations under ESN treatment were generally higher than under other treatments. Thereafter, NH 4 + -N and NO 3 - -N concentrations under all treatments gradually decreased to similar levels. ESN all added at planting was likely responsible for high NH 4 + -N and NO 3 - -N concentrations and highest N 2 O emissions. The U+I treatment reduced soil N 2 O emission by 9.9% in comparison with U, whereas the difference was not statistically significant. In addition, soil NO 3 - -N contents of the U+I treatments were generally lower than those of the ESN and the U treatments. The cumulative N 2 O emissionsover the growing season ranged from 300 to 500 g N 2 O-N·hm -2 , generally lower than emissions reported for other agricultural ecosystems. Drip irrigation successfully kept moisture conditions below levels for appreciable N 2 O emissions. Multiple applications of N via drip irrigation seemed to be effective to lower emissions than all N applied at planting. Therefore, for cotton field under plastic mulch drip irrigation

  4. In situ sensors, weighing lysimeters and COSMOS under vegetated and bare conditions with subsurface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Long term weighing lysimeter records may have utility for assessment of climate changes occurring during the period of record. They typically enclose a depth of soil that exceeds the root zone of vegetation normally grown on them and have drainagy systems so that more or less natural hydrologic flux...

  5. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers.

    PubMed

    Tao, Rui; Wakelin, Steven A; Liang, Yongchao; Hu, Baowei; Chu, Guixin

    2018-01-15

    The effects of consecutive application of chemical fertilizer with or without organic fertilizer on soil N 2 O emissions and denitrifying community structure in a drip-irrigated field were determined. The four fertilizer treatments were (i) unfertilized, (ii) chemical fertilizer, (iii) 60% chemical fertilizer plus cattle manure, and (iv) 60% chemical fertilizer plus biofertilizer. The treatments with organic amendments (i.e. cattle manure and biofertilizer) reduced cumulative N 2 O emissions by 4.9-9.9%, reduced the N 2 O emission factor by 1.3-42%, and increased denitrifying enzyme activities by 14.3-56.2%. The nirK gene copy numbers were greatest in soil which received only chemical fertilizer. In contrast, nirS- and nosZ-copy numbers were greatest in soil amended with chemical fertilizer plus biofertilizer. Chemical fertilizer application with or without organic fertilizer significantly changed the community structure of nirK-type denitrifiers relative to the unfertilized soil. In comparison, the nirS- and nosZ-type denitrifier genotypes varied in treatments receiving organic fertilizer but not chemical fertilizer alone. The changes in the denitrifier communities were closely associated with soil organic carbon (SOC), NO 3 - , NH 4 + , water holding capacity, and soil pH. Modeling indicated that N 2 O emissions in this soil were primarily associated with the abundance of nirS type denitrifying bacteria, SOC, and NO 3 - . Overall, our findings indicate that (i) the organic fertilizers increased denitrifying enzyme activity, increased denitrifying-bacteria gene copy numbers, but reduced N 2 O emissions, and (ii) nirS- and nosZ-type denitrifiers were more sensitive than nirK-type denitrifiers to the organic fertilizers. Copyright © 2017. Published by Elsevier B.V.

  6. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  7. Effect of irrigation and winery waste compost rates in nitrate leaching in vulnerable zones

    NASA Astrophysics Data System (ADS)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    The winery industry is widespread in Spain (3,610,000 tonnes of wine in 2010 (FAO, 2010)), and generates wastes characterized by a high content of organic matter, a notable content in macronutrients and low heavy-metals. These organic wastes could be used for agricultural purposes after a correct stabilization process (e.g. composting).The addition of these organic wastes requires a correct management, especially on semiarid cropped areas of central Spain where environmental degradation of water supplies with high N loads is observed. An integrated optimization of both applied compost dose and amount of irrigation is important to ensure optimum yields and minimum nitrate leaching losses. The purpose of this work was to study the effect of the application of winery waste compost as fertilizer in a melon crop cultivated with different drip irrigation rates. The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. Beside the control treatment (D0), three doses of compost were applied: 6.7 (D1), 13.3 (D2) and 20 T/ha(D3).Irrigation treatments consisted of applying a 100% ETc and an excess irrigation of 120% ETc. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 m depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Drainage and nitrate concentration on the soil solution were measured weekly to determine N leached during the crop period. Crop yield was also followed by harvesting plots when a significant number of fruits were fully matured. A comparison between nitrate leached and crop production among different treatments and irrigation rates are presented. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  8. Hydrologic and geochemical dynamics of vadose zone recharge in a mantled karst aquifer: Results of monitoring drip waters in Mystery Cave, Minnesota

    USGS Publications Warehouse

    Doctor, Daniel H.; Alexander, E. Calvin; Jameson, Roy A.; Alexander, Scott C.

    2015-01-01

    Caves provide direct access to flows through the vadose zone that recharge karst aquifers. Although many recent studies have documented the highly dynamic processes associated with vadose zone flows in karst settings, few have been conducted in mantled karst settings, such as that of southeastern Minnesota. Here we present some results of a long-term program of cave drip monitoring conducted within Mystery Cave, Minnesota. In this study, two perennial ceiling drip sites were monitored between 1997 and 2001. The sites were located about 90 m (300 ft) apart along the same cave passage approximately 18 m (60 ft) below the surface; 7 to 9 m (20 to 30 ft) of loess and 12 m (40 ft) of flat-lying carbonate bedrock strata overlie the cave. Records of drip rate, electrical conductivity, and water temperature were obtained at 15 minute intervals, and supplemented with periodic sampling for major ion chemistry and water stable isotopes. Patterns in flow and geochemistry emerged at each of the two drip sites that were repeated year after year. Although one site responded relatively quickly (within 2-7 hours) to surface recharge events while the other responded more slowly (within 2-5 days), thresholds of antecedent moisture needed to be overcome in order to produce a discharge response at both sites. The greatest amount of flow was observed at both sites during the spring snowmelt period. Rainfall events less than 10 mm (0.4 in) during the summer months generally did not produce a drip discharge response, yet rapid drip responses were observed following intense storm events after periods of prolonged rainfall. The chemical data from both sites indicate that reservoirs of vadose zone water with distinct chemical signatures mixed during recharge events, and drip chemistry returned to a baseline composition during low flow periods. A reservoir with elevated chloride and sulfate concentrations impacts the slow-response drip site with each recharge event, but does not similarly

  9. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  10. Drainage estimation to aquifer and water use irrigation efficiency in semi-arid zone for a long period of time

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.

    2009-04-01

    Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.

  11. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation.

    PubMed

    Asgari, Kamran; Cornelis, Wim M

    2015-07-01

    Constant use of treated wastewater (TWW) for irrigation over prolonged periods may cause buildup of heavy metals up to toxic levels for plants and animals, and entails environmental hazards in different aspects. However, application of TWW on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of deep emitters on limiting potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub-treatments (0, 15, and 30 cm depth of emitters) in four replicates on a sandy loam Calcic Argigypsids, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m above sea level. A two-crop rotation of wheat (Triticum spp.) and corn (Zea mays) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting and after harvesting for each crop in each year. Edible grain samples of corn and wheat were collected at harvest. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. Results showed that the concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P > 0.05) compared with the freshwater-irrigated soils. No significant difference (P > 0.05) in heavy metal content in soil between different depths of emitters was found. A pollution load index (PLI) showed that there was no substantial buildup of heavy metals in the wastewater-irrigated soils

  12. Heavy metal accumulation in soils and grains, and health risks associated with use of treated municipal wastewater in subsurface drip irrigation

    NASA Astrophysics Data System (ADS)

    Asgari, Kamran; Najafi, Payam; Cornelis, Wim M.

    2014-05-01

    Constant use of treated wastewater for irrigation over long periods may cause buildup of heavy metals up to toxic levels for plants, animals, and entails environmental hazards in different aspects. However, application of treated wastewater on agricultural land might be an effective and sustainable strategy in arid and semi-arid countries where fresh water resources are under great pressure, as long as potential harmful effects on the environment including soil, plants, and fresh water resources, and health risks to humans are minimized. The aim of this study was to assess the effect of using a deep emitter installation on lowering the potential heavy metal accumulation in soils and grains, and health risk under drip irrigation with treated municipal wastewater. A field experiment was conducted according to a split block design with two treatments (fresh and wastewater) and three sub treatments (0, 15 and 30 cm depth of emitters) in four replicates on a sandy loam soil, in Esfahan, Iran. The annual rainfall is about 123 mm, mean annual ETo is 1457 mm, and the elevation is 1590 m a.s.l.. A two-crop rotation of wheat [Triticum spp.] and corn [Zea mays]) was established on each plot with wheat growing from February to June and corn from July to September. Soil samples were collected before planting (initial value) and after harvesting (final value) for each crop in each year. Edible grain samples of corn and wheat were also collected. Elemental concentrations (Cu, Zn, Cd, Pb, Cr, Ni) in soil and grains were determined using an atomic absorption spectrophotometer. The concentrations of heavy metals in the wastewater-irrigated soils were not significantly different (P>0.05) compared with the freshwater-irrigated soils. The results showed no significant difference (P>0.05) of soil heavy metal content between different depths of emitters. A pollution load index PLI showed that there was not substantial buildup of heavy metals in the wastewater-irrigated soils compared to

  13. Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems.

    PubMed

    Forte, Annachiara; Fagnano, Massimo; Fierro, Angelo

    2017-05-01

    Organic fertilization can preserve soil organic matter (SOM) and is foreseen as an effective strategy to reduce green house gases (GHGs) emissions in agriculture. However, its effectiveness needs to be clarified under specific climate, crop management and soil characteristics. A field experiment was carried out in a Mediterranean drip irrigated maize system to assess the pattern of soil CO 2 and N 2 O fluxes in response to the replacement of a typical bare fallow-maize cycle under urea fertilization (130 kg N ha -1 y -1 ) (CONV) with: (i) bare fallow-maize cycles under two doses of compost (COM1 and COM2, 130 and 260 kg N ha -1 y -1 , respectively) and (ii) a vetch-maize cycle, with vetch incorporation as green manure (130 kg N ha -1 y -1 ) (GMAN). Along the maize period (MP), reduced daily N 2 O emissions were detected in organic treated soils compared to CONV, mainly in the first stages of the cultivation, thanks to the slow release of available nitrogen from the organic substrates. Cumulative N 2 O fluxes (kg N 2 O-N ha -1 ) in MP scored to 0.24, 0.14, 0.12 and 0.085 for CONV, COM1, COM2 and GMAN, respectively, with significantly lower emissions in GMAN respect to CONV. CO 2 fluxes partially reflected the ranking observed for maize yields, with cumulated values (Mg CO 2 -C ha -1 ) of 2.2, 1.5, 2.1, 2.1 for CONV, COM1, COM2 and GMAN, respectively, and significantly lower in COM1 respect to the other treatments. During the fallow period (FP), compared to CONV (0.77 Mg CO 2 -C ha -1 and 0.25 kg N 2 O-N ha -1 ), enhanced GHG fluxes were detected in COM treatments (about 0.90 Mg CO 2 -C ha -1 and 0.37 kg N 2 O-N ha -1 , as averaged values from COM1 and COM2), likely driven by the slow prolonged mineralization of the added organic matter. GMAN showed comparable CO 2 (0.82 Mg CO 2 -C ha -1 ) and N 2 O emissions (0.30 kg N 2 O-N ha -1 ), in consequence of restrained post-harvest residual N coupled with the counteracting effect of vetch uptake. Respect to the

  14. 1,3-dichloropropene and chloropicrin emissions following simulated drip irrigation to raised beds under plastic films

    USDA-ARS?s Scientific Manuscript database

    Using laboratory soil chambers a non-scaled representation of an agricultural raised bed was constructed. For a sandy loam soil, a drip application of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) under both high density polyethylene (HDPE) and virtually impermeable film (VIF) was performed at 5...

  15. Impact and sustainability of low-head drip irrigation kits, in the semi-arid Gwanda and Beitbridge Districts, Mzingwane Catchment, Limpopo Basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve

    the wet season. This suggests that most households use the drip kits as supplementary irrigation. Conflicts between beneficiaries and water point committees or other water users developed in some areas especially during the dry season. The main finding from this study was that low cost drip kit programs can only be a sustainable intervention if implemented as an integral part of a long-term development program, not short-term relief programs and the programme should involve a broad range of stakeholders. A first step in any such program, especially in water scarce areas such as Gwanda and Beitbridge, is a detailed analysis of the existing water resources to assess availability and potential conflicts, prior to distribution of drip kits.

  16. Numerical Modeling of Water Fluxes in the Root Zone of Irrigated Pecan

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Deb, S.

    2010-12-01

    Information is still limited on the coupled liquid water, water vapor, heat transport and root water uptake for irrigated pecan. Field experiments were conducted in a sandy loam mature pecan field in Las Cruces, New Mexico. Three pecan trees were chosen to monitor diurnal soil water content under the canopy (approximately half way between trunk and the drip line) and outside the drip line (bare spot) along a transect at the depths of 5, 10, 20, 40, and 60 cm using TDR sensors. Soil temperature sensors were installed at an under-canopy locations and bare spot to monitor soil temperature data at depths of 5, 10, 20, and 40 cm. Simulations of the coupled transport of liquid water, water vapor, and heat with and without root water uptake were carried out using the HYDRUS-1D code. Measured soil hydraulic and thermal properties, continuous meteorological data, and pecan characteristics, e.g. rooting depth, leaf area index, were used in the model simulations. Model calibration was performed for a 26-day period from DOY 204 through DOY 230, 2009 based on measured soil water content and soil temperature data at different soil depths, while the model was validated for a 90-day period from DOY 231 through DOY 320, 2009 at bare spot. Calibrated parameters were also used to apply the model at under-canopy locations for a 116-day period from DOY 204 to 320. HYDRUS-1D simulated water contents and soil temperatures correlated well with the measured data at each depth. Numerical assessment of various transport mechanisms and quantitative estimates of isothermal and thermal water fluxes with and without root water uptake in the unsaturated zone within canopy and bare spot is in progress and will be presented in the conference.

  17. Summary of inorganic compositional data for groundwater, soil-water, and surface-water samples collected at the Headgate Draw subsurface drip irrigation site, Johnson County, Wyoming

    USGS Publications Warehouse

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupancic, John W.

    2011-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  18. Yields and Nutritional of Greenhouse Tomato in Response to Different Soil Aeration Volume at two depths of Subsurface drip irrigation

    PubMed Central

    Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang

    2016-01-01

    This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970

  19. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    USGS Publications Warehouse

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  20. [Effect of mineral N fertilizer reduction and organic fertilizer substitution on soil biological properties and aggregate characteristics in drip-irrigated cotton field.

    PubMed

    Li, Rui; Tai, Rui; Wang, Dan; Chu, Gui-Xin

    2017-10-01

    A four year field study was conducted to determine how soil biological properties and soil aggregate stability changed when organic fertilizer and biofertilizer were used to reduce chemical fertilizer application to a drip irrigated cotton field. The study consisted of six fertilization treatments: unfertilized (CK); chemical fertilizer (CF, 300 kg N·hm -2 ; 90 kg P2O5 · hm -2 , 60 kg K2 O·hm -2 ); 80% CF plus 3000 kg·hm -2 organic fertilizer (80%CF+OF); 60% CF plus 6000 kg·hm -2 organic fertilizer (60%CF+OF); 80% CF plus 3000 kg·hm -2 biofertilizer (80%CF+BF); and 60% CF plus 6000 kg·hm -2 biofertilizer (60%CF+BF). The relationships among soil organic C, soil biological properties, and soil aggregate size distribution were determined. The results showed that organic fertilizer and biofertilizer both significantly increased soil enzyme activities. Compared with CF, the biofertilizer treatments increased urease activity by 55.6%-84.0%, alkaline phosphatise activity by 53.1%-74.0%, invertase activity by 15.1%-38.0%, β-glucosidase activity by 38.2%-68.0%, polyphenoloxidase activity by 29.6%-52.0%, and arylsulfatase activity by 35.4%-58.9%. Soil enzyme activity increased as the amount of organic fertilizer and biofertilizer increased (i.e., 60%CF+OF > 80%CF+OF, 60%CF+BF > 80%CF+BF). Soil basal respiration decreased significantly in the order BF > OF > CF > CK. Soil microbial biomass C and N were 22.3% and 43.5% greater, respectively, in 60%CF+BF than in CF. The microbial biomass C:N was significantly lower in 60%CF+BF than in CF. The organic fertilizer and the biofertilizer both improved soil aggregate structure. Soil mass in the >0.25 mm fraction was 7.1% greater in 80%CF+OF and 8.0% greater in (60%CF+OF) than in CF. The geometric mean diameter was 9.2% greater in 80%CF+BF than in 80%CF+OF. Redundancy analysis and cluster analysis both demonstrated that soil aggregate structure and biological activities increased when organic fertilizer and biofertilizer were

  1. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the

  2. Use of the rice husk as an alternative substrate for growing media on green walls drip irrigation

    NASA Astrophysics Data System (ADS)

    Andrey Rivas-Sánchez, Yair; Fátima Moreno-Pérez, María; Roldán Cañas, José

    2017-04-01

    In the last years, we have been looking for alternatives to traditional growing mediums for green walls. Commercially available systems for green walls are commonly made with Sphagnum, rock wool or polymers that are unsustainable materials. In the design of the green wall, local components such as agricultural by-products should be considered more often. The objective of this research is to use alternative materials available in Andalusia that are suitable for use as a growing medium in green walls, using organic residues generated by agriculture as in this case the rice husk, compared to conventional and used materials as a growing media in green walls such as coconut fiber and rock wool. The physical-chemical characteristics of the water were analyzed through the collection of excess irrigation water, after passing through the prototypes of green walls, installed in the Rabanales Campus of the University of Córdoba between April and July 2016 and thus observe the feasibility of using rice husk as an alternative material. The 16 mm diameter irrigation pipes are at the top and middle of each module, with 12 adjustable drippers of 4 l / h for each module, 72 drippers in the whole experimental green wall prototype installed at every 15 centimeters of tube. Two different species of plant material (Lampranthus spectabilis) and (Lavandula stoechas), were selected, taking into account the solar exposition of the place of establishment of the prototype of the green wall and the easy acquisition of these plants in the region. Water samples were collected every day twice a day for 10 weeks of the experiment, taking a sample of the surplus runoff water from six green wall prototypes.PH 40 - pH - conductivity - TDS - temperature, CRISON. Differences in pH, electrical conductivity, turbidity and total solids of the treatments were examined by ANOVA with the test of normality and homogeneity of variances. It was observed that the substrates used in the prototypes of the

  3. 7 CFR 2902.60 - Turbine drip oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Turbine drip oils. 2902.60 Section 2902.60... Items § 2902.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other...

  4. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2013-01-01 2013-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  5. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2012-01-01 2012-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  6. 7 CFR 3201.60 - Turbine drip oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Designated Items § 3201.60 Turbine drip oils. (a) Definition. Products that are lubricants for use in drip lubrication systems for water well line shaft bearings, water turbine bearings for irrigation pumps, and other... 7 Agriculture 15 2014-01-01 2014-01-01 false Turbine drip oils. 3201.60 Section 3201.60...

  7. A root zone modelling approach to estimating groundwater recharge from irrigated areas

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Skaggs, T. H.; van Genuchten, M. Th.; Candela, L.

    2009-03-01

    SummaryIn irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in which irrigation, evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were simulated with the HYDRUS-1D software package. The model was calibrated using field data collected in an experimental plot. Good agreement was achieved between the HYDRUS-1D simulations and field measurements made under melon and lettuce crops. The simulations indicated that water use by the crops was below potential levels despite regular irrigation. The fraction of applied water (irrigation plus precipitation) going to recharge ranged from 22% for a summer melon crop to 68% for a fall lettuce crop. In total, we estimate that irrigation of annual fruits and vegetables produces 26 hm 3 y -1 of groundwater recharge to the top unconfined aquifer. This estimate does not include important irrigated perennial crops in the region, such as artichoke and citrus. Overall, the results suggest a greater amount of irrigation return flow in the Campo de Cartagena region than was previously estimated.

  8. Effects of partial root-zone irrigation on hydraulic conductivity in the soil–root system of maize plants

    PubMed Central

    Hu, Tiantian; Kang, Shaozhong; Li, Fusheng; Zhang, Jianhua

    2011-01-01

    Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil–root system (Lsr) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with Lsr in both the whole and irrigated root zones for all three irrigation methods but not with Lsr in the non-irrigated root zone of FPRI. The total Lsr in the irrigated root zone of two PRIs was increased by 49.0–92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of Lsr in a half root zone to Lsr in the whole root zone was ∼50%. For FPRI, the Lsr in the irrigated root zone was close to that of the whole root zone. As for APRI, the Lsr in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the Lsr in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The Lsr in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency. PMID:21527627

  9. [Effects of nitrogen application on canopy vertical structure, grain-leaf ratio and economic benefit of winter wheat under drip irrigation.

    PubMed

    Zhang, Na; Xu, Wen Xiu; Li, Lan Hai; Wu, Ni Ping; Wu, Pei Jie; Cheng, Xue Feng

    2016-08-01

    To optimize the fertilization rate of winter wheat under drip irrigation in Xinjiang region, a field investigation was carried out to assess effects of nitrogen (N) applications on canopy vertical structure, grain-leaf ratio, yield and economic benefit of winter wheat. Four rates of nitrogen application, 0 kg·hm -2 (N 0 ), 104 kg·hm -2 (N 1 ), 173 kg·hm -2 (N 2 ) and 242 kg·hm -2 (N 3 ) were set in a randomized block experimental design. Meantime, leaf and stem morphological characters, canopy temperature and humidity in flowering stage, grain-leaf area ratio, yield and yield components, economic benefits of winter wheat were observed under different treatments. The results showed that the leaf length and width at different positions of wheat under the nitrogen fertilization treatments were significantly higher than that without nitrogen fertilization (P<0.05), and plant height ranged from 65.57 to 81.58 cm. With an increasing rate of nitrogen fertilization, both leafarea index and stem diameter presented a trend of first increasing and then decreasing, and reached the maximum under N 2 treatment, which was 5.48 and 0.49 cm, respectively. Diurnal variation of canopy temperature and humidity were "convex" and "concave" shape, followed an order of N 0 >N 1 >N 2 >N 3 in temperature, but reversely in canopy humidity. The duration of high temperature higher than 35 ℃ were shorten 1 hour to 3.5 hours as the nitrogen application level increased, and there was significant difference between N 1 and N 3 on grain-leaf ratio. Yield and economic be-nefit decreased initially and then increased with increasing nitrogen application. Yield and economic benefit of treatment N 2 were 32.8% and 77.7% higher than those of treatment N 0 , 12.6% and 5.4% higher than those of treatment N 1 , and 5.2% and 4.2% higher than those of treatment N 3 , respectively. These results indicated that nitrogen application at about 173 kg·hm -2 could be recommended as the optimum rate for winter

  10. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  11. The partial root-zone saline irrigation system and antioxidant responses in tomato plants.

    PubMed

    Alves, Rita de Cássia; de Medeiros, Ana Santana; Nicolau, Mayara Cristina Malvas; Neto, Antônio Pizolato; de Assis Oliveira, Francisco; Lima, Leonardo Warzea; Tezotto, Tiago; Gratão, Priscila Lupino

    2018-06-01

    Salinity is a limiting factor that can affect plant growth and cause significant losses in agricultural productivity. This study provides an insight about the viability of partial root-zone irrigation (PRI) system with saline water supported by a biochemical approach involving antioxidant responses. Six different irrigation methods using low and high salt concentrations (S1-0.5 and S2-5.0 dS m -1 ) were applied, with or without PRSI, so that one side of the root-zone was submitted to saline water while the other side was low salinity water irrigated. The results revealed different responses according to the treatments and the PRSI system applied. For the treatments T1, T2 and T3, the PRSI was not applied, while T4, T5 and T6 treatments were applied with PRSI system. Lipid peroxidation, proline content, and activities of SOD, CAT, APX, GR and GSH in tomato plants subjected to PRSI system were analyzed. Plant growth was not affected by the salt concentrations; however, plants submitted to high salt concentrations showed high MDA content and Na + accumulation when compared to the control plants. Plants submitted to treatments T4, T5 and T6 with PRSI system exhibited lower MDA compared to the control plants (T1). Proline content and activities of SOD, CAT, APX, GR and GSH content were maintained in all treatments and tissues analyzed, with only exception for APX in fruits and GSH content, in roots. The overall results showed that PRSI system could be an applicable technique for saline water supply on irrigation since plants did not show to be vulnerable to salt stress, supported by a biochemical approach involving antioxidant responses. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Effect of irrigation techniques and strategies on water footprint of growing crops

    NASA Astrophysics Data System (ADS)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  13. Simulation using HYDRUS-2D for Soil Water and Heat Transfer under Drip Irrigation with 95oC Hot Water

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Noborio, K.

    2015-12-01

    In Japan, soil disinfection with hot water has been popular since the use of methyl bromide was restricted in 2005. Decreasing the amount of hot water applied may make farmers reduce the operation cost. To determine the appropriate amount of hot water needed for soil disinfection, HYDRUS-2D was evaluated. A field experiment was conducted and soil water content and soil temperature were measured at 5, 10, 20, 40, 60, 80 and 100 cm deep when 95oC hot water was applied. Irrigation tubing equipped with drippers every 30 cm were laid at the soil surface, z=0 cm. An irrigation rate for each dripper was 0.83 cm min-1 between t=0 and 120 min, and thereafter it was zero. Temperature of irrigation water was 95oC. Total simulation time with HYDRUS-2D was 720 min for a homogeneous soil. A simulating domain was selected as x=60 cm and z=100 cm. A potential evaporation rate was assumed to be 0 cm min-1 because the soil surface was covered with a plastic sheet. The boundary condition at the bottom was free drainage and those of both sides were no-flux conditions. Hydraulic properties and bulk densities measured at each depth were used for simulation. It was assumed that there was no organic matter contained. Soil thermal properties were adopted from previous study and HYDRUS 2D. Simulated temperatures at 5, 10, 20 and 40 cm deep agreed well with those measured although simulated temperatures at 60, 80, and 100 cm deep were overly estimated. Estimates of volumetric water content at 5 cm deep agreed well with measured values. Simulated values at 10 to 100 cm deep were overly estimated by 0.1 to 0.3 (m3 m-3). The deeper the soil became, the more the simulated wetting front lagged behind the measured one. It was speculated that water viscosity estimated smaller at high temperature might attributed to the slower advances of wetting front simulated with HYDRUS 2-D.

  14. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard.

    PubMed

    Poblete, Tomas; Ortega-Farías, Samuel; Ryu, Dongryeol

    2018-01-30

    Water stress caused by water scarcity has a negative impact on the wine industry. Several strategies have been implemented for optimizing water application in vineyards. In this regard, midday stem water potential (SWP) and thermal infrared (TIR) imaging for crop water stress index (CWSI) have been used to assess plant water stress on a vine-by-vine basis without considering the spatial variability. Unmanned Aerial Vehicle (UAV)-borne TIR images are used to assess the canopy temperature variability within vineyards that can be related to the vine water status. Nevertheless, when aerial TIR images are captured over canopy, internal shadow canopy pixels cannot be detected, leading to mixed information that negatively impacts the relationship between CWSI and SWP. This study proposes a methodology for automatic coregistration of thermal and multispectral images (ranging between 490 and 900 nm) obtained from a UAV to remove shadow canopy pixels using a modified scale invariant feature transformation (SIFT) computer vision algorithm and Kmeans++ clustering. Our results indicate that our proposed methodology improves the relationship between CWSI and SWP when shadow canopy pixels are removed from a drip-irrigated Cabernet Sauvignon vineyard. In particular, the coefficient of determination (R²) increased from 0.64 to 0.77. In addition, values of the root mean square error (RMSE) and standard error (SE) decreased from 0.2 to 0.1 MPa and 0.24 to 0.16 MPa, respectively. Finally, this study shows that the negative effect of shadow canopy pixels was higher in those vines with water stress compared with well-watered vines.

  15. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected

  16. Corn yield and economic return with nitrogen applied through drip tubing

    USDA-ARS?s Scientific Manuscript database

    A two year project was established to determine corn (Zea mays, L) yield response to subsurface (SSDI) and surface (SDI) drip irrigation systems at various nitrogen fertilizer rates. Nitrogen was applied through the drip system at two nitrogen levels in three split applications. Supplemental dry N ...

  17. Partial root-zone drying and conventional deficit irrigation applied during the whole berry growth maintain yield and berry quality in 'Crimson Seedless' table grapes

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Domingo, Rafael; De la Rosa, Jose M.°; Rosario Conesa Saura, M.°

    2016-04-01

    To compare the effects of partial root-zone drying and conventional deficit irrigation applied during post-veraison and the whole berry growth on water relations, yield and berry quality, one experiment was conducted in a commercial vineyard of 'Crimson Seedless' table grapes. Five irrigation treatments were imposed: (i) Control (CTL) irrigated to 110% of crop evapotranspiration (ETc), (ii) regulated deficit irrigation (RDI) irrigated at 50% of CTL during the non- critical period of post-verasion, (iii) continuous deficit irrigation (DIc), irrigated at 50% of CTL throughout the whole berry growing season, (iv) partial root-zone drying (PRD), irrigated similar to RDI, but alternating the irrigation applied in the dry side every 10-14 days; and (v) continuous partial root-zone drying (PRDc), irrigated as DIc but alternating the irrigation in the dry side every 10-14 days. RDI and PRD received 24% and 28% less water than CTL, respectively. These reductions were higher in DIc and PRDc (65% and 53%, respectively). Total yield was not affected by any DI strategy. Only significantly lower values were observed in the weight and height's berries in respect to CTL. However, the colour parameters evaluated increased in all DI treatments, being slightly higher in DIc and PRDc compared with RDI and PRD. In addition, total soluble solids (TSS) were significantly higher in DIc, compared to other irrigated counterparts. Our findings showed that the application of water deficit during the whole berry growth through the use of DIc and PRDc, can be considered for irrigation scheduling in 'Crimson Seedless' table grapes. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  18. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes

    NASA Astrophysics Data System (ADS)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka

    2017-04-01

    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  19. Crop water productivity and irrigation management

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  20. The influence of irrigation-induced water table fluctuation on iron redistribution and arsenic immobilization within the unsaturation zone.

    PubMed

    Chi, Zeyong; Xie, Xianjun; Pi, Kunfu; Wang, Yanxin; Li, Junxia; Qian, Kun

    2018-05-08

    Given the long-term potential risk of arsenic (As)-contaminated agricultural soil to public health, the redistribution of iron (Fe) and immobilization of As within the unsaturation zone during irrigation and consequent water table fluctuations were studied via a column experiment and corresponding geochemical modeling. Experimental results show that As and Fe accumulated significantly at the top of the column during irrigation. A tremendous increase in As and Fe accumulation rates exists after water table recovery. It was deduced that Fe(II) and As(III) were oxidized directly by O 2 at the period of low water table. But the production of hydroxyl radical (OH) was promoted at the period of high water table due to the oxidation of adsorbed Fe(II). The generated OH further accelerate the oxidation of Fe(II) and As(III). Moreover, the combination of As and Fe is more stronger at the top of the column due to the transformation of combined states of As from surface complexation into surface precipitation with the growth of Fe(III) minerals. This study details the processes and mechanisms of As and Fe immobilization within the unsaturation zone during different irrigation periods and accordingly provides some insights to mitigate As accumulation in topsoil. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  2. A comprehensive guide for designing more efficient irrigation systems with respect to application control

    NASA Astrophysics Data System (ADS)

    Khaddam, Issam; Schuetze, Niels

    2017-04-01

    The worldwide water scarcity problems are expected to aggravate due to the increasing population and the need to produce more food. Irrigated agriculture is considered the highest consumer of fresh water resources with a rate exceeds 70% of global consumption. Consequently, an improvement in the efficiency of all irrigation methods, such as furrow or drip irrigation, becomes more necessary and urgent. Therefore, a more precise knowledge about soil water distribution in the root zone and the water balance components is required. For this purpose and as a part of the SAPHIR project (Saxonian Platform for high Performance Irrigation), a 2D simulation- based study was performed with virtual field conditions. The study investigates the most important design parameters of many irrigation systems, such as irrigation intensity and duration, and shows there influence on the water distribution efficiency. Furthermore, three main soil textures are used to test the impact of the soil hydraulic properties on irrigation effectiveness. A numerous number of irrigation scenarios of each irrigation system was simulated using HYDRUS 2D. Thereafter, the results were digitally calculated, compiled and made available online in the so called "Irrigation Atlases". The irrigation atlases provide graphical results of the soil moisture and pressure head distributions in the root zone. Moreover, they contain detailed information of the water balance for all simulated scenarios. The most studies evaluate the irrigation water demands on local, regional or global scales and for that an efficient water distribution is required. In this context, the irrigation atlases can serve as a valuable tool for the implementation of planned irrigation measures.

  3. Above ground drip application practices alter water productivity of Malbec grapevines under sustained deficit

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...

  4. Optimizing fumigation efficiency by doubling drip line number and using low permeability film in raised-bed production systems

    USDA-ARS?s Scientific Manuscript database

    Southern California strawberries are planted in raised-beds covered by polyethylene (PE) film and typically are irrigated with two drip lines placed near the bed surface. To control soil-borne pests, fumigants are commonly applied through the drip lines prior to transplanting strawberries, but effic...

  5. Model to Design Drip Hose Lateral Line

    NASA Astrophysics Data System (ADS)

    Ludwig, Rafael; Cury Saad, João Carlos

    2014-05-01

    Introduction The design criterion for non-pressure compensating drip hose is normally to have 10% of flow variation (Δq) in the lateral line, corresponding to 20% of head pressure variation (ΔH). Longer lateral lines in drip irrigation systems using conventional drippers provide cost reduction, but it is necessary to obtain to the uniformity of irrigation [1]. The use of Δq higher levels can provide longer lateral lines. [4] proposes the use of a 30% Δq and he found that this value resulted in distribution uniformity over 80%. [1] considered it is possible to extend the lateral line length using two emitters spacing in different section. He assumed that the spacing changing point would be at 40% of the total length, because this is approximately the location of the average flow according with [2]. [3] found that, for practical purposes, the average pressure is located at 40% of the length of the lateral line and that until this point it has already consumed 75% of total pressure head loss (hf ). In this case, the challenge for designers is getting longer lateral lines with high values of uniformity. Objective The objective of this study was to develop a model to design longer lateral lines using non-pressure compensating drip hose. Using the developed model, the hypotheses to be evaluated were: a) the use of two different spacing between emitters in the same lateral line allows longer length; b) it is possible to get longer lateral lines using high values of pressure variation in the lateral lines since the distribution uniformity stays below allowable limits. Methodology A computer program was developed in Delphi® based on the model developed and it is able to design lateral lines in level using non-pressure compensating drip hose. The input data are: desired distribution uniformity (DU); initial and final pressure in the lateral line; coefficients of relationship between emitter discharge and pressure head; hose internal diameter; pipe cross-sectional area

  6. Limited irrigation research and infrared thermometry for detecting water stress

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  7. Cokriging of Electromagnetic Induction Soil Electrical Conductivity Measurements and Soil Textural Properties to Demarcate Sub-field Management Zones for Precision Irrigation.

    NASA Astrophysics Data System (ADS)

    Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.

    2017-12-01

    There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each

  8. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    SciTech Connect

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  9. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE PAGES

    Leng, Guoyong; Leung, L. Ruby; Huang, Maoyi

    2017-06-20

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Furthermore, our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  10. Root-Zone Redox Dynamics - In Search for the Cause of Damage to Treated-Wastewater Irrigated Orchards in Clay Soils

    NASA Astrophysics Data System (ADS)

    Yalin, David; Shenker, Moshe; Schwartz, Amnon; Assouline, Shmuel; Tarchitzky, Jorge

    2016-04-01

    Treated wastewater (TW) has become a common source of water for agriculture. However recent findings raise concern regarding its use: a marked decrease (up to 40%) in yield appeared in orchards irrigated with TW compared with fresh water (FW) irrigated orchards. These detrimental effects appeared predominantly in orchards cultivated in clay soils. The association of the damage with clay soils rather than sandy soils led us to hypothesize that the damage is linked to soil aeration problems. We suspected that in clay soils, high sodium adsorption ratio (SAR) and high levels of organic material, both typical of TW, may jointly lead to an extreme decrease in soil oxygen levels, so as to shift soil reduction-oxidation (redox) state down to levels that are known to damage plants. Two-year continuous measurement of redox potential, pH, water tension, and oxygen were conducted in the root-zone (20-35 cm depth) of avocado trees planted in clay soil and irrigated with either TW or FW. Soil solution composition was sampled periodically in-situ and mineral composition was sampled in tree leaves and woody organs biannually. In dry periods the pe+pH values indicated oxic conditions (pe+pH>14), and the fluctuations in redox values were small in both TW and FW plots. Decreases in soil water tension following irrigation or rain were followed by drops in soil oxygen and pe+pH values. TW irrigated plots had significantly lower minimum pe+pH values compared with FW-irrigated plots, the most significant differences occurred during the irrigation season rather than the rain season. A linear correlation appeared between irrigation volume and reduction severity in TW-irrigated plots, but not in the FW plots, indicating a direct link to the irrigation regime in TW-irrigated plots. The minimum pe+pH values measured in the TW plots are indicative of suboxic conditions (9

  11. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    NASA Astrophysics Data System (ADS)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  12. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    NASA Astrophysics Data System (ADS)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  13. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran.

    PubMed

    Abbasnia, Abbas; Radfard, Majid; Mahvi, Amir Hossein; Nabizadeh, Ramin; Yousefi, Mahmood; Soleimani, Hamed; Alimohammadi, Mahmood

    2018-08-01

    The present study was conducted to evaluate the groundwater quality and its suitability for irrigation purpose through GIS in villages of Chabahr city, Sistan and Baluchistan province in Iran. This cross-sectional study was carried out from 2010 to 2011 the 1-year-monitoring period. The water samples were collected from 40 open dug wells in order to investigate the water quality. Chemical parameters including EC, SAR, Na + , Cl - , pH, TDS, H C O 3 - and IWQI were analyzed. In order to calculate the irrigation water quality index subsequent five water quality parameters (EC, SAR, Na + , Cl - , and H C O 3 - ) were utilized. Among the total of 40 samples were analyzed for IWQI, 40% of the samples classified as excellent water, 60% of the samples in good water category.

  14. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  15. Use of electromagnetic induction surveys to delimit zones of contrasting tree development in an irrigated olive orchard in Southern Spain.

    NASA Astrophysics Data System (ADS)

    Pedrera, Aura; Vanderlinden, Karl; Jesús Espejo-Pérez, Antonio; Gómez, José Alfonso; Giráldez, Juan Vicente

    2014-05-01

    Olives are historically closely linked to Mediterranean culture and have nowadays important societal and economical implications. Improving yield and preventing infestation by soil-borne pathogens are crucial issues in maintaining olive cropping competitive. In order to assess both issues properly at the farm or field scale, accurate knowledge of the spatial distribution of soil physical properties and associated water dynamics is required. Conventional soil surveying is generally prohibitive at commercial farms, but electromagnetic induction (EMI) sensors, measuring soil apparent electrical conductivity (ECa) provide a suitable alternative. ECa depends strongly on soil texture and water content and has been used exhaustively in precision agriculture to delimit management zones. The aim of this study was to delimit areas with unsatisfactory tree development in an olive orchard using EMI, and to identify the underlying relationships between ECa and the soil properties driving the spatial tree development pattern. An experimental catchment in S. Spain dedicated to irrigated olive cropping was surveyed for ECa under dry and wet soil conditions (0.06 vs. 0.22 g/g, respectively), using a Dualem 21-S EMI sensor. In addition, ECa and gravimetric soil water content (SWC) was measured at 45 locations throughout the catchment during each survey. At each of these locations, soil profile samples were collected to determine textural class including coarse particles content, organic matter (OM), and bulk density. Measurements for dry soil conditions with the perpendicular coil configuration with a separation of 2.1 m (P2.1) were chosen to make a first assessment of the orchard-growth variability. According to the shape of the histogram, the P2.1 ECa values were classified to delimit three areas in the field for which canopy coverage was estimated. Combining the 4 ECa signals for the wet and dry surveys, a principal component (PC) analysis showed that 91% of the total variance

  16. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  17. Preface for DRIP X proceedings

    NASA Astrophysics Data System (ADS)

    Landesman (Chairman), Jean-Pierre; Montgomery (Co-Chairman), Paul C.

    2004-07-01

    This issue of the “European Physical Journal Applied Physics” contains the papers presented at the Tenth International Conference on Defects: Recognition, Imaging and Physics in Semiconductors (DRIP X), held in Batz-sur-Mer, France, from 29th September to 2nd October, 2003. The conference gathered 150 scientists from academic institutions and industry of 20 countries from around the world, showing the pertinence of the biennial series of DRIP conferences. A much appreciated aspect of DRIP X was the variety of the different backgrounds of the participants, leading to much fruitful exchange and stimulating discussion. Following the spirit of previous DRIP conferences, the main concern of DRIP X was the methodology and the physics of measurement procedures, together with specific developments in instrumentation, and their relationship with the structural, optical and electrical properties of semiconductor defects. The topics covered related to the different methods and techniques used for the recognition and imaging of defects in semiconductor materials (Si, III-V's including nitrides, SiC, IV-IV's, II-VI's, organic compounds, ...) and in semiconductor devices ranging from defects in the raw materials at the wafer level, through process-induced defects and defects that appear during operation (burn-in, aging tests, ...). One of the highlights of the social events of DRIP X was the awards ceremony as part of the celebrations for the Tenth meeting of DRIP. The founders of the DRIP series, Professor Jean-Pierre Fillard and Professor Tomoya Ogawa were both invited to be permanent members of the International Steering Committee and awarded with appropriately engraved trophies to mark the occasion. With help form Tomoya Ogawa, Jean-Pierre Fillard organized the first DRIP conference in 1985 in La Grande Motte, France. The amusing and thought provoking slide presentation by Jean-Pierre Fillard went a great way to remind us of the history of this conference series and to

  18. Wireless sensor network effectively controls center pivot irrigation of sorghum

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  19. [Isolation and characterization of petroleum catabolic broad-host-range plasmids from Shen-Fu wastewater irrigation zone].

    PubMed

    Wang, Ya-Fei; Wang, Ya-Fei; Li, Hui; Li, Xiao-Bin

    2013-11-01

    Based on triparental mating, we isolated a total of eight broad host range (BHR) petroleum hydrocarbon catabolic plasmids from the soils, sediments, and wastewater samples in the Shen-Fu irrigation zone. The antibiotic resistance of the plasmids was tested, and then, the plasmids were transferred to Escherichia coli EC100. The plasmids carrying no antibiotic resistance were tagged by miniTn5 transposon consisting of antibiotic resistant genes. The PCR-based incompatibility test revealed that the pS3-2C and pS4-6G belonged to Inc P group, the pS3-2G, pW22-3G, and pA15-7G belonged to Inc N group, the pS7-2G was identified as Inc W plasmid, and the pA23-1G and pA10-1C were placed into Inc Q group. By adopting the reported PCR amplification methods of petroleum hydrocarbon-degrading catabolic genes, the petroleum-degrading capability of these BHR plasmids were preliminarily analyzed. The plasmids pS3-2G, pS7-2G, pA23-1G, pW22-3G, and pA10-1C carried aromatic ring- hydroxylating dioxygenase gene phdA and toluene monooxygenase gene touA; the plasmid pA15-7G carried touA and toluene dioxygenase gene tod; the plasmid pS3-2C carried ben, phdA, and tod; whereas the pS4-6G only carried ben. The host range test showed that all the isolated plasmids except pS3-2C could be transferred and maintained stably in the representative strains Agrobacterium tumefaciens C58, Cupriavidus necator JMP228, and E. coli EC100 of the alpha-, beta-, and gamma-Proteobacteria, respectively.

  20. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka?

    PubMed

    Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana

    2016-06-01

    The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.

  1. Vadose zone transport of natural and synthetic estrogen hormones at Penn State's "Living Filter" wastewater irrigation site

    USDA-ARS?s Scientific Manuscript database

    The increase in endocrine disrupting compounds (EDCs) in the environment has generated new research focused on the behavior of these compounds in natural soil and water ecosystems. To understand how estrogens behave in the soil environment as a result of 25+ years of wastewater irrigation, soils fro...

  2. Subsurface drip irrigation for native wildflower seed production

    Treesearch

    Clint C. Shock; Erik Feibert; Lamont Saunders; Nancy Shaw

    2008-01-01

    Native forb seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native forb seed is stable and consistent seed productivity over years. Variations in spring rainfall and soil moisture...

  3. Native wildflower seed production with limited subsurface drip irrigation

    Treesearch

    Clinton C. Shock; Erik B. G. Feibert; Lamont D. Saunders; Nancy Shaw

    2010-01-01

    Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years. Variations in spring rainfall and...

  4. Native wildflower seed production with limited subsurface drip irrigation

    Treesearch

    Clint C. Shock; Erik Feibert; Lamont Saunders; Nancy Shaw

    2009-01-01

    Native wildflower seed is needed to restore rangelands of the Intermountain West. Commercial seed production is necessary to provide the quantity of seed needed for restoration efforts. A major limitation to economically viable commercial production of native wildflower (forb) seed is stable and consistent seed productivity over years. Variations in spring rainfall and...

  5. A subsurface drip irrigation system for weighing lysimetry

    USDA-ARS?s Scientific Manuscript database

    Large, precision weighing lysimeters can have accuracies as good as 0.04 mm equivalent depth of water, adequate for hourly and even half-hourly determinations of evapotranspiration (ET) rate from crops. Such data are important for testing and improving simulation models of the complex interactions o...

  6. Evaluating rice cultivars using subsurface drip irrigation (SDI)

    USDA-ARS?s Scientific Manuscript database

    Nearly 2.6 million acres of rice in the USA are produced using a flooded paddy system. However due to depletion of ground water, climate patterns that have resulted in reduced precipitation, and increasing competition with urban areas for water resources, the future of rice production in parts of th...

  7. Determining pomegranate water and nitrogen requirements with drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Despite being an ancient crop there is limited knowledge on the water and nitrogen (N) requirements of pomegranate. We conducted research at the University of California, Kearney Agricultural Research and Extension Center (KARE) to determine the water and nitrogen requirements of a developing pomegr...

  8. Automated Irrigation System for Greenhouse Monitoring

    NASA Astrophysics Data System (ADS)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  9. Automated Irrigation System for Greenhouse Monitoring

    NASA Astrophysics Data System (ADS)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  10. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  11. Walking at the drip line

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Angela

    2015-02-01

    Among exotic nuclei those at the drip line which are unstable against neutron emission are particularly interesting because they convey information on the nuclear force in the most extreme situations. Strictly speaking they are not ''nuclei" but they exist thanks to long living resonances between a neutron and a bound ''core" nucleus. Adding one more neutron they become bound and are called "borromean". Being particularly exotic they have attracted much attention in past years, see for example Refs.[1, 2, 3]. One very challenging example is 13Be whose level ordering has been discussed in a large number of papers in which it has been studied by transfer [4] and fragmentation experiments [5]-[11], or it has been discussed theoretically[12]-[19]. Although projectile fragmentation spectra show evident similarities, the interpretations of data all differ from each other. In this paper we argue that a way trough the problem could be to try to establish first, or at the same time, the quite elusive "nature" of the second s-state in the Beryllium isotopes with A=9-14. On the other hand there are other recent neutron removal experiments leading to nuclei unstable by one or more proton emissions [20], and thus somewhat mirror to borromean nuclei, performed with nuclei close to the proton drip line. It has been shown that by taking in coincidence all (charged) particles but the removed neutron, reconstructing the invariant mass and gating on the ground state peak, it is possible to obtain the longitudinal momentum distribution of the unbound "core". One can link it to the original wave function of the bound orbital and thus determine the initial neutron angular momentum from the shape of the distribution and the initial occupation probability from the absolute removal cross section. Then it is clear that modern experiments and theories are able to study unstable nuclei with the same degree of accuracy as stable nuclei. Such a line of research offers a great potential for

  12. Quasi 3D modeling of water flow and solute transport in vadose zone and groundwater

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Kuznetsov, M.; Weisbrod, N.; Pachepsky, Y. A.

    2013-12-01

    The complexity of subsurface flow systems calls for a variety of concepts leading to the multiplicity of simplified flow models. One commonly used simplification is based on the assumption that lateral flow and transport in unsaturated zone is insignificant unless the capillary fringe is involved. In such cases the flow and transport in the unsaturated zone above groundwater level can be simulated as a 1D phenomenon, whereas through groundwater they are viewed as 2D or 3D phenomena. A new approach for a numerical scheme for 3D variably saturated flow and transport is presented. A Quasi-3D approach allows representing flow in the 'vadose zone - aquifer' system by a series of 1D Richards' equations solved in variably-saturated zone and by 3D-saturated flow equation in groundwater (modified MODFLOW code). The 1D and 3D equations are coupled at the phreatic surface in a way that aquifer replenishment is calculated using the Richards' equation, and solving for the moving water table does not require definition of the specific yield parameter. The 3D advection-dispersion equation is solved in the entire domain by the MT3D code. Using implicit finite differences approximation to couple processes in the vadose zone and groundwater provides mass conservation and increase of computational efficiency. The above model was applied to simulate the impact of irrigation on groundwater salinity in the Alto Piura aquifer (Northern Peru). Studies on changing groundwater quality in arid and semi-arid lands show that irrigation return flow is one of the major factors contributing to aquifer salinization. Existing mathematical models do not account explicitly for the solute recycling during irrigation on a daily scale. Recycling occurs throughout the unsaturated and saturated zones, as function of the solute mass extracted from pumping wells. Salt concentration in irrigation water is calculated at each time step as a function of concentration of both surface water and groundwater

  13. Improving irrigation management in L'Horta Nord (Valencia, Spain)

    NASA Astrophysics Data System (ADS)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo

    2014-05-01

    L'Horta Nord is an important irrigation district in Valencia (Spain), especially for vegetable crops. The traditional cropping pattern in the region consists of a rotation of chufa with crops such as potato, onion, lettuce, escarole and red cabbage, being all these crops furrow irrigated. Currently, the quality of the water used is acceptable, water is not expensive and there are no limitations on supply. Consequently, growers are not aware of the volumes of water used, application efficiencies, nor water productivity for any of the crops cited. The European Framework Directive 2000/60, based on the precautionary principle, considers preventive action for measures to be taken; moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. Thus, water use is an issue to improve. In this sense, the current situation of the irrigation in the area is analysed using chufa (Cyperus esculentus L. var. sativus Boeck.) as representative of the crops, since most of the crops in the area have shallow root systems, as chufa, which are irrigated in similar patterns. In order to analyse the irrigation performance of the traditional chufa crop as well as to achieve more sustainable results, different studies have been carried out, during the last decade. Efforts have been directed to increase water productivity, increasing yield and minimising the volumes of water applied. Different planting configurations and different irrigation thresholds, not only in furrow irrigation but also in drip irrigation, are examples of how the irrigation performance could be improved. Herein is presented a two-year study, comparing, in both furrow and drip irrigation, two irrigation schedules based on the volumetric soil water content, which was continuously monitored using capacitance sensors. Yield was significantly affected by the growing season, the irrigation system and by the irrigation schedule, and by the second order interactions of the

  14. [Influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield.

    PubMed

    Zhang, Ming Zhi; Niu, Wen Quan; Xu, Jian; Li, Yuan

    2016-06-01

    In order to explore the influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield, an orthogonal experiment was carried out with three factors of micro-irrigation method, irrigation depth, and subsoiling depth. The factor of irrigation method included surface drip irrigation, subsurface drip irrigation, and moistube-irrigation; three levels of irrigation depth were obtained by controlling the lower limit of soil water content to 50%, 65%, and 80% of field holding capacity, respectively; and three depths of deep subsoiling were 20, 40, and 60 cm. The results showed that the activities of catalase and urease increased first and then decreased, while the activity of phosphatase followed an opposite trend in the growth season of summer maize. Compared with surface drip irrigation and moistube-irrigation, subsurface drip irrigation increased the average soil moisture of 0-80 cm layer by 6.3% and 1.8% in the growth season, respectively. Subsurface drip irrigation could significantly increase soil urease activity, roots volume, and yield of summer maize. With the increase of irrigation level, soil phosphatase activity decreased first and then increased, while urease activity and yield increased first and then decreased. The average soil moisture and root volume all increased in the growth season of summer maize. The increments of yield and root volume from subsoiling of 40 to 20 cm were greater than those from 60 to 40 cm. The highest enzyme activity was obtained with the treatment of subsoiling of 40 cm. In terms of improving water resource use efficiency, nitrogen use efficiency, and crop yield, the best management strategy of summer maize was the combination of subsurface drip irrigation, controlling the lower limit of soil water content to 65% of field holding capacity, and 40 cm subsoiling before planting.

  15. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    PubMed

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  16. Irrigation: Erosion

    USDA-ARS?s Scientific Manuscript database

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  17. Mechanical Stimulation by Postnasal Drip Evokes Cough

    PubMed Central

    Iwata, Toshiyuki; Ito, Isao; Niimi, Akio; Ikegami, Koji; Marumo, Satoshi; Tanabe, Naoya; Nakaji, Hitoshi; Kanemitsu, Yoshihiro; Matsumoto, Hisako; Kamei, Junzo; Setou, Mitsutoshi; Mishima, Michiaki

    2015-01-01

    Cough affects all individuals at different times, and its economic burden is substantial. Despite these widespread adverse effects, cough research relies on animal models, which hampers our understanding of the fundamental cause of cough. Postnasal drip is speculated to be one of the most frequent causes of chronic cough; however, this is a matter of debate. Here we show that mechanical stimuli by postnasal drip cause chronic cough. We distinguished human cough from sneezes and expiration reflexes by airflow patterns. Cough and sneeze exhibited one-peak and two-peak patterns, respectively, in expiratory airflow, which were also confirmed by animal models of cough and sneeze. Transgenic mice with ciliary dyskinesia coughed substantially and showed postnasal drip in the pharynx; furthermore, their cough was completely inhibited by nasal airway blockade of postnasal drip. We successfully reproduced cough observed in these mice by injecting artificial postnasal drip in wild-type mice. These results demonstrated that mechanical stimulation by postnasal drip evoked cough. The findings of our study can therefore be used to develop new antitussive drugs that prevent the root cause of cough. PMID:26581078

  18. Hydrological characterization of cave drip waters in a porous limestone: Golgotha Cave, Western Australia

    NASA Astrophysics Data System (ADS)

    Mahmud, Kashif; Mariethoz, Gregoire; Baker, Andy; Treble, Pauline C.

    2018-02-01

    Cave drip water response to surface meteorological conditions is complex due to the heterogeneity of water movement in the karst unsaturated zone. Previous studies have focused on the monitoring of fractured rock limestones that have little or no primary porosity. In this study, we aim to further understand infiltration water hydrology in the Tamala Limestone of SW Australia, which is Quaternary aeolianite with primary porosity. We build on our previous studies of the Golgotha Cave system and utilize the existing spatial survey of 29 automated cave drip loggers and a lidar-based flow classification scheme, conducted in the two main chambers of this cave. We find that a daily sampling frequency at our cave site optimizes the capture of drip variability with the least possible sampling artifacts. With the optimum sampling frequency, most of the drip sites show persistent autocorrelation for at least a month, typically much longer, indicating ample storage of water feeding all stalactites investigated. Drip discharge histograms are highly variable, showing sometimes multimodal distributions. Histogram skewness is shown to relate to the wetter-than-average 2013 hydrological year and modality is affected by seasonality. The hydrological classification scheme with respect to mean discharge and the flow variation can distinguish between groundwater flow types in limestones with primary porosity, and the technique could be used to characterize different karst flow paths when high-frequency automated drip logger data are available. We observe little difference in the coefficient of variation (COV) between flow classification types, probably reflecting the ample storage due to the dominance of primary porosity at this cave site. Moreover, we do not find any relationship between drip variability and discharge within similar flow type. Finally, a combination of multidimensional scaling (MDS) and clustering by k means is used to classify similar drip types based on time series

  19. Willingness to pay for more efficient irrigation techniques in the Lake Karla basin, Greece.

    NASA Astrophysics Data System (ADS)

    Mylopoulos, Nikitas; Fafoutis, Chrysostomos

    2014-05-01

    Thessaly, the second largest plain of Greece, is an intensively cultivated agricultural region. The intense and widespread agriculture of hydrophilic crops, such as cotton, has led to a remarkable water demand increase, which is usually covered by the overexploitation of groundwater resources. The Lake Karla basin is a prominent example of this unsustainable practice. Competition for the limited available freshwater resources in the Lake Karla basin is expected to increase in the near future as demand for irrigation water increases and drought years are expected to increase due to climate change. Together with the Unions of Agricultural Cooperatives, the Local Organizations of Land Reclamation is planning to introduce more efficient, water saving automated drip irrigation in the area among farmers who currently use non-automated drip irrigation, in order to ensure that these farmers can better cope with drought years and that water will be used more efficiently in crop production. Saving water use in irrigated agriculture is expected to be beneficial to both farmers and the restoration of Lake Karla and its wildlife like plants and birds. The aim of this study is to understand and record the farmers' opinions regarding the use of irrigation water and the restoration of Lake Karla, and to extract valuable conclusions and perform detailed analysis of the criteria for a new irrigation method. A general choice experiment with face-to-face interviews was conducted, using a random sample of 150 open field farmers from the study area. The farmers, who use the non-automated drip irrigation method and their farms are located within the watershed of Lake Karla, were interviewed regarding their willingness to switch to more efficient irrigation techniques, such as automated and controlled drip irrigation.The most important benefits of automated drip irrigation are an increase in crop yield, as plants are given water in a more precise way (based on their needs during the

  20. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain

    NASA Astrophysics Data System (ADS)

    Min, Leilei; Shen, Yanjun; Pei, Hongwei; Wang, Ping

    2018-04-01

    Groundwater-fed agriculture has caused water table declines and groundwater quality degradation in the North China Plain. Based on sediment sampling in deep vadose zone (with a maximum depth of 11.0 m), groundwater recharge, seepage velocity, solute inventory and transport under four typical irrigated agricultural land-use types (winter wheat and summer maize, WM; pear orchards, PO; outdoor vegetables, VE; and cotton, CO) were investigated in this study. The results reveal that there are many solutes stored in the vadose zone. Nitrate storage per unit depth in the vadose zone is highest under PO (1703 kg/ha), followed by VE (970 kg/ha), WM (736 kg/ha) and CO (727 kg/ha). However, the amount of annual leached nitrate under the four land-use types results in a different order (VE, 404 kg/ha; WM, 108 kg/ha; PO, 23 kg/ha; CO, 13 kg/ha). The estimated average recharge rates are 180 mm/yr for WM, 27 mm/yr for CO, 320 mm/yr for VE and 49 mm/yr for PO. The seepage velocity under VE (2.22 m/yr) exceeds the values under the other three land-use types (WM, 0.85 m/yr; PO, 0.49 m/yr; CO, 0.09 m/yr). The highest seepage velocity under VE caused significant nitrate contamination in groundwater, whereas the other two land-use types (WM and PO) had no direct influence on groundwater quality. The results of this work could be used for groundwater resources management.

  1. A GIS policy approach for assessing the effect of fertilizers on the quality of drinking and irrigation water and wellhead protection zones (Crete, Greece).

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P; Koubouris, Georgios C

    2017-03-15

    Fertilizers have undoubtedly contributed to the significant increase in yields worldwide and therefore to the considerable improvement of quality of life of man and animals. Today, attention is focussed on the risks imposed by agricultural fertilizers. These effects include the dissolution and transport of excess quantities of fertilizer major- and trace-elements to the groundwater that deteriorate the quality of drinking and irrigation water. In this study, a map for the Fertilizer Water Pollution Index (FWPI) was generated for assessing the impact of agricultural fertilizers on drinking and irrigation water quality. The proposed methodology was applied to one of the most intensively cultivated with tree crops area in Crete (Greece) where potential pollutant loads are derived exclusively from agricultural activities and groundwater is the main water source. In this region of 215 km 2 , groundwater sampling data from 235 wells were collected over a 15-year time period and analyzed for the presence of anionic (ΝΟ -3 , PO -3 4 ) and cationic (K +1 , Fe +2 , Mn +2 , Zn +2 , Cu +2 , B +3 ) fertilizer trace elements. These chemicals are the components of the primary fertilizers used in local tree crop production. Eight factors/maps were considered in order to estimate the spatial distribution of groundwater contamination for each fertilizer element. The eight factors combined were used to generate the Fertilizer Water Pollution Index (FWPI) map indicating the areas with drinking/irrigation water pollution due to the high groundwater contamination caused by excessive fertilizer use. Moreover, by taking into consideration the groundwater flow direction and seepage velocity, the pathway through which groundwater supply become polluted can be predicted. The groundwater quality results show that a small part of the study area, about 8 km 2 (3.72%), is polluted or moderately polluted by the excessive use of fertilizers. Considering that in this area drinking water sources

  2. Performance of a wireless sensor network for crop monitoring and irrigation control

    USDA-ARS?s Scientific Manuscript database

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  3. Land and water use practices intended to increase water productivity in arid and semi-arid zones. Application to Uzbekistan.

    NASA Astrophysics Data System (ADS)

    Mirshadiev, Mirzokhid; Fleskens, Luuk; van Dam, Jos; Pulatov, Alim

    2017-04-01

    Water demand increases as more food is required to meet population growth and higher living standards. In addition, climate change is expected to further exacerbate water scarcity in already dry areas where irrigation is most needed. In the water scarce areas, the key strategy to meet demand of growing food production and water use is increase of water productivity (WP) based on best land and water use practices. A literature review will be conducted to study promising land and water use practices that increase water productivity in arid and semi-arid zones, with a special focus on Uzbekistan. In addition to literature review we will conduct interviews with local farmers and land and water management experts. However, due to time constraints and difficult to access grey literature, the review paper cannot cover all promising land and water use practices that have been used in Uzbekistan. We selected the following promising practices: a) conventional furrow irrigation; b) deficit irrigation; c) drip/sprinkle irrigation, and d) rain-fed with supplemental irrigation. The preliminary findings of the literature review show that in Uzbekistan in case of conventional furrow irrigation the WP range of cotton was 0.32-0.89, and of wheat 0.44-1.77 (kg m3). By applying deficit irrigation practices, WP values of cotton can be 0-25% higher (0.32-1.11 kg m3), and of wheat 114-400% higher (2.20-3.78 kg m3). However, deficit irrigation practices for potato's need to be managed carefully to reach higher WP, and might even negatively effect WP, showing a range of 0.85-7.04 compared to conventional furrow irrigation 4.02-4.81 (kg m3). Important to mention that drip irrigation practice can highly contribute to increase WP of cotton by 156-91 % (0.82-1.70 kg m3) compared to furrow irrigation. Also, rain-fed cultivation with supplemental irrigation result is anticipated and will be included in the presentation and full version of paper. In summary, the review of current land and water

  4. The Influence of Land Subsidence, Quarrying, Drainage, Irrigation and Forest Fire on Groundwater Resources and Biodiversity Along the Southern Po Plain Coastal Zone (Italy)

    NASA Astrophysics Data System (ADS)

    Antonellini, M. A.; Mollema, P. N.

    2014-12-01

    The coastal zone of the southern Po plain is characterized by low lying land, which is reclaimed to permit settlements and agriculture. The history, tourism resorts and peculiar coastal environments make this territory attractive and valuable. Natural and fluid-extraction-induced land subsidence along with coastal erosion are major problems. Touristic development has strongly modified the landscape; coastal dunes have been in part removed to make room for hotels and quarrying has caused the formation of gravel pit lakes close to the shoreline. Protected natural areas include a belt of coastal dunes, wetlands, and the internal historical forests of San Vitale and Classe. The dunes have largely lost their original vegetation ecosystem, because years ago they have been colonized with pine trees to protect the adjacent farmland from sea spray. These pine forests are currently a fire hazard. Land reclamation drainage keeps the water table artificially low. Results of these anthropogenic disturbances on the hydrology include a decrease in infiltration rates, loss of freshwater surface bodies, encroachment of saltwater inland from the river estuaries, salinization of the aquifer, wetlands and soil with a loss in plant and aquatic species biodiversity. Feedback mechanisms are complex: as land subsidence continues, drainage increases at the same pace promoting sea-water intrusion. The salinity of the groundwater does not allow for plant species richness nor for the survival of large pine trees. Farmland irrigation and fires in the pine forests, on the other hand, allow for increased infiltration and freshening of the aquifer and at the same time promote plant species diversity. Our work shows that the characteristics of the southern Po coastal zone require integrated management of economic activities, natural areas, and resources. This approach is different from the ad hoc measures taken so far, because it requires long term planning and setting a priority of objectives.

  5. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  6. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    NASA Astrophysics Data System (ADS)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the

  7. An Assessment of Irrigation Technology Performance in the Southern San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Vaux, H. J., Jr.; Handley, Dale F.; Giboney, Paul M.

    1990-01-01

    Seasonal applied water measurements were obtained for 1710 irrigated fields in the southern San Joaquin Valley of California. Most of the fields were planted to one of five major crops: citrus, almonds, grapes, cotton, and small grains. These crops were irrigated with a wide array of irrigation technologies, including drip, sprinkler, furrows with tailwater reuse facilities, conventional furrows, and border irrigation systems. The data were analyzed within an accounting framework to standardize for a variety of climatic and cultural variations. Analyses of the mean depths of applied water by crop and irrigation technology and of the standardized results reveal that drip irrigation systems were associated with the lowest levels of applied water on permanent crops and that the levels of water applied with sprinklers did not differ significantly from those applied with surface systems on either permanent or annual crops.

  8. Estimation of deep infiltration in unsaturated limestone environments using cave lidar and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2016-01-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management, and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger-scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of Golgotha Cave, south-western Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology, and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012 to 2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip rate time series are interpreted in terms of flow patterns, cave chamber morphology, and lithology. Moreover, we develop a new technique to estimate recharge in large-scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focussed areas of recharge and can help to better

  9. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    NASA Astrophysics Data System (ADS)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  10. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrivemore » in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.« less

  11. Impact of irrigation, nitrogen fertilization, and spatial management on maize

    USDA-ARS?s Scientific Manuscript database

    The spatial management of irrigation water and N fertilization can be employed to reduce interactive effects, thus increasing water and N use efficiency and reducing pollution. Partial root-zone irrigation is a modified form of deficit irrigation which involves irrigating only one part of the root z...

  12. Analysis of the relationship between the volumetric soil moisture content and the NDVI from high resolution multi-spectral images for definition of vineyard management zones to improve irrigation

    NASA Astrophysics Data System (ADS)

    Martínez-Casasnovas, J. A.; Ramos, M. C.

    2009-04-01

    As suggested by previous research in the field of precision viticulture, intra-field yield variability is dependent on the variation of soil properties, and in particular the soil moisture content. Since the mapping in detail of this soil property for precision viticulture applications is highly costly, the objective of the present research is to analyse its relationship with the normalised difference vegetation index from high resolution satellite images to the use it in the definition of vineyard zonal management. The final aim is to improve irrigation in commercial vineyard blocks for better management of inputs and to deliver a more homogeneous fruit to the winery. The study was carried out in a vineyard block located in Raimat (NE Spain, Costers del Segre Designation of Origin). This is a semi-arid area with continental Mediterranean climate and a total annual precipitation between 300-400 mm. The vineyard block (4.5 ha) is planted with Syrah vines in a 3x2 m pattern. The vines are irrigated by means of drips under a partial root drying schedule. Initially, the irrigation sectors had a quadrangular distribution, with a size of about 1 ha each. Yield is highly variable within the block, presenting a coefficient of variation of 24.9%. For the measurement of the soil moisture content a regular sampling grid of 30 x 40 m was defined. This represents a sample density of 8 samples ha-1. At the nodes of the grid, TDR (Time Domain Reflectometer) probe tubes were permanently installed up to the 80 cm or up to reaching a contrasting layer. Multi-temporal measures were taken at different depths (each 20 cm) between November 2006 and December 2007. For each date, a map of the variability of the profile soil moisture content was interpolated by means of geostatistical analysis: from the measured values at the grid points the experimental variograms were computed and modelled and global block kriging (10 m squared blocks) undertaken with a grid spacing of 3 m x 3 m. On the

  13. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  14. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  15. Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR)

    NASA Astrophysics Data System (ADS)

    Cary, L.; Kloppmann, W.; Battilani, A.; Bertaki, M.; Blagojevic, S.; Chartzoulakis, K.; Dalsgaard, A.; Forslund, A.; Jovanovic, Z.; Kasapakis, I.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops an soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). A work package in the EU FP5 project SAFIR is dedicated to study the impact of wastewater irrigation on the soil-water-plant-product system. Its monitoring program comprises pathogens and inorganic pollutants, including both geogenic and potentially anthropogenic trace elements in the aim to better understand soil-irrigation water interactions. The SAFIR field study sites are found in China, Italy, Crete, and Serbia. A performance evaluation of SAFIR-specific treatment technology through the monitoring of waste water and irrigation water quality was made through waste water chemical and microbiological qualities, which were investigated upstream and downstream of the SAFIR specific treatment three times per season. Irrigation water transits through the uppermost soil decimetres to the crop roots. The latter will become, in the course of the irrigation season, the major sink of percolating water, together with evaporation. The water saving irrigation techniques used in SAFIR are surface and subsurface drip irrigation. The investigation of the solid soil phase concentrates on the root zone as main transit and storage compartment for pollutants and, eventually, pathogens. The initial soil quality was assessed through a sampling campaign before the onset of the first year irrigation; the soil quality has been monitored throughout three years under cultivation of tomatoes or potatoes. The plot layout for each of the study sites

  16. Estimation of deep infiltration in unsaturated limestone environments using cave LiDAR and drip count data

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Baker, A.; Treble, P. C.; Markowska, M.; McGuire, E.

    2015-09-01

    Limestone aeolianites constitute karstic aquifers covering much of the western and southern Australian coastal fringe. They are a key groundwater resource for a range of industries such as winery and tourism, and provide important ecosystem services such as habitat for stygofauna. Moreover, recharge estimation is important for understanding the water cycle, for contaminant transport, for water management and for stalagmite-based paleoclimate reconstructions. Caves offer a natural inception point to observe both the long-term groundwater recharge and the preferential movement of water through the unsaturated zone of such limestone. With the availability of automated drip rate logging systems and remote sensing techniques, it is now possible to deploy the combination of these methods for larger scale studies of infiltration processes within a cave. In this study, we utilize a spatial survey of automated cave drip monitoring in two large chambers of the Golgotha Cave, South-West Western Australia (SWWA), with the aim of better understanding infiltration water movement and the relationship between infiltration, stalactite morphology and unsaturated zone recharge. By applying morphological analysis of ceiling features from Terrestrial LiDAR (T-LiDAR) data, coupled with drip time series and climate data from 2012-2014, we demonstrate the nature of the relationships between infiltration through fractures in the limestone and unsaturated zone recharge. Similarities between drip-rate time series are interpreted in terms of flow patterns, cave chamber morphology and lithology. Moreover, we develop a new technique to estimate recharge in large scale caves, engaging flow classification to determine the cave ceiling area covered by each flow category and drip data for the entire observation period, to calculate the total volume of cave discharge. This new technique can be applied to other cave sites to identify highly focused areas of recharge and can help to better estimate

  17. E-Cigarettes and "Dripping" Among High-School Youth.

    PubMed

    Krishnan-Sarin, Suchitra; Morean, Meghan; Kong, Grace; Bold, Krysten W; Camenga, Deepa R; Cavallo, Dana A; Simon, Patricia; Wu, Ran

    2017-03-01

    Electronic cigarettes (e-cigarettes) electrically heat and vaporize e-liquids to produce inhalable vapors. These devices are being used to inhale vapors produced by dripping e-liquids directly onto heated atomizers. The current study conducts the first evaluation of the prevalence rates and reasons for using e-cigarettes for dripping among high school students. In the spring of 2015, students from 8 Connecticut high schools ( n = 7045) completed anonymous surveys that examined tobacco use behaviors and perceptions. We assessed prevalence rates of ever using e-cigarettes for dripping, reasons for dripping, and predictors of dripping behaviors among those who reported ever use of e-cigarettes. Among 1080 ever e-cigarette users, 26.1% of students reported ever using e-cigarettes for dripping. Reasons for dripping included produced thicker clouds of vapor (63.5%), made flavors taste better (38.7%), produced a stronger throat hit (27.7%), curiosity (21.6%), and other (7.5%). Logistic regression analyses indicated that male adolescents (odds ratio [OR] = 1.64), whites (OR = 1.46), and those who had tried multiple tobacco products (OR = 1.34) and had greater past-month e-cigarette use frequency (OR = 1.07) were more likely to use dripping ( P s < .05). These findings indicate that a substantial portion (∼1 in 4) of high school adolescents who had ever used e-cigarettes also report using the device for dripping. Future efforts must examine the progression and toxicity of the use of e-cigarettes for dripping among youth and educate them about the potential dangers of these behaviors. Copyright © 2017 by the American Academy of Pediatrics.

  18. Microbial risk in wastewater irrigated lettuce: comparing Escherichia coli contamination from an experimental site with a laboratory approach.

    PubMed

    Makkaew, P; Miller, M; Fallowfield, H J; Cromar, N J

    This study assessed the contamination of Escherichia coli, in lettuce grown with treated domestic wastewater in four different irrigation configurations: open spray, spray under plastic sheet cover, open drip and drip under plastic sheet cover. Samples of lettuce from each irrigation configuration and irrigating wastewater were collected during the growing season. No E. coli was detected in lettuce from drip irrigated beds. All lettuce samples from spray beds were positive for E. coli, however, no statistical difference (p > 0.05) was detected between lettuces grown in open spray or covered spray beds. The results from the field experiment were also compared to a laboratory experiment which used submersion of lettuce in wastewater of known E. coli concentration as a surrogate method to assess contamination following irrigation. The microbial quality of spray bed lettuces was not significantly different from submersed lettuce when irrigated with wastewater containing 1,299.7 E. coli MPN/100 mL (p > 0.05). This study is significant since it is the first to validate that the microbial contamination of lettuce irrigated with wastewater in the field is comparable with a laboratory technique frequently applied in the quantitative microbial risk assessment of the consumption of wastewater irrigated salad crops.

  19. Evaluation of potential water conservation using site-specific irrigation

    USDA-ARS?s Scientific Manuscript database

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  20. Rethinking the sustainability of Israel's irrigation practices in the Drylands.

    PubMed

    Tal, Alon

    2016-03-01

    Broad utilization of drip irrigation technologies in Israel has contributed to the 1600 percent increase in the value of produce grown by local farmers over the past sixty-five years. The recycling of 86% of Israeli sewage now provides 50% of the country's irrigation water and is the second, idiosyncratic component in Israel's strategy to overcome water scarcity and maintain agriculture in a dryland region. The sustainability of these two practices is evaluated in light of decades of experience and ongoing research by the local scientific community. The review confirms the dramatic advantages of drip irrigation over time, relative to flood, furrow and sprinkler irrigation and its significance as a central component in agricultural production, especially under arid conditions. In contrast, empirical findings increasingly report damage to soil and to crops from salinization caused by irrigation with effluents. To be environmentally and agriculturally sustainable over time, wastewater reuse programs must ensure extremely high quality treated effluents and ultimately seek the desalinization of recycled sewage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A remote drip infusion monitoring system employing Bluetooth.

    PubMed

    Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton

    2012-01-01

    We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.

  2. Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region

    NASA Astrophysics Data System (ADS)

    Al-Ghobari, Hussein M.; Mohammad, Fawzi S.

    2011-12-01

    Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in

  3. Is irrigation with partial desalinated seawater a policy option for saving freshwater in the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Multsch, Sebastian; Alquwaizany, Abdulaziz S.; Lehnert, Karl-H.; Frede, Hans-Georg; Breuer, Lutz

    2015-04-01

    The agriculture sector consumes with 88 % a majority of the almost fossil water resources in the Kingdom of Saudi Arabia (KSA). Irrigation with saline water has been highlighted to be a promising technique to reduce fresh water consumption. Current desalination techniques, further developments, salt tolerant crop types and improved irrigation systems can potentially redesign future perspectives for irrigation agriculture, in particular by considering the growing desalination capacity in KSA (5 million m3 day-1 in 2003). Hence, we have analyzed the potential of using desalinated and partial desalinated seawater for growing crops in KSA by considering scenarios of salinity levels and desalination costs. The desalination process has been modelled with the ROSA© software considering a reverse osmosis (RO) plant. The spatial decision support system SPARE:WATER has been applied to assess the water footprint of crops (WFcrop). In order to maintain high crop yields, salts need to be washed out from the rooting zone, which requires the application of additional salt-free water. Therefore, high crop yields come along with additional water requirements and increased desalination effort and increased costs for proving high quality water. As an example, growing wheat with partial desalinated seawater from the Arabian Gulf with a RO plant has been investigated. Desalination reduces the salinity level from 76 dS m-1 to 0.5 dS m-1 considering two RO cycles, with cost of desalinized water in the range of 0.5 to 1.2 m-3. We acknowledge that cost only refer to desalination without considering others such as transport, water pumping or crop fertilization. The study shows that Boron is the most problematic salt component, because it is difficult to remove by RO and toxic in high concentrations for crops (wheat threshold of 0.5 to 1.0 mg l-1). The nationwide average WFcrop of wheat under surface irrigation is 2,628 m3 t-1 considering high water quality of 1 dS m-1 and 3,801 m3 t-1 at

  4. 13. Roadway and place of a thousand drips looking ESE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Roadway and place of a thousand drips looking ESE. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  5. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency

    PubMed Central

    Taweesak, Viyachai; Lee Abdullah, Thohirah; Hassan, Siti Aishah; Kamarulzaman, Nitty Hirawaty; Wan Yusoff, Wan Abdullah

    2014-01-01

    Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White”) were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes. PMID:25478586

  6. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines

    NASA Astrophysics Data System (ADS)

    Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja

    2016-05-01

    Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.

  7. Variable rate irrigation (VRI)

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  8. Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou Cave, Southwest China

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Jun; Li, Ting-Yong

    2018-06-01

    The scientific explanation of speleothem δ18O in Chinese monsoon region is a greatly debated issue. Modern cave monitoring combined with instrument observation maybe is an essential solution to deal with this issue. During the period from 2011 to 2016, we monitored local precipitation, soil water in three soil profiles, and six drip water sites in Yangkou Cave, which is located in Chongqing City, Southwest China. This article presents measurements about δ18O, δD and Mg/Ca ratios of drip water and compared these geochemical proxies with contemporaneous atmospheric circulations. The main conclusions are: (1) As water migrates from precipitation to soil water to cave drip water, the amplitudes of seasonal variations in δD and δ18O decreased gradually. Due to the existence of complex hydrogeological conditions, the range of variation and the seasonal characteristics of δD and δ18O differ among the drip sites where samples were collected, but the interannual variability is nearly the same. The drip water Mg/Ca ratios are mainly regulated by changes in hydrological conditions in the epikarst zone, with higher values during winter months than that during summer months. (2) When an El Niño event occurs, the Western Pacific Subtropical High (WPSH) is migrated westward, and the production of near-source water vapor from the western Pacific and the South China Sea increases, leading to higher δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were significantly lower with increased summer precipitation. On the other hand, during La Niña events, the WPSH is migrated eastward, and inputs of water vapor that has traveled greater distances (from the Indian Ocean) become comparatively important, resulting in lower δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were higher with decreased summer precipitation. In summary, the interannual variability of δ18O in the drip waters of Yangkou Cave

  9. Lithospheric drip magmatism and magma-assisted rifting: a case study in the Western Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Pitcavage, E.; Furman, T.; Nelson, W. R.

    2017-12-01

    The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important

  10. An example of treated waste water use for soil irrigation in the SAFIR project.

    NASA Astrophysics Data System (ADS)

    Cary, L.; Jovanovic, Z.; Stikic, R.; Blagojevic, S.; Kloppmann, W.

    2009-04-01

    The safe use of treated domestic wastewater for irrigation needs to address the risks for humans (workers, exposed via contact with irrigation water, soil, crops and food, consumers, exposed via ingestion of fresh and processed food), for animals (via ingestion of crops on soil), for the crops and agricultural productivity (via salinity and trace element uptake), for soil (via accumulation or release of pollutants) as well as for surface, groundwaters and the associated ecosystems (via runoff and infiltration, Kass et al., 2005, Bouwer, 2000). In this context, the European FP6 SAFIR project (Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management) investigates the geochemical quality of the root zone soil, knowing it is the main transit and storage compartment for pollutants. The type of reaction (sorption, co-precipitation…) and the reactive mineral phases also determine the availability of trace elements for the plant and determine the passage towards crops and products. Reactions of the infiltrating water with the soil solid phase are important for the solute cycling, temporary fixation and remobilisation of trace pollutants. Therefore the soil water quality was directly or indirectly assessed. Direct measurements of soil water were made through porous cups. The experiments were carried out during the growing season of 2006, 2007 and 2008 in a vegetable commercial farm, located at 10 km north of Belgrade. The soil is silty clayey, and developed on alluvial deposits. It was classified as humogley according to USDA Soil Classification. The climate of the field side is a continental type with hot and dry summers and cold and rainy winters. As in the rest of Serbia, farm suffers from water deficits during the main growing season. The initial soil quality was assessed through a sampling campaign before the onset of first year irrigation; the soil quality was then monitored throughout three years. Soil sampling

  11. Greenhouse Gas Emissions from Cotton Field under Different Irrigation Methods and Fertilization Regimes in Arid Northwestern China

    PubMed Central

    Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin

    2014-01-01

    Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229

  12. Water movement and fate of nitrogen during drip dispersal of wastewater effluent into a semi-arid landscape.

    PubMed

    Siegrist, Robert L; Parzen, Rebecca; Tomaras, Jill; Lowe, Kathryn S

    2014-04-01

    Drip dispersal of partially treated wastewater was investigated as an approach for onsite water reclamation and beneficial reuse of water and nutrients in a semi-arid climate. At the Mines Park Test Site in Golden, Colorado, a drip dispersal system (DDS) was installed at 20- to 30-cm depth in an Ascalon sandy loam soil profile. Two zones with the same layout were established to enable study of two different hydraulic loading rates. Zones 1 and 2 each had one half of the landscape surface with native vegetation and the other with Kentucky bluegrass sod. After startup activities, domestic septic tank effluent was dispersed five times a day at footprint loading rates of 5 L/m(2)/d for Zone 1 and 10 L/m(2)/d for Zone 2. Over a two-year period, monitoring included the frequency and volume of effluent dispersed and its absorption by the landscape. After the first year of operation in October a (15)N tracer test was completed in the sodded portion of Zone 1 and samples of vegetation and soil materials were collected and analyzed for water content, pH, nitrogen, (15)N, and bacteria. Research revealed that both zones were capable of absorbing the effluent water applied at 5 or 10 L/m(2)/d. Effluent water dispersed from an emitter infiltrates at the emitter and along the drip tubing and water movement is influenced by hydrologic conditions. Based on precipitation and evapotranspiration at the Test Site, only a portion of the effluent water dispersed migrated downward in the soil (approx. 34% or 64% for Zone 1 or 2, respectively). Sampling within Zone 1 revealed water filled porosities were high throughout the soil profile (>85%) and water content was most elevated along the drip tubing (17-22% dry wt.), which is also where soil pH was most depressed (pH 4.5) due to nitrification reactions. NH4(+) and NO3(-) retention occurred near the dispersal location for several days and approximately 51% of the N applied was estimated to be removed by plant uptake and denitrification

  13. Controls on interannual variation in evapotranspiration and water use efficiency in a mature, furrow-irrigated peach orchard

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration (ET) and water use efficiency (WUE) in peach orchards has previously been observed in young (less than 5-8 years old), drip irrigated orchards using micrometeorological techniques such as Eddy Covariance or large-weighing lysimeters. However, no work has been reported on ET and W...

  14. Water Use Efficiency under Different Tillage and Irrigation Systems for Tomato Farming in Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Bhering, S. B.; Fernandes, N. F.; Macedo, J. R.

    2009-04-01

    highly degrade the environment, applied without practices of soil and water conservation. Such production systems are associated with a variety of environmental problems, such as soil erosion, the extensive pumping of groundwater, the partial obstruction of surface drainage to form artificial lakes, the contamination of groundwater, among others. The environmental impacts generated by all these problems assume a greater importance due to the complete absence of monitoring the continuous lowering of the water table and the changes in water quality. We consider that the main management strategies for developing sustainable production systems for the tomato farming in this area should be based on monitoring water use efficiency, increasing water availability in the root zone and also preventing runoff, leaching and evaporation of water from the soil. Therefore, techniques were applied as green manures with legumes without incorporation of the biomass, non-mechanized and curve-level soil preparation, planting in level, soil cover with crop residues, fertirrigation with solid fertilization of low value, the conduct of tomato especially supported by plastic string attached to a trellis, drip irrigation, and monitoring soil water potential (SWP) with Watermak sensors. At the end of the tomato cycle, water use efficiency and the productivity were compared at 8 micro-plots installed in the 3 studied production systems: conventional tillage (CT-H), minimum tillage (MT-H), both with "wetting irrigation with garden hose", and no-tillage with drip irrigation (NT-D). For each production system, soil physical properties were characterized and soil water potential (SWP) and soil temperature were continuously monitored at different depths (20, 40, 60 and 80 cm), as well as the total water volume used in each irrigation. In parallel, we also compared the development of the root system and the final productivity for each one of the three production systems. The results obtained in this

  15. Soil water nitrate and ammonium dynamics under a sewage effluent irrigated eucalypt plantation.

    PubMed

    Livesley, S J; Adams, M A; Grierson, P F

    2007-01-01

    Managed forests and plantations are appropriate ecosystems for land-based treatment of effluent, but concerns remain regarding nutrient contamination of ground- and surface waters. Monthly NO3-N and NH4-N concentrations in soil water, accumulated soil N, and gross ammonification and nitrification rates were measured in the second year of a second rotation of an effluent irrigated Eucalyptus globulus plantation in southern Western Australia to investigate the separate and interactive effects of drip and sprinkler irrigation, effluent and water irrigation, irrigation rate, and harvest residues retention. Nitrate concentrations of soil water were greater under effluent irrigation than water irrigation but remained <15 mg L(-1) when irrigated at the normal rate (1.5-2.0 mm d(-1)), and there was little evidence of downward movement. In contrast, NH4-N concentrations of soil water at 30 and 100 cm were generally greater under effluent irrigation than water irrigation when irrigated at the normal rate because of direct effluent NH4-N input and indirect ammonification of soil organic N. Drip irrigation of effluent approximately doubled peak NO3-N and NH4-N concentrations in soil water. Harvest residue retention reduced concentrations of soil water NO3-N at 30 cm during active sprinkler irrigation, but after 1 yr of irrigation there was no significant difference in the amount of N stored in the soil system, although harvest residue retention did enhance the "nitrate flush" in the following spring. Gross mineralization rates without irrigation increased with harvest residue retention and further increased with water irrigation. Irrigation with effluent further increased gross nitrification to 3.1 mg N kg(-1) d(-1) when harvest residues were retained but had no effect on gross ammonification, which suggested the importance of heterotrophic nitrification. The downward movement of N under effluent irrigation was dominated by NH4-N rather than NO3-N. Improving the capacity of

  16. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    NASA Astrophysics Data System (ADS)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  17. Blood drop size in passive dripping from weapons.

    PubMed

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E

    2013-05-10

    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Due to recurring agricultural water shortages, many farmers are looking for crops that have both some degree of drought resistance and a higher economic value. Pomegranate has been identified as a crop with potential drought tolerance, and high economic values. To manage limited water effectively, i...

  19. Stroke mimics under the drip-and-ship paradigm.

    PubMed

    Mehta, Sonal; Vora, Nirav; Edgell, Randall C; Allam, Hesham; Alawi, Aws; Koehne, Jennifer; Kumar, Abhay; Feen, Eliahu; Cruz-Flores, Salvador; Alshekhlee, Amer

    2014-01-01

    Recent reports suggested better outcomes associated with the drip-and-ship paradigm for acute ischemic stroke (AIS) treated with thrombolysis. We hypothesized that a higher rate of stroke mimics (SM) among AIS treated in nonspecialized stroke centers that are transferred to comprehensive centers is responsible for such outcomes. Consecutive patients treated with thrombolysis according to the admission criteria were reviewed in a single comprehensive stroke center over 1 academic year (July 1, 2011 to June 30, 2012). Information on the basic demographic, hospital complications, psychiatric diagnoses, and discharge disposition was collected. We identified those patients who were treated at a facility and then transferred to the tertiary center (ie, drip-and-ship paradigm). In addition to comparative and adjusted analysis to identify predictors for SM, a stratified analysis by the drip-and-ship status was performed. One hundred twenty patients were treated with thrombolysis for AIS included in this analysis; 20 (16.7%) were discharged with the final diagnosis of SM; 14 of those had conversion syndrome and 6 patients had other syndromes (seizures, migraine, and hypoglycemia). Patients with SM were younger (55.6 ± 15.0 versus 69.4 ± 14.9, P = .0003) and more likely to harbor psychiatric diagnoses (45% versus 9%; P ≤ .0001). Eighteen of 20 SM patients (90%) had the drip-and-ship treatment paradigm compared with 65% of those with AIS (P = .02). None of the SM had hemorrhagic complications, and all were discharged to home. Predictors of SM on adjusted analysis included the drip-and-ship paradigm (odds ratio [OR] 12.8, 95% confidence interval [CI] 1.78, 92.1) and history of any psychiatric illness (OR 12.08; 95% CI 3.14, 46.4). Eighteen of 83 drip-and-ship patients (21.7%) were diagnosed with SM compared with 2 of 37 patients (5.4%) presented directly to the hub hospital (P = .02). The drip-and-ship paradigm and any psychiatric history predict the diagnosis of

  20. Irrigation effects on soil attributes and grapevine performance in a 'Godello' vineyard of NW Spain

    NASA Astrophysics Data System (ADS)

    Fandiño, María; Trigo-Córdoba, Emiliano; Martínez, Emma M.; Bouzas-Cid, Yolanda; Rey, Benjamín J.; Cancela, Javier J.; Mirás-Avalos, Jose M.

    2014-05-01

    Irrigation systems are increasingly being used in Galician vineyards. However, a lack of information about irrigation management can cause a bad use of these systems and, consequently, reductions in berry quality and loss of water resources. In this context, experiences with Galician cultivars may provide useful information. A field experiment was carried out over two seasons (2012-2013) on Vitis vinifera (L.) cv. 'Godello' in order to assess the effects of irrigation on soil attributes, grapevine performance and berry composition. The field site was a commercial vineyard located in A Rúa (Ourense-NW Spain). Rain-fed vines (R) were compared with two irrigation systems: surface drip irrigation (DI) and subsurface drip irrigation (SDI). Physical and chemical characteristics of soil were analyzed after installing irrigation systems at the beginning of each season, in order to assess the effects that irrigation might have on soil attributes. Soil water content, leaf and stem water potentials and stomatal conductance were periodically measured over the two seasons. Yield components including number of clusters, yield per plant and cluster average weight were taken. Soluble solids, pH, total acidity and amino acids contents were measured on the grapes at harvest. Pruning weight was also recorded. Soil attributes did not significantly vary due to the irrigation treatments. Stem water potentials were significantly lower for R plants on certain dates through the season, whereas stomatal conductance was similar for the three treatments in 2013, while in 2012 SDI plants showed greater stomatal conductance values. SDI plants yielded more than those R due to both a greater number of clusters per plant and to heavier clusters. Pruning weight was significantly higher in SI plants. Berry composition was similar for the three treatments except for the amino acids content, which was higher under SDI conditions. These results may be helpful for a sustainable management of irrigation

  1. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  2. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    Human demand for food influences the water cycle through diversion and extraction of fresh water needed to support agriculture. Future population growth and economic development alone will substantially increase water demand and much of it for agricultural uses. For many semi-arid lands, socio-economic shifts are likely to exacerbate changes in climate as a driver of future water supply and demand. For these areas in particular, where the balance between water supply and demand is fragile, variations in regional climate can have potentially predictable effect on agricultural production. Satellite data and biophysically-based models provide a powerful method to quantify the interactions between local climate, plant growth and water resource requirements. In irrigated agricultural lands, satellite observations indicate high vegetation density while the precipitation amount indicates otherwise. This inconsistency between the observed precipitation and the observed canopy leaf density triggers the possibility that the observed high leaf density is due to an alternate source of water, irrigation. We explore an inverse process approach using observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), climatological data, and the NASA's Simple Biosphere model, SiB2, to quantitatively assess water demand in a semi-arid agricultural land by constraining the carbon and water cycles modeled under both equilibrium (balance between vegetation and prevailing local climate) and nonequilibrium (water added through irrigation) conditions. We postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. We added water using two distribution methods: The first method adds water on top of the canopy and is a proxy for the traditional spray irrigation. The second method allows water to be applied directly into the soil layer and serves as proxy for drip irrigation. Our approach indicates that over

  3. Effects of Timber Harvest on Fog Drip and Streamflow, Caspar Creek Experimental Watersheds, Mendocino County, California

    Treesearch

    Elizabeth Keppeler

    2007-01-01

    Within the second-growth redwood forest of the Caspar Creek watershed, fog drip was measured in 1998 at 12 sites where heavy fog drip was expected. The following year, two one-ha plots were each instrumented with six randomly sited 1.35 m2 fog-drip collectors and one additional collector in a nearby clearcut. Fog-drip totals were highly variable...

  4. Solar-Powered Drip Irrigation Impacts on Crops Production Diversity and Dietary Diversity in Northern Benin.

    PubMed

    Alaofè, Halimatou; Burney, Jennifer; Naylor, Rosamond; Taren, Douglas

    2016-06-01

    Meeting the food needs of Africa's growing population will require innovative and appropriate technologies whose effectiveness needs to be assessed. To evaluate the impact of Solar Market Gardens (SMGs) on crops production diversity and dietary diversity in the Kalalé district of Northern Benin. In 2007, SMGs were installed in 2 villages for women's agricultural groups as a strategy for enhancing food and nutrition security. Data were collected through interviews at installation and 1 year later from all women's group households (30-35 women/group) and from a random representative sample of 30 households in each village, for both treatment and matched-pair comparison villages. Comparison of baseline and endline data indicated increases in the variety of fruits and vegetables produced and consumed by SMG women's groups compared to other groups. The proportion of SMG women's group households engaged in vegetable and fruit production significantly increased by 26% and 55%, respectively (P < .05). After controlling for baseline values, SMG women's groups were 3 times more likely to increase their fruit and vegetable consumption compared with comparison non-women's groups (P < .05). In addition, the percentage change in corn, sorghum, beans, oil, rice and fish purchased was significantly greater in the SMG women's groups compared to other groups. At endline, 57% of the women used their additional income on food, 54% on health care, and 25% on education. Solar Market Gardens have the potential to improve household nutritional status through direct consumption and increased income to make economic decisions. © The Author(s) 2016.

  5. Soil microbial diversity, site conditions, shelter forest land, saline water drip-irrigation, drift desert.

    PubMed

    Jin, Zhengzhong; Lei, Jiaqiang; Li, Shengyu; Xu, Xinwen

    2013-10-01

    Soil microbes in forest land are crucial to soil development in extreme areas. In this study, methods of conventional culture, PLFA and PCR-DGGE were utilized to analyze soil microbial quantity, fatty acids and microbial DNA segments of soils subjected to different site conditions in the Tarim Desert Highway forest land. The main results were as follows: the soil microbial amount, diversity indexes of fatty acid and DNA segment differed significantly among sites with different conditions (F < F0.05 ). Specifically, the values were higher in the middle and base of dunes than the top part of dunes and hardened flat sand, but all values for dunes were higher than for drift sand. Bacteria was dominant in the soil microbial community (>84%), followed by actinomycetes and then fungi (<0.05%). Vertical differences in the soil microbial diversity were insignificant at 0-35 cm. Correlation analysis indicated that the forest trees grew better as the soil microbial diversity index increased. Therefore, construction of the Tarim Desert Highway shelter-forest promoted soil biological development; however, for enhancing sand control efficiency and promoting sand development, we should consider the effects of site condition in the construction and regeneration of shelter-forest ecological projects. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dissolved organic carbon, total carbon and nitrogen in pomegranate cultivation under drip irrigation systems

    USDA-ARS?s Scientific Manuscript database

    In the past six years, pomegranate (POM) cultivation has become a popular commercial crop in San Joaquin Valley, California. The rising demand for this permanent crop is primarily due to POM juice high nutritional and antioxidants properties. In addition, it has been found POM trees are drought tole...

  7. New proton drip-line nuclei relevant to nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Ferreira, L. S.

    2018-02-01

    We discuss recent results on decay of exotic proton rich nuclei at the proton drip line for Z < 50, that are of great importance for nuclear astrophysics models. From the interpretation of the data, we assign their properties, and impose a constraint on the separation energy which has strong implications in the network calculations.

  8. Yield response to variable rate irrigation in corn

    USDA-ARS?s Scientific Manuscript database

    To investigate the impact of variable rate irrigation on corn yield, twenty plots of corn were laid out under a center pivot variable rate irrigation (VRI) system in an experimental field near Stoneville, MS. The VRI system is equipped with five VRI zone control units, a global positioning system (G...

  9. Irrigation in endodontic treatment.

    PubMed

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  10. Planning for deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  11. The case for distributed irrigation as a development priority in sub-Saharan Africa.

    PubMed

    Burney, Jennifer A; Naylor, Rosamond L; Postel, Sandra L

    2013-07-30

    Distributed irrigation systems are those in which the water access (via pump or human power), distribution (via furrow, watering can, sprinkler, drip lines, etc.), and use all occur at or near the same location. Distributed systems are typically privately owned and managed by individuals or groups, in contrast to centralized irrigation systems, which tend to be publicly operated and involve large water extractions and distribution over significant distances for use by scores of farmers. Here we draw on a growing body of evidence on smallholder farmers, distributed irrigation systems, and land and water resource availability across sub-Saharan Africa (SSA) to show how investments in distributed smallholder irrigation technologies might be used to (i) use the water sources of SSA more productively, (ii) improve nutritional outcomes and rural development throughout SSA, and (iii) narrow the income disparities that permit widespread hunger to persist despite aggregate economic advancement.

  12. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    NASA Astrophysics Data System (ADS)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    in its root zone.. A safe volumetric reliability factor of 0.75 is taken in this attempt to extend the success of dry period agriculture. The soil moisture balance in the clayey loam soil due to continuous irrigation can manage the deficiency, so that the soil-water does not go below the wilting point but must be checked with the soil-moisture sensors. The methods to reduce the evaporation from the soil, such as usage of drip irrigation and the mulching, which can reduce the crop water requirements in comparison with the conventional irrigation which is being followed at present in the spot of the case-study is suggested. In addition to these methods less water requirement crops like flowers, vegetables having less crop-period and provision of windbreak to reduce evapo-transpiration rates and other efficient methods of water management can make success of dry period agriculture even in the years critical storage level in the reservoir. The rainfall is not taken in this model which if in a year with ample quantity can be used for pre-sowing and for managing the water-stress. Augmentation of water with ground water, percolation tank can boost the level of success of agriculture. As the irrigation water allocation for the whole year, particularly for the ID crops is prepared for the full, deficient and critical storages, this paper can help to achieve sustainable growth of crops throughout the year.

  13. Relative Water Uptake as a Criterion for the Design of Trickle Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Communar, G.; Friedman, S. P.

    2008-12-01

    Previously derived analytical solutions to the 2- and 3-dimensional water flow problems describing trickle irrigation are not being widely used in practice because those formulations either ignore root water uptake or refer to it as a known input. In this lecture we are going to describe a new modeling approach and demonstrate its applicability for designing the geometry of trickle irrigation systems, namely the spacing between the emitters and drip lines. The major difference between our and previous modeling approaches is that we refer to the root water uptake as to the unknown solution of the problem and not as to a known input. We postulate that the solution to the steady-state water flow problem with a root sink that is acting under constant, maximum suction defines un upper bound to the relative water uptake (water use efficiency) in actual transient situations and propose to use it as a design criterion. Following previous derivations of analytical solutions we assume that the soil hydraulic conductivity increases exponentially with its matric head, which allows the linearization of the Richards equation, formulated in terms of the Kirchhoff matric flux potential. Since the transformed problem is linear, the relative water uptake for any given configuration of point or line sources and sinks can be calculated by superposition of the Green's functions of all relevant water sources and sinks. In addition to evaluating the relative water uptake, we also derived analytical expressions for the steam functions. The stream lines separating the water uptake zone from the percolating water provide insight to the dependence of the shape and extent of the actual rooting zone on the source- sink geometry and soil properties. A minimal number of just 3 system parameters: Gardner's (1958) alfa as a soil type quantifier and the depth and diameter of the pre-assumed active root zone are sufficient to characterize the interplay between capillary and gravitational effects on

  14. Cellular model for induction of drip loss in meat.

    PubMed

    Lambert, I H; Nielsen, J H; Andersen, H J; Ørtenblad, N

    2001-10-01

    Drip loss from porcine muscle (M. longissimus dorsi) contained high concentrations of K(+) ( approximately 135 mM) and organic osmolytes, for example, taurine ( approximately 15 mM), as well as significant amounts of protein ( approximately 125 mg.mL(-1)). Thus, the drip reflects release of intramuscular components. To simulate events taking place at the time of slaughter and leading to release of osmolytes and subsequent formation of drip loss, C2C12 myotubes were exposed to anoxia and reduction in pH (from 7.4 to 6.0). Anoxia and acidification increased the cellular Ca(2+) concentration ([Ca(2+)](i)) at a rate of 22-32 nM.min(-)(1). The anoxia-induced increase in [Ca(2+)](i) was mainly due to influx via sarcolemmal Na(+) channels. As mammalian cells swell and release lysophospholipids during anoxia, C2C12 cells and primary porcine muscle cells were exposed to either hypotonic shock or lysophosphatidylcholine (LPC) and the release of taurine was followed. The swelling-induced taurine efflux was blocked in the presence of the anion channel blocker (DIDS), the 5-lipooxygenase inhibitors (ETH 615-139 and NDGA) but unaffected by the presence of vitamin E. In contrast, the LPC-induced taurine release was unaffected by DIDS but abolished by antioxidants (butylated hydroxytoluene and vitamin E). Thus, stress-induced taurine release from muscles may precede by two different mechanisms, one being 5-lipooxygenase dependent and the other involving generation of reactive oxygen species. A model for the cellular events, preceding formation of drip in meat, is presented.

  15. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  16. Efficiency and environmental indexes to evaluate the sustainability of mineral and organic fertilization in an irrigated melon crop

    NASA Astrophysics Data System (ADS)

    Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana; Castellanos Serrano, María Teresa

    2014-05-01

    Melon is traditionally cultivated in fertigated farmlands in the center of Spain with high inputs of water and N fertilizer. Excess N can have a negative impact, from the economic point of view, since it can diminish the production and quality of the fruit, from the environmental point of view, since it is a very mobile element in the soil and can contaminate groundwater. From health point of view, nitrate can be accumulated in fruit pulp, and, in addition, groundwater is the fundamental supply source of human populations. Best management practices are particularly necessary in this region as many zones have been declared vulnerable to NO3- pollution (Directive 91/676/CEE) During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers under drip irrigation. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. The present study reviews the most common N efficiency indexes [1] under the different management options with a view to maximizing yield and minimizing N loss. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03-01. [1] Castellanos, M., Tarquis, A., Ribas, F., Cabello, M., Arce, A., & Cartagena, M. (2013). Nitrogen fertigation: An integrated agronomic and environmental study. Agricultural Water Management, 120, 46-55.

  17. Potassium fertigation in highbush blueberry increases availability of K and other nutrients in the root zone

    USDA-ARS?s Scientific Manuscript database

    Fertigation with nitrogen (N) increases growth and production relative to granular N applications in blueberry, but little information is available on whether there is any benefit to fertigating with other nutrients. The plants were grown on raised beds and irrigated using two lines of drip tubing p...

  18. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer; Katz, Idan; Avishai, Lior; Ronen, Zeev

    2017-08-01

    An in situ bioremediation experiment of a deep vadose zone ( ˜ 40 m) contaminated with a high concentration of perchlorate (> 25 000 mg L-1) was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS) was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC), and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m), perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  19. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    NASA Astrophysics Data System (ADS)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  20. Agricultural Liming, Irrigation, and Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McGill, B. M.; Hamilton, S. K.

    2015-12-01

    Row crop farmers routinely add inorganic carbon to soils in the form of crushed lime (e.g., calcite or dolomite minerals) and/or inadvertently as bicarbonate alkalinity naturally dissolved in groundwater used for irrigation. In the soil these carbonates can act as either a source or sink of carbon dioxide, depending in large part on nitrogen fertilization and nitrification. The potentially variable fate of lime carbon is not accounted for in the IPCC greenhouse gas inventory model for lime emissions, which assumes that all lime carbon becomes carbon dioxide (irrigation additions are not accounted for). In a corn-soybean-wheat crop rotation at the Kellogg Biological Station Long Term Ecological Research site in southwest Michigan, we are collecting soil porewater from several depths in the vadose zone across a nitrogen fertilizer gradient with and without groundwater irrigation. The soil profile in this region is dominated by carbonate rich glacial outwash that lies 1.5 m below a carbonate-leached zone. We analyze the porewater stoichiometry of calcium, magnesium, and carbonate alkalinity in a conceptual model to reveal the source/sink fate of inorganic carbon. High nitrate porewater concentrations are associated with net carbon dioxide production in the carbonate-leached zone, according to our model. This suggests that the acidity associated with nitrification of the nitrogen fertilizer, which is evident from soil pH measurements, is driving the ultimate fate of lime carbon in the vadose zone. Irrigation is a significant source of both alkalinity and nitrate in drier years, compared to normal rates of liming and fertilization. We will also explore the observed dramatic changes in porewater chemistry and the relationship between irrigation and inorganic carbon fate above and within the native carbonate layer.

  1. Nitrogen balance as a tool to assess nitrogen mineralized from winery wastes under different irrigation strategies

    NASA Astrophysics Data System (ADS)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    Grape marc is a by-product coming from the winery industry, composed of skins, seeds and stalks generated during the crushing process. In Spain, large quantities of wine are produced every year (3,610,000 tonnes in 2010 (FAO, 2010)) with the consequent waste generation. With an adequate composting treatment, this waste can be applied to soils as a source of nutrients and organic matter. Compost N forms added to soil are mostly organic N forms, so organic N can be mineralized during the crop period and thus be taken up by the plants, immobilised, or leached. Compost N mineralization depends on factors such as compost C/N ratio but also on climate conditions. Estimation of N mineralization is necessary to optimise crop yield and minimize the risk of N losses to the environment, especially in zones vulnerable to nitrate pollution. The aim of this work was to assess mineralized N during the crop season when applying grape marc compost as fertilizer in a melon crop cultivated under different drip irrigation rates. A nitrogen balance in field conditions was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T/ha (D3); and two irrigation rates (100% ETc and 120% ETc). The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant uptake and nitrate losses were measured weekly; mineral N in soil was determined before compost addition and at the end of the crop cycle. An estimation of soil mineralized N during the crop season using nitrogen balance is presented. Results are compared with data obtained in laboratory conditions. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  2. An investigation of the basic physics of irrigation in urology and the role of automated pump irrigation in cystoscopy.

    PubMed

    Chang, Dwayne; Manecksha, Rustom P; Syrrakos, Konstantinos; Lawrentschuk, Nathan

    2012-01-01

    To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS). Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.

  3. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  4. Magnetic Moment of Proton Drip-Line Nucleus (9)C

    NASA Technical Reports Server (NTRS)

    Matsuta, K.; Fukuda, M.; Tanigaki, M.; Minamisono, T.; Nojiri, Y.; Mihara, M.; Onishi, T.; Yamaguchi, T.; Harada, A.; Sasaki, M.

    1994-01-01

    The magnetic moment of the proton drip-line nucleus C-9(I(sup (pi)) = 3/2, T(sub 1/2) = 126 ms) has been measured for the first time, using the beta-NMR detection technique with polarized radioactive beams. The measure value for the magnetic moment is 1mu(C-9)! = 1.3914 +/- 0.0005 (mu)N. The deduced spin expectation value of 1.44 is unusually larger than any other ones of even-odd nuclei.

  5. The nuclear shell model toward the drip lines

    NASA Astrophysics Data System (ADS)

    Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.

    2012-10-01

    We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.

  6. How do current irrigation practices perform? Evaluation of different irrigation scheduling approaches based on experiements and crop model simulations

    NASA Astrophysics Data System (ADS)

    Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann

    2014-05-01

    coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.

  7. Effective colostomy irrigation.

    PubMed

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  8. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  9. Irrigating forest plantations

    Treesearch

    Edward A. Hansen

    1983-01-01

    Irrigating forest plantations cannot be justified economically on yield increases alone under present market conditions. Other factors such as bringing noncommercial land into high production, insuring a constant wood supply, or providing a means to dispose of wastewater can add to the value of increasing yields and may make irrigation feasible in certain situations....

  10. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  11. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  12. Development of Strategies for Sustainable Irrigation Water Management in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    use of the appropriate irrigation technologies confined to a field scale and local environmental conditions. In presented contribution a case studies of large and small irrigation schemes based on sprinklers at Saratov Region will be discussed. Analyze is focused on the identification of main causes of groundwater logging, following soil salinization and impact to surrounding environment at irrigation areas. This analyze is based on plot and field scales experimentations as well as time series about 40 years long monitoring of ground water and soils. Main conclusion from this analyze accuses current irrigation practice at this region using high irrigation dozes & intensities as well as uniformity of water application within the irrigated perimeter promoting chain of processes starting by ponding of applied water at mezodepression of soil surface, preferential flow through out macropores-cracks, wormholes, or decayed root channels and groundwater rising. Special attention is done to simulate relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity. Technological alternative aimed at reducing these problems is analysed by the use of SWAP model application to uniform and nonuniform irrigation water applications. Model results indicate that use nonuniform water application technology is increasing an irrigation efficiency, increasing yield and stopping rising of groundwater. ACKNOWLEDGMENTS. This study was financially supported by FP6 DESIRE project 037046

  13. Study of the technical performance of localized irrigation and its environmental and agroeconomic impact in the first areas of collective reconversion at the irrigated perimeter of the Tadla - Beni Moussa perimeter of the west - Morocco

    NASA Astrophysics Data System (ADS)

    Mouradi, Abdellah; Ait Yacine, Zehor; El Harti, Abderrazak

    2018-05-01

    The evaluation of the performance of the localized irrigation system involved a selected sample of farmers to reflect the diversity of the study area. The hydraulic diagnosis revealed the absence of apparent malfunctioning anomalies of the installations studied (Coefficient of Distribution Uniformity ≥ 90% with average application efficiencies and overall of 90.54 and 86.83% respectively). In terms of the combined use of surface and underground irrigation water this new technique has saved about 30% compared to conventional irrigation. The agro-economic evaluation revealed that the crops practiced have high value-added and optimize the value of irrigation water. The environmental impact has resulted in an average drawdown of the static level of groundwater of 2.59 m due mainly to the new irrigation method introduced, which limited the percolation of water to the aquifer. The drip-to-drip transition resulted in an increase in salinity relative compared to the reference situation (+ 0.59 %, or 0.01 mS / cm) but to different degrees depending on the prospecting soil horizon. The practice of fertilization remains the major and probable cause of soil salinization of aquifers. The effect of soluble salts on the soil was investigated through the risks associated with sodium, which showed that the soil permeability problem does not arise at this time (SAR ≤ 15). The residual sodium carbonate remains less than 1.25 meq / l thus not causing soil dispersion.

  14. RCRA, superfund and EPCRA hotline training module. Introduction to: Drip pads (40 cfr parts 264/265, subpart w) updated July 1996

    SciTech Connect

    NONE

    1996-07-01

    In 1990, EPA promulgated listings for wastes from wood preserving processes. Many of these wastes are generated by allowing preservative to drip from wood onto concrete pads, called drip pads. To facilitate proper handling of these wastes, EPA developed design and operating standards for drip pads used to manage hazardous wastes. This module explains these standards. It defines a drip pad and summarizes the design and operating standards for drip pads. It describes the relationship between generator accumulation provisions and drip pads.

  15. Molluscicide for the control of schistosomiasis in irrigation schemes: a study in Southern Rhodesia.

    PubMed

    Shiff, C J; Clarke, V de V; Evans, A C; Barnish, G

    1973-01-01

    The development of large areas of irrigation farming in the south-eastern lowveld of Southern Rhodesia has produced the risk of severe transmission of schistosomiasis over an extent of some 30 000 ha. Control measures instituted by the Ministry of Health were primarily directed against the large and widely distributed snail populations by using molluscicides. The chemical was applied to the irrigation water by drip-feed methods once every 6-8 months. The drains, however, were treated routinely by pairs of rangers searching for snails and applying chemical where they were found. The efficacy of control operations has been assessed by longitudinal studies in children free from infection to determine the incidence of infection. The results indicate that transmission of both Schistosoma haematobium and S. mansoni has been reduced to a level below that measured in areas of the country where irrigation is not practised. The total annual cost for this work was US$ 54 800-55 500.

  16. 40 CFR 265.442 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...

  17. 40 CFR 264.572 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads § 264.572 Design...

  18. Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions--Barcelona, Spain.

    PubMed

    Candela, Lucila; Caballero, Juan; Ronen, Daniel

    2010-05-15

    The transport of Glyphosate ([N-phosphonomethyl] glycine), AMPA (aminomethylphosphonic acid, CH(6)NO(3)P), and Bromide (Br(-)) has been studied, in the Mediterranean Maresme area of Spain, north of Barcelona, where groundwater is located at a depth of 5.5m. The unsaturated zone of weathered - granite soils was characterized in adjacent irrigated and non-irrigated experimental plots where 11 and 10 boreholes were drilled, respectively. At the non irrigated plot, the first half of the period was affected by a persistent and intense rainfall. After 69 days of application residues of Glyphosate up to 73.6 microgg(-1) were detected till a depth of 0.5m under irrigated conditions, AMPA, analyzed only in the irrigated plot was detected till a depth of 0.5m. According to the retardation coefficient of Glyphosate as compared to that of Br(-) for the topsoil and subsoil (80 and 83, respectively) and the maximum observed migration depth of Br(-) (2.9 m) Glyphosate and AMPA should have been detected till a depth of 0.05 m only. Such migration could be related to the low content of organic matter and clays in the soils; recharge generated by irrigation and heavy rain, and possible preferential solute transport and/or colloidal mediated transport. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    NASA Astrophysics Data System (ADS)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  20. Effect of irrigation, nitrogen application, and a nitrification inhibitor on nitrous oxide, carbon dioxide and methane emissions from an olive (Olea europaea L.) orchard.

    PubMed

    Maris, S C; Teira-Esmatges, M R; Arbonés, A; Rufat, J

    2015-12-15

    Drip irrigation combined with nitrogen (N) fertigation is applied in order to save water and improve nutrient efficiency. Nitrification inhibitors reduce greenhouse gas emissions. A field study was conducted to compare the emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) associated with the application of N fertiliser through fertigation (0 and 50kgNha(-1)), and 50kgNha(-1)+nitrification inhibitor in a high tree density Arbequina olive orchard. Spanish Arbequina is the most suited variety for super intensive olive groves. This system allows reducing production costs and increases crop yield. Moreover its oil has excellent sensorial features. Subsurface drip irrigation markedly reduced N2O and N2O+N2 emissions compared with surface drip irrigation. Fertiliser application significantly increased N2O+N2, but not N2O emissions. Denitrification was the main source of N2O. The N2O losses (calculated as emission factor) ranging from -0.03 to 0.14% of the N applied, were lower than the IPCC (2007) values. The N2O+N2 losses were the largest, equivalent to 1.80% of the N applied, from the 50kgNha(-1)+drip irrigation treatment which resulted in water filled pore space >60% most of the time (high moisture). Nitrogen fertilisation significantly reduced CO2 emissions in 2011, but only for the subsurface drip irrigation strategies in 2012. The olive orchard acted as a net CH4 sink for all the treatments. Applying a nitrification inhibitor (DMPP), the cumulative N2O and N2O+N2 emissions were significantly reduced with respect to the control. The DMPP also inhibited CO2 emissions and significantly increased CH4 oxidation. Considering global warming potential, greenhouse gas intensity, cumulative N2O emissions and oil production, it can be concluded that applying DMPP with 50kgNha(-1)+drip irrigation treatment was the best option combining productivity with keeping greenhouse gas emissions under control. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Advances in sprinkler irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  2. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    PubMed

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India.

    PubMed

    Sishodia, Rajendra P; Shukla, Sanjay; Wani, Suhas P; Graham, Wendy D; Jones, James W

    2018-09-01

    Simultaneous effects of future climate and irrigation intensification on surface and groundwater systems are not well understood. Efforts are needed to understand the future groundwater availability and associated surface flows under business-as-usual management to formulate policy changes to improve water sustainability. We combine measurements with integrated modeling (MIKE SHE/MIKE11) to evaluate the effects of future climate (2040-2069), with and without irrigation expansion, on water levels and flows in an agricultural watershed in low-storage crystalline aquifer region of south India. Demand and supply management changes, including improved efficiency of irrigation water as well as energy uses, were evaluated. Increased future rainfall (7-43%, from 5 Global Climate Models) with no further expansion of irrigation wells increased the groundwater recharge (10-55%); however, most of the recharge moved out of watershed as increased baseflow (17-154%) with a small increase in net recharge (+0.2mm/year). When increased rainfall was considered with projected increase in irrigation withdrawals, both hydrologic extremes of well drying and flooding were predicted. A 100-year flow event was predicted to be a 5-year event in the future. If irrigation expansion follows the historical trends, earlier and more frequent well drying, a source of farmers' distress in India, was predicted to worsen in the future despite the recharge gains from increased rainfall. Storage and use of excess flows, improved irrigation efficiency with flood to drip conversion in 25% of irrigated area, and reduced energy subsidy (free electricity for 3.5h compared to 7h/day; $1 billion savings) provided sufficient water savings to support future expansion in irrigated areas while mitigating well drying as well as flooding. Reductions in energy subsidy to fund the implementation of economically desirable (high benefit-cost ratio) demand (drip irrigation) and supply (water capture and storage

  4. Red cabbage yield, heavy metal content, water use and soil chemical characteristics under wastewater irrigation.

    PubMed

    Tunc, Talip; Sahin, Ustun

    2016-04-01

    The objective of this 2-year field study was to evaluate the effects of drip irrigation with urban wastewaters reclaimed using primary (filtration) and secondary (filtration and aeration) processes on red cabbage growth and fresh yield, heavy metal content, water use and efficiency and soil chemical properties. Filtered wastewater (WW1), filtered and aerated wastewater (WW2), freshwater and filtered wastewater mix (1:1 by volume) (WW3) and freshwater (FW) were investigated as irrigation water treatments. Crop evapotranspiration decreased significantly, while water use efficiency increased under wastewater treatments compared to FW. WW1 treatment had the lowest value (474.2 mm), while FW treatments had the highest value (556.7 mm). The highest water use efficiency was found in the WW1 treatment as 8.41 kg m(-3), and there was a twofold increase with regard to the FW. Wastewater irrigation increased soil fertility and therefore red cabbage yield. WW2 treatment produced the highest total fresh yield (40.02 Mg ha(-1)). However, wastewater irrigation increased the heavy metal content in crops and soil. Cd content in red cabbage heads was above the safe limit, and WW1 treatment had the highest value (0.168 mg kg(-1)). WW3 treatment among wastewater treatments is less risky in terms of soil and crop heavy metal pollution and faecal coliform contamination. Therefore, WW3 wastewater irrigation for red cabbage could be recommended for higher yield and water efficiency with regard to freshwater irrigation.

  5. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    PubMed

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  6. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    PubMed Central

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  7. Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds.

    PubMed

    Csinos, Alex S; Laska, James E; Childers, Stan

    2002-04-01

    A new method is described for tracing water movement in polyethylene film covered soil beds. Dye was delivered via a drip tape micro-irrigation system which was placed in the bed as the soil beds were shaped and covered with polyethylene film. The dye was injected into the system and irrigated with water for 4-24 h at 0.41-1.38 bar (41-138 kPa) pressure depending on the experiment. The dye appeared as blue circles on the soil surface within 20 min of injection and produced a three-dimensional pattern in the soil profile. Injection-irrigation-pressure scenarios were evaluated by measuring dye movement directly below and between emitters by sliding fabricated blades vertically into the bed at the desired examination point and excavating the soil away from the blade. The dye typically produced a U shape on the face of the bed and the area was calculated for each of these exposed faces. The area increased as the length of irrigation and water pressure increased. Interrupted irrigation (pulsing) scenarios did not alter the calculated areas encompassed by the dye compared to uninterrupted irrigation scenarios. The blue dye provided a direct, inexpensive and easy method of visualizing water movement in soil beds. This information will be used to optimize application of emulsifiable plant-care products in polyethylene film mulch beds.

  8. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  9. Irrigated Agriculture, Saudi Arabia

    NASA Image and Video Library

    1990-01-20

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  10. The Hydrodynamics of Urination: to drip or jet

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Yang, Patricia; Choo, Jerome; Hu, David

    2013-11-01

    The release of waste products is fundamental to all life. How are fluids released from the body quickly and efficiently? In a combined experimental and theoretical investigation, we elucidate the hydrodynamics of urination across five orders of magnitude in animal mass. Using high-speed videography and flow-rate measurement at the Atlanta Zoo, we report discrete regimes for urination style. We observe dripping by small mammals such as rats and jetting by large mammals such as elephants. We discover urination duration is independent of animal size among animals that use jetting. We rationalize urination styles, along with the constant-time scaling, by consideration of the relative magnitudes of the driving forces, gravity and bladder pressure, and the corresponding viscous losses within the urethra. This study may give insight into why certain animals are more prone to diseases of the urinary tract, and how the urinary system evolved under the laws of fluid mechanics.

  11. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  12. Quality of white cabbage yield and potential risk of ground water nitrogen pollution, as affected by nitrogen fertilisation and irrigation practices.

    PubMed

    Maršić, Nina Kacjan; Sturm, Martina; Zupanc, Vesna; Lojen, Sonja; Pintar, Marina

    2012-01-15

    The effect of different fertilisation (broadcast solid NPK application and fertigation with water-soluble fertiliser) and irrigation practices (sprinkler and drip irrigation) on yield, the nitrate content in cabbage (Brassica oleracea var. capitata L.) and the cabbage N uptake was detected, in order to assess the potential risk for N losses, by cultivation on sandy-loam soil. The N rate applied on the plots was 200 kg N ha(-1). The highest yield (93 t ha(-1)) and nitrate content (1256 mg kg(-1) DW) were found with treatments using broadcast fertilisation and sprinkler irrigation. On those plots the negative N balance (-30 kg N ha(-1)) was recorded, which comes mainly from the highest crop N uptake (234 kg N ha(-1)) indicating the lowest potential for N losses. In terms of yield quality and the potential risk for N losses, broadcast fertilisation combined with sprinkler irrigation proved to be the most effective combination among the tested practices under the given experimental conditions. The importance of adequate irrigation is also evident, namely in plots on which 50% drip irrigation was applied, the lowest yield was detected and according to the positive N balance, a higher potential for N losses is expected. Copyright © 2011 Society of Chemical Industry.

  13. Patient Selection for Drip and Ship Thrombolysis in Acute Ischemic Stroke

    PubMed Central

    Lyerly, Michael J.; Albright, Karen C.; Boehme, Amelia K.; Shahripour, Reza Bavarsad; Donnelly, John P.; Houston, James T.; Rawal, Pawan V.; Kapoor, Niren; Alvi, Muhammad; Sisson, April; Alexandrov, Anne W.; Alexandrov, Andrei V.

    2017-01-01

    Objectives The drip and ship model is a method used to deliver thrombolysis to acute stroke patients in facilities lacking onsite neurology coverage. We sought to determine whether our drip and ship population differs from patients treated directly at our stroke center (direct presenters). Methods We retrospectively reviewed consecutive patients who received thrombolysis at an outside facility with subsequent transfer to our center between 2009 and 2011. Patients received thrombolysis after telephone consultation with a stroke specialist. We examined demographics, vascular risk factors, laboratory values, and stroke severity in drip and ship patients compared with direct presenters. Results Ninety-six patients were identified who received thrombolysis by drip and ship compared with 212 direct presenters. The two groups did not differ with respect to sex, ethnicity, vascular risk factors, or admission glucose. The odds ratio (OR) of arriving at our hospital as a drip and ship for someone 80 years or older was 0.31 (95% confidence interval [CI] 0.15–0.61, P < 0.001). Only 21% of drip and ship patients were black versus 38% of direct presenters (OR 0.434, 95% CI 0.25–0.76, P = 0.004). Even after stratifying by age (<80 vs ≥80), a smaller proportion of drip and ship patients were black (OR 0.44, 95% CI 0.24–0.81, P = 0.008). Furthermore, we found that fewer black patients with severe strokes arrived by drip and ship (OR 0.33, 95% CI 0.11–0.98, P = 0.0028). Conclusions Our study showed that a smaller proportion of blacks and older adults arrived at our center by the drip and ship model. This may reflect differences in how patients are selected for thrombolysis and transfer to a higher level of care. PMID:26192934

  14. Patient Selection for Drip and Ship Thrombolysis in Acute Ischemic Stroke.

    PubMed

    Lyerly, Michael J; Albright, Karen C; Boehme, Amelia K; Shahripour, Reza Bavarsad; Donnelly, John P; Houston, James T; Rawal, Pawan V; Kapoor, Niren; Alvi, Muhammad; Sisson, April; Alexandrov, Anne W; Alexandrov, Andrei V

    2015-07-01

    The drip and ship model is a method used to deliver thrombolysis to acute stroke patients in facilities lacking onsite neurology coverage. We sought to determine whether our drip and ship population differs from patients treated directly at our stroke center (direct presenters). We retrospectively reviewed consecutive patients who received thrombolysis at an outside facility with subsequent transfer to our center between 2009 and 2011. Patients received thrombolysis after telephone consultation with a stroke specialist. We examined demographics, vascular risk factors, laboratory values, and stroke severity in drip and ship patients compared with direct presenters. Ninety-six patients were identified who received thrombolysis by drip and ship compared with 212 direct presenters. The two groups did not differ with respect to sex, ethnicity, vascular risk factors, or admission glucose. The odds ratio (OR) of arriving at our hospital as a drip and ship for someone 80 years or older was 0.31 (95% confidence interval [CI] 0.15-0.61, P < 0.001). Only 21% of drip and ship patients were black versus 38% of direct presenters (OR 0.434, 95% CI 0.25-0.76, P = 0.004). Even after stratifying by age (<80 vs ≥80), a smaller proportion of drip and ship patients were black (OR 0.44, 95% CI 0.24-0.81, P = 0.008). Furthermore, we found that fewer black patients with severe strokes arrived by drip and ship (OR 0.33, 95% CI 0.11-0.98, P = 0.0028). Our study showed that a smaller proportion of blacks and older adults arrived at our center by the drip and ship model. This may reflect differences in how patients are selected for thrombolysis and transfer to a higher level of care.

  15. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by

  16. Approaches and challenges of soil water monitoring in an irrigated vineyard

    NASA Astrophysics Data System (ADS)

    Nolz, Reinhard; Loiskandl, Willibald

    2016-04-01

    Monitoring of water content is an approved method to quantify certain components of the soil water balance, for example as basis for hydrological studies and soil water management. Temporal soil water data also allow controlling water status by means of demand-oriented irrigation. Regarding spatial variability of water content due to soil characteristics, plant water uptake and other non-uniformities, it is a great challenge to select a location that is most likely representing soil water status of a larger area (e.g. an irrigated field). Although such an approach might not satisfy the requirements of precision farming - which becomes more and more related to industrial agriculture - it can help improving water use efficiency of small-scale farming. In this regard, specific conditions can be found in typical vineyards in the eastern part of Austria, where grapes are grown for high quality wine production. Generally, the local dry-subhumid climate supports grape development. However, irrigation is temporarily essential in order to guarantee stable yields and high quality. As the local winegrowers traditionally control irrigation based on their experience, there is a potential to improve irrigation management by means of soil water data. In order to gain experience with regard to irrigation management, soil water status was determined in a small vineyard in Austria (47°48'16'' N, 17°01'57'' E, 118 m elevation). The vineyard was equipped with a subsurface drip irrigation system and access tubes for measuring water content in soil profiles. The latter was measured using a portable device as well as permanently installed multi-sensor capacitance probes. Soil samples were taken at chosen dates and gravimetrically analyzed in the laboratory. Water content data were analyzed using simple statistical procedures and the temporal stability concept. Soil water content was interpreted considering different environmental conditions, including rainfall and irrigation periods

  17. Comparison and analysis of empirical equations for soil heat flux for different cropping systems and irrigation methods

    USGS Publications Warehouse

    Irmak, A.; Singh, Ramesh K.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    We evaluated the performance of four models for estimating soil heat flux density (G) in maize (Zea mays L.) and soybean (Glycine max L.) fields under different irrigation methods (center-pivot irrigated fields at Mead, Nebraska, and subsurface drip irrigated field at Clay Center, Nebraska) and rainfed conditions at Mead. The model estimates were compared against measurements made during growing seasons of 2003, 2004, and 2005 at Mead and during 2005, 2006, and 2007 at Clay Center. We observed a strong relationship between the G and net radiation (Rn) ratio (G/Rn) and the normalized difference vegetation index (NDVI). When a significant portion of the ground was bare soil, G/Rn ranged from 0.15 to 0.30 and decreased with increasing NDVI. In contrast to the NDVI progression, the G/Rn ratio decreased with crop growth and development. The G/Rn ratio for subsurface drip irrigated crops was smaller than for the center-pivot irrigated crops. The seasonal average G was 13.1%, 15.2%, 10.9%, and 12.8% of Rn for irrigated maize, rainfed maize, irrigated soybean, and rainfed soybean, respectively. Statistical analyses of the performance of the four models showed a wide range of variation in G estimation. The root mean square error (RMSE) of predictions ranged from 15 to 81.3 W m-2. Based on the wide range of RMSE, it is recommended that local calibration of the models should be carried out for remote estimation of soil heat flux.

  18. Coastal surface water suitability analysis for irrigation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  19. Antimicrobial activity of sodium hypochlorite-based irrigating solutions.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Dagna, Alberto; Chiesa, Marco; Sforza, Dario; Visai, Livia

    2010-09-01

    The objective of the present study was the in vitro evaluation of the antimicrobial activity of three different NaOCl-based endodontic irrigating solutions: a 5.25% conventional sodium hypochlorite solution; and two new irrigating solutions, a 5.25% sodium hypochlorite solution with the addition of a proteolytic enzyme and a surfactant; and a 5.25% sodium hypochlorite gel with inorganic silicate. Enterococcus faecalis, Staphylococcus aureus and Streptococcus mutans strains were selected to evaluate the antimicrobial activity of the endodontic irrigating solutions by the agar disc diffusion test. Paper disks were saturated with each one of the tested solutions (at room temperature and pre-warmed at 45°C) and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each irrigating solution were recorded and compared for each bacterial strain. The results were significantly different among the tested irrigating solutions: 5.25% sodium hypochlorite solution produced the highest inhibition areas; 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed the lowest zones of inhibition. Even if all tested irrigating solution possessed antibacterial activity versus all tested bacterial strains, 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed lower in vitro efficacy than 5.25% conventional sodium hypochlorite solution.

  20. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  1. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau.

    PubMed

    Göğüş, Oğuz H; Pysklywec, Russell N; Şengör, A M C; Gün, Erkan

    2017-11-16

    Lithospheric drips have been interpreted for various regions around the globe to account for the recycling of the continental lithosphere and rapid plateau uplift. However, the validity of such hypothesis is not well documented in the context of geological, geophysical and petrological observations that are tested against geodynamical models. Here we propose that the folding of the Central Anatolian (Kırşehir) arc led to thickening of the lithosphere and onset of "dripping" of the arc root. Our geodynamic model explains the seismic data showing missing lithosphere and a remnant structure characteristic of a dripping arc root, as well as enigmatic >1 km uplift over the entire plateau, Cappadocia and Galatia volcanism at the southern and northern plateau margins since ~10 Ma, respectively. Models show that arc root removal yields initial surface subsidence that inverts >1 km of uplift as the vertical loading and crustal deformation change during drip evolution.

  2. Optimizing ET-based irrigation scheduling for wheat and maize with water constraints

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation is proved to increase crop water use efficiency (WUE) in water limited areas, but effective irrigation required better understanding of crop responses to water stress intensity and timing. In this study, the Root Zone Water Quality Model (RZWQM) was first calibrated and validated ...

  3. Effect of fertigation through drip and micro sprinkler on plant biometric characters in cocoa (Theobroma cacao L.).

    PubMed

    Krishnamoorthy, C; Rajamani, K

    2013-12-15

    A field experiment to study the influence of fertigation of N, P and K fertilizers on biometric characters of cocoa (Theobroma cacao L.) was conducted at the Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore during January 2010 to December 2011. The experiment was laid out with thirteen treatments replicated three times in a randomized block design. A phenomenal increase in growth parameters such as trunk girth, canopy spread and weight of the pruned branches removed, leaf fresh weight and leaf dry weight was observed with increasing levels of NPK as well as methods of fertilizer application in this study. Among the various treatments, fertigation with 125% 'Recommended Dose of Fertilizers' (125:50:175 g NPK plant year(-1)) as Water Soluble Fertilizers (WSF) through drip irrigation increased all vegetative growth parameters like trunk girth increment (1.62 cm), canopy spread increment (66.79 cm), leaf fresh weight (3.949 g), leaf dry weight (2.039 g), weight of the pruned branches removed (fresh weight 7.628 kg plant(-1)) and dry weight (4.650 kg plant(-1)).

  4. Safety and Time Course of Drip-and-Ship in Treatment of Acute Ischemic Stroke.

    PubMed

    Ishihara, Hideyuki; Oka, Fumiaki; Oku, Takayuki; Shinoyama, Mizuya; Suehiro, Eiichi; Sugimoto, Kazutaka; Suzuki, Michiyasu

    2017-11-01

    The drip-and-ship approach allows intravenous tissue plasminogen activator therapy and adjuvant endovascular treatment in acute ischemic stroke, even in rural areas. Here, we examined the safety and time course of the drip-and-ship approach. Fifty consecutive cases treated with the drip-and-ship approach (drip-and-ship group) in June 2009 to March 2016 were retrospectively examined. Changes in mean blood pressure, systemic complications, and neurological complications were compared according to method of transportation. Time courses were compared between drip-and-ship and direct admission groups during the same period. In the drip-and-ship group, 33 and 17 patients were transferred to hospital by ambulance and helicopter, respectively. One patient suffered hemorrhagic infarction during transportation by ambulance. Mean blood pressure change was lower in patients transferred by helicopter than ambulance (<5 mmHg versus 12.2 mmHg, respectively). The mean onset-to-door times in the drip-and-ship and direct admission groups were 71 and 64 minutes, respectively, and mean door-to-needle times were 70 and 47 minutes, respectively (P =.002). Although mean transportation time from the primary stroke hospital to our hospital was 32 minutes, the entry-to-exit time from the primary stroke hospital was 113 minutes. Thereafter, there was an average delay of 100 minutes until reperfusion compared with the direct admission group. Drip-and-ship was relatively safe in this small series. Transportation by helicopter was less stressful for acute ischemic stroke patients. It is important to reduce door-to-needle time and needle-to-departure time in the primary stroke hospital to minimize the time until treatment in cases of acute ischemic stroke. Copyright © 2017. Published by Elsevier Inc.

  5. Advanced tools for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Irrigated agriculture is needed to meet demands for agricultural products, but farmers are challenged with limited quality water supplies, environmental and regulatory policies climate variability, and competition for water from other sectors. Scientific irrigation scheduling could help allay these ...

  6. Usage of drip drops as stimuli in an auditory P300 BCI paradigm.

    PubMed

    Huang, Minqiang; Jin, Jing; Zhang, Yu; Hu, Dewen; Wang, Xingyu

    2018-02-01

    Recently, many auditory BCIs are using beeps as auditory stimuli, while beeps sound unnatural and unpleasant for some people. It is proved that natural sounds make people feel comfortable, decrease fatigue, and improve the performance of auditory BCI systems. Drip drop is a kind of natural sounds that makes humans feel relaxed and comfortable. In this work, three kinds of drip drops were used as stimuli in an auditory-based BCI system to improve the user-friendness of the system. This study explored whether drip drops could be used as stimuli in the auditory BCI system. The auditory BCI paradigm with drip-drop stimuli, which was called the drip-drop paradigm (DP), was compared with the auditory paradigm with beep stimuli, also known as the beep paradigm (BP), in items of event-related potential amplitudes, online accuracies and scores on the likability and difficulty to demonstrate the advantages of DP. DP obtained significantly higher online accuracy and information transfer rate than the BP ( p  < 0.05, Wilcoxon signed test; p  < 0.05, Wilcoxon signed test). Besides, DP obtained higher scores on the likability with no significant difference on the difficulty ( p  < 0.05, Wilcoxon signed test). The results showed that the drip drops were reliable acoustic materials as stimuli in an auditory BCI system.

  7. Agricultural irrigated land-use inventory for Polk County, Florida, 2016

    USGS Publications Warehouse

    Marella, Richard L.; Berry, Darbi; Dixon, Joann F.

    2017-08-16

    An accurate inventory of irrigated crop acreage is not available at the level of resolution needed to better estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage was developed for Polk County, Florida, during the 2016 growing season. This cooperative project between the U.S. Geological Survey and the Office of Agricultural Water Policy of the Florida Department of Agriculture and Consumer Services is part of an effort to improve estimates of water use and projections of future demands across all counties in the State. The irrigated areas were delineated by using land-use data provided by the Florida Department of Agriculture and Consumer Services, along with information obtained from the South and Southwest Florida Water Management Districts consumptive water-use permits. Delineations were field verified between April and December 2016. Attribute data such as crop type, primary water source, and type of irrigation system were assigned to the irrigated areas.The results of this inventory and field verification indicate that during the 2016 growing seasons (spring, summer, fall, and winter), an estimated 88,652 acres were irrigated within Polk County. Of the total field-verified crops, 83,995 acres were in citrus; 2,893 acres were in other non-citrus fruit crops (blueberries, grapes, peaches, and strawberries); 621 acres were in row crops (primarily beans and watermelons); 1,117 acres were in nursery (container and tree farms) and sod production; and 26 acres were in field crops including hay and pasture. Of the total inventoried irrigated acreage within Polk County, 98 percent (86,566 acres) was in the Southwest Florida Water Management District, and the remaining 2 percent (2,086 acres) was in the South Florida Water Management District.About 85,788 acres (96.8 percent of the acreage inventoried) were irrigated by a microirrigation system, including drip, bubblers, and

  8. An assessment of colostomy irrigation.

    PubMed

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  9. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  10. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  11. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  12. Matching soil salinization and cropping systems in communally managed irrigation schemes

    NASA Astrophysics Data System (ADS)

    Malota, Mphatso; Mchenga, Joshua

    2018-03-01

    Occurrence of soil salinization in irrigation schemes can be a good indicator to introduce high salt tolerant crops in irrigation schemes. This study assessed the level of soil salinization in a communally managed 233 ha Nkhate irrigation scheme in the Lower Shire Valley region of Malawi. Soil samples were collected within the 0-0.4 m soil depth from eight randomly selected irrigation blocks. Irrigation water samples were also collected from five randomly selected locations along the Nkhate River which supplies irrigation water to the scheme. Salinity of both the soil and the irrigation water samples was determined using an electrical conductivity (EC) meter. Analysis of the results indicated that even for very low salinity tolerant crops (ECi < 2 dS/m), the irrigation water was suitable for irrigation purposes. However, root-zone soil salinity profiles depicted that leaching of salts was not adequate and that the leaching requirement for the scheme needs to be relooked and always be adhered to during irrigation operation. The study concluded that the crop system at the scheme needs to be adjusted to match with prevailing soil and irrigation water salinity levels.

  13. Erosion: Irrigation-induced

    USDA-ARS?s Scientific Manuscript database

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  14. ENSO-cave drip water hydrochemical relationship: a 7-year dataset from south-eastern Australia

    NASA Astrophysics Data System (ADS)

    Tadros, Carol V.; Treble, Pauline C.; Baker, Andy; Fairchild, Ian; Hankin, Stuart; Roach, Regina; Markowska, Monika; McDonald, Janece

    2016-11-01

    Speleothems (cave deposits), used for palaeoenvironmental reconstructions, are deposited from cave drip water. Differentiating climate and karst processes within a drip-water signal is fundamental for the correct identification of palaeoenvironmental proxies and ultimately their interpretation within speleothem records. We investigate the potential use of trace element and stable oxygen-isotope (δ18O) variations in cave drip water as palaeorainfall proxies in an Australian alpine karst site. This paper presents the first extensive hydrochemical and δ18O dataset from Harrie Wood Cave, in the Snowy Mountains, south-eastern (SE) Australia. Using a 7-year long rainfall δ18O and drip-water Ca, Cl, Mg / Ca, Sr / Ca and δ18O datasets from three drip sites, we determined that the processes of mixing, dilution, flow path change, carbonate mineral dissolution and prior calcite precipitation (PCP) accounted for the observed variations in the drip-water geochemical composition. We identify that the three monitored drip sites are fed by fracture flow from a well-mixed epikarst storage reservoir, supplied by variable concentrations of dissolved ions from soil and bedrock dissolution. We constrained the influence of multiple processes and controls on drip-water composition in a region dominated by El Niño-Southern Oscillation (ENSO). During the El Niño and dry periods, enhanced PCP, a flow path change and dissolution due to increased soil CO2 production occurred in response to warmer than average temperatures in contrast to the La Niña phase, where dilution dominated and reduced PCP were observed. We present a conceptual model, illustrating the key processes impacting the drip-water chemistry. We identified a robust relationship between ENSO and drip-water trace element concentrations and propose that variations in speleothem Mg / Ca and Sr / Ca ratios may be interpreted to reflect palaeorainfall conditions. These findings inform palaeorainfall reconstruction from

  15. Soil Water Sensing-Focus on Variable Rate Irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors is an exercise in maintaining the water content of the crop root zone soil above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation. The management allow...

  16. Description of a novel telemedicine-enabled comprehensive system of care: drip and ship plus drip and keep within a system of stroke care delivery.

    PubMed

    Commiskey, Patricia; Afshinnik, Arash; Cothren, Elizabeth; Gropen, Toby; Iwuchukwu, Ifeanyi; Jennings, Bethany; McGrade, Harold C; Mora-Guillot, Julia; Sabharwal, Vivek; Vidal, Gabriel A; Zweifler, Richard M; Gaines, Kenneth

    2017-04-01

    United States (US) and worldwide telestroke programs frequently focus only on emergency room hyper-acute stroke management. This article describes a comprehensive, telemedicine-enabled, stroke care delivery system that combines "drip and ship" and "drip and keep" models with a comprehensive stroke center primary hub at Ochsner Medical Center in New Orleans, advanced stroke-capable regional hubs, and geographically-aligned, "stroke-ready" spokes. The primary hub provides vascular neurology expertise via telemedicine and monitors care for patients remaining at regional hubs and spokes using a multidisciplinary team approach. By 2014, primary hub telestroke consults grew to ≈1000/year with 16 min average door to consult initiation and 20 min to completion, and 29% of ischemic stroke patients received recombinant tissue-type plasminogen activator (rtPA), increasing 275%. Most patients remained in hospitals close to home, but neurointensive care and interventional procedures were common reasons for primary hub transfer. Given the time sensitivity and expert consultation needed for complex acute stroke care delivery paradigms, telestroke programs are effective for fulfilling unmet care needs. Combining drip and ship and drip and keep management allows more patients to stay "local," limiting primary hub transfer unless more advanced services are required. Post admission telestroke management at spokes increases personnel efficiency and can positively impact stroke outcomes.

  17. Linkage between canopy water storage and drop size distributions of leaf drips

    NASA Astrophysics Data System (ADS)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  18. The Seductive Power of an Innovation: Enrolling Non-Conventional Actors in a Drip Irrigation Community in Morocco

    ERIC Educational Resources Information Center

    Benouniche, Maya; Errahj, Mostafa; Kuper, Marcel

    2016-01-01

    Purpose: The aim of this study was to analyze the motivations of non-conventional innovation actors to engage in innovation processes, how their involvement changed the technology and their own social-professional status, and to analyze their role in the diffusion of the innovation. Design/methodology/approach: We studied the innovation process of…

  19. Two year measurement of nitrous oxide emission from high frequency surface and subsurface drip irrigations in pomegranate orchard

    USDA-ARS?s Scientific Manuscript database

    Building resiliency in California agriculture means utilizing adaptive farming practices that will produce better yields while overcoming the State’s current challenges, such as diminishing water supply and deteriorating water quality. In addition, California agriculture also needs to take proactive...

  20. Psychoneuroimmunologic effects of Ayurvedic oil-dripping treatment.

    PubMed

    Uebaba, Kazuo; Xu, Feng-Hao; Ogawa, Hiroko; Tatsuse, Takashi; Wang, Bing-Hong; Hisajima, Tatsuya; Venkatraman, Sonia

    2008-12-01

    This study assessed the psychoneuroimmunologic changes achieved by Shirodhara, an Ayurvedic treatment, characterized by dripping oil on the forehead, in a randomized, controlled protocol involving a novel approach using a robotic system. In the first experiment for the determination of the most appropriate conditions of Shirodhara, 16 healthy females (33 +/- 9 years old) underwent a 30-minute treatment. In the second study, another 16 healthy females (39 +/- 9 years old) were assigned to either the Shirodhara treatment or control supine position for 30 minutes, with monitoring of physiologic, biochemical, immunologic, and psychometric parameters including anxiety and altered states of consciousness (ASC). The subjects receiving Shirodhara treatment showed lowered levels of state anxiety and higher levels of ASC than those in the control position. Plasma noradrenaline and urinary serotonin excretion decreased significantly more after Shirodhara treatment than in the control. Plasma levels of thyrotropin-releasing hormone, dopamine, and natural killer (NK) cell activity were different between control and Shirodhara treatment. The correlation between anxiolysis and the depth of ASC was significant in the Shirodhara treatment group (r = 0.52, p < 0.05, N = 16), while in the control no correlation was obtained (r = 0.13, p = 0.64, N = 16). The increase in foot skin temperature after Shirodhara showed a significant correlation with anxiolysis and the depth of Trance of ASC (r = 0.58, p < 0.01, r = 0.43, p < 0.01, respectively). NK cell activity after Shirodhara treatment showed a significant correlation with anxiolysis and the depth of Trance of ASC (r = 0.33, p < 0.05, r = 0.56, p < 0.01, respectively). These results indicate that Shirodhara has anxiolytic and ASC-inducing effects, and it promotes a decrease of noradrenaline and exhibits a sympatholytic effect, resulting in the activation of peripheral foot skin circulation and immunopotentiation.

  1. Low Concentration of Salmonella enterica and Generic Escherichia coli in Farm Ponds and Irrigation Distribution Systems Used for Mixed Produce Production in Southern Georgia.

    PubMed

    Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T

    2016-10-01

    Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution

  2. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.

    PubMed

    Rodríguez-Figueroa, Carolina; McClanahan, Scott B; Bowles, Walter R

    2014-10-01

    Sodium hypochlorite (NaOCl) irrigation is critical to endodontic success, and several new methods have been developed to improve irrigation efficacy (eg, passive ultrasonic irrigation [PUI] and EndoActivator [EA]). Using a novel spectrophotometric method, this study evaluated NaOCl irrigant extrusion during canal irrigation. One hundred fourteen single-rooted extracted teeth were decoronated to leave 15 mm of the root length for each tooth. Cleaning and shaping of the teeth were completed using standardized hand and rotary instrumentation to an apical file size #40/0.04 taper. Roots were sealed (not apex), and 54 straight roots (n = 18/group) and 60 curved roots (>20° curvature, n = 20/group) were included. Teeth were irrigated with 5.25% NaOCl by 1 of 3 methods: passive irrigation with needle, PUI, or EA irrigation. Extrusion of NaOCl was evaluated using a pH indicator and a spectrophotometer. Standard curves were prepared with known amounts of irrigant to quantify amounts in unknown samples. Irrigant extrusion was minimal with all methods, with most teeth showing no NaOCl extrusion in straight or curved roots. Minor NaOCl extrusion (1-3 μL) in straight roots or curved roots occurred in 10%-11% of teeth in all 3 irrigant methods. Two teeth in both the syringe irrigation and the EA group extruded 3-10 μL of NaOCl. The spectrophotometric method used in this study proved to be very sensitive while providing quantification of the irrigant levels extruded. Using the PUI or EA tip to within 1 mm of the working length appears to be fairly safe, but apical anatomy can vary in teeth to allow extrusion of irrigant. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. [Irrigation in colostomies].

    PubMed

    Campo, Juana; Lecona, Ana; Caparrós, M Rosario; Barbero, M Antonia; Javier Cerdán, F

    2002-01-01

    The degree of acceptation of irrigation from a colostomy varies ostensibly from some cases to others, therefore, we study what occurs in our medium, separating those patients which have previously undergone other procedures (Group A) from those patients who have been informed and trained about the immediate postoperative period (Group B). 48 patients, 22 or 46% of these patients were considered not apt for irrigation. Of the 26 to whom this procedure was proposed, 14 or 54% accepted. Of these, 5 or 36% abandoned its use while 9 continued its use; this is 64% of those who accepted this procedure, 35% of those to whom it was proposed and 19% of the total study group. 189 patients. This procedure was not recommended to 95 patients, 50%. Of the 94 patients to whom this procedure was proposed, 65 or 69% accepted. Of these, 22 or 34% abandoned its use while 43 continued its use; this is 66% of those; who accepted this procedure, 46% of those to whom it was proposed and 23% of the total study group. In our medium, the practice of irrigation oscillates between 19 and 23% of patients who have undergone a colostomy, without any significant difference referring to the moment when a patient started this procedure. A first report on this study was submitted in the III National Congress for Nursing in Colostomies.

  4. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  5. Visible light exposure reduces the drip loss of fresh-cut watermelon.

    PubMed

    Wang, Yubin; Li, Wu; Cai, Wenqian; Ma, Yue; Xu, Yong; Zhao, Xiaoyan; Zhang, Chao

    2018-05-01

    Drip loss of fresh-cut watermelon has become a concern for both producers and consumers. The effect of visible light exposure on the drip loss of fresh-cut watermelon was evaluated. Visible light treatments of 3000 and 10 Lux were applied to fresh-cut watermelon at 4 °C during the shelf life for 5 days, with light exposure of 150 Lux as the control. The drip loss of the fresh-cut watermelon at 3000 Lux was 74.8% of that at 150 Lux on the fifth day, and the moisture evaporation at 3000 Lux was 1.89 times that at 150 Lux. Moreover, the light exposure of 3000 Lux reduced the activity of polygalacturonase, which is a key hydrolase related to cell wall degradation. The cell wall degradation ratio of the fresh-cut watermelon at 3000 Lux was 81.7% of that at 150 Lux on the fifth day. Overall, light exposure of 3000 Lux reduced drip loss by accelerating moisture evaporation in fresh-cut watermelon, as well as by reducing the activity of polygalacturonase and the ratio of cell wall degradation. Hence, exposing the fresh-cut watermelon to visible light of 3000 Lux during the shelf life was a feasible way of reducing drip loss.

  6. Molten thermoplastic dripping behavior induced by flame spread over wire insulation under overload currents.

    PubMed

    He, Hao; Zhang, Qixing; Tu, Ran; Zhao, Luyao; Liu, Jia; Zhang, Yongming

    2016-12-15

    The dripping behavior of the molten thermoplastic insulation of copper wire, induced by flame spread under overload currents, was investigated for a better understanding of energized electrical wire fires. Three types of sample wire, with the same polyethylene insulation thickness and different core diameters, were used in this study. First, overload current effects on the transient one-dimensional wire temperature profile were predicted using simplified theoretical analysis; the heating process and equilibrium temperature were obtained. Second, experiments on the melting characteristics were conducted in a laboratory environment, including drop formation and frequency, falling speed, and combustion on the steel base. Third, a relationship between molten mass loss and volume variation was proposed to evaluate the dripping time and frequency. A strong current was a prerequisite for the wire dripping behavior and the averaged dripping frequency was found to be proportional to the square of the current based on the theoretical and experimental results. Finally, the influence of dripping behavior on the flame propagation along the energized electrical wire was discussed. The flame width, bright flame height and flame spreading velocity presented different behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Irrigation mitigates against heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Fischer, Erich; Visser, Auke; Hirsch, Annette L.; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2017-04-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use gridded observations and ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on hot extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Finally we find that present-day irrigation is partly masking GHG-induced warming of extreme temperatures, with particularly strong effects in South Asia. Our results overall underline that irrigation substantially reduces our exposure to hot temperature extremes and highlight the need to account for irrigation in future climate projections.

  8. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce.

    PubMed

    Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P

    2005-05-01

    Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.

  9. Streamflow, Fog, and Fog-Drip in the California Coast Range

    NASA Astrophysics Data System (ADS)

    Sawaske, S. R.; Freyberg, D. L.

    2013-12-01

    The onshore movement of marine fog from coastal waters is a common occurrence during summer months along much of the contiguous U.S. Pacific Coast. Because the fog-season tends to occur during the precipitation-free dry-season, any additional input of moisture or reduction in loss of moisture through evapotranspiration provided by marine layer can be an important factor in localized hydrologic systems. In an effort to quantify some of the effects of fog on the regional dry-season hydrology, a study site within the Santa Cruz Mountains of central California was established. The fog-laden coastside and predominately fog-free San Francisco Bay-side of the study area provided an excellent opportunity to assess the impacts of the presence and absence of fog on ecohydrological processes. Streamflow, fog-drip, soil moisture, and weather conditions were measured from May-September. Bayside streams were found to be almost all intermittent, with much higher rates of baseflow recession compared to the predominately perennial coastside streams. Fog-drip was essentially nonexistent on the bayside, while highly variable amounts were recorded on the coastside. Maximum rates and seasonal totals of drip were found within stands of mature conifers (Sequoia sempervirens and Pseudotsuga menziesii) along exposed, often windy ridgelines. Rates of up to 19 in (48 cm)/month of fog-drip were recorded. Consequently, frequent infiltration events to depths of at least 9 in (23 cm) were also documented. Over the course of the study soil moisture levels at high fog-drip locations either increased, or were roughly equivalent to initial spring conditions from the onset of data collection. Increases of flow in coastside streams, under otherwise receding conditions, were found to coincide with fog and fog-drip events. These results indicate that the presence of fog can significantly affect dry-season hydrologic conditions of some coastal locations.

  10. Evolution of the East African rift: Drip magmatism, lithospheric thinning and mafic volcanism

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Nelson, Wendy R.; Elkins-Tanton, Linda T.

    2016-07-01

    The origin of the Ethiopian-Yemeni Oligocene flood basalt province is widely interpreted as representing mafic volcanism associated with the Afar mantle plume head, with minor contributions from the lithospheric mantle. We reinterpret the geochemical compositions of primitive Oligocene basalts and picrites as requiring a far more significant contribution from the metasomatized subcontinental lithospheric mantle than has been recognized previously. This region displays the fingerprints of mantle plume and lithospheric drip magmatism as predicted from numerical models. Metasomatized mantle lithosphere is not dynamically stable, and heating above the upwelling Afar plume caused metasomatized lithosphere with a significant pyroxenite component to drip into the asthenosphere and melt. This process generated the HT2 lavas observed today in restricted portions of Ethiopia and Yemen now separated by the Red Sea, suggesting a fundamental link between drip magmatism and the onset of rifting. Coeval HT1 and LT lavas, in contrast, were not generated by drip melting but instead originated from shallower, dominantly anhydrous peridotite. Looking more broadly across the East African Rift System in time and space, geochemical data support small volume volcanic events in Turkana (N. Kenya), Chyulu Hills (S. Kenya) and the Virunga province (Western Rift) to be derived ultimately from drip melting. The removal of the gravitationally unstable, metasomatized portion of the subcontinental lithospheric mantle via dripping is correlated in each case with periods of rapid uplift. The combined influence of thermo-mechanically thinned lithosphere and the Afar plume together thus controlled the locus of continental rift initiation between Africa and Arabia and provide dynamic support for the Ethiopian plateau.

  11. Irrigation management of sigmoid colostomy.

    PubMed

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  12. Unusual Root Canal Irrigation Solutions.

    PubMed

    Mohammadi, Zahed; Jafarzadeh, Hamid; Shalavi, Sousan; Kinoshita, Jun-Ichiro

    2017-05-01

    Microorganisms and their by-products play a critical role in pulp and periradicular pathosis. Therefore, one of the main purposes of root canal treatment is disinfection of the entire system of the canal. This aim may be obtained using mechanical preparation, chemical irrigation, and temporary medication of the canal. For this purpose, various irrigation solutions have been advocated. Common root canal irrigants, such as sodium hypochlorite, chlorhexidine, and a mixture of tetracycline, acid, and detergent have been extensively reviewed. The aim of this review was to address the less common newer root canal irrigation solutions, such as citric acid, maleic acid, electrochemically activated water, green tea, ozonated water, and SmearClear.

  13. The sensitivity of southeastern United States climate to varying irrigation vigor

    NASA Astrophysics Data System (ADS)

    Selman, Christopher; Misra, Vasubandhu

    2016-07-01

    Four regional climate model runs centered on the Southeast United States (SEUS) assuming a crop growing season of May through October are irrigated at 25% (IRR25), 50% (IRR50), 75% (IRR75), and 100% (IRR100) of the root zone porosity to assess the sensitivity of the SEUS climate to irrigation. A fifth run, assuming no irrigation (CTL), is used as the basis for comparison. Across all IRR runs, it is found that there is a general reduction in seasonal mean precipitation over the irrigated cells relative to CTL. This manifests as an increase in dry (0-1 mm/d) days and reduction in > 1 mm/d rainfall events. A comparative moisture budget reveals that area-averaged precipitation over the irrigated cells displays a reduction in precipitation and runoff in IRR100 with a weaker reduction in IRR25. This is despite an increase in vertically integrated moisture convergence and local evaporation. We find that irrigation increases the lower atmospheric stability, which in turn reduces the convective rainfall over the irrigated areas. Seasonally averaged temperatures reduce over irrigated areas, with the intensity of the reduction increasing with irrigation vigor. This is largely attributed to a repartitioning of sensible heat flux into latent heat flux. There is also, however, a small increase of heat flow to deeper soil layers. Precipitation ahead of transient cold fronts is also reduced by irrigation as they pass over irrigated cells, owing to the increased stability in the lower troposphere. The intensity of this precipitation reduction becomes more intense as irrigation vigor increases. Lastly, heat waves in the SEUS are reduced in intensity over irrigated cells.

  14. Improving fumigation efficiency by increasing drip-tape number and using low permeability film in raised-bed production systems

    USDA-ARS?s Scientific Manuscript database

    Drip fumigation is commonly used for controlling soilborne pests in raised-bed strawberry production systems in California. However, the high emission loss and poor pest control indicate that the current fumigation practice with two drip tapes and polyethylene film (PE) covering need to be improved....

  15. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  16. Advances in Irrigation: Select Works from 2010 Decennial Irrigation Symposium

    USDA-ARS?s Scientific Manuscript database

    This paper is an introduction to the Advances in Irrigation Special Collection in this issue of Transactions ASABE and the next issue of Applied Engineering in Agriculture of 14 papers selected from 88 papers and presentations at the ASABE 5th Decennial National Irrigation Symposium, December 2010, ...

  17. Medication and volume delivery by gravity-driven micro-drip intravenous infusion: potential variations during "wide-open" flow.

    PubMed

    Pierce, Eric T; Kumar, Vikram; Zheng, Hui; Peterfreund, Robert A

    2013-03-01

    Gravity-driven micro-drip infusion sets allow control of medication dose delivery by adjusting drops per minute. When the roller clamp is fully open, flow in the drip chamber can be a continuous fluid column rather than discrete, countable, drops. We hypothesized that during this "wide-open" state, drug delivery becomes dependent on factors extrinsic to the micro-drip set and is therefore difficult to predict. We conducted laboratory experiments to characterize volume delivery under various clinically relevant conditions of wide-open flow in an in vitro laboratory model. A micro-drip infusion set, plugged into a bag of normal saline, was connected to a high-flow stopcock at the distal end. Vertically oriented IV catheters (gauges 14-22) were connected to the stopcock. The fluid meniscus height in the bag was fixed (60-120 cm) above the outflow point. The roller clamp on the infusion set was in fully open position for all experiments resulting in a continuous column of fluid in the drip chamber. Fluid volume delivered in 1 minute was measured 4 times with each condition. To model resistive effects of carrier flow, volumetric infusion pumps were used to deliver various flow rates of normal saline through a carrier IV set into which a micro-drip infusion was "piggybacked." We also compared delivery by micro-drip infusion sets from 3 manufacturers. The volume of fluid delivered by gravity-driven infusion under wide-open conditions (continuous fluid column in drip chamber) varied 2.9-fold (95% confidence interval, 2.84-2.96) depending on catheter size and fluid column height. Total model resistance of the micro-drip with stopcock and catheter varied with flow rate. Volume delivered by the piggybacked micro-drip decreased up to 29.7% ± 0.8% (mean ± SE) as the carrier flow increased from 0 to 1998 mL/min. Delivery characteristics of the micro-drip infusion sets from 3 different manufacturers were similar. Laboratory simulation of clinical situations with gravity

  18. Modern Endodontic Principles Part 4: Irrigation.

    PubMed

    Darcey, James; Jawad, Sarra; Taylor, Carly; Roudsari, Reza Vahid; Hunter, Mark

    2016-01-01

    The complex anatomy of the tooth limits the ability to eradicate pathogens by mechanical means alone. Irrigation is the key to solving this problem. This paper highlights the importance of irrigation, the key irrigants available and methods of improving the performance of irrigants within the canal. CPD/CLINICAL RELEVANCE: To provide advice on which irrigants to use, how to use them effectively and safely and what to do if irrigants are extruded beyond the apex.

  19. Are There Infinite Irrigation Trees?

    NASA Astrophysics Data System (ADS)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  20. Scintigraphic assessment of colostomy irrigation.

    PubMed

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  1. Field Evidence Supporting Conventional Onion Curing Practices as a Strategy To Mitigate Escherichia coli Contamination from Irrigation Water.

    PubMed

    Wright, Daniel; Feibert, Erik; Reitz, Stuart; Shock, Clint; Waite-Cusic, Joy

    2018-03-01

    The Produce Safety Rule of the U.S. Food Safety Modernization Act includes restrictions on the use of agricultural water of poor microbiological quality. Mitigation options for poor water quality include the application of an irrigation-to-harvest interval of <4 days; however, dry bulb onion production includes an extended irrigation-to-harvest interval (<30 days). This study evaluated conventional curing practices for mitigating Escherichia coli contamination in a field setting. Well water inoculated with rifampin-resistant E. coli (1, 2, or 3 log CFU/mL) was applied to onion fields (randomized block design; n = 5) via drip tape on the final day of irrigation. Onions remained undisturbed for 7 days and were then lifted to the surface to cure for an additional 21 days before harvest. Water, onions, and soil were tested for presence of rifampin-resistant E. coli. One day after irrigation, 13.3% of onions (20 of 150) receiving the poorest quality water (3 log CFU/mL) tested positive for E. coli; this prevalence was reduced to 4% (6 of 150 onions) after 7 days. Regardless of inoculum level, E. coli was not detected on any onions beyond 15 days postirrigation. These results support conventional dry bulb onion curing practices as an effective strategy to mitigate microbiological concerns associated with poor quality irrigation water.

  2. Helium Isotopes and Noble Gas Abundances of Cave Dripping Water in Three Caves in East Asia

    NASA Astrophysics Data System (ADS)

    Chen, A. T.; Shen, C. C.; Tan, M.; Li, T.; Uemura, R.; Asami, R.

    2015-12-01

    Paleo-temperature recorded in nature archives is a critical parameter to understand climate change in the past. With advantages of unique inert chemical characteristics and sensitive solubilities with temperature, dissolved noble gases in speleothem inclusion water were recently proposed to retrieve terrestrial temperature history. In order to accurately apply this newly-developed speleothem noble gas temperature (NGT) as a reliable proxy, a fundamental issue about behaviors of noble gases in the karst should be first clarified. In this study, we measured noble gas contents in air and dripping water to evaluate any ratio deviation between noble gases. Cave dripping water samples was collected from three selected caves, Shihua Cave in northern China, Furong Cave in southwestern, and Gyukusen Cave in an island located in the western Pacific. For these caves are characterized by a thorough mixing and long-term storage of waters in a karst aquifer by the absence of seasonal oxygen isotope shifts. Ratios of dripping water noble gases are statistically insignificant from air data. Helium isotopic ratios in the dripping water samples match air value. The results indicate that elemental and isotopic signatures of noble gases from air can be frankly preserved in the epikarst and support the fidelity of NGT techniques.

  3. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    PubMed

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. [Effect of compound Danshen dripping pills combined with atorvastatin on restenosis after angioplasty in rabbits].

    PubMed

    Song, Jieli; Zeng, Jinpei; Zhang, Yongxia; Li, Pengfei; Zhang, Lihong; Chen, Cibin

    2014-08-01

    To study the effect of compound Danshen dripping pills and atorvastatin on restenosis after abdominal aorta angioplasty in rabbits. Rabbit models of abdominal aorta restenosis after angioplasty were established and treated with saline (group A), compound Danshen dripping pills (group B), atorvastatin (group C), or compound Danshen dripping pills plus atorvastatin (group D). HE staining was used to determine the thickness of arterial intimal hyperplasia and assess the morphological changes of the narrowed artery. Immunohistochemistry was employed to detect the expression of nuclear factor-κB (NF-κB) and monocyte chemoattractant protein-1 (MCP-1). Compared with group A, the 3 treatment groups showed significant increased vascular cavity area and reduced intimal area and percentage of intimal hyperplasia (P<0.05). The vascular cavity area, intimal area and percentage of intimal hyperplasia levels differed significantly between group D and groups B and C (P<0.05). Immunohistochemistry showed a significant reduction of the expression rate of NF-κB and MCP-1 in the 3 treatment groups compared with group A (P<0.05), and the reduction was especially obvious in group D (P<0.05). Compound danshen dripping pills combined with atorvastatin produces better effects than the drugs used alone in inhibiting vascular smooth muscle cell proliferation in rabbits after abdominal aorta angioplasty possibly due to a decreased expression of MCP-1 as a result of NF-κB inhibition.

  5. Detection and assessment of flood susceptible irrigation networks in Licab, Nueva Ecija, Philippines using LiDAR DTM

    NASA Astrophysics Data System (ADS)

    Alberto, R. T.; Hernando, P. J. C.; Tagaca, R. C.; Celestino, A. B.; Palado, G. C.; Camaso, E. E.; Damian, G. B.

    2017-09-01

    Climate change has wide-ranging effects on the environment and socio-economic and related sectors which includes water resources, agriculture and food security, human health, terrestrial ecosystems, coastal zones and biodiversity. Farmers are under pressure to the changing weather and increasing unpredictable water supply. Because of rainfall deficiencies, artificial application of water has been made through irrigation. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation networks are permanent and temporary conduits that supply water to agricultural areas from an irrigation source. Detection of irrigation networks using LiDAR DTM, and flood susceptible assessment of irrigation networks could give baseline information on the development and management of sustainable agriculture. Map Gully Depth (MGD) in Whitebox GAT was used to generate the potential irrigation networks. The extracted MGD was overlaid in ArcGIS as guide in the digitization of potential irrigation networks. A flood hazard map was also used to identify the flood susceptible irrigation networks in the study area. The study was assessed through field validation of points which were generated using random sampling method. Results of the study showed that most of the detected irrigation networks have low to moderate susceptibility to flooding while the rest have high susceptibility to flooding which is due to shifting weather. These irrigation networks may cause flood when it overflows that could also bring huge damage to rice and other agricultural areas.

  6. Irrigating The Environment

    NASA Astrophysics Data System (ADS)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  7. Safety of a "drip and ship" intravenous thrombolysis protocol for patients with acute ischemic stroke.

    PubMed

    Mansoor, Simin; Zand, Ramin; Al-Wafai, Ameer; Wahba, Mervat N; Giraldo, Elias A

    2013-10-01

    The "drip and ship" approach for intravenous thrombolysis (IVT) is becoming the standard of care for patients with acute ischemic stroke (AIS) in communities without direct access to a stroke specialist. We aimed to demonstrate the safety of our "drip and ship" IVT protocol. This was a retrospective study of patients with AIS treated with IVT between January 2003 and January 2011. Information on patients' baseline characteristics, neuroimaging, symptomatic intracerebral hemorrhage (sICH), and mortality was obtained from our stroke registry. A group of patients were treated with IVT by an emergency physician in phone consultation with a board-certified vascular neurologist (BCVN) at 1 of our 3 stroke network-affiliated hospitals (SNAHs). These patients were subsequently transferred to our Joint Commission-certified primary stroke center (CPSC) after completion of IVT ("drip and ship" protocol). The other patients were treated directly by a BCVN at the CPSC. We studied 201 patients treated with IVT. Of them, 14% received IVT at a SNAH ("drip and ship" protocol) and 86% were treated at the CPSC. There were no significant differences between the 2 groups with regard to age, National Institutes of Health Stoke Scale score, stroke symptom onset-to-needle time, sICH, or in-hospital mortality. Our "drip and ship" protocol for IVT is safe. The protocol was not associated with an excess of sICH or in-hospital mortality compared with patients who received IVT at the CPSC. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Induced heterogeneity of soil water content and chemical properties by treated wastewater irrigation and its reclamation by freshwater irrigation

    NASA Astrophysics Data System (ADS)

    Rahav, Matan; Brindt, Naaran; Yermiyahu, Uri; Wallach, Rony

    2017-06-01

    The recognition of treated wastewater (TWW) as an alternative water resource is expanding in areas with a shortage of freshwater (FW) resources. Today, most orchards in Israel are irrigated with TWW. While the benefits of using TWW for irrigation are apparent, evidence of its negative effects on soil, trees, and yield is accumulating. This study, performed in a commercial TWW-irrigated citrus orchard in central Israel, examined the effects of (1) soil-wettability decrease due to prolonged TWW irrigation on the spatial and temporal distribution of water content and associated chemical properties in the root zone; (2) the conversion of irrigation in half of the TWW-irrigated research plot to FW (2012) for soil reclamation. Electrical resistivity tomography surveys in the substantially water repellent soils revealed that water flow is occurring along preferential flow paths in both plots, leaving behind a considerably nonuniform water-content distribution. This was despite the gradual relief in soil water repellency measured in the FW plots. Four soil-sampling campaigns (spring and fall, 2014-2016), performed in 0-20 and 20-40 cm layers of the research plot, revealed bimodal gravimetrically measured water-content distribution. The preferential flow led to uneven chemical-property distribution, with substantially high concentrations in the dry spots, and lower concentrations in the wet spots along the preferential flow paths. The average salt and nutrient concentrations, which were initially high in both plots, gradually dispersed with time, as concentrations in the FW plots decreased. Nevertheless, the efficiency of reclaiming TWW soil by FW irrigation appears low.

  9. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  10. A case study of field-scale maize irrigation patterns in western Nebraska: implications for water managers and recommendations for hyper-resolution land surface modeling

    NASA Astrophysics Data System (ADS)

    Gibson, Justin; Franz, Trenton E.; Wang, Tiejun; Gates, John; Grassini, Patricio; Yang, Haishun; Eisenhauer, Dean

    2017-02-01

    In many agricultural regions, the human use of water for irrigation is often ignored or poorly represented in land surface models (LSMs) and operational forecasts. Because irrigation increases soil moisture, feedback on the surface energy balance, rainfall recycling, and atmospheric dynamics is not represented and may lead to reduced model skill. In this work, we describe four plausible and relatively simple irrigation routines that can be coupled to the next generation of hyper-resolution LSMs operating at scales of 1 km or less. The irrigation output from the four routines (crop model, precipitation delayed, evapotranspiration replacement, and vadose zone model) is compared against a historical field-scale irrigation database (2008-2014) from a 35 km2 study area under maize production and center pivot irrigation in western Nebraska (USA). We find that the most yield-conservative irrigation routine (crop model) produces seasonal totals of irrigation that compare well against the observed irrigation amounts across a range of wet and dry years but with a low bias of 80 mm yr-1. The most aggressive irrigation saving routine (vadose zone model) indicates a potential irrigation savings of 120 mm yr-1 and yield losses of less than 3 % against the crop model benchmark and historical averages. The results of the various irrigation routines and associated yield penalties will be valuable for future consideration by local water managers to be informed about the potential value of irrigation saving technologies and irrigation practices. Moreover, the routines offer the hyper-resolution LSM community a range of irrigation routines to better constrain irrigation decision-making at critical temporal (daily) and spatial scales (< 1 km).

  11. Go Grey - A Laundry to Landscape Irrigation System

    NASA Astrophysics Data System (ADS)

    Rajmohan, S.

    2017-12-01

    California residents have dealt with severe drought and high water bills for the few past years[1]. The objective of our project is to use the concept of greywater irrigation to build a low cost, adaptable, and easy to install irrigation system to collect the greywater from the washing machine and use it to water the plants. This system can reduce a household's water usage, extend the life of a septic system, and save time on watering plants by recycling the water from the washing machine. Our simple system requires PVC pipes, a three-way water diverter (valve), a mesh coffee filter, and a water (rain) barrel. The water from the washing machine travels through the three-way valve, which diverts it either to the garden or to the sewer. The PVC pipes lead outside to the garden, where the water barrel is located. The water goes through the mesh coffee filter that is attached on top of the barrel, so that lint and other impurities can be filtered out. The water collected in the barrel will travel through drip irrigation or through a hose to directly water the roots of the plants. This fully functional greywater system was successfully constructed and tested through various trails. We used a Kenmore standard 4.5 cubic feet front load high efficiency washer which uses less water compared to the traditional washers and measured the water collected in water barrel after each wash. Irrespective of the size of the load, the amount of water collected from each wash remained almost the same.. However, we collected enough grey water from each washer load to fill the rain barrel and water the plants in the garden. We were able apply the concept of greywater irrigation successfully to build our own low cost, adaptable, and easy to install greywater system that can be used in any household to water plants in the garden. Our system recycles the water from the washer instead of just wasting it thereby reducing a household's water usage and water bill especially during the time of

  12. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  13. A GIS-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet Pampa plain, Argentina.

    PubMed

    Romanelli, Asunción; Lima, María Lourdes; Quiroz Londoño, Orlando Mauricio; Martínez, Daniel Emilio; Massone, Héctor Enrique

    2012-09-01

    The Pampa in Argentina is a large plain with a quite obvious dependence on agriculture, water availability and its quality. It is a sensitive environment due to weather changes and slope variations. Supplementary irrigation is a useful practice for compensating the production in the zone. However, potential negative impacts of this type of irrigation in salinization and sodification of soils are evident. Most conventional methodologies for assessing water irrigation quality have difficulties in their application in the region because they do not adjust to the defined assumptions for them. Consequently, a new GIS-based methodology integrating multiparametric data was proposed for evaluating and delineating groundwater suitability zones for irrigation purposes in flat areas. Hydrogeological surveys including water level measurements, groundwater samples for chemical analysis and electrical conductivity (EC) measurements were performed. The combination of EC, sodium adsorption ratio, residual sodium carbonate, slopes and hydraulic gradient parameters generated an irrigation water index (IWI). With the integration of the IWI 1 to 3 classes (categories of suitable waters for irrigation) and the aquifer thickness the restricted irrigation water index (RIWI) was obtained. The IWI's index application showed that 61.3 % of the area has "Very high" to "Moderate" potential for irrigation, while the 31.4 % of it has unsuitable waters. Approximately, 46 % of the tested area has high suitability for irrigation and moderate groundwater availability. This proposed methodology has advantages over traditional methods because it allows for better discrimination in homogeneous areas.

  14. Colostomy irrigation: are we offering it enough?

    PubMed

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  15. Soil management and conservation: Irrigation: Methods

    USDA-ARS?s Scientific Manuscript database

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  16. Wireless sensor networks for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  17. Irrigation trends in Kansas, 1991-2011

    USGS Publications Warehouse

    Kenny, Joan F.; Juracek, Kyle E.

    2013-01-01

    This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.

  18. What is the Optimal Water Productivity Index for Irrigated Grapevines? Case of 'Godello' and 'Albariño' cultivars

    NASA Astrophysics Data System (ADS)

    Fandiño, María; Martínez, Emma M.; Rey, Benjamín J.; Cancela, Javier J.

    2015-04-01

    Different studies have tackled the conceptual and terminological study of crop water use indicators, mainly water use efficiency (WUE) and water productivity (WP) (Pereira et al., 2012; Scheierling et al., 2014). The high number of stakeholders, working about agricultural water use (hydrology and hydrogeology, civil and irrigation engineering, agronomy and crop physiology, economics), has hindered the real improvement thereof, from a multidisciplinary perspective. For example, Flexas et al. (2010) reviewed the future improvements in water use efficiency in grapevines, from a physiological approach. In this study, two grapevine cultivars, priority in Galicia (Spain): 'Godello' (DO Valdeorras) and 'Albariño' (DO Rías Baixas, two locations), was assessed in relation to four water productivity index, focus on irrigation systems, agronomy and crop physiology aspects, during a wet year (2012). All WP index was referred to farm yield level (kg ha-1); where the denominator applied to WPTWU, include all components of soil water balance; to WPTWUfarm, introduced rainfall and irrigation depth; to WPIrrig, only irrigation depth applied; and to WPT, crop transpiration was used. In the last index, SIMDualKc model was used to partitioning crop evapotranspiration and cover crop transpiration. Different ranges of values was obtained for both cultivars, WPTWUfarm was higher in cv 'Godello' than in cv 'Albariño', 3.8 and 0.9 kg m-3 respectively. Average value to WPIrrig has showed: 17.6 kg m-3 for cv 'Albariño' and 15.5 kg m-3 for cv 'Godello', due to a reduction of 60% of irrigation depth in DO Rías Baixas. However, for both locations, higher WPIrrig was obtained to drip irrigation system versus subsurface drip irrigation. WPT showed a different tendency, rain-fed 'Godello' and surface drip irrigation 'Albariño' treatments obtained higher values (6.8 and 3.6 kg m-3), with higher WPT to cv 'Godello' for all treatments versus 'Albariño'. Results had showed that water

  19. Irrigation Sprinklers Notice of Intent

    EPA Pesticide Factsheets

    High-efficiency irrigation sprinklers aim to deliver water more evenly to the landscape than traditional sprinklers and/or regulate outlet pressure to ensure a constant flow rate over a range of supply pressures.

  20. Irrigation Controllers Specification and Certification

    EPA Pesticide Factsheets

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  1. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  2. Season, Irrigation, Leaf Age, and Escherichia coli Inoculation Influence the Bacterial Diversity in the Lettuce Phyllosphere

    PubMed Central

    Williams, Thomas R.; Moyne, Anne-Laure; Harris, Linda J.; Marco, Maria L.

    2013-01-01

    The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety. PMID:23844230

  3. Hydraulic characteristics of an underdrained irrigation circle, Muskegon County wastewater disposal system, Michigan

    USGS Publications Warehouse

    McDonald, M.G.

    1980-01-01

    Muskegon County, Michigan, disposes of wastewater by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the groundwater flow system. Hydraulic conductivity is 0.00055 m/sec, in the north zone of the circle, and 0.00039 m/sec in the south zone. Drain leakance -6 -6 is low in both zones: 2.9 x 10m/sec in the north and 9.5 x 10 m/sec in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept wastewater is 35 percent less than design capacity.

  4. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  5. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  6. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    NASA Astrophysics Data System (ADS)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  7. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  8. Geochemical signal in drip waters and carbonates from three year monitoring of Drac Cave in Mallorca (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Cacho, Isabel; Cisneros, Mercé; Torner, Judit; Moreno, Ana; Stoll, Heather; Bladé, Ileana; Fornos, Joan

    2016-04-01

    In order to establish the potential connection between climatic conditions over Mallorca and the chemistry of speleothem growths, a still ongoing monitoring exercise is in development in Drac Cave in Mallorca (Spain) starting from April 2013. This location in the Western Mediterranean was selected to represent Mediterranean semi-arid climatic conditions within a wider monitoring plan covering a transect across the northern part of the Iberian Peninsula, from the Catabric realm, across the Pyrenees and Iberian ranges until the Mediterranean, within the framework of the OPERA research project. Drip waters have been recovered at weakly resolution and carbonate precipitates represent seasonal periods. This monitoring is complemented with drip water and carbonate collection at seasonal scale in another cave close to Drac Cave. This second cave was selected in order to represent comparable climatic conditions but far of any human land-intervention since the Drac cave is partially located under an urban developed area, although drip water and carbonate collection is performed in a location bellow autochthonous forest. First results show that drip flow has a rather constant rate along the year even though the large contrast on rain availability. In contrast, chemical signal of the drip waters shows a rapid response (few days) to changes in rain patterns but of relatively small magnitude. Isotopes in the carbonate precipitates present a seasonal signal and trend that reflect changes in the drip water composition. This data set, although preliminary, will be discussed in the context of the changing meteorological conditions of the last three years.

  9. Effect of fabric mounting method and backing material on bloodstain patterns of drip stains on textiles.

    PubMed

    Chang, J Y M; Michielsen, S

    2016-05-01

    Textiles may provide valuable bloodstain evidence to help piece together events or activities at violent crime scenes. However, in spite of over 75 years of research, there are still difficulties encountered in many cases in the interpretation and identification of bloodstains on textiles. In this study, we dripped porcine blood onto three types of fabric (plain woven, single jersey knit, and denim) that are supported in four different ways (hard, taut, loose, and semi-hard, i.e., fabric laid on denim). These four mounting methods represent different ways in which a textile may be present when blood from a violent act lands on it. This study investigates how the fabric mounting method and backing material affect the appearance of drip stains on textiles. We found that bloodstain patterns formed on fabric lying flat on a hard surface were very different from when the same fabric was suspended loosely. We also found that bloodstains formed on the technical back of single jersey knit were vastly different from those on the technical face. Interestingly, some drip stains showed blood passing through the textile and leaving a stain behind it that resembled insect stains. By observing, recording, and describing how a blood stained textile is found or presented at the scene, the analyst may be able to better understand bloodstains and bloodstain patterns on textiles, which could be useful to confirm or refute a witness's account of how blood came to be where it was found after a bloodshed event.

  10. Subsurface drip application of alternative fumigants to methyl bromide for controlling nematodes in replanted grapevines.

    PubMed

    Cabrera, J Alfonso; Wang, Dong; Schneider, Sally M; Hanson, Bradley D

    2012-05-01

    Many California grape growers use preplant fumigation to ensure uniform and healthy grapevine establishment in replant situations. A field study was conducted to evaluate the performance of subsurface drip-applied chemical alternatives to methyl bromide on plant-parasitic nematodes, plant vigor and fruit yield during the 6 year period following replanting. Subsurface drip fumigation with 1,3-dichloropropene plus chloropicrin and with iodomethane plus chloropicrin had generally similar nematicide activity as methyl bromide in three grape types, while sodium azide was less effective. The combination of 1,3-dichloropropene plus chloropicrin enhanced vine vigor similarly to methyl bromide. However, all plots treated with alternative fumigants produced less fruit yield than methyl bromide over the 4 years of evaluation. Subsurface drip fumigation with alternative chemicals to methyl bromide generally provided adequate management of plant-parasitic nematodes during the vine establishment period. However, further research is required to increase the performance of alternative chemicals against other components of the replant problem, as grape yield in vines grown in the alternative treatments was lower than in methyl bromide. Copyright © 2011 Society of Chemical Industry.

  11. Dripping and jetting regimes in co-flowing capillary jets: unforced measurements and response to driving

    NASA Astrophysics Data System (ADS)

    Baroud, Charles; Cordero, Maria-Luisa; Gallaire, Francois

    2011-11-01

    We study the breakup of drops in a co-flowing jet, within the confinement of a microfluidic channel. The breakup can occur right after the nozzle (dripping) or through the generation of a liquid jet that breaks up a long distance from the nozzle (jetting). Traditionally, these two regimes have been considered to reflect an absolutely unstable jet or a convectively unstable jet, respectively. We first provide measurements of the frequency of oscillation and breakup of the liquid jet; the dispersion relation thus obtained compares well with existing theories for convective instabilities in the case of the jetting regime. However, the theories in the absolutely unstable mode fail to predict the evolution of the frequency and drop size in the dripping regime. We also test the jet response to an external forcing, using a focused laser to locally heat the jet. The dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. In contrast, the jetting regime locks to the external frequency, which translates into a modification of the drop size in agreement with the dispersion relations. This confirms the convective nature of the jetting regime. Permanent address: Universidad de Chile.

  12. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  13. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  14. Dripping from Rough Multi-Segmented Fracture Sets into Unsaturated Rock Underground Excavations

    NASA Astrophysics Data System (ADS)

    Cesano, D.; Bagtzoglou, A. C.

    2001-05-01

    The aim of this paper is to present a probabilistic analytical formulation of unsaturated flow through a single rough multi-segmented fracture, with the ultimate goal to provide a numerical platform with which to perform calculations on the dripping initiation time and to explain the fast flow-paths detected and reported by Fabryka-Martin et al. (1996). To accomplish this, an enhanced version of the Wang and Narasimhan model (Wang and Narasimhan, 1985; 1993), the Enhanced Wang and Narasimhan Model (EWNM), has been used. In the EWNM, a fracture is formed by a finite number of connected fracture segments of given strike and dip. These parameters are sampled from hypothetical probability density functions. Unsaturated water flow occurs in these fracture segments, and in order for dripping to occur it is assumed that local saturation conditions exist at the surface and the tunnel level, where dripping occurs. The current version of the EWNM ignores transient flow processes, and thus it assumes the flow system being at equilibrium. The fracture segments are considered as rough fractures, with their roughness characterized by an aperture distribution function that can be derived from real field data. The roughness along each fracture segment is considered to be constant, leading to a constant effective aperture, and it is randomly assigned. An effective flow area is also included in the model, which accounts for three-dimensional variations of the fracture area that can be possibly occupied by water. The model takes into account the possibility that the fracture crosses multiple layers, each of which can have a different configuration in the values of the input parameters. Monte Carlo simulations calculate average times for water to flow from the top to the bottom of the fracture for a specified number of random realizations. The random component of the realizations comprises the different geometric configurations of the fracture flow path, while the value of all the

  15. Study of the hydrological functionning of the irrigated crops in the southern mediterranean basin

    NASA Astrophysics Data System (ADS)

    Khabba, Said; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Merlin, Olivier; Ezzahar, Jamal; Kharrou, Mohamed H.

    2015-04-01

    In southern Mediterranean region water consumption has significantly increased over the last decades, while available water resources are becoming increasingly scarce. In Morocco, irrigation is highly water demanding: it is estimated that 83% of available resources is dedicated to agriculture with efficiency lower than 50% (Plan Bleu, 2009). In the semiarid region of Tensift Al-Haouz (center of Morocco), typical of southern Mediterranean basin, crop irrigation is inevitable for growth and development. In this situation, and to preserve water resources, the rational management of water irrigation is necessary. This objective is one of the priorities of the research program SudMed (Chehbouni et al., 2008) and the Joint Mixed Laboratory TREMA (Khabba et al. 2013), installed in Marrakech since 2002 and 2011, respectively. In these two programs, the scientific approach adopted, to monitor water transfers in soil-plant-atmosphere system, is based on the synergistic use of the mathematical modeling, the satellite observations and in situ data. Thus, during the decade 2002-2012, 17 experiments on dominant crops in the region (wheat, olive, orange, sugar beet, apricot) were performed. In these experiments, the different terms of water and heat balances exchanged between land surface and atmosphere are controlled with different devices. Results showed that the water losses by evaporation can reach 28% of water inputs for the flooding irrigation site and are obviously lower (about 18-20 % on average) for the drip irrigation sites. Concerning the deep percolation, results are surprising: water losses for the drip irrigation are in the range 29-41% of water input, whereas theses losses are between 26 and 31% for flooding irrigation. Concerning the modeling component, several models ranging from the most simple (FAO-56) to the most complex (i.e. SVAT: Soil Vegetation Atmosphere Transfer) were implemented to estimate the spatio-temporal variability of ET. The results showed that

  16. [Continent colostomy and colon irrigation].

    PubMed

    Kostov, D; Temelkov, T; Kiriazov, E; Ivanov, K; Ignatov, V; Kobakov, G

    2000-01-01

    The authors have studied a functional activity of a continent colostomy at 20 patients, undergone an abdomeno-perineal extirpation of rectum and carried out periodic colonirrigations, during a period of 6 months. A conus type, closed irrigating system has been used. The degree of an incontinency at patients has been compared before and after the beginning of the colonirrigations. The irrigating procedures have reduced spontaneous defications at patients during a week 28 times and have improved the quality of life significantly. The application of colostomy bags has been restricted in 8 (40%) patients. An intraluminal ultrasonographic investigation has been done at 12 (60%) patients at the end of 6 month irrigating period. No changes of the ultrasonographic image of the precolostomic segment of colon has been observed.

  17. The impact of an extreme case of irrigation on the southeastern United States climate

    NASA Astrophysics Data System (ADS)

    Selman, Christopher; Misra, Vasubandhu

    2017-02-01

    The impacts of irrigation on southeast United States diurnal climate are investigated using simulations from a regional climate model. An extreme case is assumed, wherein irrigation is set to 100 % of field capacity over the growing season of May through October. Irrigation is applied to the root zone layers of 10-40 and 40-100 cm soil layers only. It is found that in this regime there is a pronounced decrease in monthly averaged temperatures in irrigated regions across all months. In non-irrigated areas a slight warming is simulated. Diurnal maximum temperatures in irrigated areas warm, while diurnal minimum temperatures cool. The daytime warming is attributed to an increase in shortwave flux at the surface owing to diminished low cloud cover. Nighttime and daily mean cooling result as a consequence repartitioning of energy into latent heat flux over sensible heat flux, and of a higher net downward ground heat flux. Excess heat is transported into the deep soil layer, preventing a rapidly intensifying positive feedback loop. Both diurnal and monthly average precipitations are reduced over irrigated areas at a magnitude and spatial pattern similar to one another. Due to the excess moisture availability, evaporation is seen to increase, but this is nearly balanced by a corresponding reduction in sensible heat flux. Concomitant with additional moisture availability is an increase in both transient and stationary moisture flux convergences. However, despite the increase, there is a large-scale stabilization of the atmosphere stemming from a cooled surface.

  18. Hydrologic Analysis of Ungauged Catchments For The Supply of Water For Irrigation On Railway Embankment Batters

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Y.; Nissen, D.

    Water has been identified as a key component to the success of grass establishment on railway embankment batters (side slope) within Central Queensland, Australia, to control erosion. However, the region under study being semi-arid experiences less than 600 mm average annual rainfall occurring on about 60 days of the year. Culverts and bridges are integral part of railway embankments. They are used to cross water courses, be it an ephemeral creek or just a surface runoff path. Surface runoff through an ungauged railway embankment culvert is diverted to a temporary excavated pond located at the downstream side of the hydraulic structure. The temporary excavated pond water is used to feed an automated drip irrigation system, with solar as a source of energy to drive a pump. Railway embankment batter erosion remediation is timed in the wet season when irrigation is used to supplement natural rainfall. Hydrologic analysis of ungauged catchments for sizing the temporary excavated pond is presented. It is based on scenarios of runoff coefficient and curve number, and mass curve (Rippl diagram). Three years of continuous rainfall data (1997/1998 -1999/2000) were used to design a pond. The performance of the designed pond was evaluated in a field experiment during the next wet season (2000/2001). It supplied adequate water for irrigation as predicted by the hydrologic analysis during the grass establishment. This helped to achieve 100% grass cover on the railway embankment batter within 12 weeks. The proposed irrigation system has been demonstrated t o be feasible and cost effective.

  19. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    USDA-ARS?s Scientific Manuscript database

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  20. 21 CFR 876.5895 - Ostomy irrigator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  1. Coupled stochastic soil moisture simulation-optimization model of deficit irrigation

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hosein; Mousavi, S. Jamshid

    2013-07-01

    This study presents an explicit stochastic optimization-simulation model of short-term deficit irrigation management for large-scale irrigation districts. The model which is a nonlinear nonconvex program with an economic objective function is built on an agrohydrological simulation component. The simulation component integrates (1) an explicit stochastic model of soil moisture dynamics of the crop-root zone considering interaction of stochastic rainfall and irrigation with shallow water table effects, (2) a conceptual root zone salt balance model, and 3) the FAO crop yield model. Particle Swarm Optimization algorithm, linked to the simulation component, solves the resulting nonconvex program with a significantly better computational performance compared to a Monte Carlo-based implicit stochastic optimization model. The model has been tested first by applying it in single-crop irrigation problems through which the effects of the severity of water deficit on the objective function (net benefit), root-zone water balance, and irrigation water needs have been assessed. Then, the model has been applied in Dasht-e-Abbas and Ein-khosh Fakkeh Irrigation Districts (DAID and EFID) of the Karkheh Basin in southwest of Iran. While the maximum net benefit has been obtained for a stress-avoidance (SA) irrigation policy, the highest water profitability has been resulted when only about 60% of the water used in the SA policy is applied. The DAID with respectively 33% of total cultivated area and 37% of total applied water has produced only 14% of the total net benefit due to low-valued crops and adverse soil and shallow water table conditions.

  2. Zone lines

    Treesearch

    Kevin T. Smith

    2001-01-01

    Zone lines are narrow, usually dark markings formed in decaying wood. Zone lines are found most frequently in advanced white rot of hardwoods, although they occasionally are associated both with brown rot and with softwoods.

  3. Comparison of Spring and Cave Drip Water in Westcave Preserve, Central Texas May Reveal Epikarst CO2 Degassing

    NASA Astrophysics Data System (ADS)

    Carlson, P.; Banner, J. L.; Casteel, R. C.; Breecker, D.

    2013-12-01

    The cave at Westcave Preserve, in central Texas, is a unique location to study karst processes due to its low, nearly atmospheric cave-air CO2 levels and seasonally variable temperature. The source of water that drips into the cave, however, has not been constrained, limiting interpretation of climate proxies in the cave. It is possible that a nearby spring and the cave drip-waters share a common source. Alternatively, the drip-waters could represent precipitation that has infiltrated the host rock. These hypotheses should be tested using Sr isotope ratios and/or other tracers. If they do share a common source, analysis of dissolved inorganic carbon (DIC) concentration , δ13CDIC, and cation concentrations of the two waters could provide insight into epikarst processes such as CO2 degassing and prior calcite precipitation (PCP) that are otherwise difficult to constrain. Westcave Preserve includes outcrops of the Hensell Sand, the Cow Creek Limestone, and the Hammett Shale, with a small cave at the contact between the Cow Creek and Hammett formations. The overlying Hensell Sand contains water that emerges at the surface as a spring near the cave. Water also drips directly into the cave, forming speleothems. Previous research has established that although δ18O values of rainfall in the area vary seasonally, between -10.5 and 1.1‰ with a weighted mean of -6.5‰ (VSMOW), the drip-water varies only between -4.7 and -4.3‰ with a weighted mean of -4.5‰ (Feng et al., in review). This suggests a large well-mixed reservoir above the cave. The soils above the cave have high CO2 of up to 17,500 ppmv, but because the cave is shallow with multiple large openings, cave CO2 levels are near-atmospheric (Casteel and Banner, in review). This creates a steep CO2 gradient between the soil and the cave air. The spring water DIC is nearly in carbon-isotope equilibrium with the soil CO2, suggesting that soil respiration, here controlled by C3 plants, is the primary source of CO2

  4. Effects of Aquifer Development and Changes in Irrigation Practices on Ground-Water Availability in the Santa Isabel Area, Puerto Rico

    USGS Publications Warehouse

    Kuniansky, Eve L.; Gómez-Gómez, Fernando; Torres-Gonzalez, Sigfredo

    2003-01-01

    The alluvial aquifer in the area of Santa Isabel is located within the South Coastal Plain aquifer of Puerto Rico. Variations in precipitation, changes in irrigation practices, and increasing public-supply water demand have been the primary factors controlling water-level fluctuations within the aquifer. Until the late 1970s, much of the land in the study area was irrigated using inefficient furrow flooding methods that required large volumes of both surface and ground water. A gradual shift in irrigation practices from furrow systems to more efficient micro-drip irrigation systems occurred between the late 1970s and the late 1980s. Irrigation return flow from the furrow-irrigation systems was a major component of recharge to the aquifer. By the early 1990s, furrow-type systems had been replaced by the micro-drip irrigation systems. Water levels declined about 20 feet in the aquifer from 1985 until present (February 2003). The main effect of the changes in agricultural practices is the reduction in recharge to the aquifer and total irrigation withdrawals. Increases in ground-water withdrawals for public supply offset the reduction in ground-water withdrawals for irrigation such that the total estimated pumping rate in 2003 was only 8 percent less than in 1987. Micro-drip irrigation resulted in the loss of irrigation return flow to the aquifer. These changes resulted in lowering the water table below sea level over most of the Santa Isabel area. By 2002, lowering of the water table reversed the natural discharge along the coast and resulted in the inland movement of seawater, which may result in increased salinity of the aquifer, as had occurred in other parts of the South Coastal Plain. Management alternatives for the South Coastal Plain aquifer in the vicinity of Santa Isabel include limiting groundwater withdrawals or implementing artificial recharge measures. Another alternative for the prevention of saltwater intrusion is to inject freshwater or treated sewage

  5. Speed control variable rate irrigation

    USDA-ARS?s Scientific Manuscript database

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  6. The effects of compound danshen dripping pills and human umbilical cord blood mononuclear cell transplant after acute myocardial infarction.

    PubMed

    Jun, Yi; Chunju, Yuan; Qi, Ai; Liuxia, Deng; Guolong, Yu

    2014-04-01

    The low frequency of survival of stem cells implanted in the myocardium after acute myocardial infarction may be caused by inflammation and oxidative stress in the myocardial microenvironment. We evaluated the effects of a traditional Chinese medicine, Compound Danshen Dripping Pills, on the cardiac microenvironment and cardiac function when used alone or in combination with human umbilical cord blood mononuclear cell transplant after acute myocardial infarction. After surgically induced acute myocardial infarction, rabbits were treated with Compound Danshen Dripping Pills alone or in combination with human umbilical cord blood mononuclear cell transplant. Evaluation included histology, measurement of left ventricular ejection fraction and fractional shortening, leukocyte count, count of green fluorescent protein positive cells, superoxide dismutase activity, and malondialdehyde content. Combination treatment with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cell transplant significantly increased the survival of implanted cells, inhibited cardiac cell apoptosis, decreased oxidative stress, decreased the inflammatory response, and improved cardiac function. Rabbits treated with either Compound Danshen Dripping Pills or human umbilical cord blood mononuclear cells alone had improvement in these effects compared with untreated control rabbits. Combination therapy with Compound Danshen Dripping Pills and human umbilical cord blood mononuclear cells may improve cardiac function and morphology after acute myocardial infarction.

  7. Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem.

    PubMed

    Carbone, Mariah S; Park Williams, A; Ambrose, Anthony R; Boot, Claudia M; Bradley, Eliza S; Dawson, Todd E; Schaeffer, Sean M; Schimel, Joshua P; Still, Christopher J

    2013-02-01

    Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover ~15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed ~3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. © 2012 Blackwell Publishing Ltd.

  8. Irrigation as a determinant of the land use impacts of biofuels

    NASA Astrophysics Data System (ADS)

    Liu, J.; Hertel, T. W.; Taheripour, F.

    2011-12-01

    Previous research into the global land use impacts of biofuels has assumed that cropland area could expand in most regions of the world. Indeed, such expansion into more carbon-rich land cover such as grassland or forest is the focus of research into the contributions of indirect land use to the GHG impacts of biofuels. Several studies have examined the global land use consequences of biofuel production. However, all of these studies have effectively treated all cropland as being rainfed. The role of irrigation in biofuel-induced cropland expansion has been wholly ignored. Irrigated croplands typically have much higher yields than their rainfed counterparts. As a consequence, irrigated lands that represent 20% global cropland cover account for 42% of global crop production. Thus, the question of whether expansion of biofuel involves irrigated or rainfed lands makes a significant difference in terms of how much new land will be required to provide the additional production called for in the presence of biofuels. If the new lands are irrigated, and therefore have higher yields than rainfed lands in the same Agro Ecological Zone (AEZs), then less land conversion will be required. However, this land conversion saving may be impossible because expansion of irrigated area is often constrained, either by insufficient water, or insufficient capacity. In this paper we explore the impact on iLUC estimates if irrigated area cannot be expanded. Since earlier studies have assumed the opposite (no constraint whatsoever on expansion), this paper offers an upper bound on the change in land use patterns once one accounts for irrigation. Results show that the change in global cropland area is 15% larger when the irrigation constraint is imposed. This is a direct consequence of the lower yields in rainfed areas. The figure is larger in the US, where the elimination of potential for expanding irrigated areas results in 23% more cropland cover change. The results also show that the

  9. Soil water sensing: Implications of sensor capabilities for variable rate irrigation management

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling using soil water sensors aims at maintaining the soil water content in the crop root zone above a lower limit defined by the management allowed depletion (MAD) for that soil and crop, but not so wet that too much water is lost to deep percolation, evaporation and runoff or that...

  10. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat

    USDA-ARS?s Scientific Manuscript database

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low precipitation zone (150 to 300 mm annually) of the...

  11. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  12. Modeling irrigation behavior in groundwater systems

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  13. Characterization of return flow pathways during flood irrigation

    NASA Astrophysics Data System (ADS)

    Claes, N.; Paige, G. B.; Parsekian, A.; Gordon, B. L.; Miller, S. N.

    2015-12-01

    With a decline in water resources available for private consumption and irrigation, the importance of sustainable water management practices is increasing. Local management decisions, based on models may affect the availability of water both locally and downstream, causing a ripple effect. It is therefore important that the models that these local management decisions are based on, accurately quantify local hydrological processes and the timescales at which they happen. We are focusing on return flow from flood irrigation, which can occur via different pathways back to the streams: overland flow, near-surface return flow and return flow via pathways below the vadose zone. The question addressed is how these different pathways each contribute to the total amount of return flow and the dynamics behind them. We used time-lapse ERT measurements in combination with an ensemble of ERT and seismic lines to answer this question via (1) capturing the process of gradual fragmentation of aqueous environments in the vadose zone during drying stages at field scale; (2) characterization of the formation of preferential flow paths from infiltrating wetting fronts during wetting cycles at field scale. The time-lapse ERT provides the possibility to capture the dynamic processes involved during the occurrence of finger flow or macro-pores when an intensive wetting period during flood irrigation occurs. It elucidates the dynamics of retention in the vadose zone during drying and wetting periods at field scale. This method provides thereby a link to upscale from laboratory experiments to field scale and watershed scale for finger flow and preferential flow paths and illustrates the hysteresis behavior at field scale.

  14. Quantitative Microbial Risk Assessment Models for Consumption of Raw Vegetables Irrigated with Reclaimed Water

    PubMed Central

    Hamilton, Andrew J.; Stagnitti, Frank; Premier, Robert; Boland, Anne-Maree; Hale, Glenn

    2006-01-01

    Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation

  15. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    NASA Astrophysics Data System (ADS)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  16. Farm water budgets for semiarid irrigated floodplains of northern New Mexico: characterizing the surface water-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Gutierrez, K. Y.; Fernald, A.; Ochoa, C. G.; Guldan, S. J.

    2013-12-01

    KEY WORDS - Hydrology, Water budget, Deep percolation, Surface water-Groundwater interactions. With the recent projections for water scarcity, water balances have become an indispensable water management tool. In irrigated floodplains, deep percolation from irrigation can represent one of the main aquifer recharge sources. A better understanding of surface water and groundwater interactions in irrigated valleys is needed for properly assessing the water balances in these systems and estimating potential aquifer recharge. We conducted a study to quantify the parameters and calculate the water budgets in three flood irrigated hay fields with relatively low, intermediate and, high water availability in northern New Mexico. We monitored different hydrologic parameters including total amount of water applied, change in soil moisture, drainage below the effective root zone, and shallow water level fluctuations in response to irrigation. Evapotranspiration was calculated from weather station data collected in-situ using the Samani-Hargreaves. Previous studies in the region have estimated deep percolation as a residual parameter of the water balance equation. In this study, we used both, the water balance method and actual measurements of deep percolation using passive lysimeters. Preliminary analyses for the three fields show a relatively rapid movement of water through the upper 50 cm of the vadose zone and a quick response of the shallow aquifer under flood irrigation. Further results from this study will provide a better understanding of surface water-groundwater interactions in flood irrigated valleys in northern New Mexico.

  17. Health and taste related compounds in strawberries under various irrigation regimes and bio-stimulant application.

    PubMed

    Kapur, Burcak; Sarıdaş, Mehmet Ali; Çeliktopuz, Eser; Kafkas, Ebru; Paydaş Kargı, Sevgi

    2018-10-15

    Strawberry has a unique status within the fruit species in terms of health and taste related compounds. This experimental study concerned the application of a bio-stimulant at various drip irrigation levels (IR125, IR100, IR75 and IR50). The effects of the bio-stimulant (seaweed extract) on the eating quality, i.e., the taste-related (TSS, fructose, glucose, sucrose and citric, malic, l-ascorbic acid), and health-related (antioxidant activity, total phenol, myricetin and quercetin) compounds were studied in two strawberry cultivars. The 'Rubygem' with its higher sugar and lower acid content has been more preferable than the 'Kabarla' cultivar. The bio-stimulant contributes to taste by improving the TSS, fructose, sucrose and also to health by increasing the quercetin content of the fruit which is associated to the cardiovascular properties and cancer reducing agents. The experiment conducted revealed significant increases only in the TSS contents and antioxidant activity under the IR50 and IR75 deficit irrigation treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Accuracy of the new ICD-9-CM code for "drip-and-ship" thrombolytic treatment in patients with ischemic stroke.

    PubMed

    Tonarelli, Silvina B; Tibbs, Michael; Vazquez, Gabriela; Lakshminarayan, Kamakshi; Rodriguez, Gustavo J; Qureshi, Adnan I

    2012-02-01

    A new International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis code, V45.88, was approved by the Centers for Medicare and Medicaid Services (CMS) on October 1, 2008. This code identifies patients in whom intravenous (IV) recombinant tissue plasminogen activator (rt-PA) is initiated in one hospital's emergency department, followed by transfer within 24 hours to a comprehensive stroke center, a paradigm commonly referred to as "drip-and-ship." This study assessed the use and accuracy of the new V45.88 code for identifying ischemic stroke patients who meet the criteria for drip-and-ship at 2 advanced certified primary stroke centers. Consecutive patients over a 12-month period were identified by primary ICD-9-CM diagnosis codes related to ischemic stroke. The accuracy of V45.88 code utilization using administrative data provided by Health Information Management Services was assessed through a comparison with data collected in prospective stroke registries maintained at each hospital by a trained abstractor. Out of a total of 428 patients discharged from both hospitals with a diagnosis of ischemic stroke, 37 patients were given ICD-9-CM code V45.88. The internally validated data from the prospective stroke database demonstrated that a total of 40 patients met the criteria for drip-and-ship. A concurrent comparison found that 92% (sensitivity) of the patients treated with drip-and-ship were coded with V45.88. None of the non-drip-and-ship stroke cases received the V45.88 code (100% specificity). The new ICD-9-CM code for drip-and-ship appears to have high specificity and sensitivity, allowing effective data collection by the CMS. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. The impact of fire on the geochemistry of speleothem-forming drip water in a sub-alpine cave.

    PubMed

    Coleborn, Katie; Baker, Andy; Treble, Pauline C; Andersen, Martin S; Baker, Andrew; Tadros, Carol V; Tozer, Mark; Fairchild, Ian J; Spate, Andy; Meehan, Sophia

    2018-06-12

    Fire dramatically modifies the surface environment by combusting vegetation and changing soil properties. Despite this well-documented impact on the surface environment, there has been limited research into the impact of fire events on karst, caves and speleothems. Here we report the first experiment designed to investigate the short-term impacts of a prescribed fire on speleothem-forming cave drip water geochemistry. Before and after the fire, water was collected on a bi-monthly basis from 18 drip sites in South Glory Cave, New South Wales, Australia. Two months post-fire, there was an increase in B, Si, Na, Fe and Pb concentrations at all drip sites. We conclude that this response is most likely due to the transport of soluble ash-derived elements from the surface to the cave drip water below. A significant deviation in stable water isotopic composition from the local meteoric water line was also observed at six of the sites. We hypothesise that this was due to partial evaporation of soil water resulting in isotopic enrichment of drip waters. Our results demonstrate that even low-severity prescribed fires can have an impact on speleothem-forming cave drip water geochemistry. These findings are significant because firstly, fires need to be considered when interpreting past climate from speleothem δ 18 O isotope and trace element records, particularly in fire prone regions such as Australia, North America, south west Europe, Russia and China. Secondly, it supports research that demonstrates speleothems could be potential proxy records for past fires. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Holistic irrigation water management approach based on stochastic soil water dynamics

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Appreciating the essential gap between fundamental unsaturated zone transport processes and soil and water management due to low effectiveness of some of monitoring and modeling approaches, this study presents a mathematical programming model for irrigation management optimization based on stochastic soil water dynamics. The model is a nonlinear non-convex program with an economic objective function to address water productivity and profitability aspects in irrigation management through optimizing irrigation policy. Utilizing an optimization-simulation method, the model includes an eco-hydrological integrated simulation model consisting of an explicit stochastic module of soil moisture dynamics in the crop-root zone with shallow water table effects, a conceptual root-zone salt balance module, and the FAO crop yield module. Interdependent hydrology of soil unsaturated and saturated zones is treated in a semi-analytical approach in two steps. At first step analytical expressions are derived for the expected values of crop yield, total water requirement and soil water balance components assuming fixed level for shallow water table, while numerical Newton-Raphson procedure is employed at the second step to modify value of shallow water table level. Particle Swarm Optimization (PSO) algorithm, combined with the eco-hydrological simulation model, has been used to solve the non-convex program. Benefiting from semi-analytical framework of the simulation model, the optimization-simulation method with significantly better computational performance compared to a numerical Mote-Carlo simulation-based technique has led to an effective irrigation management tool that can contribute to bridging the gap between vadose zone theory and water management practice. In addition to precisely assessing the most influential processes at a growing season time scale, one can use the developed model in large scale systems such as irrigation districts and agricultural catchments. Accordingly

  1. SDI increases water use efficiency of grain crops in the Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    In the semi-arid Southern High Plains, nearly all irrigation water is derived from the declining High Plains (Ogallala) aquifer. As well capacities likewise decline, one tactic for continued irrigation is to install subsurface drip irrigation (SDI) systems with zones sized to accommodate the limited...

  2. A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms.

    PubMed

    Li, Bin; Dunham, Sage J B; Ellis, Joseph F; Lange, Justin D; Smith, Justin R; Yang, Ning; King, Travis L; Amaya, Kensey R; Arnett, Clint M; Sweedler, Jonathan V

    2018-06-05

    The inherent architectural and chemical complexities of microbial biofilms mask our understanding of how these communities form, survive, propagate, and influence their surrounding environment. Here we describe a simple and versatile workflow for the cultivation and characterization of model flow-cell-based microbial ecosystems. A customized low-shear drip flow reactor was designed and employed to cultivate single and coculture flow-cell biofilms at the air-liquid interface of several metal surfaces. Pseudomonas putida F1 and Shewanella oneidensis MR-1 were selected as model organisms for this study. The utility and versatility of this platform was demonstrated via the application of several chemical and morphological imaging techniques-including matrix-assisted laser desorption/ionization mass spectrometry imaging, secondary ion mass spectrometry imaging, and scanning electron microscopy-and through the examination of model systems grown on iron substrates of varying compositions. Implementation of these techniques in combination with tandem mass spectrometry and a two-step imaging principal component analysis strategy resulted in the identification and characterization of 23 lipids and 3 oligosaccharides in P. putida F1 biofilms, the discovery of interaction-specific analytes, and the observation of several variations in cell and substrate morphology present during microbially influenced corrosion. The presented workflow is well-suited for examination of both single and multispecies drip flow biofilms and offers a platform for fundamental inquiries into biofilm formation, microbe-microbe interactions, and microbially influenced corrosion.

  3. Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon.

    PubMed

    Yokota, Akiho; Kawasaki, Shinji; Iwano, Megumi; Nakamura, Chie; Miyake, Chikahiro; Akashi, Kinya

    2002-06-01

    Drought-affected plants experience more than just desiccation of their organs due to water deficit. Plants transpire 1000 times more molecules of water than of CO2 fixed by photosynthesis in full sunlight. One effect of transpiration is to cool the leaves. Accordingly, drought brings about such multi-stresses as high temperatures, excess photoradiation and other factors that affect plant viability. Wild watermelon serves as a suitable model system to study drought responses of C3 plants, since this plant survives drought by maintaining its water content without any wilting of leaves or desiccation even under severe drought conditions. Under drought conditions in the presence of strong light, wild watermelon accumulates high concentrations of citrulline, glutamate and arginine in its leaves. The accumulation of citrulline and arginine may be related to the induction of DRIP-1, a homologue of ArgE in Escherichia coli, where it functions to incorporate the carbon skeleton of glutamate into the urea cycle. Immunogold electron microscopy reveals the enzyme to be confined exclusively to the cytosol. DRIP-1 is also induced by treating wild watermelon with 150 mM NaCl, but is not induced following treatment with 100 microM abscisic acid. The salt treatment causes the accumulation of gamma-aminobutyrate, glutamine and alanine, in addition to a smaller amount of citrulline. Citrulline may function as a potent hydroxyl radical scavenger.

  4. Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi

    2009-10-01

    We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.

  5. Water budget and simulation of one-dimensional unsaturated flow for a flood- and a sprinkler-irrigated field near Milford, Utah

    USGS Publications Warehouse

    Susong, David D.

    1995-01-01

    Ground-water recharge to basin-fill aquifers from unconsumed irrigation water in the western United States is being reduced as irrigators convert to more efficient irrigation systems. In some areas, these changes in irrigation methods may be contributing to ground-water-level declines and reducing the quantity of water available to downgradient users. The components of the water budget were measured or calculated for each field for the 1992 and 1993 irrigation seasons. Precipitation was about 6.5 cm (2.6 inches) both years. The flood-irrigated field received 182 and 156 centimeters (71.6 and 61.4 inches) of irrigation water in 1992 and 1993, and the sprinkler-irrigated field received 52.8 and 87.2 centimeters (20.8 and 34.3 inches) of water, respectively. Evapotranspiration for alfalfa was calculated using the Penman-Monteith combination equation and was 95.4 and 84.3 centimeters (37.2 and 33.2 inches) for 1992 and 1993, respectively. No runoff and no significant change in soil moisture in storage was observed from either field. Recharge to the aquifer from the flood-irrigated field was 93.3 and 78.1 centimeters (36.7 and 30.7 inches) in 1992 and 1993 and from the sprinkler-irrigated field was -35.9 and 9.3 centimeters (-14.1 and 3.7 inches), respectively. The daily water budget and soil-moisture profiles in the upper 6.4 meters (21 feet) of the unsaturated zone were simulated with an unsaturated flow model for average climate conditions. Simulated recharge was 57.4 and 50.5 percent of the quantity of irrigation water applied to the flood-irrigated field during 1992 and 1993, respectively, and was 8.7 and 13.8 percent of the quantity of irrigation water applied to the sprinkler- irrigated field.

  6. Water budget and simulation of one-dimensional unsaturated flow for a flood- and a sprinkler-irrigated field near Milford, Utah

    USGS Publications Warehouse

    Susong, D.D.

    1995-01-01

    Ground-water recharge to basin-fill aquifers from unconsumed irrigation water in the western United States is being reduced as irrigators convert to more efficient irrigation systems. In some areas, these changes in irrigation methods may be contributing to ground-water-level declines and reducing the quantity of water available to downgradient users. The components of the water budget were measured or calculated for each field for the 1992 and 1993 irrigation seasons. Precipitation was about 6.5 cm (2.6 inches) both years. The flood-irrigated field received 182 and 156 centimeters (71.6 and 61.4 inches) of irrigation water in 1992 and 1993, and the sprinkler-irrigated field received 52.8 and 87.2 centimeters (20.8 and 34.3 inches) of water, respectively. Evapotrans- piration for alfalfa was calculated using the Penman-Monteith combination equation and was 95.4 and 84.3 centimeters (37.2 and 33.2 inches) for 1992 and 1993, respectively. No runoff and no signifi- cant change in soil moisture in storage was observed from either field. Recharge to the aquifer from the flood-irrigated field was 93.3 and 78.1 centimeters (36.7 and 30.7 inches) in 1992 and 1993 and from the sprinkler-irrigated field was -35.9 and 9.3 centimeters (-14.1 and 3.7 inches), respectively. The daily water budget and soil-moisture profiles in the upper 6.4 meters (21 feet) of the unsaturated zone were simulated with an unsaturated flow model for average climate conditions. Simulated recharge was 57.4 and 50.5 percent of the quantity of irrigation water applied to the flood-irrigated field during 1992 and 1993, respectively, and was 8.7 and 13.8 percent of the quantity of irrigation water applied to the sprinkler-irrigated field.

  7. Accurate Inventories Of Irrigated Land

    NASA Technical Reports Server (NTRS)

    Wall, S.; Thomas, R.; Brown, C.

    1992-01-01

    System for taking land-use inventories overcomes two problems in estimating extent of irrigated land: only small portion of large state surveyed in given year, and aerial photographs made on 1 day out of year do not provide adequate picture of areas growing more than one crop per year. Developed for state of California as guide to controlling, protecting, conserving, and distributing water within state. Adapted to any large area in which large amounts of irrigation water needed for agriculture. Combination of satellite images, aerial photography, and ground surveys yields data for computer analysis. Analyst also consults agricultural statistics, current farm reports, weather reports, and maps. These information sources aid in interpreting patterns, colors, textures, and shapes on Landsat-images.

  8. Center Pivot Irrigated Agriculture, Libya

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A view of the Faregh Agricultural Station in the Great Calanscio Sand Sea, Libya (26.5N, 22.0E) about 300 miles southeast of Benghazi. A pattern of water wells have been drilled several miles apart to support a quarter mile center-pivot-swing-arm agricultural irrigation system. The crop grown is alfalfa which is eaten on location by flocks of sheep following the swing arm as it rotates. At maturity, the sheep are flown to market throughout Libya.

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  10. Present-day irrigation mitigates heat extremes

    DOE PAGES

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; ...

    2017-02-16

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impactmore » on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. In conclusion, our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.« less

  11. Present-day irrigation mitigates heat extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, David M.; Hirsch, Annette L.; Hauser, Mathias; Seneviratne, Sonia I.

    2017-02-01

    Irrigation is an essential practice for sustaining global food production and many regional economies. Emerging scientific evidence indicates that irrigation substantially affects mean climate conditions in different regions of the world. Yet how this practice influences climate extremes is currently unknown. Here we use ensemble simulations with the Community Earth System Model to assess the impacts of irrigation on climate extremes. An evaluation of the model performance reveals that irrigation has a small yet overall beneficial effect on the representation of present-day near-surface climate. While the influence of irrigation on annual mean temperatures is limited, we find a large impact on temperature extremes, with a particularly strong cooling during the hottest day of the year (-0.78 K averaged over irrigated land). The strong influence on extremes stems from the timing of irrigation and its influence on land-atmosphere coupling strength. Together these effects result in asymmetric temperature responses, with a more pronounced cooling during hot and/or dry periods. The influence of irrigation is even more pronounced when considering subgrid-scale model output, suggesting that local effects of land management are far more important than previously thought. Our results underline that irrigation has substantially reduced our exposure to hot temperature extremes in the past and highlight the need to account for irrigation in future climate projections.

  12. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water

    USGS Publications Warehouse

    Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D.

    2006-01-01

    Three sites in the Front Range of Colorado, USA, were monitored from May through September 2003 to assess the presence and distribution of pharmaceuticals in soil irrigated with reclaimed water derived from urban wastewater. Soil cores were collected monthly, and 19 pharmaceuticals, all of which were detected during the present study, were measured in 5-cm increments of the 30-cm cores. Samples of reclaimed water were analyzed three times during the study to assess the input of pharmaceuticals. Samples collected before the onset of irrigation in 2003 contained numerous pharmaceuticals, likely resulting from the previous year's irrigation. Several of the selected pharmaceuticals increased in total soil concentration at one or more of the sites. The four most commonly detected pharmaceuticals were erythromycin, carbamazepine, fluoxetine, and diphenhydramine. Typical concentrations of the individual pharmaceuticals observed were low (0.02-15 ??g/kg dry soil). The existence of subsurface maximum concentrations and detectable concentrations at the lowest sampled soil depth might indicate interactions of soil components with pharmaceuticals during leaching through the vadose zone. Nevertheless, the present study demonstrates that reclaimed-water irrigation results in soil pharmaceutical concentrations that vary through the irrigation season and that some compounds persist for months after irrigation. ?? 2006 SETAC.

  13. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  14. Food security, irrigation, climate change, and water scarcity in India

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  15. Soil CO2 emissions in terms of irrigation management in an agricultural soil

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; María de la Rosa, José; Faz, Ángel; Domingo, Rafael; Pérez-Pastor, Alejandro; Ángeles Muñoz, María

    2014-05-01

    Irrigation water restrictions in the Mediterranean area are reaching worrying proportions and represent a serious threat to traditional crops and encourage the movement of people who choose to work in other activities. This situation has created a growing interest in water conservation, particularly among practitioners of irrigated agriculture, the main recipient of water resources (>80%). For these and other reasons, the scientific and technical irrigation scheduling of water use to maintain and even improve harvest yield and quality has been and will remain a major challenge for irrigated agriculture. Apart from environmental and economic benefits by water savings, deficit irrigation may contribute to reduce soil CO2 emissions and enhance C sequestration in soils. The reduction of soil moisture levels decreases microbial activity, with the resulting slowing down of organic matter mineralization. Besides, the application of water by irrigation may increment the precipitation rate of carbonates, favoring the storage of C, but depending on the source of calcium or bicarbonate, the net reaction can be either storage or release of C. Thus, the objective of this study was to assess if deficit irrigation, besides contributing to water savings, can reduce soil CO2 emissions and favor the accumulation of C in soils in stable forms. The experiment was carried out along 2012 in a commercial orchard from southeast Spain cultivated with nectarine trees (Prunus persica cv. 'Viowhite'). The irrigation system was drip localized. Three irrigation treatments were assayed: a control (CT), irrigated to satisfy the total hydric needs of the crop; a first deficit irrigation (DI1), irrigated as CT except for postharvest period (16 June - 28 October) were 50% of CT was applied; and a second deficit irrigation (DI2), irrigated as DI1, except for two periods in which irrigation was suppressed (16 June-6 July and 21 July-17 August). Each treatment was setup in triplicate, randomly

  16. Bladder irrigation in patients with indwelling catheters.

    PubMed

    Bruun, J N; Digranes, A

    1978-01-01

    The effect of intermittent bladder irrigation on the bacterial counts in urine samples was studied in patients with indwelling catheter and pre-existing urinary tract infection. Four different irrigating solutions were used. Irrigation with saline or 0.25% acetic acid had no effect on the urinary bacterial count. The bacterial counts were effectively reduced during intermittent irrigation both with 0.02% chlorhexidine and with 0.25% silver nitrate. Silver nitrate gave the greatest reduction of bacterial counts but chlorhexidine is preferable due to fewer side effects and greater convenience.

  17. Managing diminished irrigation capacity with preseason irrigation and plant density for corn production

    USDA-ARS?s Scientific Manuscript database

    Many of the irrigation systems today in the U.S. Central Great Plains no longer have the capacity to match peak irrigation needs during the summer and must rely on soil water reserves to buffer the crop from water stress. Considerable research was conducted on preseason irrigation in the U.S. Great ...

  18. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    USDA-ARS?s Scientific Manuscript database

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  19. The simulation of cropping pattern to improve the performance of irrigation network in Cau irrigation area

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, Retno; Rintis Hadiani, RR; Sobriyah

    2017-01-01

    Cau irrigation area located in Madiun district, East Java Province, irrigates 1.232 Ha of land which covers Cau primary channel irrigation network, Wungu Secondary channel irrigation network, and Grape secondary channel irrigation network. The problems in Cau irrigation area are limited availability of water especially during the dry season (planting season II and III) and non-compliance to cropping patterns. The evaluation of irrigation system performance of Cau irrigation area needs to be done in order to know how far the irrigation system performance is, especially based on planting productivity aspect. The improvement of irrigation network performance through cropping pattern optimization is based on the increase of water necessity fulfillment (k factor), the realization of planting area and rice productivity. The research method of irrigation system performance is by analyzing the secondary data based on the Regulation of Ministry of Public Work and State Minister for Public Housing Number: 12/PRT/M/2015. The analysis of water necessity fulfillment (k factor) uses Public Work Plan Criteria Method. The performance level of planting productivity aspect in existing condition is 87.10%, alternative 1 is 93.90% dan alternative 2 is 96.90%. It means that the performance of the irrigation network from productivity aspect increases 6.80% for alternative 1 and 9.80% for alternative 2.

  20. Effect of ionizing radiation on the physiological activities of ethanol extract from hizikia fusiformis cooking drips.

    PubMed

    Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon

    2009-01-01

    Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.

  1. Spectroscopy at the two-proton drip line: Excited states in 158W

    NASA Astrophysics Data System (ADS)

    Joss, D. T.; Page, R. D.; Herzán, A.; Donosa, L.; Uusitalo, J.; Carroll, R. J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A.-P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.

    2017-09-01

    Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.

  2. [The succinyl-choline drip as a muscle relaxant for ether-air anesthesia (author's transl)].

    PubMed

    Lunt, R L; Kamm, G

    1976-11-19

    We made a test series with ether-air anesthesia in combination with the succinyl-choline (SCC) drip-method. The 53 patients (40 Africans, 10 Indians, 3 Europeans) were 1 to 85 years old. The results we obtained were good: There were no fundamental changes with regard to the circulatory system; the risk of an overdose as well as of a dual block can be reduced by careful observation of the muscular action after the first SCC dose; post-operative complications, too, can be reduced. The ether-air anesthesia is an uncomplicated and cheap method. It is, in combination with succinyl-choline infusion as a muscle relaxant, a most useful anesthetic method for short operations in developing countries.

  3. Influence of the impact energy on the pattern of blood drip stains

    NASA Astrophysics Data System (ADS)

    Smith, F. R.; Nicloux, C.; Brutin, D.

    2018-01-01

    The maximum spreading diameter of complex fluid droplets has been extensively studied and explained by numerous physical models. This research focuses therefore on a different aspect, the bulging outer rim observed after evaporation on the final dried pattern of blood droplets. A correlation is found between the inner diameter, the maximum outer diameter, and the impact speed. This shows how the drying mechanism of a blood drip stain is influenced by the impact energy, which induces a larger spreading diameter and thus a different redistribution of red blood cells inside the droplet. An empirical relation is established between the final dried pattern of a passive bloodstain and its impact speed, yielding a possible forensic application. Indeed, being able to relate accurately the energy of the drop with its final pattern would give a clue to investigators, as currently no such simple and accurate tool exists.

  4. The design of liquid drip speed monitoring device system based on MCU

    NASA Astrophysics Data System (ADS)

    Zheng, Shiyong; Li, Zhao; Li, Biqing

    2017-08-01

    This page proposed an intelligent transfusion control and monitoring system which designed by using AT89S52 micro controller as the core, using the keyboard and photoelectric sensor as the input module, digital tube and motor as the output module. The keyboard is independent and photoelectric sensor can offer reliable detection for liquid drop speed and the transfusion bottle page. When the liquid amount is less than the warning value, the system sounded the alarm, you can remove the alert by hand movement. With the advantages of speed controllable and input pulse power can be maintained of the motor, the system can control the bottle through the upper and lower slow-moving liquid drip to control the speed of intelligent purpose.

  5. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    PubMed

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  6. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  7. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    NASA Astrophysics Data System (ADS)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  8. Assessing the use of 3H-3He dating to determine the subsurface transit time of cave drip waters.

    PubMed

    Kluge, Tobias; Wieser, Martin; Aeschbach-Hertig, Werner

    2010-09-01

    (3)H-(3)He measurements constitute a well-established method for the determination of the residence time of young groundwater. However, this method has rarely been applied to karstified aquifers and in particular to drip water in caves, despite the importance of the information which may be obtained. Besides the determination of transfer times of climate signals from the atmosphere through the epikarst to speleothems as climate archives, (3)H-(3)He together with Ne, Ar, Kr, Xe data may also help to give new insights into the local hydrogeology, e.g. the possible existence of a perched aquifer above a cave. In order to check the applicability of (3)H-(3)He dating to cave drips, we collected drip water samples from three adjacent caves in northwestern Germany during several campaigns. The noble gas data were evaluated by inverse modelling to obtain recharge temperature and excess air, supporting the calculation of the tritiogenic (3)He and hence the (3)H-(3)He age. Although atmospheric noble gases were often found to be close to equilibrium with the cave atmosphere, several drip water samples yielded an elevated (3)He/(4)He ratio, providing evidence for the accumulation of (3)He from the decay of (3)H. No significant contribution of radiogenic (4)He was found, corresponding to the low residence times mostly in the range of one to three years. Despite complications during sampling, conditions of a perched aquifer could be confirmed by replicate samples at one drip site. Here, the excess air indicator ΔNe was about 10 %, comparable to typical values found in aquifers in mid-latitudes. The mean (3)H-(3)He age of 2.1 years at this site presumably refers to the residence time in the perched aquifer and is lower than the entire transit time of 3.4 years estimated from the tritium data.

  9. Evaluation Intravenous Drip Cephazolin Prophylaxis of Breast Cancer Surgery Site Infection.

    PubMed

    Yang, Sufang; Liu, Guohua; Tang, Danling; Cai, De

    2017-09-01

    The efficacy of antibiotic prophylaxis for the prevention of surgical site infection (SSI) after breast cancer surgery remains uncertain. The authors of a recent Cochrane meta-analysis based on 15 randomized trials were unable to draw a definitive conclusion. The purpose of this study was to determine the effectiveness of prophylactic antibiotics for the prevention of SSI after breast cancer surgery and the risk factors for SSI. Breast cancer patients who underwent mastectomy at the authors' institution were enrolled in this study. All the patients give cephazolin by intravenous drip within 1 hour before surgery. Surgical site infection was defined using Centers for Disease Control criteria. Risk factors were abstracted from the electronic medical record. Pearson χ test, Student t test, and multivariable logistic regression were used for the analysis. Four hundred fifty-eight patients undergoing mastectomy were enrolled in this study, including 293 with intravenous drip cephazolin and 165 without. Among them, an overall SSI rate of 6.1% was observed; 4.2% of patients without prophylactic antibiotics developed SSI compared with 7.2% with antibiotics (P = 0.210). Factors associated with SSI were hypertension, diabetes, length of stay (d), age, and length of stay. Weight, duration of surgery, No. of drains, surgical procedure, and type of breast disease were not associated with increased SSI rates. Surgical site infection rates among patients who did and did not receive cephazolin after mastectomy had no significantly different. What is more, the authors should focus on advanced age, hypertension, diabetes, length of stay, and length of stay to decrease development of postoperative SSI rates.

  10. Irrigation as an Historical Climate Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  11. Management of lactating sows during heat stress: effects of water drip, snout coolers, floor type and a high energy-density diet.

    PubMed

    McGlone, J J; Stansbury, W F; Tribble, L F

    1988-04-01

    Two experiments using 120 sows were conducted to determine the effects during heat stress of two floor types, snout coolers or a water drip system, and a high energy-density diet. During both studies, air temperature was maintained at or above 29 degrees C. Floor types included partially slotted concrete and plastic-coated, expanded metal. In Exp. 1, in addition to floor-type treatments, snout coolers were on or off and the water drip was on for 3 min each 10 min or off. Snout coolers increased (P less than .05) sow feed intake and decreased (P less than .05) sow lactation weight loss. Water drip increased (P less than .002) sow feed intake and reduced lactation weight loss. The drip X floor-type interaction was significant for most measures of piglet performance. Drip was beneficial for piglet weights when piglets were on plastic, whereas drip was detrimental to piglet performance while they were housed on concrete. In Exp. 2, two floor types, drip or no-drip and a high energy-density diet or control diet were examined during heat stress. The high energy-density diet reduced (P less than .01) sow feed intake but provided no measurable increase in piglet performance during heat stress. We conclude that water drip is an effective cooling technique for heat-stressed sows, especially when floors are plastic. Snout coolers, partial concrete slots and high energy-density diets provided only minor benefits to heat-stressed sows and were not of benefit to piglets nursing heat-stressed sows.

  12. Practical implications of applied irrigation research

    USDA-ARS?s Scientific Manuscript database

    Groundwater is essential to irrigated agriculture in the semi-arid Texas High Plains. Concerns over groundwater depletion have led to increased emphasis on water conservation. Irrigation scheduling coupled with accurate crop water use (ET) estimation is one of the most effective means to both conser...

  13. Soil-moisture sensors and irrigation management

    USDA-ARS?s Scientific Manuscript database

    This agricultural irrigation seminar will cover the major classes of soil-moisture sensors; their advantages and disadvantages; installing and reading soil-moisture sensors; and using their data for irrigation management. The soil water sensor classes include the resistance sensors (gypsum blocks, g...

  14. Using Automation to Improve Surface Irrigation Management

    USDA-ARS?s Scientific Manuscript database

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  15. Irrigation scheduling: When, where, and how much?

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...

  16. Precision irrigation for improving crop water management

    USDA-ARS?s Scientific Manuscript database

    Precision irrigation is gaining attention by the agricultural industry as a means to optimize water inputs, reduce environmental degradation from runoff or deep percolation and maintain crop yields. This presenation will discuss the mechanical and software framework of the irrigation scheduling sup...

  17. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    PubMed Central

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  18. Stormwater harvesting for irrigation purposes: an investigation of chemical quality of water recycled in pervious pavement system.

    PubMed

    Nnadi, Ernest O; Newman, Alan P; Coupe, Stephen J; Mbanaso, Fredrick U

    2015-01-01

    Most available water resources in the world are used for agricultural irrigation. Whilst this level of water use is expected to increase due to rising world population and land use, available water resources are expected to become limited due to climate change and uneven rainfall distribution. Recycled stormwater has the potential to be used as an alternative source of irrigation water and part of sustainable water management strategy. This paper reports on a study to investigate whether a sustainable urban drainage system (SUDS) technique, known as the pervious pavements system (PPS) has the capability to recycle water that meets irrigation water quality standard. Furthermore, the experiment provided information on the impact of hydrocarbon (which was applied to simulate oil dripping from parked vehicles onto PPS), leaching of nutrients from different layers of the PPS and effects of nutrients (applied to enhance bioremediation) on the stormwater recycling efficiency of the PPS. A weekly dose of 6.23 × 10(-3) L of lubricating oil and single dose of 17.06 g of polymer coated controlled-release fertilizer granules were applied to the series of 710 mm × 360 mm model pervious pavement structure except the controls. Rainfall intensity of 7.4 mm/h was applied to the test models at the rate of 3 events per week. Analysis of the recycled water showed that PPS has the capability to recycle stormwater to a quality that meets the chemical standards for use in agricultural irrigation irrespective of the type of sub-base used. There is a potential benefit of nutrient availability in recycled water for plants, but care should be taken not to dispose of this water in natural water courses as it might result in eutrophication problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  20. Highly Arid Oasis Yield, Soil Mineral N Accumulation and N Balance in a Wheat-Cotton Rotation with Drip Irrigation and Mulching Film Management

    PubMed Central

    Lv, Jinling; Liu, Hua; Wang, Xihe; Li, Kaihui; Tian, Changyan; Liu, Xuejun

    2016-01-01

    Few systematic studies have been carried out on integrated N balance in extremely arid oasis agricultural areas. A two-year field experiment was conducted to evaluate the N input and output balances under long-term fertilization conditions. Five treatments were chosen, namely CK (no fertilizer), NPK, NPKS (10% straw return N and 90% chemical N), NPKM (one third urea-N, two thirds sheep manure) and NPKM+ (1.5 times NPKM). The results show an abundance of dry and wet N deposition (33 kg N ha-1 yr-1) in this area. All treatments (excluding CK) showed no significant difference in wheat production (P>0.05). NPKM gave higher cotton yields (P<0.05). In both crops, NPKM and NPKS treatments had a relatively higher N harvest index (NHI). 15N-labeled results reveal that the fertilizer N in all N treatments leached to<1 m depth and a high proportion of fertilizer-N remained in the top 60 cm of the soil profile. The NPKM+ treatment had the highest residual soil mineral N (Nmin, 558 kg Nd ha-1), and NPKM and NPKS treatments had relatively low soil Nmin values (275 and 293 kg N ha-1, respectively). Most of the treatments exhibited very high apparent N losses, especially the NPKM+ treatment (369kg N ha-1). Our arid research area had a strikingly high N loss compared to less arid agricultural areas. Nitrogen inputs therefore need careful reconsideration, especially the initial soil Nmin, fertilizer N inputs, dry and wet deposition, and appropriate organic and straw inputs which are all factors that must be taken into account under very arid conditions. PMID:27798654

  1. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization

    Treesearch

    Mark Coleman

    2007-01-01

    In forest trees, roots mediate such significant carbon fluxes as primary production and soil C02 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of...

  2. Historical influence of irrigation on climate extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  3. On the Control of Solute Mass Fluxes and Concentrations Below Fields Irrigated With Low-Quality Water: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Russo, David

    2017-11-01

    The main goal of this study was to test the capability of irrigation water-based and soil-based approaches to control nitrate and chloride mass fluxes and concentrations below the root zone of agricultural fields irrigated with treated waste water (TWW). Using numerical simulations of flow and transport in relatively a fine-textured, unsaturated, spatially heterogeneous, flow domain, scenarios examined include: (i) irrigating with TWW only (REF); (ii) irrigation water is substituted between TWW and desalinized water (ADW); (iii) soil includes a capillary barrier (CB) and irrigating with TWW only (CB + TWW); and (iv) combination of (ii) and a CB (CB + ADW). Considering groundwater quality protection, plausible goals are: (i) to minimize solute discharges leaving the root zone, and, (ii) to maximize the probability that solute concentrations leaving the root zone will not exceed a prescribed, critical value. Results of the analyses suggest that in the case of a seasonal crop (a corn field) subject to irrigations only, with respect to the first goal, the CB + TWW and CB + ADW scenarios provide similar, excellent results, better than the ADW scenario; with respect to the second goal, however, the CB + ADW scenario gave substantially better results than the CB + TWW scenario. In the case a multiyear, perennial crop (a citrus orchard), subject to a sequence of irrigation and rainfall periods, for both solutes, and, particularly, nitrate, with respect to the two goals, both the ADW and CB + ADW scenarios perform better than the CB + TWW scenario. As compared with the REF and CB + TWW scenarios, the ADW and CB + ADW scenarios substantially reduce nitrogen mass fluxes to the groundwater and to the atmosphere, and, essentially, did not reduce nitrogen mass fluxes to the trees. Similar results, even better, were demonstrated for a relatively coarse-textured, spatially heterogeneous soil.

  4. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water

  5. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  6. Increasing dietary lysine increases final pH and decreases drip loss of broiler breast meat.

    PubMed

    Berri, C; Besnard, J; Relandeau, C

    2008-03-01

    Responses to increased dietary Lys concentrations were evaluated on 1,584 Ross 308 male broilers between 21 and 42 d of age housed according to 2 bird densities. The experimental design was composed of 8 factorial treatments: 2 bird densities (22 or 44 broilers/ 1.7 m(2) pen) x 4 true digestible (TD) Lys levels (0.83, 0.93, 1.03, and 1.13%). There were 6 repetitions per treatment. Birds were weighed individually at d 21 and 42. Feed consumption was recorded per pen. Body weight gain and feed conversion were calculated over the experimental period. Forty-eight broilers per treatment were dissected at 42 d of age. Final pH and drip loss during storage were measured on the pectoralis major. Density adversely affected feed intake (169 +/- 1 and 160 +/- 1 g/d with 22 and 44 birds per pen, respectively, P < 0.05), growth rate (97.4 +/- 0.5 and 91.0 +/- 0.7 g/d, P < 0.05), and feed conversion (1.730 +/- 0.008 and 1.760 +/- 0.006, P < 0.05). Except for feed intake, there was no interaction between the effects of bird density and dietary Lys. An increase in dietary TD Lys from 0.83 to 0.93% resulted in an increased growth rate (from 91.8 +/- 1.6 to 95.5 +/- 0.8 g/d, P < 0.05), improved feed conversion (from 1.783 +/- 0.008 to 1.742 +/- 0.009, P < 0.05), and increased breast meat yield (22.0 +/- 0.1% to 22.7 +/- 0.2%, P < 0.01). Performance and body composition traits were not significantly improved for concentrations of TD Lys higher than 0.93%. However, final breast pH increased from 0.83 up to 1.03% TD Lys in the diet (6.02 +/- 0.01 vs. 5.91 +/- 0.01, P < 0.05), and drip loss correlatively decreased (0.85 +/- 0.03% vs. 1.10 +/- 0.06, P < 0.05). This result opens new way of research for the definition of an amino acid requirement and on metabolic pathways involved in variations of breast muscle pH.

  7. Irrigation water use in Kansas, 2013

    USGS Publications Warehouse

    Lanning-Rush, Jennifer L.

    2016-03-22

    This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture, Division of Water Resources, presents derivative statistics of 2013 irrigation water use in Kansas. The published regional and county-level statistics from the previous 4 years (2009–12) are shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented. Total reported irrigation water use in 2013 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  8. Ancestral irrigation method by kanis in Bolivia

    NASA Astrophysics Data System (ADS)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  9. Afghanistan irrigation system assessment using remote sensing

    NASA Astrophysics Data System (ADS)

    Haack, Barry

    1997-01-01

    The Helmand-Arghandab Valley irrigation system in southern Afghanistan is one of the country's most important capital resources. Prior to the civil and military conflict that has engulfed Afghanistan for more than 15 years, agricultural lands irrigated by the system produced a large proportion of the country's food grains and cotton. This study successfully employed Landsat satellite imagery, Geographic Information Systems (GIS), Global Positioning Systems (GPS), and field surveys to assess changes that have occurred in this system since 1973 as a consequence of the war. This information is a critical step in irrigation rehabilitation for restoration of Afghanistan's agricultural productivity.

  10. Economics of wind energy for irrigation pumping

    NASA Astrophysics Data System (ADS)

    Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.

    1980-07-01

    The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.

  11. Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method.

    PubMed

    Ryu, Jaehoon; Lee, Kisu; Yun, Juyoung; Yu, Haejun; Lee, Jungsup; Jang, Jyongsik

    2017-10-01

    Paintable carbon electrode-based perovskite solar cells (PSCs) are of particular interest due to their material and fabrication process costs, as well as their moisture stability. However, printing the carbon paste on the perovskite layer limits the quality of the interface between the perovskite layer and carbon electrode. Herein, an attempt to enhance the performance of the paintable carbon-based PSCs is made using a modified solvent dripping method that involves dripping of the carbon nanotubes (CNTs), which is dispersed in chlorobenzene solution. This method allows CNTs to penetrate into both the perovskite film and carbon electrode, facilitating fast hole transport between the two layers. Furthermore, this method is results in increased open circuit voltage (V oc ) and fill factor (FF), providing better contact at the perovskite/carbon interfaces. The best devices made with CNT dripping show 13.57% power conversion efficiency and hysteresis-free performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Using container weights to determine irrigation needs: A simple method

    Treesearch

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  13. Does deficit irrigation of field crops increase water use efficiency

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation is often proposed as a method to stretch limited irrigation water supply and increase water use efficiency. A field study of field crops in the high plains shows that water use efficiency, in terms of irrigation water applied, often increases with deficit irrigation. However, in t...

  14. Impacts of Irrigation on Land-Atmosphere Coupling Strength Under Different Evapotranspiration Characteristics

    NASA Astrophysics Data System (ADS)

    Liao, C. Y.; Lo, M. H.

    2017-12-01

    The Budyko curve displays that the magnitude of evapotranspiration (ET) is limited mainly by the availabilities of energy and water, i.e., under wet conditions, ET is primarily controlled by the available energy, while under dry conditions, ET is primarily controlled by the available water. Land-atmosphere coupling (LAC) strength, which relates to the Budyko curve, is widely discussed because of its contribution towards the improvement in seasonal climate forecasts. For example, the "hot spots" of LAC, where the soil moisture anomalies strongly affect the local precipitation, are found in the transition zones between wet and dry climates. ET of these transition zones is limited by the available water, but at the same time, the surface latent heat flux is large enough to trigger moist convection. Recently, the impacts of irrigation have gained lots of attention, including the change in LAC. Badger and Dirmeyer (2015) analyzed the climate response of Amazon forest replacement by crop with consideration of irrigation in model simulations, discovering negative relationship between added irrigation water and coupling between the soil moisture and the latent heat flux. In addition, Lu et al. (2017) found remarkable decreases of LAC strength with the increase of irrigated cropland percentage in the Great Plains of America. The two studies show that irrigation is possible to affect land-atmosphere coupling strength. However, whether the irrigation process leads to the reduction of coupling strength in other regions of the world remains unclear. This study aims to compare the differences of irrigation impact on land-atmosphere coupling strength between five selected locations undergoing intense irrigation: India, North China Plain, Southwest Europe, Great Plains and Middle East. The spatial divergence of the factor that limits the ET (e.g., either by the available energy or water) will be the focus in this study. Both offline simulation (Community Land Model) and couple

  15. Unsaturated flow dynamics during irrigation with wastewater: field and modelling study

    NASA Astrophysics Data System (ADS)

    Martinez-Hernandez, V.; de Miguel, A.; Meffe, R.; Leal, M.; González-Naranjo, V.; de Bustamante, I.

    2012-04-01

    To deal with water scarcity combined with a growing water demand, the reuse of wastewater effluents of wastewater treatment plants (WWTP) for industrial and agricultural purposes is considered as a technically and economically feasible solution. In agriculture, irrigation with wastewater emerges as a sustainable practice that should be considered in such scenarios. Water infiltration, soil moisture storage and evapotranspiration occurring in the unsaturated zone are fundamental processes that play an important role in soil water balance. An accurate estimation of unsaturated flow dynamics (during and after irrigation) is essential to improve wastewater management (i.e. estimating groundwater recharge or maximizing irrigation efficiency) and to avoid possible soil and groundwater affections (i.e. predicting contaminant transport). The study site is located in the Experimental Plant of Carrión de los Céspedes (Seville, Spain). Here, treated wastewater is irrigated over the soil to enhance plants growth. To obtain physical characteristics of the soil (granulometry, bulk density and water retention curve), soil samples were collected at different depths. A drain gauge passive capillary lysimeter was installed to determine the volume of water draining from the vadose zone. Volumetric water content of the soil was monitored by measuring the dielectric constant using capacitance/frequency domain technology. Three soil moisture probes were located at different depths (20, 50 and 70 cm below the ground surface) to control the variation of the volumetric water content during infiltration. The main aim of this study is to understand water flow dynamics through the unsaturated zone during irrigation by using the finite element model Hydrus-1D. The experimental conditions were simulated by a 90 cm long, one dimensional solution domain. Specific climatic conditions, wastewater irrigation rates and physical properties of the soil were introduced in the model as input parameters

  16. Discovery of 72Rb: A Nuclear Sandbank Beyond the Proton Drip Line

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Sinclair, L.; Söderström, P.-A.; Lorusso, G.; Davies, P.; Ferreira, L. S.; Maglione, E.; Wadsworth, R.; Wu, J.; Xu, Z. Y.; Nishimura, S.; Doornenbal, P.; Ahn, D. S.; Browne, F.; Fukuda, N.; Inabe, N.; Kubo, T.; Lubos, D.; Patel, Z.; Rice, S.; Shimizu, Y.; Takeda, H.; Baba, H.; Estrade, A.; Fang, Y.; Henderson, J.; Isobe, T.; Jenkins, D.; Kubono, S.; Li, Z.; Nishizuka, I.; Sakurai, H.; Schury, P.; Sumikama, T.; Watanabe, H.; Werner, V.

    2017-11-01

    In this Letter, the observation of two previously unknown isotopes is presented for the first time: 72Rb with 14 observed events and 77Zr with one observed event. From the nonobservation of the less proton-rich nucleus 73Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For 72Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, 72Rb, with a less exotic odd-even neighbor, 73Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The 72Rb half-life is consistent with a 5+→5 /2- proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9+(72Rb)→9 /2+ (71Kr) isomeric states with a broken mirror symmetry. These results imply that 72Kr is a strong waiting point in x-ray burst r p -process scenarios.

  17. Effect of silver-loaded PMMA on Streptococcus mutans in a drip flow reactor.

    PubMed

    Williams, Dustin L; Epperson, Richard Tyler; DeGrauw, Jeffery P; Nielsen, Mattias B; Taylor, Nicholas B; Jolley, Ryan D

    2017-09-01

    Orthodontic retention has been proposed as a life-long commitment for patients who desire to maintain straight teeth. However, the presence of foreign material increases risk of bacterial colonization and caries formation, of which Streptococcus mutans is a key contributor. Multiple studies have assessed the ability of silver to be added to base plate material and resist attachment of S. mutans. However, it does not appear that long-term washout in connection with biofilm growth under physiologically relevant conditions has been taken into consideration. In this study, silver was added to base plate material and exposed to short- or long-term washout periods. Materials were then assessed for their ability to resist biofilm formation of S. mutans using a drip flow reactor that modeled the human oral environment. Data indicated that silver was able to resist biofilm formation following short-term washout, but long-term washout periods resulted in a lack of ability to resist biofilm formation. These data will be important for future development of base plate materials to achieve long-term antimicrobial efficacy to reduce risk of caries formation and benefit patients in the long term. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2632-2639, 2017. © 2017 Wiley Periodicals, Inc.

  18. [Chemical-nutritional evaluation of Sorghum saccharatum var. sugar drip. A supplementation study with lactoserum proteins].

    PubMed

    de Arellano, M L; Cid, J A; Gimenez, I T; Mucciarelli, S

    1998-12-01

    The chemical-nutritional composition and some indexes of biological quality of sorghum (Sorghum saccharum, var. sugar drip) unwashed whole flour were studied. The culture and selection of sorghum were assayed in the "San Roque" Experimental Station of the Agriculture Department, Undersecretary of Agricultural Affairs, San Luis, Argentina. The obtained protein content was 7.5% (Nx6.25). The values for net protein utilization (NPU); true digestibility (tD); net protein ratio (NPR) and and relative net protein ratio (RNPR) were 12.4 +/- 0.6, 22.0 +/- 0.2, 0.8 +/- 0.1 and 24%, respectively. Deficient nitrogen utilization constitutes a limitation for the use of sorghum. However, considering its abundance and low cost, sorghum could become a profitable feeding resource if conveniently supplemented without increasing costs. Sorghum flour was supplemented with protein recovered from ricotta serum (50:50), discarded as industrial waste, in order to compensate for lysine and threonine deficiency in this cereal. Studies performed on this mixture gave RNPR values of 85.7%. This might permit us to infer that despite its low biological value, sorghum can be used as food resource, potentially for poultry, with adequate supplementation.

  19. Hydraulic characteristics of an underdrained irrigation circle, Muskegon County, wastewater disposal system, Michigan

    USGS Publications Warehouse

    McDonald, M.G.

    1981-01-01

    Muskegon County, Michigan, disposes of waste water by spray irrigating farmland on its waste-disposal site. Buried drains in the highly permeable unconfined aquifer at the site control the level of the water table. Hydraulic conductivity of the aquifer and drain-leakance, the reciprocal of resistance to flow into the drains, was determined at a representative irrigation circle while calibrating a model of the ground-water flow system. Hydraulic conductivity is 0.00055 meter per second in the north zone of the circle and 0.00039 meter per second in the south zone. Drain leakance is low in both zones: 2.9 x 10-6 meters per second in the north and 9.5 x 10-6 meters per second in the south. Low drain leakance is responsible for waterlogging when irrigation rates are maintained at design levels. The capacity of the study circle to accept waste water is 35 percent less than design capacity.

  20. High Resolution Time Series Cave Ventilation Processes and the Effects on Cave Air Chemistry and Drip Waters: Speleoclimatology and Proxy Calibration

    NASA Astrophysics Data System (ADS)

    Kowalczk, A. J.; Froelich, P. N.; Gaffka, C.; Tremaine, D.

    2008-12-01

    Continuous high resolution (sub-hourly), long-term (Nov 2007-present) monitoring of cave air chemistry (Temperature, Relative Humidity, Barometric Pressure, Radon-222, CO2, Air flow, Wind speed and direction) in a shallow subtropical cave (Hollow Ridge) in N Florida reveals two major ventilation mechanisms: 1) ventilation driven by winds across the cave entrances, and 2) ventilation driven by density differences between atmospheric and cave air. The degree and type of ventilation strongly influence the 222Rn and CO2 of cave air, which in turn affects the timing and extent of calcite deposition in speleothems. The degree of ventilation is estimated using a cave air CO2-δ13CO2 Keeling Plot, or a simple radon deficiency model. Results show cave air has an atmospheric component ranging from 10-90%. During fall and winter, average CO2 (700 ppmv) and 222Rn (50-100 dpm/L) are lower than in spring and summer (CO2 = 1200 ppmv; 222Rn = 1000 dpm/L) due to increased winter ventilation. Decreased ventilation during the summer allows CO2 and 222Rn levels to rise. Winter daily ventilation is primarily a function of density gradients between cave air and atmospheric air, while summer daily ventilation is primarily a function of late morning NW-NE winds above the cave. Stable isotope analyses of drip water (fracture drip and pore flow drip) and aquifer water from Hollow Ridge agree with previous isotope studies of drip water at Florida Caverns State Park, 2 km to the NE. During summer, isotopic composition of pore flow drip water (δ18O -3.8 to -4.0 per mil; δD -17.3 to -20.2 per mil VSMOW) and aquifer water (δ18O -4.0 per mil; δD -18.0 to -21.1 per mil) are similar to average annual weighted isotopic composition of precipitation (δ18O -3.6 per mil) while fracture drip waters (δ18O -3 to -3.4 per mil; δD -11.9 to -14.3 per mil) likely reflect the isotopic composition of individual precipitation events. Pore flow drip waters δ18O are weakly correlated with drip rates

  1. Loss of surface horizon of an irrigated soil detected by radiometric images of normalized difference vegetation index.

    NASA Astrophysics Data System (ADS)

    Fabian Sallesses, Leonardo; Aparicio, Virginia Carolina; Costa, Jose Luis

    2017-04-01

    The use of the soil in the Humid Pampa of Argentina has changed since the mid-1990s from agricultural-livestock production (that included pastures with direct grazing) to a purely agricultural production. Also, in recent years the area under irrigation by central pivot has been increased to 150%. The waters used for irrigation are sodium carbonates. The combination of irrigation and rain increases the sodium absorption ratio of soil (SARs), consequently raising the clay dispersion and reducing infiltration. This implies an increased risk of soil loss. A reduction in the development of white clover crop (Trifolium repens L.) was observed at an irrigation plot during 2015 campaign. The clover was planted in order to reduce the impact of two maize (Zea mays L.) campaigns under irrigation, which had increased soil SAR and deteriorated soil structure. SPOT-5 radiometric normalized difference vegetation index (NDVI) images were used to determine two zones of high and low production. In each zone, four random points were selected for further geo-referenced field sampling. Two geo-referenced measures of effective depth and surface soil sampling were carried out in each point. Texture of soil samples was determined by Pipette Method of Sedimentation Analysis. Data exploratory analysis showed that low production zone had a media effective depth = 80 cm and silty clay loam texture, while high production zone had a media effective depth > 140 cm and silt loam texture. The texture class of the low production zone did not correspond to prior soil studies carried out by the INTA (National Institute of Agricultural Technology), which showed that those soil textures were silt loam at surface and silty clay loam at sub-surface. The loss of the A horizon is proposed as a possible explanation, but further research is required. Besides, the need of a soil cartography actualization, which integrates new satellite imaging technologies and geo-referenced measurements with soil sensors is

  2. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  3. Research on the autumn irrigation schedule of Hetao Irrigation District of China

    NASA Astrophysics Data System (ADS)

    Han, Y.

    2016-12-01

    Salinization of soil has great influence on the function of crop land, leading to the crop failure to some extent. One of the inducement of salinization is that the water pressure of frozen soil is lower than that of unfrozen, salt is drew up to the frozen layer along with water during the freezing process. To prevent the salinization of soil, people carry out the autumn irrigation in Hetao Irrigation District which located is located in Bayannur City, Inner Mongolia, north of China. Autumn irrigation is an irrigation event before the freezing of soil, the function of autumn irrigation includes soil moisture conservation, loosening the soil and leaching the salt. Among all the crop models, none is designed to simulate the water and salt movement during freezing and thawing progress. So In this study, SWAP (Soil Water Atmosphere Plant) model is modified by adding the freezing and thawing module which enable the model to take into consideration the effect of freezing and thawing on water and salt movement. After validating the modified model using field data and lab test results, the model was used to simulate the results of various autumn irrigation schedules, exploring the influence of different autumn irrigation amounts on the water, salt and heat condition and transportation of soil. Finally, proper autumn irrigation schedule was obtained to instruct the production of Hetao Irrigation District.

  4. Evaluation of polyacrylamide on irrigation efficiency, soil conservation, and water quality in furrow irrigated Mid-South cotton production

    USDA-ARS?s Scientific Manuscript database

    Arkansas is a leading state in irrigated acres in the United States. As such, resulting groundwater decline and irrigation-induced soil erosion can have negative impacts. This establishes a need for irrigation management practices to improve irrigation efficiency as well as reduce soil erosion and i...

  5. An improved delivery system for bladder irrigation

    PubMed Central

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-01-01

    Introduction Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. Materials and methods In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. Results In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant

  6. An improved delivery system for bladder irrigation.

    PubMed

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  7. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low

  8. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  9. Solar- and wind-powered irrigation systems

    NASA Astrophysics Data System (ADS)

    Enochian, R. V.

    1982-02-01

    Five different direct solar and wind energy systems are technically feasible for powering irrigation pumps. However, with projected rates of fossil fuel costs, only two may produce significant unsubsidied energy for irrigation pumping before the turn of the century. These are photovoltaic systems with nonconcentrating collectors (providing that projected costs of manufacturing solar cells prove correct); and wind systems, especially in remote areas where adequate wind is available.

  10. System contemplations for precision irrigation in agriculture

    NASA Astrophysics Data System (ADS)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  11. Smart Water Conservation System for Irrigated Landscape

    DTIC Science & Technology

    2016-05-01

    purple pipe indicating reuse water) and properly labeled “not for human consumption”; • Do not connect rainwater overflow discharge to sanitary sewer...Report Smart Water Conservation System 75 May 2016 Condensate Capture If redirecting condensate from sanitary sewer, ensure sewer gases are managed...the spring/early summer to determine optimum irrigation safety factor. Irrigate at night or early morning. Set soak and cycle for clay soils. ET

  12. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    NASA Astrophysics Data System (ADS)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  13. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  14. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    PubMed Central

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node (“wEcoValve mote”) based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW. PMID:22346580

  15. A solar energy powered autonomous wireless actuator node for irrigation systems.

    PubMed

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  16. Simulated climate effects of desert irrigation geoengineering.

    PubMed

    Cheng, Wei; Moore, John C; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-04-18

    Geoengineering, the deliberate large-scale manipulation of earth's energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) - 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr -1 . In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes.

  17. Simulated climate effects of desert irrigation geoengineering

    PubMed Central

    Cheng, Wei; Moore, John C.; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-01-01

    Geoengineering, the deliberate large-scale manipulation of earth’s energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) – 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr−1. In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes. PMID:28418005

  18. Effects of shallow water table, salinity and frequency of irrigation water on the date palm water use

    NASA Astrophysics Data System (ADS)

    Askri, Brahim; Ahmed, Abdelkader T.; Abichou, Tarek; Bouhlila, Rachida

    2014-05-01

    In southern Tunisia oases, waterlogging, salinity, and water shortage represent serious threats to the sustainability of irrigated agriculture. Understanding the interaction between these problems and their effects on root water uptake is fundamental for suggesting possible options of improving land and water productivity. In this study, HYDRUS-1D model was used in a plot of farmland located in the Fatnassa oasis to investigate the effects of waterlogging, salinity, and water shortage on the date palm water use. The model was calibrated and validated using experimental data of sap flow density of a date palm, soil hydraulic properties, water table depth, and amount of irrigation water. The comparison between predicted and observed data for date palm transpiration rates was acceptable indicating that the model could well estimate water consumption of this tree crop. Scenario simulations were performed with different water table depths, and salinities and frequencies of irrigation water. The results show that the impacts of water table depth and irrigation frequency vary according to the season. In summer, high irrigation frequency and shallow groundwater are needed to maintain high water content and low salinity of the root-zone and therefore to increase the date palm transpiration rates. However, these factors have no significant effect in winter. The results also reveal that irrigation water salinity has no significant effect under shallow saline groundwater.

  19. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  20. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  1. Long term agronomic and environmental effects of irrigation with reclaimed wastewater

    NASA Astrophysics Data System (ADS)

    Yermiyahu, Uri; Ben-Gal, Alon; Dag, Arnon

    2014-05-01

    Fresh water in the Mediterranean region is generally scarce and only low quality reclaimed wastewater (RWW) is available for irrigation. The aim of the present study was to evaluate the effect of irrigation with RWW on tree growth and productivity and to quantify nitrate and chloride (Cl) losses in an olive orchard. Three treatments were tested on two cultivars (Barnea and Leccino); fresh water with standard fertigation (Fr), recycled water with standard fertigation (Re) and recycled water with reduced fertigation (in accordance to the K and N available in the recycled water) (Re-). The total amount of nutrients arriving with the RWW was substantial; 100, 30, 150 kg ha-1 N, P, K, respectively, ca. half of the recommended fertilization dosages. Throughout the 6 experimental years, fertigation treatments did not influence nutrient status in leaves and did not affect fruit or oil production. While similar amounts of water were applied, the Re and Re- treatments loaded the soil profile with 1.75 times more Cl than the Fr treatment. Additionally, significantly more nitrates were transported out of the root zone in the Re treatment compared to Fr and Re- for both cultivars. The results indicate that recycled water can be used for olive oil irrigation with no negative effects on oil yield or quality. Irrigation with RWW increased salt loads into and beyond the root zone. The nutritional constituents in the RWW used to irrigate olives should be accounted for in order to increase fertilizer application efficiency and minimize the transport of salts and nutrients into groundwater.

  2. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    PubMed

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  3. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    NASA Astrophysics Data System (ADS)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  4. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  5. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  6. Irrigation efficiency and quality of irrigation return flows in the Ebro River Basin: an overview.

    PubMed

    Causapé, J; Quílez, D; Aragüés, R

    2006-06-01

    The review analysis of twenty two irrigation efficiency (IE) studies carried out in the Ebro River Basin shows that IE is low (average IE)(avg)(= 53%) in surface-irrigated areas with high-permeable and shallow soils inadequate for this irrigation system, high (IE)(avg)(= 79%) in surface-irrigated areas with appropriate soils for this system, and very high (IE)(avg)(= 94%) in modern, automated and well managed sprinkler-irrigated areas. The unitary salt (total dissolved solids) and nitrate loads exported in the irrigation return flows (IRF) of seven districts vary, depending on soil salinity and on irrigation and N fertilization management, between 3-16 Mg salt/ha x year and 23-195 kg NO)(3) (-)-N/ha x year, respectively. The lower nitrate loads exported from high IE districts show that a proper irrigation design and management is a key factor to reduce off-site nitrogen pollution. Although high IE's also reduce off-site salt pollution, the presence of salts in the soil or subsoil may induce relatively high salt loads (>or=14 Mg/ha x year) even in high IE districts. Two important constrains identified in our revision were the short duration of most surveys and the lack of standards for conducting irrigation efficiency and mass balance studies at the irrigation district level. These limitations {emphasize the need for the establishment of a permanent and standardized network of drainage monitoring stations for the appropriate off-site pollution diagnosis and control of irrigated agriculture.

  7. The Value of Weather Forecast in Irrigation

    NASA Astrophysics Data System (ADS)

    Cai, X.; Wang, D.

    2007-12-01

    This paper studies irrigation scheduling (when and how much water to apply during the crop growth season) in the Havana Lowlands region, Illinois, using meteorological, agronomic and agricultural production data from 2002. Irrigation scheduling determines the timing and amount of water applied to an irrigated cropland during the crop growing season. In this study a hydrologic-agronomic simulation is coupled with an optimization algorithm to search for the optimal irrigation schedule under various weather forecast horizons. The economic profit of irrigated corn from an optimized scheduling is compared to that from and the actual schedule, which is adopted from a pervious study. Extended and reliable climate prediction and weather forecast are found to be significantly valuable. If a weather forecast horizon is long enough to include the critical crop growth stage, in which crop yield bears the maximum loss over all stages, much economic loss can be avoided. Climate predictions of one to two months, which can cover the critical period, might be even more beneficial during a dry year. The other purpose of this paper is to analyze farmers' behavior in irrigation scheduling by comparing the "actual" schedule to the "optimized" ones. The ultimate goal of irrigation schedule optimization is to provide information to farmers so that they may modify their behavior. In practice, farmers' decision may not follow an optimal irrigation schedule due to the impact of various factors such as natural conditions, policies, farmers' habits and empirical knowledge, and the uncertain or inexact information that they receive. In this study farmers' behavior in irrigation decision making is analyzed by comparing the "actual" schedule to the "optimized" ones. This study finds that the identification of the crop growth stage with the most severe water stress is critical for irrigation scheduling. For the case study site in the year of 2002, framers' response to water stress was found to be

  8. Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Mogk, D. W.; McDaris, J. R.

    2010-12-01

    Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and

  9. Gas transfer between the atmosphere and irrigated sugarcane plantation sites under different rainfall in Hawai'i

    NASA Astrophysics Data System (ADS)

    Miyazawa, Y.; Giambelluca, T. W.; Crow, S. E.; Mudd, R. G.; Youkhana, A.; Nullet, M.; Nakahata, M.

    2015-12-01

    Sugarcane plantation land cover is increasing in area in Brazil, South Asia and the Pacific Islands because of the growing demand for sugar and biofuel production. While a large portion of sugarcane cultivated in Brazil is rain-fed and experiences drought influences on gas exchange, sugarcane in Hawai'i is thought to be buffered from drought effects because it is drip irrigated. Knowledge about carbon sequestration and evapotranspiration rates is fundamental both for the prediction of sugar and biofuel production and for water resource management for the large plantations. To understand gas transfer under spatially and temporally heterogeneous environments, we investigated the leaf- soil- and stand-scale gas transfer processes at two irrigated sugarcane plantation study sites in Hawai'i with contrasting rainfall. Gas and energy transfers were monitored using eddy covariance systems for a full- and later half- crop cycle. Leaf ecophysiological traits were measured for stands of different ages to evaluate the effects of stand age on gas transfer. Carbon sequestration rates (Fc) showed a strong relationship with solar radiation with small differences between sites. Latent heat flux expressed as the evapotranspiration rates (ET) also had a strong relationship with solar radiation, but showed seasonality due to variations in biological control (surface conductance) and atmospheric evaporative demand. The difference in ET and its responses to environments was less clear partly buffered by the differences in the stand age and seasons. The stable Fc-solar radiation relationship despite the variation in surface conductance was partly due to the saturation of net photosynthetic rates with intercellular CO2 concentration and the low sensitivity of net photosynthesis to variations in surface conductance in sugarcane with the C4 photosynthesis pathway. The response of gas transfer to periodic irrigation, rainfall and age-related changes in leaf ecophysiological traits will be

  10. Temperature changes and chondrocyte death during drilling in a bovine cartilage model and chondroprotection by modified irrigation solutions.

    PubMed

    Farhan-Alanie, Muhamed M H; Hall, Andrew C

    2014-11-01

    Drilling into cartilage/bone is often required for orthopaedic surgery. While drilling into bone has been studied, the response of cartilage has received little attention. We have measured cartilage and drill bit temperatures during drilling and quantified the zone of chondrocyte death (ZCD) around the hole in the presence/absence of irrigation solutions. Drilling was performed using a 1.5-mm orthopaedic drill bit applied to bovine metatarsophalangeal joints and temperatures recorded by infrared camera. Osteochondral explants were then incubated with 5-chloromethylfluorescein diacetate (CMFDA) and propidium iodide (PI) to label living/dead chondrocytes respectively. The width of the ZCD was quantified by confocal laser scanning microscopy (CLSM) and image analysis. Without irrigation, the ZCD following drilling for two seconds was 135 ± 15 μm and this increased (>fourfold, P < 0.001) with five seconds of drilling. Irrigation reduced the ZCD following drilling for both two and five seconds (P < 0.05, P < 0.001 respectively) to the same level (approx. 60 μm). Without irrigation, drill bit and cartilage temperature increased rapidly to >265 and 119 °C respectively, whereas the camera saturated at >282 °C during drilling for five seconds. With irrigation, the drill bit temperature was significantly reduced during drilling for two and five seconds (approx. 90 °C) with negligible change in cartilage temperature. Drilling while irrigating with hyperosmotic saline (600 mOsm) reduced (P < 0.01) the ZCD compared to saline, whereas chondrocyte death was increased (P < 0.01) by Ca(2+) saline (5 mM). Reducing temperature during drilling by irrigation markedly suppressed, but did not abolish chondrocyte death. Optimising the irrigation solution by raising osmolarity and reducing Ca(2+) content significantly reduced chondrocyte death during drilling and may be clinically beneficial.

  11. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    NASA Astrophysics Data System (ADS)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    recharge) and by inferring ET through difference, modeling, and gas exchange. In April 2013 prior to planting, we installed 10 passive capillary wick lysimeters below the effective rooting zone (z=100 cm) in potato (n=6) and maize (n=4) cropping systems to collect drainage at a 10-minute time-step under cultivation on Isherwood Farms, a sixth-generation family farm in the Wisconsin Central Sands region. Lysimeters were also instrumented to measure soil moisture and temperature at depth (z=10, 20, 40, 80 cm). Farm operators initiated center-pivot irrigation when soil moisture dropped to approximately 50% of plant available water content. Results show that drainage for May-July 2013 was 43 × 53 mm and 48 × 41 mm in irrigated potato and maize cropping systems, respectively, despite 320 mm of precipitation received during the experimental period, which was 15% above average for this region. Soil moisture consistently fluctuated in response to precipitation/irrigation events at the 10 and 20 cm soil depths, but rarely fluctuated in response to precipitation/irrigation events at the 40 and 80 cm soil depths, supporting the low drainage observed during the growing season. Future work will couple these drainage data to ongoing phenological, micrometeorological, and gas exchange observations in order to infer ET and calculate crop water budgets on a seasonal basis.

  12. Role of irrigation and irrigation automation in improving crop water use efficiency

    USDA-ARS?s Scientific Manuscript database

    In arid climates, irrigation is required for significant agricultural production. In subhumid and semiarid climates, supplemental irrigation is recognized as both economically necessary (prevention of crop losses in periodic droughts) and as a means to improve overall crop water use effi...

  13. Adaptation of irrigation infrastructure on irrigation demands under future drought in the USA

    USDA-ARS?s Scientific Manuscript database

    More severe droughts in the United States will bring great challenges to irrigation water supply. Here, the authors assessed the potential adaptive effects of irrigation infrastructure under present and more extensive droughts. Based on data over 1985–2005, this study established a statistical model...

  14. Simulating the Effects of Widespread Adoption of Efficient Irrigation Technologies on Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Kendall, A. D.; Deines, J. M.; Hyndman, D. W.

    2017-12-01

    Irrigation technologies are changing: becoming more efficient, better managed, and capable of more precise targeting. Widespread adoption of these technologies is shifting water balances and significantly altering the hydrologic cycle in some of the largest irrigated regions in the world, such as the High Plains Aquifer of the USA. There, declining groundwater resources, increased competition from alternate uses, changing surface water supplies, and increased subsidies and incentives are pushing farmers to adopt these new technologies. Their decisions about adoption, irrigation extent, and total water use are largely unrecorded, limiting critical data for what is the single largest consumptive water use globally. Here, we present a novel data fusion of an annual water use and technology database in Kansas with our recent remotely-sensed Annual Irrigation Maps (AIM) dataset to produce a spatially and temporally complete record of these decisions. We then use this fusion to drive the Landscape Hydrologic Model (LHM), which simulates the full terrestrial water cycle at hourly timesteps for large regions. The irrigation module within LHM explicitly simulates each major irrigation technology, allowing for a comprehensive evaluation of changes in irrigation water use over time and space. Here we simulate 2000 - 2016, a period which includes a major increase in the use of modern efficient irrigation technology (such as Low Energy Precision Application, LEPA) as well as both drought and relative wet periods. Impacts on water use are presented through time and space, along with implications for adopting these technologies across the USA and globally.

  15. Use of small scale electrical resistivity tomography to identify soil-root interactions during deficit irrigation

    NASA Astrophysics Data System (ADS)

    Vanella, D.; Cassiani, G.; Busato, L.; Boaga, J.; Barbagallo, S.; Binley, A.; Consoli, S.

    2018-01-01

    Plant roots activity affect the exchanges of mass and energy between the soil and atmosphere. However, it is challenging to monitor the activity of the root-zone because roots are not visible from the soil surface, and root systems undergo spatial and temporal variations in response to internal and external conditions. Therefore, measurements of the activity of root systems are interesting to ecohydrologists in general, and are especially important for specific applications, such as irrigation water management. This study demonstrates the use of small scale three-dimensional (3-D) electrical resistivity tomography (ERT) to monitor the root-zone of orange trees irrigated by two different regimes: (i) full rate, in which 100% of the crop evapotranspiration (ETc) is provided; and (ii) partial root-zone drying (PRD), in which 50% of ETc is supplied to alternate sides of the tree. We performed time-lapse 3-D ERT measurements on these trees from 5 June to 24 September 2015, and compared the long-term and short-term changes before, during, and after irrigation events. Given the small changes in soil temperature and pore water electrical conductivity, we interpreted changes of soil electrical resistivity from 3-D ERT data as proxies for changes in soil water content. The ERT results are consistent with measurements of transpiration flux and soil temperature. The changes in electrical resistivity obtained from ERT measurements in this case study indicate that root water uptake (RWU) processes occur at the 0.1 m scale, and highlight the impact of different irrigation schemes.

  16. Cleaning of Root Canal System by Different Irrigation Methods.

    PubMed

    Tanomaru-Filho, Mário; Miano, Lucas Martinati; Chávez-Andrade, Gisselle Moraima; Torres, Fernanda Ferrari Esteves; Leonardo, Renato de Toledo; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    The aim of this study was to compare the cleaning of main and lateral canals using the irrigation methods: negative pressure irrigation (EndoVac system), passive ultrasonic irrigation (PUI) and manual irrigation (MI). Resin teeth were used. After root canal preparation, four lateral canals were made at 2 and 7 mm from the apex. Root canals were filled with contrast solution and radiographed pre- and post-irrigation using digital radiographic system [radiovisiography (RVG)]. The irrigation protocols were: MI1-manual irrigation [22 G needle at 5 mm short of working length-WL]; MI2-manual irrigation (30G needle at 2 mm short of WL); PUI; EV1-EndoVac (microcannula at 1 mm short of WL); EV2-Endovac (microcannula at 3 mm short of WL). The obtained images, initial (filled with contrast solution) and final (after irrigation) were analyzed by using image tool 3.0 software. Statistical analysis was performed by analysis of variance (ANOVA) and Tukey tests (5% significance level). EV1 and EV2, followed by PUI showed better cleaning capacity than manual irrigation (MI1 and MI2) (p < 0.05). Negative pressure irrigation and PUI promoted better cleaning of main and simulated lateral canals. Conventional manual irrigation technique may promote less root canal cleaning in the apical third. For this reason, the search for other irrigation protocols is important, and EndoVac and PUI are alternatives to contribute to irrigation effectiveness.

  17. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    ERIC Educational Resources Information Center

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  18. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    PubMed

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  19. Influence of crop load on almond tree water status and its importance in irrigation scheduling

    NASA Astrophysics Data System (ADS)

    Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro

    2014-05-01

    reserve sugar concentration were also evaluated. Trees were drip irrigated in order to satisfy the maximum crop water requirements. Variations in MDS were compared with changes in Ψs and VPD10-15 in the three treatments at the end of fruit growth stage (stage III), kernel filling stage (stage IV) and postharvest (stage V). Our results highlighted that crop load affects almond tree water status. We observed a greater effect of crop load on MDS and TGR than on Ψs. In T0 trees, Ψs was 16% higher than in T50 and T100. MDS was 36% and 49% lower in the low (T50) and almost nil-cropping trees (T0) than in the high-cropping trees (T100). The slope of MDS vs VPD10-15 forced to the origin increased with crop load, suggesting that different relationships are needed to estimate tree water status. TGR was 33% higher in T0 than in the cropping trees. In the same way, the presence of fruits, as reflected by the source/sink relationship, increased gas exchange parameters. Also pruning weights reflected competition between fruits and shoots for photoassimilates. Nevertheless the reserve sugar concentration at the base of the main branches was unaffected by the crop load. All this implies that it is necessary to consider the crop load in irrigation scheduling based on MDS signal intensity.

  20. Operational Space-Assisted Irrigation Advisory Services: Overview Of And Lessons Learned From The Project DEMETER

    NASA Astrophysics Data System (ADS)

    Osann Jochum, M. A.; Demeter Partners

    2006-08-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was dedicated to assessing and demonstrating improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated for Landsat 5-TM in the Barrax pilot zone during the 2004 and 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. Leading-edge online analysis and visualization tools provide easy, intuitive access to the information and personalized service to users. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  1. Does endodontic post space irrigation affect smear layer removal and bonding effectiveness?

    PubMed

    Gu, Xin-Hua; Mao, Cai-Yun; Liang, Cong; Wang, Hui-Ming; Kern, Matthias

    2009-10-01

    The effect of different post space irrigants on smear layer removal and dentin bond strength was evaluated. Sixty-six extracted sound maxillary central incisors were endodontically treated. After post space preparation, the teeth were assigned to three groups of 22 teeth each. The teeth of these three groups were irrigated for 1 min with 17% ethylenediaminetetracetic acid (EDTA) (group 1), 5.25% sodium hypochlorite (NaOCl) (group 2), or 0.9% sodium chloride (NaCl) (group 3). In each group, eight specimens were split longitudinally for smear layer evaluation, and the other fourteen specimens were filled with a self-etching adhesive system (Panavia F). Four of 14 specimens of each group were prepared for evaluation of the resin-dentin interdiffusion zone (RDIZ) and resin tags, and the other 10 specimens were serially sectioned for push-out test analysis. Smear layer removal and bond strength were affected by different post space irrigants. EDTA removed the smear layer extremely effectively and, as a result, improved the bond strength at each region (apical, middle, and coronal) of the roots. Resin tag formation and the RDIZ were also affected by different irrigants and in accordance with bond strength. Therefore, removal of the smear layer use a self-etching luting system plays an important role in bonding effectiveness.

  2. Irrigation Differentially Impacts Populations of Indigenous Antibiotic-Producing Pseudomonas spp. in the Rhizosphere of Wheat

    PubMed Central

    Mavrodi, Olga V.; Mavrodi, Dmitri V.; Parejko, James A.; Thomashow, Linda S.

    2012-01-01

    This work determined the impact of irrigation on the seasonal dynamics of populations of Pseudomonas spp. producing the antibiotics phenazine-1-carboxylic acid (Phz+) and 2,4-diacetylphloroglucinol (Phl+) in the rhizosphere of wheat grown in the low-precipitation zone (150 to 300 mm annually) of the Columbia Plateau of the Inland Pacific Northwest. Population sizes and plant colonization frequencies of Phz+ and Phl+ Pseudomonas spp. were determined in winter and spring wheat collected during the growing seasons from 2008 to 2009 from selected commercial dryland and irrigated fields in central Washington State. Only Phz+ bacteria were detected on dryland winter wheat, with populations ranging from 4.8 to 6.3 log CFU g−1 of root and rhizosphere colonization frequencies of 67 to 100%. The ranges of population densities of Phl+ and Phz+ Pseudomonas spp. recovered from wheat grown under irrigation were similar, but 58 to 100% of root systems were colonized by Phl+ bacteria whereas only 8 to 50% of plants harbored Phz+ bacteria. In addition, Phz+ Pseudomonas spp. were abundant in the rhizosphere of native plant species growing in nonirrigated areas adjacent to the sampled dryland wheat fields. This is the first report that documents the impact of irrigation on indigenous populations of two closely related groups of antibiotic-producing pseudomonads that coinhabit the rhizosphere of an economically important cereal crop. These results demonstrate how crop management practices can influence indigenous populations of antibiotic-producing pseudomonads with the capacity to suppress soilborne diseases of wheat. PMID:22389379

  3. Groundwater recharge in irrigated semi-arid areas: quantitative hydrological modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, Joaquín; Candela, Lucila; Molinero, Jorge; Tamoh, Karim

    2010-12-01

    For semi-arid regions, methods of assessing aquifer recharge usually consider the potential evapotranspiration. Actual evapotranspiration rates can be below potential rates for long periods of time, even in irrigated systems. Accurate estimations of aquifer recharge in semi-arid areas under irrigated agriculture are essential for sustainable water-resources management. A method to estimate aquifer recharge from irrigated farmland has been tested. The water-balance-modelling approach was based on VisualBALAN v. 2.0, a computer code that simulates water balance in the soil, vadose zone and aquifer. The study was carried out in the Campo de Cartagena (SE Spain) in the period 1999-2008 for three different groups of crops: annual row crops (lettuce and melon), perennial vegetables (artichoke) and fruit trees (citrus). Computed mean-annual-recharge values (from irrigation+precipitation) during the study period were 397 mm for annual row crops, 201 mm for perennial vegetables and 194 mm for fruit trees: 31.4, 20.7 and 20.5% of the total applied water, respectively. The effects of rainfall events on the final recharge were clearly observed, due to the continuously high water content in soil which facilitated the infiltration process. A sensitivity analysis to assess the reliability and uncertainty of recharge estimations was carried out.

  4. The Regularity of Optimal Irrigation Patterns

    NASA Astrophysics Data System (ADS)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 < α < 1. The aim of this paper is to prove the regularity of paths (rivers, branches,...) when the irrigated measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  5. Nitrogen removal function of recycling irrigation system.

    PubMed

    Hitomi, T; Yoshinaga, I; Feng, Y W; Shiratani, E

    2006-01-01

    The purpose of this study was to clarify the nitrogen (N) purification capacity of a paddy field in a recycling irrigation system. Irrigation water was sampled at 12-h intervals during the irrigation period from April to September 2003. In addition, ponded water in a paddy field was collected at three points (inlet, centre and outlet). Total amounts of N were 30.7 kg ha(-1) in inflow and 27.8 kg ha(-1) in outflow. Thus, the net outflow load was -2.9 kg ha(-1). The N removal rate constant when N removal is expressed as a 1st-order kinetic was 0.017-0.024 m d(-1). This value is close to values of wetlands and paddy fields in the literature. We found a good correlation between recycling ratio and N removal effect. These results indicate that the recycling irrigation system accumulates N in the irrigation/drainage system, and thus the paddy field does a good job of water purification by removing N.

  6. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since change